
DB2® IBM Informix

IBM Informix Database Design and Implementation Guide

Version 10.0/8.5

G251-2271-00

���

DB2® IBM Informix

IBM Informix Database Design and Implementation Guide

Version 10.0/8.5

G251-2271-00

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page B-1.

First Edition (December 2004)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by

copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . ix

About This Manual . ix

Types of Users . x

Software Dependencies . x

Assumptions About Your Locale . x

Demonstration Database . xi

New Features in Extended Parallel Server, Version 8.50 xi

New Features in Dynamic Server, Version 10.0 xi

Documentation Conventions . xii

Typographical Conventions . xii

Feature, Product, and Platform . xii

Syntax Diagrams . xiii

Example Code Conventions . xvii

Additional Documentation . xviii

Installation Guides . xviii

Online Notes . xviii

Informix Error Messages . xx

Manuals . xxi

Online Help . xxi

Accessibility . xxi

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xxi

Compliance with Industry Standards . xxiv

IBM Welcomes Your Comments . xxv

Part 1. Basics of Database Design and Implementation

Chapter 1. Planning a Database . 1-1

Choosing a Data Model for Your Database . 1-1

Using ANSI-Compliant Databases . 1-2

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases 1-3

Determining if an Existing Database Is ANSI Compliant 1-6

Using a Customized Language Environment for Your Database (GLS) 1-7

Chapter 2. Building a Relational Data Model 2-1

Building a Data Model . 2-2

Overview of the Entity-Relationship Data Model 2-2

Identifying and Defining Principal Data Objects 2-3

Discovering Entities . 2-3

Defining the Relationships . 2-6

Identifying Attributes . 2-12

Diagramming Data Objects . 2-14

Reading E-R Diagrams . 2-15

Telephone Directory Example . 2-16

Translating E-R Data Objects into Relational Constructs 2-17

© Copyright IBM Corp. 1996, 2004 iii

Defining Tables, Rows, and Columns . 2-17

Determining Keys for Tables . 2-19

Resolving Relationships . 2-22

Resolving m:n Relationships . 2-22

Resolving Other Special Relationships . 2-23

Normalizing a Data Model . 2-24

First Normal Form . 2-25

Second Normal Form . 2-26

Third Normal Form . 2-27

Summary of Normalization Rules . 2-27

Chapter 3. Choosing Data Types . 3-1

Defining the Domains . 3-2

Data Types . 3-2

Choosing a Data Type . 3-2

Numeric Types . 3-5

Chronological Data Types . 3-11

BOOLEAN Data Type (IDS) . 3-15

Character Data Types (GLS) . 3-15

Null Values . 3-20

Default Values . 3-21

Check Constraints . 3-21

Referential Constraints . 3-22

Chapter 4. Implementing a Relational Data Model 4-1

Creating the Database . 4-1

Using CREATE DATABASE . 4-2

Using CREATE TABLE . 4-4

Using CREATE INDEX . 4-6

Using Synonyms for Table Names . 4-7

Using Synonym Chains . 4-8

Using Command Scripts . 4-9

Populating the Database . 4-10

Moving Data from Other Informix Databases 4-11

Loading Source Data into a Table . 4-12

Performing Bulk-Load Operations . 4-12

Part 2. Managing Databases

Chapter 5. Table Fragmentation Strategies 5-1

What Is Fragmentation? . 5-2

Why Use Fragmentation? . 5-3

Whose Responsibility Is Fragmentation? . 5-3

Enhanced Fragmentation (XPS) . 5-3

Fragmentation and Logging . 5-4

Distribution Schemes for Table Fragmentation 5-4

Expression-Based Distribution Scheme . 5-5

Round-Robin Distribution Scheme . 5-7

Range Distribution Scheme (XPS) . 5-7

iv IBM Informix Database Design and Implementation Guide

System-Defined Hash Distribution Scheme (XPS) 5-8

Hybrid Distribution Scheme (XPS) . 5-8

Creating a Fragmented Table . 5-9

Creating a New Fragmented Table . 5-9

Creating a Fragmented Table from Nonfragmented Tables 5-11

Rowids in a Fragmented Table . 5-12

Fragmenting Smart Large Objects (IDS) . 5-13

Modifying Fragmentation Strategies . 5-13

Reinitializing a Fragmentation Strategy . 5-13

Modifying Fragmentation Strategies for Dynamic Server 5-15

Modifying Fragmentation Strategies for XPS 5-16

Granting and Revoking Privileges on Fragments (IDS) 5-18

Chapter 6. Granting and Limiting Access to Your Database 6-1

Using SQL to Restrict Access to Data . 6-2

Controlling Access to Databases . 6-2

Granting Privileges . 6-3

Database-Level Privileges . 6-4

Ownership Rights . 6-5

Table-Level Privileges . 6-6

Column-Level Privileges . 6-9

Type-Level Privileges . 6-10

Routine-Level Privileges . 6-11

Language-Level Privileges . 6-12

Automating Privileges . 6-13

Determining Current Role at Runtime . 6-16

Using SPL Routines to Control Access to Data 6-16

Restricting Data Reads . 6-17

Restricting Changes to Data . 6-18

Monitoring Changes to Data . 6-18

Restricting Object Creation . 6-19

Using Views . 6-20

Creating Views . 6-21

Restrictions on Views . 6-23

Modifying with a View . 6-24

Privileges and Views . 6-27

Privileges When Creating a View . 6-27

Privileges When Using a View . 6-28

Chapter 7. Using Distributed Queries . 7-1

Overview of Distributed Queries . 7-1

Distributed Queries across Databases of One Dynamic Server Instance 7-2

Coordinator and Participant in a Distributed Query 7-2

Configuring the Database Server to Use Distributed Queries 7-3

The Syntax of a Distributed Query . 7-3

Accessing a Remote Server and Database . 7-3

Valid Statements for Accessing Remote Objects 7-4

Accessing Remote Tables . 7-5

Other Remote Operations . 7-6

Monitoring Distributed Queries . 7-6

Contents v

Server Environment and Distributed Queries 7-7

PDQPRIORITY Environment Variable . 7-7

DEADLOCK_TIMEOUT . 7-7

Database Access Restrictions . 7-7

Transaction Processing . 7-8

Isolation Levels . 7-8

DEADLOCK_TIMEOUT and SET LOCK MODE 7-8

Two-phase Commit and Recovery . 7-8

Cross Server Compatibility Issues (XPS) . 7-9

BYTE and TEXT Data Types . 7-9

Other Restrictions . 7-9

Part 3. Object-Relational Databases

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-1

Informix Data Types . 8-2

Fundamental or Atomic Data Types . 8-3

Predefined Data Types . 8-3

Extended Data Types . 8-4

Smart Large Objects . 8-6

BLOB Data Type . 8-7

CLOB Data type . 8-7

Using Smart Large Objects . 8-8

Copying Smart Large Objects . 8-8

Complex Data Types . 8-9

Collection Data Types . 8-10

Named Row Types . 8-14

Unnamed Row Types . 8-21

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-1

What Is Inheritance? . 9-1

Type Inheritance . 9-2

Defining a Type Hierarchy . 9-2

Overloading Routines for Types in a Type Hierarchy 9-4

Inheritance and Type Substitutability . 9-5

Dropping Named Row Types from a Type Hierarchy 9-6

Table Inheritance . 9-7

The Relationship Between Type and Table Hierarchies 9-7

Defining a Table Hierarchy . 9-8

Inheritance of Table Behavior in a Table Hierarchy 9-9

Modifying Table Behavior in a Table Hierarchy 9-10

SERIAL Types in a Table Hierarchy . 9-12

Adding a New Table to a Table Hierarchy 9-13

Dropping a Table in a Table Hierarchy . 9-14

Altering the Structure of a Table in a Table Hierarchy 9-14

Querying Tables in a Table Hierarchy . 9-15

Creating a View on a Table in a Table Hierarchy 9-15

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-1

vi IBM Informix Database Design and Implementation Guide

What Is a Cast? . 10-1

Creating User-Defined Casts . 10-2

Invoking Casts . 10-3

Restrictions on User-Defined Casts . 10-3

Casting Row Types . 10-4

Casting Between Named and Unnamed Row Types 10-4

Casting Between Unnamed Row Types . 10-5

Casting Between Named Row Types . 10-6

Using Explicit Casts on Fields . 10-6

Casting Individual Fields of a Row Type . 10-8

Casting Collection Data Types . 10-8

Restrictions on Collection-Type Conversions 10-9

Collections with Different Element Types 10-9

Converting Relational Data to a MULTISET Collection 10-10

Casting Distinct Data Types . 10-10

Using Explicit Casts with Distinct Types 10-10

Casting Between a Distinct Type and Its Source Type 10-11

Adding and Dropping Casts on a Distinct Type 10-12

Casting to Smart Large Objects . 10-13

Creating Cast Functions for User-Defined Casts 10-13

An Example of Casting Between Named Row Types 10-14

An Example of Casting Between Distinct Data Types 10-14

Multilevel Casting . 10-16

Part 4. Dimensional Databases

Chapter 11. Building a Dimensional Data Model 11-1

Overview of Data Warehousing . 11-2

Why Build a Dimensional Database? . 11-3

What Is Dimensional Data? . 11-4

Concepts of Dimensional Data Modeling . 11-6

The Fact Table . 11-7

Dimensions of the Data Model . 11-8

Building a Dimensional Data Model . 11-11

Choosing a Business Process . 11-11

Summary of a Business Process . 11-11

Determining the Granularity of the Fact Table 11-13

Identifying the Dimensions and Hierarchies 11-14

Choosing the Measures for the Fact Table 11-16

Resisting Normalization . 11-18

Choosing the Attributes for the Dimension Tables 11-18

Handling Common Dimensional Data-Modeling Problems 11-19

Minimizing the Number of Attributes in a Dimension Table 11-20

Handling Dimensions That Occasionally Change 11-20

Using the Snowflake Schema . 11-21

Chapter 12. Implementing a Dimensional Database (XPS) 12-1

Implementing the sales_demo Dimensional Database 12-1

Using CREATE DATABASE . 12-2

Contents vii

Using CREATE TABLE for the Dimension and Fact Tables 12-2

Mapping Data from Data Sources to the Database 12-4

Loading Data into the Dimensional Database 12-6

Creating the sales_demo Database . 12-7

Testing the Dimensional Database . 12-7

Logging and Nonlogging Tables in Extended Parallel Server 12-8

Choosing Table Types . 12-9

Switching Between Table Types . 12-12

Indexes for Data-Warehousing Environments 12-12

Using GK Indexes in a Data-Warehousing Environment 12-13

Defining a GK Index on a Selection . 12-13

Defining a GK Index on an Expression . 12-14

Defining a GK Index on Joined Tables . 12-14

Part 5. Appendixes

Appendix. Accessibility . A-1

Notices . B-1

Index . X-1

viii IBM Informix Database Design and Implementation Guide

Introduction

About This Manual . ix

Types of Users . x

Software Dependencies . x

Assumptions About Your Locale . x

Demonstration Database . xi

New Features in Extended Parallel Server, Version 8.50 xi

New Features in Dynamic Server, Version 10.0 xi

Documentation Conventions . xii

Typographical Conventions . xii

Feature, Product, and Platform . xii

Syntax Diagrams . xiii

How to Read a Command-Line Syntax Diagram xv

Keywords and Punctuation . xvi

Identifiers and Names . xvi

Example Code Conventions . xvii

Additional Documentation . xviii

Installation Guides . xviii

Online Notes . xviii

Locating Online Notes . xix

Online Notes Filenames . xx

Informix Error Messages . xx

Manuals . xxi

Online Manuals . xxi

Printed Manuals . xxi

Online Help . xxi

Accessibility . xxi

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xxi

Compliance with Industry Standards . xxiv

IBM Welcomes Your Comments . xxv

In This Introduction

This introduction provides an overview of the information in this manual and

describes the conventions it uses.

About This Manual

This manual provides information to help you design, implement, and

manage your Informix databases. It includes data models that illustrate

different approaches to database design and shows you how to use structured

query language (SQL) to implement and manage your databases.

© Copyright IBM Corp. 1996, 2004 ix

This manual is one of several manuals that discuss Informix implementation

of SQL. The IBM Informix: Guide to SQL Tutorial shows how to use basic and

advanced SQL and Stored Procedure Language (SPL) routines to access and

manipulate the data in your databases. The IBM Informix: Guide to SQL Syntax

contains all the syntax descriptions for SQL and SPL. The IBM Informix: Guide

to SQL Referenceprovides reference information for aspects of SQL other than

the language statements.

Types of Users

This manual is written for the following users:

v Database administrators

v Database server administrators

v Database-application programmers

This manual assumes that you have the following background:

v A working knowledge of your computer, your operating system, and the

utilities that your operating system provides

v Some experience working with relational databases or exposure to database

concepts

v Some experience with computer programming

If you have limited experience with relational databases, SQL, or your

operating system, refer to the IBM Informix: Getting Started Guide for your

database server for a list of supplementary titles.

Software Dependencies

This manual is written with the assumption that you are using one of the

following database servers:

v IBM Informix Dynamic Server, Version 10.0

v IBM Informix Extended Parallel Server, Version 8.50

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets.

All the information related to character set, collation, and representation of

numeric data, currency, date, and time is brought together in a single

environment, called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are

using the default locale, en_us.8859-1. This locale supports U.S. English

format conventions for date, time, and currency. In addition, this locale

supports the ISO 8859-1 code set, which includes the ASCII code set plus

many 8-bit characters such as é, è, and ñ.

x IBM Informix Database Design and Implementation Guide

If you plan to use nondefault characters in your data or your SQL identifiers,

or if you want to conform to the nondefault collation rules of character data,

you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and

other considerations related to GLS locales, see the IBM Informix: GLS User's

Guide.

Demonstration Database

The DB–Access utility, provided with the database server products, includes

one or more of the following demonstration databases:

v For all IBM Informix databases, the stores_demo database illustrates a

relational schema with information about a fictitious wholesale

sporting-goods distributor. Many examples in IBM Informix manuals are

based on the stores_demo database.

v For Extended Parallel Server, the sales_demo database illustrates a

dimensional schema for data-warehousing applications. For conceptual

information about dimensional data modeling, see Part 4 of this

IBM Informix: Database Design and Implementation Guide.
v For Dynamic Server, the superstores_demo database illustrates an

object-relational schema. The superstores_demo database contains examples

of extended data types, type and table inheritance, and user-defined

routines.

For information about how to create and populate the demonstration

databases, see the IBM Informix: DB–Access User's Guide. For descriptions of

the databases and their contents, see the IBM Informix: Guide to SQL Reference.

The scripts that you use to install the demonstration databases reside in the

$INFORMIXDIR/bin directory on UNIX platforms and in the

%INFORMIXDIR%\bin directory in Windows environments.

New Features in Extended Parallel Server, Version 8.50

For a description of the new features in IBM Informix Extended Parallel

Server, Version 8.50, see the IBM Informix: Getting Started Guide, Version 8.50.

New Features in Dynamic Server, Version 10.0

For a description of the new features in IBM Informix Dynamic Server,

Version 10.0, see the IBM Informix: Getting Started Guide, Version 10.0.

Introduction xi

Documentation Conventions

 This section describes the conventions that this manual uses. These

conventions make it easier to gather information from this and other volumes

in the documentation set.

The following conventions are discussed:

v Typographical conventions

v Other conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD All primary elements in a programming language statement

(keywords) appear in uppercase letters in a serif font.

italics

italics

italics

Within text, new terms and emphasized words appear in italics.

Within syntax and code examples, variable values that you are to

specify appear in italics.

boldface

boldface

Names of program entities (such as classes, events, and tables),

environment variables, file and pathnames, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace

monospace

Information that the product displays and information that you

enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Tip: When you are instructed to “enter” characters or to “execute” a

command, immediately press RETURN after the entry. When you are

instructed to “type” the text or to “press” other keys, no RETURN is

required.

Feature, Product, and Platform

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some

xii IBM Informix Database Design and Implementation Guide

examples of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Extended Parallel Server

Identifies information that is specific to IBM Informix Extended Parallel Server

End of Extended Parallel Server

UNIX Only

Identifies information that is specific to UNIX platforms

End of UNIX Only

Windows Only

Identifies information that is specific to the Windows environment

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part

of the heading text, for example:

 Table Sorting (Linux Only)

Syntax Diagrams

This guide uses syntax diagrams built with the following components to

describe the syntax for statements and all commands other than system-level

commands.

Note: Starting in 2004, syntax diagrams have been reformatted to conform to

the IBM standard.

Syntax diagrams depicting SQL and command-line statements have changed

in the following ways:

v The symbols at the beginning and end of statements are now double arrows

instead of a vertical line at the end.

v The symbols at the beginning and end of syntax segment diagrams are now

vertical lines instead of arrows.

Introduction xiii

v How many times a loop can be repeated is now explained in a diagram

footnote instead of a number in a gate symbol.

v Syntax statements that are longer than one line now continue on the next

line instead of looping down with a continuous line.

v Product or condition-specific paths are now explained in diagram footnotes

instead of icons.

The following table describes syntax diagram components.

 Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on

next line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item

must be present.

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you

might specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the

main line are optional, one

of which you might

specify. If you do not

specify an item, the value

above the line will be used

as the default.

xiv IBM Informix Database Design and Implementation Guide

Component represented in PDF Component represented in HTML Meaning

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several

items are allowed; a

comma must precede each

repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed

in the table in the previous section.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

�

-t

table

�

(1)

Setting the Run Mode

-S

server

-T

target

��

Notes:

1 See page 17-4

The second line in this diagram has a segment named “Setting the Run

Mode,” which according to the diagram footnote, is on page 17-4. This

segment is shown in the following segment diagram (the diagram uses

segment start and end components).

Setting the Run Mode:

Introduction xv

-f

d

p

a

 l

c

u

n

N

To construct a command correctly, start at the top left with the command.

Follow the diagram to the right, including the elements that you want. The

elements in the diagram are case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and

repeat them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then

optionally type l or u.
5. Follow the diagram to the terminator.

Your diagram is complete.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword

exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly

as shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax

diagrams and examples. You can replace a variable with an arbitrary name,

xvi IBM Informix Database Design and Implementation Guide

identifier, or literal, depending on the context. Variables are also used to

represent complex syntax elements that are expanded in additional syntax

diagrams. When a variable appears in a syntax diagram, an example, or text,

it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the

code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules

for that product. For example, if you are using DB–Access, you must delimit

multiple statements with semicolons. If you are using an SQL API, you must

use EXEC SQL at the start of each statement and a semicolon (or other

appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be

added in a full application, but it is not necessary to show it to describe

the concept being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the manual for your product.

Introduction xvii

Additional Documentation

For additional information, refer to the following types of documentation:

v Installation guides

v Online notes

v Informix error messages

v Manuals

v Online help

Installation Guides

Installation guides are located in the /doc directory of the product CD or in

the /doc directory of the product‘s compressed file if you downloaded it from

the IBM Web site. Alternatively, you can obtain installation guides from the

IBM Informix Online Documentation site at

http://www.ibm.com/software/data/informix/pubs/library/.

Online Notes

The following sections describe the online files that supplement the

information in this manual. Please examine these files before you begin using

your IBM Informix product. They contain vital information about application

and performance issues.

xviii IBM Informix Database Design and Implementation Guide

http://www.ibm.com/software/data/informix/pubs/library/

Online File Description Format

TOC Notes The TOC (Table of Contents) notes file

provides a comprehensive directory of

hyperlinks to the release notes, the fixed and

known defects file, and all the documentation

notes files for individual manual titles.

HTML

Documentation Notes The documentation notes file for each manual

contains important information and

corrections that supplement the information

in the manual or information that was

modified since publication.

HTML, text

Release Notes The release notes file describes feature

differences from earlier versions of IBM

Informix products and how these differences

might affect current products. For some

products, this file also contains information

about any known problems and their

workarounds.

HTML, text

Machine Notes (Non-Windows platforms only) The machine

notes file describes any platform-specific

actions that you must take to configure and

use IBM Informix products on your

computer.

text

Fixed and Known

Defects File

This text file lists issues that have been

identified with the current version. It also lists

customer-reported defects that have been

fixed in both the current version and in

previous versions.

text

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site

at http://www.ibm.com/software/data/informix/pubs/library/. Additionally

you can locate these files before or after installation as described below.

Before Installation

All online notes are located in the /doc directory of the product CD. The

easiest way to access the documentation notes, the release notes, and the fixed

and known defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided

in text format.

After Installation

Introduction xix

http://www.ibm.com/software/data/informix/pubs/library/

On UNIX platforms in the default locale, the documentation notes, release

notes, and machine notes files appear under the

$INFORMIXDIR/release/en_us/0333 directory.

Dynamic Server

On Windows the documentation and release notes files appear in the

Informix folder. To display this folder, choose Start > Programs > IBM

Informix Dynamic Server version > Documentation Notes or Release Notes

from the taskbar.

Machine notes do not apply to Windows platforms.

End of Dynamic Server

Online Notes Filenames

Online notes have the following file formats:

 Online File File Format Examples

TOC Notes prod_os_tocnotes_version.html ids_win_tocnotes_10.0.html

Documentation Notes prod_bookname_docnotes_version.html/txt ids_hpl_docnotes_10.0.html

Release Notes prod_os_relnotes_version.html/txt ids_unix_relnotes_10.0.txt

Machine Notes prod_machine_notes_version.txt ids_machine_notes_10.0.txt

Fixed and Known

Defects File

prod_defects_version.txt

ids_win_fixed_and_known

_defects_version.txt

ids_defects_10.0.txt

client_defects_2.90.txt

ids_win_fixed_and_known

_defects_10.0.txt

Informix Error Messages

This file is a comprehensive index of error messages and their corrective

actions for the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and

their corrective actions.

Dynamic Server

On Windows, use the Informix Error Messages utility to read error messages

and their corrective actions. To display this utility, choose Start > Programs >

IBM Informix Dynamic Server version > Informix Error Messages from the

taskbar.

End of Dynamic Server

xx IBM Informix Database Design and Implementation Guide

You can also access these files from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Manuals

Online Manuals

A CD that contains your manuals in electronic format is provided with your

IBM Informix products. You can install the documentation or access it directly

from the CD. For information about how to install, read, and print online

manuals, see the installation insert that accompanies your CD. You can also

obtain the same online manuals from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Printed Manuals

To order hardcopy manuals, contact your sales representative or visit the IBM

Publications Center Web site at

http://www.ibm.com/software/howtobuy/data.html.

Online Help

IBM Informix online help, provided with each graphical user interface (GUI),

displays information about those interfaces and the functions that they

perform. Use the help facilities that each GUI provides to display the online

help.

Accessibility

IBM is committed to making our documentation accessible to persons with

disabilities. Our books are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our manuals are available in dotted decimal format, which is an

accessible format that is available only if you are using a screen reader. For

more information about the dotted decimal format, see the Accessibility

appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90

Documentation Set

The following tables list the manuals that are part of the IBM Informix

Dynamic Server, Version 10.0 and the CSDK Version 2.90, documentation set.

PDF and HTML versions of these manuals are available at

http://www.ibm.com/software/data/informix/pubs/library/. You can order

hardcopy versions of these manuals from the IBM Publications Center at

http://www.ibm.com/software/howtobuy/data.html.

Introduction xxi

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html

Table 1. Database Server Manuals

Manual Subject

Administrator’s Guide Understanding, configuring, and administering your database server.

Administrator’s Reference Reference material for Informix Dynamic Server, such as the syntax of

database server utilities onmode and onstat, and descriptions of

configuration parameters, the sysmasters tables, and logical-log records.

Backup and Restore Guide The concepts and methods you need to understand when you use the

ON-Bar and ontape utilities to back up and restore data.

DB-Access User’s Guide Using the DB-Access utility to access, modify, and retrieve data from

Informix databases.

DataBlade API

Function Reference

The DataBlade API functions and the subset of ESQL/C functions that

the DataBlade API supports. You can use the DataBlade API to develop

client LIBMI applications and C user-defined routines that access data in

Informix databases.

DataBlade API

Programmer’s Guide

The DataBlade API, which is the C-language application-programming

interface provided with Dynamic Server. You use the DataBlade API to

develop client and server applications that access data stored in Informix

databases.

Database Design and

Implementation Guide

Designing, implementing, and managing your Informix databases.

Enterprise Replication

Guide

How to design, implement, and manage an Enterprise Replication system

to replicate data between multiple database servers.

Error Messages file Causes and solutions for numbered error messages you might receive

when you work with IBM Informix products.

Getting Started Guide Describes the products bundled with IBM Informix Dynamic Server and

interoperability with other IBM products. Summarizes important features

of Dynamic Server and the new features for each version.

Guide to SQL: Reference Information about Informix databases, data types, system catalog tables,

environment variables, and the stores_demo demonstration database.

Guide to SQL: Syntax Detailed descriptions of the syntax for all Informix SQL and SPL

statements.

Guide to SQL: Tutorial A tutorial on SQL, as implemented by Informix products, that describes

the basic ideas and terms that are used when you work with a relational

database.

High-Performance Loader

User’s Guide

Accessing and using the High-Performance Loader (HPL), to load and

unload large quantities of data to and from Informix databases.

Installation Guide for

Microsoft Windows

Instructions for installing IBM Informix Dynamic Server on Windows.

Installation Guide for

UNIX and Linux

Instructions for installing IBM Informix Dynamic Server on UNIX and

Linux.

xxii IBM Informix Database Design and Implementation Guide

Table 1. Database Server Manuals (continued)

Manual Subject

J/Foundation Developer’s

Guide

Writing user-defined routines (UDRs) in the Java programming language

for Informix Dynamic Server with J/Foundation.

Large Object Locator

DataBlade Module User’s

Guide

Using the Large Object Locator, a foundation DataBlade module that can

be used by other modules that create or store large-object data. The Large

Object Locator enables you to create a single consistent interface to large

objects and extends the concept of large objects to include data stored

outside the database.

Migration Guide Conversion to and reversion from the latest versions of Informix

database servers. Migration between different Informix database servers.

Optical Subsystem Guide The Optical Subsystem, a utility that supports the storage of BYTE and

TEXT data on optical disk.

Performance Guide Configuring and operating IBM Informix Dynamic Server to achieve

optimum performance.

R-Tree Index User’s Guide Creating R-tree indexes on appropriate data types, creating new operator

classes that use the R-tree access method, and managing databases that

use the R-tree secondary access method.

SNMP Subagent Guide The IBM Informix subagent that allows a Simple Network Management

Protocol (SNMP) network manager to monitor the status of Informix

servers.

Storage Manager

Administrator’s Guide

Informix Storage Manager (ISM), which manages storage devices and

media for your Informix database server.

Trusted Facility Guide The secure-auditing capabilities of Dynamic Server, including the creation

and maintenance of audit logs.

User-Defined Routines and

Data Types Developer’s

Guide

How to define new data types and enable user-defined routines (UDRs)

to extend IBM Informix Dynamic Server.

Virtual-Index Interface

Programmer’s Guide

Creating a secondary access method (index) with the Virtual-Index

Interface (VII) to extend the built-in indexing schemes of IBM Informix

Dynamic Server. Typically used with a DataBlade module.

Virtual-Table Interface

Programmer’s Guide

Creating a primary access method with the Virtual-Table Interface (VTI)

so that users have a single SQL interface to Informix tables and to data

that does not conform to the storage scheme of Informix Dynamic Server.

 Table 2. Client/Connectivity Manuals

Manual Subject

Client Products Installation

Guide

Installing IBM Informix Client Software Developer’s Kit (Client SDK) and

IBM Informix Connect on computers that use UNIX, Linux, and

Windows.

Embedded SQLJ User’s

Guide

Using IBM Informix Embedded SQLJ to embed SQL statements in Java

programs.

Introduction xxiii

Table 2. Client/Connectivity Manuals (continued)

Manual Subject

ESQL/C Programmer’s

Manual

The IBM Informix implementation of embedded SQL for C.

GLS User’s Guide The Global Language Support (GLS) feature, which allows IBM Informix

APIs and database servers to handle different languages, cultural

conventions, and code sets.

JDBC Driver Programmer’s

Guide

Installing and using Informix JDBC Driver to connect to an Informix

database from within a Java application or applet.

.NET Provider Reference

Guide

Using Informix .NET Provider to enable .NET client applications to

access and manipulate data in Informix databases.

ODBC Driver Programmer’s

Manual

Using the Informix ODBC Driver API to access an Informix database and

interact with the Informix database server.

OLE DB Provider

Programmer’s Guide

Installing and configuring Informix OLE DB Provider to enable client

applications, such as ActiveX Data Object (ADO) applications and Web

pages, to access data on an Informix server.

Object Interface for C++

Programmer’s Guide

The architecture of the C++ object interface and a complete class

reference.

 Table 3. DataBlade Developer’s Kit Manuals

Manual Subject

DataBlade Developer’s Kit

User’s Guide

Developing and packaging DataBlade modules using BladeSmith and

BladePack.

DataBlade Module

Development Overview

Basic orientation for developing DataBlade modules. Includes an

example illustrating the development of a DataBlade module.

DataBlade Module

Installation and Registration

Guide

Installing DataBlade modules and using BladeManager to manage

DataBlade modules in Informix databases.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of

industry standards for the Structured Query Language (SQL). IBM Informix

SQL-based products are fully compliant with SQL-92 Entry Level (published

as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many

features of IBM Informix database servers comply with the SQL-92

Intermediate and Full Level and X/Open SQL Common Applications

Environment (CAE) standards.

xxiv IBM Informix Database Design and Implementation Guide

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find

useful in our manuals, which will help us improve future versions. Include

the following information:

v The name and version of the manual that you are using

v Section and page number

v Your suggestions about the manual

Send your comments to us at the following email address:

docinf@us.ibm.com

This email address is reserved for reporting errors and omissions in our

documentation. For immediate help with a technical problem, contact IBM

Technical Support.

We appreciate your suggestions.

Introduction xxv

mailto:docinf@us.ibm.com

xxvi IBM Informix Database Design and Implementation Guide

Part 1. Basics of Database Design and Implementation

© Copyright IBM Corp. 1996, 2004

IBM Informix Database Design and Implementation Guide

Chapter 1. Planning a Database

Choosing a Data Model for Your Database . 1-1

Using ANSI-Compliant Databases . 1-2

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases 1-3

Transactions . 1-3

Transaction Logging . 1-4

Owner Naming . 1-4

Privileges on Objects . 1-4

Default Isolation Level . 1-5

Character Data Types . 1-5

DECIMAL Data Type . 1-5

Escape Characters . 1-5

Cursor Behavior . 1-6

The SQLCODE Field of the SQL Communications Area 1-6

Synonym Behavior . 1-6

Determining if an Existing Database Is ANSI Compliant 1-6

Using a Customized Language Environment for Your Database (GLS) 1-7

In This Chapter

This chapter describes several issues that a database administrator (DBA)

must understand to effectively plan for a database. It discusses choosing a

data model for your database, using ANSI-compliant databases, and using a

customized language environment for your database.

Choosing a Data Model for Your Database

Before you create a database with an IBM Informix product, you must decide

what type of data model you want to use to design your database. This

manual describes the following database models:

v Relational data model

This data model typifies database design for online transaction processing

(OLTP). The purpose of OLTP is to process a large number of small

transactions without losing any of them. An OLTP database is designed to

handle the day-to-day needs of a business, and database performance is

tuned for those needs. Part 1, “Basics of Database Design and

Implementation” of this manual, describes how to build and implement a

relational data model for OLTP. Part 2, “Managing Databases,” discusses

how to manage your databases.

v Object-relational data model

Dynamic Server supports object-relational databases that employ basic

relational design principles, but include features such as extended data

© Copyright IBM Corp. 1996, 2004 1-1

types, user-defined routines, user-defined casts, and user-defined aggregates

to extend the functionality of relational databases. Part 3, “Object-Relational

Databases” of this manual, discusses how to use the extensible features of

Dynamic Server to extend the kinds of data you can store in your database

and to provide greater flexibility in how you organize and access your data.

v Dimensional data model

This data model is typically used to build data marts, which are a type of

data warehouse. In a data-warehousing environment, databases are

optimized for data retrieval and analysis. This type of informational

processing is known as online analytical processing (OLAP) or

decision-support processing. Part 4, “Dimensional Databases” of this

manual, describes how to build and implement a dimensional data model

for OLAP.

In addition to the data model you choose to design the database, you must

make the following decisions that determine which features are available to

applications that use the database:

v Which database server should you use?

– Dynamic Server

– Extended Parallel Server
v Does the database need to be ANSI compliant?

v Will the database use characters from a language other than English in its

tables?

The remainder of this chapter describes the implications of these decisions

and summarizes how the decisions that you make affect your database.

Using ANSI-Compliant Databases

You create an ANSI-compliant database when you use the MODE ANSI

keywords in the CREATE DATABASE statement. However, creating an

ANSI-compliant database does not ensure that this database remains

ANSI-compliant. If you take a non-ANSI action (such as CREATE INDEX) on

an ANSI database, you will receive a warning, but the application program

does not forbid the action.

You might want to create an ANSI-compliant database for the following

reasons:

v Privileges and access to objects

ANSI rules govern privileges and access to objects such as tables and

synonyms.

v Name isolation

1-2 IBM Informix Database Design and Implementation Guide

The ANSI table-naming scheme allows different users to create tables in a

database without name conflicts.

v Transaction isolation

v Data recovery

ANSI-compliant databases enforce unbuffered logging and implicit

transactions for Dynamic Server.

You can use the same SQL statements with both ANSI-compliant databases

and non-ANSI-compliant databases.

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases

Databases that you designate as ANSI compliant and databases that are not

ANSI compliant behave differently in the following areas:

v Transactions

v Transaction logging

v Owner naming

v Privileges on objects

v Default isolation level

v Character data types

v Decimal data type

v Escape characters

v Cursor behavior

v SQLCODE of the SQLCA

v Synonym behavior

Transactions

A transaction is a collection of SQL statements that are treated as a single unit

of work. All the SQL statements that you issue in an ANSI-compliant database

are automatically contained in transactions. With a database that is not ANSI

compliant, transaction processing is an option.

In a database that is not ANSI compliant, a transaction is enclosed by a

BEGIN WORK statement and a COMMIT WORK or a ROLLBACK WORK

statement. However, in an ANSI-compliant database, the BEGIN WORK

statement is unnecessary, because all statements are automatically contained in

a transaction. You need to indicate only the end of a transaction with a

COMMIT WORK or ROLLBACK WORK statement.

For more information on transactions, see Chapter 4, “Implementing a

Relational Data Model,” on page 4-1 and the IBM Informix: Guide to SQL

Tutorial.

Chapter 1. Planning a Database 1-3

Transaction Logging

ANSI-compliant databases run with unbuffered transaction logging. In an

ANSI-compliant database, you cannot change the logging mode to buffered

logging, and you cannot turn logging off.

Databases of Dynamic Server that are not ANSI compliant can run with either

buffered logging or unbuffered logging. Unbuffered logging provides more

comprehensive data recovery, but buffered logging provides better

performance.

Databases of Extended Parallel Server that are not ANSI compliant run with

unbuffered logging only. Unbuffered logging provides more comprehensive

data recovery.

For more information, see the description of the CREATE DATABASE

statement in the IBM Informix: Guide to SQL Syntax.

Owner Naming

In an ANSI-compliant database, owner naming is enforced. When you supply

an object name in an SQL statement, ANSI standards require that the name

include the prefix owner, unless you are the owner of the object. The

combination of owner and name must be unique in the database. If you are the

owner of the object, the database server supplies your user name as the

default.

Databases that are not ANSI compliant do not enforce owner naming. For

more information, see the Owner Name segment in the IBM Informix: Guide to

SQL Syntax.

Privileges on Objects

ANSI-compliant databases and non-ANSI-compliant databases differ as to

which users are granted table-level privileges by default when a table in a

database is created. ANSI standards specify that the database server grants

only the table owner (as well as the DBA if they are not the same user) any

table-level privileges. In a database that is not ANSI compliant, however,

privileges are granted to PUBLIC. In addition, the database server provides

two table-level privileges, Alter and Index, that are not included in the ANSI

standards.

To run a user-defined routine, you must have the Execute privilege for that

routine. When you create an owner-privileged procedure for an

ANSI-compliant database, only the owner of the user-defined routine has the

Execute privilege. When you create an owner-privileged routine in a database

that is not ANSI compliant, the database server grants the Execute privilege to

PUBLIC by default.

1-4 IBM Informix Database Design and Implementation Guide

Setting the NODEFDAC environment variable to ’yes’ causes a database that

is not ANSI compliant to emulate the behavior of an ANSI-compliant database

in not granting privileges to PUBLIC automatically when a user creates a

table or an owner-privileged routine. For more information about privileges,

see Chapter 6, “Granting and Limiting Access to Your Database,” on page 6-1

and the description of the GRANT statement in the IBM Informix: Guide to

SQL Syntax.

Default Isolation Level

The database isolation level specifies the degree to which your program is

isolated from the concurrent actions of other programs. The default isolation

level for all ANSI-compliant databases is Repeatable Read. The default

isolation level for non-ANSI-compliant databases that support transaction

logging is Committed Read. The default isolation level for

non-ANSI-compliant databases that do not use transaction logging is

Uncommitted Read. For information on isolation levels, see the IBM Informix:

Guide to SQL Tutorial and the description of the SET TRANSACTION and SET

ISOLATION statements in the IBM Informix: Guide to SQL Syntax.

Character Data Types

If a database is not ANSI compliant, you get no error if a character field

(CHAR, CHARACTER, LVARCHAR, NCHAR, NVARCHAR, VARCHAR,

CHARACTER VARYING) receives a string that is longer than the specified

length of the field. The database server truncates the extra characters without

resulting in an error message. Thus the semantic integrity of data for a

CHAR(n) column or variable is not enforced when the value inserted or

updated exceeds n bytes.

In an ANSI-compliant database, you get an error if any character field

(CHAR, CHARACTER, LVARCHAR, NCHAR, NVARCHAR, VARCHAR,

CHARACTER VARYING) receives a string that is longer than the specified

width of the field.

DECIMAL Data Type

If a database is not ANSI compliant, a DECIMAL data type that you declare

with a precision but no scale can store floating point values of the specified

precision. If you specify neither precision nor scale, the default precision is 16.

In an ANSI-compliant database, all DECIMAL values are fixed-point and must

be declared with an explicit precision. If you specify no scale for the

DECIMAL data type, the scale = 0, and only integer values can be stored.

Escape Characters

In an ANSI-compliant database, escape characters can only escape the special

significance of the percent (%) and underscore (_) characters. You can also use

Chapter 1. Planning a Database 1-5

an escape character to escape itself. For more information about escape

characters, see the Condition segment in the IBM Informix: Guide to SQL

Syntax.

Cursor Behavior

If a database is not ANSI compliant, you need to use the FOR UPDATE

keywords when you declare an update cursor for a SELECT statement. The

SELECT statement must also meet the following conditions:

v It selects from a single table.

v It does not include any aggregate functions.

v It does not include the DISTINCT, GROUP BY, INTO TEMP, ORDER BY,

UNION, or UNIQUE clauses and keywords.

In ANSI-compliant databases, the FOR UPDATE keywords are implicit when

you declare a cursor, and all cursors that meet the restrictions that the

preceding list describes are potentially update cursors. You can specify that a

cursor is read-only with the FOR READ ONLY keywords on the DECLARE

statement.

For more information, see the description of the DECLARE statement in the

IBM Informix: Guide to SQL Syntax.

The SQLCODE Field of the SQL Communications Area

If no rows satisfy the search criteria of a DELETE, an INSERT INTO tablename

SELECT, a SELECT...INTO TEMP, or an UPDATE statement, the database

server sets SQLCODE to 100 if the database is ANSI compliant and 0 if the

database is not ANSI compliant.

For more information, see the descriptions of SQLCODE in the IBM Informix:

Guide to SQL Tutorial.

Synonym Behavior

Synonyms are always private in an ANSI-compliant database. If you attempt

to create a public synonym or use the PRIVATE keyword to designate a

private synonym in an ANSI-compliant database, you receive an error.

For more information, see the description of the CREATE SYNONYM

statement in the IBM Informix: Guide to SQL Syntax.

Determining if an Existing Database Is ANSI Compliant

The following list describes two methods to determine whether a database is

ANSI compliant:

v From the sysmaster database you can execute the following statement:

SELECT name,is_ansi FROM sysmaster:sysdatabases

1-6 IBM Informix Database Design and Implementation Guide

The query returns the value 1 for ANSI-compliant databases and 0 for

non-ANSI-compliant databases for each database on your database server.

v If you are using an SQL API such as IBM Informix ESQL/C, you can test

the SQL Communications Area (SQLCA). Specifically, the third element in

the SQLCAWARN structure contains a W immediately after you open an

ANSI-compliant database with the DATABASE or CONNECT statement.

For information on SQLCA, see the IBM Informix: Guide to SQL Tutorial or

your SQL API manual.

Using a Customized Language Environment for Your Database (GLS)

Global Language Support (GLS) permits you to use different locales. A GLS

locale is an environment that has defined conventions for a particular

language or culture.

By default, IBM Informix products use the U.S.-English ASCII code set and

perform in the U.S.-English environment with ASCII collation order. Set your

environment to accommodate a nondefault locale if you plan to use any of the

following functionalities:

v Non-ASCII characters in the data

v Non-ASCII characters in user-specified object names

v Conformity with the sorting and collation order of a non-default code set

v Culture-specific collation and sorting orders, such as those used in

dictionaries or phone books

For descriptions of GLS environment variables and for detailed information

on how to implement non-default locales, see the IBM Informix: GLS User's

Guide.

Chapter 1. Planning a Database 1-7

1-8 IBM Informix Database Design and Implementation Guide

Chapter 2. Building a Relational Data Model

Building a Data Model . 2-2

Overview of the Entity-Relationship Data Model 2-2

Identifying and Defining Principal Data Objects 2-3

Discovering Entities . 2-3

Choosing Possible Entities . 2-3

The List of Entities . 2-3

Telephone Directory Example . 2-4

Diagramming Entities . 2-6

Defining the Relationships . 2-6

Connectivity . 2-7

Existence Dependency . 2-7

Cardinality . 2-7

Discovering the Relationships . 2-8

Diagramming Relationships . 2-12

Identifying Attributes . 2-12

Selecting Attributes for Entities . 2-13

Listing Attributes . 2-13

About Entity Occurrences . 2-14

Diagramming Data Objects . 2-14

Reading E-R Diagrams . 2-15

Telephone Directory Example . 2-16

Translating E-R Data Objects into Relational Constructs 2-17

Defining Tables, Rows, and Columns . 2-17

Placing Constraints on Columns . 2-18

Domain Characteristics . 2-18

Determining Keys for Tables . 2-19

Primary Keys . 2-19

Foreign Keys (Join Columns) . 2-20

Adding Keys to the Telephone Directory Diagram 2-21

Resolving Relationships . 2-22

Resolving m:n Relationships . 2-22

Resolving Other Special Relationships . 2-23

Normalizing a Data Model . 2-24

First Normal Form . 2-25

Second Normal Form . 2-26

Third Normal Form . 2-27

Summary of Normalization Rules . 2-27

In This Chapter

The first step in creating a relational database is to construct a data model: a

precise, complete definition of the data you want to store. This chapter

provides an overview of one way to model the data. For information about

defining column-specific properties of a data model, see Chapter 3, “Choosing

© Copyright IBM Corp. 1996, 2004 2-1

Data Types,” on page 3-1. To learn how to implement the data model that this

chapter describes, see Chapter 4, “Implementing a Relational Data Model,” on

page 4-1.

To understand the material in this chapter, a basic understanding of SQL and

relational database theory are necessary.

Building a Data Model

You already have some idea about the type of data in your database and how

that data needs to be organized. This information is the beginning of a data

model. Building a data model with formal notation has the following

advantages:

v You think through the data model completely.

A mental model often contains unexamined assumptions; when you

formalize the design, you discover these assumptions.

v The design is easier to communicate to other people.

A formal statement makes the model explicit, so that others can return

comments and suggestions in the same form.

Overview of the Entity-Relationship Data Model

More than one formal method for data modeling exists. Most methods force

you to be thorough and precise. If you know a method, by all means use it.

This chapter presents a summary of the entity-relationship (E-R) data model.

The E-R data-modeling method follows these steps:

1. Identify and define the principal data objects (entities, relationships, and

attributes).

2. Diagram the data objects using the E-R approach.

3. Translate the E-R data objects into relational constructs.

4. Resolve the logical data model.

5. Normalize the logical data model.

Steps 1 through 5 are discussed in this chapter. Chapter 4 discusses the final

step of converting your logical data model to a physical schema.

The end product of data modeling is a fully-defined database design encoded

in a diagram similar to Figure 2-21 on page 2-26, which shows the final set of

tables for a personal telephone directory. The personal telephone directory is

an example developed in this chapter. It is used rather than the demonstration

database because it is small enough to be developed completely in one

chapter but large enough to show the entire method.

2-2 IBM Informix Database Design and Implementation Guide

Identifying and Defining Principal Data Objects

To create a data model, you first identify and define the principal data objects:

entities, relationships, and attributes.

Discovering Entities

An entity is a principal data object that is of significant interest to the user. It

is usually a person, place, thing, or event to be recorded in the database. If the

data model were a language, entities would be nouns. The demonstration

database provided with your software contains the following entities:

customer, orders, items, stock, catalog, cust_calls, call_type, manufact, and state.

Choosing Possible Entities

You can probably list several entities for your database immediately. Make a

preliminary list of all the entities you can identify. Interview the potential

users of the database for their opinions about what must be recorded in the

database. Determine basic characteristics for each entity, such as “at least one

address must be associated with a name.” All the decisions you make about

the entities become your business rules. The telephone directory example on

page 2-5 provides some of the business rules for the example in this chapter.

Later, when you normalize your data model, some of the entities can expand

or become other data objects. For more information, see “Normalizing a Data

Model” on page 2-24.

The List of Entities

When the list of entities seems complete, check the list to make sure that each

entity has the following qualities:

v It is significant.

List only entities that are important to your database users and that are

worth the trouble and expense of computer tabulation.

v It is generic.

List only types of things, not individual instances. For instance, symphony

might be an entity, but Beethoven’s Fifth would be an entity instance or

entity occurrence.

v It is fundamental.

List only entities that exist independently and do not need something else

to explain them. Anything you might call a trait, a feature, or a description

is not an entity. For example, a part number is a feature of the fundamental

entity called part. Also, do not list things that you can derive from other

entities; for example, avoid any sum, average, or other quantity that you

can calculate in a SELECT expression.

v It is unitary.

Be sure that each entity you name represents a single class. It cannot be

separated into subcategories, each with its own features. In the telephone

Chapter 2. Building a Relational Data Model 2-3

directory example in Figure 2-1 on page 2-5, the telephone number, an

apparently simple entity, actually consists of three categories, each with

different features.

These choices are neither simple nor automatic. To discover the best choice of

entities, you must think carefully about the nature of the data you want to

store. Of course, that is exactly the point of a formal data model. The

following section describes the telephone directory example in detail.

Telephone Directory Example

Suppose that you create a database for a personal telephone directory. The

database model must record the names, addresses, and telephone numbers of

people and organizations that the user needs.

First define the entities. Look carefully at a page from a telephone directory to

identify the entities that it contains. Figure 2-1 on page 2-5 shows a sample

page from a telephone directory.

2-4 IBM Informix Database Design and Implementation Guide

The physical form of the existing data can be misleading. Do not let the

layout of pages and entries in the telephone directory mislead you into trying

to specify an entity that represents one entry in the book: an alphabetized

record with fields for name, number, and address. You want to model the

data, not the medium.

Generic and Significant Entities: At first glance, the entities that are

recorded in a telephone directory include the following items:

v Names (of persons and organizations)

v Addresses

v Telephone numbers

Do these entities meet the earlier criteria? They are clearly significant to the

model and are generic.

Figure 2-1. Partial Page from a Telephone Directory

Chapter 2. Building a Relational Data Model 2-5

Fundamental Entities: A good test is to ask if an entity can vary in number

independently of any other entity. A telephone directory sometimes lists

people who have no number or current address (people who move or change

jobs) and also can list both addresses and numbers that more than one person

uses. All three of these entities can vary in number independently; this fact

strongly suggests that they are fundamental, not dependent.

Unitary Entities: Names can be split into personal names and corporate

names. You decide that all names should have the same features in this

model; that is, you do not plan to record different information about a

company than you would record about a person. Likewise, you decide that

only one kind of address exists; you do not need to treat home addresses

differently from business addresses.

However, you also realize that more than one kind of telephone number

exists. Voice numbers are answered by a person, fax numbers connect to a fax

machine, and modem numbers connect to a computer. You decide that you

want to record different information about each kind of number, so these

three types are different entities.

For the personal telephone directory example, you decide that you want to

keep track of the following entities:

v Name

v Address (mailing)

v Telephone number (voice)

v Telephone number (fax)

v Telephone number (modem)

Diagramming Entities

Later in this chapter you can learn how to use the E-R diagrams. For now,

create a separate, rectangular box for each entity in the telephone directory

example, as Figure 2-2 shows. “Diagramming Data Objects” on page 2-14

shows how to put the entities together with relationships.

Defining the Relationships

After you choose your database entities, you need to consider the

relationships between them. Relationships are not always obvious, but all the

ones worth recording must be found. The only way to ensure that all the

Figure 2-2. Entities in the Personal Telephone Directory Example

2-6 IBM Informix Database Design and Implementation Guide

relationships are found is to list all possible relationships exhaustively.

Consider every pair of entities A and B and ask, “What is the relationship

between an A and a B?”

A relationship is an association between two entities. Usually, a verb or

preposition that connects two entities implies a relationship. A relationship

between entities is described in terms of connectivity, existence dependency, and

cardinality.

Connectivity

Connectivity refers to the number of entity instances. An entity instance is a

particular occurrence of an entity. Figure 2-3 shows that the three types of

connectivity are one-to-one (written 1:1), one-to-many (written 1:n), and

many-to-many (written m:n).

For instance, in the telephone directory example, an address can be associated

with more than one name. The connectivity for the relationship between the

address and name entities is one-to-many (1:n).

Existence Dependency

Existence dependency describes whether an entity in a relationship is optional

or mandatory. Analyze your business rules to identify whether an entity must

exist in a relationship. For example, your business rules might dictate that an

address must be associated with a name. Such an association indicates a

mandatory existence dependency for the relationship between the name and

address entities. An example of an optional existence dependency could be a

business rule that says a person might or might not have children.

Cardinality

Cardinality places a constraint on the number of times an entity can appear in

a relationship. The cardinality of a 1:1 relationship is always one. But the

cardinality of a 1:n relationship is open; n could be any number. If you need

to place an upper limit on n, you specify a cardinality for the relationship. For

instance, in a store sale example, you could limit the number of sale items

Figure 2-3. Connectivity in Relationships

Chapter 2. Building a Relational Data Model 2-7

that a customer can purchase at one time. You usually use your application

program or stored procedure language (SPL) to place cardinality constraints.

Discovering the Relationships

A convenient way to discover the relationships is to prepare a matrix that

names all the entities on the rows and again on the columns. The matrix in

Figure 2-4 reflects the entities for the personal telephone directory.

You can ignore the shaded portion of the matrix. You must consider the

diagonal cells; that is, you must ask the question, “What is the relationship

between an A and another A?” In this model, the answer is always none. No

relationship exists between a name and a name or an address and another

address, at least none that you need to record in this model. When a

relationship exists between an A and another A, you have found a recursive

relationship. (See “Resolving Other Special Relationships” on page 2-23.)

For all cells for which the answer is clearly none, write none in the matrix.

Figure 2-5 shows the current matrix.

Figure 2-4. A Matrix That Reflects the Entities for a Personal Telephone Directory

2-8 IBM Informix Database Design and Implementation Guide

Although no entities relate to themselves in this model, this situation is not

always true in other models. A typical example is an employee who is the

manager of another employee. Another example occurs in manufacturing,

when a part entity is a component of another part.

In the remaining cells, write the connectivity relationship that exists between

the entity on the row and the entity on the column. The following kinds of

relationships are possible:

v One-to-one (1:1), in which not more than one entity A exists for one entity B

and not more than one B for one A.

v One-to-many (1:n), in which more than one entity A never exists, but several

entities B can be related to A (or vice versa).

v Many-to-many (m:n), in which several entities A can be related to one B and

several entities B can be related to one A.

One-to-many relationships are the most common. The telephone directory

model shows one-to-many and many-to-many relationships.

As Figure 2-5 on page 2-9 shows, the first unfilled cell represents the

relationship between names and addresses. What connectivity lies between

these entities? You might ask yourself, “How many names can be associated

with an address?” You decide that a name can have zero or one address but no

more than one. You write 0-1 opposite name and below address, as Figure 2-6

shows.

Figure 2-5. A Matrix with Initial Relationships Included

Chapter 2. Building a Relational Data Model 2-9

Ask yourself how many addresses can be associated with a name. You decide

that an address can be associated with more than one name. For example, you

can know several people at one company or more than two people who live

at the same address.

Can an address be associated with zero names? That is, should it be possible

for an address to exist when no names use it? You decide that yes, it can.

Below address and opposite name, you write 0-n, as Figure 2-7 shows.

If you decide that an address cannot exist unless it is associated with at least

one name, you write 1-n instead of 0-n.

When the cardinality of a relationship is limited on either side to 1, it is a 1:n

relationship. In this case, the relationship between names and addresses is a

1:n relationship.

Now consider the next cell in Figure 2-5 on page 2-9: the relationship between

a name and a voice number. How many voice numbers can a name be

associated with, one or more than one? When you look at your telephone

directory, you see that you have often noted more than one telephone number

for a person. A busy salesperson might have a home number, an office

number, a paging number, and a car phone number. But you might also have

Figure 2-6. Relationship Between Name and Address

Figure 2-7. Relationship Between Address and Name

2-10 IBM Informix Database Design and Implementation Guide

names without associated numbers. You write 0-n opposite name and below

number (voice), as Figure 2-8 shows.

What is the other side of this relationship? How many names can be

associated with a voice number? You decide that only one name can be

associated with a voice number. Can a number be associated with zero

names? You decide you do not need to record a number unless someone uses

it. You write 1 under number (voice) and opposite name, as Figure 2-9 shows.

To fill out the rest of the matrix in the same fashion, take the following factors

into account:

v A name can be associated with more than one fax number; for example, a

company can have several fax machines. Conversely, a fax number can be

associated with more than one name; for example, several people can use

the same fax number.

v A modem number must be associated with exactly one name. (This is an

arbitrary decree to complicate the example; accept it as a requirement of the

design.) However, a name can have more than one associated modem

number; for example, a company computer can have several dial-up lines.

v Although some relationship exists between a voice number and an address,

a modem number and an address, and a fax number and an address in the

real world, none needs to be recorded in this model. An indirect

relationship already exists through name.

Figure 2-8. Relationship Between Name and Number

Figure 2-9. Relationship Between Number and Name

Chapter 2. Building a Relational Data Model 2-11

Figure 2-10 shows a completed matrix.

Other decisions that the matrix reveals are that no relationships exist between

a fax number and a modem number, between a voice number and a fax

number, or between a voice number and a modem number.

You might disagree with some of these decisions (for example, that a

relationship between voice numbers and modem numbers is not supported).

For the sake of this example, these are our business rules.

Diagramming Relationships

For now, save the matrix that you created in this section. You will learn how

to create an E-R diagram in “Diagramming Data Objects” on page 2-14.

Identifying Attributes

Entities contain attributes, which are characteristics or modifiers, qualities,

amounts, or features. An attribute is a fact or nondecomposable piece of

information about an entity. Later, when you represent an entity as a table, its

attributes are added to the model as new columns.

You must identify the entities before you can identify the database attributes.

After you determine the entities, ask yourself, “What characteristics do I need

to know about each entity?” For example, in an address entity, you probably

need information about street, city, and zip code. Each of these characteristics of

the address entity becomes an attribute.

Figure 2-10. A Completed Matrix for a Telephone Directory

2-12 IBM Informix Database Design and Implementation Guide

Selecting Attributes for Entities

To select attributes, choose ones that have the following qualities:

v They are significant.

Include only attributes that are useful to the database users.

v They are direct, not derived.

An attribute that can be derived from existing attributes (for instance,

through an expression in a SELECT statement) should not be part of the

model. Derived data complicates the maintenance of a database.

At a later stage of the design, you can consider adding derived attributes to

improve performance, but at this stage exclude them. For information about

how to improve the performance of your database server, see your

IBM Informix: Performance Guide.

v They are nondecomposable.

An attribute can contain only single values, never lists or repeating groups.

Composite values must be separated into individual attributes.

v They contain data of the same type.

For example, you would want to enter only date values in a birthday

attribute, not names or telephone numbers.

The rules for how to define attributes are the same as those for how to define

columns. For information about how to define columns, see “Placing

Constraints on Columns” on page 2-18.

The following attributes are added to the telephone directory example to

produce the diagram that Figure 2-15 on page 2-16 shows:

v Street, city, state, and zip code are added to the address entity.

v Birthdate, e-mail address, anniversary date, and children’s first names are

added to the name entity.

v Type is added to the voice entity to distinguish car phones, home phones,

and office phones. A voice number can be associated with only one voice

type.

v The hours that a fax machine is attended are added to the fax entity.

v Whether a modem supports 9,600-, 14,400-, or 28,800-baud rates is added to

the modem entity.

Listing Attributes

For now, list the attributes for the telephone directory example with the

entities with which you think they belong. Your list should look like

Figure 2-11.

Chapter 2. Building a Relational Data Model 2-13

About Entity Occurrences

An additional data object is the entity occurrence. Each row in a table

represents a specific, single occurrence of the entity. For example, if customer is

an entity, a customer table represents the idea of customer; in it, each row

represents one specific customer, such as Sue Smith. Keep in mind that

entities become tables, attributes become columns, and entity occurrences

become rows.

Diagramming Data Objects

Now you know and understand the entities and relationships in your

database, which is the most important part of the relational-database design

process. After you determine the entities and relationships, a method that

displays your thought process during database design might be helpful.

Most data-modeling methods provide some way to graphically display the

entities and relationships. IBM Informix documentation uses the E-R diagram

approach that C. R. Bachman originally developed. E-R diagrams serve the

following purposes. They:

v Model the informational needs of an organization

v Identify entities and their relationships

v Provide a starting point for data definition (data-flow diagrams)

v Provide an excellent source of documentation for application developers as

well as database and system administrators

v Create a logical design of the database that can be translated into a physical

schema

Several different styles of E-R diagrams exist. If you already have a style that

you prefer, use it. Figure 2-12 shows a sample E-R diagram.

Figure 2-11. Attributes for the Telephone Directory Example

2-14 IBM Informix Database Design and Implementation Guide

In an E-R diagram, a box represents an entity. A line represents the

relationships that connect the entities. In addition, Figure 2-13 shows how you

use graphical items to display the following features of relationships:

v A circle across a relationship link indicates optionality in the relationship

(zero instances can occur).

v A small bar across a relationship link indicates that exactly one instance of

the entity is associated with another entity (consider the bar to be a 1).

v The crow’s-feet represent many in the relationship.

Reading E-R Diagrams

You read the diagrams first from left to right and then from right to left. In

the case of the name-address relationship in Figure 2-14, you read the

relationships as follows: names can be associated with zero or exactly one

address; addresses can be associated with zero, one, or many names.

Figure 2-12. Symbols of an Entity-Relationship Diagram

Figure 2-13. The Parts of a Relationship in an Entity-Relationship Diagram

Figure 2-14. Reading an Entity-Relationship Diagram

Chapter 2. Building a Relational Data Model 2-15

Telephone Directory Example

Figure 2-15 shows the telephone directory example and includes the entities,

relationships, and attributes. This diagram includes the relationships that you

establish with the matrix. After you study the diagram symbols, compare the

E-R diagram in Figure 2-15 with the matrix in Figure 2-10 on page 2-12. Verify

for yourself that the relationships are the same in both figures.

A matrix such as Figure 2-10 on page 2-12 is a useful tool when you first

design your model, because when you fill it out, you are forced to think of

every possible relationship. However, the same relationships appear in a

diagram such as Figure 2-15, and this type of diagram might be easier to read

when you review an existing model.

After the Diagram Is Complete

The rest of this chapter describes how to perform the following tasks:

v Translate the entities, relationships, and attributes into relational constructs.

v Resolve the E-R data mode.l

v Normalize the E-R data model.

Chapter 4 shows you how to create a database from the E-R data model.

Figure 2-15. Preliminary Entity-Relationship Diagram of the Telephone Directory Example

2-16 IBM Informix Database Design and Implementation Guide

Translating E-R Data Objects into Relational Constructs

All the data objects you have learned about so far (entities, relationships,

attributes, and entity occurrences) translate into SQL tables, joins between

tables, columns, and rows. The tables, columns, and rows of your database

must fit the rules found in “Defining Tables, Rows, and Columns” on page

2-17.

Before you normalize your data objects, check that they fit these rules. To

normalize your data objects, analyze the dependencies between the entities,

relationships, and attributes. Normalization is discussed in “Normalizing a

Data Model” on page 2-24.

After you normalize the data model, you can use SQL statements to create a

database that is based on your data model. Chapter 4 describes how to create

a database and provides the database schema for the telephone directory

example.

Each entity that you choose is represented as a table in the model. The table

stands for the entity as an abstract concept, and each row represents a

specific, individual occurrence of the entity. In addition, each attribute of an

entity is represented by a column in the table.

The following ideas are fundamental to most relational data-model methods,

including the E-R data model. Follow these rules while you design your data

model to save time and effort when you normalize your model.

Defining Tables, Rows, and Columns

You are already familiar with the idea of a table that is composed of rows and

columns. But you must respect the following rules when you define the tables

of a formal data model:

v Rows must stand alone.

Each row of a table is independent and does not depend on any other row

of the same table. As a consequence, the order of the rows in a table is not

significant in the model. The model should still be correct even if all the

rows of a table are shuffled into random order.

After the database is implemented, you can tell the database server to store

rows in a certain order for the sake of efficiency, but that order does not

affect the model.

v Rows must be unique.

In every row, some column must contain a unique value. If no single

column has this property, the values of some group of columns taken as a

whole must be different in every row.

v Columns must stand alone.

Chapter 2. Building a Relational Data Model 2-17

The order of columns within a table has no meaning in the model. The

model should still be correct even if the columns are rearranged.

After the database is implemented, programs and stored queries that use an

asterisk to mean all columns are dependent on the final order of columns,

but that order does not affect the model.

v Column values must be unitary.

A column can contain only single values, never lists or repeating groups.

Composite values must be separated into individual columns. For example,

if you decide to treat a person’s first and last names as separate values, as

the examples in this chapter show, the names must be in separate columns,

not in a single name column.

v Each column must have a unique name.

Two columns within the same table cannot share the same name. However,

you can have columns that contain similar information. For example, the

name table in the telephone directory example contains columns for

children’s names. You can name each column, child1, child2, and so on.

v Each column must contain data of a single type.

A column must contain information of the same data type. For example, a

column that is identified as an integer must contain only numeric

information, not characters from a name.

If your previous experience is only with data organized as arrays or

sequential files, these rules might seem unnatural. However, relational

database theory shows that you can represent all types of data with only

tables, rows, and columns that follow these rules. With a little practice, these

rules become automatic.

Placing Constraints on Columns

When you define your table and columns with the CREATE TABLE statement,

you constrain each column. These constraints specify whether you want the

column to contain characters or numbers, the form that you want dates to

use, and other constraints. A domain describes the constraints when it

identifies the set of valid values that attributes can assume.

Domain Characteristics

You define the domain characteristics of columns when you create a table. A

column can contain the following domain characteristics:

v Data type (INTEGER, CHAR, DATE, and so on)

v Format (for example, yy/mm/dd)

v Range (for example, 1,000 to 5,400)

v Meaning (for example, serial number)

v Allowable values (for example, only grades S or U)

v Uniqueness

2-18 IBM Informix Database Design and Implementation Guide

v Null support

v Default value

v Referential constraints

For information about how to define domains, see Chapter 3. For information

about how to create your tables and database, see Chapter 4.

Determining Keys for Tables

The columns of a table are either key columns or descriptor columns. A key

column is one that uniquely identifies a particular row in the table. For

example, a social security number is unique for each employee. A descriptor

column specifies the nonunique characteristics of a particular row in the table.

For example, two employees can have the same first name, Sue. The first

name Sue is a nonunique characteristic of an employee. The main types of

keys in a table are primary keys and foreign keys.

You designate primary and foreign keys when you create your tables. Primary

and foreign keys are used to relate tables physically. Your next task is to

specify a primary key for each table. That is, you must identify some

quantifiable characteristic of the table that distinguishes each row from every

other row.

Primary Keys

The primary key of a table is the column whose values are different in every

row. Because they are different, they make each row unique. If no one such

column exists, the primary key is a composite of two or more columns whose

values, taken together, are different in every row.

Every table in the model must have a primary key. This rule follows

automatically from the rule that all rows must be unique. If necessary, the

primary key is composed of all the columns taken together.

For efficiency, the primary key should be a numeric data type (INT or

SMALLINT), SERIAL or SERIAL8 data type, or a short character string (as

used for codes). It is recommended that you do not use long character strings

as primary keys.

Null values are never allowed in a primary-key column. Null values are not

comparable; that is, they cannot be said to be alike or different. Hence, they

cannot make a row unique from other rows. If a column permits null values,

it cannot be part of a primary key.

Some entities have ready-made primary keys such as catalog codes or identity

numbers, which are defined outside the model. Sometimes more than one

column or group of columns can be used as the primary key. All columns or

Chapter 2. Building a Relational Data Model 2-19

groups that qualify to be primary keys are called candidate keys. All candidate

keys are worth noting because their property of uniqueness makes them

predictable in a SELECT operation.

Composite Keys: Some entities lack features that are reliably unique.

Different people can have identical names; different books can have identical

titles. You can usually find a composite of attributes that work as a primary

key. For example, people rarely have identical names and identical addresses,

and different books rarely have identical titles, authors, and publication dates.

System-Assigned Keys: A system-assigned primary key is usually preferable

to a composite key. A system-assigned key is a number or code that is

attached to each instance of an entity when the entity is first entered into the

database. The easiest system-assigned keys to implement are serial numbers

because the database server can generate them automatically. Informix

database servers offer the SERIAL and SERIAL8 data types for serial numbers.

However, the people who use the database might not like a plain numeric

code. Other codes can be based on actual data; for example, an employee

identification code could be based on a person’s initials combined with the

digits of the date that they were hired. In the telephone directory example, a

system-assigned primary key is used for the name table.

Foreign Keys (Join Columns)

A foreign key is a column or group of columns in one table that contains

values that match the primary key in another table. Foreign keys are used to

join tables. Figure 2-16 shows the primary and foreign keys of the customer

and order tables from the demonstration database.

Tip: For ease in maintaining and using your tables, it is important to choose

names for the primary and foreign keys so that the relationship is readily

apparent. In Figure 2-16, both the primary and foreign key columns have

the same name, customer_num. Alternatively, you might name the

columns in Figure 2-16 customer_custnum and orders_custnum, so that

each column has a distinct name.

Foreign keys are noted wherever they appear in the model because their

presence can restrict your ability to delete rows from tables. Before you can

delete a row safely, either you must delete all rows that refer to it through

Figure 2-16. Primary and Foreign Keys in the Customer-Order Relationships

2-20 IBM Informix Database Design and Implementation Guide

foreign keys, or you must define the relationship with special syntax that

allows you to delete rows from primary-key and foreign-key columns with a

single delete command. The database server disallows deletes that violate

referential integrity.

To preserve referential integrity, delete all foreign-key rows before you delete

the primary key to which they refer. If you impose referential constraints on

your database, the database server does not permit you to delete primary

keys with matching foreign keys. It also does not permit you to add a

foreign-key value that does not reference an existing primary-key value. For

more information about referential integrity, see the IBM Informix: Guide to

SQL Tutorial.

Adding Keys to the Telephone Directory Diagram

Figure 2-17 shows the initial choices of primary and foreign keys. This

diagram reflects some important decisions.

For the name table, the primary key rec_num is chosen. The data type for

rec_num is SERIAL. The values for rec_num are system generated. If you

look at the other columns (or attributes) in the name table, you see that the

data types that are associated with the columns are mostly character-based.

None of these columns alone is a good candidate for a primary key. If you

combine elements of the table into a composite key, you create a cumbersome

key. The SERIAL data type gives you a key that you can also use to join other

tables to the name table.

The voice, fax, modem, and address tables are each joined to name through

the rec_num key.

For the voice, fax, and modem tables the telephone numbers are used as

primary keys. The address table contains a special column (id_num) that

serves no other purpose than to act as a primary key. This is done because if

id_num did not exist then all of the other columns would have to be used

together as a composite key in order to guarantee that no duplicate primary

keys existed. Using all of the columns as a primary key would be very

inefficient and confusing.

Chapter 2. Building a Relational Data Model 2-21

Resolving Relationships

The aim of a good data model is to create a structure that provides the

database server with quick access. To further refine the telephone directory

data model, you can resolve the relationships and normalize the data model.

This section addresses how and why to resolve your database relationships.

Normalizing your data model is discussed in “Normalizing a Data Model” on

page 2-24.

Resolving m:n Relationships

Many-to-many (m:n) relationships add complexity and confusion to your

model and to the application development process. The key to resolve m:n

relationships is to separate the two entities and create two one-to-many (1:n)

relationships between them with a third intersect entity. The intersect entity

usually contains attributes from both connecting entities.

To resolve a m:n relationship, analyze your business rules again. Have you

accurately diagrammed the relationship? The telephone directory example has

a m:n relationship between the name and fax entities, as Figure 2-17 on page

2-22 shows. The business rules say, “One person can have zero, one, or many

fax numbers; a fax number can be for several people.” Based on what we selected

earlier as our primary key for the voice entity, an m:n relationship exists.

Figure 2-17. Telephone Directory Diagram with Primary and Foreign Keys Added

2-22 IBM Informix Database Design and Implementation Guide

A problem exists in the fax entity because the telephone number, which is

designated as the primary key, can appear more than one time in the fax

entity; this violates the qualification of a primary key. Remember, the primary

key must be unique.

To resolve this m:n relationship, you can add an intersect entity between the

name and fax entities, as Figure 2-18 shows. The new intersect entity, faxname,

contains two attributes, fax_num and rec_num. The primary key for the entity

is a composite of both attributes. Individually, each attribute is a foreign key

that references the table from which it came. The relationship between the

name and faxname tables is 1:n because one name can be associated with

many fax numbers; in the other direction, each faxname combination can be

associated with one rec_num. The relationship between the fax and faxname

tables is 1:n because each number can be associated with many faxname

combinations.

Resolving Other Special Relationships

You might encounter other special relationships that can hamper a

smooth-running database. The following list shows these relationships:

v Complex relationships

v Recursive relationships

v Redundant relationships

Figure 2-18. Resolving a Many-to-Many (m:n) Relationship

Chapter 2. Building a Relational Data Model 2-23

A complex relationship is an association among three or more entities. All the

entities must be present for the relationship to exist. To reduce this complexity,

reclassify all complex relationships as an entity, related through binary

relationships to each of the original entities.

A recursive relationship is an association between occurrences of the same

entity type. These types of relationships do not occur often. Examples of

recursive relationships are bills-of-materials (parts are composed of subparts)

and organizational structures (employee manages other employees). You

might choose not to resolve recursive relationships. For an extended example

of a recursive relationship, see the IBM Informix: Guide to SQL Tutorial.

A redundant relationship exists when two or more relationships represent the

same concept. Redundant relationships add complexity to the data model and

lead a developer to place attributes in the model incorrectly. Redundant

relationships might appear as duplicated entries in your E-R diagram. For

example, you might have two entities that contain the same attributes. To

resolve a redundant relationship, review your data model. Do you have more

than one entity that contains the same attributes? You might need to add an

entity to the model to resolve the redundancy. Your IBM Informix: Performance

Guide discusses additional topics that are related to redundancy in a data

model.

Normalizing a Data Model

The telephone directory example in this chapter appears to be a good model.

You could implement it at this point into a database, but this example might

present problems later with application development and data-manipulation

operations. Normalization is a formal approach that applies a set of rules to

associate attributes with entities.

When you normalize your data model, you can achieve the following goals.

You can:

v Produce greater flexibility in your design.

v Ensure that attributes are placed in the proper tables.

v Reduce data redundancy.

v Increase programmer effectiveness.

v Lower application maintenance costs.

v Maximize stability of the data structure.

Normalization consists of several steps to reduce the entities to more desirable

physical properties. These steps are called normalization rules, also referred to

as normal forms. Several normal forms exist; this chapter discusses the first

three normal forms. Each normal form constrains the data more than the last

2-24 IBM Informix Database Design and Implementation Guide

form. Because of this, you must achieve first normal form before you can

achieve second normal form, and you must achieve second normal form

before you can achieve third normal form.

First Normal Form

An entity is in the first normal form if it contains no repeating groups. In

relational terms, a table is in the first normal form if it contains no repeating

columns. Repeating columns make your data less flexible, waste disk space,

and make it more difficult to search for data. In the telephone directory

example in Figure 2-19, it appears that the name table contains repeating

columns, child1, child2, and child3.

You can see some problems in the current table. The table always reserves

space on the disk for three child records, whether the person has children or

not. The maximum number of children that you can record is three, but some

of your acquaintances might have four or more children. To look for a

particular child, you have to search all three columns in every row.

To eliminate the repeating columns and bring the table to the first normal

form, separate the table into two tables as Figure 2-20 shows. Put the

repeating columns into one of the tables. The association between the two

tables is established with a primary-key and foreign-key combination. Because

a child cannot exist without an association in the name table, you can

reference the name table with a foreign key, rec_num.

Now check Figure 2-17 on page 2-22 for groups that are not in the first normal

form. The name-modem relationship is not in the first normal form because the

columns b9600, b14400, and b28800 are considered repeating columns. Add a

Figure 2-19. Name Entity Before Normalization

Figure 2-20. First Normal Form Reached for Name Entity

Chapter 2. Building a Relational Data Model 2-25

new attribute called b_type to the modem table to contain occurrences of

b9600, b14400, and b28800. Figure 2-21 shows the data model normalized

through the first normal form.

Second Normal Form

An entity is in the second normal form if all of its attributes depend on the

whole (primary) key. In relational terms, every column in a table must be

functionally dependent on the whole primary key of that table. Functional

dependency indicates that a link exists between the values in two different

columns.

If the value of an attribute depends on a column, the value of the attribute

must change if the value in the column changes. The attribute is a function of

the column. The following explanations make this more specific:

v If the table has a one-column primary key, the attribute must depend on

that key.

v If the table has a composite primary key, the attribute must depend on the

values in all its columns taken as a whole, not on one or some of them.

v If the attribute also depends on other columns, they must be columns of a

candidate key; that is, columns that are unique in every row.

If you do not convert your model to the second normal form, you risk data

redundancy and difficulty in changing data. To convert first-normal-form

tables to second-normal-form tables, remove columns that are not dependent

on the primary key.

Figure 2-21. The Data Model of a Personal Telephone Directory

2-26 IBM Informix Database Design and Implementation Guide

Third Normal Form

An entity is in the third normal form if it is in the second normal form and all

of its attributes are not transitively dependent on the primary key. Transitive

dependence means that descriptor key attributes depend not only on the whole

primary key, but also on other descriptor key attributes that, in turn, depend

on the primary key. In SQL terms, the third normal form means that no

column within a table is dependent on a descriptor column that, in turn,

depends on the primary key.

To convert to third normal form, remove attributes that depend on other

descriptor key attributes.

Summary of Normalization Rules

The following normal forms are discussed in this section:

v First normal form: A table is in the first normal form if it contains no

repeating columns.

v Second normal form: A table is in the second normal form if it is in the first

normal form and contains only columns that are dependent on the whole

(primary) key.

v Third normal form: A table is in the third normal form if it is in the second

normal form and contains only columns that are nontransitively dependent

on the primary key.

When you follow these rules, the tables of the model are in the third normal

form, according to E. F. Codd, the inventor of relational databases. When

tables are not in the third normal form, either redundant data exists in the

model, or problems exist when you attempt to update the tables.

If you cannot find a place for an attribute that observes these rules, you have

probably made one of the following errors:

v The attribute is not well defined.

v The attribute is derived, not direct.

v The attribute is really an entity or a relationship.

v Some entity or relationship is missing from the model.

Chapter 2. Building a Relational Data Model 2-27

2-28 IBM Informix Database Design and Implementation Guide

Chapter 3. Choosing Data Types

Defining the Domains . 3-2

Data Types . 3-2

Choosing a Data Type . 3-2

Numeric Types . 3-5

Counters and Codes: INTEGER, SMALLINT, and INT8 3-6

Automatic Sequences: SERIAL and SERIAL8 3-6

Approximate Numbers: FLOAT and SMALLFLOAT 3-8

Adjustable-Precision Floating Point: DECIMAL(p) 3-9

Fixed-Precision Numbers: DECIMAL and MONEY 3-10

Chronological Data Types . 3-11

Calendar Dates: DATE . 3-11

Exact Points in Time: DATETIME . 3-12

Choosing a DATETIME Format (GLS) 3-14

BOOLEAN Data Type (IDS) . 3-15

Character Data Types (GLS) . 3-15

Character Data: CHAR(n) and NCHAR(n) 3-15

Variable-Length Strings: CHARACTER VARYING(m,r), VARCHAR(m,r), NVARCHAR(m,r),

and LVARCHAR . 3-16

Variable-Length Execution Time . 3-17

Large Character Objects: TEXT . 3-18

Binary Objects: BYTE . 3-19

Using TEXT and BYTE Data Types . 3-19

Changing the Data Type . 3-20

Null Values . 3-20

Default Values . 3-21

Check Constraints . 3-21

Referential Constraints . 3-22

In This Chapter

After you prepare your data model, you must implement it as a database and

tables. To implement your data model, you first define a domain, or set of

data values, for every column. This chapter discusses the decisions that you

must make to define the column data types and constraints.

The second step uses the CREATE DATABASE and CREATE TABLE

statements to implement the model and populate the tables with data, as

Chapter 4 discusses.

© Copyright IBM Corp. 1996, 2004 3-1

Defining the Domains

To complete the data model that Chapter 2 describes, you must define a

domain for each column. The domain of a column describes the constraints

and identifies the set of valid values that attributes (columns) can assume.

The purpose of a domain is to guard the semantic integrity of the data in the

model; that is, to ensure that it reflects reality in a sensible way. The integrity

of the data model is at risk if you can substitute a name for a telephone

number or if you can enter a fraction where only integers are valid values.

To define a domain, specify the constraints that a data value must satisfy

before it can be part of the domain. To specify a column domain, use the

following constraints:

v Data types

v Default values

v Check constraints

v Referential constraints

Data Types

The first constraint on any column is the one that is implicit in the data type

for the column. When you choose a data type, you constrain the column so

that it contains only values that can be represented by that data type.

Each data type represents certain kinds of information and not others. The

correct data type for a column is the one that represents all the data values

that are proper for that column but as few as possible of the values that are

not proper for it.

This chapter describes built-in data types.

Dynamic Server

For information about the extended data types that Dynamic Server supports,

see Chapter 8, “Creating and Using Extended Data Types in Dynamic Server,”

on page 8-1.

End of Dynamic Server

Choosing a Data Type

Every column in a table must have a data type. The choice of data type is

important for the following reasons:

v It establishes the set of valid data items that the column can store.

v It determines the kinds of operations that you can perform on the data.

3-2 IBM Informix Database Design and Implementation Guide

For example, you cannot apply aggregate functions, such as SUM, to

columns that are defined on a character data type.

v It determines how much space each data item occupies on disk.

The space required to accommodate data items is not as important for small

tables as it is for tables with hundreds of thousands of rows. When a table

reaches that many rows, the difference between a 4-byte and an 8-byte data

type can be crucial.

Figure 3-1 on page 3-4 shows a decision tree that summarizes the choices

among built-in data types. The choices are explained in the following sections.

Chapter 3. Choosing Data Types 3-3

Data items purely numeric? yes

no

Numbers all integral?
yes

no
yes

no

All numbers between
-(2 -1) and 2 -1?31 31

All numbers between
-(2 -1) and 2 -1?15 15

yes

no

SMALLINT

INTEGER

DECIMAL(p,0)

Number of fractional digits
is fixed

yes

no

At most 8 significant digits?
yes

no

At most 16 significant digits?
yes

no

DECIMAL(p,s)

SMALLFLOAT

FLOAT

DECIMAL(p)

yes

no
INT8

All numbers between
-(2 -1) and 2 -1?63 63

Figure 3-1. Choosing a Data Type (Part 1 of 2)

3-4 IBM Informix Database Design and Implementation Guide

Numeric Types

Some numeric data types are best suited for counters and codes, some for

engineering quantities, and some for money.

Data is chronological?
yes

no Span of time or specific
point in time?

span

point

Precise only to nearest
day?

yes

no

Data is ASCII characters?
yes

no
No or little variance in
item lengths?

yes

no
Lengths under 32,767
bytes?

yes

no

Lengths exceed 255
bytes

no

INTERVAL

DATETIME
DATE

TEXT

BYTE

CHAR(n)

Data contains non-
English characters?

yes

no No or little variance in
item lengths?

yes

no

NVARCHAR(m,r)

NCHAR(n)

VARCHAR(m,r) or
CHARACTER VARYING(m,r)

Read or write to any portion
of the data?

yes

BLOBno

Read or write to any
portion of data

yes

CLOB
no

Data is boolean? yes

no BOOLEAN

yes

LVARCHAR

Figure 3-1. Choosing a Data Type (Part 2 of 2)

Chapter 3. Choosing Data Types 3-5

Counters and Codes: INTEGER, SMALLINT, and INT8

The INTEGER and SMALLINT data types hold small whole numbers. They

are suited for columns that contain counts, sequence numbers, numeric

identity codes, or any range of whole numbers when you know in advance

the maximum and minimum values to be stored.

Both data types are stored as signed binary integers. INTEGER values have 32

bits and can represent whole numbers from –231–1 through 231–1.

SMALLINT values have only 16 bits. They can represent whole numbers from

–32,767 through 32,767.

The INT and SMALLINT data types have the following advantages:

v They take up little space (2 bytes per value for SMALLINT and 4 bytes per

value for INTEGER).

v You can perform arithmetic expressions such as SUM and MAX and sort

comparisons on them.

The disadvantage to using INTEGER and SMALLINT is the limited range of

values that they can store. The database server does not store a value that

exceeds the capacity of an integer. Of course, such excess is not a problem

when you know the maximum and minimum values to be stored.

If you need to store a broader range of values that will fill up an INTEGER,

you can use an INT8.

The INT8 data type has the following advantages:

v It can hold a broad range of values. (Integers ranging from – (263 –1)

through 263 –1.)

v You can perform arithmetic expressions such as SUM and MAX and sort

comparisons on them.

The disadvantage of using an INT8 data type is that it uses more disk space

than an INTEGER. IBM Informix Extended Parallel Server (XPS) uses 8 bytes

of disk space to store an INT8, IBM Informix Dynamic Server (IDS) uses 10

bytes.

Automatic Sequences: SERIAL and SERIAL8

The SERIAL data type has the positive non-zero range of an INTEGER with a

special feature. Similarly, the SERIAL8 data type has the positive non-zero

range of an INT8 with a special feature. Whenever a new row is inserted into

a table, the database server automatically generates a new value for a SERIAL

or SERIAL8 column.

3-6 IBM Informix Database Design and Implementation Guide

A table cannot have more than one SERIAL and one SERIAL8 column.

Because the database server generates the values, the serial values in new

rows are always different, even when multiple users are adding rows at the

same time. This service is useful because it is quite difficult for an ordinary

program to coin unique numeric codes under those conditions. (Dynamic

Server, however, also supports sequence objects, which can also support this

functionality through the CURRVAL and NEXTVAL operators. For more

information about sequence objects, see the description of CREATE

SEQUENCE in IBM Informix: Guide to SQL Syntax.)

The SERIAL data type can yield up to 231–1 positive integers. Consequently,

the database server uses all the positive serial numbers by the time it inserts

231–1 rows in a table. For most users the exhaustion of the positive serial

numbers is not a concern, however, because a single application would need

to insert a row every second for 68 years, or 68 applications would need to

insert a row every second for a year, to use all the positive serial numbers.

However, if all the positive serial numbers were used, the database server

would wrap around and start to generate integer values that begin with a 1.

The SERIAL8 data type can yield up to 263 –1 positive integers. With a

reasonable starting value, it is virtually impossible to cause a SERIAL8 value

to wrap around during insertions.

For SERIAL and SERIAL8 data types, the sequence of generated numbers

always increases. When rows are deleted from the table, their serial numbers

are not reused. Rows that are sorted on a SERIAL or SERIAL8 column are

returned in the order in which they were created.

You can specify the initial value in a SERIAL or SERIAL8 column in the

CREATE TABLE statement. This makes it possible to generate different

subsequences of system-assigned keys in different tables. The stores_demo

database uses this technique. In stores_demo, the customer numbers begin at

101, and the order numbers start at 1001. As long as this small business does

not register more than 899 customers, all customer numbers have three digits

and order numbers have four.

A SERIAL or SERIAL8 column is not automatically a unique column. If you

want to be perfectly sure that no duplicate serial numbers occur, you must

apply a unique constraint (see “Using CREATE TABLE” on page 4-4). If you

define the table using the interactive schema editor in DB–Access, it

automatically applies a unique constraint to any SERIAL or SERIAL8 column.

The SERIAL and SERIAL8 data types have the following advantages:

v They provide a convenient way to generate system-assigned keys.

Chapter 3. Choosing Data Types 3-7

v They produce unique numeric codes even when multiple users are

updating the table.

v Different tables can use different ranges of numbers.

The SERIAL and SERIAL8 data types have the following disadvantages:

v Only one SERIAL or SERIAL8 column is permitted in a table.

v They can produce only arbitrary numbers.

Altering the Next SERIAL or SERIAL8 Number: The database server sets

the starting value for a SERIAL or SERIAL8 column when it creates the

column (see “Using CREATE TABLE” on page 4-4). You can use the ALTER

TABLE statement later to reset the next value, the value that is used for the

next inserted row.

You can set the next value to any value higher than the current maximum.

Doing this will create gaps in the sequence.

If you try to set the next value to a value smaller than the highest value

currently in the column you will not get an error but the value will not be set.

Allowing the next value to be set lower than some values in the column

would cause duplicate values in some situations and is therefore not allowed.

Approximate Numbers: FLOAT and SMALLFLOAT

In scientific, engineering, and statistical applications, numbers are often

known to only a few digits of accuracy, and the magnitude of a number is as

important as its exact digits.

Floating-point data types are designed for these kinds of applications. They

can represent any numerical quantity, fractional or whole, over a wide range

of magnitudes from the cosmic to the microscopic. They can easily represent

both the average distance from the earth to the sun (1.5 x 1011 meters) or

Planck’s constant (6.626 x 10-34 joule-seconds). For example,

CREATE TABLE t1 (f FLOAT);

INSERT INTO t1 VALUES (0.00000000000000000000000000000000000001);

INSERT INTO t1 VALUES (1.5e11);

INSERT INTO t1 VALUES (6.626196e-34);

Two sizes of floating-point data types exist. The FLOAT type is a

double-precision, binary floating-point number as implemented in the C

language on your computer. A FLOAT data type value usually takes up 8

bytes. The SMALLFLOAT (also known as REAL) data type is a

single-precision, binary floating-point number that usually takes up 4 bytes.

The main difference between the two data types is their precision.

Floating-point numbers have the following advantages:

3-8 IBM Informix Database Design and Implementation Guide

v They store very large and very small numbers, including fractional ones.

v They represent numbers compactly in 4 or 8 bytes.

v Arithmetic functions such as AVG, MIN, and sort comparisons are efficient

on these data types.

The main disadvantage of floating-point numbers is that digits outside their

range of precision are treated as zeros.

Adjustable-Precision Floating Point: DECIMAL(p)

In a database that is not ANSI-compliant, the DECIMAL(p) data type is a

floating-point data type similar to FLOAT and SMALLFLOAT. The important

difference is that you specify how many significant digits it retains. The

precision you write as p can range from 1 to 32, from fewer than

SMALLFLOAT up to twice the precision of FLOAT. The magnitude of a

DECIMAL(p) number can range from 10-130 to 10124. The storage space that

DECIMAL(p) numbers use depends on their precision; they occupy 1 + p/2

bytes (rounded up to a whole number, if necessary).

In an ANSI-compliant database, however, DECIMAL(p) is a fixed-point data

type with a scale of zero, so DECIMAL(p) always stores integer values of

precision p, if the data value has p or more significant digits. Any fractional

part is truncated.

Do not confuse the DECIMAL(p) data type with the DECIMAL(p,s) data type,

which is discussed in the next section. The DECIMAL(p) data type has only

the precision specified.

The DECIMAL(p) data type has the following advantages over FLOAT:

v Precision can be set to suit the application, from approximate to precise.

v Numbers with as many as 32 digits can be represented exactly.

v Storage is used in proportion to the precision of the number.

v Every Informix database server supports the same precision and range of

magnitudes, regardless of the host operating system.

The DECIMAL(p) data type has the following disadvantages:

v Performance of arithmetic operations and sorts on DECIMAL(p) values is

somewhat slower than on FLOAT values.

v Many programming languages do not support the DECIMAL(p) data

format in the same way that they support FLOAT and INTEGER. When a

program extracts a DECIMAL(p) value from the database, it might have to

convert the value to another format for processing.

v The format and value of a DECIMAL(p) data type depends on whether the

database is ANSI-compliant.

Chapter 3. Choosing Data Types 3-9

Fixed-Precision Numbers: DECIMAL and MONEY

Most commercial applications need to store numbers that have fixed numbers

of digits on the right and left of the decimal point. For example, amounts in

U.S. currencies are written with two digits to the right of the decimal point.

Normally, you also know the number of digits needed on the left, depending

on the kinds of transactions that are recorded: perhaps 5 digits for a personal

budget, 7 digits for a small business, and 12 or 13 digits for a national budget.

These numbers are fixed-point numbers because the decimal point is fixed at a

specific place, regardless of the value of the number. The DECIMAL(p,s) data

type is designed to hold decimal numbers. When you specify a column of this

type, you write its precision (p) as the total number of digits that it can store,

from 1 to 32. You write its scale (s) as the number of those digits that fall to

the right of the decimal point. (Figure 3-2 shows the relation between

precision and scale.) Scale can be zero, meaning it stores only whole numbers.

When only whole numbers are stored, DECIMAL(p,s) provides a way of

storing integers of up to 32 digits.

Like the DECIMAL(p) data type, DECIMAL(p,s) takes up space in proportion

to its precision. One value occupies (p +3)/2 bytes (if scale is even) or (p +

4)/2 bytes (if scale is odd), rounded up to a whole number of bytes.

The MONEY type is identical to DECIMAL(p,s) but with one extra feature.

Whenever the database server converts a MONEY value to characters for

display, it automatically includes a currency symbol.

The advantages of DECIMAL(p,s) over INTEGER and FLOAT are that much

greater precision is available (up to 32 digits as compared to 10 digits for

INTEGER and 16 digits for FLOAT), and both the precision and the amount of

storage required can be adjusted to suit the application.

The disadvantages of DECIMAL(p,s) are that arithmetic operations are less

efficient and that many programming languages do not support numbers in

this form. Therefore, when a program extracts a number, it usually must

convert the number to another numeric form for processing.

Figure 3-2. The Relation Between Precision and Scale in a Fixed-Point Number

3-10 IBM Informix Database Design and Implementation Guide

Choosing a Currency Format:

Global Language Support

 Each nation has its own way to display money values. When an Informix

database server displays a MONEY value, it refers to a currency format that

the user specifies. The default locale specifies a U.S. English currency format

of the following form:

$7,822.45

For non-English locales, you can use the MONETARY category of the locale

file to change the current format. For more information on how to use locales,

see the IBM Informix: GLS User's Guide.

End of Global Language Support

 To customize this currency format, choose your locale appropriately or set the

DBMONEY environment variable. For more information, see the

IBM Informix: Guide to SQL Reference.

Chronological Data Types

The chronological data types record time. The DATE data type stores a

calendar date. DATETIME records a point in time to any degree of precision

from a year to a fraction of a second. The INTERVAL data type stores a span

of time, that is, a duration.

Calendar Dates: DATE

The DATE data type stores a calendar date. A DATE value is actually a signed

integer whose contents are interpreted as a count of full days since midnight

on December 31, 1899.

The DATE format has ample precision to carry dates into the far future

(58,000 centuries). Negative DATE values are interpreted as counts of days

prior to the epoch date; that is, a DATE value of -1 represents December 30,

1899.

Because DATE values are integers, the values can be used in arithmetic

expressions. For example, you can take the average of a DATE column, or you

can add 7 or 365 to a DATE column. In addition, a rich set of functions exists

specifically for manipulating DATE values. For more information, see the

IBM Informix: Guide to SQL Syntax.

The DATE data type is compact, at 4 bytes per item. Arithmetic functions and

comparisons execute quickly on a DATE column.

Chapter 3. Choosing Data Types 3-11

Choosing a Date Format (GLS): You can punctuate and order the

components of a date in many ways. When an application displays a DATE

value, it refers to a date format that the user specifies. The default locale

specifies a U.S. English date format of the form:

10/25/2001

To customize this date format, choose your locale appropriately or set the

DBDATE environment variable. For more information, see the IBM Informix:

Guide to SQL Reference.

For non-default locales, you can use the GL_DATE environment variable to

specify the date format. For more information on how to use locales, refer to

the IBM Informix: GLS User's Guide.

Exact Points in Time: DATETIME

The DATETIME data type stores any moment in time in the era that began 1

A.D. In fact, DATETIME is really a family of 28 data types, each with a

different precision. When you define a DATETIME column, you specify its

precision. The column can contain any sequence from the list: year, month, day,

hour, minute, second, and fraction. Thus, you can define a DATETIME column

that stores only a year, only a month and day, or a date and time that is exact

to the hour or even to the millisecond. Table 3-1 on page 3-12 shows that the

size of a DATETIME value ranges from 2 to 11 bytes depending on its

precision.

The advantage of DATETIME is that it can store specific date and time values.

A DATETIME column typically requires more storage space than a DATE

column, depending on the DATETIME qualifiers. Datetime also has an

inflexible display format. For information about how to circumvent the

display format, see “Forcing the Format of a DATETIME or INTERVAL Value”

on page 3-14.

 Table 3-1. Precisions for the DATETIME Data Type

Precision Size* Precision Size*

year to year 3 day to hour 3

year to month 4 day to minute 4

year to day 5 day to second 5

year to hour 6 day to fraction(f) 5 + f/2

year to minute 7 hour to hour 2

year to second 8 hour to minute 3

year to fraction (f) 8 + f/2 hour to second 4

month to month 2 hour to fraction(f) 4 + f/2

3-12 IBM Informix Database Design and Implementation Guide

Table 3-1. Precisions for the DATETIME Data Type (continued)

Precision Size* Precision Size*

month to day 3 minute to minute 2

month to hour 4 minute to second 3

month to minute 5 minute to fraction(f) 3 + f/2

month to second 6 second to second 2

month to fraction(f) 6 + f/2 second to fraction(f) 2 + f/2

day to day 2 fraction to fraction(f) 1 + f/2

* When f is odd, round the size to the next full byte

Durations using INTERVAL: The INTERVAL data type stores a duration,

that is, a length of time. The difference between two DATETIME values is an

INTERVAL, which represents the span of time that separates them. The

following examples might help to clarify the differences:

v An employee began working on January 21, 1997 (either a DATE or a

DATETIME).

v She has worked for 254 days (an INTERVAL value, the difference between

the TODAY function and the starting DATE or DATETIME value).

v She begins work each day at 0900 hours (a DATETIME value).

v She works 8 hours (an INTERVAL value) with 45 minutes for lunch

(another INTERVAL value).

v Her quitting time is 1745 hours (the sum of the DATETIME when she

begins work and the two INTERVALs).

Like DATETIME, INTERVAL is a family of data types with different

precisions. An INTERVAL value can represent a count of years and months, or

it can represent a count of days, hours, minutes, seconds, or fractions of

seconds; 18 precisions are possible. The size of an INTERVAL value ranges

from 2 to 12 bytes, depending on the formulas that Table 3-2 shows.

 Table 3-2. Precisions for the INTERVAL Data Type

Precision Size* Precision Size*

year(p) to year 1 + p/2 hour(p) to minute 2 + p/2

year(p) to month 2 + p/2 hour(p) to second 3 + p/2

month(p) to month 1 + p/2 hour(p) to fraction(f) 4 + (p + f)/2

day(p) to day 1 + p/2 minute(p) to minute 1 + p/2

day(p) to hour 2 + p/2 minute(p) to second 2 + p/2

day(p) to minute 3 + p/2 minute(p) to fraction(f) 3 + (p + f)/2

day(p) to second 4 + p/2 second(p) to second 1 + p/2

Chapter 3. Choosing Data Types 3-13

Table 3-2. Precisions for the INTERVAL Data Type (continued)

Precision Size* Precision Size*

day(p) to fraction(f) 5 + (p + f)/2 second(p) to fraction(f) 2 + (p + f)/2

hour(p) to hour 1 + p/2 fraction to fraction(f) 1 + f/2

* Round a fractional size to the next full byte.

INTERVAL values can be negative as well as positive. You can add or subtract

them, and you can scale them by multiplying or dividing by a number. This is

not true of either DATE or DATETIME. You can reasonably ask, “What is

one-half the number of days until April 23?” but not, “What is one-half of

April 23?”

Forcing the Format of a DATETIME or INTERVAL Value: The database

server always displays the components of an INTERVAL or DATETIME value

in the order year-month-day hour:minute:second.fraction. It does not refer to the

date format that is defined to the operating system, as it does when it formats

a DATE value.

You can write a SELECT statement that displays the date part of a DATETIME

value in the system-defined format. The trick is to isolate the component

fields with the EXTEND function and pass them through the MDY() function,

which converts them to a DATE. The following code shows a partial example:

SELECT ... MDY (

 EXTEND (DATE_RECEIVED, MONTH TO MONTH),

 EXTEND (DATE_RECEIVED, DAY TO DAY),

 EXTEND (DATE_RECEIVED, YEAR TO YEAR))

 FROM RECEIPTS ...

Choosing a DATETIME Format (GLS)

When an application displays a DATETIME value, it refers to a DATETIME

format that the user specifies. The default locale specifies a U.S. English

DATETIME format of the following form:

2001-10-25 18:02:13

For non-default locales, you can use the GL_DATETIME environment

variable to specify the DATETIME format. For more information on how to

use locales, see the IBM Informix: GLS User's Guide.

To customize this DATETIME format, choose your locale appropriately or set

the GL_DATETIME or DBTIME environment variable. For more information

about these environment variables, see the IBM Informix: GLS User's Guide.

3-14 IBM Informix Database Design and Implementation Guide

BOOLEAN Data Type (IDS)

The BOOLEAN data type is a 1-byte data type. The legal values for Boolean

are true (’t’), false (’f’), or NULL. The values are not case sensitive.

You can compare a BOOLEAN column against another BOOLEAN column or

against Boolean values. For example, you might use these SELECT statements:

SELECT * FROM sometable WHERE bool_col = ’t’;

SELECT * FROM sometable WHERE bool_col IS NULL;

Character Data Types (GLS)

Informix database servers support several character data types, including

CHAR, NCHAR, and NVARCHAR, the special-use character data type.

Character Data: CHAR(n) and NCHAR(n)

The CHAR(n) data type contains a sequence of n bytes. These characters can

be a mixture of English and non-English characters and can be either single

byte or multibyte (Asian). The length n ranges from 1 to 32,767.

Whenever the database server retrieves or stores a CHAR(n) value, it transfers

exactly n bytes. If an inserted value is shorter than n, the database server

extends the value with single-byte ASCII space characters to make up n bytes.

If an inserted value exceeds n bytes, the database server truncates the extra

characters without returning an error message. Thus the semantic integrity of

data for a CHAR(n) column or variable is not enforced when the value that is

inserted or updated exceeds n bytes.

Data in CHAR columns is sorted in code-set order. For example, in the ASCII

code set, the character a has a code-set value of 97, b has 98, and so forth. The

database server sorts CHAR(n) data in this order.

The NCHAR(n) data type also contains a sequence of n bytes. These

characters can be a mixture of English and non-English characters and can be

either single byte or multibyte (Asian). The length of n has the same limits as

the CHAR(n) data type. Whenever an NCHAR(n) value is retrieved or stored,

exactly n bytes are transferred. The number of characters transferred can be

fewer than the number of bytes if the data contains multibyte characters. If an

inserted value is shorter than n, the database server extends the value with

space characters to make up n bytes.

The database server sorts data in NCHAR(n) columns according to the order

that the locale specifies. For example, the French locale specifies that the

character ê is sorted after the value e but before the value f. In other words,

the sort order that the French locale dictates is e, ê, f, and so on. For more

information on how to use locales, refer to the IBM Informix: GLS User's

Guide.

Chapter 3. Choosing Data Types 3-15

Tip: The only difference between CHAR(n) and NCHAR(n) data is how you

sort and compare the data. You can store non-English characters in a

CHAR(n) column. However, because the database server uses code-set

order to perform any sorting or comparison on CHAR(n) columns, you

might not obtain the results in the order that you expect.

A CHAR(n) or NCHAR(n) value can include tabs and spaces but normally

contains no other nonprinting characters. When you insert rows with INSERT

or UPDATE, or when you load rows with a utility program, no means exist

for entering nonprintable characters. However, when a program that uses

embedded SQL creates rows, the program can insert any character except the

null (binary zero) character. It is not a good idea to store nonprintable

characters in a character column because standard programs and utilities do

not expect them.

The advantage of the CHAR(n) or NCHAR(n) data type is its availability on

all database servers. The only disadvantage of CHAR(n) or NCHAR(n) is its

fixed length. When the length of data values varies widely from row to row,

space is wasted.

Variable-Length Strings: CHARACTER VARYING(m,r), VARCHAR(m,r),

NVARCHAR(m,r), and LVARCHAR

Often the items in a character column are different lengths; that is, many are

an average length and only a few are the maximum length. For each of the

following data types, m represents the maximum number of bytes and r

represents the minimum number of bytes. The following data types are

designed to save disk space when you store such data:

v CHARACTER VARYING (m,r). The CHARACTER VARYING (m,r) data

type contains a sequence of, at most, m bytes or at the least, r bytes. This

data type is the ANSI-compliant format for character data of varying

length. CHARACTER VARYING (m,r), supports code-set order for

comparisons of its character data.

v VARCHAR (m,r). VARCHAR (m,r) is an Informix-specific data type for

storing character data of varying length. In functionality, it is the same as

CHARACTER VARYING(m,r).

v NVARCHAR (m,r). NVARCHAR (m,r) is also an Informix-specific data type

for storing character data of varying length. It compares character data in

the order that the locale specifies.

Dynamic Server

v LVARCHAR. LVARCHAR is an Informix-specific data type for storing

character data of varying length from 1 to 32,739 bytes. LVARCHAR

3-16 IBM Informix Database Design and Implementation Guide

supports code-set order for comparisons of data.

End of Dynamic Server

Tip: The difference in the way data is compared distinguishes

NVARCHAR(m,r) data from CHARACTER VARYING(m,r) or

VARCHAR(m,r) data. For more information about how the locale

determines code-set and sort order, see “Character Data: CHAR(n) and

NCHAR(n)” on page 3-15.

When you define columns of these data types, you specify m as the maximum

number of bytes. If an inserted value consists of fewer than m bytes, the

database server does not extend the value with single-byte spaces (as with

CHAR(n) and NCHAR(n) values). Instead, it stores only the actual contents

on disk with a 1-byte length field. The limit on m is 254 bytes for indexed

columns and 255 bytes for non-indexed columns.

The second parameter, r, is an optional reserve length that sets a lower limit on

the number of bytes than a value being stored on disk requires. Even if a

value requires fewer than r bytes, r bytes are nevertheless allocated to hold it.

The purpose is to save time when rows are updated. (See “Variable-Length

Execution Time” on page 3-17.)

The advantages of the CHARACTER VARYING(m,r) or VARCHAR(m,r) data

type over the CHAR(n) data type are as follows:

v It conserves disk space when the number of bytes that data items require

varies widely or when only a few items require more bytes than average.

v Queries on the more compact tables can be faster.

These advantages also apply to the NVARCHAR(m,r) data type in comparison

to the NCHAR(n) data type.

The following list describes the disadvantages of using varying-length data

types:

v They do not allow lengths that exceed 255 bytes.

v Table updates can be slower in some circumstances.

v They are not available with all Informix database servers.

Variable-Length Execution Time

When you use any of the CHARACTER VARYING(m,r), VARCHAR(m,r), or

NVARCHAR(m,r) data types, the rows of a table have a varying number of

bytes instead of a fixed number of bytes. The speed of database operations is

affected when the rows of a table have varying numbers of bytes.

Chapter 3. Choosing Data Types 3-17

Because more rows fit in a disk page, the database server can search the table

with fewer disk operations than if the rows were of a fixed number of bytes.

As a result, queries can execute more quickly. Insert and delete operations can

be a little quicker for the same reason.

When you update a row, the amount of work the database server must

perform depends on the number of bytes in the new row as compared with

the number of bytes in the old row. If the new row uses the same number of

bytes or fewer, the execution time is not significantly different than it is with

fixed-length rows. However, if the new row requires a greater number of

bytes than the old one, the database server might have to perform several

times as many disk operations. Thus, updates of a table that use

CHARACTER VARYING(m,r), VARCHAR(m,r), or NVARCHAR(m,r) data can

sometimes be slower than updates of a fixed-length field.

To mitigate this effect, specify r as a number of bytes that encompasses a high

proportion of the data items. Then most rows use the reserve number of

bytes, and padding wastes only a little space. Updates are slow only when a

value that uses the reserve number of bytes is replaced with a value that uses

more than the reserve number of bytes.

Large Character Objects: TEXT

The TEXT data type stores a block of text. It is designed to store

self-contained documents: business forms, program source or data files, or

memos. Although you can store any data in a TEXT item, Informix tools

expect a TEXT item to be printable, so restrict this data type to printable

ASCII text.

Extended Parallel Server

Extended Parallel Server supports the TEXT data type in columns but does

not allow you to store a TEXT column in a blobspace or use a TEXT value in

an SPL routine.

End of Extended Parallel Server

 TEXT values are not stored with the rows of which they are a part. They are

allocated in whole disk pages, usually in areas separate from rows. For more

information, see your IBM Informix: Administrator's Guide.

The advantage of the TEXT data type over CHAR(n) and VARCHAR(m,r) is

that the size of a TEXT data item has no limit except the capacity of disk

storage to hold it. The disadvantages of the TEXT data type are as follows:

v It is allocated in whole disk pages, so a short item wastes space.

3-18 IBM Informix Database Design and Implementation Guide

v Restrictions apply on how you can use a TEXT column in an SQL

statement. (For more information on this restriction, see “Using TEXT and

BYTE Data Types” on page 3-19.)

v It is not available with all Informix database servers.

Binary Objects: BYTE

The BYTE data type is designed to hold any data a program can generate:

graphic images, program object files, and documents saved by any word

processor or spreadsheet. The database server permits any kind of data of any

length in a BYTE column.

Extended Parallel Server

Extended Parallel Server supports the BYTE data type in columns, but does

not allow you to store a BYTE column in a blobspace or use a BYTE value in

an SPL routine.

End of Extended Parallel Server

 As with TEXT, BYTE data items usually are stored in whole disk pages in

disk areas separate from normal row data.

The advantage of the BYTE data type, as opposed to TEXT or CHAR(n), is

that it accepts any data. Its disadvantages are the same as those of the TEXT

data type.

Using TEXT and BYTE Data Types

The database server stores and retrieves TEXT and BYTE columns. To fetch

and store TEXT or BYTE values, you normally use programs written in a

language that supports embedded SQL, such as IBM Informix ESQL/C. In

such a program, you can fetch, insert, or update a TEXT or BYTE value in a

manner similar to the way you read or write a sequential file.

In no SQL statement, interactive or programmed, can a TEXT or BYTE column

be used in the following ways:

v In arithmetic or Boolean expressions

v In a GROUP BY or ORDER BY clause

v In a UNIQUE test

v For indexing, either by itself or as part of a composite index

In a SELECT statement that you enter interactively or in a form or report, you

can perform the following operations on a TEXT or BYTE value:

v Select the column name, optionally with a subscript to extract part of it.

v Use LENGTH(column_name) to return the length of the column.

Chapter 3. Choosing Data Types 3-19

v Test the column with the IS [NOT] NULL predicate.

In an interactive INSERT statement, you can use the VALUES clause to insert

a TEXT or BYTE value, but the only value that you can give that column is

null. However, you can use the SELECT form of the INSERT statement to

copy a TEXT or BYTE value from another table.

In an interactive UPDATE statement, you can update a TEXT or BYTE column

to null or to a subquery that returns a TEXT or BYTE column.

Changing the Data Type

After the table is built, you can use the ALTER TABLE statement to change

the data type that is assigned to a column. Although such alterations are

sometimes necessary, you should avoid them for the following reasons:

v To change a data type, the database server must copy and rebuild the table.

For large tables, copying and rebuilding can take a lot of time and disk

space.

v Some data type changes can cause a loss of information. For example, when

you change a column from a longer to a shorter character type, long values

are truncated; when you change to a less-precise numeric type, low-order

digits are truncated.

v Existing programs, forms, reports, and stored queries might also have to be

changed.

Null Values

In most cases, columns in a table can contain null values. A null value means

that the value for the column can be unknown or not applicable. For example,

in the telephone directory example in Chapter 2, the anniv column of the

name table can contain null values; if you do not know the person’s

anniversary, you do not specify it. Do not confuse null value with zero or a

blank value. For example, the following statement inserts a row into the

manufact table of the stores_demo database and specifies that the value for

the lead_time column is null:

INSERT INTO manufact VALUES (’DRM’, ’Drumm’, NULL)

Dynamic Server

Collection columns cannot contain null elements. Chapter 8 describes

collection data types.

End of Dynamic Server

3-20 IBM Informix Database Design and Implementation Guide

Default Values

A default value is the value that is inserted into a column when an explicit

value is not specified in an INSERT statement. A default value can be a literal

character string that you define or one of the following SQL constant

expressions:

v USER

v CURRENT

v TODAY

v DBSERVERNAME

Not all columns need default values, but as you work with your data model,

you might discover instances where the use of a default value saves

data-entry time or prevents data-entry error. For example, the telephone

directory model has a state column. While you look at the data for this

column, you discover that more than 50 percent of the addresses list

California as the state. To save time, specify the string CA as the default value

for the state column.

Check Constraints

Check constraints specify a condition or requirement on a data value before

data can be assigned to a column during an INSERT or UPDATE statement. If

a row evaluates to false for any of the check constraints that are defined on a

table during an insert or update, the database server returns an error.

However, the database server does not report an error or reject the record

when the check constraint evaluates to NULL. For this reason, you might

want to use both a check constraint and a NOT NULL constraint when you

create a table.

To define a constraint, use the CREATE TABLE or ALTER TABLE statements.

For example, the following requirement constrains the values of an integer

domain to a certain range:

Customer_Number >= 50000 AND Customer_Number <= 99999

To express constraints on character-based domains, use the MATCHES

predicate and the regular-expression syntax that it supports. For example, the

following constraint restricts a telephone domain to the form of a U.S. local

telephone number:

vce_num MATCHES ’[2-9][2-9][0-9]-[0-9][0-9][0-9][0-9]’

For additional information about check constraints, see the CREATE TABLE

and ALTER TABLE statements in the IBM Informix: Guide to SQL Syntax.

Chapter 3. Choosing Data Types 3-21

Referential Constraints

You can identify the primary and foreign keys in each table to place

referential constraints on columns. Chapter 2, “Building a Relational Data

Model,” on page 2-1 discusses how you identify these keys.

When you are trying to pick columns for primary and foreign keys, almost all

data type combinations must match. For example, if you define a primary key

as a CHAR data type, you must also define the foreign key as a CHAR data

type. However, when you specify a SERIAL data type on a primary key in

one table, you specify an INTEGER on the foreign key of the relationship.

Similarly, when you specify a SERIAL8 data type on a primary key in one

table, you specify an INT8 on the foreign key of the relationship. The only

data type combinations that you can mix in a relationship are as follows:

v SERIAL and INTEGER

v SERIAL8 and INT8

For information about how to create a table with referential constraints, see

the CREATE TABLE and ALTER TABLE statements in the IBM Informix: Guide

to SQL Syntax.

3-22 IBM Informix Database Design and Implementation Guide

Chapter 4. Implementing a Relational Data Model

Creating the Database . 4-1

Using CREATE DATABASE . 4-2

Avoiding Name Conflicts . 4-2

Selecting a Dbspace . 4-2

Choosing the Type of Logging . 4-3

Using CREATE TABLE . 4-4

Creating a Fragmented Table . 4-6

Dropping or Modifying a Table . 4-6

Using CREATE INDEX . 4-6

Composite Indexes . 4-7

Bidirectional Traversal of Indexes . 4-7

Using Synonyms for Table Names . 4-7

Using Synonym Chains . 4-8

Using Command Scripts . 4-9

Capturing the Schema . 4-9

Executing the File . 4-9

An Example . 4-10

Populating the Database . 4-10

Moving Data from Other Informix Databases 4-11

Loading Source Data into a Table . 4-12

Performing Bulk-Load Operations . 4-12

In This Chapter

This chapter shows how to use SQL syntax to implement the data model that

Chapter 2 describes. In other words, it shows you how to create a database

and tables and populate the tables with data. This chapter also discusses

database logging options, table synonyms, and command scripts.

Creating the Database

Now you are ready to create the data model as tables in a database. You do

this with the CREATE DATABASE, CREATE TABLE, and CREATE INDEX

statements. The syntax for these statements is described in the IBM Informix:

Guide to SQL Syntax. This section discusses how to use the CREATE

DATABASE and CREATE TABLE statements to implement a data model.

Remember that the telephone directory data model is used for illustrative

purposes only. For the sake of the example, it is translated into SQL

statements.

© Copyright IBM Corp. 1996, 2004 4-1

You might have to create the same database model more than once. You can

store the statements that create the model and later re-execute those

statements. For more information, see “Using Command Scripts” on page 4-9.

When the tables exist, you must populate them with rows of data. You can do

this manually, with a utility program, or with custom programming.

Using CREATE DATABASE

A database is a container that holds all parts of a data model. These parts

include not only the tables but also views, indexes, synonyms, and other

objects that are associated with the database. You must create a database

before you can create anything else.

When the database server creates a database, it stores the locale of the

database that is derived from the DB_LOCALE environment variable in its

system catalog. This locale determines how the database server interprets

character data that is stored within the database. By default, the database

locale is the U.S. English locale that uses the ISO8859-1 code set. For

information on how to use alternative locales, see the IBM Informix: GLS

User's Guide.

When the database server creates a database, it sets up records that show the

existence of the database and its mode of logging. These records are not

visible to operating-system commands because the database server manages

disk space directly.

Avoiding Name Conflicts

Normally, only one copy of the database server is running on a computer, and

the database server manages the databases that belong to all users of that

computer. The database server keeps only one list of database names. The

name of your database must be different from that of any other database that

the database server manages. (It is possible to run more than one copy of the

database server. You can create more than one copy of the database server, for

example, to create a safe environment for testing apart from the operational

data. In this case, be sure that you are using the correct database server when

you create the database and again when you access it later.)

Selecting a Dbspace

The database server lets you create the database in a particular dbspace. A

dbspace is a named area of disk storage. Ask your database server

administrator whether you should use a particular dbspace. You can put a

database in a separate dbspace to isolate it from other databases or to locate it

on a particular disk device. For information about dbspaces and their

relationship to disk devices, see your IBM Informix: Administrator's Guide. For

information about how to fragment the tables of your database across

4-2 IBM Informix Database Design and Implementation Guide

multiple dbspaces, or with multiple fragments in the same dbspace, see

Chapter 11, “Building a Dimensional Data Model,” on page 11-1.

Some dbspaces are mirrored (duplicated on two disk devices for high

reliability). You might put your database in a mirrored dbspace if its contents

are of exceptional importance.

Choosing the Type of Logging

To specify a logging or nonlogging database, use the CREATE DATABASE

statement. The database server offers the following choices for transaction

logging:

v No logging at all. This is not a recommended choice. If you lose the

database because of a hardware failure, you lose all data alterations since

the last backup.

CREATE DATABASE db_with_no_log

When you do not choose logging, BEGIN WORK and other SQL statements

that are related to transaction processing are not permitted in the database.

This situation affects the logic of programs that use the database.

Extended Parallel Server does not support nonlogging databases. The

database server does, however, support nonlogging tables. For more

information, see “Configuring the Database Server to Use Distributed

Queries” on page 7-3.

v Regular (unbuffered) logging. This choice is best for most databases. In the

event of a failure, you lose only uncommitted transactions.

CREATE DATABASE a_logged_db WITH LOG

v Buffered logging. If you lose the database, you lose few or possibly none

of the most recent alterations. In return for this small risk, performance

during alterations improves slightly.

CREATE DATABASE buf_log_db WITH BUFFERED LOG

Buffered logging is best for databases that are updated frequently (so that

speed of updating is important), but you can re-create the updates from

other data in the event of a failure. Use the SET LOG statement to alternate

between buffered and regular logging.

v ANSI-compliant logging. This logging is the same as regular logging, but

the ANSI rules for transaction processing are also enforced. For more

information, refer to “Using ANSI-Compliant Databases” on page 1-2.

CREATE DATABASE std_rules_db WITH LOG MODE ANSI

The design of ANSI SQL prohibits the use of buffered logging. When you

create an ANSI-compliant database, you cannot turn off transaction logging.

For Dynamic Server databases that are not ANSI-compliant, the database

server administrator (DBA) can turn transaction logging on and off or change

Chapter 4. Implementing a Relational Data Model 4-3

from buffered to unbuffered logging. For example, you might turn logging off

before inserting a large number of new rows.

You can use IBM Informix Server Administrator (ISA) or the ondblog and

ontape utilities to change the logging status or buffering mode. For

information about these tools, refer to the IBM Informix: Dynamic Server

Administrator's Guide. You can also use the SET LOG statement to change

between buffered and unbuffered logging. For information about SET LOG,

see your IBM Informix: Guide to SQL Syntax.

Using CREATE TABLE

Use the CREATE TABLE statement to create each table that you design in the

data model. This statement has a complicated form, but it is basically a list of

the columns of the table. For each column, you supply the following

information:

v The name of the column

v The data type (from the domain list you made)

The statement might also contain one or more of the following constraints:

v A primary-key constraint

v A foreign-key constraint

v A NOT NULL constraint

v A unique constraint

v A default constraint

v A check constraint

In short, the CREATE TABLE statement is an image, in words, of the table as

you drew it in the data-model diagram in Figure 2-21 on page 2-26. The

following example shows the statements for the telephone directory data

model:

CREATE TABLE name

 (

 rec_num SERIAL PRIMARY KEY,

 lname CHAR(20),

 fname CHAR(20),

 bdate DATE,

 anniv DATE,

 email VARCHAR(25)

);

CREATE TABLE child

 (

 child CHAR(20),

 rec_num INT,

 FOREIGN KEY (rec_num) REFERENCES NAME (rec_num)

);

4-4 IBM Informix Database Design and Implementation Guide

CREATE TABLE address

 (

 id_num SERIAL PRIMARY KEY,

 rec_num INT,

 street VARCHAR (50,20),

 city VARCHAR (40,10),

 state CHAR(5) DEFAULT 'CA',

 zipcode CHAR(10),

 FOREIGN KEY (rec_num) REFERENCES name (rec_num)

);

CREATE TABLE voice

 (

 vce_num CHAR(13) PRIMARY KEY,

 vce_type CHAR(10),

 rec_num INT,

 FOREIGN KEY (rec_num) REFERENCES name (rec_num)

);

CREATE TABLE fax

 (

 fax_num CHAR(13),

 oper_from DATETIME HOUR TO MINUTE,

 oper_till DATETIME HOUR TO MINUTE,

 PRIMARY KEY (fax_num)

);

CREATE TABLE faxname

 (

 fax_num CHAR(13),

 rec_num INT,

 PRIMARY KEY (fax_num, rec_num),

 FOREIGN KEY (fax_num) REFERENCES fax (fax_num),

 FOREIGN KEY (rec_num) REFERENCES name (rec_num)

);

CREATE TABLE modem

 (

 mdm_num CHAR(13) PRIMARY KEY,

 rec_num INT,

 b_type CHAR(5),

 FOREIGN KEY (rec_num) REFERENCES name (rec_num)

);

In each of the preceding examples, the table data gets stored in the same

dbspace that you specify for the database because the CREATE TABLE

statement does not specify a storage option. You can specify a dbspace for the

table that is different from the storage location of the database or fragment the

table into multiple dbspaces. For information about the different storage

options Informix database servers support, see the CREATE TABLE statement

in the IBM Informix: Guide to SQL Syntax. The following section shows one

way to fragment a table into multiple dbspaces.

Chapter 4. Implementing a Relational Data Model 4-5

Creating a Fragmented Table

To control where data is stored at the table level, you can use a FRAGMENT

BY clause when you create the table. The following statement creates a

fragmented table that stores data according to a round-robin distribution

scheme. In this example, the rows of data are distributed more or less evenly

across the fragments dbspace1, dbspace2, and dbspace3.

CREATE TABLE name

 (

 rec_num SERIAL PRIMARY KEY,

 lname CHAR(20),

 fname CHAR(20),

 bdate DATE,

 anniv DATE,

 email VARCHAR(25)

) FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

For more information about the different distribution schemes that you can

use to create fragmented tables, see Chapter 5.

Dropping or Modifying a Table

Use the DROP TABLE statement to remove a table with its associated indexes

and data. To change the definition of a table, for example, by adding a check

constraint, use the ALTER TABLE statement. Use the TRUNCATE statement to

remove all rows from a table and all corresponding index data while

preserving the definition of the table. For information about these statements,

refer to IBM Informix: Guide to SQL Syntax.

Using CREATE INDEX

Use the CREATE INDEX statement to create an index on one or more

columns in a table and, optionally, to cluster the physical table in the order of

the index. This section describes some of the options available when you

create indexes. For more information about the CREATE INDEX statement,

see the IBM Informix: Guide to SQL Syntax.

Suppose you create table customer:

CREATE TABLE customer

(

 cust_num SERIAL(101) UNIQUE

 fname CHAR(15),

 lname CHAR(15),

 company CHAR(20),

 address1 CHAR(20),

 address2 CHAR(20),

 city CHAR(15),

 state CHAR(2),

 zipcode CHAR(5),

 phone CHAR(18)

);

4-6 IBM Informix Database Design and Implementation Guide

The following statement shows how to create an index on the lname column

of the customer table:

CREATE INDEX lname_index ON customer (lname);

Composite Indexes

You can create an index that includes multiple columns. For example, you

might create the following index:

CREATE INDEX c_temp2 ON customer (cust_num, zipcode);

Bidirectional Traversal of Indexes

The ASC and DESC keywords specify the order in which the database server

maintains the index. When you create an index on a column and omit the

keywords or specify the ASC keyword, the database server stores the key

values in ascending order. If you specify the DESC keyword, the database

server stores the key values in descending order.

Ascending order means that the key values are stored in order from the

smallest key to the largest key. For example, if you create an ascending index

on the lname column of the customer table, last names are stored in the index

in the following order: Albertson, Beatty, Currie.

Descending order means that the key values are stored in order from the

largest key to the smallest key. For example, if you create a descending index

on the lname column of the customer table, last names are stored in the index

in the following order: Currie, Beatty, Albertson.

The bidirectional traversal capability of the database server lets you create just

one index on a column and use that index for queries that specify sorting of

results in either ascending or descending order of the sort column.

Using Synonyms for Table Names

A synonym is a name that you can use in place of another SQL identifier. You

use the CREATE SYNONYM statement to declare an alternative name for a

table, a view, or (for Dynamic Server) a sequence object.

Typically, you use a synonym to refer to tables that are not in the current

database. For example, you might execute the following statements to create

synonyms for the customer and orders table names:

CREATE SYNONYM mcust FOR masterdb@central:customer;

CREATE SYNONYM bords FOR sales@boston:orders;

After you create the synonym, you can use it in many contexts where the

original table name is valid, as the following example shows:

Chapter 4. Implementing a Relational Data Model 4-7

SELECT bords.order_num, mcust.fname, mcust.lname

 FROM mcust, bords

 WHERE mcust.customer_num = bords.Customer_num

 INTO TEMP mycopy;

The CREATE SYNONYM statement stores the synonym name in the system

catalog table syssyntable in the current database. The synonym is available to

any query made in that database. (If the USETABLENAME environment

variable is set, however, some DDL statements of SQL do not support

synonyms in place of table names.)

A short synonym makes it easier to write queries, but synonyms can play

another role. They allow you to move a table to a different database, or even

to a different computer, and keep your queries the same.

Suppose you have several queries that refer to the tables customer and orders.

The queries are embedded in programs, forms, and reports. The tables are

part of the demonstration database, which is kept on database server avignon.

Now you decide to make the same programs, forms, and reports available to

users of a different computer on the network (database server nantes). Those

users have a database that contains a table named orders that contains the

orders at their location, but they need access to the table customer at avignon.

To those users, the customer table is external. Does this mean you must

prepare special versions of the programs and reports, versions in which the

customer table is qualified with a database server name? A better solution is

to create a synonym in the users’ database, as the following example shows:

DATABASE stores_demo@nantes;

CREATE SYNONYM customer FOR stores_demo@avignon:customer;

When the stored queries are executed in your database, the name customer

refers to the actual table. When they are executed in the other database, the

name is resolved through the synonym into a reference to the table that exists

on the database server avignon. (In a database that is not ANSI-compliant, a

synonym must be unique among the names of synonyms, tables, views, and

sequence objects in the database. In an ANSI-compliant database, the

owner.synonym combination must be unique within the namespace of objects

that have been registered in the database with a tabid value.)

Using Synonym Chains

To continue the preceding example, suppose that a new computer is added to

your network. Its name is db_crunch. The customer table and other tables are

moved to it to reduce the load on avignon. You can reproduce the table on

the new database server easily enough, but how can you redirect all access to

it? One way is to install a synonym to replace the old table, as the following

example shows:

4-8 IBM Informix Database Design and Implementation Guide

DATABASE stores_demo@avignon EXCLUSIVE;

RENAME TABLE customer TO old_cust;

CREATE SYNONYM customer FOR stores_demo@db_crunch:customer;

CLOSE DATABASE;

When you execute a query within stores_demo@avignon, a reference to table

customer finds the synonym and is redirected to the version on the new

computer. Such redirection also happens for queries that are executed from

database server nantes in the previous example. The synonym in the database

stores_demo@nantes still redirects references to customer to database

stores_demo@avignon; the new synonym there sends the query to database

stores_demo@db_crunch.

Chains of synonyms can be useful when, as in this example, you want to

redirect all access to a table in one operation. However, you should update the

databases of all users as soon as possible so their synonyms point directly to

the table. If you do not, you incur extra overhead when the database server

handles the extra synonyms, and the table cannot be found if any computer in

the chain is down.

You can run an application against a local database and later run the same

application against a database on another computer. The program runs

equally well in either case (although it can run more slowly on the network

database). As long as the data model is the same, a program cannot tell the

difference between one database and another.

Using Command Scripts

You can enter SQL statements interactively to create the database and tables.

In some cases, you might have to create the database and tables two or more

times. For example, you might have to create the database again to make a

production version after a test version is satisfactory, or you might have to

implement the same data model on several computers. To save time and

reduce the chance of errors, you can put all the statements to create a

database in a file and later re-execute those statements.

Capturing the Schema

The dbschema utility is a program that examines the contents of a database

and generates all the SQL statements you require to re-create it. You can build

the first version of your database, making changes until it is exactly as you

want it. Then you can use dbschema to generate the SQL statements

necessary to duplicate it. For information about the dbschema utility, see the

IBM Informix: Migration Guide.

Executing the File

Programs that you use to enter SQL statements interactively, such as

DB–Access, can be run from a file of commands. You can start DB–Access to

Chapter 4. Implementing a Relational Data Model 4-9

read and execute a file of commands that you or dbschema prepared. For

more information, see the IBM Informix: DB–Access User's Guide.

An Example

Most IBM Informix database server products come with a demonstration

database (the database that most of the examples in this book use). The

demonstration database is delivered as an operating-system command script

that calls IBM Informix products to build the database. You can copy this

command script and use it as the basis to automate your own data model.

Populating the Database

For your initial tests, the easiest way to populate the database is to type

INSERT statements in DB–Access. For example, to insert a row into the

manufact table of the demonstration database, enter the following command

in DB–Access:

INSERT INTO manufact VALUES ('MKL', 'Martin', 15);

If you are preparing an application program, such as an application in C, you

can use the application to enter rows into a database table.

The following table lists IBM Informix tools that you can use for entering

information into your database. The acronyms in the Reference column are

explained after the table.

 Tool Purpose Reference

dbaccessdemo

dbaccessdemo_ud

Prepare and populate sample databases. DB-A

SQLR

DB–Access Edit a database by entering explicit commands. DB-A

SQLS

onunload & onload Copy an entire database or selected database

tables to or from files on tape or disk.

MG

AR

dbload Load data from one or more text files into one

or more existing tables.

MG

High-Performance

Loader

Copy an entire database, selected tables, or

selected columns of selected tables.

HPL

LOAD & UNLOAD Load data from (or into) a text file. SQLS

dbexport , dbimport Copy an entire database using text files. MG

Enterprise

Replication

Update selected databases each time a specified

table is updated.

ER

onxfer Copy data to an Extended Parallel Server from

IBM Informix Dynamic Server.

MG

4-10 IBM Informix Database Design and Implementation Guide

Tool Purpose Reference

C application Use SQL commands embedded in a C program

to update databases.

ESQLC

DAPI

DBDK

Java application Use SQL commands embedded in a Java

program to update databases.

Java

DBDK

Gateway applications Access data from non-Informix databases. GM

GU

Mnemonic Explanation of References Column

SQLR IBM Informix: Guide to SQL Reference

SQLS IBM Informix: Guide to SQL Syntax

MG IBM Informix: Migration Guide

AR IBM Informix: Administrator's Reference

GM IBM Informix: Enterprise Gateway Manager User Manual

GU IBM Informix: Enterprise Gateway User Manual

DBDK IBM Informix: DataBlade Developer’s Kit User's Guide

ESQL/C IBM Informix: ESQL/C Programmer's Manual

Java IBM Informix: J/Foundation Developer's Guide

HPL IBM Informix: High-Performance Loader User's Guide

DB-A IBM Informix: DB–Access User's Guide

ER IBM Informix: Dynamic Server Enterprise Replication Guide

DAPI IBM Informix: DataBlade API Programmer's Guide

Moving Data from Other Informix Databases

Often, the initial rows of a table can be derived from data that is stored in

tables in another Informix database or in operating-system files. The following

utilities let you move large quantities of data:

v onunload/onload utilities

v dbexport/dbimport utilities

v dbload utility

v SQL LOAD statement

v High Performance Loader (HPL)

You can also select the data you want from the other database on another

database server as part of an INSERT statement in your database. As the

Chapter 4. Implementing a Relational Data Model 4-11

following example shows, you could select information from the items table

in the demonstration database to insert into a new table:

INSERT INTO newtable

 SELECT item_num, order_num, quantity, stock_num,

 manu_code, total_price

 FROM stores_demo@otherserver:items;

Loading Source Data into a Table

When the data source is not an Informix database, you must find a way to

convert it into a flat ASCII file; that is, a file of printable data in which each

line represents the contents of one table row.

After you have the data in an ASCII file, you can use the dbload utility to

load it into a table. For more information on dbload, see the IBM Informix:

Migration Guide. The LOAD statement in DB–Access can also load rows from

a flat ASCII file. For information about the LOAD and UNLOAD statements,

see the IBM Informix: Guide to SQL Syntax.

Extended Parallel Server

After you have the data in a file, you can use external tables to load it into a

table. For more information on external tables, see your IBM Informix:

Administrator's Guide.

End of Extended Parallel Server

Performing Bulk-Load Operations

Inserting hundreds or thousands of rows goes much faster if you turn off

transaction logging. Logging these insertions makes no sense because, in the

event of a failure, you can easily re-create the lost work. The following list

contains the steps of a large bulk-load operation:

v If any chance exists that other users are using the database, exclude them

with the DATABASE EXCLUSIVE statement.

v Ask the administrator to turn off logging for the database.

The existing logs can be used to recover the database in its present state,

and you can run the bulk insertion again to recover those rows if they are

lost.

Extended Parallel Server

 You cannot turn off logging for databases that use Extended Parallel Server.

However, you can create nonlogging tables (raw permanent or static

permanent) in the database.

End of Extended Parallel Server

v Perform the statements or run the utilities that load the tables with data.

4-12 IBM Informix Database Design and Implementation Guide

v Back up the newly loaded database.

Either ask the administrator to perform a full or incremental backup or use

the onunload utility to make a binary copy of your database only.

v Restore transaction logging and release the exclusive lock on the database.

Chapter 4. Implementing a Relational Data Model 4-13

4-14 IBM Informix Database Design and Implementation Guide

Part 2. Managing Databases

© Copyright IBM Corp. 1996, 2004

IBM Informix Database Design and Implementation Guide

Chapter 5. Table Fragmentation Strategies

What Is Fragmentation? . 5-2

Why Use Fragmentation? . 5-3

Whose Responsibility Is Fragmentation? . 5-3

Enhanced Fragmentation (XPS) . 5-3

Fragmentation and Logging . 5-4

Distribution Schemes for Table Fragmentation 5-4

Expression-Based Distribution Scheme . 5-5

Range Rule . 5-5

Arbitrary Rule . 5-6

Using the MOD Function (IDS) . 5-6

Inserting and Updating Rows . 5-6

Round-Robin Distribution Scheme . 5-7

Range Distribution Scheme (XPS) . 5-7

System-Defined Hash Distribution Scheme (XPS) 5-8

Hybrid Distribution Scheme (XPS) . 5-8

Creating a Fragmented Table . 5-9

Creating a New Fragmented Table . 5-9

Creating a Fragmented Table from Nonfragmented Tables 5-11

Using More Than One Nonfragmented Table 5-11

Using a Single Nonfragmented Table . 5-12

Rowids in a Fragmented Table . 5-12

Fragmenting Smart Large Objects (IDS) . 5-13

Modifying Fragmentation Strategies . 5-13

Reinitializing a Fragmentation Strategy . 5-13

Modifying Fragmentation Strategies for Dynamic Server 5-15

Using the ADD Clause . 5-15

Using the DROP Clause . 5-15

Using the MODIFY Clause . 5-15

Modifying Fragmentation Strategies for XPS 5-16

Using the INIT Clause . 5-16

Using ATTACH and DETACH Clauses 5-17

Granting and Revoking Privileges on Fragments (IDS) 5-18

In This Chapter

This chapter describes the fragmentation strategies that your database server

supports and provides examples of the different fragmentation strategies. It

discusses fragmentation, distribution schemes for table fragmentation, creating

and modifying fragmented tables, and providing privileges for fragmented

tables.

© Copyright IBM Corp. 1996, 2004 5-1

For information about how to formulate a fragmentation strategy to reduce

data contention and improve query performance, see your IBM Informix:

Performance Guide.

What Is Fragmentation?

Fragmentation is a database server feature that allows you to control where

data is stored at the table level. Fragmentation enables you to define groups

of rows or index keys within a table according to some algorithm or scheme.

You can store each group or fragment (also referred to as a partition) in a

separate dbspace associated with a specific physical disk. You use SQL

statements to create the fragments and assign them to dbspaces.

The scheme that you use to group rows or index keys into fragments is called

the distribution scheme. The distribution scheme and the set of dbspaces in

which you locate the fragments together make up the fragmentation strategy.

The decisions that you must make to formulate a fragmentation strategy are

discussed in your IBM Informix: Performance Guide.

After you decide whether to fragment table rows, index keys, or both, and

you decide how the rows or keys should be distributed over fragments, you

decide on a scheme to implement this distribution. For a description of the

distribution schemes that Informix database servers support, see “Distribution

Schemes for Table Fragmentation” on page 5-4.

When you create fragmented tables and indexes, the database server stores

the location of each table and index fragment with other related information

in the system catalog table named sysfragments. You can use this table to

access information about your fragmented tables and indexes. If you use a

user-defined routine as part of the fragmentation expression, that information

is recorded in sysfragexprudrdep. For a description of the information that

these system catalog tables contain, see the IBM Informix: Guide to SQL

Reference.

From the perspective of an end user or client application, a fragmented table

is identical to a nonfragmented table. Client applications do not require any

modifications to allow them to access the data in fragmented tables.

For some distribution schemes, the database server has information on which

fragments contain which data, so it can route client requests for data to the

appropriate fragment without accessing irrelevant fragments. (The database

server cannot route client requests for data to the appropriate fragment for

round-robin and some expression-based distribution schemes.) For more

information, see “Distribution Schemes for Table Fragmentation” on page 5-4.)

5-2 IBM Informix Database Design and Implementation Guide

Why Use Fragmentation?

Consider fragmenting your tables if improving at least one of the following is

your goal:

v Single-user response time

v Concurrency

v Availability

v Backup-and-restore characteristics

v Loading of data

Each of the preceding goals has its own implications for the fragmentation

strategy that you ultimately implement. Your primary fragmentation goal

determines, or at least influences, how you implement your fragmentation

strategy. When you decide whether to use fragmentation to meet any of the

preceding goals, keep in mind that fragmentation requires some additional

administration and monitoring activity.

For more information about the preceding goals and how to plan a

fragmentation strategy, see your IBM Informix: Performance Guide.

Whose Responsibility Is Fragmentation?

Some overlap exists between the responsibilities of the database server

administrator and those of the database administrator (DBA) with respect to

fragmentation. The DBA creates the database schema, which can include table

fragmentation. The database server administrator, on the other hand, is

responsible for allocating the disk space in which the fragmented tables will

reside. Because neither of these responsibilities can be performed in isolation

from the other, to implement fragmentation requires a cooperative effort

between the DBA and the database server administrator. This manual

describes only those tasks that the DBA performs to implement a

fragmentation strategy. For information about the tasks the database server

administrator performs to implement a fragmentation strategy, see your

IBM Informix: Administrator's Guide and IBM Informix: Performance Guide.

Enhanced Fragmentation (XPS)

Extended Parallel Server can fragment tables and indexes across disks that

belong to different coservers. Each table fragment can reside in a separate

dbspace that is associated with physical disks that belong to different

coservers. A dbslice provides the mechanism to manage many dbspaces across

multiple coservers. Once you create the dbslices and dbspaces, you can create

tables and indexes that are fragmented across multiple coservers.

For information on the advantages of fragmenting tables across coservers, see

your IBM Informix: Extended Parallel Server Performance Guide. For information

about how to create dbslices and dbspaces, see your IBM Informix: Extended

Parallel Server Administrator's Guide.

Chapter 5. Table Fragmentation Strategies 5-3

Fragmentation and Logging

Dynamic Server

With Dynamic Server, fragmented tables can belong to either a logging

database or a nonlogging database. As with nonfragmented tables, if a

fragmented table is part of a nonlogging database, a potential for data

inconsistencies arises if a failure occurs.

End of Dynamic Server

Extended Parallel Server

With Extended Parallel Server, fragmented tables always belong to a logging

database. However, Extended Parallel Server does support several logging

and nonlogging table types. For more information, see “Configuring the

Database Server to Use Distributed Queries” on page 7-3.

End of Extended Parallel Server

Distribution Schemes for Table Fragmentation

A distribution scheme is a method that the database server uses to distribute

rows or index entries to fragments. Informix database servers support the

following distribution schemes:

v Expression-based. This distribution scheme puts rows that contain specified

values in the same fragment. You specify a fragmentation expression that

defines criteria for assigning a set of rows to each fragment, either as a

range rule or some arbitrary rule. You can specify a remainder fragment that

holds all rows that do not match the criteria for any other fragment,

although a remainder fragment reduces the efficiency of the

expression-based distribution scheme.

v Round-robin. This distribution scheme places rows one after another in

fragments, rotating through the series of fragments to distribute the rows

evenly. The database server defines the rule internally.

For INSERT statements, the database server uses a hash function on a

random number to determine the fragment in which to place the row. For

INSERT cursors, the database server places the first row in a random

fragment, the second in the next sequential fragment, and so on. If one of

the fragments is full, it is skipped.

Extended Parallel Server

v Range distribution. This distribution scheme ensures that rows are

fragmented evenly across dbspaces. In range distribution, the database

5-4 IBM Informix Database Design and Implementation Guide

server determines the distribution of rows among fragments based on

minimum and maximum integer values that the user specifies. Use a range

distribution scheme when the data distribution is both dense and uniform.

v System-defined hash. This distribution scheme uses an internal,

system-defined rule that distributes rows with the objective of keeping the

same number of rows in each fragment.

v Hybrid. This distribution scheme combines two distribution schemes. The

primary distribution scheme chooses the dbslice. The secondary distribution

scheme puts rows in specific dbspaces within the dbslice. The dbspaces

usually reside on different coservers.

End of Extended Parallel Server

For complete descriptions of the SQL syntax you use to specify a distribution

scheme, see the CREATE TABLE and CREATE INDEX statements in the

IBM Informix: Guide to SQL Syntax. For a discussion about the performance

aspects of fragmentation, refer to your IBM Informix: Performance Guide.

Expression-Based Distribution Scheme

To specify an expression-based distribution scheme, use the FRAGMENT BY

EXPRESSION clause of the CREATE TABLE or CREATE INDEX statement.

The following example includes a FRAGMENT BY EXPRESSION clause to

create a fragmented table with an expression-based distribution scheme:

CREATE TABLE accounts (id_num INT, name char(15))

FRAGMENT BY EXPRESSION

id_num <= 100 IN dbspace_1,

id_num <100 AND id_num <= 200 IN dbspace_2,

id_num > 200 IN dbspace_3

When you use the FRAGMENT BY EXPRESSION clause of the CREATE

TABLE statement to create a fragmented table, you must supply one condition

for each fragment of the table that you are creating.

You can define range rules or arbitrary rules that indicate to the database server

how rows are to be distributed to fragments. The following sections describe

the different types of expression-based distribution schemes.

Range Rule

A range rule uses SQL relational and logical operators to define the

boundaries of each fragment in a table. A range rule can contain the following

restricted set of operators:

v The relational operators >, <, >=, <=

v The logical operators AND and OR

v Algebraic expressions including built-in functions

Chapter 5. Table Fragmentation Strategies 5-5

A range rule can be based on a simple algebraic expression as shown in the

following example. In this example, the expression is a simple reference to a

column.

FRAGMENT BY EXPRESSION

id_num > 0 AND id_num <= 20 IN dbsp1,

id_num > 20 AND id_num <= 40 IN dbsp2,

id_num > 40 IN dbsp3

The expression in a range rule can be a conjunction or disjunction of more

algebraic expressions. The next example shows two algebraic expressions used

to define two sets of ranges. The first set of ranges is based on the algebraic

expression: ″YEAR(Died) - YEAR(Born)″; the second set of ranges is based on

″MONTH(Born).″

FRAGMENT BY EXPRESSION

YEAR(Died) - YEAR(Born) < 21 AND MONTH(Born) >= 1 AND MONTH(Born) < 4 IN dbsp1,

YEAR(Died) - YEAR(Born) < 40 AND MONTH(Born) >= 4 AND MONTH(Born) < 7 IN dbsp2,

Arbitrary Rule

An arbitrary rule uses SQL relational and logical operators. Unlike range

rules, arbitrary rules allow you to use any relational operator and any logical

operator to define the rule. In addition, you can reference any number of table

columns in the rule. Arbitrary rules typically include the use of the OR logical

operator to group data, as the following example shows:

FRAGMENT BY EXPRESSION

zip_num = 95228 OR zip_num = 95443 IN dbsp2,

zip_num = 91120 OR zip_num = 92310 IN dbsp4,

REMAINDER IN dbsp5

Using the MOD Function (IDS)

You can use the MOD function in a FRAGMENT BY EXPRESSION clause to

map each row in a table to a set of integers (hash values). The database server

uses these values to determine in which fragment it will store a given row.

The following example shows how you might use the MOD function in an

expression-based distribution scheme:

FRAGMENT BY EXPRESSION

MOD(id_num, 3) = 0 IN dbsp1,

MOD(id_num, 3) = 1 IN dbsp2,

MOD(id_num, 3) = 2 IN dbsp3

Inserting and Updating Rows

When you insert or update a row, the database server evaluates fragment

expressions, in the order specified, to see if the row belongs in any of the

fragments. If so, the database server inserts or updates the row in one of the

fragments. If the row does not belong in any of the fragments, the row is put

into the fragment that the remainder clause specified. If the distribution

scheme does not include a remainder clause, and the row does not match the

criteria for any of the existing fragment expressions, the database server

returns an error.

5-6 IBM Informix Database Design and Implementation Guide

Round-Robin Distribution Scheme

To specify a round-robin distribution scheme, use the FRAGMENT BY

ROUND ROBIN clause of the CREATE TABLE statement. The following

statement illustrates a fragmented table with a round-robin distribution

scheme:

CREATE TABLE account_2

 ...

 ...

FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3

When the database server receives a request to insert a number of rows into a

table that uses round-robin distribution, it distributes the rows in such a way

that the number of rows in each of the fragments remains approximately the

same. Round-robin distributions are also called even distributions because

information is distributed evenly among the fragments. The rule for

distributing rows to tables that use round-robin distribution is internal to the

database server.

Important: You can use the round-robin distribution scheme only for table

fragmentation. You cannot fragment an index with this

distribution scheme.

Range Distribution Scheme (XPS)

When data distribution is dense and uniform and the fragmentation column

contains no duplicates, you can use a range distribution scheme to distribute

rows evenly across dbspaces. Range distribution uses MIN and MAX values

that the user specifies to determine the distribution of rows among the

fragments.

The following statement includes a FRAGMENT BY RANGE clause to specify

a range distribution scheme:

CREATE TABLE cust_account (cust_id INT)

 ...

 ...

FRAGMENT BY RANGE (cust_id MIN 1000 MAX 5000)

 IN dbsp_1, dbsp_2, dbsp_3, dbsp_4)

The MIN and MAX values specify the total range of expected values in the

column. You must specify a MAX value in the FRAGMENT BY RANGE

clause. If you omit the MIN value, the default MIN value is 0. In the

preceding example, the database server uses cust_id values to distribute table

rows across four dbspaces. The database server fragments the rows as follows.

Storage Space For Rows with Column Values

dbsp_1 1000 <= cust_id < 2000

dbsp_2 2000 <= cust_id < 3000

Chapter 5. Table Fragmentation Strategies 5-7

dbsp_3 3000 <= cust_id < 4000

dbsp_4 4000 <= cust_id < 5000

 You can use range fragmentation on a single column or, in a hybrid

distribution scheme, you can specify a range scheme on different columns for

each FRAGMENT BY RANGE clause. For information about how to use range

fragmentation in a hybrid distribution scheme, see “Hybrid Distribution

Scheme (XPS)” on page 5-8.

System-Defined Hash Distribution Scheme (XPS)

The database server uses a system-defined hash algorithm to distribute data

evenly by hashing a specified key. In addition to even data distribution,

system-defined hash fragmentation permits the automatic elimination of

fragments for queries that use the hashed key. You can use hash

fragmentation for several tables to provide fragment elimination when the

tables are joined in queries and to perform more processing on the local

coserver.

A system-defined hash distribution scheme is the preferred method for

distributing data evenly across fragments, except in the following cases:

v Range queries are used.

A range distribution scheme might lead to better fragment elimination and

therefore better query performance.

v The specified column contains a very uneven number of duplicate values or

a very small number of different values.

Either condition can result in data skew, in which some fragments become

larger than others. Data skew can lead to uneven performance because the

amount of data that the database server needs to process is larger in some

fragments than in other fragments.

To specify a system-defined hash distribution scheme, use the FRAGMENT

BY HASH clause in the CREATE TABLE statement as follows:

CREATE TABLE new_tab (id INT, name CHAR(30))

 FRAGMENT BY HASH (id) IN dbspace1, dbspace2, dbspace3;

In a system-defined hash distribution scheme, specify at least two dbspaces

where you want the fragments to be placed or specify a dbslice.

You can also specify a composite key for a system-defined hash distribution

scheme.

Hybrid Distribution Scheme (XPS)

A hybrid distribution scheme combines a base strategy and second-level

strategy on the same table. The base strategy can be expression-based or range

5-8 IBM Informix Database Design and Implementation Guide

fragmentation. You can use a hybrid distribution scheme to apply different

fragmentation strategies on one or two columns.

When you define a hybrid distribution scheme you can specify a single

dbslice, a single dbspace, or multiple dbspaces as the storage domain of the

fragmentation expression.

The following statement defines a hybrid scheme based on two columns of

the table:

CREATE TABLE hybrid_tab (col_1 INT, col_2 DATE, col_3 CHAR(4))

 FRAGMENT BY HYBRID (col_1) EXPRESSION

 col_1 >= 0 AND col_1 < 20 IN dbspace_1,

 col_1 >= 20 AND col_1 < 40 IN dbspace_2,

 col_1 >= 40 IN dbspace_3;

Creating a Fragmented Table

This section explains how to use SQL statements to create and manage

fragmented tables. You can fragment a table at the same time that you create

it, or you can fragment existing nonfragmented tables. An overview of both

alternatives is given in the following sections. For the complete syntax of the

SQL statements that you use to create fragmented tables, see the

IBM Informix: Guide to SQL Syntax.

Before you create a fragmented table, you must decide on an appropriate

fragmentation strategy. For information about how to formulate a

fragmentation strategy, see your IBM Informix: Performance Guide.

Creating a New Fragmented Table

To create a fragmented table, use the FRAGMENT BY clause of the CREATE

TABLE statement. Suppose that you want to create a fragmented table similar

to the orders table of the stores_demo database. You decide on a round-robin

distribution scheme with three fragments and consult with your database

server administrator to set up three dbspaces, one for each of the fragments:

dbspace1, dbspace2, and dbspace3. The following SQL statement creates the

fragmented table:

CREATE TABLE my_orders (

 order_num SERIAL(1001),

 order_date DATE,

 customer_num INT,

 ship_instruct CHAR(40),

 backlog CHAR(1),

 po_num CHAR(10),

 ship_date DATE,

 ship_weight DECIMAL(8,2),

 ship_charge MONEY(6),

 paid_date DATE,

Chapter 5. Table Fragmentation Strategies 5-9

PRIMARY KEY (order_num),

 FOREIGN KEY (customer_num) REFERENCES customer(customer_num))

 FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3

Dynamic Server

If the my_orders table resides in a Dynamic Server database, you might

decide instead to create the table with expression-based fragmentation.

Suppose that your my_orders table has 30,000 rows, and you want to

distribute rows evenly across three fragments stored in dbspace1, dbspace2,

and dbspace3. The following statement shows how you might use the

order_num column to define an expression-based fragmentation strategy:

CREATE TABLE my_orders (order_num SERIAL, ...)

 FRAGMENT BY EXPRESSION

 order_num < 10000 IN dbspace1,

 order_num >= 10000 and order_num < 20000 IN dbspace2,

 order_num >= 20000 IN dbspace3

End of Dynamic Server

Extended Parallel Server

If the my_orders table resides in an Extended Parallel Server database, you

might create the table with a system-defined hash distribution scheme to get

even distribution across fragments. Suppose that the my_orders table has

120,000 rows, and you want to distribute rows evenly across six fragments

stored in different dbspaces. You decide to use the SERIAL column order_num

to define the fragments.

The following example shows how to use the order_num column to define a

system-defined hash fragmentation strategy:

CREATE TABLE my_orders (order_num SERIAL, ...)

 FRAGMENT BY HASH (order_num) IN dbspace1, dbspace2,

 dbspace3, dbspace4, dbspace5, dbspace6;

You might notice a difference between SERIAL column values in a fragmented

table and unfragmented tables. Extended Parallel Server assigns SERIAL

values sequentially within fragments, but fragments might contain values

from noncontiguous ranges. You cannot specify what these ranges are.

Extended Parallel Server controls these ranges and guarantees only that they

do not overlap.

Tip: You can store table fragments in dbspaces or dbslices on Extended

Parallel Server.

End of Extended Parallel Server

5-10 IBM Informix Database Design and Implementation Guide

Creating a Fragmented Table from Nonfragmented Tables

You might need to convert nonfragmented tables into fragmented tables in the

following circumstances:

v You have an application-implemented version of table fragmentation.

You will probably want to convert several small tables into one large

fragmented table. The following section tells you how to proceed when this

is the case. Follow the instructions in the section “Using More Than One

Nonfragmented Table” on page 5-11.

v You have an existing large table that you want to fragment.

Follow the instructions in the section “Using a Single Nonfragmented

Table” on page 5-12.

Remember that before you perform the conversion, you must set up an

appropriate number of dbspaces to contain the newly created fragmented

tables.

Using More Than One Nonfragmented Table

You can combine two or more nonfragmented tables into a single fragmented

table. The nonfragmented tables must have identical table structures and must

be stored in separate dbspaces. To combine nonfragmented tables, use the

ATTACH clause of the ALTER FRAGMENT statement.

For example, suppose that you have three nonfragmented tables, account1,

account2, and account3, and that you store the tables in dbspaces dbspace1,

dbspace2, and dbspace3, respectively. All three tables have identical structures,

and you want to combine the three tables into one table that is fragmented by

the expression on the common column acc_num.

You want rows with acc_num less than or equal to 1120 to be stored in

dbspace1. Rows with acc_num greater than 1120 but less than or equal to 2000

are to be stored in dbspace2. Finally, rows with acc_num greater than 2000 are

to be stored in dbspace3.

To fragment the tables with this fragmentation strategy, execute the following

SQL statement:

ALTER FRAGMENT ON TABLE tab1 ATTACH

 tab1 AS acc_num <= 1120,

 tab2 AS acc_num > 1120 and acc_num <= 2000,

 tab3 AS acc_num > 2000;

The result is a single table, tab1. The other tables, tab2 and tab3, were

consumed and no longer exist.

Chapter 5. Table Fragmentation Strategies 5-11

For information about how to use the ATTACH and DETACH clauses of the

ALTER FRAGMENT statement to improve performance, see your

IBM Informix: Performance Guide.

Using a Single Nonfragmented Table

To create a fragmented table from a nonfragmented table, use the INIT clause

of the ALTER FRAGMENT statement. For example, suppose you want to

convert the table orders to a table fragmented by round-robin. The following

SQL statement performs the conversion:

ALTER FRAGMENT ON TABLE orders INIT

 FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

Any existing indexes on the nonfragmented table become fragmented with the

same fragmentation strategy as the table.

Rowids in a Fragmented Table

The term rowid refers to an integer that defines the physical location of a row.

The rowid of a row in a nonfragmented table is a unique and constant value.

Rows in fragmented tables, in contrast, are not assigned a rowid.

Important: Use primary keys as a method of access in your applications

rather than rowids. Because primary keys are defined in the ANSI

specification of SQL, using primary keys to access data makes

your applications more portable.

Extended Parallel Server

The database server does not support rowids for fragmented tables.

End of Extended Parallel Server

Dynamic Server

To accommodate applications that must reference a rowid for a fragmented

table, Dynamic Server allows you to explicitly create a rowid column for a

fragmented table. However, Dynamic Server does not support the WITH

ROWIDS clause for typed tables.

To create the rowid column, use the following SQL syntax:

v The WITH ROWIDS clause of the CREATE TABLE statement

v The ADD ROWIDS clause of the ALTER TABLE statement

v The INIT clause of the ALTER FRAGMENT statement

When you create the rowid column, the database server takes the following

actions:

5-12 IBM Informix Database Design and Implementation Guide

v Adds the 4-byte unique value to each row in the table

v Creates an internal index that it uses to access the data in the table by

rowid

v Inserts a row in the sysfragments system catalog table for the internal index

End of Dynamic Server

Fragmenting Smart Large Objects (IDS)

You can specify multiple sbspaces in the PUT clause of the CREATE TABLE

statement to achieve round-robin fragmentation of smart large objects on a

column. If you specify multiple sbspaces for a CLOB or BLOB column, the

database server distributes the smart large objects for the column to the

specified sbspaces in round-robin fashion. Given the following CREATE

TABLE statement, the database server can distribute large objects from the

cat_photo column to sbcat1, sbcat2, and sbcat3 in round-robin fashion.

CREATE TABLE catalog (

 catalog_num SERIAL,

 stock_num SMALLINT,

 manu_code CHAR(3),

 cat_descr LVARCHAR,

 cat_photo BLOB)

PUT cat_photo in (sbcat1, sbcat2, sbcat3;

Modifying Fragmentation Strategies

You can make two general types of modifications to a fragmented table. The

first type consists of the modifications that you can make to a nonfragmented

table. Such modifications include adding a column, dropping a column,

changing a column data type, and so on. For these modifications, use the

ALTER TABLE statements that you would normally use on a nonfragmented

table. The second type of modification consists of changes to a fragmentation

strategy. This section explains how to use SQL statements to modify

fragmentation strategies.

At times, you might need to alter a fragmentation strategy after you

implement fragmentation. Most frequently, you will need to modify your

fragmentation strategy when you use fragmentation with intraquery or

interquery parallelization. Modifying your fragmentation strategy in these

circumstances is one of several ways you can improve the performance of

your database server system.

Reinitializing a Fragmentation Strategy

You can use the ALTER FRAGMENT statement with an INIT clause to define

and initialize a new fragmentation strategy on a nonfragmented table or

convert an existing fragmentation strategy on a fragmented table. You can also

use the INIT clause to change the order of evaluation of fragment expressions.

Chapter 5. Table Fragmentation Strategies 5-13

The following example shows how you might use the INIT clause to

reinitialize a fragmentation strategy completely.

Suppose that you initially create the following fragmented table:

CREATE TABLE account (acc_num INTEGER, ...)

 FRAGMENT BY EXPRESSION

 acc_num <= 1120 in dbspace1,

 acc_num > 1120 and acc_num < 2000 in dbspace2,

 REMAINDER IN dbspace3;

Suppose that after several months of operation with this distribution scheme,

you find that the number of rows in the fragment contained in dbspace2 is

twice the number of rows that the other two fragments contain. This

imbalance causes the disk that contains dbspace2 to become an I/O

bottleneck.

To remedy this situation, you decide to modify the distribution so that the

number of rows in each fragment is approximately even. You want to modify

the distribution scheme so that it contains four fragments instead of three

fragments. A new dbspace, dbspace2a, is to contain the new fragment that

stores the first half of the rows that previously were contained in dbspace2.

The fragment in dbspace2 contains the second half of the rows that it

previously stored.

To implement the new distribution scheme, first create the dbspace dbspace2a

and then execute the following statement:

ALTER FRAGMENT ON TABLE account INIT

 FRAGMENT BY EXPRESSION

 acc_num <= 1120 in dbspace1,

 acc_num > 1120 and acc_num <= 1500 in dbspace2a,

 acc_num > 1500 and acc_num < 2000 in dbspace2,

 REMAINDER IN dbspace3;

As soon as you execute this statement, the database server discards the old

fragmentation strategy, and the rows that the table contains are redistributed

according to the new fragmentation strategy.

You can also use the INIT clause of ALTER FRAGMENT to perform the

following actions:

v Convert a single nonfragmented table into a fragmented table

v Convert a fragmented table into a nonfragmented table

v Convert a table fragmented by any strategy to any other fragmentation

strategy

For more information, see the ALTER FRAGMENT statement in the

IBM Informix: Guide to SQL Syntax.

5-14 IBM Informix Database Design and Implementation Guide

Modifying Fragmentation Strategies for Dynamic Server

Dynamic Server allows you to use the ADD, DROP, and MODIFY clauses to

change the fragmentation strategy on a table or index. For syntax information

about these options, see the ALTER FRAGMENT statement in the

IBM Informix: Guide to SQL Syntax.

Using the ADD Clause

When you define a fragmentation strategy, you might need to add one or

more fragments. You can use the ADD clause of the ALTER FRAGMENT

statement to add a new fragment to a table. Suppose that you want to add a

fragment to a table that you create with the following statement:

CREATE TABLE sales (acc_num INT, ...)

 FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

To add a new fragment dbspace4 to the table sales, execute the following

statement:

ALTER FRAGMENT ON TABLE sales ADD dbspace4;

If the fragmentation strategy is expression based, the ADD clause of ALTER

FRAGMENT contains options to add a dbspace before or after an existing

dbspace.

Using the DROP Clause

When you define a fragmentation strategy, you might need to drop one or

more fragments. With Dynamic Server, you can use the DROP clause of the

ALTER FRAGMENT ON TABLE statement to drop a fragment from a table.

Suppose you want to drop a fragment from a table that you create with the

following statement:

CREATE TABLE sales (col_a INT), ...)

 FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

The following ALTER FRAGMENT statement uses a DROP clause to drop the

third fragment dbspace3 from the sales table:

ALTER FRAGMENT ON TABLE sales DROP dbspace3;

When you issue this statement, all the rows in dbspace3 are moved to the

remaining dbspaces, dbspace1 and dbspace2.

Using the MODIFY Clause

Use the ALTER FRAGMENT statement with the MODIFY clause to modify

one or more of the expressions in an existing fragmentation strategy.

Suppose that you initially create the following fragmented table:

Chapter 5. Table Fragmentation Strategies 5-15

CREATE TABLE account (acc_num INT, ...)

 FRAGMENT BY EXPRESSION

 acc_num <= 1120 IN dbspace1,

 acc_num > 1120 AND acc_num < 2000 IN dbspace2,

 REMAINDER IN dbspace3;

When you execute the following ALTER FRAGMENT statement, you ensure

that no account numbers with a value less than or equal to zero are stored in

the fragment that dbspace1 contains:

ALTER FRAGMENT ON TABLE account

 MODIFY dbspace1 TO acc_num > 0 AND acc_num <=1120;

You cannot use the MODIFY clause to alter the number of fragments that

your distribution scheme contains. Use the INIT or ADD clause of ALTER

FRAGMENT instead.

Modifying Fragmentation Strategies for XPS

Extended Parallel Server supports the following options for the ALTER

FRAGMENT ON TABLE statement:

v ATTACH clause

v DETACH clause

v INIT clause

Tables that use HASH fragmentation support only the INIT option.

Extended Parallel Server does not support the DROP or MODIFY options, the

ALTER FRAGMENT ON INDEX statement or explicit rowids columns. To

handle drop or modify operations, you can use the supported options in place

of DROP and MODIFY.

Using the INIT Clause

If changes to a fragmentation strategy require data movement, you can specify

the INIT clause with an ALTER FRAGMENT ON TABLE statement. When

you use the INIT clause, the database server creates a copy of the table with

the new fragmentation scheme and inserts rows from the original table into

the new table.

Suppose you create the following prod_info table that distributes fragments

by hash on the id column because your queries typically use an equality

search on the id column:

CREATE TABLE prod_info

 (id INT,

 color INT,

 details CHAR(100))

FRAGMENT BY HASH(id) IN dbsl;

5-16 IBM Informix Database Design and Implementation Guide

Suppose at some point you recognize a need to perform other important

queries that specify color column values but not id values. To handle this type

of scenario, you might modify the data layout of the prod_info table to allow

for better fragment elimination. The following ALTER FRAGMENT statement

shows how you might use an INIT clause to change from a hash to a hybrid

distribution scheme:

ALTER FRAGMENT ON TABLE prod_info INIT

 FRAGMENT BY HYBRID(id)

 EXPRESSION color = 1 IN dbsl, color = 2 IN dbsl2, ...

 REMAINDER IN dbsl8;

Using ATTACH and DETACH Clauses

If you need to move data, you can use an ALTER FRAGMENT statement with

the INIT clause. Otherwise, you can use ALTER FRAGMENT with the

following options to modify the expression of an existing fragment:

v Use the DETACH clause to remove the fragment whose expression you

want to modify.

v Use the ATTACH clause to reattach the fragment with the new expression.

Suppose that you initially create the following fragmented table:

CREATE TABLE account (acc_num INT, ...)

 FRAGMENT BY EXPRESSION

 acc_num <= 1120 IN dbspace1,

 acc_num > 1120 AND acc_num < 2000 IN dbspace2,

 REMAINDER IN dbspace3;

The following statements modify the fragment that dbspace1 contains to

ensure that no account numbers with a value less than or equal to zero are

stored in the fragment:

ALTER FRAGMENT ON TABLE account DETACH dbspace1 det_tab;

CREATE TABLE new_tab (acc_num INT, ...)

 FRAGMENT BY EXPRESSION

 acc_num > 0 AND acc_num <=1120 IN dbspace1;

ALTER FRAGMENT ON TABLE account ATTACH account, new_tab;

INSERT INTO account SELECT * FROM det_tab;

DROP TABLE det_tab;

Important: You cannot use the ALTER TABLE statement with an ATTACH

clause or DETACH clause when the table has hash fragmentation.

However, you can use the ALTER TABLE statement with an INIT

clause on tables with hash fragmentation.

Using the ATTACH Clause to Add a Fragment: You can use the ATTACH

clause of the ALTER FRAGMENT ON TABLE statement to add a fragment

from a table. Suppose that you want to add a fragment to a table that you

create with the following statement:

Chapter 5. Table Fragmentation Strategies 5-17

CREATE TABLE sales (acc_num INT, ...)

 FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3

To add a new fragment dbspace4 to the sales table, you first create a new

table with a structure identical to sales that specifies the new fragment. You

then use an ATTACH clause with the ALTER FRAGMENT statement to add

the new fragment to the table. The following statements add a new fragment

to the sales table:

CREATE TABLE new_tab (acc_num INT, ...) IN dbspace4;

ALTER FRAGMENT ON TABLE sales ATTACH sales, new_tab;

After you execute the ATTACH clause, the database server fragments the

sales table into four dbspaces: the three dbspaces of sales and the dbspace of

new_tab. The new_tab table is consumed.

Using the DETACH Clause to Drop a Fragment: You can use the DETACH

clause of the ALTER FRAGMENT ON TABLE statement to drop a fragment

from a table. Suppose that you want to drop a fragment from a table that you

create with the following statement:

CREATE TABLE sales (acc_num INT)...)

 FRAGMENT BY EXPRESSION

 acc_num <= 1120 IN dbspace1,

 acc_num > 1120 AND acc_num <= 2000 IN dbspace2,

 acc_num > 2000 AND acc_num < 3000 IN dbspace3,

 REMAINDER IN dbspace4;

To drop the third fragment dbspace3 from the sales table without losing any

data, execute the following statements:

ALTER FRAGMENT ON TABLE sales DETACH dbspace3 det_tab;

INSERT INTO sales SELECT * FROM det_tab;

DROP TABLE det_tab;

The ALTER FRAGMENT statement detaches dbspace3 from the distribution

scheme of the sales table and places the rows in a new table det_tab. The

INSERT statement reinserts rows previously in dbspace3 into the new sales

table, which now has three fragments: dbspace1, dbspace2, and dbspace4.

The DROP TABLE statement drops the det_tab table because it is no longer

needed.

Granting and Revoking Privileges on Fragments (IDS)

You need a strategy to control data distribution if you want to grant useful

fragment privileges. One effective strategy is to fragment data records by

expression. The round-robin data-record distribution strategy, on the other

hand, is not a useful strategy because each new data record is added to the

next fragment. A round-robin distribution NULLifies any clean method of

tracking data distribution and therefore eliminates any real use of fragment

5-18 IBM Informix Database Design and Implementation Guide

authority. Because of this difference between expression-based distribution

and round-robin distribution, the GRANT FRAGMENT and REVOKE

FRAGMENT statements apply only to tables that have expression-based

fragmentation.

When you create a fragmented table, no default fragment authority exists. Use

the GRANT FRAGMENT statement to grant insert, update, or delete authority

on one or more of the fragments. If you want to grant all three privileges at

once, use the ALL keyword of the GRANT FRAGMENT statement. However,

you cannot grant fragment privileges by merely naming the table that

contains the fragments. You must name the specific fragments.

When you want to revoke insert, update, or delete privileges, use the

REVOKE FRAGMENT statement. This statement revokes privileges from one

or more users on one or more fragments of a fragmented table. If you want to

revoke all privileges that currently exist for a table, you can use the ALL

keyword. If you do not specify any fragments in the command, the

permissions being revoked apply to all fragments in the table that currently

have permissions.

For more information, see the GRANT FRAGMENT, REVOKE FRAGMENT,

and SET statements in the IBM Informix: Guide to SQL Syntax.

Chapter 5. Table Fragmentation Strategies 5-19

5-20 IBM Informix Database Design and Implementation Guide

Chapter 6. Granting and Limiting Access to Your Database

Using SQL to Restrict Access to Data . 6-2

Controlling Access to Databases . 6-2

Granting Privileges . 6-3

Database-Level Privileges . 6-4

Connect Privilege . 6-4

Resource Privilege . 6-5

Database-Administrator Privilege . 6-5

Ownership Rights . 6-5

Table-Level Privileges . 6-6

Access Privileges . 6-6

Index, Alter, and References Privileges . 6-7

Under Privileges for Typed Tables (IDS) 6-8

Privileges on Table Fragments (IDS) . 6-8

Column-Level Privileges . 6-9

Type-Level Privileges . 6-10

Usage Privileges for User-Defined Types 6-10

Under Privileges for Named Row Types 6-11

Routine-Level Privileges . 6-11

Language-Level Privileges . 6-12

SPL Routines . 6-12

External Routines . 6-12

Automating Privileges . 6-13

Automating with a Command Script . 6-13

Using Roles . 6-14

Determining Current Role at Runtime . 6-16

Using SPL Routines to Control Access to Data 6-16

Restricting Data Reads . 6-17

Restricting Changes to Data . 6-18

Monitoring Changes to Data . 6-18

Restricting Object Creation . 6-19

Using Views . 6-20

Creating Views . 6-21

Typed Views (IDS) . 6-22

Duplicate Rows from Views . 6-23

Restrictions on Views . 6-23

When the Basis Changes . 6-23

Modifying with a View . 6-24

Deleting with a View . 6-25

Updating a View . 6-25

Inserting into a View . 6-25

Using the WITH CHECK OPTION Keywords 6-26

Re-Execution of a Prepared Statement When the View Definition Changes 6-27

Privileges and Views . 6-27

Privileges When Creating a View . 6-27

© Copyright IBM Corp. 1996, 2004 6-1

Privileges When Using a View . 6-28

In This Chapter

This chapter describes how you can control access to your database. In some

databases, all data is accessible to every user. In others, some users are denied

access to some or all the data.

Using SQL to Restrict Access to Data

You can restrict access to data at the following levels:

v You can use the GRANT and REVOKE statements to give or deny access to

the database or to specific tables, and you can control the kinds of uses that

people can make of the database.

v You can use the CREATE PROCEDURE or CREATE FUNCTION statement

to write and compile a user-defined routine, which controls and monitors

the users who can read, modify, or create database tables.

v You can use the CREATE VIEW statement to prepare a restricted or

modified view of the data. The restriction can be vertical, which excludes

certain columns, or horizontal, which excludes certain rows, or both.

v You can combine GRANT and CREATE VIEW statements to achieve precise

control over the parts of a table that a user can modify and with what data.

v With Dynamic Server, you can use the SET ENCRYPTION PASSWORD

statement and built-in encryption and decryption functions of SQL to

implement column-level encryption of sensitive data. Unauthorized users

who succed in viewing an encrypted character, BLOB, or CLOB column

value cannot recover the plain text of your data without the DES or

triple-DES encryption key, which is not stored in the database.

Controlling Access to Databases

The normal database-privilege mechanisms are based on the GRANT and

REVOKE statements, which “Granting Privileges” on page 6-3 discusses. You

can sometimes use the facilities of the operating system, however, as an

additional way to control access to a database.

No matter what access controls the operating system gives you, when the

contents of an entire database are highly sensitive, you might not want to

leave it on a public disk that is fixed to the computer. You can circumvent

normal software controls when the data must be secure.

When you or another authorized person is not using the database, it does not

have to be available online. You can make it inaccessible in one of the

following ways, which have varying degrees of inconvenience:

6-2 IBM Informix Database Design and Implementation Guide

v Detach the physical medium from the computer and take it away. If the

disk itself is not removable, the disk drive might be removable.

v Copy the database directory to tape and take possession of the tape.

v Use an encryption utility to copy the database files. Keep only the

encrypted version.

Important: In the latter two cases, after making the copies, you must

remember to erase the original database files with a program that

overwrites an erased file with NULL data.

Instead of removing the entire database directory, you can copy and then

erase the files that represent individual tables. Do not overlook the fact that

index files contain copies of the data from the indexed column or columns.

Remove and erase the index files as well as the table files.

Granting Privileges

The authorization to use a database is called an access privilege. For example,

the authorization to use a database is called the Connect privilege;

authorization to insert a row into a table is called the Insert privilege. Use the

GRANT statement to grant privileges on a database, table, view, or procedure,

or to grant a role to a user or another role. Use the REVOKE statement to

revoke privileges on a database or database object, or to revoke a role from a

user or from another role.

A role is a classification of access privileges that the DBA assigns, such as

payroll. After a role is created with the CREATE ROLE statement, the DBA

can use the GRANT statement to assign access privileges to the role, and to

assign the role to individual users (or to other roles), so that users with

similar work tasks can hold the set of access privileges that their work tasks

require. By assigning privileges to roles and roles to users, you can simplify

the management of privileges. See also “External Routines” on page 6-12 and

“Using Roles” on page 6-14 for additional information about the role of roles

in managing access privileges.

The following groups of privileges control the actions a user can perform on

data and on database objects:

v Database-level privileges

v Ownership privileges

v Table-level privileges

v Column-level privileges

Dynamic Server

Chapter 6. Granting and Limiting Access to Your Database 6-3

v Type-level privileges

v Routine-level privileges

v Language-level privileges

End of Dynamic Server

v Automating privileges

For the syntax of the GRANT and REVOKE statements, see the IBM Informix:

Guide to SQL Syntax.

Database-Level Privileges

The three levels of database privileges provide an overall means of controlling

who accesses a database. Only individual users, not roles, can hold

database-level privileges

Connect Privilege

The least of the privilege levels is Connect, which gives a user the basic ability

to query and modify tables. Users with the Connect privilege can perform the

following functions:

v Execute the SELECT, INSERT, UPDATE, and DELETE statements, provided

that they have the necessary table-level privileges.

v Execute an SPL routine, provided that they have the necessary table-level

privileges.

v Create views, provided that they are permitted to query the tables on which

the views are based.

v Create temporary tables and create indexes on the temporary tables.

Before users can access a database, they must have the Connect privilege.

Ordinarily, in a database that does not contain highly sensitive or private data,

you give the GRANT CONNECT TO PUBLIC privilege shortly after you

create the database.

If you do not grant the Connect privilege to PUBLIC, the only users who can

access the database through the database server are those to whom you

specifically grant the Connect privilege. If limited users should have access,

this privilege lets you provide it to them and deny it to all others.

Users and the Public: Privileges are granted to single users by name or to all

users under the name of PUBLIC. Any privileges granted to PUBLIC serve as

default privileges.

Prior to executing a statement, the database server determines whether a user

has the necessary privileges. The information is in the system catalog. For

more information, see “Privileges in the System Catalog Tables” on page 6-7.

6-4 IBM Informix Database Design and Implementation Guide

The database server looks first for privileges that are granted specifically to

the requesting user. If it finds such a grant, it uses that information. It then

checks to see if less restrictive privileges were granted to PUBLIC. If they

were, the database server uses the less restrictive privileges. If no grant has

been made to that user, the database server looks for privileges granted to

PUBLIC. If it finds a relevant privilege, it uses that one.

Thus, to set a minimum level of privilege for all users, grant privileges to

PUBLIC. You can override that, in specific cases, by granting higher

individual privileges to users.

Resource Privilege

The Resource privilege carries the same authorization as the Connect

privilege. In addition, users with the Resource privilege can create new,

permanent tables, indexes, and SPL routines, thus permanently allocating disk

space.

Database-Administrator Privilege

The highest level of database privilege is database administrator, or DBA.

When you create a database, you are automatically the DBA. Holders of the

DBA privilege can perform the following functions:

v Execute the DROP DATABASE, START DATABASE, and ROLLFORWARD

DATABASE statements.

v Drop or alter any object regardless of who owns it.

v Create tables, views, and indexes to be owned by other users.

v Grant database privileges, including the DBA privilege, to another user.

In releases of Dynamic Server earlier than Version 10.0, the DBA could execute

DML and DDL statements that directly modified rows in tables of the system

catalog. In this release, however, only user informix can modify system

catalog tables directly. But if you are user informix, IBM strongly recommends

that you refrain from modifying the contents or schema of any system catalog

table, because such actions can destroy the integrity of the database.

Ownership Rights

The database, and every table, view, index, procedure, and synonym in it, has

an owner. The owner of an object is usually the person who created it,

although a user with the DBA privilege can create objects to be owned by

others.

The owner of a database object has all rights to that object and can alter or

drop it without additional privileges.

For Generalized Key (GK) indexes of Extended Parallel Server,, ownership

rights are handled somewhat differently than they are for other objects. Any

Chapter 6. Granting and Limiting Access to Your Database 6-5

table that appears in the FROM clause of a GK index cannot be dropped until

that GK index is dropped, even when someone other than the creator of the

table creates the GK index. For more information, refer to “Using GK Indexes

in a Data-Warehousing Environment” on page 12-13.

Table-Level Privileges

You can apply seven privileges, table by table, to allow nonowners the

privileges of owners. Four of them, the Select, Insert, Delete, and Update

privileges, control DML access to data in the table. The Index privilege

controls index creation. The Alter privilege gives authorization to change the

table definition. The References privilege gives authorization to specify

referential constraints on a table.

In an ANSI-compliant database, only the table owner has any privileges. In

other databases, the database server, as part of creating a table, automatically

grants to PUBLIC all table privileges except Alter and References, unless the

NODEFDAC environment variable has been set to ’yes’ to withhold all table

privileges from PUBLIC. When you allow the database server to automatically

grant all table privileges to PUBLIC, a newly created table is accessible to any

user with the Connect privilege. If this is not what you want (if users exist

with the Connect privilege who should not be able to access this table), you

must revoke all privileges on the table from PUBLIC after you create the table.

Access Privileges

Four privileges govern how users can access a table. As the owner of the

table, you can grant or withhold the following privileges independently:

v Select allows selection, including selecting into temporary tables.

v Insert allows a user to add new rows.

v Update allows a user to modify existing rows.

v Delete allows a user to delete rows.

The Select privilege is necessary for a user to retrieve the contents of a table.

However, the Select privilege is not a precondition for the other privileges. A

user can have Insert or Update privileges without having the Select privilege.

For example, your application might have a usage table. Every time a certain

program is started, it inserts a row into the usage table to document that it

was used. Before the program terminates, it updates that row to show how

long it ran and perhaps to record counts of work its user performs.

If you want any user of the program to be able to insert and update rows in

this usage table, grant Insert and Update privileges on it to PUBLIC.

However, you might grant the Select privilege to only a few users.

6-6 IBM Informix Database Design and Implementation Guide

Privileges in the System Catalog Tables: Privileges are recorded in the

system catalog tables. Any user with the Connect privilege can query the

system catalog tables to determine what privileges are granted and to whom.

Database privileges are recorded in the sysusers system catalog table, in

which the primary key is user ID, and the only other column contains a single

character C, R, or D for the privilege level. A grant to the keyword of PUBLIC

is reflected as a user name of PUBLIC (lowercase).

Table-level privileges are recorded in systabauth, which uses a composite

primary key of the table number, grantor, and grantee. In the tabauth column,

the privileges are encoded in the list as follows.

Code Meaning

s unconditional select

u update

- ungranted privileges

i insert

d delete

x index

a alter

r references

A hyphen means an ungranted privilege, so that a grant of all privileges is

shown as su-idxar, and -u------ shows a grant of only Update. The code

letters are normally lowercase, but they are uppercase when the keywords

WITH GRANT OPTION are used in the GRANT statement.

When an asterisk (*) appears in the third position, some column-level

privilege exists for that table and grantee. The specific privilege is recorded in

syscolauth. Its primary key is a composite of the table number, the grantor,

the grantee, and the column number. The only attribute is a three-letter list

that shows the type of privilege: s, u, or r.

Index, Alter, and References Privileges

The Index privilege permits its holder to create and alter indexes on the table.

The Index privilege, similar to the Select, Insert, Update, and Delete

privileges, is granted automatically to PUBLIC when you create a table.

You can grant the Index privilege to anyone, but to exercise the privilege, the

user must also hold the Resource database privilege. So, although the Index

privilege is granted automatically (except in ANSI-compliant databases), users

who have only the Connect privilege to the database cannot exercise their

Index privilege. Such a limitation is reasonable because an index can fill a

large amount of disk space.

Chapter 6. Granting and Limiting Access to Your Database 6-7

The Alter privilege permits its holder to use the ALTER TABLE statement on

the table, including the power to add and drop columns, reset the starting

point for SERIAL columns, and so on. You should grant the Alter privilege

only to users who understand the data model well and whom you trust to

exercise their power carefully.

The References privilege allows you to impose referential constraints on a

table. As with the Alter privilege, you should grant the References privilege

only to users who understand the data model well.

Under Privileges for Typed Tables (IDS)

You can grant or revoke the Under privilege to control whether users can use

a typed table as a supertable in an inheritance hierarchy. The Under privilege

is granted to PUBLIC automatically when a table is created (except in

ANSI-compliant databases). In an ANSI-compliant database, the Under

privilege on a table is granted to the owner of the table. To restrict which

users can define a table as a supertable in an inheritance hierarchy, you must

first revoke the Under privilege for PUBLIC and then specify the users to

whom you want to grant the Under privilege. For example, to specify that

only a limited group of users can use the employee table as a supertable in an

inheritance hierarchy, you might execute the following statements:

REVOKE UNDER ON employee

 FROM PUBLIC;

GRANT UNDER ON employee

 TO johns, cmiles, paulz

For information about how to use the UNDER clause to create tables in an

inheritance hierarchy, see “Table Inheritance” on page 9-7.

Privileges on Table Fragments (IDS)

Use the GRANT FRAGMENT statement to grant insert, update, and delete

privileges on individual fragments of a fragmented table. The GRANT

FRAGMENT statement is valid only for tables that are fragmented with

expression-based distribution schemes.

Suppose you create a customer table that is fragmented by expression into

three fragments, which reside in the dbspaces dbsp1, dbsp2, and dbsp3. The

following statement shows how to grant insert privileges on the first two

fragments only (dbsp1 and dbsp2) to users jones, reed, and mathews.

GRANT FRAGMENT INSERT ON customer (dbsp1, dbsp2)

 TO jones, reed, mathews

To grant privileges on all fragments of a table, use the GRANT statement or

the GRANT FRAGMENT statement.

6-8 IBM Informix Database Design and Implementation Guide

For information on the GRANT FRAGMENT and REVOKE FRAGMENT

statements, see the IBM Informix: Guide to SQL Syntax.

Column-Level Privileges

You can qualify the Select, Update, and References privileges with the names

of specific columns. Naming specific columns allows you to grant specific

access to a table. You can permit a user to see only certain columns, to update

only certain columns, or to impose referential constraints on certain columns.

You can use the GRANT and REVOKE statements to grant or restrict access to

table data. This feature solves the problem that only certain users should

know the salary, performance review, or other sensitive attributes of an

employee. Suppose a table of employee data is defined as the following

example shows:

CREATE TABLE hr_data

 (

 emp_key INTEGER,

 emp_name CHAR(40),

 hire_date DATE,

 dept_num SMALLINT,

 user-id CHAR(18),

 salary DECIMAL(8,2)

 performance_level CHAR(1),

 performance_notes TEXT

)

Because this table contains sensitive data, you execute the following statement

immediately after you create it:

REVOKE ALL ON hr_data FROM PUBLIC

For selected persons in the Human Resources department, and for all

managers, execute the following statement:

GRANT SELECT ON hr_data TO harold_r

In this way, you permit certain users to view all columns. (The final section of

this chapter discusses a way to limit the view of managers to their employees

only.) For the first-line managers who carry out performance reviews, you

could execute a statement such as the following one:

GRANT UPDATE (performance_level, performance_notes)

 ON hr_data TO wallace_s, margot_t

This statement permits the managers to enter their evaluations of their

employees. You would execute a statement such as the following one only for

the manager of the Human Resources department or whomever is trusted to

alter salary levels:

GRANT UPDATE (salary) ON hr_data to willard_b

Chapter 6. Granting and Limiting Access to Your Database 6-9

For the clerks in the Human Resources department, you could execute a

statement such as the following one:

GRANT UPDATE (emp_key, emp_name, hire_date, dept_num)

 ON hr_data TO marvin_t

This statement gives certain users the ability to maintain the nonsensitive

columns but denies them authorization to change performance ratings or

salaries. The person in the MIS department who assigns computer user IDs is

the beneficiary of a statement such as the following one:

GRANT UPDATE (user_id) ON hr_data TO eudora_b

On behalf of all users who are allowed to connect to the database, but who

are not authorized to see salaries or performance reviews, execute statements

such as the following one to permit them to see the nonsensitive data:

GRANT SELECT (emp_key, emp_name, hire_date, dept_num, user-id)

 ON hr_data TO george_b, john_s

These users can perform queries such as the following one:

SELECT COUNT(*) FROM hr_data WHERE dept_num IN (32,33,34)

However, any attempt to execute a query such as the following one produces

an error message and no data:

SELECT performance_level FROM hr_data

 WHERE emp_name LIKE ’*Smythe’

Type-Level Privileges

Dynamic Server supports user-defined data types (UDTs). When a

user-defined data type is created, only the DBA or owner of the data type can

grant or revoke type-level privileges that control who can use the UDT.

Dynamic Server supports the following type-level privileges:

v Usage privilege, which is authorization to use a user-defined data type

v Under privilege, which is the authorization to define a named ROW type as

a supertype within an inheritance hierarchy

Usage Privileges for User-Defined Types

To control who can use an opaque type, distinct type, or named row type,

specify the Usage privilege on the data type. The Usage privilege allows the

DBA or owner of the type to restrict a user’s ability to assign a data type to a

column, program variable (or table or view for a named row type), or assign a

cast to the data type. The Usage privilege is granted to PUBLIC automatically

when a data type is created (except in ANSI-compliant databases). In an

ANSI-compliant database, the Usage privilege on a data type is granted to the

owner of the data type.

6-10 IBM Informix Database Design and Implementation Guide

To limit who can use an opaque, distinct, or named row type, you must first

revoke the Usage privilege for PUBLIC and then specify the names of the

users to whom you want to grant the Usage privilege. For example, to limit

the use of a data type named circle to a group of users, you might execute the

following statements:

REVOKE USAGE ON circle

 FROM PUBLIC;

GRANT USAGE ON circle

 TO dawns, stevep, terryk, camber;

Under Privileges for Named Row Types

For named row types, you can grant or revoke the Under privilege, which

controls whether users can assign a named row type as the supertype of

another named row type in an inheritance hierarchy. The Under privilege is

granted to PUBLIC automatically when a named row type is created (except

in ANSI-compliant databases). In an ANSI-compliant database, the Under

privilege on a named row type is granted to the owner of the type.

To restrict certain users’ ability to define a named row type as a supertype in

an inheritance hierarchy, you must first revoke the Under privilege for

PUBLIC and then specify the names of the users to whom you want to grant

the Under privilege. For example, to specify that only a limited group of users

can use the named row type person_t as a supertype in an inheritance

hierarchy, you might execute the following statements:

REVOKE UNDER ON person_t

 FROM PUBLIC;

GRANT UNDER ON person_t

 TO howie, jhana, alison

For information about how to use the UNDER clause to create named row

types in an inheritance hierarchy, see “Type Inheritance” on page 9-2.

Routine-Level Privileges

You can apply the Execute privilege on a user-defined routine (UDR) to

authorize nonowners to execute the UDR. If you create a UDR in a database

that is not ANSI compliant, the default routine-level privilege is PUBLIC; you

do not need to grant the Execute privilege to specific users unless you have

first revoked it. If you create a routine in an ANSI-compliant database, no

other users have the Execute privilege by default; you must grant specific

users the Execute privilege. The following example grants the Execute

privilege to the user orion so that orion can use the UDR that is named

read_address:

GRANT EXECUTE ON read_address TO orion;

Chapter 6. Granting and Limiting Access to Your Database 6-11

The sysprocauth system catalog table records routine-level privileges. The

sysprocauth system catalog table uses a primary key of the routine number,

grantor, and grantee. In the procauth column, the execute privilege is

indicated by a lowercase e. If the execute privilege was granted with the

WITH GRANT option, the privilege is represented by an uppercase E.

For more information on routine-level privileges, see the IBM Informix: Guide

to SQL Tutorial.

Language-Level Privileges

Dynamic Server supports UDRs written in the built-in Stored Procedure

Language (SPL) and also UDRs (referred to as external routines) that are

written the C and Java languages. To create any UDR, a user must have

RESOURCE privileges in the database. In addition, to create a UDR in the SPL

language, a user must also hold the Usage privilege on the SPL language.

SPL Routines

By default, language usage privilege on SPL is are granted to user informix

and to users who hold the DBA privilege. Only user informix, however, can

grant language usage privileges to other users. Users with the DBA privilege

hold language usage privileges, but cannot grant these privileges to other

users. Usage privilege to create SPL routines is granted to PUBLIC by default.

The following statement shows how user informix might revoke from

PUBLIC but grant to users mays, jones, and freeman permission to create

UDRs in SPL:

REVOKE USAGE ON LANGUAGE SPL FROM PUBLIC

GRANT USAGE ON LANGUAGE SPL TO mays, jones, freeman

Suppose the default Usage privileges on an SPL routine have been revoked

from PUBLIC. The following statement shows how a user with the DBA

privilege might grant Usage privilege to register SPL routines to users

franklin, reeves, and wilson:

GRANT USAGE ON LANGUAGE SPL TO franklin, reeves, wilson

External Routines

This release of Dynamic Server does not support language-level privileges on

external routines that are written in the C or Java language. When the

IFX_EXTEND_ROLE configuration parameter to ON, however, equivalent

functionality is provided through the built-in EXTEND role, which is required

for any user to registe, drop, or replace a UDR or a DataBlade module that is

written in the C or Java language.

Only the Database Server Administrator (DBSA), by default user informix,

can grant the EXTEND role. Unlike other roles, it is not necessary to activate

the EXTEND role with the SET ROLE statement, nor to assign privileges to

6-12 IBM Informix Database Design and Implementation Guide

the EXTEND role with the GRANT statement. When this feature is enabled,

however, only users who hold this role can create or drop an external UDR or

a DataBlade module.

The DBSA also has the option of disabling this restriction by setting the

IFX_EXTEND_ROLE configuration parameter to OFF, or to leave it unset. In

this case, any user who holds the RESOURCE privilege on the database can

create a UDR written in the C or Java language.

Automating Privileges

This design might seem to force you to execute a tedious number of GRANT

statements when you first set up the database. Furthermore, privileges require

constant maintenance, as people change jobs. For example, if a clerk in

Human Resources is terminated, you want to revoke the Update privilege as

soon as possible, otherwise the unhappy employee might execute a statement

such as the following one:

UPDATE hr_data

 SET (emp_name, hire_date, dept_num) = (NULL, NULL, 0)

Less dramatic, but equally necessary, privilege changes are required daily, or

even hourly, in any model that contains sensitive data. If you anticipate this

need, you can prepare some automated tools to help maintain privileges.

Your first step should be to specify privilege classes that are based on the jobs

of the users, not on the structure of the tables. For example, a first-line

manager needs the following privileges:

v The Select and limited Update privileges on the hypothetical hr_data table

v The Connect privilege to this and other databases

v Some degree of privilege on several tables in those databases

When a manager is promoted to a staff position or sent to a field office, you

must revoke all those privileges and grant a new set of privileges.

Define the privilege classes you support, and for each class specify the

databases, tables, and columns to which you must give access. Then devise

two automated routines for each class, one to grant the class to a user and one

to revoke it.

Automating with a Command Script

Your operating system probably supports automatic execution of command

scripts. In most operating environments, interactive SQL tools such as

DB–Access accept commands and SQL statements to execute from the

command line. You can combine these two features to automate privilege

maintenance.

Chapter 6. Granting and Limiting Access to Your Database 6-13

The details depend on your operating system and the version of the

interactive SQL tool that you are using. You must create a command script

that performs the following functions:

v Takes a user ID whose privileges are to be changed as its parameter

v Prepares a file of GRANT or REVOKE statements customized to contain

that user ID

v Invokes the interactive SQL tool (such as DB–Access) with parameters that

tell it to select the database and execute the prepared file of GRANT or

REVOKE statements

In this way, you can reduce the change of the privilege class of a user to one

or two commands.

Using Roles

Another way to avoid the difficulty of changing user privileges on a

case-by-case basis is to use roles. The concept of a role in the database

environment is similar to the group concept in an operating system. A role is

a database feature that lets the DBA standardize and change the privileges of

many users by treating them as members of a class.

For example, you can create a role called news_mes that grants connect, insert,

and delete privileges for the databases that handle company news and

messages. When a new employee arrives, you need only add that person to

the role news_mes. The new employee acquires the privileges of the role

news_mes. This process also works in reverse. To change the privileges of all

the members of news_mes, change the privileges of the role.

Creating a Role: To start the role creation process, determine the name of the

role and the connections and privileges that you want to grant to users who

hold that role. Although the connections and privileges are strictly in your

domain, you need to consider some factors when you declare the name of a

new role. Do not use any of the following SQL keywords as role names:

 alter delete insert references

connect execute none resource

DBA extend null select

default index public update

A role name must be different from existing role names in the database. A role

name must also be different from user names that are known to the operating

system, including network users known to the server computer. To make sure

your role name is unique, check the names of the users in the shared memory

structure who are currently using the database as well as the following system

catalog tables:

6-14 IBM Informix Database Design and Implementation Guide

v sysusers

v systabauth

v syscolauth

v sysfragauth

v sysprocauth

v sysfragauth

v sysroleauth

v sysxtdtypeauth

When the situation is reversed and you are adding a user to the database,

check that the user name is not the same as any of the existing role names.

After you approve the role name, use the CREATE ROLE statement to create a

new role. After the role is created, all privileges for role administration are, by

default, given to the DBA.

Important: The scope of a role is the current database only, so when you

execute a SET ROLE statement, the role is set in the current

database only.

Manipulating User Privileges and Granting Roles to Other Roles: As DBA,

you can use the GRANT statement to grant role privileges to users. You can

also give a user the option to grant privileges to other users. Use the WITH

GRANT OPTION clause of the GRANT statement to do this. You can also use

the WITH GRANT OPTION clause when granting privileges to roles as in this

example:

GRANT rol1 TO usr1 WITH GRANT OPTION;

When you grant role privileges, you can substitute a role name for the user

name in the GRANT statement. You can grant a role to another role. For

example, say that role A is granted to role B. When a user enables role B, the

user gets privileges from both role A and role B.

However, a cycle of role granting cannot be transitive. If role A is granted role

B, and role B is granted role C, then granting C to A returns an error.

If you need to change privileges, use the REVOKE statement to delete the

existing privileges and then use the GRANT statement to add the new

privileges.

Enabling Default Roles and Non-default Roles: After the DBA grants

privileges and adds users to a role, there are two possible ways to enable

roles.

Chapter 6. Granting and Limiting Access to Your Database 6-15

v The DBSA can specify a default role for PUBLIC or for individual users by

using the GRANT DEFAULT ROLE statement. Thisrole is automatically

activated as the initial role setting when the user connects to the database.

v Any role that a user holds can also be activated when the user specifies that

role in the SET ROLE statement.

When a role is enabled, all privileges that have been granted to the role

become available, as well as all privileges explicitly granted to you or to

PUBLIC.

Assigning privileges to a role, and then granting that role as the default role

to specified users is convenient for sessions in which those users run an

application that requires a specific set of access privileges. Use default roles

when it is impractical to recompile an application to include GRANT and SET

ROLE statements that specifically assign to users the necessary access

privileges.

Confirming Membership In Roles and Dropping Roles: You can find

yourself in a situation where you are uncertain which user is included in a

role. Perhaps you did not create the role, or the person who created the role is

not available. Issue queries against the sysroleauth and sysusers system

catalog tables to find who is authorized for which table and how many roles

exist.

After you determine which users hold which roles, you might discover that

some roles are no longer useful. To remove a role, use the DROP ROLE

statement. Before you remove a role, the following conditions must be met:

v Only roles that are listed in the sysusers system catalog table as a role can

be destroyed, but you cannot drop a built-in role (such as NONE or

EXTEND).

v You must have DBA privileges, or you must be given the grantable option

in the role to drop a role.

Determining Current Role at Runtime

If you experience unexpected privilege errors with a role that was granted

appropriate privileges, make sure that the role was enabled during runtime.

To obtain this information while you are connected to the database, you can

use the onstat -g sql or onstat -g ses command, or you can call the

CURRENT_ROLE() function or the DEFAULT_ROLE() function of SQL.

Using SPL Routines to Control Access to Data

You can use an SPL routine to control access to individual tables and columns

in the database. Use a routine to accomplish various degrees of access control.

A powerful feature of SPL is the ability to designate an SPL routine as a

DBA-privileged routine. When you write a DBA-privileged routine, you can

6-16 IBM Informix Database Design and Implementation Guide

allow users who have few or no table privileges to have DBA privileges when

they execute the routine. In the routine, users can carry out specific tasks with

their temporary DBA privilege. The DBA-privileged routine lets you

accomplish the following tasks:

v You can restrict how much information individual users can read from a

table.

v You can restrict all the changes that are made to the database and ensure

that entire tables are not emptied or changed accidentally.

v You can monitor an entire class of changes made to a table, such as

deletions or insertions.

v You can restrict all object creation (data definition) to occur within an SPL

routine so that you have complete control over how tables, indexes, and

views are built.

For information about routines in SPL, see the IBM Informix: Guide to SQL

Tutorial.

Restricting Data Reads

The routine in the following example hides the SQL syntax from users, but it

requires that users have the Select privilege on the customer table. If you

want to restrict what users can select, write your routine to work in the

following environment:

v You are the DBA of the database.

v The users have the Connect privilege to the database. They do not have the

Select privilege on the table.

v You use the DBA keyword to create the SPL routine (or set of SPL routines).

v Your SPL routine (or set of SPL routines) reads from the table for users.

If you want users to read only the name, address, and telephone number of a

customer, you can modify the procedure as the following example shows:

CREATE DBA PROCEDURE read_customer(cnum INT)

RETURNING CHAR(15), CHAR(15), CHAR(18);

DEFINE p_lname,p_fname CHAR(15);

DEFINE p_phone CHAR(18);

SELECT fname, lname, phone

 INTO p_fname, p_lname, p_phone

 FROM customer

 WHERE customer_num = cnum;

RETURN p_fname, p_lname, p_phone;

END PROCEDURE;

Chapter 6. Granting and Limiting Access to Your Database 6-17

Restricting Changes to Data

When you use SPL routines, you can restrict changes made to a table. Channel

all changes through an SPL routine. The SPL routine makes the changes,

rather than users making the changes directly. If you want to limit users to

deleting one row at a time to ensure that they do not accidentally remove all

the rows in the table, set up the database with the following privileges:

v You are the DBA of the database.

v All the users have the Connect privilege to the database. They might have

the Resource privilege. They do not have the Delete privilege (for this

example) on the table being protected.

v You use the DBA keyword to create the SPL routine.

v Your SPL routine performs the deletion.

Write an SPL procedure similar to the following one, which uses a WHERE

clause with the customer_num that the user provides, to delete rows from the

customer table:

CREATE DBA PROCEDURE delete_customer(cnum INT)

DELETE FROM customer

 WHERE customer_num = cnum;

END PROCEDURE;

Monitoring Changes to Data

When you use SPL routines, you can create a record of changes made to a

database. You can record changes that a particular user makes, or you can

make a record each time a change is made.

You can monitor all the changes a single user makes to the database. Channel

all changes through SPL routines that keep track of changes that each user

makes. If you want to record each time the user acctclrk modifies the

database, set up the database with the following privileges:

v You are the DBA of the database.

v All other users have the Connect privilege to the database. They might

have the Resource privilege. They do not have the Delete privilege (for this

example) on the table being protected.

v You use the DBA keyword to create an SPL routine.

v Your SPL routine performs the deletion and records that a certain user

makes a change.

Write an SPL routine similar to the following example (for a UNIX platform),

which uses a customer number the user provides to update a table. If the user

happens to be acctclrk, a record of the deletion is put in the file updates.

6-18 IBM Informix Database Design and Implementation Guide

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);

DELETE FROM customer

 WHERE customer_num = cnum;

IF username = ’acctclrk’ THEN

 SYSTEM ’echo Delete from customer by acctclrk >>

/mis/records/updates’ ;

END IF

END PROCEDURE;

To monitor all the deletions made through the procedure, remove the IF

statement and make the SYSTEM statement more general. The following

procedure changes the previous routine to record all deletions:

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);

LET username = USER ;

DELETE FROM tbname WHERE customer_num = cnum;

SYSTEM

 ’echo Deletion made from customer table, by ’||username

||’>>/hr/records/deletes’;

END PROCEDURE;

Restricting Object Creation

To put restraints on what objects are built and how they are built, use SPL

routines within the following setting:

v You are the DBA of the database.

v All the other users have the Connect privilege to the database. They do not

have the Resource privilege.

v You use the DBA keyword to create an SPL routine (or set of SPL routines).

v Your SPL routine (or set of SPL routines) creates tables, indexes, and views

in the way you define them. You might use such a routine to set up a

training database environment.

Your SPL routine might include the creation of one or more tables and

associated indexes, as the following example shows:

CREATE DBA PROCEDURE all_objects()

CREATE TABLE learn1 (intone SERIAL, inttwo INT NOT NULL,

 charcol CHAR(10));

CREATE INDEX learn_ix ON learn1 (inttwo);

CREATE TABLE toys (name CHAR(15) NOT NULL UNIQUE,

 description CHAR(30), on_hand INT);

END PROCEDURE;

Chapter 6. Granting and Limiting Access to Your Database 6-19

To use the all_objects procedure to control additions of columns to tables,

revoke the Resource privilege on the database from all users. When users try

to create a table, index, or view with an SQL statement outside your

procedure, they cannot do so. When users execute the procedure, they have a

temporary DBA privilege so the CREATE TABLE statement, for example,

succeeds, and you are guaranteed that every column that is added has a

constraint placed on it. In addition, objects that users create are owned by

those users. For the all_objects procedure, whoever executes the procedure

owns the two tables and the index.

Using Views

A view is a synthetic table. You can query it as if it were a table, and in some

cases, you can update it as if it were a table. However, it is not a table. It is a

synthesis of the data that exists in real tables and other views.

The basis of a view is a SELECT statement. When you create a view, you

define a SELECT statement that generates the contents of the view at the time

you access the view. A user also queries a view with a SELECT statement. In

some cases, the database server merges the select statement of the user with

the one defined for the view and then actually performs the combined

statements. For information about the performance of views, see your

IBM Informix: Performance Guide.

Because you write a SELECT statement that determines the contents of the

view, you can use views for any of the following purposes:

v To restrict users to particular columns of tables

You name only permitted columns in the select list in the view.

v To restrict users to particular rows of tables

You specify a WHERE clause that returns only permitted rows.

v To constrain inserted and updated values to certain ranges

You can use the WITH CHECK OPTION (discussed on page 6-26) to

enforce constraints.

v To provide access to derived data without having to store redundant data

in the database

You write the expressions that derive the data into the select list in the

view. Each time you query the view, the data is derived anew. The derived

data is always up to date, yet no redundancies are introduced into the data

model.

v To hide the details of a complicated SELECT statement

You hide complexities of a multitable join in the view so that neither users

nor application programmers need to repeat them.

6-20 IBM Informix Database Design and Implementation Guide

Creating Views

The following example creates a view based on a table in the stores_demo

database:

CREATE VIEW name_only AS

SELECT customer_num, fname, lname FROM customer

The view exposes only three columns of the table. Because it contains no

WHERE clause, the view does not restrict the rows that can appear.

The following example is based on the join of two tables:

CREATE VIEW full_addr AS

SELECT address1, address2, city, state.sname,

 zipcode, customer_num

 FROM customer, state

 WHERE customer.state = state.code

The table of state names reduces the redundancy of the database; it lets you

store the full state names only once, which can be useful for long state names

such as Minnesota. This full_addr view lets users retrieve the address as if the

full state name were stored in every row. The following two queries are

equivalent:

SELECT * FROM full_addr WHERE customer_num = 105

SELECT address1, address2, city, state.sname,

 zipcode, customer_num

 FROM customer, state

 WHERE customer.state = state.code AND customer_num = 105

However, be careful when you define views that are based on joins. Such

views are not modifiable; that is, you cannot use them with UPDATE, DELETE,

or INSERT statements. For a discussion about how to modify with views, see

page 6-24.

The following example restricts the rows that can be seen in the view:

CREATE VIEW no_cal_cust AS

 SELECT * FROM customer WHERE NOT state = ’CA’

This view exposes all columns of the customer table, but only certain rows.

The following example is a view that restricts users to rows that are relevant

to them:

CREATE VIEW my_calls AS

 SELECT * FROM cust_calls WHERE user_id = USER

All the columns of the cust_calls table are available but only in those rows

that contain the user IDs of the users who can execute the query.

Chapter 6. Granting and Limiting Access to Your Database 6-21

Typed Views (IDS)

You can create a typed view when you want to distinguish between two

views that display data of the same data type. For example, suppose you

want to create two views on the following table:

CREATE TABLE emp

(name VARCHAR(30),

 age INTEGER,

 salary INTEGER);

The following statements create two typed views, name_age and

name_salary, on the emp table:

CREATE ROW TYPE name_age_t

(name VARCHAR(20),

 age INTEGER);

CREATE VIEW name_age OF TYPE name_age_t AS

 SELECT name, age FROM emp;

CREATE ROW TYPE name_salary_t

(name VARCHAR(20),

 salary INTEGER);

CREATE VIEW name_salary OF TYPE name_salary_t AS

 SELECT name, salary FROM emp

When you create a typed view, the data that the view displays is of a named

row type. For example, the name_age and name_salary views contain

VARCHAR and INTEGER data. Because the views are typed, a query against

the name_age view returns a column view of type name_age whereas a query

against the name_salary view returns a column view of type name_salary.

Consequently, the database server is able to distinguish between rows that the

name_age and name_salary views return.

In some cases, a typed view has an advantage over an untyped view. For

example, suppose you overload the function myfunc() as follows:

CREATE FUNCTION myfunc(aa name_age_t) ;

CREATE FUNCTION myfunc(aa name_salary_t) ;

Because the name_age and name_salary views are typed views, the following

statements resolve to the appropriate myfunc() function:

SELECT myfunc(name_age) FROM name_age;

SELECT myfunc(name_salary) FROM name_salary;

You can also write the preceding SELECT statements using an alias for the

table name:

SELECT myfunc(p) FROM name_age p;

SELECT myfunc(p) FROM name_salary p;

6-22 IBM Informix Database Design and Implementation Guide

If two views that contain the same data types are not created as typed views,

the database server cannot distinguish between the rows that the two views

display. For more information about function overloading, see IBM Informix:

User-Defined Routines and Data Types Developer's Guide.

Duplicate Rows from Views

A view might produce duplicate rows, even when the underlying table has

only unique rows. If the view SELECT statement can return duplicate rows,

the view itself can appear to contain duplicate rows.

You can prevent this problem in two ways. One way is to specify DISTINCT

in the projection list in the view. However, when you specify DISTINCT, it is

impossible to modify with the view. The alternative is to always select a

column or group of columns that is constrained to be unique. (You can be

sure that only unique rows are returned if you select the columns of a

primary key or of a candidate key. Chapter 2 discusses primary and candidate

keys.)

Restrictions on Views

Because a view is not really a table, it cannot be indexed, and it cannot be the

object of such statements as ALTER TABLE and RENAME TABLE. You cannot

rename the columns of a view with RENAME COLUMN. To change anything

about the definition of a view, you must drop the view and re-create it.

Because it must be merged with the user’s query, the SELECT statement on

which a view is based cannot contain the following clauses or keywords:

INTO TEMP The user’s query might contain INTO TEMP; if the view also

contains it, the data would not know where to go.

ORDER BY The user’s query might contain ORDER BY. If the view also

contains it, the choice of columns or sort directions could be

in conflict.

 A SELECT statement on which you base a view can contain the UNION

keyword. In such cases, the database server stores the view in an implicit

temporary table where the unions are evaluated as necessary. The user’s

query uses this temporary table as a base table.

When the Basis Changes

The tables and views on which you base a view can change in several ways.

The view automatically reflects most of the changes.

When you drop a table or view, any views in the same database that depend

on it are automatically dropped.

Chapter 6. Granting and Limiting Access to Your Database 6-23

The only way to alter the definition of a view is to drop and re-create it.

Therefore, if you change the definition of a view on which other views

depend, you must also re-create the other views (because they all are

dropped).

When you rename a table, any views in the same database that depend on it

are modified to use the new name. When you rename a column, views in the

same database that depend on that table are updated to select the proper

column. However, the names of columns in the views themselves are not

changed. For an example, recall the following view on the customer table:

CREATE VIEW name_only AS

 SELECT customer_num, fname, lname FROM customer

Now suppose that you change the customer table in the following way:

RENAME COLUMN customer.lname TO surname

To select last names of customers directly, you must now select the new

column name. However, the name of the column as seen through the view is

unchanged. The following two queries are equivalent:

SELECT fname, surname FROM customer

SELECT fname, lname FROM name_only

When you drop a column to alter a table, views are not modified. If views are

used, error -217 (Column not found in any table in the query) occurs. The

reason views are not modified is that you can change the order of columns in

a table by dropping a column and then adding a new column of the same

name. If you do this, views based on that table continue to work. They retain

their original sequence of columns.

The database server permits you to base a view on tables and views in

external databases. Changes to tables and views in other databases are not

reflected in views. Such changes might not be apparent until someone queries

the view and gets an error because an external table changed.

Modifying with a View

You can modify views as if they were tables. Some views can be modified and

others not, depending on their SELECT statements. The restrictions are

different, depending on whether you use DELETE, UPDATE, or INSERT

statements.

A view is modifiable if the SELECT statement that defined it did not contain

any of the following items:

v A join of two or more tables

v An aggregate function or the GROUP BY clause

6-24 IBM Informix Database Design and Implementation Guide

v The DISTINCT keyword or its synonym UNIQUE

v The UNION keyword

When a view avoids all these restricted features, each row of the view

corresponds to exactly one row of one table.

Deleting with a View

You can use a DELETE statement on a modifiable view as if it were a table.

The database server deletes the proper row of the underlying table.

Updating a View

You can use an UPDATE statement on a modifiable view. However, the

database server does not support updating any derived column. A derived

column is a column produced by an expression in the select list of the

CREATE VIEW statement (for example, order_date + 30).

The following example shows a modifiable view that contains a derived

column and an UPDATE statement that can be accepted against it:

CREATE VIEW response(user_id, received, resolved, duration) AS

 SELECT user_id, call_dtime, res_dtime, res_dtime - call_dtime

 FROM cust_calls

 WHERE user_id = USER;

UPDATE response SET resolved = TODAY

 WHERE resolved IS NULL;

You cannot update the duration column of the view because it represents an

expression (the database server cannot, even in principle, decide how to

distribute an update value between the two columns that the expression

names). But as long as no derived columns are named in the SET clause, you

can perform the update as if the view were a table.

A view can return duplicate rows even though the rows of the underlying

table are unique. You cannot distinguish one duplicate row from another. If

you update one of a set of duplicate rows (for example, if you use a cursor to

update WHERE CURRENT), you cannot be sure which row in the underlying

table receives the update.

Inserting into a View

You can insert rows into a view only if the view is modifiable and contains no

derived columns. The reason for the second restriction is that an inserted row

must provide values for all columns, but the database server cannot tell how

to distribute an inserted value through an expression. An attempt to insert

into the response view, as the previous example shows, would fail.

When a modifiable view contains no derived columns, you can insert into it

as if it were a table. The database server, however, uses NULL as the value for

Chapter 6. Granting and Limiting Access to Your Database 6-25

any column that is not exposed by the view. If such a column does not allow

NULL values, an error occurs, and the insert fails.

Another mechanism for inserting rows (or performing UPDATE or DELETE

operations) on Dynamic Server views, including complex views, is to create

INSTEAD OF triggers, as described in the IBM Informix Guide to SQL: Syntax.

Using the WITH CHECK OPTION Keywords

You can insert into a view a row that does not satisfy the conditions of the

view; that is, a row that is not visible through the view. You can also update a

row of a view so that it no longer satisfies the conditions of the view.

To avoid updating a row of a view so that it no longer satisfies the conditions

of the view, add the WITH CHECK OPTION keywords when you create the

view. This clause asks the database server to test every inserted or updated

row to ensure that it meets the conditions set by the WHERE clause of the

view. The database server rejects the operation with an error if the conditions

are not met.

Important: You cannot include the WITH CHECK OPTION keywords when a

UNION operator is included in the view definition.

In the previous example, the view named response is defined as the following

example shows:

CREATE VIEW response (user_id, received, resolved, duration) AS

 SELECT user_id,call_dtime,res_dtime,res_dtime - call_dtime

 FROM cust_calls

 WHERE user_id = USER

You can update the user_id column of the view, as the following example

shows:

UPDATE response SET user_id = ’lenora’

 WHERE received BETWEEN TODAY AND TODAY - 7

The view requires rows in which user_id equals USER. If user tony performs

this update, the updated rows vanish from the view. You can create the view,

however, as the following example shows:

CREATE VIEW response (user_id, received, resolved,duration) AS

 SELECT user_id, call_dtime, res_dtime, res_dtime - call_dtime

 FROM cust_calls

 WHERE user_id = USER

WITH CHECK OPTION

The preceding UPDATE operation by user tony is rejected as an error.

You can use the WITH CHECK OPTION feature to enforce any kind of data

constraint that can be stated as a Boolean expression. In the following

6-26 IBM Informix Database Design and Implementation Guide

example, you can create a view of a table for which you express all the logical

constraints on data as conditions of the WHERE clause. Then you can require

all modifications to the table to be made through the view.

CREATE VIEW order_insert AS

 SELECT * FROM orders O

 WHERE order_date = TODAY -- no back-dated entries

 AND EXISTS -- ensure valid foreign key

 (SELECT * FROM customer C

 WHERE O.customer_num = C.customer_num)

 AND ship_weight < 1000 -- reasonableness checks

 AND ship_charge < 1000

WITH CHECK OPTION

Because of EXISTS and other tests, which are expected to be successful when

the database server retrieves existing rows, this view displays data from

orders inefficiently. However, if insertions to orders are made only through

this view (and you do not already use integrity constraints to constrain data),

users cannot insert a back-dated order, an invalid customer number, or an

excessive shipping weight and shipping charge.

Re-Execution of a Prepared Statement When the View Definition Changes

The database server uses the definition of the view that exists when you

prepare a SELECT statement with that view. If the definition of a view

changes after you prepare a SELECT statement on that view, the execution of

the prepared statement gives incorrect results because it does not reflect the

new view definition. No SQL error is generated.

Privileges and Views

When you create a view, the database server tests your privileges on the

underlying tables and views. When you use a view, only your privileges with

regard to the view are tested.

Privileges When Creating a View

The database server tests to make sure that you have all the privileges that

you need to execute the SELECT statement in the view definition. If you do

not, the database server does not create the view.

This test ensures that users cannot create a view on the table and query the

view to gain unauthorized access to a table.

After you create the view, the database server grants you, the creator and

owner of the view, at least the Select privilege on it. No automatic grant is

made to PUBLIC, as is the case with a newly created table.

The database server tests the view definition to see if the view is modifiable.

If it is, the database server grants you the Insert, Delete, and Update

Chapter 6. Granting and Limiting Access to Your Database 6-27

privileges on the view, provided that you also have those privileges on the

underlying table or view. In other words, if the new view is modifiable, the

database server copies your Insert, Delete, and Update privileges from the

underlying table or view and grants them on the new view. If you have only

the Insert privilege on the underlying table, you receive only the Insert

privilege on the view.

This test ensures that users cannot use a view to gain access to any privileges

that they did not already have.

Because you cannot alter or index a view, the Alter and Index privileges are

never granted on a view.

Privileges When Using a View

When you attempt to use a view, the database server tests only the privileges

that you are granted on the view. It does not test your right to access the

underlying tables.

If you create the view, your privileges are the ones noted in the preceding

section. If you are not the creator, you have the privileges that the creator (or

someone who had the WITH GRANT OPTION privilege) granted you.

Therefore, you can create a table and revoke access of PUBLIC to it; then you

can grant limited access privileges to the table through views. Suppose you

want to grant access privileges on the following table:

CREATE TABLE hr_data

 (

 emp_key INTEGER,

 emp_name CHAR(40),

 hire_date DATE,

 dept_num SMALLINT,

 user-id CHAR(18),

 salary DECIMAL(8,2),

 performance_level CHAR(1),

 performance_notes TEXT

)

The section “Column-Level Privileges” on page 6-9 shows how to grant access

privileges directly on the hr_data table. The examples that follow take a

different approach. Assume that when the table was created, this statement

was executed:

REVOKE ALL ON hr_data FROM PUBLIC

(Such a statement is not necessary in an ANSI-compliant database.) Now you

create a series of views for different classes of users. For users who should

have read-only access to the nonsensitive columns, you create the following

view:

6-28 IBM Informix Database Design and Implementation Guide

CREATE VIEW hr_public AS

 SELECT emp_key, emp_name, hire_date, dept_num, user_id

 FROM hr_data

Users who are given the Select privilege for this view can see nonsensitive

data and update nothing. For Human Resources personnel who must enter

new rows, you create a different view, as the following example shows:

CREATE VIEW hr_enter AS

 SELECT emp_key, emp_name, hire_date, dept_num

 FROM hr_data

You grant these users both Select and Insert privileges on this view. Because

you, the creator of both the table and the view, have the Insert privilege on

the table and the view, you can grant the Insert privilege on the view to

others who have no privileges on the table.

On behalf of the person in the MIS department who enters or updates new

user IDs, you create still another view, as the following example shows:

CREATE VIEW hr_MIS AS

 SELECT emp_key, emp_name, user_id

 FROM hr_data

This view differs from the previous view in that it does not expose the

department number and date of hire.

Finally, the managers need access to all columns and they need the ability to

update the performance-review data for their own employees only. You can

meet these requirements by creating a table, hr_data, that contains a

department number and computer user IDs for each employee. Let it be a rule

that the managers are members of the departments that they manage. Then

the following view restricts managers to rows that reflect only their

employees:

CREATE VIEW hr_mgr_data AS

 SELECT * FROM hr_data

 WHERE dept_num =

 (SELECT dept_num FROM hr_data

 WHERE user_id = USER)

 AND NOT user_id = USER

The final condition is required so that the managers do not have update

access to their own row of the table. Therefore, you can safely grant the

Update privilege to managers for this view, but only on selected columns, as

the following statement shows:

GRANT SELECT, UPDATE (performance_level, performance_notes)

 ON hr_mgr_data TO peter_m

Chapter 6. Granting and Limiting Access to Your Database 6-29

6-30 IBM Informix Database Design and Implementation Guide

Chapter 7. Using Distributed Queries

Overview of Distributed Queries . 7-1

Distributed Queries across Databases of One Dynamic Server Instance 7-2

Coordinator and Participant in a Distributed Query 7-2

Configuring the Database Server to Use Distributed Queries 7-3

The Syntax of a Distributed Query . 7-3

Accessing a Remote Server and Database . 7-3

Database Name . 7-4

Database Object Name . 7-4

Specifying a Coserver ID (XPS) . 7-4

Valid Statements for Accessing Remote Objects 7-4

Accessing Remote Tables . 7-5

Table Permissions . 7-5

Qualifying Table References . 7-6

Other Remote Operations . 7-6

Opening a Remote Database . 7-6

Creating a Remote Database . 7-6

Creating a Remote Synonym . 7-6

Monitoring Distributed Queries . 7-6

Server Environment and Distributed Queries 7-7

PDQPRIORITY Environment Variable . 7-7

DEADLOCK_TIMEOUT . 7-7

Database Access Restrictions . 7-7

Transaction Processing . 7-8

Isolation Levels . 7-8

DEADLOCK_TIMEOUT and SET LOCK MODE 7-8

Two-phase Commit and Recovery . 7-8

Cross Server Compatibility Issues (XPS) . 7-9

BYTE and TEXT Data Types . 7-9

Other Restrictions . 7-9

In This Chapter

This chapter provides an overview of distributed queries. Distributed queries

allow shared access to data across multiple databases within a network of

IBM Informix database servers. Different database servers can manage

multiple databases, which can be referenced in a single distributed query.

Overview of Distributed Queries

The IBM Informix database servers allows you to query more than one

database of the same database server or across multiple database servers. This

type of query is called a distributed query. The database servers can reside on a

single host computer, on different computers of the same network, or on a

© Copyright IBM Corp. 1996, 2004 7-1

gateway. (In general, most features and restrictions that this chapter describes

for distributed queries also apply to function calls and to distributed INSERT,

DELETE, or UPDATE operations that reference objects or data in more than

one database.)

Note: IBM Informix Extended Parallel Server, Version 8.40 supports

participant functionality only. Distributed queries cannot originate from

this version. IBM Informix Extended Parallel Server, Version 8.50

supports both participant and coordinator functionality. Restrictions

apply.

Distributed Queries across Databases of One Dynamic Server Instance

Distributed operations across databases of the same IBM Informix Dynamic

Server instance are subject to the following restrictions on returned data types:

v The query, DML operation, or function call can return any built-in data

type, including BLOB, BOOLEAN, CLOB, and LVARCHAR built-in opaque

types.

v The query, DML operation, or function call cannot return DISTINCT or

OPAQUE data types unless these are explicitly cast to a built in data type,

and all the DISTINCT and OPAQUE data types and all the explicit casts are

defined in each participating database that stores or receives the data types.

Coordinator and Participant in a Distributed Query

To support distributed operations across multiple database servers, IBM

Informix servers maintain hierarchical relationships consisting of a coordinator

and one or more participants. Coordinator and participant are defined as

follows:

v The coordinator directs the resolution of the query. It also decides whether

the query should be committed or aborted.

v The participant directs the execution of the distributed query on one

branch. The branch is the part of the distributed query involving only that

participant database server.

The following examples refer to a multi-server environment where db is the

local database, db2 is an external database residing on the same server, and

master_db is an external database on the remote server new_york.

The following examples shows a query that could be used to access data on

another server using database db as the coordinator.

database db; select col1, col2 from db2:tab1, master_db@newyork:tab2;

A session will have only one local database, but can open multiple external

databases. Distributed queries must always originate on a coordinator.

7-2 IBM Informix Database Design and Implementation Guide

Configuring the Database Server to Use Distributed Queries

To use multiple IBM Informix servers for distributed queries, you must make

sure that all of the database servers involved are configured to enable

server-to-server communications over the network. The following

configuration files may need to be edited to allow distributed queries:

v The sqlhosts file

v The onconfig file

v /etc/hosts.equiv or .rhosts

v /etc/services

v /etc/hosts

The sqlhosts file contains connectivity information for each database server. To

set up several database servers to use distributed queries, use one of the

following ways to store the sqlhosts information for all the databases:

v In one sqlhosts file, pointed to by INFORMIXSQLHOSTS

v In separate sqlhosts files in each database server directory

Note: IBM Informix Extended Parallel Server Version 8.40 supports

participant functionality only; distributed queries cannot originate from

this version. IBM Informix Extended Parallel Server Version 8.50

supports both participant and coordinator functionality. Restrictions

apply.

For more information on configuring the sqlhosts file, see your Administrator’s

Guide.

The Syntax of a Distributed Query

This section describes how to specify a remote server, database, and database

object within a distributed query.

Note: When designing distributed queries, be aware that some SQL syntax

will not work across all server versions. Syntax that is valid on

Dynamic Server but not on Extended Parallel Server is not supported

on Extended Parallel Server and vice-versa.

Due to these potential syntax incompatibilities, an SQL statement may pass

the checking stage on the coordinator, but return an error once that statement

is passed to the participant.

Accessing a Remote Server and Database

The core element of any statement within a distributed query is the database

segment. Using the syntax of both of these segments, you can specify a

remote database server, database, or database object.

Chapter 7. Using Distributed Queries 7-3

Database Name

The Database Name segment is used to specify the name of a database. The

following examples show different ways of specifying a remote database:

empinfo@personnel ’//personnel/empinfo’

Database Object Name

The Database Object Name segment is used to specify the name of a database

object, including constraints, indexes, triggers, any synonyms. The following

examples show how to access remote objects:

empinfo@personnel:markg.emp_names empinfo@personnel:emp_names

Specifying a Coserver ID (XPS)

If you are running a distributed query where Extended Parallel Server is both

the coordinator and participant, you can specify a coserver as part of the

database and database object segments. The following examples show how to

specify the coserver id:

orders@stores.2 empinfo@personnel.3:emp_names

Note: In any given session, the first reference to a remote server determines

how subsequent references for objects on that server must be specified.

Once a coserver-id is used to qualify an object on a server, subsequent

references to the same server, even for any other object, must also

specify the same coserver-id. Coserver-ids used for different remote

servers are independent.

Valid Statements for Accessing Remote Objects

The following statements support remote objects as part of the Database and

Database Object segments and can be used within a distributed query:

v INSERT

v SELECT

v UPDATE

v DELETE

v CREATE VIEW

v CREATE SYNONYM

v CREATE DATABASE

v DATABASE

v LOAD

v UNLOAD

v LOCK

v UNLOCK

v INFO

7-4 IBM Informix Database Design and Implementation Guide

For Extended Parallel Server (XPS) 8.50 you cannot refer to remote objects in

statements that change or add data. For instance, INSERT, UPDATE, and

DELETE statements operating on a remote object are not supported. For more

aspects of distributed queries not supported by Extended Parallel Server, see

“Cross Server Compatibility Issues (XPS)” on page 7-7.

Accessing Remote Tables

A remote table is a table on a database server other than the current server.

The general syntax for accessing a table on another server is:

database@server:[owner.]table

Here, a table can be a table name, view name or synonym. You have the

option of specifying the table owner. For the complete syntax options, see the

documentation of the Database and Database Object segments in the IBM

Informix Guide to SQL: Syntax.

The following example shows a query that accesses a remote table:

DATABASE locdb; SELECT l.name, r.assignment FROM rdb@rsys:rtab r,

loctab l WHERE l.empid = r.empid;

This query accesses the name and empid columns from a the local table

loctab, and the assignment and empid columns from the remote table rtab.

The data is joined using empid as the join column.

The following example shows a query that accesses data on a remote table

and inserts it into a local table:

DATABASE locdb; INSERT INTO loctab SELECT * FROM rdb@rsys:rtab;

This query selects all data from the remote table rtab, and inserts it into the

local table loctab.

The following example creates a view in the local database using the empid

and priority columns from the remote database rdb.

DATABASE locdb; CREATE VIEW myview (empid, empprty)

AS SELECT empid, priority FROM rdb@rsys:rtab;

Table Permissions

Permissions for accessing table in other databases and remote tables are

controlled at the table location. When accessing a remote server, the

connection is made using the login name and password of the user executing

the query. To access remote data, the user must have the appropriate

permissions on the remote table.

When processing distributed queries, the database server ignores the active

role on the current local database when accessing a remote object. On the

Chapter 7. Using Distributed Queries 7-5

remote server, the default role applied to each remote database is used. If a

default role is not defined, the user’s privilege define the access permissions

for the objects in each remote database.

Qualifying Table References

References to tables may be qualified with the current database and server

name. If no qualification is specified, the current database and server context

is implied. For example, if the current database is locdb and the current server

is currsys, the following references to loctab are equivalent:

locdb@currsys:loctab

locdb:loctab

loctab

Other Remote Operations

In addition to querying and updating data, there are other remote operations

that you can perform using the distributed query framework.

Opening a Remote Database

By specifying a remote object in the DATABASE statement, you can open a

remote database as in the following examples:

DATABASE dbname@servername;

DATABASE "//servernam/database";

Creating a Remote Database

You can create a remote database by qualifying the database name with a

server name when using the CREATE DATABASE statement.

CREATE DATABASE remfoo@rsys;

Creating a Remote Synonym

You can create a remote synonym for a table in another database or a remote

table using a qualified name in the CREATE SYNONYM statement. For

example, the following statement creates a synonym for rdb@srsys:rtab:

CREATE SYNONYM myrtab FOR rdb@rsys:rtab;

It is possible for a synonym to exist in both the local and remote server. In the

example above, it is possible that rtab is itself a synonym for

rdb2@rsys2:rtab2. The chain of synonyms is followed when retrieving catalog

information until the physical database and server where the table resides is

found. If a synonym ultimately points back to itself, an error is returned.

Monitoring Distributed Queries

Use the onstat -x utility to display transaction information originating on the

coordinator of a distributed query.

The following flag codes in position 5 are used for distributed queries:

7-6 IBM Informix Database Design and Implementation Guide

C Distributed query coordinator

S Distributed query participant

B Both distributed query coordinator and participant

R Transaction with remote object references (XPS)

For more information on using onstat -x see your Administrator’s Reference.

Server Environment and Distributed Queries

This section lists the configuration parameters and environment variables that

affect the behavior of distributed queries.

PDQPRIORITY Environment Variable

The effective value of PDQPRIORITY for a session is sent to the remote site

when a connection is established. Subsequent changes to this parameter in the

coordinator are not reflected on the remote site. However, the exact behavior

of this environment variable depends on the role of the database server in the

distributed query (coordinator or participant).

PDQPRIORITY has different syntax and semantics for different server

versions. For information on setting PDQPRIORITY, see the Performance Guide

for your server.

DEADLOCK_TIMEOUT

This configuration parameter is used to specify the amount of time a

transaction will wait for a lock. If a distributed transaction is forced to wait

longer than the number of seconds specified, the thread that owns the

transaction assumes that a multi-server deadlock exists. The following error

message is returned:

-143 ISAM error: deadlock detected.

For more information on using this configuration parameter, see your

Administrator’s Guide

Database Access Restrictions

To execute distributed queries in an Informix database server environment, all

databases must have compatible ANSI modes and logging.

Distributed queries can be performed on databases that are not

ANSI-compliant or that are ANSI-compliant , but each participating database

must have the same ANSI mode. In other words, all databases involved in a

distributed query must be ANSI-compliant, or none should be. Distributed

queries can be performed on databases with either buffered or unbuffered

logging, as long as they are consistent.

Chapter 7. Using Distributed Queries 7-7

Extended Parallel Server does not support databases without logging.

Therefore, all databases in a distributed query with Extended Parallel Server

as the coordinator or participant must be logged.

Transaction Processing

This section describes some of the considerations involved when using

distributed queries in a transaction processing environment.

Isolation Levels

The isolation level of a transaction is sent to the remote server at the start of

the transaction at the remote site. If an isolation level changes during a

transaction, the new value is sent to the remote site.

DEADLOCK_TIMEOUT and SET LOCK MODE

When using distributed queries, you can use the SET LOCK MODE statement

in conjunction with the DEADLOCK_TIMEOUT configuration parameter to

help prevent server deadlock.

When you request the WAIT option of SET LOCK MODE, the database server

protects against the possibility of a deadlock. However, if the database server

discovers that a deadlock could occur, it terminates the operation and returns

an error.

The DEADLOCK_TIMEOUT configuration parameter specifies the maximum

number of seconds that a database server thread can wait to acquire a lock.

This value is the default value used by the SET LOCK MODE WAIT

statement. This value applies only if you acquire locks on the current and

remote database server within the same transaction.

For more information on the SET LOCK MODE statement, see the IBM

Informix Guide to SQL: Syntax. For more information on the

DEADLOCK_TIMEOUT configuration parameter, see

“DEADLOCK_TIMEOUT” on page 7-7 and the chapter on multi-phase

commit protocols in the IBM Informix Dynamic Server Administrator’s Guide.

Two-phase Commit and Recovery

The two-phase commit protocol is used to ensure to ensure that distributed

queries are uniformly committed or rolled back across multiple database

servers. A database server automatically uses the two-phase commit protocol

for any transaction that modifies data on multiple database servers.

Because Extended Parallel Server does not support remote updates, multi-site

updates within a single transaction are not possible. Therefore, the two-phase

commit protocol does not apply to queries originating on Extended Parallel

Server. In this case, distributed transactions are treated the same as local

transactions and are rolled-back or committed depending upon the point the

7-8 IBM Informix Database Design and Implementation Guide

failure occurs. Any statement that would require the use of the two-phase

commit protocol is aborted and an error message returned.

For more information, see the chapter on multi-phase commit protocols in the

IBM Informix Dynamic Server Administrator’s Guide.

Cross Server Compatibility Issues (XPS)

This section lists elements of distributed queries not supported by Extended

Parallel Server.

BYTE and TEXT Data Types

The BYTE or TEXT data types are not supported when accessing remote table

data. Only Extended Parallel Server’s built-in data types are supported.

Dynamic Server built-in data types which are based on user-defined types are

not supported.

Other Restrictions

Extended Parallel Server has the following restrictions when using distributed

queries:

v Remote stored procedures are not supported.

v Triggers cannot reference remote objects in the trigger definition

v IBM Informix gateway products are not supported.

Chapter 7. Using Distributed Queries 7-9

7-10 IBM Informix Database Design and Implementation Guide

Part 3. Object-Relational Databases

© Copyright IBM Corp. 1996, 2004

IBM Informix Database Design and Implementation Guide

Chapter 8. Creating and Using Extended Data Types in

Dynamic Server

Informix Data Types . 8-2

Fundamental or Atomic Data Types . 8-3

Predefined Data Types . 8-3

BOOLEAN and LVARCHAR Data Types 8-3

BLOB and CLOB Data Types . 8-4

Other Predefined Data Types . 8-4

Extended Data Types . 8-4

Complex Data Types . 8-5

User-Defined Data Types . 8-5

Distinct Data Types . 8-5

Opaque Data Types . 8-6

DataBlade Data Types . 8-6

Smart Large Objects . 8-6

BLOB Data Type . 8-7

CLOB Data type . 8-7

Using Smart Large Objects . 8-8

Copying Smart Large Objects . 8-8

Complex Data Types . 8-9

Collection Data Types . 8-10

Null Values in Collections . 8-11

Using SET Collection Types . 8-11

Using MULTISET Collection Types . 8-12

Using LIST Collection Types . 8-13

Nesting Collection Types . 8-14

Adding a Collection Type to an Existing Table 8-14

Restrictions on Collections . 8-14

Named Row Types . 8-14

When to Use a Named Row Type . 8-15

Choosing a Name for a Named Row Type 8-16

Restrictions on Named Row Types . 8-16

Using a Named Row Type to Create a Typed Table 8-17

Changing the Type of a Table . 8-18

Using a Named Row Type to Create a Column 8-19

Using a Named Row Type Within Another Row Type 8-20

Dropping Named Row Types . 8-21

© Copyright IBM Corp. 1996, 2004 8-1

Unnamed Row Types . 8-21

In This Chapter

This chapter describes extended data types that you can use to build an

object-relational database. The term object-relational is not associated with a

particular method or model of database design, but instead refers to any

database that uses Dynamic Server features to extend the functionality of the

database.

An object-relational database is not antithetical to a relational database but

rather is an extension of functionality already present in a relational database.

Typically, you use some combination of features from Dynamic Server to

extend the kinds of data that your database can store and manipulate. These

features include extended data types, smart large objects, type and table

inheritance, user-defined casts, and user-defined routines (UDRs). The

chapters in this section of the manual describe many of these features. For

information about UDRs, see IBM Informix: User-Defined Routines and Data

Types Developer's Guide and the IBM Informix: Guide to SQL Tutorial.

For an example of an object-relational database, you can create the

superstores_demo database, which contains examples of some of the features

available with Dynamic Server. For information about how to create the

superstores_demo database, refer to the IBM Informix: DB–Access User's Guide.

Informix Data Types

Figure 3-1 in Chapter 3, “Choosing Data Types,” on page 3-1 provides a chart

for selecting appropriate data types for the columns of a table depending on

the type of data that will be stored. Figure 8-1 on page 8-3 shows a hierarchy

of data types that reflects how the database server manages the data types.

8-2 IBM Informix Database Design and Implementation Guide

Fundamental or Atomic Data Types

All Informix database servers support the fundamental, or atomic, data types.

These types are fundamental because they are the smallest units that you can

specify in a SELECT statement. Only Dynamic Server supports extended and

predefined data types. The predefined data types are in a separate category

because they share certain characteristics with extended data types but are

provided by the database server.

For a discussion of the fundamental data types, refer to Chapter 3, “Choosing

Data Types,” on page 3-1.

Predefined Data Types

The database server provides the predefined data types, just as it provides the

fundamental data types. However, the predefined data types have certain

characteristics in common with the extended data types.

BOOLEAN and LVARCHAR Data Types

BOOLEAN and LVARCHAR data types behave like built-in data types except

that the system catalog tables define them as extended data types.

Figure 8-1. Informix Data Types

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-3

For more information, refer to Chapter 3, “Choosing Data Types,” on page 3-1

and to the system catalog tables in the IBM Informix: Guide to SQL Reference.

BLOB and CLOB Data Types

The BLOB and CLOB data types are not fundamental data types because you

can randomly access data from within the BLOB or CLOB. You can create a

table with BLOB and CLOB columns, but you cannot insert data directly into

the column. You must use functions to insert and manipulate the data.

For more information, see “Smart Large Objects” on page 8-6.

Other Predefined Data Types

With the exception of BLOB, BOOLEAN, CLOB, and LVARCHAR, the

predefined data types usually do not appear as data types for the columns of

a table. Instead, the predefined data types are used with the functions

associated with complex and user-defined data types and user-defined

routines. The following table lists the remaining predefined data types.

 clientbinval indexkeyarray sendrecv

ifx_lo_spec lolist stat

ifx_lo_stat pointer stream

impexp rtnparamtypes

impexpbin selfuncargs

For more information about these predefined data types, refer to

IBM Informix: User-Defined Routines and Data Types Developer's Guide.

Extended Data Types

Extended data types let you create data types to characterize data that cannot

be easily represented with the built-in data types. However, you cannot use

extended data types in distributed transactions. Figure 8-2 shows the extended

data types.

8-4 IBM Informix Database Design and Implementation Guide

Complex Data Types

Complex data types describe either a collection of data objects, all of one type

(LIST, SET, and MULTISET), or groups of objects of different types (named

and unnamed rows.)

User-Defined Data Types

A user-defined data type is a data type that is not provided by the database

server. You must provide all of the information that the database server needs

to manage opaque data types or distinct data types.

Distinct Data Types

A distinct data type is an encapsulated data type that you create with the

CREATE DISTINCT TYPE statement. A distinct data type has the same

representation as, but is distinct from, the data type on which it is based. You

can create a distinct data type from built-in types, opaque types, named row

types, or other distinct types. You cannot create a distinct data type from any

of the following data types:

v SERIAL

Figure 8-2. Extended Data Types

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-5

v SERIAL8

v Collection types

v Unnamed row types

When you create a distinct data type, you implicitly define the structure of the

data type because a distinct data type inherits the structure of its source data

type. You can also define functions, operators, and aggregates that operate on

the distinct data type.

For information about distinct data types, see “Casting Distinct Data Types”

on page 10-10, the IBM Informix: Guide to SQL Syntax, and the IBM Informix:

Guide to SQL Reference.

Opaque Data Types

An opaque data type is an encapsulated data type that you create with the

CREATE OPAQUE TYPE statement. When you create an opaque data type,

you must explicitly define the structure of the data type as well as the

functions, operators, and aggregates that operate on the opaque data type.

You can use an opaque data type to define columns and program variables in

the same way that you use built-in types.

For information about creating opaque data types, see IBM Informix:

User-Defined Routines and Data Types Developer's Guide and the IBM Informix:

Guide to SQL Syntax.

DataBlade Data Types

The diagram in Figure 8-2 on page 8-5 includes DataBlade data types

although they are not actually data types. A DataBlade is a suite of

user-defined data types and user-defined routines that provides tools for a

specialized application. For example, different DataBlades provide tools for

managing images, time-series, and astronomical observations. Such

applications often require opaque data types as well as other user-defined

data types. For information about developing a DataBlade, refer to the

IBM Informix: DataBlade API Programmer's Guide and the DataBlade

Developers Kit. For information about the DataBlades that IBM provides,

contact your customer representative.

Smart Large Objects

Smart large objects are objects that are defined on a BLOB or CLOB data type.

A smart large object allows an application program to randomly access

column data, which means that you can read or write to any part of a BLOB

or CLOB column in any arbitrary order. You can create BLOB or CLOB

columns to store binary data or character data.

8-6 IBM Informix Database Design and Implementation Guide

BLOB Data Type

You can use a BLOB data type to store any data that a program can generate:

graphic images, satellite images, video clips, audio clips, or formatted

documents saved by any word processor or spreadsheet. The database server

permits any kind of data of any length in a BLOB column.

Like CLOB objects, BLOB objects are stored in whole disk pages in separate

disk areas from normal row data.

The advantage of the BLOB data type, as opposed to CLOB, is that it accepts

any data. Otherwise, the advantages and disadvantages of the BLOB data

type are the same as for the CLOB data type.

CLOB Data type

You can use the CLOB data type to store a block of text. It is designed to store

ASCII text data, including formatted text such as HTML or PostScript.

Although you can store any data in a CLOB object, IBM Informix tools expect

a CLOB object to be printable, so restrict this data type to printable ASCII

text.

CLOB values are not stored with the rows of which they are a part. They are

allocated in whole disk pages, usually areas away from rows. (For more

information, see your IBM Informix: Administrator's Guide.)

The CLOB data type is similar to the TEXT data type except that the CLOB

data type provides the following advantages:

v An application program can read from or write to any portion of the CLOB

object.

v Access times can be significantly faster because an application program can

access any portion of a CLOB object.

v Default characteristics are relatively easy to override. Database

administrators can override default characteristics for sbspace at the column

level. Application programmers can override some default characteristics

for the column when they create a CLOB object.

v You can use the equals operator (=) to test whether two CLOB values are

equal.

v A CLOB object is recoverable in the event of a system failure and obeys

transaction isolation modes when the DBA or application programmer

specifies it. (Recovery of CLOB objects requires that your database system

has the necessary resources to provide buffers large enough to handle

CLOB objects.)

v You can use the CLOB data type to provide large storage for a user-defined

data type.

v DataBlade developers can create indexes on CLOB data types.

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-7

The disadvantages of the CLOB data type are as follows:

v It is allocated in whole disk pages, so a short item wastes space.

v Restrictions apply on how you can use a CLOB column in an SQL

statement. (See “Using Smart Large Objects” on page 8-8.)

v It is not available with all Informix database servers.

Using Smart Large Objects

To store columns of a BLOB or CLOB data type, you must allocate an sbspace.

An sbspace is a logical storage unit that stores BLOB and CLOB data in the

most efficient way possible. You can write IBM Informix ESQL/C programs

that allow users to fetch and store BLOB or CLOB data. Application

programmers who want to access and manipulate smart large objects directly

can consult the IBM Informix: ESQL/C Programmer's Manual.

In any SQL statement, interactive or programmed, a BLOB or CLOB column

cannot be used in the following ways:

v In arithmetic or Boolean expressions

v In a GROUP BY or ORDER BY clause

v In a UNIQUE test

v For indexing, as part of an Informix B-tree index

However, DataBlade developers have the capability to create indexes on

CLOB columns.

In a SELECT statement entered interactively, a BLOB or CLOB column can:

v Specify NULL values as a default when you create a table with the

DEFAULT NULL clause

v Disallow NULL values using the NOT NULL constraint when you create a

table

v Be tested with the IS [NOT] NULL predicate

From an ESQL/C program, you can use the ifx_lo_stat() function to

determine the length of BLOB or CLOB data.

Copying Smart Large Objects

Dynamic Server provides functions that you can call from within an SQL

statement to import and export smart large objects. Table 8-1 shows the

smart-large-object functions.

8-8 IBM Informix Database Design and Implementation Guide

Table 8-1. SQL Functions for Smart Large Objects

Function Name Purpose

FILETOBLOB() Copies a file into a BLOB column

FILETOCLOB() Copies a file into a CLOB column

LOCOPY() Copies BLOB or CLOB data into another BLOB or CLOB

column

LOTOFILE() Copies BLOB or CLOB data into a file

For detailed information and the syntax of smart-large-object functions, see

the Expression segment in the IBM Informix: Guide to SQL Syntax

Important: Casts between BLOB and CLOB data types are not permitted.

Complex Data Types

A complex data type is usually a composite of other existing data types. For

example, you might create a complex data type whose components include

built-in types, opaque types, distinct types, or other complex types. An

important advantage that complex data types have over user-defined types is

that users can access and manipulate the individual components of a complex

data type.

In contrast, built-in types and user-defined types are self-contained

(encapsulated) data types. Consequently, the only way to access the

component values of an opaque data type is through functions that you

define on the opaque type.

Figure 8-3 shows the complex data types that Dynamic Server supports and

the syntax that you use to create the complex data types.

The complex data types that Figure 8-3 illustrates provide the following

extended data type support:

Figure 8-3. Complex Data Types

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-9

v Collection types. You can use a collection type whenever you need to store

and manipulate collections of data within a table cell. You can assign

collection types to columns.

v Row types. A row type typically contains multiple fields. When you want

to store more than one kind of data in a column or variable, you can create

a row type. Row types come in two kinds: named row types and unnamed

row types. You can assign an unnamed row type to columns and variables.

You can assign a named row type to columns, variables, tables, or views.

When you assign a named row type to a table, the table is a typed table. A

primary advantage of typed tables is that they can be used to define an

inheritance hierarchy.

For more information about how to perform SELECT, INSERT, UPDATE, and

DELETE operations on the complex data types that this chapter describes, see

the IBM Informix: Guide to SQL Tutorial.

Collection Data Types

Collection data types enable you to store and manipulate collections of data

within a single row of a table. A collection data type has two components: a

type constructor, which determines whether the collection type is a SET,

MULTISET, or LIST, and an element type, which specifies the type of data that

the collection can contain. (The SET, MULTISET, and LIST collection types are

described in detail in the following sections.)

The elements of a collection can be of most any data type. (For a list of

exceptions, see “Restrictions on Collections” on page 8-14.) The elements of a

collection are the values that the collection contains. In a collection that

contains the values: {'blue', 'green', 'yellow', and 'red'}, 'blue'

represents a single element in the collection. Every element in a collection

must be of the same type. For example, a collection whose element type is

INTEGER can contain only integer values.

The element type of a collection can represent a single data type (column) or

multiple data types (row). In the following example, the col_1 column

represents a SET of integers:

col_1 SET(INTEGER NOT NULL)

To define a collection data type that contains multiple data types, you can use

a named row type or an unnamed row type. In the following example, the

col_2 column represents a SET of rows that contain name and salary fields:

col_2 SET(ROW(name VARCHAR(20), salary INTEGER) NOT NULL)

Important: When you define a collection data type, you must include the

NOT NULL constraint as part of the type definition. No other

column constraints are allowed on a collection data type.

8-10 IBM Informix Database Design and Implementation Guide

After you define a column as a collection data type, you can perform the

following operations on the collection:

v Select and modify individual elements of a collection (from ESQL/C

programs only).

v Count the number of elements that a collection contains.

v Determine if certain values are in a collection.

For information on the syntax that you use to create collection data types, see

the Data Type segment in the IBM Informix: Guide to SQL Syntax. For

information about how to convert a value of one collection type to another

collection type, see the IBM Informix: Guide to SQL Tutorial.

Null Values in Collections

A collection cannot contain NULL elements. However, when the collection is a

row type, you can insert NULL values for any or all fields of a row type that

a collection contains. Suppose you create the following table that has a

collection column:

CREATE TABLE tab1 (col1 INT,

 col2 SET(ROW(a INT, b INT) NOT NULL));

The following statements are allowed because only the component fields of

the row type specify NULL values:

INSERT INTO tab1 VALUES (25,"SET{ROW(NULL, NULL)}");

INSERT INTO tab1 VALUES (35,"SET{ROW(4, NULL)}");

INSERT INTO tab1 VALUES (45,"SET{ROW(14, NULL), ROW(NULL,5)}");

UPDATE tab1 SET col2 = "SET{ROW(NULL, NULL)}" WHERE col1 = 45;

However, each of the following statements returns an error message because

the collection element specifies a NULL value:

INSERT INTO tab1 VALUES (45, "SET{NULL)}");

UPDATE tab1 SET col2 = "SET{NULL}" WHERE col1 = 55;

Using SET Collection Types

A SET is an unordered collection of elements in which each element is unique.

You define a column as a SET collection type when you want to store

collections whose elements have the following characteristics:

v The elements contain no duplicate values.

v The elements have no specific order associated with them.

To illustrate how you might use a SET, imagine that your human resources

department needs information about the dependents of each employee in the

company. You can use a collection type to define a column in an employee

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-11

table that stores the names of an employee’s dependents. The following

statement creates a table in which the dependents column is defined as a SET:

CREATE TABLE employee

(

 name CHAR(30),

 address CHAR (40),

 salary INTEGER,

 dependents SET(VARCHAR(30) NOT NULL)

);

A query against the dependents column for any given row returns the names

of all the dependents of the employee. In this case, SET is the appropriate

collection type because the collection of dependents for each employee should

not contain any duplicate values. A column that is defined as a SET ensures

that each element in a collection is unique.

To illustrate how to define a collection type whose elements are a row type,

suppose that you want the dependents column to include the name and

birthdate of an employee’s dependents. In the following example, the

dependents column is defined as a SET whose element type is a row type:

CREATE TABLE employee

(

 name CHAR(30),

 address CHAR (40),

 salary INTEGER,

 dependents SET(ROW(name VARCHAR(30), bdate DATE) NOT NULL)

);

Each element of a collection from the dependents column contains values for

the name and bdate. Each row of the employee table contains information

about the employee as well as a collection with the names and birthdates of

the employee’s dependents. For example, if an employee has no dependents,

the collection for the dependents column is empty. If an employee has 10

dependents, the collection should contain 10 elements.

Using MULTISET Collection Types

A MULTISET is a collection of elements in which the elements can have

duplicate values. For example, a MULTISET of integers might contain the

collection {1,3,4,3,3}, which has duplicate elements. You can define a column

as a MULTISET collection type when you want to store collections whose

elements have the following characteristics:

v The elements might not be unique.

v The elements have no specific order associated with them.

To illustrate how you might use a MULTISET, suppose that your human

resources department wants to keep track of the bonuses awarded to

employees in the company. To track each employee’s bonuses over time, you

8-12 IBM Informix Database Design and Implementation Guide

can use a MULTISET to define a column in a table that records all the bonuses

that each employee receives. In the following example, the bonus column is a

MULTISET:

CREATE TABLE employee

(

 name CHAR(30),

 address CHAR (40),

 salary INTEGER,

 bonus MULTISET(MONEY NOT NULL)

);

You can use the bonus column in this statement to store and access the

collection of bonuses for each employee. A query against the bonus column

for any given row returns the dollar amount for each bonus that the employee

has received. Because an employee might receive multiple bonuses of the

same amount (resulting in a collection whose elements are not all unique), the

bonus column is defined as a MULTISET, which allows duplicate values.

Using LIST Collection Types

A LIST is an ordered collection of elements that allows duplicate values. A

LIST differs from a MULTISET in that each element in a LIST has an ordinal

position in the collection. The order of the elements in a list corresponds with

the order in which values are inserted into the LIST. You can define a column

as a LIST collection type when you want to store collections whose elements

have the following characteristics:

v The elements have a specific order associated with them.

v The elements might not be unique.

To illustrate how you might use a LIST, suppose your sales department wants

to keep a monthly record of the sales total for each salesperson. You can use a

LIST to define a column in a table that contains the monthly sales totals for

each salesperson. The following example creates a table in which the

month_sales column is a LIST. The first entry (element) in the LIST, with an

ordinal position of 1, might correspond to the month of January, the second

element, with an ordinal position of 2, February, and so forth:

CREATE TABLE sales_person

(

 name CHAR(30),

 month_sales LIST(MONEY NOT NULL)

);

You can use the month_sales column in this statement to store and access the

monthly sales totals for each salesperson. More specifically, you might

perform queries on the month_sales column to find out:

v The total sales that a salesperson generated during a specified month

v The total sales for every salesperson during a specified month

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-13

Nesting Collection Types

A nested collection is a collection type that contains another collection type. You

can nest any collection type within another collection type. There is no

practical limit on how deeply you can nest a collection type. However,

performing inserts or updates on a collection that has been nested more than

one or two levels can be difficult. The following example shows several ways

in which you might create columns that are defined on nested collection

types:

col_1 SET(MULTISET(VARCHAR(20) NOT NULL) NOT NULL);

col_2 MULTISET(ROW(x CHAR(5), y SET(INTEGER NOT NULL))

NOT NULL);

col_3 LIST(MULTISET(ROW(a CHAR(2), b INTEGER) NOT NULL)

NOT NULL);

For information about how to access a nested collection, see the IBM Informix:

Guide to SQL Tutorial.

Adding a Collection Type to an Existing Table

You can use the ALTER TABLE statement to add or drop a column that is a

collection type (or any other data type). For example, the following statement

adds the flowers column, which is defined as a SET, to the nursery table:

ALTER TABLE nursery ADD flower SET(VARCHAR(30) NOT NULL)

You cannot modify an existing column that is a collection type or convert a

non-collection type column into a collection type.

For more information on adding and dropping collection-type columns, see

the ALTER TABLE statement in the IBM Informix: Guide to SQL Syntax.

Restrictions on Collections

You cannot use any of the following data types as the element type of a

collection:

v TEXT

v BYTE

v SERIAL

v SERIAL8

You cannot use a CREATE INDEX statement to create an index on collection,

nor can you create a functional index for a collection column.

Named Row Types

A named row type is a group of fields that are defined under a single name. A

field refers to a component of a row type and should not be confused with a

column, which is associated with tables only. The fields of a named row type

8-14 IBM Informix Database Design and Implementation Guide

are analogous to the fields of a C-language structure or members of a class in

object-oriented programming. After you create a named row type, the name

that you assign to the row type represents a unique type within the database.

To create a named row type, you specify a name for the row type and the

names and data types of its constituent fields. The following example shows

how you might create a named row type called person_t:

CREATE ROW TYPE person_t

(

 name VARCHAR(30) NOT NULL,

 address VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip VARCHAR(9),

 bdate DATE

);

The person_t row type contains six fields: name, address, city, state, zip, and

bdate. When you create a named row type, you can use it just as you would

any other data type. The person_t can occur anywhere that you might use

any other data type. The following CREATE TABLE statement uses the

person_t data type:

CREATE TABLE sport_club

(

 sport CHAR(20),

 sportnum INT,

 member person_t,

 since DATE,

 paidup BOOLEAN

)

You can use most data types to define the fields of a row type. For

information about data types that are not supported in row types, see

“Restrictions on Named Row Types” on page 8-16.

For the syntax you use to create a named row type, see the CREATE ROW

TYPE statement in the IBM Informix: Guide to SQL Syntax. For information

about how to cast row type values, see Chapter 10, “Creating and Using

User-Defined Casts in Dynamic Server,” on page 10-1.

When to Use a Named Row Type

A named row type is one way to create a new data type in Dynamic Server.

When you create a named row type, you are defining a template for fields of

data types known to the database server. Thus the field definitions of a row

type are analogous to the column definitions of a table: both are constructed

from data types known to the database server.

You can create a named row type when you want a type that acts as a

container for component values that users need to access. For example, you

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-15

might create a named row type to support address values because users need

direct access to the individual component values of an address such as street,

city, state, and zip code. When you create the address type as a named row

type, users always have direct access to each of the fields.

In contrast, if you create an opaque data type to handle address values, a

C-language data structure stores all the address information. Because the

component values of an opaque type are encapsulated, you would have to

define functions to extract the component values for street, city, state, zip

code. Thus, an opaque data type is a more complicated type to define and

use.

Before you define a data type, determine whether the type is just a container

for a group of values that users can access directly. If the type fits this

description, use a named row type.

Choosing a Name for a Named Row Type

You can give a named row type any name that you like provided that the

name does not violate the conventions established for the SQL identifiers. The

conventions for SQL identifiers are described in the Identifier segment in the

IBM Informix: Guide to SQL Syntax. To avoid confusing type and table names,

the examples in this manual designate named row types with the _t characters

at the end of the row type name.

You must have the Resource privilege to create a named row type. The name

that you assign to a named row type should not be the same as any other

data type that exists in the database because all data types share the same

name space. In an ANSI-compliant database, the combination owner.type

must be unique within the database. In a database that is not ANSI-compliant,

the name must be unique within the database.

Important: You must grant USAGE privileges on a named row type before

other users can use it. For information about granting and

revoking privileges on named row types, see Chapter 12,

“Implementing a Dimensional Database (XPS),” on page 12-1.

Restrictions on Named Row Types

This section describes the restrictions that apply when you use named row

types.

Restrictions on Data Types: It is recommended that you use the BLOB or

CLOB data types instead of the TEXT or BYTE data types when you create a

typed table that contains columns for large objects. For backward

compatibility, you can create a named row type that contains TEXT or BYTE

fields and use that type to re-create an existing (untyped) table as a typed

table. However, although you can use a named row type that contains TEXT

8-16 IBM Informix Database Design and Implementation Guide

or BYTE fields to create a typed table, you cannot use such a row type as a

column. You can assign a named row type that contains BLOB or CLOB fields

to a typed table or column.

Restrictions on Constraints: In a CREATE ROW TYPE statement, you can

specify only the NOT NULL constraint for the fields of a named row type.

You must define all other constraints in the CREATE TABLE statement. For

more information, see the CREATE TABLE statement in the IBM Informix:

Guide to SQL Syntax.

Restrictions on Indexes: You cannot use a CREATE INDEX statement to

create an index on a named row type column. However, you can use a

user-defined routine to create a functional index for a row type column.

Restrictions on SERIAL Data Types: A named row type that contains a

SERIAL or SERIAL8 data type cannot be used as a column type in a table.

The following statements return an error when the database server attempts

to create the table:

CREATE ROW TYPE row_t (s_col SERIAL)

CREATE TABLE bad_tab (col1 row_t)

However, you can use a named row type that contains a SERIAL or SERIAL8

data type to create a typed table.

For information about the use and behavior of SERIAL and SERIAL8 types in

table hierarchies, see “SERIAL Types in a Table Hierarchy” on page 9-12.

Using a Named Row Type to Create a Typed Table

You can create a table that is typed or untyped. A typed table is a table that has

a named row type assigned to it. An untyped table is a table that does not have

a named row type assigned to it. The CREATE ROW TYPE statement creates a

named row type but does not allocate storage for instances of the row type.

To allocate storage for instances of a named row type, you must assign the

row type to a table. The following example shows how to create a typed table:

CREATE ROW TYPE person_t

(

 name VARCHAR(30),

 address VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip INTEGER,

 bdate DATE

);

CREATE TABLE person OF TYPE person_t;

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-17

The first statement creates the person_t type. The second statement creates the

person table, which contains instances of the person_t type. More specifically,

each row in a typed table contains an instance of the named row type that is

assigned to the table. In the preceding example, the fields of the person_t type

define the columns of the person table.

Important: The order in which you create named row types is important

because a named row type must exist before you can use it to

define a typed table.

Inserting data into a typed table is no different than inserting data into an

untyped table. When you insert data into a typed table, the operation creates

an instance of the row type and inserts it into the table. The following

example shows how to insert a row into the person table:

INSERT INTO person

VALUES (’Brown, James’, ’13 First St.’, ’San Carlos’, ’CA’, 94070,

’01/04/1940’)

The INSERT statement creates an instance of the person_t type and inserts it

into the table. For more information about how to insert, update, and delete

columns that are defined on named row types, see the IBM Informix: Guide to

SQL Tutorial.

You can use a single named row type to create multiple typed tables. In this

case, each table has a unique name, but all tables share the same type.

Important: You cannot create a typed table that is a temporary table.

For information on the advantages of using typed tables when you implement

your data model, see “Type Inheritance” on page 9-2.

Changing the Type of a Table

The primary advantage of typed tables over untyped tables is that typed

tables can be used in an inheritance hierarchy. In general, inheritance allows a

table to acquire the representation and behavior of another table. For more

information, see “What Is Inheritance?” on page 9-1.

The DROP and ADD clauses of the ALTER TABLE statement let you change

between typed and untyped tables. Neither the ADD nor DROP operation

affects the data that is stored in the table.

Converting an Untyped Table into a Typed Table: If you want to convert an

existing untyped table into a typed table, you can use the ALTER TABLE

statement. For example, consider the following untyped table:

8-18 IBM Informix Database Design and Implementation Guide

CREATE TABLE manager

(

 name VARCHAR(30),

 department VARCHAR(20),

 salary INTEGER

);

To convert an untyped table to a typed table, both the field names and the

field types of the named row type must match the column names and column

types of the existing table. For example, to make the manager table a typed

table, you must first create a named row type that matches the column

definitions of the table. The following statement creates the manager_t type,

which contains field names and field types that match the columns of the

manager table:

CREATE ROW TYPE manager_t

(

 name VARCHAR(30),

 department VARCHAR(20),

 salary INTEGER

);

After you create the named row type that you want to assign to the existing

untyped table, use the ALTER TABLE statement to assign the type to the

table. The following statement alters the manager table and makes it a typed

table of type manager_t:

ALTER TABLE manager ADD TYPE manager_t

The new manager table contains the same columns and data types as the old

table but now provides the advantages of a typed table.

Converting a Typed Table into an Untyped Table: You also use the ALTER

TABLE statement to change a typed table into an untyped table:

ALTER TABLE manager DROP TYPE

Tip: Adding a column to a typed table requires three ALTER TABLE

statements to drop the type, add the column, and add the type to the

table.

Using a Named Row Type to Create a Column

Both typed and untyped tables can contain columns that are defined on

named row types. A column that is defined on a named row type behaves in

the same way whether the column occurs in a typed table or untyped table. In

the following example, the first statement creates a named row type

address_t; the second statement assigns the address_t type to the address

column in the employee table:

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-19

CREATE ROW TYPE address_t

(

 street VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip VARCHAR(9)

);

CREATE TABLE employee

(

 name VARCHAR(30),

 address address_t,

 salary INTEGER

);

In the preceding CREATE TABLE statement, the address column has the

street, city, state, and zip fields of the address_t type. Consequently, the

employee table, which has only three columns, contains values for name,

street, city, state, zip, and salary. Use dot notation to access the individual

fields of a column that are defined on a row type. For information about

using dot notation to access fields of a column, see the IBM Informix: Guide to

SQL Tutorial.

When you insert data into a column that is assigned a row type, you need to

use the ROW constructor to specify row literal values for the row type. The

following example shows how to use the INSERT statement to insert a row

into the employee table:

INSERT INTO employee

VALUES (’John Bryant’,

 ROW(’10 Bay Street’, ’Madera’, ’CA’, 95400)::address_t, 55000);

Strong typing is not enforced for an insert or update on a named row type. To

ensure that the row values are of the named row type, you must explicitly

cast to the named row type to generate values of a named row type, as the

previous example shows. The INSERT statement inserts three values, one of

which is a row type value that contains four values. More specifically, the

operation inserts unitary values for the name and salary columns but it

creates an instance of the address_t type and inserts it into the address

column.

For more information about how to insert, update, and delete columns that

are defined on row types, see the IBM Informix: Guide to SQL Tutorial.

Using a Named Row Type Within Another Row Type

You can use a named row type as the data type of a field within another row

type. A nested row type is a row type that contains another row type. You can

nest any row type within any other row type. No practical limit exists on how

8-20 IBM Informix Database Design and Implementation Guide

deeply you can nest row types. However, to perform inserts or updates on

deeply nested row types requires careful use of the syntax.

For named row types, the order in which you create the row types is

important because a named row type must exist before you can use it to

define a column or a field within another row type. In the following example,

the first statement creates the address_t type, which is used in the second

statement to define the type of the address field of the employee_t type:

CREATE ROW TYPE address_t

(

 street VARCHAR (20),

 city VARCHAR(20),

 state CHAR(2),

 zip VARCHAR(9)

);

CREATE ROW TYPE employee_t

(

 name VARCHAR(30) NOT NULL,

 address address_t,

 salary INTEGER

);

Important: You cannot use a row type recursively. If type_t is a row type,

then you cannot use type_t as the data type of a field contained in

type_t.

Dropping Named Row Types

To drop a named row type, use the DROP ROW TYPE statement. You can

drop a type only if it has no dependencies. You cannot drop a named row

type if any of the following conditions are true:

v The type is currently assigned to a table.

v The type is currently assigned to a column in a table.

v The type is currently assigned to a field within another row type.

The following example shows how to drop the person_t type:

DROP ROW TYPE person_t restrict;

For information about how to drop a named row type from a type hierarchy,

see “Dropping Named Row Types from a Type Hierarchy” on page 9-6.

Unnamed Row Types

An unnamed row type is a group of typed fields that you create with the ROW

constructor. An important distinction between named and unnamed row types

is that you cannot assign an unnamed row type to a table. You use an

unnamed row type to define the type of a column or field only. In addition,

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-21

an unnamed row type is identified by its structure alone, whereas a named

row type is identified by its name. The structure of a row type consists of the

number and data types of its fields.

The following statement assigns two unnamed row types to columns of the

student table:

CREATE TABLE student

(

 s_name ROW(f_name VARCHAR(20), m_init CHAR(1),

 l_name VARCHAR(20) NOT NULL),

 s_address ROW(street VARCHAR(20), city VARCHAR(20),

 state CHAR(2), zip VARCHAR(9))

);

The s_name and s_address columns of the student table each contain multiple

fields. Each field of an unnamed row type can have a different data type.

Although the student table has only two columns, the unnamed row types

define a total of seven fields: f_name, m_init, l_name, street, city, state, and

zip.

The following example shows how to use the INSERT statement to insert data

into the student table:

INSERT INTO student

VALUES (ROW(’Jim’, ’K’, ’Johnson’), ROW(’10 Grove St.’,

’Eldorado’, ’CA’, 94108))

For more information about how to modify columns that are defined on row

types, see the IBM Informix: Guide to SQL Tutorial.

The database server does not distinguish between two unnamed row types

that contain the same number of fields and that have corresponding fields of

the same type. Field names are irrelevant in type checking of unnamed row

types. For example, the database server does not distinguish between the

following unnamed row types:

ROW(a INTEGER, b CHAR(4));

ROW(x INTEGER, y CHAR(4));

For the syntax of unnamed row types, see the IBM Informix: Guide to SQL

Syntax. For information about how to cast row type values, see Chapter 10,

“Creating and Using User-Defined Casts in Dynamic Server,” on page 10-1.

The following data types cannot be field types in an unnamed row type:

v SERIAL

v SERIAL8

v BYTE

v TEXT

8-22 IBM Informix Database Design and Implementation Guide

The database server returns an error when any of the preceding types are

specified in the field definition of an unnamed row type.

Chapter 8. Creating and Using Extended Data Types in Dynamic Server 8-23

8-24 IBM Informix Database Design and Implementation Guide

Chapter 9. Understanding Type and Table Inheritance in

Dynamic Server

What Is Inheritance? . 9-1

Type Inheritance . 9-2

Defining a Type Hierarchy . 9-2

Overloading Routines for Types in a Type Hierarchy 9-4

Inheritance and Type Substitutability . 9-5

Dropping Named Row Types from a Type Hierarchy 9-6

Table Inheritance . 9-7

The Relationship Between Type and Table Hierarchies 9-7

Defining a Table Hierarchy . 9-8

Inheritance of Table Behavior in a Table Hierarchy 9-9

Modifying Table Behavior in a Table Hierarchy 9-10

Constraints on Tables in a Table Hierarchy 9-11

Adding Indexes to Tables in a Table Hierarchy 9-11

Triggers on Tables in a Table Hierarchy 9-12

SERIAL Types in a Table Hierarchy . 9-12

Adding a New Table to a Table Hierarchy 9-13

Dropping a Table in a Table Hierarchy . 9-14

Altering the Structure of a Table in a Table Hierarchy 9-14

Querying Tables in a Table Hierarchy . 9-15

Creating a View on a Table in a Table Hierarchy 9-15

In This Chapter

This chapter describes type and table inheritance and shows how to create

type and table hierarchies to modify the types and tables within the respective

hierarchies.

What Is Inheritance?

Inheritance is the process that allows a type or a table to acquire the properties

of another type or table. The type or table that inherits the properties is called

the subtype or subtable. The type or table whose properties are inherited is

called the supertype or supertable. Inheritance allows for incremental

modification so that a type or table can inherit a general set of properties and

add properties that are specific to itself. You can use inheritance to make

modifications only to the extent that the modifications do not alter the

inherited supertypes or supertables.

Dynamic Server supports inheritance only for named row types and typed

tables. Dynamic Server supports only single inheritance. With single

inheritance, each subtype or subtable has only one supertype or supertable.

© Copyright IBM Corp. 1996, 2004 9-1

Type Inheritance

Type inheritance applies to named row types only. You can use inheritance to

group named row types into a type hierarchy in which each subtype inherits

the representation (data fields) and the behavior (UDRs, aggregates, and

operators) of the supertype under which it is defined. A type hierarchy

provides the following advantages:

v It encourages modular implementation of your data model.

v It ensures consistent reuse of schema components.

v It ensures that no data fields are accidentally left out.

v It allows a type to inherit UDRs that are defined on another data type.

Defining a Type Hierarchy

Figure 9-1 on page 9-2 provides an example of a simple type hierarchy that

contains three named row types.

The supertype at the top of the type hierarchy contains a group of fields that

all underlying subtypes inherit. A supertype must exist before you can create

its subtype. The following example creates the person_t supertype of the type

hierarchy that Figure 9-1 on page 9-2 shows:

CREATE ROW TYPE person_t

(

 name VARCHAR(30) NOT NULL,

 address VARCHAR(20),

 city VARCHAR(20),

 state CHAR(2),

 zip INTEGER,

 bdate DATE

);

To create a subtype, specify the UNDER keyword and the name of the

supertype whose properties the subtype inherits. The following example

illustrates how you might define employee_t as a subtype that inherits all the

fields of person_t. The example adds salary and manager fields that do not

exist in the person_t type.

Figure 9-1. Example of a Type Hierarchy

9-2 IBM Informix Database Design and Implementation Guide

CREATE ROW TYPE employee_t

(

 salary INTEGER,

 manager VARCHAR(30)

)

UNDER person_t;

Important: You must have the UNDER privilege on the supertype before you

can create a subtype that inherits the properties of the supertype.

For information about UNDER privileges, see Chapter 12,

“Implementing a Dimensional Database (XPS),” on page 12-1.

In the type hierarchy in Figure 9-1 on page 9-2, sales_rep_t is a subtype of

employee_t, which is the supertype of sales_rep_t in the same way that

person_t is the supertype of employee_t. The following example creates

sales_rep_t, which inherits all fields from person_t and employee_t and adds

four new fields. Because the modifications on a subtype do not affect its

supertype, employee_t does not have the four fields that are added for

sales_rep_t.

CREATE ROW TYPE sales_rep_t

(

rep_num INT8,

region_num INTEGER,

commission DECIMAL,

home_office BOOLEAN

)

UNDER employee_t;

The sales_rep_t type contains 12 fields: name, address, city, state, zip, bdate,

salary, manager, rep_num, region_num, commission, and home_office.

Instances of both the employee_t and sales_rep_t types inherit all the UDRs

that are defined for the person_t type. Any additional UDRs that are defined

on employee_t automatically apply to instances of the employee_t type and

to instances of its subtype sales_rep_t, but not to instances of person_t.

The preceding type hierarchy is an example of single inheritance because each

subtype inherits from a single supertype. Figure 9-2 illustrates how you can

define multiple subtypes under a single supertype. Although single

inheritance requires that every subtype inherits from one and only one

supertype, no practical limit exists on the depth or breadth of the type

hierarchy that you define.

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-3

The topmost type of any hierarchy is referred to as the root supertype. In

Figure 9-2, person_t is the root supertype of the hierarchy. Except for the root

supertype, any type in the hierarchy can be potentially both a supertype and

subtype at the same time. For example, customer_t is a subtype of person_t

and a supertype of us_customer_t. A subtype at the lower levels of the

hierarchy contains properties of the root supertype but does not directly

inherit its properties from the root supertype. For example, us_customer_t has

only one supertype, customer_t, but because customer_t is itself a subtype of

person_t, the fields and routines that customer_t inherits from person_t are

also inherited by us_customer_t.

Overloading Routines for Types in a Type Hierarchy

Routine overloading refers to the ability to assign one name to multiple routines

and specify different types of arguments on which the routines can operate. In

a type hierarchy, a subtype automatically inherits the routines that are defined

on its supertype. However you can define a new routine on a subtype to

override the inherited routine with the same name. For example, suppose you

create a getinfo() routine on type person_t that returns the last name and

birthdate of an instance of type person_t. You can register another getinfo()

routine on type employee_t that returns the last name and salary from an

instance of employee_t. In this way, you can overload a routine, so that you

have a customized routine for every type in the type hierarchy, as Figure 9-3

shows.

Figure 9-2. Example of a Type Hierarchy That Is a Tree Structure

9-4 IBM Informix Database Design and Implementation Guide

When you overload a routine so that routines are defined with the same name

but different arguments for different types in the type hierarchy, the argument

that you specify determines which routine executes. For example, if you call

getinfo() with an argument of type employee_t, a getinfo() routine defined on

type employee_t overrides the inherited routine of the same name. Similarly,

if you define another getinfo() on type sales_rep_t, a call to getinfo() with an

argument of type sales_rep_t overrides the routine that sales_rep_t inherits

from employee_t.

For information about how to create and register user-defined routines

(UDRs), see IBM Informix: User-Defined Routines and Data Types Developer's

Guide.

Inheritance and Type Substitutability

In a type hierarchy, a subtype automatically inherits all the routines defined

on its supertype. Consequently, if you call a routine with an argument of a

subtype and no routines are defined on the subtype, the database server can

invoke a routine that is defined on a supertype. Type substitutability refers to

the ability to use an instance of a subtype when an instance of a supertype is

expected. As an example, suppose that you create a routine p_info() that

accepts an argument of type person_t and returns the last name and birthdate

of an instance of type person_t. If no other p_info() routines are registered,

and you invoke p_info() with an argument of type employee_t, the routine

returns the name and birthdate fields (inherited from person_t) from an

instance of type employee_t. This behavior is possible because employee_t

inherits the functions of its supertype, person_t.

In general, when the database server attempts to evaluate a routine, the

database server searches for a signature that matches the routine name and

the arguments that you specify when you invoke the routine. If such a routine

is found, then the database server uses this routine. If an exact match is not

found, the database server attempts to find a routine with the same name and

whose argument type is a supertype of the argument type that is specified

when the routine is invoked. Figure 9-4 on page 9-6 shows how the database

server searches for a routine that it can use when a get() routine is called with

Figure 9-3. Example of Routine Overloading in a Type Hierarchy

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-5

an argument of the subtype sales_rep_t. Although no get() routine has been

defined on the sales_rep_t type, the database server searches for a routine

until it finds a get() routine that has been defined on a supertype in the

hierarchy. In this case, neither sales_rep_t nor its supertype employee_t has a

get() routine defined over it. However, because a routine is defined for

person_t, this routine is invoked to operate on an instance of sales_rep_t.

The process in which the database server searches for a routine that it can use

is called routine resolution. For more information about routine resolution, see

IBM Informix: User-Defined Routines and Data Types Developer's Guide.

Dropping Named Row Types from a Type Hierarchy

To drop a named row type from a type hierarchy, use the DROP ROW TYPE

statement. However, you can drop a type only if it has no dependencies. You

cannot drop a named row type if either of the following conditions is true:

v The type is currently assigned to a table.

v The type is a supertype of another type.

The following example shows how to drop the sales_rep_t type:

DROP ROW TYPE sales_rep_t RESTRICT;

To drop a supertype, you must first drop each subtype that inherits properties

from the supertype. You drop types in a type hierarchy in the reverse order in

which you create the types. For example, to drop the person_t type that

Figure 9-4 shows, you must first drop its subtypes in the following order:

DROP ROW TYPE sale_rep_t RESTRICT;

DROP ROW TYPE employee_t RESTRICT;

DROP ROW TYPE person_t RESTRICT;

Important: To drop a type, you must be the database administrator or the

owner of the type.

Figure 9-4. Example of How the Database Server Searches for a Routine in a Type Hierarchy

9-6 IBM Informix Database Design and Implementation Guide

Table Inheritance

Only tables that are defined on named row types support table inheritance.

Table inheritance is the property that allows a table to inherit the behavior

(constraints, storage options, triggers) from the supertable above it in the table

hierarchy. A table hierarchy is the relationship that you can define among tables

in which subtables inherit the behavior of supertables. A table inheritance

provides the following advantages:

v It encourages modular implementation of your data model.

v It ensures consistent reuse of schema components.

v It allows you to construct queries whose scope can be some or all of the

tables in the table hierarchy.

In a table hierarchy, a subtable automatically inherits the following properties

from its supertable:

v All constraint definitions (primary key, unique, and referential constraints)

v Storage option

v All triggers

v Indexes

v Access method

The Relationship Between Type and Table Hierarchies

Every table in a table hierarchy must be assigned to a named row type in a

corresponding type hierarchy. Figure 9-5 shows an example of the

relationships that can exist between a type hierarchy and table hierarchy.

However, you can also define a type hierarchy in which the named row types

do not necessarily have a one-to-one correspondence with the tables in a table

hierarchy. Figure 9-6 shows how you might create a type hierarchy for which

only some of the named row types have been assigned to tables.

Figure 9-5. Example of the Relationship Between Type Hierarchy and Table Hierarchy

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-7

Defining a Table Hierarchy

The type that you use to define a table must exist before you can create the

table. Similarly, you define a type hierarchy before you define a corresponding

table hierarchy. To establish the relationships between specific subtables and

supertables in a table hierarchy, use the UNDER keyword. The following

CREATE TABLE statements define the simple table hierarchy that Figure 9-5

on page 9-7 shows. The examples in this section assume that the person_t,

employee_t, and sales_rep_t types already exist.

CREATE TABLE person OF TYPE person_t;

CREATE TABLE employee OF TYPE employee_t UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t UNDER employee;

The person, employee, and sales_rep tables are defined on the person_t,

employee_t, and sales_rep_t types, respectively. Thus, for every type in the

type hierarchy, a corresponding table exists in the table hierarchy. In addition,

the relationship between the tables of a table hierarchy must match the

relationship between the types of the type hierarchy. For example, the

employee table inherits from person table in the same way that the

employee_t type inherits from the person_t type, and the sales_rep table

inherits from the employee table in the same way that the sales_rep_t type

inherits from the employee_t type.

Subtables automatically inherit all inheritable properties that are added to

supertables. Therefore, you can add or alter the properties of a supertable at

Figure 9-6. Example of an Inheritance Hierarchy in Which Only Some Types Have Been Assigned

to Tables

9-8 IBM Informix Database Design and Implementation Guide

any time and the subtables automatically inherit the changes. For more

information, see “Modifying Table Behavior in a Table Hierarchy” on page

9-10.

Important: You must have the UNDER privilege on the supertable before you

can create a subtable that inherits the properties of the supertable.

For more information, see “Under Privileges for Typed Tables

(IDS)” on page 6-8.

Inheritance of Table Behavior in a Table Hierarchy

When you create a subtable under a supertable, the subtable inherits all the

properties of its supertable, including the following ones:

v All columns of the supertable

v Constraint definitions

v Storage options

v Indexes

v Referential integrity

v Triggers

v The access method

In addition, if table c inherits from table b and table b inherits from table a,

then table c automatically inherits the behavior unique to table b as well as

the behavior that table b has inherited from table a. Consequently, the

supertable that actually defines behavior can be several levels distant from the

subtables that inherit the behavior. For example, consider the following table

hierarchy:

CREATE TABLE person OF TYPE person_t

(PRIMARY KEY (name))

FRAGMENT BY EXPRESSION

name < ’n’ IN dbspace1,

name >= ’n’ IN dbspace2;

CREATE TABLE employee OF TYPE employee_t

(CHECK(salary > 34000))

UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t

LOCK MODE ROW

UNDER employee;

In this table hierarchy, the employee and sales_rep tables inherit the primary

key name and fragmentation strategy of the person table. The sales_rep table

inherits the check constraint of the employee table and adds a LOCK MODE.

The following table shows the behavior for each table in the hierarchy.

Table Table Behavior

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-9

person PRIMARY KEY, FRAGMENT BY EXPRESSION

employee PRIMARY KEY, FRAGMENT BY EXPRESSION, CHECK

constraint

sales_rep PRIMARY KEY, FRAGMENT BY EXPRESSION, CHECK

constraint, LOCK MODE ROW

 A table hierarchy might also contain subtables in which behavior defined on a

subtable can override behavior (otherwise) inherited from its supertable.

Consider the following table hierarchy, which is identical to the previous

example except that the employee table adds a new storage option:

CREATE TABLE person OF TYPE person_t

(PRIMARY KEY (name))

FRAGMENT BY EXPRESSION

name < ’n’ IN person1,

name >= ’n’ IN person2;

CREATE TABLE employee OF TYPE employee_t

(CHECK(salary > 34000))

FRAGMENT BY EXPRESSION

name < ’n’ IN employ1,

name >= ’n’ IN employ2

UNDER person;

CREATE TABLE sales_rep OF TYPE sales_rep_t

LOCK MODE ROW

UNDER employee;

Again, the employee and sales_rep tables inherit the primary key name of the

person table. However, the fragmentation strategy of the employee table

overrides the fragmentation strategy of the person table. Consequently, both

the employee and sales_rep tables store data in dbspaces employ1 and

employ2, whereas the person table stores data in dbspaces person1 and

person2.

Modifying Table Behavior in a Table Hierarchy

Once you define a table hierarchy, you cannot modify the structure (columns)

of the existing tables. However, you can modify the behavior of tables in the

hierarchy. Table 9-1 on page 9-11 shows the table behavior that you can

modify in a table hierarchy and the syntax that you use to make

modifications.

9-10 IBM Informix Database Design and Implementation Guide

Table 9-1. Table Behavior That You Can Modify in a Table Hierarchy

Table Behavior Syntax Considerations

Constraint definitions ALTER TABLE To add or drop a constraint, use the ADD

CONSTRAINT or DROP CONSTRAINT clause.

For more information, see “Constraints on

Tables in a Table Hierarchy” on page 9-11.

Indexes CREATE INDEX, ALTER

INDEX

For more information, see “Adding Indexes to

Tables in a Table Hierarchy” on page 9-11 and

the CREATE INDEX and ALTER INDEX

statements in the IBM Informix: Guide to SQL

Syntax.

Triggers CREATE/DROP TRIGGER You cannot drop an inherited trigger. However,

you can drop a trigger from a supertable or add

a trigger to a subtable to override an inherited

trigger. For information about how to modify

triggers on supertables and subtables, see

“Triggers on Tables in a Table Hierarchy” on

page 9-12. For information about how to create

a trigger, see the IBM Informix: Guide to SQL

Tutorial.

All existing subtables automatically inherit new table behavior when you

modify a supertable in the hierarchy.

Important: When you use the ALTER TABLE statement to modify a table in a

table hierarchy, you can use only the ADD CONSTRAINT, DROP

CONSTRAINT, MODIFY NEXT SIZE, and LOCK MODE clauses.

Constraints on Tables in a Table Hierarchy

You can alter or drop a constraint only in the table on which it is defined. You

cannot drop or alter a constraint from a subtable when the constraint is

inherited. However, a subtable can add additional constraints. Any additional

constraints that you define on a table are also inherited by any subtables that

inherit from the table that defines the constraint. Because constraints are

additive, all inherited and current (added) constraints apply.

Adding Indexes to Tables in a Table Hierarchy

When you define an index on a supertable in a hierarchy, any subtables that

you define under that supertable also inherit the index. Suppose you have a

table hierarchy that contains the tables tab_a, tab_b, and tab_c where tab_a is

a supertable to tab_b, and tab_b is a supertable to tab_c. If you create an

index on a column of tab_b, then that index will exist on that column in both

tab_b and tab_c. If you create an index on a column of tab_a, then that index

will span tab_a, tab_b, and tab_c.

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-11

Important: An index that a subtable inherits from a supertable cannot be

dropped or modified. However, you can add indexes to a

subtable.

Indexes, unique constraints, and primary keys are all closely related. When

you specify a unique constraint or primary key, the database server

automatically creates a unique index on the column. Consequently, a primary

key or unique constraint that you define on a supertable applies to all the

subtables. For example, suppose there are two tables (a supertable and

subtable), both of which contain a column emp_id. If the supertable specifies

that emp_id has a unique constraint, the subtable must contain emp_id values

that are unique across both the subtable and the supertable.

Important: You cannot define more than one primary key across a table

hierarchy, even if some of the tables in the hierarchy do not

inherit the primary key.

Triggers on Tables in a Table Hierarchy

You cannot drop an inherited trigger. However, you can create a trigger on a

subtable to override a trigger that the subtable inherits from a supertable.

Unlike constraints, triggers are not additive; only the nearest trigger on a

supertable in the hierarchy applies.

If you want to disable the trigger that a subtable inherits from its supertable,

you can create an empty trigger on the subtable to override the trigger from

the supertable. Because triggers are not additive, this empty trigger executes

for the subtable and any subtables under the subtable, which are not subject

to further overrides.

SERIAL Types in a Table Hierarchy

A table hierarchy can contain columns of type SERIAL and SERIAL8.

However, only one SERIAL and one SERIAL8 column are allowed across a

table hierarchy. Suppose you create the following type and table hierarchy:

CREATE ROW TYPE parent_t (a INT);

CREATE ROW TYPE child1_t (s_col SERIAL) UNDER parent_t;

CREATE ROW TYPE child2_t (s8_col SERIAL8) UNDER child1_t;

CREATE ROW TYPE child3_t (d FLOAT) UNDER child2_t;

CREATE TABLE parent_tab of type parent_t;

CREATE TABLE child1_tab of type child1_t UNDER parent_tab;

CREATE TABLE child2_tab of type child2_t UNDER child1_tab;

CREATE TABLE child3_tab of type child3_t UNDER child2_tab;

The parent_tab table does not contain a SERIAL type. The child1_tab

introduces a SERIAL counter into the hierarchy. The child2_tab inherits the

SERIAL column from child1_tab and adds a SERIAL8 column. The child3_tab

inherits both a SERIAL and SERIAL8 column.

9-12 IBM Informix Database Design and Implementation Guide

A 0 value inserted into the s_col or s8_col column for any table in the

hierarchy inserts a monotonically increasing value, regardless of which table

takes the insert.

You cannot set a starting counter value for a SERIAL or SERIAL8 type in

CREATE ROW TYPE statements. To set a starting value for a SERIAL or

SERIAL8 column in a table hierarchy, you can use the ALTER TABLE

statement. The following statement shows how to alter a table to modify the

next SERIAL and SERIAL8 values to be inserted anywhere in the table

hierarchy:

ALTER TABLE child3_tab

MODIFY (s_col SERIAL(100), s8_col SERIAL8 (200))

Except for the previously described behavior, all the rules that apply to

SERIAL and SERIAL8 type columns in untyped tables also apply to SERIAL

and SERIAL8 type columns in table hierarchies. For more information, see

Chapter 3, “Choosing Data Types,” on page 3-1 and the IBM Informix: Guide to

SQL Reference.

Adding a New Table to a Table Hierarchy

After you define a table hierarchy, you cannot use the ALTER TABLE

statement to add, drop, or modify columns of a table within the hierarchy.

However, you can add new subtypes and subtables to an existing hierarchy

provided that the new subtype and subtable do not interfere with existing

inheritance relationships. Figure 9-7 illustrates one way that you might add a

type and corresponding table to an existing hierarchy. The dashed lines

indicate the added subtype and subtable.

Figure 9-7. Example of How You Might Add a Subtype and Subtable to an Existing Inheritance

Hierarchy

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-13

The following statements show how you might add the type and table to the

inheritance hierarchy that Figure 9-7 shows:

CREATE ROW TYPE us_sales_rep_t (domestic_sales DECIMAL(15,2))

UNDER employee_t;

CREATE TABLE us_sales_rep OF TYPE us_sales_rep_t

UNDER sales_rep;

You can also add subtypes and subtables that branch from an existing

supertype and its parallel supertable. Figure 9-8 shows how you might add

the customer_t type and customer table to existing hierarchies. In this

example, both the customer table and the employee table inherit properties

from the person table.

The following statements create the customer_t type and customer table

under the person_t type and person table, respectively:

CREATE ROW TYPE customer_t (cust_num INTEGER) UNDER person_t;

CREATE TABLE customer OF TYPE customer_t UNDER person;

Dropping a Table in a Table Hierarchy

If a table and its corresponding named row type have no dependencies (they

are not a supertable and supertype), you can drop the table and its type. You

must drop the table before you can drop the type. For general information

about dropping a table, see the DROP TABLE statement in the IBM Informix:

Guide to SQL Syntax. For information about how to drop a named row type,

see “Dropping Named Row Types” on page 8-21.

Altering the Structure of a Table in a Table Hierarchy

You cannot use the ALTER TABLE statement to add, drop, or modify the

columns of a table in a table hierarchy. You can use the ALTER TABLE

statement to add, drop, or modify constraints.

Figure 9-8. Example of Adding a Type and Table Under an Existing Supertype and Supertable

9-14 IBM Informix Database Design and Implementation Guide

The process of adding, dropping, or modifying a column of a table in a table

hierarchy (or otherwise altering the structure of a table) can be a

time-intensive task.

 To alter the structure of a table in a table hierarchy:

1. Download data from all subtables and the supertable that you want to

modify.

2. Drop the subtables and subtypes.

3. Modify the unloaded data file.

4. Modify the supertable.

5. Re-create the subtypes and subtables.

6. Upload the data.

Querying Tables in a Table Hierarchy

A table hierarchy allows you to construct a SELECT, UPDATE, or DELETE

statement whose scope is a supertable and its subtables—in a single SQL

command. For example, a query against any supertable in a table hierarchy

returns data for all columns of the supertable and the columns that subtables

inherit from the supertable. To limit the results of a query to one table in the

table hierarchy, you must include the ONLY keyword in the query. For more

information about how to query and modify data from tables in a table

hierarchy, see the IBM Informix: Guide to SQL Tutorial.

Creating a View on a Table in a Table Hierarchy

You can create a view based upon any table in a table hierarchy. For example,

the following statement creates a view on the person table, which is the root

supertable of the table hierarchy that Figure 9-5 on page 9-7 shows:

CREATE VIEW name_view AS SELECT name FROM person

Because the person table is a supertable, the view name_view displays data

from the name column of the person, employee, and sales_rep tables. To

create a view that displays only data from the person table, use the ONLY

keyword, as the following example shows:

CREATE VIEW name_view AS SELECT name FROM ONLY(person)

Important: You cannot perform an insert or update on a view that is defined

on a supertable because the database server cannot know where in

the table hierarchy to put the new rows.

For information about how to create a typed view, see “Typed Views (IDS)”

on page 6-22.

Chapter 9. Understanding Type and Table Inheritance in Dynamic Server 9-15

9-16 IBM Informix Database Design and Implementation Guide

Chapter 10. Creating and Using User-Defined Casts in

Dynamic Server

What Is a Cast? . 10-1

Creating User-Defined Casts . 10-2

Invoking Casts . 10-3

Restrictions on User-Defined Casts . 10-3

Casting Row Types . 10-4

Casting Between Named and Unnamed Row Types 10-4

Casting Between Unnamed Row Types . 10-5

Casting Between Named Row Types . 10-6

Using Explicit Casts on Fields . 10-6

Explicit Casts on Fields of an Unnamed Row Type 10-6

Explicit Casts on Fields of a Named Row Type 10-7

Casting Individual Fields of a Row Type . 10-8

Casting Collection Data Types . 10-8

Restrictions on Collection-Type Conversions 10-9

Collections with Different Element Types 10-9

Using an Implicit Cast Between Element Types 10-9

Using an Explicit Cast Between Element Types 10-9

Converting Relational Data to a MULTISET Collection 10-10

Casting Distinct Data Types . 10-10

Using Explicit Casts with Distinct Types 10-10

Casting Between a Distinct Type and Its Source Type 10-11

Adding and Dropping Casts on a Distinct Type 10-12

Casting to Smart Large Objects . 10-13

Creating Cast Functions for User-Defined Casts 10-13

An Example of Casting Between Named Row Types 10-14

An Example of Casting Between Distinct Data Types 10-14

Multilevel Casting . 10-16

In This Chapter

This chapter describes user-defined casts and shows how to use run-time casts

to perform data conversions on extended data types.

What Is a Cast?

A cast is a mechanism that converts a value from one data type to another

data type. Casts allow you to make comparisons between values of different

data types or substitute a value of one data type for a value of another data

type. Dynamic Server supports casts in the following types of expressions:

v Column expressions

v Constant expressions

© Copyright IBM Corp. 1996, 2004 10-1

v Function expressions

v SPL variables

v Host variables (ESQL)

v Statement local variable (SLV) expressions

To convert a value of one data type to another data type, a cast must exist in

the database or the database server. Dynamic Server supports the following

types of casts:

v Built-in cast. A built-in cast is a cast that is built into the database server. A

built-in cast performs automatic conversions between different built-in data

types.

v User-defined cast. A user-defined cast often requires a cast function to

handle conversions from one data type to another. To register and use a

user-defined cast, you must use the CREATE CAST statement.

A user-defined cast is explicit if you include the EXPLICIT keyword when you

create a cast with the CREATE CAST statement. (The default option is

explicit.) Explicit casts are never invoked automatically. To invoke an explicit

cast, you must use the CAST... AS keywords or the double colon (::) cast

operator.

A user-defined cast is implicit if you include the IMPLICIT keyword when you

create a cast with a CREATE CAST statement. The database server

automatically invokes implicit casts at runtime to perform data conversions.

All casts are included in the syscasts system catalog table. For information

about syscasts, see the IBM Informix: Guide to SQL Reference.

Creating User-Defined Casts

When the database server does not provide built-in casts to perform

conversions between two data types, you can create a user-defined cast to

handle the data type conversion. User-defined casts are typically used to

provide data type conversions for the following extended data types:

v Opaque data types. Developers of opaque data types must define casts to

handle conversions between the internal/external representations of the

opaque data type. For information about how to create and register casts

for opaque data types, see IBM Informix: User-Defined Routines and Data

Types Developer's Guide.

v Distinct data types. You cannot directly compare a distinct data type to its

source type. However, Dynamic Server automatically registers explicit casts

from the distinct type to the source type and vice versa. A distinct type

does not inherit the casts that are defined on its source type. In addition,

the user-defined casts that you might define on a distinct type are not

available to its source type. For more information and examples that show

10-2 IBM Informix Database Design and Implementation Guide

how to create and use casts on distinct types, see “Creating Cast Functions

for User-Defined Casts” on page 10-13.

v Named row types. In most cases, you can explicitly cast a named row type

to another row-type value without having to create the cast. However, to

convert between values of a named row type and some other data type,

you must first create the cast to handle the conversion.

For an example of how to create and use a user-defined cast, see “An

Example of Casting Between Distinct Data Types” on page 10-14. For the

syntax of the CREATE CAST statement, see the IBM Informix: Guide to SQL

Syntax.

Invoking Casts

For built-in casts and user-defined implicit casts, the database server

automatically (implicitly) invokes the cast to handle the data conversion. For

example, you can compare a value of type INT with SMALLINT, FLOAT, or

CHAR values without explicitly casting the expression because the database

server provides system-defined casts to transparently handle conversions

between these built-in data types.

When you define an explicit user-defined cast to handle conversions between

two data types, you must explicitly invoke the cast with either the CAST...AS

keywords or the double-colon cast operator (::). The following partial

examples show the two ways that you can invoke an explicit cast:

... WHERE new_col = CAST(old_col AS newtype)

... WHERE new_col = old_col::newtype

Restrictions on User-Defined Casts

You cannot create a user-defined cast between two built-in data types. You

also cannot create a user-defined cast that includes any of the following data

types:

v Collection data types: LIST, MULTISET, or SET

v Unnamed row types

v Smart-large-object data types: CLOB or BLOB

v Simple-large-object data types: TEXT or BYTE

In general, a cast between two data types requires that each data type

represents the same number of component values. For example, a cast

between a row type and an opaque data type is possible if each field in the

row type has a corresponding field in the opaque data type. When you want

to perform conversions between two data types that have the same storage

structure, you can use the CREATE CAST statement without a cast function.

Otherwise, you must create a cast function that you then register with a

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-3

CREATE CAST statement. For an example of how to use a cast function to

create a user-defined cast, see “Creating Cast Functions for User-Defined

Casts” on page 10-13.

Casting Row Types

You can compare or substitute between values of any two row types (named

or unnamed) only when both row types have the same number of fields, and

one of the following conditions is also true:

v All corresponding fields of the two row types have the same data type.

Two row types are considered structurally equivalent when they have the

same number of fields and the data types of corresponding fields are the

same.

v User-defined casts exist to perform the conversions when two named row

types are being compared.

v System-defined or user-defined casts exist to perform the necessary

conversions for corresponding field values that are not of the same data

type.

When the corresponding fields are not of the same data type, you can use

either system-defined casts or user-defined casts to handle data conversions

on the fields.

If a built-in cast exists to handle data conversions on the individual fields, you

can explicitly cast the value of one row type to the other row type (unless the

row types are both unnamed row types, in which case an explicit cast is not

necessary).

If a built-in cast does not exist to handle field conversions, you can create a

user-defined cast to handle the field conversions. The cast can be either

implicit or explicit.

In general, when a row type is cast to another row type, the individual field

conversions might be handled with explicit or implicit casts. When the

conversion between corresponding fields requires an explicit cast, the value of

the field that is cast must match the value of the corresponding field exactly,

because the database server applies no additional implicit casts on a value

that has been explicitly cast.

Casting Between Named and Unnamed Row Types

To compare values of a named row type with values of an unnamed row

type, you can use an explicit cast. Suppose that you create the following

named row type and tables:

10-4 IBM Informix Database Design and Implementation Guide

CREATE ROW TYPE info_t (x CHAR(1), y CHAR(20))

CREATE TABLE customer (cust_info info_t)

CREATE TABLE retailer (ret_info ROW (a CHAR(1), b CHAR(20)))

INSERT INTO customer2 VALUES(ROW(’t’,’philips’)::info_t2)

The following INSERT statements show how to create row-type values for the

customer and retailer tables:

INSERT INTO customer VALUES(ROW(’t’,’philips’)::info_t)

INSERT INTO retailer VALUES(ROW(’f’,’johns’))

To compare or substitute data from the customer table with data from retailer

table, you must use an explicit cast to convert a value of one row type to the

other row type. In the following query, the ret_info column (an unnamed row

type) is explicitly cast to info_t (a named row type):

SELECT cust_info

FROM customer, retailer

WHERE cust_info = ret_info::info_t

In general, to perform a conversion between a named row type and an

unnamed row type, you must explicitly cast one row type to the other row

type. You can perform an explicit cast in either direction: you can cast the

named row type to an unnamed row type or cast the unnamed row type to a

named row type. The following statement returns the same results as the

previous example. However, the named row type in this example is explicitly

cast to the unnamed row type:

SELECT cust_info

FROM customer, retailer

WHERE cust_info::ROW(a CHAR(1), b CHAR(20)) = ret_info

Casting Between Unnamed Row Types

You can compare two unnamed row types that are structurally equivalent

without an explicit cast. You can also compare an unnamed row type with

another unnamed row type, if both row types have the same number of fields,

and casts exist to convert values of corresponding fields that are not of the

same data type. In other words, the cast from one unnamed row type to

another is implicit if all the casts that handle field conversions are

system-defined or implicit casts. Otherwise, you must explicitly cast an

unnamed row type to compare it with another row type.

Suppose you create the following prices table:

CREATE TABLE prices

(col1 ROW(a SMALLINT, b FLOAT)

 col2 ROW(x INT, y REAL))

The values of the two unnamed row types can be compared (without an

explicit cast) when built-in casts exist to perform conversions between

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-5

corresponding fields. Consequently, the following query does not require an

explicit cast to compare col1 and col2 values:

SELECT * FROM prices WHERE col1 = col2

In this example, the database server implicitly invokes a built-in cast to

convert field values of SMALLINT to INT and REAL to FLOAT.

If corresponding fields of two row types cannot implicitly cast to one another,

you can explicitly cast between the types, if a user-defined cast exists to

handle conversions between the two types.

Casting Between Named Row Types

A named row type is strongly typed, which means that the database server

recognizes two named row types as two separate types even if the row types

are structurally equivalent. For this reason you must create and register a

user-defined cast before you can perform comparisons between two named

row types. For an example of how to create and use casts to handle

conversions between two named row types, see “An Example of Casting

Between Named Row Types” on page 10-14.

Using Explicit Casts on Fields

Before you can explicitly cast between two row types (named or unnamed),

whose fields contain different data types, a cast (either system-defined or

user-defined) must exist to handle conversions between the corresponding

field data types.

When you explicitly cast between two row types, the database server

automatically invokes any explicit casts that are necessary to handle

conversions between field data types. In other words, when you perform an

explicit cast on a row type value, you do not have to explicitly cast individual

fields of the row type, unless more than one level of casting is necessary to

handle the data type conversion on the field.

The row types and tables in the following example are used throughout this

section to show the behavior of explicit casts on named and unnamed row

types:

CREATE DISTINCT TYPE d_float AS FLOAT;

CREATE ROW TYPE row_t (a INT, b d_float);

CREATE TABLE tab1 (col1 ROW (a INT, b d_float));

CREATE TABLE tab2(col2 ROW (a INT, b FLOAT));

CREATE TABLE tab3 (col3 row_t);

Explicit Casts on Fields of an Unnamed Row Type

When a conversion between two row types involves an explicit cast to convert

between particular field values, you can explicitly cast the row type value but

do not need to explicitly cast the individual field.

10-6 IBM Informix Database Design and Implementation Guide

The following statement shows how to insert a value into the tab1 table:

INSERT INTO tab1 VALUES (ROW(3, 5.66::FLOAT::d_float))

To insert a value from col1 of tab1 into col2 of tab2, you must explicitly cast

the row value because the database server does not automatically handle

conversions between the d_float distinct type of tab1 to the FLOAT type of

table tab2:

INSERT INTO tab2 SELECT col1::ROW(a INT, b FLOAT) FROM tab1

In this example, the cast that is used to convert the b field is explicit because

the conversion from d_float to FLOAT requires an explicit cast (to convert a

distinct type to its source type requires an explicit cast).

In general, to cast between two unnamed row types where one or more of the

fields uses an explicit cast, you must explicitly cast at the level of the row

type, not at the level of the field.

Explicit Casts on Fields of a Named Row Type

When you explicitly cast a value as a named row type, the database server

automatically invokes any implicit or explicit casts that are used to convert

field values to the target data type. In the following statement, the explicit

cast of col1 to type row_t automatically invokes the explicit cast that converts

a field value of type FLOAT to d_float:

INSERT INTO tab3 SELECT col2::row_t FROM tab2

The following INSERT statement includes an explicit cast to the row_t type.

The explicit cast to the row type also invokes an explicit cast to convert the b

field of type row_t from FLOAT to d_float. In general, an explicit cast to a

row type also invokes any explicit casts on the individual fields (one-level

deep) that the row type contains to handle conversions.

INSERT INTO tab3 VALUES (ROW(5, 6.55::FLOAT)::row_t)

The following statement is also valid and returns the same results as the

preceding statement. However, this statement shows all the explicit casts that

are performed to insert a row_t value into the tab3 table.

INSERT INTO tab3 VALUES (ROW(5, 6.55::float::d_float)::row_t)

In the preceding examples, the conversions between the b fields of the row

types require two levels of casting. The database server handles any value

that contains a decimal point as a DECIMAL type. In addition, no implicit

casts exist between the DECIMAL and d_float data types, so two levels of

casting are necessary: a cast from DECIMAL to FLOAT and a second cast

from FLOAT to d_float.

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-7

Casting Individual Fields of a Row Type

If an operation on a field of a row type requires an explicit cast, you can

explicitly cast the individual field value without consideration of the row type

with which the field is associated. The following statement uses an explicit

cast on the field value to handle the conversion:

SELECT col1 from tab1, tab2 WHERE col1.b = col2.b::FLOAT::d_float

If an operation on a field of a row type requires an implicit cast, you can

simply specify the appropriate field value and the database server handles the

conversion automatically. In the following statement, which compares field

values of different data types, a built-in cast automatically converts between

INT and FLOAT values:

SELECT col1 from tab1, tab2 WHERE col1.a = col2.b

Casting Collection Data Types

In some cases, you can use an explicit cast to perform conversions between

two collections with different element types. To compare or substitute between

values of any two collection types, both collections must be of type SET,

MULTISET, or LIST.

v Two element types are equivalent when all component types are the same.

For example, if the element type of one collection is a row type, the other

collection type is also a row type with the same number of fields and the

same field data types.

v Casts exist in the database to perform conversions between any and all

components of the element types that are not of the same data type.

If the corresponding element types are not of the same data type, Dynamic

Server can use either built-in casts or user-defined casts to handle data

conversions on the element types.

When the database server inserts, updates, or compares values of a collection

data type, type checking occurs at the level of the element data type.

Consequently, in a cast between two collection types, the data conversion

occurs at the level of the element type because the actual data stored in a

collection is of a particular element type.

The following type and tables are used in the collection casting examples in

this section:

CREATE DISTINCT TYPE my_int AS INT;

CREATE TABLE set_tab1 (col1 SET(my_int NOT NULL));

CREATE TABLE set_tab2 (col2 SET(INT NOT NULL));

CREATE TABLE set_tab3 (col3 SET(FLOAT NOT NULL));

CREATE TABLE list_tab (col4 LIST(INT NOT NULL));

CREATE TABLE m_set_tab(col5 MULTISET(INT NOT NULL));

10-8 IBM Informix Database Design and Implementation Guide

Restrictions on Collection-Type Conversions

Because each collection data type (SET, MULTISET, and LIST) has different

characteristics, conversions between collections with different collection types

are disallowed. For example, elements stored in a LIST collection have a

specific order associated with them. This order would be lost if the elements

inserted into a LIST collection could be inserted into a MULTISET collection.

Consequently, you cannot insert or update elements from one collection with

elements from a different collection type even though the two collections

might share the same element type. The following INSERT statement returns

an error because the column on which the insert is performed is a MULTISET

collection and the value being inserted is a LIST collection:

INSERT INTO m_set_tab SELECT col4 FROM list_tab -- returns error

Collections with Different Element Types

How you handle conversions between two collections that have the same

collection type but different element types depends on the element type of

each collection and the type of cast that the database server uses to convert

one element type to another when the element types are different, as follows:

v If a built-in cast or implicit user-defined cast exists to handle the conversion

between two element types, you do not need to explicitly cast between the

collection types.

v If an explicit cast exists to handle the conversion between element types,

you can perform an explicit cast on a collection.

Using an Implicit Cast Between Element Types

When an implicit cast exists in the database to convert between different

element types of two collections, you do not need to use an explicit cast to

insert or update elements from one collection into another collection. The

following INSERT statement retrieves elements from the set_tab2 table and

inserts the elements into the set_tab3 table. Although the collection column

from set_tab2 has an INT element type and the collection column from

set_tab3 has a FLOAT element type, a built-in cast implicitly handles the

conversion between INT and FLOAT values. An explicit cast is unnecessary in

this case.

INSERT INTO set_tab3 SELECT col2 FROM set_tab2

Using an Explicit Cast Between Element Types

When a conversion between different element types of two collections is

performed with an explicit cast, you must explicitly cast one collection to the

other collection type. In the following example, the conversion between the

element types (INT and my_int) requires an explicit cast. (A cast between a

distinct type and its source type is always explicit).

The following INSERT statement retrieves elements from the set_tab2 table

and inserts the elements into the set_tab1 table. The collection column from

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-9

set_tab2 has an INT element type, and the collection column from set_tab1

has a my_int element type. Because the conversion between the element types

(INT and my_int) requires an explicit cast, you must explicitly cast the

collection type.

INSERT INTO set_tab1 SELECT col2::SET(my_int NOT NULL)

 FROM set_tab2

To perform an explicit cast on a collection type, you must include the

constructor (SET, MULTISET, or LIST), the element type, and the NOT NULL

keyword.

Converting Relational Data to a MULTISET Collection

When you have data from a relational table you can use a collection subquery

to cast a row value to a MULTISET collection. Suppose you create the

following tables:

CREATE TABLE tab_a (a_col INTEGER);

CREATE TABLE tab_b (ms_col MULTISET(ROW(a INT) NOT NULL));

The following example shows how you might use a collection subquery to

convert rows of INT values from the tab_a table to a MULTISET collection.

All rows from tab_a are converted to a MULTISET collection and inserted into

the tab_b table.

INSERT INTO tab_b VALUES (

 (MULTISET (SELECT a_col FROM tab_a)))

Casting Distinct Data Types

A distinct type inherits none of the built-in casts of the built-in type that a

distinct type might use as its source type. Consequently, the built-in casts that

exist to implicitly convert a built-in data type to other data types are not

available to the distinct type that uses the built-in type as its source type.

However, when you create a distinct type on a built-in type, the database

server provides two explicit casts to handle conversions from the distinct type

to the built-in type and from the built-in type to the distinct type.

Using Explicit Casts with Distinct Types

To compare or substitute between values of a distinct type and its source type,

you must explicitly cast one type to the other. For example, to insert into or

update a column of a distinct type with values of the source type, you must

explicitly cast the values to the distinct type.

Suppose you create a distinct type, int_type, that is based on the INTEGER

data type and a table with a column of type int_type, as follows:

CREATE DISTINCT TYPE int_type AS INTEGER;

CREATE TABLE tab_z(col1 int_type);

10-10 IBM Informix Database Design and Implementation Guide

To insert a value into the tab_z table, you must explicitly cast the value for

the col1 column to int_type, as follows:

INSERT INTO tab_z VALUES (35::int_type)

Suppose you create a distinct type, num_type, that is based on the

NUMERIC, data type and a table with a column of type num_type, as

follows:

CREATE DISTINCT TYPE num_type AS NUMERIC;

CREATE TABLE tab_x (col1 num_type);

The distinct num_type inherits none of the system-defined casts that exist for

the NUMERIC data type. Consequently, the following insert requires two

levels of casting. The first cast converts the value 35 from INT to NUMERIC

and the second cast converts from NUMERIC to num_type:

INSERT INTO tab_x VALUES (35::NUMERIC::num_type)

The following INSERT statement on the tab_x table returns an error because

no cast exists to convert directly from an INT type to num_type:

INSERT INTO tab_x VALUES (70::num_type) -- returns error

Casting Between a Distinct Type and Its Source Type

Although data of a distinct type has the same representation as its source

type, a distinct type cannot be compared directly to its source type. For this

reason, when you create a distinct data type, Dynamic Server automatically

registers the following explicit casts:

v A cast from the distinct type to its source type

v A cast from the source type to the distinct type

Suppose you create two distinct types: one to handle movie titles and the

other to handle music recordings. You might create the following distinct

types that are based on the VARCHAR data type:

CREATE DISTINCT TYPE movie_type AS VARCHAR(30);

CREATE DISTINCT TYPE music_type AS VARCHAR(30);

You can then create the entertainment table that includes columns of type

movie_type, music_type, and VARCHAR.

CREATE TABLE entertainment

(

video movie_type,

compact_disc music_type,

laser_disv VARCHAR(30)

);

To compare a distinct type with its source type or vice versa, you must

perform an explicit cast from one data type to the other. For example, suppose

you want to check for movies that are available on both video and laser disc.

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-11

The following statement requires an explicit cast in the WHERE clause to

compare a value of a distinct type (music_type) with a value of its source

type (VARCHAR). In this example, the source type is explicitly cast to the

distinct type.

SELECT video FROM entertainment

 WHERE video = laser_disc::movie_type

However, you might also explicitly cast the distinct type to the source type as

the following statement shows:

SELECT video FROM entertainment

 WHERE video::VARCHAR(30) = laser_disc

To perform a conversion between two distinct types that are defined on the

same source type, you must make an intermediate cast back to the source

type before casting to the target distinct type. The following statement

compares a value of music_type with a value of movie_type:

SELECT video FROM entertainment

 WHERE video = compact_disc::VARCHAR(30)::movie_type

Adding and Dropping Casts on a Distinct Type

To enforce strong typing on a distinct type, the database server provides

explicit casts to handle conversions between a distinct type and its source

type. However, the creator of a distinct type can drop the existing explicit

casts and create implicit casts, so that conversions between a distinct type and

its source type do not require an explicit cast.

Important: When you drop the explicit casts between a distinct type and its

source type that the database server provides, and instead create

implicit casts to handle conversions between these data types, you

diminish the distinctiveness of the distinct type.

The following DROP CAST statements drop the two explicit casts that were

automatically defined on the movie_type:

DROP CAST(movie_type AS VARCHAR(30));

DROP CAST(VARCHAR(30) AS movie_type);

After the existing casts are dropped, you can create two implicit casts to

handle conversions between movie_type and VARCHAR. The following

CREATE CAST statements create two implicit casts:

CREATE IMPLICIT CAST (movie_type AS VARCHAR(30));

CREATE IMPLICIT CAST (VARCHAR(30) AS movie_type);

You cannot create a cast to convert between two data types if such a cast

already exists in the database.

10-12 IBM Informix Database Design and Implementation Guide

If you create implicit casts to convert between the distinct type and its source

type, you can compare the two types without an explicit cast. In the following

statement, the comparison between the video column and the laser_disc

column requires a conversion. Because an implicit cast has been created, the

conversion between VARCHAR and movie_type is implicit.

SELECT video FROM entertainment

 WHERE video = laser_disc

Casting to Smart Large Objects

The database server provides casts to allow the conversion of TEXT and BYTE

objects to BLOB and CLOB data types. This feature allows users to migrate

BYTE and TEXT data from legacy databases into BLOB and CLOB columns.

The following example shows how to use an explicit cast to convert a BYTE

column value from the catalog table in the stores_demo database to a BLOB

column value and update the catalog table in the superstores_demo database:

UPDATE catalog SET advert = ROW (

(SELECT cat_photo::BLOB FROM stores_demo:catalog

 WHERE catalog_num = 10027),

 advert.caption)

 WHERE catalog_num = 10027

The database server does not provide casts to convert BLOB to BYTE values

or CLOB to TEXT values.

Creating Cast Functions for User-Defined Casts

If your database contains opaque data types, distinct data types, or named

row types, you might want to create user-defined casts that allow you to

convert between the different data types. When you want to perform

conversions between two data types that have the same storage structure, you

can use the CREATE CAST statement without a cast function. However, in

some cases you must create a cast function that you then register as a cast.

You need to create a cast function under the following conditions:

v The conversion is between two data types that have different storage

structures

v The conversion involves the manipulation of values to ensure that data

conversions are meaningful

The following sections show how to create and use user-defined casts that

require cast functions.

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-13

An Example of Casting Between Named Row Types

Suppose you create the named row types and table shown in the next

example. Although the named row types are structurally equivalent, writer_t

and editor_t are unique data types.

CREATE ROW TYPE writer_t (name VARCHAR(30), depart CHAR(3));

CREATE ROW TYPE editor_t (name VARCHAR(30), depart CHAR(3));

CREATE TABLE projects

(

 book_title VARCHAR(20),

 writer writer_t,

 editor editor_t

);

To handle conversions between two named row types, you must first create a

user-defined cast. The following example creates a casting function and

registers it as a cast to handle conversions from type writer_t to editor_t:

CREATE FUNCTION cast_rt (w writer_t)

 RETURNS editor_t

 RETURN (ROW(w.name, w.depart)::editor_t);

END FUNCTION;

CREATE CAST (writer_t as editor_t WITH cast_rt);

Once you create and register the cast, you can explicitly cast values of type

writer_t to editor_t. The following query uses an explicit cast in the WHERE

clause to convert values of type writer_t to editor_t:

SELECT book_title FROM projects

 WHERE CAST(writer AS editor_t) = editor;

If you prefer, you can use the :: cast operator to perform the same cast, as the

following example shows:

SELECT book_title FROM projects

 WHERE writer::editor_t = editor;

An Example of Casting Between Distinct Data Types

Suppose you want to define distinct types to represent dollar, yen, and

sterling currencies. Any comparison between two currencies must take the

exchange rate into account. Thus, you need to create cast functions that not

only handle the cast from one data type to the other data type but also

calculate the exchange rate for the values that you want to compare.

The following example shows how you might define three distinct types on

the same source type, DOUBLE PRECISION:

CREATE DISTINCT TYPE dollar AS DOUBLE PRECISION;

CREATE DISTINCT TYPE yen AS DOUBLE PRECISION;

CREATE DISTINCT TYPE sterling AS DOUBLE PRECISION;

10-14 IBM Informix Database Design and Implementation Guide

After you define the distinct types, you can create a table that provides the

prices that manufacturers charge for comparable products. The following

example creates the manufact_price table, which contains a column for the

dollar, yen, and sterling distinct types:

CREATE TABLE manufact_price

(

product_desc VARCHAR(20),

us_price dollar,

japan_price yen,

uk_price sterling

);

When you insert values into the manufact_price table, you can cast to the

appropriate distinct type for dollar, yen, and sterling values, as follows:

INSERT INTO manufact_price

 VALUES (’baseball’, 5.00::DOUBLE PRECISION::dollar,

 510.00::DOUBLE PRECISION::yen,

 3.50::DOUBLE PRECISION::sterling);

Because a distinct type does not inherit any of the built-in casts available to its

source type, each of the preceding INSERT statements requires two casts. For

each INSERT statement, the inner cast converts from DECIMAL to DOUBLE

PRECISION and the outer cast converts from DOUBLE PRECISION to the

appropriate distinct type (dollar, yen, or sterling).

Before you can compare the dollar, yen, and sterling data types, you must

create cast functions and register them as casts. The following example creates

SPL functions that you can use to compare dollar, yen, and sterling values.

Each function multiplies the input value by a value that reflects the exchange

rate.

CREATE FUNCTION dollar_to_yen(d dollar)

 RETURN (d::DOUBLE PRECISION * 106)::CHAR(20)::yen;

END FUNCTION;

CREATE FUNCTION sterling_to_dollar(s sterling)

 RETURNS dollar

 RETURN (s::DOUBLE PRECISION * 1.59)::CHAR(20)::dollar;

END FUNCTION;

After you write the cast functions, you must use the CREATE CAST statement

to register the functions as casts. The following statements register the

dollar_to_yen() and sterling_to_dollar() functions as explicit casts:

CREATE CAST(dollar AS yen WITH dollar_to_yen);

CREATE CAST(sterling AS dollar WITH sterling_to_dollar);

After you register the function as a cast, use it for operations that require

conversions between the data types. For the syntax that you use to create a

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-15

cast function and register it as a cast, see the CREATE FUNCTION and

CREATE CAST statements in the IBM Informix: Guide to SQL Syntax.

In the following query, the WHERE clause includes an explicit cast that

invokes the dollar_to_yen() function to compare dollar and yen values:

SELECT * FROM manufact_price

 WHERE CAST(us_price AS yen) < japan_price;

The following query uses the cast operator to perform the same conversion

shown in the preceding query:

SELECT * FROM manufact_price

 WHERE us_price::yen < japan_price;

You can also use an explicit cast to convert the values that a query returns.

The following query uses a cast to return yen equivalents of dollar values.

The WHERE clause of the query also uses an explicit cast to compare dollar

and yen values.

SELECT us_price::yen, japan_price FROM manufact_price

 WHERE us_price::yen < japan_price;

Multilevel Casting

A multilevel cast refers to an operation that requires two or more levels of

casting in an expression to convert a value of one data type to the target data

type. Because no casts exist between yen and sterling values, a query that

compares the two data types requires multiple casts. The first (inner) cast

converts sterling values to dollar values; the second (outer) cast converts

dollar values to yen values.

SELECT * FROM manufact_price

 WHERE japan_price < uk_price::dollar::yen

You might add another cast function to handle yen to sterling conversions

directly. The following example creates the function yen_to_sterling() and

registers it as a cast. To account for the exchange rate, the function multiplies

yen values by .01 to derive equivalent sterling values.

CREATE FUNCTION yen_to_sterling(y yen)

 RETURNS sterling

 RETURN (y::DOUBLE PRECISION * .01)::CHAR(20)::sterling;

END FUNCTION;

CREATE CAST (yen AS sterling WITH yen_to_sterling);

With the addition of the yen to sterling cast, you can use a single-level cast to

compare yen and sterling values, as the following query shows:

SELECT japan_price::sterling, uk_price FROM manufact_price

 WHERE japan_price::sterling) < uk_price;

10-16 IBM Informix Database Design and Implementation Guide

In the SELECT statement, the explicit cast returns yen values as their sterling

equivalents. In the WHERE clause, the cast allows comparisons between yen

and sterling values.

Chapter 10. Creating and Using User-Defined Casts in Dynamic Server 10-17

10-18 IBM Informix Database Design and Implementation Guide

Part 4. Dimensional Databases

© Copyright IBM Corp. 1996, 2004

IBM Informix Database Design and Implementation Guide

Chapter 11. Building a Dimensional Data Model

Overview of Data Warehousing . 11-2

Why Build a Dimensional Database? . 11-3

What Is Dimensional Data? . 11-4

Concepts of Dimensional Data Modeling . 11-6

The Fact Table . 11-7

Dimensions of the Data Model . 11-8

Dimension Elements . 11-8

Dimension Attributes . 11-9

Dimension Tables . 11-10

Building a Dimensional Data Model . 11-11

Choosing a Business Process . 11-11

Summary of a Business Process . 11-11

Determining the Granularity of the Fact Table 11-13

How Granularity Affects the Size of the Database 11-13

Using the Business Process to Determine the Granularity 11-13

Identifying the Dimensions and Hierarchies 11-14

Choosing the Measures for the Fact Table 11-16

Using Keys to Join the Fact Table with the Dimension Tables 11-17

Resisting Normalization . 11-18

Choosing the Attributes for the Dimension Tables 11-18

Handling Common Dimensional Data-Modeling Problems 11-19

Minimizing the Number of Attributes in a Dimension Table 11-20

Handling Dimensions That Occasionally Change 11-20

Using the Snowflake Schema . 11-21

In This Chapter

This chapter describes concepts and techniques of dimensional data modeling

and shows how to build a simple dimensional data model. Chapter 12,

“Implementing a Dimensional Database (XPS),” on page 12-1 shows how to

use SQL to implement this dimensional data model.

A dimensional data model is harder to maintain for very large data

warehouses than a relational data model. For this reason, data warehouses

typically are based on a relational data model. However, a dimensional data

model is particularly well-suited for building data marts (a subset of data

warehouse).

The general principles of dimensional data modeling that this chapter

discusses are applicable for databases that you create with Dynamic Server or

Extended Parallel Server. Although no single factor determines which

database server you should use to build a dimensional database, the

© Copyright IBM Corp. 1996, 2004 11-1

assumption is that large, scalable warehouses are built with Extended Parallel

Server, while smaller warehouses, OLTP systems, and operational systems are

built with Dynamic Server.

To understand the concepts of dimensional data modeling, you should have a

basic understanding of SQL and relational database theory. This chapter

provides only a summary of data warehousing concepts and describes a

simple dimensional data model.

Overview of Data Warehousing

In the broadest sense of the term, a data warehouse has been used to refer to a

database that contains very large stores of historical data. The data is stored as

a series of snapshots, in which each record represents data at a specific time.

This data snapshot allows a user to reconstruct history and to make accurate

comparisons between different time periods. A data warehouse integrates and

transforms the data that it retrieves before it is loaded into the warehouse. A

primary advantage of a data warehouse is that it provides easy access to and

analysis of vast stores of information.

The term data warehouse can mean different things to different people. This

manual uses the umbrella terms data warehousing and data-warehousing

environment to encompass any of the following forms that you might use to

store your data:

v Data warehouse

A database that is optimized for data retrieval. The data is not stored at the

transaction level; some level of data is summarized. Unlike traditional

OLTP databases, which automate day-to-day operations, a data warehouse

provides a decision-support environment in which you can evaluate the

performance of an entire enterprise over time. Typically, you use a relational

data model to build a data warehouse.

v Data mart

A subset of data warehouse that is stored in a smaller database and that is

oriented toward a specific purpose or data subject rather than for

enterprise-wide strategic planning. A data mart can contain operational

data, summarized data, spatial data, or metadata. Typically, you use a

dimensional data model to build a data mart.

v Operational data store

A subject-oriented system that is optimized for looking up one or two

records at a time for decision making. An operational data store is a hybrid

form of data warehouse that contains timely, current, integrated

information. The data typically is of a higher level granularity than the

11-2 IBM Informix Database Design and Implementation Guide

transaction. You can use an operational data store for clerical, day-to-day

decision making. This data can serve as the common source of data for data

warehouses.

v Repository

A repository combines multiple data sources into one normalized database.

The records in a repository are updated frequently. Data is operational, not

historical. You might use the repository for specific decision-support

queries, depending on the specific system requirements. A repository fits

the needs of a corporation that requires an integrated, enterprise-wide data

source for operational processing.

Why Build a Dimensional Database?

Relational databases typically are optimized for online transaction processing

(OLTP). OLTP systems are designed to meet the day-to-day operational needs

of the business, and the database performance is tuned for those operational

needs. Consequently, the database can retrieve a small number of records

quickly, but it can be slow if you need to retrieve a large number of records

and summarize data on the fly. Some potential disadvantages of OLTP

systems are as follows:

v Data might not be consistent across the business enterprise.

v Access to data can be complicated.

In contrast, a dimensional database is designed and tuned to support the

analysis of business trends and projections. This type of informational

processing is known as online analytical processing (OLAP) or

decision-support processing. OLAP is also the term that database designers

use to describe a dimensional approach to informational processing.

A dimensional database is optimized for data retrieval and analysis. Any new

data that you load into the database is usually updated in batch, often from

multiple sources. Whereas OLTP systems tend to organize data around

specific processes (such as order entry), a dimensional database tends to be

subject oriented and aims to answer questions such as, “What products are

selling well?” “At what time of year do products sell best?” “In what regions

are sales weakest?”

The following table summarizes the key differences between OLTP and OLAP

databases.

 Relational Database (OLTP) Dimensional Database (OLAP)

Data is atomized Data is summarized

Data is current Data is historical

Processes one record at a time Processes many records at a time

Process oriented Subject oriented

Chapter 11. Building a Dimensional Data Model 11-3

Relational Database (OLTP) Dimensional Database (OLAP)

Designed for highly structured repetitive

processing

Designed for highly unstructured

analytical processing

Many of the problems that businesses attempt to solve with relational

technology are multidimensional in nature. For example, SQL queries that

create summaries of product sales by region, region sales by product, and so

on, might require hours of processing on a traditional relational database.

However, a dimensional database could process the same queries in a fraction

of the time.

Besides the characteristic schema design differences between OLTP and OLAP

databases that this chapter discusses, the query optimizer typically should be

tuned differently for these two types of tasks. For example, in OLTP

operations, the OPTCOMPIND setting (as specified by the environment

variable or by the configuration parameter of that name) should typically be

set to zero, to support nested-loop joins. OLAP operations, in contrast, tend to

be more efficient with an OPTCOMPIND setting of 2 to support cost-based

query plans. See the IBM Informix: Guide to SQL Reference and the

IBM Informix: Administrator's Reference for more information about the

OPTCOMPIND environment variable and the OPTCOMPIND configuration

parameter respectively. See the IBM Informix: Performance Guide for additional

information about OPTCOMPIND, join methods, and the query optimizer.

(Dynamic Server also supports the SET ENVIRONMENT OPTCOMPIND

statement to change OPTCOMPIND setting dynamically during sessions in

which both OLTP and OLAP operations are required. See the IBM Informix:

Guide to SQL Syntax for more information about the SET ENVIRONMENT

statement of SQL.)

What Is Dimensional Data?

Traditional relational databases are organized around a list of records. Each

record contains related information that is organized into attributes (fields).

The customer table of the stores_demo demonstration database, which

includes fields for name, company, address, phone, and so forth, is a typical

example. While this table has several fields of information, each row in the

table pertains to only one customer. If you wanted to create a

two-dimensional matrix with customer name and any other field (for

example, phone number), you would realize that there is only a one-to-one

correspondence. Table 11-1 shows a table with fields that have only a

one-to-one correspondence.

11-4 IBM Informix Database Design and Implementation Guide

Table 11-1. A Table with a One-To-One Correspondences Between Fields

Customer Phone number --->

Ludwig Pauli 408-789-8075 ---------------- ----------------

Carole Sadler ---------------- 415-822-1289 ----------------

Philip Currie ---------------- ---------------- 414-328-4543

You could put any combination of fields from the preceding customer table in

this matrix, but you would always end up with a one-to-one correspondence,

which shows that this table is not multidimensional and would not be well

suited for a dimensional database.

However, consider a relational table that contains more than a one-to-one

correspondence between the fields of the table. Suppose you create a table

that contains sales data for products sold in each region of the country. For

simplicity, suppose the company has three products that are sold in three

regions. Table 11-2 shows how you might store this data in a relational table.

 Table 11-2. A Simple Relational Table

Product Region Unit Sales

Football East 2300

Football West 4000

Football Central 5600

Tennis racket East 5500

Tennis racket West 8000

Tennis racket Central 2300

Baseball East 10000

Baseball West 22000

Baseball Central 34000

The table in Table 11-2 on page 11-5 lends itself to multidimensional

representation because it has more than one product per region and more

than one region per product. Table 11-3 shows a two-dimensional matrix that

better represents the many-to-many relationship of product and region data.

 Table 11-3. A Simple Two-Dimensional Example

Region Central East West

P
ro

d
u

ct

Football 5600 2300 4000

Tennis Racket 2300 5500 8000

Baseball 34000 10000 22000

Chapter 11. Building a Dimensional Data Model 11-5

Although this data can be forced into the three-field relational table of

Table 11-2, the data fits more naturally into the two-dimensional matrix of

Table 11-3.

The performance advantages of the dimensional table over the traditional

relational table can be great. A dimensional approach simplifies access to the

data that you want to summarize or compare. For example, if you use the

dimensional table to query the number of products sold in the West, the

database server finds the West column and calculates the total for all row

values in that column. To perform the same query on the relational table, the

database server has to search and retrieve each row where the Region column

equals west and then aggregate the data. In queries of this kind, the

dimensional table can total all values of the West column in a fraction of the

time it takes the relational table to find all the West records.

Concepts of Dimensional Data Modeling

To build a dimensional database, you start with a dimensional data model.

The dimensional data model provides a method for making databases simple

and understandable. You can conceive of a dimensional database as a

database cube of three or four dimensions where users can access a slice of the

database along any of its dimensions. To create a dimensional database, you

need a model that lets you visualize the data.

Suppose your business sells products in different markets and evaluates the

performance over time. It is easy to conceive of this business process as a

cube of data, which contains dimensions for time, products, and markets.

Figure 11-1 shows this dimensional model. The various intersections along the

lines of the cube would contain the measures of the business. The measures

correspond to a particular combination of product, market, and time data.

Figure 11-1. A Dimensional Model of a Business That Has Time, Product, and Market Dimensions

11-6 IBM Informix Database Design and Implementation Guide

Another name for the dimensional model is the star-join schema. The database

designers use this name because the diagram for this model looks like a star

with one central table around which a set of other tables are displayed. The

central table is the only table in the schema with multiple joins connecting it

to all the other tables. This central table is called the fact table and the other

tables are called dimension tables. The dimension tables all have only a single

join that attaches them to the fact table, regardless of the query. Figure 11-2

shows a simple dimensional model of a business that sells products in

different markets and evaluates business performance over time.

The Fact Table

The fact table stores the measures of the business and points to the key value

at the lowest level of each dimension table. The measures are quantitative or

factual data about the subject. The measures are generally numeric and

correspond to the how much or how many aspects of a question. Examples of

measures are price, product sales, product inventory, revenue, and so forth. A

measure can be based on a column in a table or it can be calculated.

Table 11-4 shows a fact table whose measures are sums of the units sold, the

revenue, and the profit for the sales of that product to that account on that

day.

Figure 11-2. A Typical Dimensional Model

Chapter 11. Building a Dimensional Data Model 11-7

Table 11-4. A Fact Table with Sample Records

Product

Code

Account

Code Day Code Units Sold Revenue Profit

1 5 32104 1 82.12 27.12

3 17 33111 2 171.12 66.00

1 13 32567 1 82.12 27.12

Before you design a fact table, you must determine the granularity of the fact

table. The granularity corresponds to how you define an individual low-level

record in that fact table. The granularity might be the individual transaction, a

daily snapshot, or a monthly snapshot. The fact table in Table 11-4 contains

one row for every product sold to each account each day. Thus, the

granularity of the fact table is expressed as product by account by day.

Dimensions of the Data Model

A dimension represents a single set of objects or events in the real world. Each

dimension that you identify for the data model gets implemented as a

dimension table. Dimensions are the qualifiers that make the measures of the

fact table meaningful, because they answer the what, when, and where

aspects of a question. For example, consider the following business questions,

for which the dimensions are italicized:

v What accounts produced the highest revenue last year?

v What was our profit by vendor?

v How many units were sold for each product?

In the preceding set of questions, revenue, profit, and units sold are measures

(not dimensions), as each represents quantitative or factual data.

Dimension Elements

A dimension can define multiple dimension elements for different levels of

summation. For example, all the elements that relate to the structure of a sales

organization might comprise one dimension. Figure 11-3 shows the dimension

elements that the accounts dimension defines.

11-8 IBM Informix Database Design and Implementation Guide

Dimensions are made up of hierarchies of related elements. Because of the

hierarchical aspect of dimensions, users are able to construct queries that

access data at a higher level (roll up) or lower level (drill down) than the

previous level of detail. Figure 11-3 shows the hierarchical relationships of the

dimension elements: accounts roll up to territories, and territories roll up to

regions. Users can query at different levels of the dimension, depending on

the data they want to retrieve. For example, users might perform a query

against all regions and then drill down to the territory or account level for

detailed information.

Dimension elements are usually stored in the database as numeric codes or

short character strings to facilitate joins to other tables.

Each dimension element can define multiple dimension attributes, in the same

way dimensions can define multiple dimension elements.

Dimension Attributes

A dimension attribute is a column in a dimension table. Each attribute

describes a level of summary within a dimension hierarchy. The dimension

elements define the hierarchical relationships within a dimension table; the

attributes describe dimension elements in terms that are familiar to users.

Figure 11-4 shows the dimension elements and corresponding attributes of the

account dimension.

Figure 11-3. Dimension Elements in the Accounts Dimension

Chapter 11. Building a Dimensional Data Model 11-9

Because dimension attributes describe the items in a dimension, they are most

useful when they are text.

Tip: Sometimes during the design process, it is unclear whether a numeric

data field from a production data source is a measured fact or an

attribute. Generally, if the numeric data field is a measurement that

changes each time we sample it, it is a fact. If it is a discretely valued

description of something that is more or less constant, it is a dimension

attribute.

Dimension Tables

A dimension table is a table that stores the textual descriptions of the

dimensions of the business. A dimension table contains an element and an

attribute, if appropriate, for each level in the hierarchy. The lowest level of

detail that is required for data analysis determines the lowest level in the

hierarchy. Levels higher than this base level store redundant data. This

denormalized table reduces the number of joins that are required for a query

and makes it easier for users to query at higher levels and then drill down to

lower levels of detail. The term drilling down means to add row headers from

the dimension tables to your query. Table 11-5 shows an example of a

dimension table that is based on the account dimension.

 Table 11-5. An Example of a Dimension Table

Acct

Code Account Name Territory Salesman Region

Region

Size

Region

Manager

1 Jane’s Mfg. 101 B. Adams Midwest Over 50 T. Sent

2 TBD Sales 101 B. Adams Midwest Over 50 T. Sent

3 Molly’s Wares 101 B. Adams Midwest Over 50 T. Sent

4 The Golf Co. 201 T. Scott Midwest Over 50 T. Sent

Figure 11-4. Attributes That Correspond to the Dimension Elements

11-10 IBM Informix Database Design and Implementation Guide

Building a Dimensional Data Model

To build a dimensional data model, you need a methodology that outlines the

decisions you need to make to complete the database design. This

methodology uses a top-down approach because it first identifies the major

processes in your organization where data is collected. An important task of

the database designer is to start with the existing sources of data that your

organization uses. After the processes are identified, one or more fact tables

are built from each business process. The following steps describe the

methodology you use to build the data model.

 To build a dimensional database:

1. Choose the business processes that you want to use to analyze the subject

area to be modeled.

2. Determine the granularity of the fact tables.

3. Identify dimensions and hierarchies for each fact table.

4. Identify measures for the fact tables.

5. Determine the attributes for each dimension table.

6. Get users to verify the data model.

Although a dimensional database can be based on multiple business processes

and can contain many fact tables, the data model that this section describes is

based on a single business process and has one fact table.

Choosing a Business Process

A business process is an important operation in your organization that some

legacy system supports. You collect data from this system to use in your

dimensional database. The business process identifies what end users are

doing with their data, where the data comes from, and how to transform that

data to make it meaningful. The information can come from many sources,

including finance, sales analysis, market analysis, customer profiles. The

following list shows different business processes you might use to determine

what data to include in your dimensional database:

v Sales

v Shipments

v Inventory

v Orders

v Invoices

Summary of a Business Process

Suppose your organization wants to analyze customer buying trends by

product line and region so that you can develop more effective marketing

strategies. In this scenario, the subject area for your data model is sales.

Chapter 11. Building a Dimensional Data Model 11-11

After many interviews and thorough analysis of your sales business process,

suppose your organization collects the following information:

v Customer-base information has changed.

Previously, sales districts were divided by city. Now the customer base

corresponds to two regions: Region 1 for California and Region 2 for all

other states.

v The following reports are most critical to marketing:

– Monthly revenue, cost, net profit by product line per vendor

– Revenue and units sold by product, by region, by month

– Monthly customer revenue

– Quarterly revenue per vendor
v Most sales analysis is based on monthly results, but you can choose to

analyze sales by week or accounting period (at a later date).

v A data-entry system exists in a relational database.

To develop a working data model, you can assume that the relational

database of sales information has the following properties:

– The stores_demo database provides much of the revenue data that the

marketing department uses.

– The product code that analysts use is stored in the catalog table as the

catalog number.

– The product line code is stored in the stock table as the stock number.

The product line name is stored as description.

– The product hierarchies are somewhat complicated. Each product line

has many products, and each manufacturer has many products.
v All the cost data for each product is stored in a flat file named costs.lst on a

different purchasing system.

v Customer data is stored in the stores_demo database.

The region information has not yet been added to the database.

An important characteristic of the dimensional model is that it uses business

labels familiar to end users rather than internal tables or column names. After

the business process is completed, you should have all the information you

need to create the measures, dimensions, and relationships for the

dimensional data model. This dimensional data model is used to implement

the sales_demo database that Chapter 12, “Implementing a Dimensional

Database (XPS),” on page 12-1 describes.

The stores_demo demonstration database is the primary data source for the

dimensional data model that this chapter develops. For detailed information

about the data sources that are used to populate the tables of the sales_demo

database, see “Mapping Data from Data Sources to the Database” on page

12-4.

11-12 IBM Informix Database Design and Implementation Guide

Determining the Granularity of the Fact Table

After you gather all the relevant information about the subject area, the next

step in the design process is to determine the granularity of the fact table. To

do this you must decide what an individual low-level record in the fact table

should contain. The components that make up the granularity of the fact table

correspond directly with the dimensions of the data model. Thus, when you

define the granularity of the fact table, you identify the dimensions of the

data model.

How Granularity Affects the Size of the Database

The granularity of the fact table also determines how much storage space the

database requires. For example, consider the following possible granularities

for a fact table:

v Product by day by region

v Product by month by region

The size of a database that has a granularity of product by day by region would

be much greater than a database with a granularity of product by month by

region because the database contains records for every transaction made each

day as opposed to a monthly summation of the transactions. You must

carefully determine the granularity of your fact table because too fine a

granularity could result in an astronomically large database. Conversely, too

coarse a granularity could mean the data is not detailed enough for users to

perform meaningful queries against the database.

Using the Business Process to Determine the Granularity

A careful review of the information gathered from the business process should

provide what you need to determine the granularity of the fact table. To

summarize, your organization wants to analyze customer-buying trends by

product line and region so that you can develop more effective marketing

strategies.

Customer by Product: The granularity of the fact table always represents the

lowest level for each corresponding dimension. When you review the

information from the business process, the granularity for customer and

product dimensions of the fact table are apparent. Customer and product

cannot be reasonably reduced any further: they already express the lowest

level of an individual record for the fact table. (In some cases, product might

be further reduced to the level of product component because a product could

be made up of multiple components.)

Customer by Product by District: Because the customer buying trends your

organization wants to analyze include a geographical component, you still

need to decide the lowest level for region information. The business process

indicates that in the past, sales districts were divided by city, but now your

Chapter 11. Building a Dimensional Data Model 11-13

organization distinguishes between two regions for the customer base: Region

1 for California and Region 2 for all other states. Nonetheless, at the lowest

level, your organization still includes sales district data, so district represents

the lowest level for geographical information and provides a third component

to further define the granularity of the fact table.

Customer by Product by District by Day: Customer-buying trends always

occur over time, so the granularity of the fact table must include a time

component. Suppose your organization decides to create reports by week,

accounting period, month, quarter, or year. At the lowest level, you probably

want to choose a base granularity of day. This granularity allows your

business to compare sales on Tuesdays with sales on Fridays, compare sales

for the first day of each month, and so forth. The granularity of the fact table

is now complete.

The decision to choose a granularity of day means that each record in the

time dimension table represents a day. In terms of the storage requirements,

even 10 years of daily data is only about 3,650 records, which is a relatively

small dimension table.

Identifying the Dimensions and Hierarchies

After you determine the granularity of the fact table, it is easy to identify the

primary dimensions for the data model because each component that defines

the granularity corresponds to a dimension. Figure 11-5 shows the relationship

between the granularity of the fact table and the dimensions of the data

model.

With the dimensions (customer, product, geography, time) for the data model

in place, the schema diagram begins to take shape.

Tip: At this point, you can add additional dimensions to the primary

granularity of the fact table, where the new dimensions take on only a

single value under each combination of the primary dimensions. If you

see that an additional dimension violates the granularity because it

causes additional records to be generated, then you must revise the

granularity of the fact table to accommodate the additional dimension.

For this data model, no additional dimensions need to be added.

Figure 11-5. The Granularity of the Fact Table Corresponds to the Dimensions of the Data Model

11-14 IBM Informix Database Design and Implementation Guide

You can now map out dimension elements and hierarchies for each

dimension. Figure 11-6 shows the relationships among dimensions, dimension

elements, and the inherent hierarchies.

In most cases, the dimension elements need to express the lowest possible

granularity for each dimension, not because queries need to access individual

low-level records, but because queries need to cut through the database in

AttributesDimension elements

Vendor

Product

Product

Product line

Customer

Region

State

District

Year

Quarter

Month

Day

Vendor

Product name

Product line name

Customer
Name

Company

District name

State name

Order date

Figure 11-6. The Relationships Between Dimensions, Dimension Elements, and the Inherent

Hierarchies

Chapter 11. Building a Dimensional Data Model 11-15

precise ways. In other words, even though the questions that a data

warehousing environment poses are usually broad, these questions still

depend on the lowest level of product detail.

Choosing the Measures for the Fact Table

The measures for the data model include not only the data itself, but also new

values that you calculate from the existing data. When you examine the

measures, you might discover that you need to make adjustments either in the

granularity of the fact table or the number of dimensions.

Another important decision you must make when you design the data model

is whether to store the calculated results in the fact table or to derive these

values at runtime.

The question to answer is, “What measures are used to analyze the business?”

Remember that the measures are the quantitative or factual data that tell how

much or how many. The information that you gather from analysis of the sales

business process results in the following list of measures:

v Revenue

v Cost

v Units sold

v Net profit

Use these measures to complete the fact table in Figure 11-7.

11-16 IBM Informix Database Design and Implementation Guide

Using Keys to Join the Fact Table with the Dimension Tables

Assume, for the moment, that the schema of Figure 11-7 on page 11-17 shows

both the logical and physical design of the database. The database contains

the following five tables:

v Sales fact table

v Product dimension table

v Time dimension table

v Customer dimension table

v Geography dimension table

Each of the dimensional tables includes a primary key (product, time_code,

customer, district_code), and the corresponding columns in the fact table are

foreign keys. The fact table also has a primary (composite) key that is a

combination of these four foreign keys. As a rule, each foreign key of the fact

table must have its counterpart in a dimension table. Furthermore, any table

in a dimensional database that has a composite key must be a fact table,

which means that every table in a dimensional database that expresses a

many-to-many relationship is a fact table.

Figure 11-7. The Sales Fact Table References Each Dimension Table

Chapter 11. Building a Dimensional Data Model 11-17

Tip: The primary key should be a short numeric data type (INT, SMALLINT,

SERIAL) or a short character string (as used for codes). Do not use long

character strings as primary keys.

Resisting Normalization

If the four foreign keys of the fact table are tightly administered consecutive

integers, you could reserve as little as 16 bytes for all four keys (4 bytes each

for time, product, customer, and geography) of the fact table. If the four

measures in the fact table were each 4-byte integer columns, you would need

to reserve only another 16 bytes. Thus, each record of the fact table would be

only 32 bytes. Even a billion-row fact table would require only about 32

gigabytes of primary data space.

With its compact keys and data, such a storage-lean fact table is typical for

dimensional databases. The fact table in a dimensional model is by nature

highly normalized. You cannot further normalize the extremely complex

many-to-many relationships among the four keys in the fact table because no

correlation exists between the four dimension tables; virtually every product is

sold every day to all customers in every region.

The fact table is the largest table in a dimensional database. Because the

dimension tables are usually much smaller than the fact table, you can ignore

the dimension tables when you calculate the disk space for your database.

Efforts to normalize any of the tables in a dimensional database solely to save

disk space are pointless. Furthermore, normalized dimension tables

undermine the ability of users to explore a single dimension table to set

constraints and choose useful row headers.

Choosing the Attributes for the Dimension Tables

After you complete the fact table, you can decide the dimension attributes for

each of the dimension tables. To illustrate how to choose the attributes,

consider the time dimension. The data model for the sales business process

defines a granularity of day that corresponds to the time dimension, so that

each record in the time dimension table represents a day. Keep in mind that

each field of the table is defined by the particular day the record represents.

The analysis of the sales business process also indicates that the marketing

department needs monthly, quarterly, and annual reports, so the time

dimension includes the elements: day, month, quarter, and year. Each element

is assigned an attribute that describes the element and a code attribute (to

avoid column values that contain long character strings). Table 11-6 shows the

attributes for the time dimension table and sample values for each field of the

table.

11-18 IBM Informix Database Design and Implementation Guide

Table 11-6. Attributes for the Time Dimension

time code order date

month

code month

quarter

code quarter year

35276 07/31/1999 7 july 3 third q 1999

35277 08/01/1999 8 aug 3 third q 1999

35278 08/02/1999 8 aug 3 third q 1999

Table 11-6 on page 11-19 shows that the attribute names you assign should be

familiar business terms that make it easy for end users to form queries on the

database. Figure 11-8 shows the completed data model for the sales business

process with all the attributes defined for each dimension table.

Handling Common Dimensional Data-Modeling Problems

The dimensional model that the previous sections describe illustrates only the

most basic concepts and techniques of dimensional data modeling. The data

model you build to address the business needs of your enterprise typically

involves additional problems and difficulties that you must resolve to achieve

the best possible query performance from your database. This section

describes various methods you can use to resolve some of the most common

problems that arise when you build a dimensional data model.

Figure 11-8. The Completed Dimensional Data Model for the Sales Business Process

Chapter 11. Building a Dimensional Data Model 11-19

Minimizing the Number of Attributes in a Dimension Table

Dimension tables that contain customer or product information might easily

have 50 to 100 attributes and many millions of rows. However, dimension

tables with too many attributes can lead to excessively wide rows and poor

performance. For this reason, you might want to separate out certain groups

of attributes from a dimension table and put them in a separate table called a

minidimension table. A minidimension table consists of a small group of

attributes that are separated out from a larger dimension table. You might

choose to create a minidimension table for attributes that have either of the

following characteristics:

v The fields are rarely used as constraints in a query.

v The fields are frequently compared together.

Figure 11-9 shows a minidimension table for demographic information that is

separated out from a customer table.

In the demographics table, you can store the demographics key as a foreign

key in both the fact table and the customer table, which allows you to join the

demographics table directly to the fact table. You can also use the

demographics key directly with the customer table to browse demographic

attributes.

Handling Dimensions That Occasionally Change

In a dimensional database where updates are infrequent (as opposed to OLTP

systems), most dimensions are relatively constant over time, because changes

in sales districts or regions, or in company names and addresses, occur

Figure 11-9. A Minidimension Table for Demographics Information

11-20 IBM Informix Database Design and Implementation Guide

infrequently. However, to make historical comparisons, these changes must be

handled when they do occur. Figure 11-10 shows an example of a dimension

that has changed.

You can use three ways to handle changes that occur in a dimension:

v Change the value stored in the dimension column.

In Figure 11-10, the record for Bill Adams in the customer dimension table

is updated to show the new address Arlington Heights. All of this

customer’s previous sales history is now associated with the district of

Arlington Heights instead of Des Plaines.

v Create a second dimension record with the new value and a generalized

key.

This approach effectively partitions history. The customer dimension table

would now contain two records for Bill Adams. The old record with a key

of 101 remains, and records in the fact table are still associated with it. A

new record is also added to the customer dimension table for Bill Adams,

with a new key that might consist of the old key plus some version digits

(101.01, for example). All subsequent records that are added to the fact table

for Bill Adams are associated with this new key.

v Add a new field in the customer dimension table for the affected attribute

and rename the old attribute.

This approach is rarely used unless you need to track old history in terms

of the new value and vice-versa. The customer dimension table gets a new

attribute named current address, and the old attribute is renamed original

address. The record that contains information about Bill Adams includes

values for both the original and current address.

Using the Snowflake Schema

A snowflake schema is a variation on the star schema, in which very large

dimension tables are normalized into multiple tables. Dimensions with

hierarchies can be decomposed into a snowflake structure when you want to

avoid joins to big dimension tables when you are using an aggregate of the

fact table. For example, if you have brand information that you want to

Figure 11-10. A Dimension That Changes

Chapter 11. Building a Dimensional Data Model 11-21

separate out from a product dimension table, you can create a brand

snowflake that consists of a single row for each brand and that contains

significantly fewer rows than the product dimension table. Figure 11-11 shows

a snowflake structure for the brand and product line elements and the

brand_agg aggregate table.

If you create an aggregate, brand_agg, that consists of the brand code and the

total revenue per brand, you can use the snowflake schema to avoid the join

to the much larger sales table, as the following query on the brand and

brand_agg tables shows:

SELECT brand.brand_name, brand_agg.total_revenue

FROM brand, brand_agg

 WHERE brand.brand_code = brand_agg.brand_code

 AND brand.brand_name = ’Anza’

Without a snowflaked dimension table, you use a SELECT UNIQUE or SELECT

DISTINCT statement on the entire product table (potentially, a very large

dimension table that includes all the brand and product-line attributes) to

eliminate duplicate rows.

While snowflake schemas are unnecessary when the dimension tables are

relatively small, a retail or mail-order business that has customer or product

dimension tables that contain millions of rows can use snowflake schemas to

significantly improve performance.

Figure 11-11. An Example of a Snowflake Schema

11-22 IBM Informix Database Design and Implementation Guide

If an aggregate table is not available, any joins to a dimension element that

was normalized with a snowflake schema must now be a three-way join, as

the following query shows. A three-way join reduces some of the performance

advantages of a dimensional database.

SELECT brand.brand_name, SUM(sales.revenue)

FROM product, brand, sales

 WHERE product.brand_code = brand.brand_code

 AND brand.brand_name = ’Alltemp’

GROUP BY brand_name

Chapter 11. Building a Dimensional Data Model 11-23

11-24 IBM Informix Database Design and Implementation Guide

Chapter 12. Implementing a Dimensional Database (XPS)

Implementing the sales_demo Dimensional Database 12-1

Using CREATE DATABASE . 12-2

Using CREATE TABLE for the Dimension and Fact Tables 12-2

Mapping Data from Data Sources to the Database 12-4

Loading Data into the Dimensional Database 12-6

Creating the sales_demo Database . 12-7

Testing the Dimensional Database . 12-7

Logging and Nonlogging Tables in Extended Parallel Server 12-8

Choosing Table Types . 12-9

Scratch and Temp Temporary Tables . 12-10

Raw Permanent Tables . 12-11

Static Permanent Tables . 12-11

Operational Permanent Tables . 12-11

Standard Permanent Tables . 12-12

Switching Between Table Types . 12-12

Indexes for Data-Warehousing Environments 12-12

Using GK Indexes in a Data-Warehousing Environment 12-13

Defining a GK Index on a Selection . 12-13

Defining a GK Index on an Expression . 12-14

Defining a GK Index on Joined Tables . 12-14

In This Chapter

This chapter shows how to use SQL to implement the dimensional data model

that Chapter 11, “Building a Dimensional Data Model,” on page 11-1

describes. Remember that this database serves only as an illustrative example

of a data-warehousing environment. For the sake of the example, it is

translated into SQL statements.

This chapter describes the sales_demo database, which is available with

Extended Parallel Server. This chapter also describes the special table types

and indexes available with Extended Parallel Server that are suited to the

needs of data warehousing and other very large database applications.

Implementing the sales_demo Dimensional Database

This section shows the SQL statements that you can use to create a

dimensional database from the data model in Chapter 11. You can use

interactive SQL to write the individual statements that create the database or

you can run a script that automatically executes all the statements that you

need to implement the database. The CREATE DATABASE and CREATE

© Copyright IBM Corp. 1996, 2004 12-1

TABLE statements create the data model as tables in a database. After you

create the database, you can use LOAD and INSERT statements to populate

the tables.

Using CREATE DATABASE

You must create the database before you can create any tables or other objects

that the database contains.

When an Informix database server creates a database, it sets up records that

show the existence of the database and its mode of logging. The database

server manages disk space directly, so these records are not visible to

operating-system commands.

When you create a database with Extended Parallel Server, logging is always

turned on. However, you can create nonlogging tables within the database.

For more information, see “Configuring the Database Server to Use

Distributed Queries” on page 7-3.

The following statement shows the syntax you use to create a database that is

called sales_demo:

CREATE DATABASE sales_demo

Using CREATE TABLE for the Dimension and Fact Tables

This section includes the CREATE TABLE statements that you use to create

the tables of the sales_demo dimensional database.

Referential integrity is, of course, an important requirement for dimensional

databases. However, the following schema for the sales_demo database does

not define the primary and foreign key relationships that exist between the

fact table and its dimension tables. The schema does not define these primary

and foreign key relationships because data-loading performance improves

dramatically when the database server does not enforce constraint checking.

Given that data-warehousing environments often require that tens or

hundreds of gigabytes of data are loaded within a specified time, data-load

performance should be a factor when you decide how to implement a

database in a warehousing environment. Assume that if the sales_demo

database is implemented as a live data mart, some data extraction tool (rather

than the database server) is used to enforce referential integrity between the

fact table and dimension tables.

Tip: After you create and load a table, you can add primary- and foreign-key

constraints to the table with the ALTER TABLE statement to enforce

referential integrity. This method is required only for express load mode.

If the constraints and indexes are necessary and costly to drop before a

load, then deluxe load mode is the best option.

12-2 IBM Informix Database Design and Implementation Guide

The following statements create the time, geography, product, and customer

tables. These tables are the dimensions for the sales fact table. A SERIAL field

serves as the primary key for the district_code column of the geography

table.

CREATE TABLE time

(

time_code INT,

order_date DATE,

month_code SMALLINT,

month_name CHAR(10),

quarter_code SMALLINT,

quarter_name CHAR(10),

year INTEGER

);

CREATE TABLE geography

(

district_code SERIAL,

district_name CHAR(15),

state_code CHAR(2),

state_name CHAR(18),

region SMALLINT

);

CREATE TABLE product (

product_code INTEGER,

product_name CHAR(31),

vendor_code CHAR(3),

vendor_name CHAR(15),

product_line_code SMALLINT,

product_line_name CHAR(15)

);

CREATE TABLE customer (

customer_code INTEGER,

customer_name CHAR(31),

company_name CHAR(20)

);

The sales fact table has pointers to each dimension table. For example,

customer_code references the customer table, district_code references the

geography table, and so forth. The sales table also contains the measures for

the units sold, revenue, cost, and net profit.

CREATE TABLE sales

(

customer_code INTEGER,

district_code SMALLINT,

time_code INTEGER,

product_code INTEGER,

units_sold SMALLINT,

Chapter 12. Implementing a Dimensional Database (XPS) 12-3

revenue MONEY(8,2),

cost MONEY(8,2),

net_profit MONEY(8,2)

);

Tip: The most useful measures (facts) are numeric and additive. Because of

the great size of databases in data-warehousing environments, virtually

every query against the fact table might require thousands or millions of

records to construct an answer set. The only useful way to compress

these records is to aggregate them. In the sales table, each column for the

measures is defined on a numeric data type, so you can easily build

answer sets from the units_sold, revenue, cost, and net_profit columns.

For your convenience, the file called createdw.sql contains all the preceding

CREATE TABLE statements.

Mapping Data from Data Sources to the Database

The stores_demo demonstration database is the primary data source for the

sales_demo database.

Table 12-1 on page 12-4 shows the relationship between data-warehousing

business terms and the data sources. It also shows the data source for each

column and table of the sales_demo database.

 Table 12-1. The Relationship Between Data-Warehousing Business Terms and Data

Sources

Business Term Data Source Table.Column Name

Sales Fact Table:

product code sales.product_code

customer code sales.customer_code

district code sales.district_code

time code sales.time_code

revenue stores_demo:items.total_price sales.revenue

units sold stores_demo:items.quantity sales.units_sold

cost costs.lst (per unit) sales.cost

net profit calculated: revenue minus cost sales.net_profit

Product Dimension Table:

product stores_demo:catalog.catalog_num product.product_code

product name stores_demo:stock.manu_code and

stores_demo:stock.description

product.product_name

product line stores_demo:orders.stock_num product.product_line_code

product line

name

stores_demo:stock.description product.product_line_name

vendor stores_demo:orders.manu_code product.vendor_code

vendor name stores_demo:manufact.manu_name product.vendor_name

12-4 IBM Informix Database Design and Implementation Guide

Table 12-1. The Relationship Between Data-Warehousing Business Terms and Data

Sources (continued)

Business Term Data Source Table.Column Name

Customer Dimension Table:

customer stores_demo:orders.customer_num customer.customer_code

customer name stores_demo:customer.fname plus

stores_demo:customer.lname

customer.customer_name

company stores_demo:customer.company customer.company_name

Geography Dimension Table:

district code generated geography.district_code

district stores_demo:customer.city geography.district_name

state stores_demo:customer.state geography.state_code

state name stores_demo.state.sname geography.state_name

region derived: If state = ″CA″ THEN region

= 1, ELSE region = 2

geography.region

Time Dimension Table:

time code generated time.time_code

order date stores_demo:orders.order_date time.order_date

month derived from order date generated time.month_name

time.month.code

quarter derived from order date generated time.quarter_name

time.quarter_code

year derived from order date time.year

Several files with a .unl suffix contain the data that is loaded into the

sales_demo database. The files that contain the SQL statements that create

and load the database have a .sql suffix.

UNIX Only

When your database server runs on UNIX, you can access the *.sql and *.unl

files from the directory $INFORMIXDIR/demo/dbaccess.

End of UNIX Only

Windows Only

When your database server runs on Windows, you can access the *.sql and

*.unl files from the directory %INFORMIXDIR%\demo\dbaccess.

End of Windows Only

Chapter 12. Implementing a Dimensional Database (XPS) 12-5

Loading Data into the Dimensional Database

An important step when you implement a dimensional database is to develop

and document a load strategy. This section shows the LOAD and INSERT

statements that you can use to populate the tables of the sales_demo

database.

Tip: In a live data-warehousing environment, you typically do not use the

LOAD or INSERT statements to load large amounts of data to and from

Informix databases.

Informix database servers provide different features for high-performance

loading and unloading of data.

When you create a database with Extended Parallel Server, you can use

external tables to perform high-performance loading and unloading.

For information about high-performance loading, see your IBM Informix:

Administrator's Guide or IBM Informix: High-Performance Loader User's Guide.

The following statement loads the time table with data first so that you can

use it to determine the time code for each row that is loaded into the sales

table:

LOAD FROM ’time.unl’ INSERT INTO time

The following statement loads the geography table. Once you load the

geography table, you can use the district code data to load the sales table.

INSERT INTO geography(district_name, state_code, state_name)

SELECT DISTINCT c.city, s.code, s.sname

 FROM stores_demo:customer c, stores_demo:state s

 WHERE c.state = s.code

The following statements add the region code to the geography table:

UPDATE geography

 SET region = 1

 WHERE state_code = ’CA’

UPDATE geography

 SET region = 2

 WHERE state_code <> ’CA’

The following statement loads the customer table:

INSERT INTO customer (customer_code, customer_name, company_name)

SELECT c.customer_num, trim(c.fname) ||’ ’|| c.lname, c.company

FROM stores_demo:customer c

The following statement loads the product table:

12-6 IBM Informix Database Design and Implementation Guide

INSERT INTO product (product_code, product_name, vendor_code,

 vendor_name,product_line_code, product_line_name)

SELECT a.catalog_num,

 trim(m.manu_name)||’ ’||s.description,

 m.manu_code, m.manu_name,

 s.stock_num, s.description

FROM stores_demo:catalog a, stores_demo:manufact m,

 stores_demo:stock s

 WHERE a.stock_num = s.stock_num

 AND a.manu_code = s.manu_code

 AND s.manu_code = m.manu_code;

The following statement loads the sales fact table with one row for each

product, per customer, per day, per district. The cost from the cost table is

used to calculate the total cost (cost * quantity).

INSERT INTO sales (customer_code, district_code, time_code,

 product_code, units_sold, cost, revenue, net_profit)

SELECT

 c.customer_num, g.district_code, t.time_code,

 p.product_code, SUM(i.quantity),

 SUM(i.quantity * x.cost), SUM(i.total_price),

 SUM(i.total_price) - SUM(i.quantity * x.cost)

FROM stores_demo:customer c, geography g, time t,

 product p,stores_demo:items i,

 stores_demo:orders o, cost x

WHERE c.customer_num = o.customer_num

 AND o.order_num = i.order_num

 AND p.product_line_code = i.stock_num

 AND p.vendor_code = i.manu_code

 AND t.order_date = o.order_date

 AND p.product_code = x.product_code

 AND c.city = g.district_name

GROUP BY 1,2,3,4;

Creating the sales_demo Database

The sales_demo dimensional database uses data from the stores_demo

database, so you must create both databases to implement the sales_demo

database.

For information about how to use the dbaccessdemo script to implement the

sales_demo database, see the IBM Informix: DB–Access User's Guide.

Testing the Dimensional Database

You can create SQL queries to retrieve the data necessary for the standard

reports listed in the business-process summary (see the “Summary of a

Business Process” on page 11-11). Use the following ad hoc queries to test that

the dimensional database was properly implemented.

The following statement returns the monthly revenue, cost, and net profit by

product line for each vendor:

Chapter 12. Implementing a Dimensional Database (XPS) 12-7

SELECT vendor_name, product_line_name, month_name,

 SUM(revenue) total_revenue, SUM(cost) total_cost,

 SUM(net_profit) total_profit

FROM product, time, sales

WHERE product.product_code = sales.product_code

 AND time.time_code = sales.time_code

GROUP BY vendor_name, product_line_name, month_name

ORDER BY vendor_name, product_line_name;

The following statement returns the revenue and units sold by product, by

region, and by month:

SELECT product_name, region, month_name,

 SUM(revenue), SUM(units_sold)

FROM product, geography, time, sales

WHERE product.product_code = sales.product_code

 AND geography.district_code = sales.district_code

 AND time.time_code = sales.time_code

GROUP BY product_name, region, month_name

ORDER BY product_name, region;

The following statement returns the monthly customer revenue:

SELECT customer_name, company_name, month_name,

 SUM(revenue)

FROM customer, time, sales

WHERE customer.customer_code = sales.customer_code

 AND time.time_code = sales.time_code

GROUP BY customer_name, company_name, month_name

ORDER BY customer_name;

The following statement returns the quarterly revenue per vendor:

SELECT vendor_name, year, quarter_name, SUM(revenue)

FROM product, time, sales

WHERE product.product_code = sales.product_code

 AND time.time_code = sales.time_code

GROUP BY vendor_name, year, quarter_name

ORDER BY vendor_name, year

Logging and Nonlogging Tables in Extended Parallel Server

This section describes the different table types that can be particularly useful

in data-warehousing environments. Extended Parallel Server logs tables by

default, the same way that Dynamic Server logs tables. However,

data-warehousing environments and other applications that involve large

amounts of data (and few or no inserts, updates, or deletes) often require a

combination of logged and nonlogged tables in the same database. In many

cases, temporary tables are insufficient because they do not persist after the

database session ends. To meet the need for both logging and nonlogging

tables, Extended Parallel Server supports the following types of permanent

tables and temporary tables:

v Raw permanent tables (nonlogging)

12-8 IBM Informix Database Design and Implementation Guide

v Static permanent tables (nonlogging)

v Operational permanent tables (logging)

v Standard permanent tables (logging)

v Scratch temporary tables (nonlogging)

v Temp temporary tables (logging)

If you issue the CREATE TABLE statement and you do not specify the table

type, you create a standard permanent table. To change between table types,

use the ALTER TABLE statement. For information about the syntax, refer to

the IBM Informix: Guide to SQL Syntax.

Important: A coserver can use and access only its own dbspaces for

temporary space. Although temporary tables can be fragmented

explicitly across dbspaces like permanent tables, a coserver inserts

data only into the fragments that it manages.

Choosing Table Types

The individual tables in a data-warehousing environment often have different

requirements. To help determine the appropriate table type to use for your

tables, answer the following questions:

v Does the table require indexes?

v What constraints does the table need to define?

v What is the refresh and update cycle on the table?

v Is the table a read-only table?

v Does the table need to be logged?

Table 12-2 lists the properties of the six types of tables that Extended Parallel

Server supports and shows how you can use external tables to load these

types of tables. Use this information to select a table type to match the specific

requirements of your tables.

Chapter 12. Implementing a Dimensional Database (XPS) 12-9

Table 12-2. Characteristics of the Table Types for Extended Parallel Server

Type Permanent Logged Indexes

Light

Append

Used

Rollback

Available Recoverable

Restorable

from

Archive

External

Tables Load

Mode

SCRATCH No No No Yes No No No Express or

deluxe load

mode

TEMP No Yes Yes Yes Yes No No Express or

deluxe load

mode

RAW Yes No No Yes No No No Express or

deluxe load

mode

STATIC Yes No Yes No No No No None

OPERATIONAL Yes Yes Yes Yes Yes Yes No Express or

deluxe load

mode

STANDARD Yes Yes Yes No Yes Yes Yes Deluxe load

mode

Scratch and Temp Temporary Tables

Scratch tables are nonlogging temporary tables that do not support indexes,

constraints, or rollback.

Temp tables are logged temporary tables, although they also support bulk

operations such as light appends. (Express mode loads use light appends,

which bypass the buffer cache. Light appends eliminate the overhead

associated with buffer management but do not log the data.) Temp tables

support indexes, constraints, and rollback.

Tip: SELECT...INTO TEMP and SELECT...INTO SCRATCH statements are

parallel across coservers, just like ordinary inserts. Extended Parallel

Server automatically supports fragmented temporary tables across nodes

when those tables are explicitly created with SELECT...INTO TEMP and

SELECT...INTO SCRATCH.

Extended Parallel Server creates explicit temporary tables according to the

following criteria:

v If the query that you use to populate the Temp or Scratch table produces no

rows, the database server creates an empty, unfragmented table.

v If the rows that the query produces do not exceed 8 kilobytes, the

temporary table resides in only one dbspace.

v If the rows exceed 8 kilobytes, Extended Parallel Server creates multiple

fragments and uses a round-robin fragmentation scheme to populate them.

12-10 IBM Informix Database Design and Implementation Guide

Raw Permanent Tables

Raw tables are nonlogging permanent tables that use light appends.

Express-mode loads use light appends, which bypass the buffer cache. You can

load a raw table with express mode. For information about express-mode

loads, see your IBM Informix: Administrator's Reference.

Raw tables support updates, inserts, and deletes but do not log them. Raw

tables do not support index or referential constraints, rollback, recoverability,

or restoration from archives.

Use raw tables for the initial data loading and scrubbing. Once these steps are

completed, alter the table to a higher level. For example, if an error or failure

occurs while you are loading a raw table, the resulting data is whatever was

on the disk at the time of the failure.

In a data-warehousing environment, you might choose to create a fact table as

a raw table when both of the following conditions are true:

v The fact table does not need to specify constraints and indexes, which are

enforced by some different mechanisms.

v Creating and loading the fact table is not a costly job. The fact tables could

be useful but not critical for decision support, and if data is lost you can

easily reload the table.

Static Permanent Tables

Static tables are nonlogging, read-only permanent tables that do not support

insert, update, and delete operations. When you anticipate no insert, update,

or delete operations on the table, you might choose to create the table as a

static table. With a static table, you can create and drop nonclustered indexes

and referential constraints because they do not affect the data.

Static tables do not support rollback, recoverability, or restoration from

archives. Their advantage is that the database server can use light scans and

avoid locking when you execute queries because static tables are read-only.

Tip: Static tables are important when you want to create a table that uses GK

indexes because a static table is the only table type that supports GK

indexes.

Operational Permanent Tables

Operational tables are logging permanent tables that use light appends and do

not perform record-by-record logging. They allow fast update operations.

You can roll back operations or recover after a failure with operational tables,

but you cannot restore them reliably from an archive of the log because the

bulk insert records that are loaded are not logged. Use operational tables in

Chapter 12. Implementing a Dimensional Database (XPS) 12-11

situations where you derive data from another source so restorability is not an

issue, but where you do not require rollback and recoverability.

You might create a fact table as an operational table because the data is

periodically refreshed. Operational tables support express load mode (in the

absence of indexes and constraints) and data is recoverable.

Standard Permanent Tables

A standard table in Extended Parallel Server is the same as a table in a logged

database that you create with Dynamic Server. All operations are logged,

record by record, so you can restore standard tables from an archive. Standard

tables support recoverability and rollback.

If the update and refresh cycle for the table is infrequent, you might choose to

create a standard table type, as you need not drop constraints or indexes

during a refresh cycle. Building indexes is time consuming and costly, but

necessary.

Tip: Standard tables do not use light appends, so you cannot use express-load

mode when you use external tables to perform the load.

Switching Between Table Types

Use the ALTER TABLE command to switch between types of permanent

tables. If the table does not meet the restrictions of the new type, the alter fails

and produces an explanatory error message. The following restrictions apply

to table alteration:

v You must drop indexes and referential constraints before you alter a table to

a RAW type.

v You must perform a level-0 archive before you alter a table to a

STANDARD type, so that the table meets the full recoverability restriction.

v You cannot alter a temp or scratch temporary table.

Indexes for Data-Warehousing Environments

In addition to conventional (B-tree) indexes, Extended Parallel Server provides

the following indexes that you can use to improve ad hoc query performance

in data-warehousing environments:

v Bitmap indexes

A bitmap index is a specialized variation of a B-tree index. You can use a

bitmap index to index columns that can contain one of only a few values,

such as marital status or gender. For each highly duplicate value, a bitmap

index stores a compressed bitmap for each value that the column might

contain. With a bitmap index, storage efficiency increases as the distance

between rows that contain the same key decreases.

You can use a bitmap index when both of the following conditions are true:

12-12 IBM Informix Database Design and Implementation Guide

– The key values in the index contain many duplicates.

– More than one column in the table has an index that the optimizer can

use to improve performance on a table scan.
v Generalized-key (GK) indexes

GK indexes allow you to store the result of an expression, selection of a

data set, or intersect of data sets from joined tables as a key in a B-tree or

bitmap index, which can be useful in specific queries on one or more large

tables.

To create a GK index, all tables involved should be static tables.

To improve indexing efficiency, Extended Parallel Server also supports the

following functionality:

v Automatically combine indexes for use in the same table access.

You can combine multicolumn indexes with single-column indexes.

v Read a table with an access method known as a Skip Scan.

When it scans rows from a table, the database server only reads rows that

the index indicates, and reads rows in the order that they appear in the

database. The skip scan access method guarantees that no page is read twice.

Pages are read sequentially, not randomly, which reduces I/O resource

requirements. The skip scan also reduces CPU requirements because

filtering on the index columns is unnecessary.

v Use a hash semi-join to reduce the work to process certain multitable joins.

A hash semi-join is especially useful with joins that typify queries against a

star schema where one large (fact) table is joined with many small

(dimension) tables. The hash semi-join can effectively reduce the set of rows

as much as possible before the joins begin.

An analysis of the types of queries you anticipate running against your

database can help you decide the type of indexes to create. For information

about indexes and indexing methods that you can use to improve query

performance, see your IBM Informix: Performance Guide.

Using GK Indexes in a Data-Warehousing Environment

You can create GK indexes when you anticipate frequent use of a particular

type of query on a table. The following examples illustrate how you can

create and use GK indexes for queries on one or more large tables. The

examples are based on tables of the sales_demo database.

Defining a GK Index on a Selection

Suppose a typical query on the sales fact table returns values where state =

"CA". To improve the performance for this type of query, you can create a GK

index that allows you to store the result of a select statement as a key in an

Chapter 12. Implementing a Dimensional Database (XPS) 12-13

index. The following statement creates the state_idx index, which can improve

performance on queries that restrict a search by geographic data:

CREATE GK INDEX state_idx ON geography

 (SELECT district_code FROM geography

 WHERE state_code = "CA");

The database server can use the state_idx index on the following type of

query that returns revenue and units sold by product, by region, and by

month where state = "CA". The database server uses the state_idx index to

retrieve rows from the geography table where state = "CA" to improve query

performance overall.

SELECT product_name, region, month_name, SUM(revenue),

SUM(units_sold)

FROM product, geography, time, sales

WHERE product.product_code = sales.product_code

 AND geography.district_code = sales.district_code

 AND state_code = "CA" AND time.time_code = sales.time_code

GROUP BY product_name, region, month_name

ORDER BY product_name, region;

Defining a GK Index on an Expression

You can create a GK index that allows you to store the result of an expression

as a key in an index. The following statement creates the cost_idx index,

which can improve performance for queries against the sales table that

include the cost of the products sold:

CREATE GK INDEX cost_idx ON sales

 (SELECT units_sold * cost FROM sales);

The database server can use the cost_idx index for the following type of

query that returns the names of customers who have spent more than

$10,000.00 on products:

SELECT customer_name

FROM sales, customer

WHERE sales.customer_code = customer.customer_code

 AND units_sold * cost > 10000.00;

Defining a GK Index on Joined Tables

You can create a GK index that allows you to store the result of an intersect of

data sets from joined tables as a key in an index. Suppose you want to create

a GK index on year data from the time dimension table for each entry in the

sales table. The following statement creates the time_idx index:

CREATE GK INDEX time_idx ON sales

(SELECT year FROM sales, time

 WHERE sales.time_code = time.time_code);

Important: To create the preceding GK index, the time_code column of the

sales table must be a foreign key that references the time_code

column (a primary key) in the time table.

12-14 IBM Informix Database Design and Implementation Guide

The database server can use the time_idx index on the following type of

query that returns the names of customers who purchased products after

1996:

SELECT customer_name

FROM sales, customer, time

WHERE sales.time_code = time.time_code AND year > 1996

 AND sale.customer_code = customer.customer_code;

Chapter 12. Implementing a Dimensional Database (XPS) 12-15

12-16 IBM Informix Database Design and Implementation Guide

Part 5. Appendixes

© Copyright IBM Corp. 1996, 2004

IBM Informix Database Design and Implementation Guide

Appendix. Accessibility

The syntax diagrams in the HTML version of this manual are available in

dotted decimal syntax format, which is an accessible format that is available

only if you are using a screen reader.

Dotted Decimal Syntax Diagrams

In dotted decimal format, each syntax element is written on a separate line. If

two or more syntax elements are always present together (or always absent

together), the elements can appear on the same line, because they can be

considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1.

To hear these numbers correctly, make sure that your screen reader is set to

read punctuation. All syntax elements that have the same dotted decimal

number (for example, all syntax elements that have the number 3.1) are

mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1

SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example,

if a syntax element with dotted decimal number 3 is followed by a series of

syntax elements with dotted decimal number 3.1, all the syntax elements

numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to

add information about the syntax elements. Occasionally, these words and

symbols might occur at the beginning of the element itself. For ease of

identification, if the word or symbol is a part of the syntax element, the word

or symbol is preceded by the backslash (\) character. The * symbol can be

used next to a dotted decimal number to indicate that the syntax element

repeats. For example, syntax element *FILE with dotted decimal number 3 is

read as 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats.

Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line

with the same dotted decimal number as the relevant items. The line can also

show another symbol that provides information about the syntax elements.

For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you

use more than one of the LASTRUN and DELETE syntax elements, the elements

© Copyright IBM Corp. 1996, 2004 A-1

must be separated by a comma. If no separator is given, assume that you use

a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this identifies a reference that

is defined elsewhere. The string following the % symbol is the name of a

syntax fragment rather than a literal. For example, the line 2.1 %OP1 means

that you should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal

numbers:

? Specifies an optional syntax element. A dotted decimal number

followed by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a

dotted decimal number, the ? symbol is displayed on the same line as

the syntax element (for example, 5? NOTIFY). If there is more than one

syntax element with a dotted decimal number, the ? symbol is

displayed on a line by itself, followed by the syntax elements that are

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5

UPDATE, you know that syntax elements NOTIFY and UPDATE are

optional; that is, you can choose one or none of them. The ? symbol is

equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed

by the ! symbol and a syntax element indicates that the syntax

element is the default option for all syntax elements that share the

same dotted decimal number. Only one of the syntax elements that

share the same dotted decimal number can specify a ! symbol. For

example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1

(DELETE), you know that (KEEP) is the default option for the FILE

keyword. In this example, if you include the FILE keyword but do not

specify an option, default option KEEP is applied. A default option also

applies to the next higher dotted decimal number. In this example, if

the FILE keyword is omitted, default FILE(KEEP) is used. However, if

you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE),

the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword),

and does not apply to 2? FILE. Nothing is used if the keyword FILE is

omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this

syntax element can be used zero or more times; that is, it is optional

and can be repeated. For example, if you hear the line 5.1*

data-area, you know that you can include more than one data area or

A-2 IBM Informix Database Design and Implementation Guide

you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE,

you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there

is only one item with that dotted decimal number, you can repeat

that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several

items have that dotted decimal number, you can use more than

one item from the list, but you cannot use the items more than

once each. In the previous example, you could write HOST STATE,

but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this

syntax element must be included one or more times. For example, if

you hear the line 6.1+ data-area, you must include at least one data

area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you

must include HOST, STATE, or both. As for the * symbol, you can only

repeat a particular item if it is the only item with that dotted decimal

number. The + symbol, like the * symbol, is equivalent to a loop-back

line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 IBM Informix Database Design and Implementation Guide

Notices

IBM may not offer the products, services, or features discussed in this

document in all countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any

other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1996, 2004 B-1

improvements and/or changes in the product(s) and/or the program(s)

described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Program License Agreement, or any equivalent

agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments

may vary significantly. Some measurements may have been made on

development-level systems and there is no guarantee that these measurements

will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results

may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

B-2 IBM Informix Database Design and Implementation Guide

All statements regarding IBM’s future direction or intent are subject to change

or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are

subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are

written. These examples have not been thoroughly tested under all conditions.

IBM, therefore, cannot guarantee or imply reliability, serviceability, or function

of these programs. You may copy, modify, and distribute these sample

programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs

conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,

must include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years).

All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Notices B-3

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database

Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix®;

C-ISAM®; Foundation.2000™; IBM Informix

® 4GL; IBM

Informix®DataBlade®Module; Client SDK™; Cloudscape™; Cloudsync™; IBM

Informix®Connect; IBM Informix®Driver for JDBC; Dynamic Connect™; IBM

Informix®Dynamic Scalable Architecture™(DSA); IBM Informix®Dynamic

Server™; IBM Informix®Enterprise Gateway Manager (Enterprise Gateway

Manager); IBM Informix®Extended Parallel Server™; i.Financial Services™;

J/Foundation™; MaxConnect™; Object Translator™; Red Brick™; IBM

Informix® SE; IBM Informix® SQL; InformiXML™; RedBack®; SystemBuilder™;

U2™; UniData®; UniVerse®; wintegrate®are trademarks or registered

trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other

countries.

UNIX is a registered trademark in the United States and other countries

licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be

trademarks or service marks of others.

B-4 IBM Informix Database Design and Implementation Guide

Index

Special characters
::, cast operator 10-2

Numerics
10.0 features, overview xi

8.5 features, overview xi

A
Access privileges 6-6

Accessibility xxi

dotted decimal format of syntax diagrams A-1

syntax diagrams, reading in a screen reader A-1

Aggregate function, restrictions in modifiable

view 6-24

ALTER FRAGMENT statement
ADD clause 5-15

ATTACH clause 5-18

DETACH clause 5-18

DROP clause 5-15

INIT clause 5-13, 5-14

MODIFY clause 5-16

Alter privilege 6-7, 6-8

ALTER TABLE statement
changing column data type 3-20

changing table type 12-12

converting to typed table 8-19

converting to untyped table 8-19

privilege for 6-8

ANSI-compliant database
buffered logging 4-3

character field length 1-5

cursor behavior 1-6

decimal data type 1-5

description 1-2

escape characters 1-5

identifying 1-6

isolation level 1-5

owner naming 1-4

privileges 1-4

reason for creating 1-2

SQLCODE 1-6

table privileges 6-6

transaction logging 1-4

transactions 1-3

Archive, and fragmentation 5-3

Attribute
identifying 2-12

important qualities 2-13

nondecomposable 2-13

Availability, improving with fragmentation 5-3

B
Bitmap index, description 12-12

BLOB data type
description 8-7

restrictions in named row type 8-16

SQL restrictions 8-8

Boldface type xii

BOOLEAN data type 3-15

Buffered logging 4-3

Building a relational data model 2-16

BYTE data type
description 3-19

restrictions 8-14, 8-22

using 3-19

C
Cardinality

constraint 2-7

in relationship 2-11

Cast
built-in 10-2

CAST AS keywords 10-2

collection data type 10-8

collection elements 10-10

description 10-1

distinct data type 10-2, 10-10

dropping 10-12

explicit, definition 10-2

implicit, definition 10-2

invoking 10-3

named row type 10-3, 10-7

operator 10-2

row type 10-4

unnamed row type fields 10-6

user-defined 10-2, 10-13

Chaining synonyms 4-8

CHAR data type 3-15

Character field length
ANSI vs. non-ANSI 1-5

CHARACTER VARYING data type 3-16

CLOB data type
description 8-7

restrictions in named row type 8-16

SQL restrictions 8-8

Codd, E. F. 2-27

Code set
default 1-7

Code, sample, conventions for xvii

© Copyright IBM Corp. 1996, 2004 X-1

Collection data type
casting 10-8

casting restrictions 10-9

different element types 10-9

element typ 8-10

explicit cast 10-9

implicit cast 10-9

nested 8-14

restrictions 8-14

type checking 10-8

type constructor 8-10

Column
defining 2-17

named row type 8-19

of fragmented table, modifying 5-13

unnamed row type 8-22

Column-level encryption 6-2

Column-level privileges 6-9

Command script, creating a database 4-9

Command-line conventions
how to read xv

sample diagram xv

Complex data types 8-9

Compliance
with industry standards xxiv

Composite key 2-20

Concurrency
improving with fragmentation 5-3

SERIAL and SERIAL8 values 3-6

Connect privilege 6-4

Connectivity in relationship 2-7, 2-9

Constraint
cardinality 2-7

defining domains 3-2

named row type restrictions 8-17

Contact information xxv

Conventions
command-line xv

documentation xii

sample-code xvii

syntax diagrams xiii

syntax notation xiii

typographical xii

CREATE DATABASE statement
dimensional data model 12-2

in command script 4-9

relational data model 4-2

CREATE FUNCTION statement,
cast registration examples 10-15

CREATE INDEX statement 4-6

CREATE TABLE statement
description 4-4

in command script 4-9

with FRAGMENT BY EXPRESSION clause 5-5

CREATE VIEW statement
restrictions 6-23

using 6-21

WITH CHECK OPTION keywords 6-26

CURRENT_ROLE() function 6-16

Cursor behavior
ANSI vs. non-ANSI 1-6

D
Data

loading with dbload utility 4-12

loading with external tables 4-12

Data mart, description 11-2

Data model
attribute 2-12

building 2-16

defining relationships 2-6

description 2-2

dimensional 11-6, 11-11

entity relationship 2-3

many-to-many relationship 2-9

one-to-many relationship 2-9

one-to-one relationship 2-9

relational 2-1

telephone directory example 2-4

Data type
BLOB 8-7

BYTE 3-19

changing with ALTER TABLE statement 3-20

CHAR 3-15

CHARACTER VARYING 3-16

choosing 3-2

chronological 3-11

CLOB 8-7

collection type 8-10

complex types 8-9

DATE 3-11

DATETIME 3-12

DECIMAL 3-9, 3-10

distinct 8-5

fixed-point 3-10

floating-point 3-8

INT8 3-6

INTEGER 3-6

INTERVAL 3-13

MONEY 3-10

NCHAR 3-15

NVARCHAR 3-16

opaque types 8-6

REAL 3-8

referential constraints 3-22

row types 8-10

SERIAL 3-6

SERIAL, table hierarchies 9-12

SERIAL8 3-6

X-2 IBM Informix Database Design and Implementation Guide

Data type (continued)
SMALLFLOAT 3-8

smart large objects 8-6

TEXT 3-18

VARCHAR 3-16

Data warehouse, description 11-2

Data-warehousing model.
See Dimensional data model.

Database
demonstration

sales_demo 11-12, 12-2

superstores_demo 8-2

naming 4-2

populating new tables in 4-10

views on external database 6-24

Database administrator (DBA) 6-5

Database Server Administrator (DBSA) 6-12, 6-13

Database-level privileges
Connect privilege 6-4

database-administrator privilege 6-5

description 6-4

Resource privilege 6-5

DATE data type
description 3-11

display format 3-12

DATETIME data type
description 3-12

display format 3-14

DB-Access
creating database with 4-9

UNLOAD statement 4-12

DBA.
See Database administrator.

DBDATE environment variable 3-12

dbexport utility 4-10

dbimport utility 4-10

dbload utility, loading data 4-12

DBMONEY environment variable 3-11

dbschema utility 4-9

dbslice, role in fragmentation 5-3

dbspace
role in fragmentation 5-2

selecting 4-2

DBTIME environment variable 3-14

DECIMAL data type
fixed-point 3-10

floating-point 3-9

Default locale x

Default value, of a column 3-21

DEFAULT_ROLE() function 6-16

Delete privilege 6-6, 6-27

DELETE statement
applied to view 6-25

privilege 6-4

privilege for 6-6

Dependencies, software x

Derived data, produced by view 6-20

Descriptor column 2-19

Dimension table
choosing attributes 11-18

description 11-10

Dimensional data model
building 11-11

dimension elements 11-8

dimension tables 11-10

dimensions 11-8

fact table 11-7

implementing 12-1

measures, definition 11-7

minidimension tables 11-20

Dimensional database, sales_demo 12-2

Disabilities, visual
reading syntax diagrams A-1

Distinct data type
casting 10-2, 10-10

description 8-5

DISTINCT keyword, restrictions in modifiable

view 6-25

Distribution scheme
changing the number of fragments 5-14

definition 5-2

expression-based 5-4

using 5-5

with arbitrary rule 5-6

with range rule 5-5

hybrid 5-5

using 5-8

range 5-4

using 5-7

round-robin 5-4

using 5-7

system-defined hash 5-5

using 5-8

Documentation conventions xii

Documentation Notes xix

Documentation set of all manuals xxi

Documentation, types of xviii

machine notes xix

online manuals xxi

printed manuals xxi

Domain
characteristics 2-18

column 3-2

defined 2-18

Dotted decimal format of syntax diagrams A-1

DROP CAST statement, using 10-12

E
Element type 8-10

en_us.8859-1 locale x

Index X-3

Encrypted data 6-2

Entity
attributes 2-13

criteria for choosing 2-6

definition 2-3

occurrence 2-14

represented by a table 2-19

telephone directory example 2-6

Entity-relationship diagram
discussed 2-14

reading 2-15

Environment variable
NODEFDAC 6-6

USETABLENAME 4-8

Environment variables xii

Environment, Non-U.S. English 1-7

Error messages xx

Even distribution 5-7

Existence dependency 2-7

EXISTS keyword, use in condition subquery 6-27

Expression-based distribution scheme
arbitrary rule 5-6

description 5-4

using 5-5

with range rule 5-5

Expression, cast allowed in 10-1

EXTERNAL role 6-12

External tables, loading data with 4-12, 5-3

F
Fact table

description 11-7

determining granularity 11-13

granularity 11-8

Features in 10.0 xi

Features in XPS 8.5 xi

Field, in row types 8-14

First normal form 2-25

Fixed and Known Defects File xix

Fixed point 3-10

FLOAT data type 3-8

Floating point 3-8

Foreign key 2-20

Fragment
altering 5-16, 5-17

changing the number of 5-14

description 5-2

FRAGMENT BY EXPRESSION clause 5-5

Fragmentation
across coservers 5-3

backup-and-restore operations and 5-3

dbslice role in 5-3

description 5-2

expressions, how evaluated 5-6

goals 5-3

Fragmentation (continued)
logging and 5-4

of smart large objects 5-13

reinitializing 5-13

types of distribution schemes 5-4

Fragmented table
creating 5-9

creating from one non-fragmented table 5-12

modifying 5-13

Functional dependency 2-26

G
Generalized-key index

data warehouse 12-13

defining
on a selection 12-13

on an expression 12-14

on joined tables 12-14

ownership rights 6-5

GK index.
See Generalized-key index.

GL_DATETIME environment variable 3-14

Global Language Support (GLS) x

GRANT statement
database-level privileges 6-3

table-level privileges 6-5

Granularity, fact table 11-8

GROUP BY keywords, restrictions in modifiable

view 6-24

H
Hash distribution scheme.

See System-defined hash distribution scheme.

Help xxi

Hierarchy
See also Inheritance.

See also Row type.

See Table hierarchy.

Hybrid distribution scheme
description 5-5, 5-8

using 5-8

I
IFX_EXTEND_ROLE configuration parameter 6-12

Index
bidirectional traversal 4-7

bitmap, description 12-12

CREATE INDEX statement 4-7

data-warehousing environments 12-12

generalized-key 12-13

named row type restrictions 8-17

Index privilege 6-7

Industry standards, compliance with xxiv

Informix Dynamic Server documentation set xxi

informix user name 6-5, 6-13

INFORMIXDIR/bin directory xi

X-4 IBM Informix Database Design and Implementation Guide

Inheritance 9-1

privileges in hierarchy 6-8

single 9-1

table hierarchy 9-7

type 9-2

type substitutability 9-5

INIT clause
ALTER FRAGMENT 5-14

in a fragmentation scheme 5-13

Insert privilege 6-6, 6-27

INSERT statement
privileges 6-4, 6-6

with a view 6-25

Installation Guides xviii

INSTEAD OF trigger 6-26

INT8 data type 3-6

INTEGER data type 3-6

INTERVAL data type
description 3-13

display format 3-14

INTO TEMP keywords, restrictions in view 6-23

ISO 8859-1 code set x

Isolation level, ANSI vs. non-ANSI 1-5

J
Join, restrictions in modifiable view 6-24

K
Key

composite 2-20

foreign 2-20

primary 2-19

Key column 2-19

Keywords
in syntax diagrams xvi

L
Language privileges 6-12

Light appends, description 12-10

LIST collection type 8-13

Loading data
dbload utility 4-12

external tables 4-12

Locale x, 1-7

Logging table
characteristics 12-9

creation 12-1, 12-8

Logging, types 4-3

M
Machine notes xix

Mandatory entity in relationship 2-7

Many-to-many relationship 2-7, 2-9, 2-22

Minidimension table, description 11-20

MODE ANSI keywords, logging 4-3

MODIFY clause of ALTER FRAGMENT 5-15

Modifying fragmented tables 5-13

MONEY data type
description 3-10

display format 3-11

MULTISET collection type 8-12

N
Named row type

casting 10-3

column definition 8-19

creating a typed table 8-17

description 8-14

dropping 8-21

example 8-14

naming conventions 8-16

restrictions 8-16

when to use 8-15

NCHAR data type 3-15

Nesting
collection types 8-14

row types 8-20

NODEFDAC environment variable 6-6

Nondecomposable attributes 2-13

Nonlogging table
characteristics 12-9

creation 12-1, 12-8

Normal form 2-24

Normalization
benefits 2-24

first normal form 2-25

of data model 2-24

rules 2-24, 2-27

second normal form 2-26

third normal form 2-27

NOT NULL keywords, use in CREATE TABLE

statement 4-4

Null value
defined 3-20

restrictions in primary key 2-19

NVARCHAR data type 3-16

O
ON-Archive 4-4

ondblog utility 4-4

One-to-many relationship 2-7, 2-9

One-to-one relationship 2-7, 2-9

Online analytical processing (OLAP) 11-3

Online help xxi

Online manuals xxi

Online notes xviii, xix

Online transaction processing (OLTP) 11-3

onload utility 4-10

onstat utility 6-16

ontape utility 4-4

onunload utility 4-10

Index X-5

onxfer utility 4-10

Opaque data type
casting 10-2

description 8-6

Operational data store 11-2

Operational table 12-11

Optional entity in relationship 2-7

ORDER BY keywords, restrictions in view 6-23

Owner naming
ANSI vs. non-ANSI 1-4

Ownership 6-5

P
Performance, buffered logging 4-3

Populating tables 4-10

Predefined data types 8-4

Primary key
composite 2-20

definition 2-19

system assigned 2-20

Printed manuals xxi

Privilege
ANSI vs. non_ANSI 1-4

automating 6-12, 6-13

column-level 6-9

Connect 6-4

database-administrator 6-5

database-level 6-4

Delete 6-6, 6-27

encoded in system catalog 6-7

Execute 6-11

granting 6-3

Index 6-7

Insert 6-6, 6-27

language 6-12

needed to create a view 6-27

on a view 6-28

Resource 6-5

routine-level 6-11

Select 6-6, 6-9, 6-27

table-level 6-6

typed tables 6-8

Update 6-6, 6-27

users and the public 6-4

views and 6-27

PUBLIC keyword, privilege granted to all users 6-4

R
Range distribution scheme

description 5-4

using 5-7

Raw permanent table
altering to 12-12

description 12-11

Recursive relationship 2-9, 2-24

Redundant relationship 2-24

References privilege 6-8

Referential constraint
data type considerations 3-22

Referential integrity, defining primary and foreign

keys 2-20

Relational model
description 2-1

resolving relationships 2-22

rules for defining tables, rows, and columns 2-17

Relationship
attribute 2-13

cardinality 2-11

cardinality constraint 2-7

complex 2-23

connectivity 2-7, 2-9

defining in data model 2-6

entity 2-3

existence dependency 2-7

mandatory 2-7

many-to-many 2-7, 2-9

many-to-many, resolving 2-22

one-to-many 2-7, 2-9

one-to-one 2-7, 2-9

optional 2-7

recursive 2-24

redundant 2-24

using matrix to discover 2-8

Release Notes xix

Repository, description 11-3

Resource privilege 6-5

REVOKE statement, granting privileges 6-3

Role
CREATE ROLE statement 6-15

definition 6-14

GRANT DEFAULT ROLE statement 6-16

granting privileges 6-15

rules for naming 6-14

SET ROLE statement 6-15

sysroleauth system catalog table 6-16

sysusers system catalog table 6-16

Round-robin distribution scheme
description 5-4

using 5-7

Routine overloading 9-4

Routine resolution 9-6

Routine-level privileges 6-11

Row
defining 2-17

in relational model 2-17

Row type
casting 10-4, 10-8

categories 8-10

nested 8-20

Rowid 5-12

X-6 IBM Informix Database Design and Implementation Guide

S
sales_demo database

creating 12-2, 12-7

data model 11-12

data sources for 12-4

loading 12-6

Sample-code conventions xvii

sbspace 8-8

Scratch table 12-10

Screen reader
reading syntax diagrams A-1

Second normal form 2-26

Security
constraining inserted values 6-20, 6-26

database-level privileges 6-2

making database inaccessible 6-2

restricting access 6-20, 6-21, 6-27

table-level privileges 6-9

using operating-system facilities 6-2

with user-defined routines 6-2

Select privilege
column level 6-9

definition 6-6

with a view 6-27

SELECT statement
in modifiable view 6-24

on a view 6-27

privilege for 6-4, 6-6

Semantic integrity 3-2

SERIAL data type
as primary key 2-19

description 3-6

initializing 3-7

referential constraints 3-22

reset starting point 6-8

restrictions 8-5, 8-14, 8-17, 8-22

table hierarchy 9-12

SERIAL8 data type
description 3-6

initializing 3-7

referential constraints 3-22

restrictions 8-6, 8-14, 8-17, 8-22

table hierarchy 9-12

SET collection type 8-11

SET ENCRYPTION PASSWORD statement 6-2

Single inheritance 9-1

SMALLFLOAT data type 3-8

SMALLINT data type 3-6

Smart large object
description 8-6

fragmenting 5-13

functions for copying 8-8

importing and exporting 8-8

sbspace storage for 8-8

SQL interactive uses 8-8

Smart large object (continued)
SQL restrictions 8-8

Software dependencies x

SQL code xvii

SQLCODE, ANSI vs. non-ANSI 1-6

Standard permanent table
altering to 12-12

description 12-12

Star-join schema
See also Dimensional data model.

description 11-7

Static table 12-11

stores_demo database xi

Substitutability 9-5

Subtable 9-1

Subtype 9-1

superstores_demo database xi, 8-2

Supertable 9-1

Supertype 9-1

Synonym
chains 4-8

in ANSI-compliant database 1-6

Synonyms for table names 4-7

Syntax diagrams
conventions for xiii

keywords in xvi

reading in a screen reader A-1

variables in xvi

Syntax segment xv

sysfragexprudrdep system catalog table 5-2

sysfragments system catalog table 5-2

syssyntable system catalog table 4-8

System catalog table
privileges 6-7

syscolauth 6-7

sysfragexprudrdep 5-2

sysfragments 5-2

systabauth 6-7

sysusers 6-7

System requirements
database x

software x

System-defined hash distribution scheme
description 5-5

using 5-8

T
Table

composite key, defined 2-20

converting to untyped table 8-19

converting untyped to typed 8-18

creating a table 4-4

descriptor column 2-19

dropping 4-6

foreign key, defined 2-20

Index X-7

Table (continued)
index, creating 4-6

key column 2-19

loading data into 4-12

names, synonyms 4-7

ownership 6-5

primary key in 2-19

privileges 6-6

relational model 2-17

represents an entity 2-19

Table hierarchy
adding new tables 9-13

defining 9-8

description 9-7

inherited properties 9-8

modifying table behavior 9-10

SERIAL types 9-12

triggers 9-12

Table inheritance, definition 9-7

Table-level privileges
access privileges 6-6

Alter privilege 6-8

definition and use 6-6

Index privilege 6-7

References privilege 6-8

Temp table 12-10

TEXT data type
description 3-18

restrictions 8-14, 8-22

using 3-19

Third normal form 2-27

TOC Notes xix

Transaction
ANSI vs. non-ANSI 1-3

definition 1-3

Transaction logging
ANSI vs. non-ANSI 1-4

buffered 4-3

establishing with CREATE DATABASE

statement 4-2

turning off for faster loading 4-12

Transitive dependency 2-27

Type constructor 8-10

Type hierarchy
creating 9-2

description 9-2

dropping row types from 9-6

overloading routines 9-2

Type inheritance, description 9-2

Type substitutability 9-5

Typed table
See also Fragmented table.

creating from an untyped table 8-18

definition 8-17

Typographical conventions xii

U
UNION keyword

in a view definition 6-23

restrictions in modifiable view 6-25

UNIQUE keyword
constraint in CREATE TABLE statement 4-4

restrictions in modifiable view 6-25

Unnamed row type
description 8-21

example 8-22

restrictions 8-22

Untyped table
converting to a typed table 8-18

definition 8-17

Update privilege
definition 6-6

with a view 6-27

UPDATE statement
applied to view 6-25

privilege for 6-4, 6-6

USER keyword 6-26

User-defined cast
between data types 10-10

User-defined data type
casting 10-2

description 8-5

User-defined routine
granting privileges on 6-11

security purposes 6-2

USETABLENAME environment variable 4-8

Utility program
dbload 4-12, 12-1, 12-8

V
VARCHAR data type 3-16

Variables, in syntax diagrams xvi

View
creating 6-21

deleting rows 6-25

description 6-20

dropped when basis is dropped 6-23

effect of changing basis 6-24

effects when changing the definition of 6-27

inserting rows in 6-25

modifying 6-24

null inserted in unexposed columns 6-25

privileges 6-27

restrictions on modifying 6-24

typed 6-22

updating duplicate rows 6-25

using WITH CHECK OPTION keywords 6-26

virtual column 6-25

Visual disabilities
reading syntax diagrams A-1

X-8 IBM Informix Database Design and Implementation Guide

W
WHERE keyword, enforcing data constraints 6-26

WITH CHECK OPTION keywords, CREATE VIEW

statement 6-26

Index X-9

X-10 IBM Informix Database Design and Implementation Guide

����

Printed in USA

G251-2271-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
IB

M

In

fo
rm

ix

Ve
rs

io
n

10
.0

/8
.5

IB
M

In

fo
rm

ix

Da

ta
ba

se

De

si
gn

an

d
Im

pl
em

en
ta

tio
n

Gu
id

e
�
�

�

	Informix Documentation Website
	IDS 10.0 Documentation Website
	Master Index Enterprise Edition
	Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	New Features in Extended Parallel Server, Version 8.50
	New Features in Dynamic Server, Version 10.0
	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	Example Code Conventions

	Additional Documentation
	Installation Guides
	Online Notes
	Locating Online Notes
	Online Notes Filenames

	Informix Error Messages
	Manuals
	Online Manuals
	Printed Manuals

	Online Help

	Accessibility
	IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Part 1. Basics of Database Design and Implementation
	Chapter 1. Planning a Database
	Choosing a Data Model for Your Database
	Using ANSI-Compliant Databases
	Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases
	Transactions
	Transaction Logging
	Owner Naming
	Privileges on Objects
	Default Isolation Level
	Character Data Types
	DECIMAL Data Type
	Escape Characters
	Cursor Behavior
	The SQLCODE Field of the SQL Communications Area
	Synonym Behavior

	Determining if an Existing Database Is ANSI Compliant

	Using a Customized Language Environment for Your Database (GLS)

	Chapter 2. Building a Relational Data Model
	Building a Data Model
	Overview of the Entity-Relationship Data Model
	Identifying and Defining Principal Data Objects
	Discovering Entities
	Choosing Possible Entities
	The List of Entities
	Telephone Directory Example
	Diagramming Entities

	Defining the Relationships
	Connectivity
	Existence Dependency
	Cardinality
	Discovering the Relationships
	Diagramming Relationships

	Identifying Attributes
	Selecting Attributes for Entities
	Listing Attributes
	About Entity Occurrences

	Diagramming Data Objects
	Reading E-R Diagrams
	Telephone Directory Example

	Translating E-R Data Objects into Relational Constructs
	Defining Tables, Rows, and Columns
	Placing Constraints on Columns
	Domain Characteristics

	Determining Keys for Tables
	Primary Keys
	Foreign Keys (Join Columns)
	Adding Keys to the Telephone Directory Diagram

	Resolving Relationships
	Resolving m:n Relationships
	Resolving Other Special Relationships

	Normalizing a Data Model
	First Normal Form
	Second Normal Form
	Third Normal Form
	Summary of Normalization Rules

	Chapter 3. Choosing Data Types
	Defining the Domains
	Data Types
	Choosing a Data Type
	Numeric Types
	Counters and Codes: INTEGER, SMALLINT, and INT8
	Automatic Sequences: SERIAL and SERIAL8
	Approximate Numbers: FLOAT and SMALLFLOAT
	Adjustable-Precision Floating Point: DECIMAL(p)
	Fixed-Precision Numbers: DECIMAL and MONEY

	Chronological Data Types
	Calendar Dates: DATE
	Exact Points in Time: DATETIME
	Choosing a DATETIME Format (GLS)

	BOOLEAN Data Type (IDS)
	Character Data Types (GLS)
	Character Data: CHAR(n) and NCHAR(n)
	Variable-Length Strings: CHARACTER VARYING(m,r), VARCHAR(m,r), NVARCHAR(m,r), and LVARCHAR
	Variable-Length Execution Time
	Large Character Objects: TEXT
	Binary Objects: BYTE
	Using TEXT and BYTE Data Types
	Changing the Data Type

	Null Values

	Default Values
	Check Constraints
	Referential Constraints

	Chapter 4. Implementing a Relational Data Model
	Creating the Database
	Using CREATE DATABASE
	Avoiding Name Conflicts
	Selecting a Dbspace
	Choosing the Type of Logging

	Using CREATE TABLE
	Creating a Fragmented Table
	Dropping or Modifying a Table

	Using CREATE INDEX
	Composite Indexes
	Bidirectional Traversal of Indexes

	Using Synonyms for Table Names
	Using Synonym Chains
	Using Command Scripts
	Capturing the Schema
	Executing the File
	An Example

	Populating the Database
	Moving Data from Other Informix Databases
	Loading Source Data into a Table
	Performing Bulk-Load Operations

	Part 2. Managing Databases
	Chapter 5. Table Fragmentation Strategies
	What Is Fragmentation?
	Why Use Fragmentation?
	Whose Responsibility Is Fragmentation?
	Enhanced Fragmentation (XPS)
	Fragmentation and Logging

	Distribution Schemes for Table Fragmentation
	Expression-Based Distribution Scheme
	Range Rule
	Arbitrary Rule
	Using the MOD Function (IDS)
	Inserting and Updating Rows

	Round-Robin Distribution Scheme
	Range Distribution Scheme (XPS)
	System-Defined Hash Distribution Scheme (XPS)
	Hybrid Distribution Scheme (XPS)

	Creating a Fragmented Table
	Creating a New Fragmented Table
	Creating a Fragmented Table from Nonfragmented Tables
	Using More Than One Nonfragmented Table
	Using a Single Nonfragmented Table

	Rowids in a Fragmented Table
	Fragmenting Smart Large Objects (IDS)

	Modifying Fragmentation Strategies
	Reinitializing a Fragmentation Strategy
	Modifying Fragmentation Strategies for Dynamic Server
	Using the ADD Clause
	Using the DROP Clause
	Using the MODIFY Clause

	Modifying Fragmentation Strategies for XPS
	Using the INIT Clause
	Using ATTACH and DETACH Clauses

	Granting and Revoking Privileges on Fragments (IDS)

	Chapter 6. Granting and Limiting Access to Your Database
	Using SQL to Restrict Access to Data
	Controlling Access to Databases
	Granting Privileges
	Database-Level Privileges
	Connect Privilege
	Resource Privilege
	Database-Administrator Privilege

	Ownership Rights
	Table-Level Privileges
	Access Privileges
	Index, Alter, and References Privileges
	Under Privileges for Typed Tables (IDS)
	Privileges on Table Fragments (IDS)

	Column-Level Privileges
	Type-Level Privileges
	Usage Privileges for User-Defined Types
	Under Privileges for Named Row Types

	Routine-Level Privileges
	Language-Level Privileges
	SPL Routines
	External Routines

	Automating Privileges
	Automating with a Command Script
	Using Roles

	Determining Current Role at Runtime

	Using SPL Routines to Control Access to Data
	Restricting Data Reads
	Restricting Changes to Data
	Monitoring Changes to Data
	Restricting Object Creation

	Using Views
	Creating Views
	Typed Views (IDS)
	Duplicate Rows from Views

	Restrictions on Views
	When the Basis Changes

	Modifying with a View
	Deleting with a View
	Updating a View
	Inserting into a View
	Using the WITH CHECK OPTION Keywords
	Re-Execution of a Prepared Statement When the View Definition Changes

	Privileges and Views
	Privileges When Creating a View
	Privileges When Using a View

	Chapter 7. Using Distributed Queries
	Overview of Distributed Queries
	Distributed Queries across Databases of One Dynamic Server Instance
	Coordinator and Participant in a Distributed Query

	Configuring the Database Server to Use Distributed Queries
	The Syntax of a Distributed Query
	Accessing a Remote Server and Database
	Database Name
	Database Object Name
	Specifying a Coserver ID (XPS)

	Valid Statements for Accessing Remote Objects
	Accessing Remote Tables
	Table Permissions
	Qualifying Table References

	Other Remote Operations
	Opening a Remote Database
	Creating a Remote Database
	Creating a Remote Synonym

	Monitoring Distributed Queries
	Server Environment and Distributed Queries
	PDQPRIORITY Environment Variable
	DEADLOCK_TIMEOUT

	Database Access Restrictions
	Transaction Processing
	Isolation Levels
	DEADLOCK_TIMEOUT and SET LOCK MODE
	Two-phase Commit and Recovery

	Cross Server Compatibility Issues (XPS)
	BYTE and TEXT Data Types
	Other Restrictions

	Part 3. Object-Relational Databases
	Chapter 8. Creating and Using Extended Data Types in Dynamic Server
	Informix Data Types
	Fundamental or Atomic Data Types
	Predefined Data Types
	BOOLEAN and LVARCHAR Data Types
	BLOB and CLOB Data Types
	Other Predefined Data Types

	Extended Data Types
	Complex Data Types
	User-Defined Data Types
	Distinct Data Types
	Opaque Data Types
	DataBlade Data Types

	Smart Large Objects
	BLOB Data Type
	CLOB Data type
	Using Smart Large Objects
	Copying Smart Large Objects

	Complex Data Types
	Collection Data Types
	Null Values in Collections
	Using SET Collection Types
	Using MULTISET Collection Types
	Using LIST Collection Types
	Nesting Collection Types
	Adding a Collection Type to an Existing Table
	Restrictions on Collections

	Named Row Types
	When to Use a Named Row Type
	Choosing a Name for a Named Row Type
	Restrictions on Named Row Types
	Using a Named Row Type to Create a Typed Table
	Changing the Type of a Table
	Using a Named Row Type to Create a Column
	Using a Named Row Type Within Another Row Type
	Dropping Named Row Types

	Unnamed Row Types

	Chapter 9. Understanding Type and Table Inheritance in Dynamic Server
	What Is Inheritance?
	Type Inheritance
	Defining a Type Hierarchy
	Overloading Routines for Types in a Type Hierarchy
	Inheritance and Type Substitutability
	Dropping Named Row Types from a Type Hierarchy

	Table Inheritance
	The Relationship Between Type and Table Hierarchies
	Defining a Table Hierarchy
	Inheritance of Table Behavior in a Table Hierarchy
	Modifying Table Behavior in a Table Hierarchy
	Constraints on Tables in a Table Hierarchy
	Adding Indexes to Tables in a Table Hierarchy
	Triggers on Tables in a Table Hierarchy

	SERIAL Types in a Table Hierarchy
	Adding a New Table to a Table Hierarchy
	Dropping a Table in a Table Hierarchy
	Altering the Structure of a Table in a Table Hierarchy
	Querying Tables in a Table Hierarchy
	Creating a View on a Table in a Table Hierarchy

	Chapter 10. Creating and Using User-Defined Casts in Dynamic Server
	What Is a Cast?
	Creating User-Defined Casts
	Invoking Casts
	Restrictions on User-Defined Casts

	Casting Row Types
	Casting Between Named and Unnamed Row Types
	Casting Between Unnamed Row Types
	Casting Between Named Row Types
	Using Explicit Casts on Fields
	Explicit Casts on Fields of an Unnamed Row Type
	Explicit Casts on Fields of a Named Row Type

	Casting Individual Fields of a Row Type

	Casting Collection Data Types
	Restrictions on Collection-Type Conversions
	Collections with Different Element Types
	Using an Implicit Cast Between Element Types
	Using an Explicit Cast Between Element Types

	Converting Relational Data to a MULTISET Collection

	Casting Distinct Data Types
	Using Explicit Casts with Distinct Types
	Casting Between a Distinct Type and Its Source Type
	Adding and Dropping Casts on a Distinct Type

	Casting to Smart Large Objects
	Creating Cast Functions for User-Defined Casts
	An Example of Casting Between Named Row Types
	An Example of Casting Between Distinct Data Types
	Multilevel Casting

	Part 4. Dimensional Databases
	Chapter 11. Building a Dimensional Data Model
	Overview of Data Warehousing
	Why Build a Dimensional Database?
	What Is Dimensional Data?

	Concepts of Dimensional Data Modeling
	The Fact Table
	Dimensions of the Data Model
	Dimension Elements
	Dimension Attributes
	Dimension Tables

	Building a Dimensional Data Model
	Choosing a Business Process
	Summary of a Business Process
	Determining the Granularity of the Fact Table
	How Granularity Affects the Size of the Database
	Using the Business Process to Determine the Granularity

	Identifying the Dimensions and Hierarchies
	Choosing the Measures for the Fact Table
	Using Keys to Join the Fact Table with the Dimension Tables

	Resisting Normalization
	Choosing the Attributes for the Dimension Tables

	Handling Common Dimensional Data-Modeling Problems
	Minimizing the Number of Attributes in a Dimension Table
	Handling Dimensions That Occasionally Change
	Using the Snowflake Schema

	Chapter 12. Implementing a Dimensional Database (XPS)
	Implementing the sales_demo Dimensional Database
	Using CREATE DATABASE
	Using CREATE TABLE for the Dimension and Fact Tables
	Mapping Data from Data Sources to the Database
	Loading Data into the Dimensional Database
	Creating the sales_demo Database
	Testing the Dimensional Database

	Logging and Nonlogging Tables in Extended Parallel Server
	Choosing Table Types
	Scratch and Temp Temporary Tables
	Raw Permanent Tables
	Static Permanent Tables
	Operational Permanent Tables
	Standard Permanent Tables

	Switching Between Table Types

	Indexes for Data-Warehousing Environments
	Using GK Indexes in a Data-Warehousing Environment
	Defining a GK Index on a Selection
	Defining a GK Index on an Expression
	Defining a GK Index on Joined Tables

	Part 5. Appendixes
	Appendix. Accessibility
	Notices
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

