
DB2® IBM Informix

IBM Informix Embedded SQLJ User’s Guide 

Version  2.90  

G251-2278-00  

 

  

���





DB2® IBM Informix

IBM Informix Embedded SQLJ User’s Guide 

Version  2.90  

G251-2278-00  

 

 

 

���



v   Chapter  1,  “Introducing  IBM  Informix  Embedded  SQLJ,”  on  page  1-1,  

introduces  the  IBM  Informix  Embedded  SQLJ  product.  

v   Chapter  2,  “Preparing  to  Use  Embedded  SQLJ,”  on  page  2-1,  describes  the  

software  you  need  to  develop  and  run Embedded  SQLJ  programs  and  how  

to  set  it  up.  

v   Chapter  3,  “Building  an  Embedded  SQLJ  Program,”  on  page  3-1,  provides  

an  overview  of  the  Embedded  SQLJ  language  and  demonstrates  its  use  

with  a simple  program.  

v   Chapter  4,  “The  Embedded  SQLJ  Language,”  on  page  4-1,  provides  detailed  

information  about  the  Embedded  SQLJ  language.  

v   Chapter  5,  “Processing  Embedded  SQLJ  Source  Code,”  on  page  5-1,  explains  

how  to  use  the  SQLJ  translator  and  how  to compile  and  run your  

Embedded  SQLJ  programs.  

v   Appendix  A,  “Connecting  to  Databases,”  on  page  A-1,  provides  background  

information  and  further  details  about  how  an  Embedded  SQLJ  program  

connects  to  a database.  

v   Appendix  B,  “Sample  Programs,”  on  page  B-1,  provides  a table  describing  

the  sample  programs  included  with  Embedded  SQLJ.  

v   An  Accessibility  appendix  describes  how  to read  syntax  diagrams  in  the  

HTML  version  of this  manual  using  a screen  reader.  

v   A Notices  appendix  provides  information  about  IBM  Informix  products.  

v   An  index  follows  at  the  end  of  the  manual.

Types of Users 

This  guide  is  for  programmers  who  want  to  write  JavaTM  programs  that  can:  

v   Connect  to  Informix  databases.  

v   Issue  SQL  statements  to  manipulate  data  in  the  database.

This  manual  is  written  with  the  assumption  that  you  have  the  following  

background:  

v   A working  knowledge  of  your  computer,  your  operating  system,  and  the  

utilities  that  your  operating  system  provides  

v   Experience  with  the  Java  programming  language  

v   Experience  working  with  relational  databases  or  exposure  to database  

concepts  

v   Experience  with  the  SQL  query  language

If  you  have  limited  experience  with  relational  databases,  SQL,  or  your  

operating  system,  refer  to  the  IBM  Informix:  Getting  Started  Guide  for  your  

database  server  for  a list  of  supplementary  titles.  

 

 

vi IBM Informix Embedded  SQLJ User’s Guide



Software Dependencies 

To run IBM  Informix  Embedded  SQLJ  programs,  you  must  use  one  of  the  

following  database  servers:  

v   IBM  Informix  Dynamic  Server,  Version  9.x  and  later  

v   IBM  Informix  Extended  Parallel  Server,  Version  8.x  

v   IBM  Informix  Dynamic  Server,  Version  7.x  

v   IBM  Informix  Dynamic  Server,  Workgroup  and  Developer  editions,  Version  

7.x  

v   IBM  Informix  OnLine  Dynamic  Server,  Version  5.x  

v   IBM  Informix  SE,  Versions  5.x  to  7.2x

To  enable  your  programs  to  connect  to  the  server,  you  must  use  IBM  Informix  

JDBC  Driver,  Version  2.0  or  later. 

You must  use  the  JavaSoft  software  Java  Development  Kit  (JDK),  Version  1.2  

or  later, or  any  Java  software  compatible  with  JDK  1.2,  to  create  your  

programs.  JDK  1.2  is  also  known  as  Java  2.  

Global Language Support 

Refer  to  the  IBM  Informix:  JDBC  Driver  Programmer's  Guide  for  information  

about  using  Global  Language  Support  (GLS)  with  IBM  Informix  JDBC  Driver.  

Documentation Conventions 

 This  section  describes  the  conventions  that  this  manual  uses.  These  

conventions  make  it easier  to  gather  information  from  this  and  other  volumes  

in  the  documentation  set.  

The  following  conventions  are  discussed:  

v   Typographical  conventions  

v   Other  conventions  

v   Syntax  diagrams  

v   Command-line  conventions  

v   Example  code  conventions

Typographical Conventions 

This  manual  uses  the  following  conventions  to  introduce  new  terms,  illustrate  

screen  displays,  describe  command  syntax,  and  so forth.  

 Convention  Meaning  

KEYWORD  All  primary  elements  in a programming  language  statement  

(keywords)  appear  in  uppercase  letters  in a serif  font.  

 

 

Introduction vii



Convention  Meaning  

italics  

italics  

italics  

Within  text,  new  terms  and  emphasized  words  appear  in italics.  

Within  syntax  and  code  examples,  variable  values  that  you  are  to 

specify  appear  in italics.  

boldface  

boldface  

Names  of program  entities  (such  as classes,  events,  and  tables),  

environment  variables,  file and  pathnames,  and  interface  elements  

(such  as icons,  menu  items,  and  buttons)  appear  in boldface.  

monospace  

monospace  

Information  that  the product  displays  and  information  that  you  

enter  appear  in a monospace  typeface.  

KEYSTROKE  Keys  that  you  are  to press  appear  in uppercase  letters  in a sans  serif  

font.  

> This  symbol  indicates  a menu  item.  For  example,  “Choose  Tools  > 

Options” means  choose  the  Options  item  from  the  Tools  menu.
  

Tip:   When  you  are  instructed  to  “enter”  characters  or  to “execute”  a 

command,  immediately  press  RETURN  after  the  entry.  When  you  are  

instructed  to  “type”  the  text  or  to  “press”  other  keys,  no  RETURN  is 

required.  

Feature, Product, and Platform 

Feature,  product,  and  platform  markup  identifies  paragraphs  that  contain  

feature-specific,  product-specific,  or  platform-specific  information.  Some  

 

 

viii IBM Informix  Embedded  SQLJ User’s Guide



examples  of  this  markup  follow:  

 

Dynamic  Server  

Identifies  information  that  is  specific  to  IBM  Informix  Dynamic  Server  

 

End  of  Dynamic  Server  

 

Extended  Parallel  Server  

Identifies  information  that  is  specific  to  IBM  Informix  Extended  Parallel  Server  

 

End  of  Extended  Parallel  Server  

 

UNIX  Only  

Identifies  information  that  is  specific  to  UNIX  platforms  

 

End  of  UNIX  Only  

 

Windows  Only  

Identifies  information  that  is  specific  to  the  Windows  environment  

 

End  of  Windows  Only  

 This  markup  can  apply  to  one  or  more  paragraphs  within  a section.  When  an  

entire  section  applies  to  a particular  product  or  platform,  this  is noted  as  part  

of  the  heading  text,  for  example:  

   Table  Sorting  (Linux  Only)

Syntax Diagrams 

This  guide  uses  syntax  diagrams  built  with  the  following  components  to  

describe  the  syntax  for  statements  and  all  commands  other  than  system-level  

commands.  

Note:   Starting  in  2004,  syntax  diagrams  have  been  reformatted  to  conform  to 

the  IBM  standard.  

Syntax  diagrams  depicting  SQL  and  command-line  statements  have  changed  

in  the  following  ways:  

v   The  symbols  at  the  beginning  and  end  of statements  are  now  double  arrows  

instead  of  a vertical  line  at  the  end.  

v   The  symbols  at  the  beginning  and  end  of syntax  segment  diagrams  are  now  

vertical  lines  instead  of arrows.  

 

 

Introduction ix



v   How  many  times  a loop  can  be  repeated  is now  explained  in a diagram  

footnote  instead  of  a number  in  a gate  symbol.  

v   Syntax  statements  that  are  longer  than  one  line  now  continue  on  the  next  

line  instead  of  looping  down  with  a continuous  line.  

v   Product  or  condition-specific  paths  are  now  explained  in  diagram  footnotes  

instead  of  icons.

The  following  table  describes  syntax  diagram  components.  

 Component  represented  in PDF  Component  represented  in HTML  Meaning  

 

 

>>----------------------  Statement  begins.  

 

 

----------------------->  Statement  continues  on 

next  line.  

 

 

>-----------------------  Statement  continues  from  

previous  line.  

 

 

-----------------------><  Statement  ends.  

 

 

--------SELECT----------  Required  item.  

 

 

--+-----------------+---  

  ’------LOCAL------’  

Optional  item.  

 

 

---+-----ALL-------+---  

   +--DISTINCT-----+  

   ’---UNIQUE------’  

Required  item  with  choice.  

One  and  only  one  item  

must  be present.  

 

 

---+------------------+---  

    +--FOR  UPDATE-----+  

    ’--FOR  READ  ONLY--’  

Optional  items  with  choice  

are  shown  below  the main  

line,  one  of which  you  

might  specify.  

 

 

    .---NEXT---------.  

----+----------------+---  

    +---PRIOR--------+  

    ’---PREVIOUS-----’  

The  values  below  the  

main  line  are  optional,  one  

of which  you  might  

specify.  If you  do not  

specify  an item,  the value  

above  the  line  will  be used  

as the  default.  

 

 

x IBM Informix  Embedded  SQLJ User’s Guide



Component  represented  in  PDF  Component  represented  in HTML  Meaning  

 

 

 .-------,-----------.  

 V                   | 

---+-----------------+---  

    +---index_name---+  

    ’---table_name---’  

Optional  items.  Several  

items  are  allowed;  a 

comma  must  precede  each  

repetition.  

 

 

>>-|  Table  Reference  |-><  Reference  to a syntax  

segment.  

 

 

Table  Reference  

|--+-----view--------+--|  

   +------table------+ 

   ’----synonym------’ 

Syntax  segment.

  

How  to  Read  a Command-Line  Syntax  Diagram  

The  following  command-line  syntax  diagram  uses  some  of the  elements  listed  

in  the  table  in  the  previous  section.  

Creating  a No-Conversion  Job  

�� onpladm create  job job 

-p
 

project
 -n -d device -D database �

�

 

-t

 

table

 

�

 

(1)

 

Setting the Run Mode

 

-S

 

server

 

-T

 

target

 

��

 

Notes:   

1 See  page  17-4

The  second  line  in  this  diagram  has  a segment  named  “Setting  the  Run  

Mode,”  which  according  to  the  diagram  footnote,  is on  page  17-4.  This  

segment  is  shown  in the  following  segment  diagram  (the  diagram  uses  

segment  start  and  end  components).  

Setting  the  Run  Mode:  

 

 

Introduction xi



-f

 

d

 

p

 

a

 l 

c
 

u

 

n

 

N

 

 

To construct  a command  correctly,  start  at the  top  left  with  the  command.  

Follow  the  diagram  to  the  right,  including  the  elements  that  you  want.  The  

elements  in the  diagram  are  case  sensitive.  

The  Creating  a No-Conversion  Job  diagram  illustrates  the  following  steps:  

1.   Type  onpladm  create  job  and  then  the  name  of the  job.  

2.   Optionally,  type  -p  and  then  the  name  of  the  project.  

3.   Type  the  following  required  elements:  

v   -n  

v   -d  and  the  name  of the  device  

v   -D  and  the  name  of  the  database  

v   -t  and  the  name  of  the  table
4.   Optionally,  you  can  choose  one  or  more  of the  following  elements  and  

repeat  them  an  arbitrary  number  of  times:  

v   -S  and  the  server  name  

v   -T  and  the  target  server  name  

v   The  run mode.  To set  the  run mode,  follow  the  Setting  the  Run  Mode  

segment  diagram  to  type  -f,  optionally  type  d,  p, or  a,  and  then  

optionally  type  l or  u.
5.   Follow  the  diagram  to  the  terminator.

Your  diagram  is complete.  

Keywords  and  Punctuation  

Keywords  are  words  reserved  for  statements  and  all  commands  except  

system-level  commands.  When  a keyword  appears  in  a syntax  diagram,  it is 

shown  in  uppercase  letters.  When  you  use  a keyword  in  a command,  you  can  

write  it  in  uppercase  or  lowercase  letters,  but  you  must  spell  the  keyword  

exactly  as it appears  in the  syntax  diagram.  

You must  also  use  any  punctuation  in  your  statements  and  commands  exactly  

as  shown  in  the  syntax  diagrams.  

Identifiers  and  Names  

Variables  serve  as placeholders  for  identifiers  and  names  in  the  syntax  

diagrams  and  examples.  You can  replace  a variable  with  an  arbitrary  name,  

 

 

xii IBM Informix  Embedded  SQLJ User’s Guide



identifier,  or  literal,  depending  on  the  context.  Variables  are  also  used  to  

represent  complex  syntax  elements  that  are  expanded  in additional  syntax  

diagrams.  When  a variable  appears  in  a syntax  diagram,  an  example,  or  text,  

it  is shown  in  lowercase  italic. 

The  following  syntax  diagram  uses  variables  to  illustrate  the  general  form  of  a 

simple  SELECT  statement.  

�� SELECT column_name FROM table_name ��

 

When  you  write  a SELECT  statement  of  this  form,  you  replace  the  variables  

column_name  and  table_name  with  the  name  of  a specific  column  and  table.  

Example Code Conventions 

Examples  of SQL  code  occur  throughout  this  manual.  Except  as  noted,  the  

code  is not  specific  to  any  single  IBM  Informix  application  development  tool.  

If only  SQL  statements  are  listed  in  the  example,  they  are  not  delimited  by  

semicolons.  For  instance,  you  might  see  the  code  in the  following  example:  

CONNECT  TO stores_demo  

...  

  

DELETE  FROM  customer  

   WHERE  customer_num  = 121  

...  

  

COMMIT  WORK  

DISCONNECT  CURRENT  

To use  this  SQL  code  for  a specific  product,  you  must  apply  the  syntax  rules 

for  that  product.  For  example,  if you  are  using  DB–Access,  you  must  delimit  

multiple  statements  with  semicolons.  If you  are  using  an  SQL  API,  you  must  

use  EXEC  SQL  at  the  start  of  each  statement  and  a semicolon  (or  other  

appropriate  delimiter)  at  the  end  of the  statement.  

Tip:   Ellipsis  points  in a code  example  indicate  that  more  code  would  be  

added  in  a full  application,  but  it is not  necessary  to show  it to  describe  

the  concept  being  discussed.  

For  detailed  directions  on  using  SQL  statements  for  a particular  application  

development  tool  or  SQL  API,  see  the  manual  for  your  product.  

 

 

Introduction xiii



Additional Documentation 

For  additional  information,  refer  to  the  following  types  of  documentation:  

v   Installation  guides  

v   Online  notes  

v   Informix  error  messages  

v   Manuals  

v   Online  help

Installation Guides 

Installation  guides  are  located  in the  /doc  directory  of  the  product  CD  or  in  

the  /doc  directory  of  the  product‘s  compressed  file  if you  downloaded  it from  

the  IBM  Web site.  Alternatively,  you  can  obtain  installation  guides  from  the  

IBM  Informix  Online  Documentation  site  at 

http://www.ibm.com/software/data/informix/pubs/library/.  

Online Notes 

The  following  sections  describe  the  online  files  that  supplement  the  

information  in  this  manual.  Please  examine  these  files  before  you  begin  using  

your  IBM  Informix  product.  They  contain  vital  information  about  application  

and  performance  issues.  

 

 

xiv IBM Informix  Embedded  SQLJ User’s Guide

http://www.ibm.com/software/data/informix/pubs/library/


Online  File  Description  Format  

TOC  Notes  The  TOC  (Table of Contents)  notes  file  

provides  a comprehensive  directory  of 

hyperlinks  to the  release  notes,  the  fixed  and  

known  defects  file,  and  all the  documentation  

notes  files  for  individual  manual  titles.  

HTML  

Documentation  Notes  The  documentation  notes  file  for  each  manual  

contains  important  information  and  

corrections  that  supplement  the  information  

in the  manual  or information  that  was  

modified  since  publication.  

HTML,  text  

Release  Notes  The  release  notes  file  describes  feature  

differences  from  earlier  versions  of IBM  

Informix  products  and  how  these  differences  

might  affect  current  products.  For  some  

products,  this  file  also  contains  information  

about  any  known  problems  and  their  

workarounds.  

HTML,  text  

Machine  Notes  (Non-Windows  platforms  only)  The  machine  

notes  file  describes  any  platform-specific  

actions  that  you  must  take  to configure  and  

use  IBM  Informix  products  on your  

computer.  

text  

Fixed  and  Known  

Defects  File  

This  text  file  lists  issues  that  have  been  

identified  with  the  current  version.  It also  lists  

customer-reported  defects  that  have  been  

fixed  in both  the  current  version  and  in 

previous  versions.  

text

  

Locating  Online  Notes  

Online  notes  are  available  from  the  IBM  Informix  Online  Documentation  site  

at  http://www.ibm.com/software/data/informix/pubs/library/.  Additionally  

you  can  locate  these  files  before  or  after  installation  as described  below.  

Before  Installation  

All  online  notes  are  located  in  the  /doc  directory  of  the  product  CD.  The  

easiest  way  to  access  the  documentation  notes,  the  release  notes,  and  the  fixed  

and  known  defects  file  is through  the  hyperlinks  from  the  TOC  notes  file.  

The  machine  notes  file  and  the  fixed  and  known  defects  file  are  only  provided  

in  text  format.  

After  Installation  

 

 

Introduction xv

http://www.ibm.com/software/data/informix/pubs/library/


On  UNIX  platforms  in  the  default  locale,  the  documentation  notes,  release  

notes,  and  machine  notes  files  appear  under  the  

$INFORMIXDIR/release/en_us/0333  directory.  

 

Dynamic  Server  

On  Windows  the  documentation  and  release  notes  files  appear  in  the  

Informix  folder.  To display  this  folder,  choose  Start  > Programs  > IBM  

Informix  Dynamic  Server  version  > Documentation  Notes  or  Release  Notes  

from  the  taskbar.  

Machine  notes  do  not  apply  to  Windows  platforms.  

 

End  of  Dynamic  Server  

Online  Notes  Filenames  

Online  notes  have  the  following  file  formats:  

 Online  File  File  Format  Examples  

TOC  Notes  prod_os_tocnotes_version.html ids_win_tocnotes_10.0.html  

Documentation  Notes  prod_bookname_docnotes_version.html/txt  ids_hpl_docnotes_10.0.html  

Release  Notes  prod_os_relnotes_version.html/txt  ids_unix_relnotes_10.0.txt  

Machine  Notes  prod_machine_notes_version.txt ids_machine_notes_10.0.txt  

Fixed  and  Known  

Defects  File  

prod_defects_version.txt 

  

  

ids_win_fixed_and_known  

_defects_version.txt 

ids_defects_10.0.txt  

client_defects_2.90.txt  

  

ids_win_fixed_and_known  

_defects_10.0.txt  

  

Informix Error Messages 

This  file  is a comprehensive  index  of error  messages  and  their  corrective  

actions  for  the  Informix  products  and  version  numbers.  

On  UNIX  platforms,  use  the  finderr  command  to  read  the  error  messages  and  

their  corrective  actions.  

 

Dynamic  Server  

On  Windows,  use  the  Informix  Error  Messages  utility  to read  error  messages  

and  their  corrective  actions.  To display  this  utility,  choose  Start  > Programs  > 

IBM  Informix  Dynamic  Server  version  > Informix  Error  Messages  from  the  

taskbar.  

 

End  of  Dynamic  Server  

 

 

xvi IBM Informix  Embedded  SQLJ User’s Guide



You can  also  access  these  files  from  the  IBM  Informix  Online  Documentation  

site  at  http://www.ibm.com/software/data/informix/pubs/library/.  

Manuals 

Online  Manuals  

A  CD  that  contains  your  manuals  in  electronic  format  is provided  with  your  

IBM  Informix  products.  You can  install  the  documentation  or  access  it directly  

from  the  CD.  For  information  about  how  to  install,  read,  and  print  online  

manuals,  see  the  installation  insert  that  accompanies  your  CD.  You can  also  

obtain  the  same  online  manuals  from  the  IBM  Informix  Online  Documentation  

site  at  http://www.ibm.com/software/data/informix/pubs/library/.  

Printed  Manuals  

To order  hardcopy  manuals,  contact  your  sales  representative  or visit  the  IBM  

Publications  Center  Web site  at  

http://www.ibm.com/software/howtobuy/data.html.  

Online Help 

IBM  Informix  online  help,  provided  with  each  graphical  user  interface  (GUI),  

displays  information  about  those  interfaces  and  the  functions  that  they  

perform.  Use  the  help  facilities  that  each  GUI  provides  to  display  the  online  

help.  

Accessibility 

IBM  is committed  to  making  our  documentation  accessible  to  persons  with  

disabilities.  Our  books  are  available  in  HTML  format  so  that  they  can  be  

accessed  with  assistive  technology  such  as  screen  reader  software.  The  syntax  

diagrams  in  our  manuals  are  available  in dotted  decimal  format,  which  is an  

accessible  format  that  is  available  only  if you  are  using  a screen  reader.  For  

more  information  about  the  dotted  decimal  format,  see  the  Accessibility  

appendix.  

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 

Documentation Set 

The  following  tables  list  the  manuals  that  are  part  of the  IBM  Informix  

Dynamic  Server,  Version  10.0  and  the  CSDK  Version  2.90,  documentation  set.  

PDF  and  HTML  versions  of  these  manuals  are  available  at 

http://www.ibm.com/software/data/informix/pubs/library/.  You can  order  

hardcopy  versions  of  these  manuals  from  the  IBM  Publications  Center  at 

http://www.ibm.com/software/howtobuy/data.html.  

 

 

Introduction xvii

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html


Table 1. Database  Server  Manuals  

Manual  Subject  

Administrator’s  Guide  Understanding,  configuring,  and  administering  your  database  server.  

Administrator’s  Reference  Reference  material  for Informix  Dynamic  Server,  such  as the syntax  of 

database  server  utilities  onmode  and  onstat, and  descriptions  of 

configuration  parameters,  the  sysmasters  tables,  and  logical-log  records.  

Backup  and  Restore  Guide  The  concepts  and  methods  you  need  to understand  when  you  use  the  

ON-Bar  and  ontape  utilities  to back  up and  restore  data.  

DB-Access  User’s  Guide  Using  the  DB-Access  utility  to access,  modify,  and  retrieve  data  from  

Informix  databases.  

DataBlade  API  

Function  Reference  

The  DataBlade  API  functions  and  the  subset  of ESQL/C  functions  that  

the  DataBlade  API  supports.  You can  use  the  DataBlade  API  to develop  

client  LIBMI  applications  and  C user-defined  routines  that  access  data  in 

Informix  databases.  

DataBlade  API  

Programmer’s  Guide  

The  DataBlade  API,  which  is the  C-language  application-programming  

interface  provided  with  Dynamic  Server.  You use  the DataBlade  API  to 

develop  client  and  server  applications  that  access  data  stored  in Informix  

databases.  

Database  Design  and  

Implementation  Guide  

Designing,  implementing,  and  managing  your  Informix  databases.  

Enterprise  Replication  

Guide  

How  to design,  implement,  and  manage  an Enterprise  Replication  system  

to replicate  data  between  multiple  database  servers.  

Error  Messages  file  Causes  and  solutions  for numbered  error  messages  you  might  receive  

when  you  work  with  IBM  Informix  products.  

Getting  Started  Guide  Describes  the  products  bundled  with  IBM  Informix  Dynamic  Server  and  

interoperability  with  other  IBM  products.  Summarizes  important  features  

of Dynamic  Server  and  the  new  features  for each  version.  

Guide  to SQL:  Reference  Information  about  Informix  databases,  data  types,  system  catalog  tables,  

environment  variables,  and  the stores_demo  demonstration  database.  

Guide  to SQL:  Syntax  Detailed  descriptions  of the syntax  for all Informix  SQL  and  SPL  

statements.  

Guide  to SQL:  Tutorial A tutorial  on  SQL,  as implemented  by Informix  products,  that  describes  

the  basic  ideas  and  terms  that  are  used  when  you  work  with  a relational  

database.  

High-Performance  Loader  

User’s  Guide  

Accessing  and  using  the  High-Performance  Loader  (HPL),  to load  and  

unload  large  quantities  of data  to and  from  Informix  databases.  

Installation  Guide  for  

Microsoft  Windows  

Instructions  for installing  IBM  Informix  Dynamic  Server  on Windows.  

Installation  Guide  for  

UNIX  and  Linux  

Instructions  for installing  IBM  Informix  Dynamic  Server  on UNIX  and  

Linux.  

 

 

xviii IBM Informix  Embedded  SQLJ User’s Guide



Table 1. Database  Server  Manuals  (continued)  

Manual  Subject  

J/Foundation  Developer’s  

Guide  

Writing user-defined  routines  (UDRs)  in the  Java  programming  language  

for  Informix  Dynamic  Server  with  J/Foundation.  

Large  Object  Locator  

DataBlade  Module  User’s  

Guide  

Using  the  Large  Object  Locator,  a foundation  DataBlade  module  that  can  

be  used  by other  modules  that  create  or store  large-object  data.  The  Large  

Object  Locator  enables  you  to create  a single  consistent  interface  to large  

objects  and  extends  the  concept  of large  objects  to include  data  stored  

outside  the  database.  

Migration  Guide  Conversion  to and  reversion  from  the  latest  versions  of Informix  

database  servers.  Migration  between  different  Informix  database  servers.  

Optical  Subsystem  Guide  The  Optical  Subsystem,  a utility  that  supports  the  storage  of BYTE  and  

TEXT  data  on  optical  disk.  

Performance  Guide  Configuring  and  operating  IBM  Informix  Dynamic  Server  to achieve  

optimum  performance.  

R-Tree Index  User’s Guide  Creating  R-tree  indexes  on appropriate  data  types,  creating  new  operator  

classes  that  use  the  R-tree  access  method,  and  managing  databases  that  

use  the  R-tree  secondary  access  method.  

SNMP  Subagent  Guide  The  IBM  Informix  subagent  that  allows  a Simple  Network  Management  

Protocol  (SNMP)  network  manager  to monitor  the status  of Informix  

servers.  

Storage  Manager  

Administrator’s  Guide  

Informix  Storage  Manager  (ISM),  which  manages  storage  devices  and  

media  for  your  Informix  database  server.  

Trusted Facility  Guide  The  secure-auditing  capabilities  of Dynamic  Server,  including  the  creation  

and  maintenance  of audit  logs.  

User-Defined  Routines  and  

Data  Types Developer’s  

Guide  

How  to define  new  data  types  and  enable  user-defined  routines  (UDRs)  

to  extend  IBM  Informix  Dynamic  Server.  

Virtual-Index  Interface  

Programmer’s  Guide  

Creating  a secondary  access  method  (index)  with  the  Virtual-Index  

Interface  (VII)  to extend  the  built-in  indexing  schemes  of IBM  Informix  

Dynamic  Server.  Typically  used  with  a DataBlade  module.  

Virtual-Table  Interface  

Programmer’s  Guide  

Creating  a primary  access  method  with  the  Virtual-Table  Interface  (VTI)  

so  that  users  have  a single  SQL  interface  to Informix  tables  and  to  data  

that  does  not  conform  to the storage  scheme  of Informix  Dynamic  Server.
  

 Table 2. Client/Connectivity  Manuals  

Manual  Subject  

Client  Products  Installation  

Guide  

Installing  IBM  Informix  Client  Software  Developer’s  Kit  (Client  SDK)  and  

IBM  Informix  Connect  on computers  that  use  UNIX,  Linux,  and  

Windows.  

Embedded  SQLJ  User’s  

Guide  

Using  IBM  Informix  Embedded  SQLJ  to embed  SQL  statements  in Java  

programs.  

 

 

Introduction xix



Table 2. Client/Connectivity  Manuals  (continued)  

Manual  Subject  

ESQL/C  Programmer’s  

Manual  

The  IBM  Informix  implementation  of embedded  SQL  for  C. 

GLS  User’s  Guide  The  Global  Language  Support  (GLS)  feature,  which  allows  IBM  Informix  

APIs  and  database  servers  to handle  different  languages,  cultural  

conventions,  and  code  sets.  

JDBC  Driver  Programmer’s  

Guide  

Installing  and  using  Informix  JDBC  Driver  to connect  to an Informix  

database  from  within  a Java  application  or applet.  

.NET  Provider  Reference  

Guide  

Using  Informix  .NET  Provider  to enable  .NET  client  applications  to 

access  and  manipulate  data  in Informix  databases.  

ODBC  Driver  Programmer’s  

Manual  

Using  the  Informix  ODBC  Driver  API  to access  an Informix  database  and  

interact  with  the  Informix  database  server.  

OLE  DB  Provider  

Programmer’s  Guide  

Installing  and  configuring  Informix  OLE  DB  Provider  to  enable  client  

applications,  such  as ActiveX  Data  Object  (ADO)  applications  and  Web 

pages,  to access  data  on  an Informix  server.  

Object  Interface  for  C++  

Programmer’s  Guide  

The  architecture  of the  C++  object  interface  and  a complete  class  

reference.
  

 Table 3. DataBlade  Developer’s  Kit Manuals  

Manual  Subject  

DataBlade  Developer’s  Kit  

User’s  Guide  

Developing  and  packaging  DataBlade  modules  using  BladeSmith  and  

BladePack.  

DataBlade  Module  

Development  Overview  

Basic  orientation  for  developing  DataBlade  modules.  Includes  an 

example  illustrating  the  development  of a DataBlade  module.  

DataBlade  Module  

Installation  and  Registration  

Guide  

Installing  DataBlade  modules  and  using  BladeManager  to manage  

DataBlade  modules  in Informix  databases.

  

Compliance with Industry Standards 

The  American  National  Standards  Institute  (ANSI)  and  the  International  

Organization  of  Standardization  (ISO)  have  jointly  established  a set  of 

industry  standards  for  the  Structured  Query  Language  (SQL).  IBM  Informix  

SQL-based  products  are  fully  compliant  with  SQL-92  Entry  Level  (published  

as  ANSI  X3.135-1992),  which  is  identical  to  ISO  9075:1992.  In  addition,  many  

features  of  IBM  Informix  database  servers  comply  with  the  SQL-92  

Intermediate  and  Full  Level  and  X/Open  SQL  Common  Applications  

Environment  (CAE)  standards.  

 

 

xx IBM Informix  Embedded  SQLJ User’s Guide



IBM Welcomes Your Comments 

We want  to  know  about  any  corrections  or  clarifications  that  you  would  find  

useful  in  our  manuals,  which  will  help  us  improve  future  versions.  Include  

the  following  information:  

v   The  name  and  version  of  the  manual  that  you  are  using  

v   Section  and  page  number  

v   Your suggestions  about  the  manual

Send  your  comments  to  us  at  the  following  email  address:  

docinf@us.ibm.com  

This  email  address  is reserved  for  reporting  errors  and  omissions  in  our  

documentation.  For  immediate  help  with  a technical  problem,  contact  IBM  

Technical  Support.  

We appreciate  your  suggestions.  

 

 

Introduction xxi

mailto:docinf@us.ibm.com


xxii IBM Informix  Embedded  SQLJ User’s Guide



Chapter  1. Introducing  IBM  Informix  Embedded  SQLJ  

What  Is Embedded  SQLJ?   . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 

How  Does  Embedded  SQLJ  Work?  . . . . . . . . . . . . . . . . . . . . . . . 1-1 

Embedded  SQLJ  Versus  JDBC  . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

In This Chapter 

This  chapter  explains  what  IBM  Informix  Embedded  SQLJ  allows  you  to  do  

and  provides  an  overview  of  how  it works.  

What Is Embedded SQLJ? 

IBM  Informix  Embedded  SQLJ  enables  you  to  embed  SQL  statements  in your  

Java  programs.  IBM  Informix  Embedded  SQLJ  consists  of:  

v   The  SQLJ  translator,  which  translates  SQLJ  code  into  Java  code  

v   A set  of  Java  classes  that  provide  runtime  support  for  SQLJ  programs

IBM  Informix  Embedded  SQLJ  includes  the  standard  SQLJ  implementation,  as  

defined  by  the  SQLJ  consortium,  plus  specific  Informix  extensions.  The  rest  of  

this  manual  refers  to  IBM  Informix  Embedded  SQLJ  as  Embedded  SQLJ. The  

standard  SQLJ  implementation  is referred  to  as  traditional  Embedded  SQLJ. 

How Does Embedded SQLJ Work? 

When  you  use  Embedded  SQLJ,  you  embed  SQL  statements  in your  Java  

source  code.  You use  the  SQLJ  translator  to  convert  the  embedded  SQL  

statements  to  Java  source  code  with  calls  to JDBC.  JDBC  is the  JavaSoft  

specification  of  a standard  application  programming  interface  (API)  that  

allows  Java  programs  to  access  database  management  systems.  

Finally,  you  use  the  Java  compiler  to  compile  your  translated  Java  program  

into  an  executable  Java  .class  file,  as shown  in Figure  1-1.  

 

  

Figure  1-1. Translation  and Compilation  of an Embedded  SQLJ Program

 

© Copyright  IBM Corp. 1996, 2004 1-1



When  you  run your  program,  it uses  the  IBM  Informix  JDBC  Driver  to  

connect  to  an  Informix  database,  as shown  in  Figure  1-2.  

 

See  the  IBM  Informix:  JDBC  Driver  Programmer's  Guide  for  information  about  

using  the  IBM  Informix  JDBC  Driver.  

Embedded SQLJ Versus JDBC 

Embedded  SQLJ  does  not  support  dynamic  SQL;  you  must  use  the  JDBC  API  

if you  want  to  use  dynamic  SQL.  Your Embedded  SQLJ  program  can  call  the  

JDBC  API  to  perform  a dynamic  operation  (the  SQLJ  connection-context  object  

that  you  use  to  connect  an  Embedded  SQLJ  program  to  the  database  contains  

a JDBC  Connection  object  that  you  can  use  to create  JDBC  statement  objects).  

If you  are  using  static  SQL,  Embedded  SQLJ  provides  the  following  

advantages:  

v   Default  connection  context.  You only  need  to  set  the  default  connection  

context  once  within  a program;  then  every  subsequent  Embedded  SQLJ  

statement  uses  this  connection  context  unless  you  specify  otherwise.  

v   Reduced  statement  complexity.  For  example,  you  do  not  need  to explicitly  

bind  each  variable;  Embedded  SQLJ  performs  binding  for  you.  Generally,  

this  feature  allows  you  to  create  smaller  programs  than  with  the  JDBC  API.  

v   Compile-time  syntax  and  semantics  checking.  The  Embedded  SQLJ  

translator  checks  the  syntax  of SQL  statements.  

v   Compile-time  type  checking.  The  Embedded  SQLJ  translator  and  the  Java  

compiler  check  that  the  Java  data  types  of  arguments  are  compatible  with  

the  SQL  data  types  of the  SQL  operation.  

  

Figure  1-2. Runtime Architecture  for Embedded  SQLJ Programs

 

 

1-2 IBM Informix  Embedded  SQLJ User’s Guide



v   Compile-time  schema  checking.  You can  connect  to  a sample  database  

schema  during  translation  to  check  that  your  program  uses  valid  SQL  

statements  for  the  tables,  views,  columns,  stored  procedures,  and  so  on  in  

your  sample.

 

 

Chapter  1. Introducing  IBM Informix  Embedded  SQLJ 1-3



1-4 IBM Informix  Embedded  SQLJ User’s Guide



Chapter  2. Preparing  to Use Embedded  SQLJ  

What  Components  Do You Need?   . . . . . . . . . . . . . . . . . . . . . . . 2-1  

Setting  Up Your Software   . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  

Examples   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

In This Chapter 

This  chapter  describes  the  software  you  must  have  to  develop  Embedded  

SQLJ  programs  and  how  to  set  up  this  software.  

What Components Do You Need? 

You need  the  following  software  to  create  and  run SQLJ  programs:  

v   IBM  Informix  Embedded  SQLJ  

v   The  JavaSoft  software  Java  Development  Kit  (JDK),  Version  1.2  or  later, or  

any  Java  software  compatible  with  JDK  1.2  (also  known  as  Java  2)  

v   IBM  Informix  JDBC  Driver,  Version  2.0  or  later, to  enable  your  programs  to  

connect  to  the  database  server  

v   One  of the  following  Informix  database  servers:  

–   IBM  Informix  Dynamic  Server,  Version  9.x  and  later  

–   IBM  Informix  Extended  Parallel  Server,  Version  8.x  

–   IBM  Informix  Dynamic  Server,  Version  7.x  

–   IBM  Informix  Dynamic  Server,  Workgroup  and  Developer  editions,  

Version  7.x  

–   IBM  Informix  OnLine  Dynamic  Server,  Version  5.x  

–   IBM  Informix  SE,  Versions  5.x  to 7.2x

Setting Up Your Software 

Before  you  install  Embedded  SQLJ,  you  must  already  have  installed  the  

JavaSoft  software  Java  Development  Kit  (JDK),  Version  1.2  or  later. (For  more  

information  about  the  Java  language,  see  the  JavaSoft  Web site  at 

http://java.sun.com/.)  

For  further  information  about  installing  and  using  IBM  Informix  JDBC  Driver,  

see  the  IBM  Informix:  JDBC  Driver  Programmer's  Guide. 

If you  do  not  already  have  your  Informix  server  installed,  refer  to the  

IBM  Informix:  Installation  Guide  that  accompanies  that  software.  

 

© Copyright  IBM Corp. 1996, 2004 2-1



Examples 

IBM  Informix  Embedded  SQLJ  includes  sample  online  programs  in  the  

/demo/sqlj  directory.  The  README  file  in  this  directory  briefly  explains  what  

each  of  the  programs  demonstrates  and  how  to  set  up,  compile,  and  run the  

programs.  The  programs  also  enable  you  to  verify  that  IBM  Informix  

Embedded  SQLJ  and  IBM  Informix  JDBC  Driver  are  correctly  installed.  The  

examples  in  this  manual  are  taken  from  these  sample  programs.  

 

 

2-2 IBM Informix  Embedded  SQLJ User’s Guide



Chapter  3. Building  an Embedded  SQLJ  Program  

Fundamentals  of Embedded  SQLJ   . . . . . . . . . . . . . . . . . . . . . . . 3-1  

SQLJ  Statement  Identifier   . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Connecting  to a Database   . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 

Embedding  SQL  Statements   . . . . . . . . . . . . . . . . . . . . . . . . 3-2  

Handling  Result  Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

Positional  Iterators   . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  

Named  Iterators   . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  

A Simple  Embedded  SQLJ  Program  . . . . . . . . . . . . . . . . . . . . . . . 3-4

In This Chapter 

This  chapter  explains  the  fundamentals  of building  an  Embedded  SQLJ  

program  and  includes  a demonstration  program.  

Fundamentals of Embedded SQLJ 

This  chapter  introduces  simple  Embedded  SQLJ  statements;  see  Chapter  4, 

“The  Embedded  SQLJ  Language,”  on  page  4-1,  for  detailed  information  about  

the  language.  

SQLJ Statement Identifier 

Each  SQLJ  statement  in  an  Embedded  SQLJ  program  is identified  by  #sql  at 

the  beginning  of  the  statement.  The  SQLJ  translator  recognizes  #sql  and  

translates  the  rest  of  the  statement  into  Java  code  using  JDBC  calls.  

Connecting to a Database 

You can  use  a class  called  ConnectionManager  (located  in  a file  in  the  

/demo/sqlj  directory)  to  initiate  a JDBC  connection.  The  ConnectionManager  

class  uses  a JDBC  driver  and  a database  URL  to  connect  to a database.  

Database  URLs  are  described  in  “Database  URLs”  on  page  A-1.  

To enable  your  Embedded  SQLJ  program  to  connect  to  a database,  you  assign  

values  to  the  following  data  members  of the  ConnectionManager  class  in the  

file  /demo/sqlj/ConnectionManager.java: 

 UID  The  user  name  

PWD  The  password  for  the user  name  

DRIVER  The  JDBC  driver  

DBURL  The  URL  for  the  database
 

 

© Copyright  IBM Corp. 1996, 2004 3-1



You must  include  the  directory  that  contains  your  ConnectionManager.class  

file  (produced  when  you  compile  ConnectionManager.java) in  your  

CLASSPATH  environment  variable  definition.  

Your Embedded  SQLJ  program  connects  to  the  database  by  calling  the  

initContext()  method  of  the  ConnectionManager  class,  as follows:  

ConnectionManager.initContext();  

“The  ConnectionManager  Class”  on  page  A-1  provides  details  about  the  

functionality  of  the  initContext()  method.  

As  an  alternative  to  using  the  ConnectionManager  class,  you  can  write  your  

own  input  methods  to  read  the  values  of user  name,  password,  driver,  and  

database  URL  from  a file  or  from  the  command  line.  

The  connection  context  that  you  set  up  is the  default  connection  context;  all  

#sql  statements  execute  within  this  context,  unless  you  specify  a different  

context.  For  information  about  using  nondefault  connection  contexts,  see  

“Using  Nondefault  Connection  Contexts”  on  page  A-3.  

Embedding SQL Statements 

Embedded  SQL  statements  can  appear  anywhere  that  Java  statements  can  

legally  appear.  SQL  statements  must  appear  within  curly  braces,  as  follows:  

#sql  

{ 

INSERT  INTO  customer  VALUES  

( 101,  "Ludwig",  "Pauli",  "All  Sports  Supplies",  

"213  Erstwild  Court",  "",  "Sunnyvale",  "CA",  

"94086",  "408-789-8075"  

) 

}; 

You can  use  the  SELECT...INTO  statement  to  retrieve  data  into  Java  variables  

(host  variables).  Host  variables  within  SQL  statements  are  designated  by  a 

preceding  colon  ( : ). For  example,  the  following  query  places  values  in  the  

variables  customer_num, fname, lname, company, address1,  address2,  city, state, 

zipcode, and  phone: 

#sql  

{ 

SELECT  *  INTO  :customer_num,  :fname,  :lname,  :company,  

:address1,  :address2,  :city,  :state,  :zipcode,  

:phone  

FROM  customer  

WHERE  customer_num  = 101  

}; 

 

 

3-2 IBM Informix  Embedded  SQLJ User’s Guide



SQL  statements  are  case  insensitive  and  can  be  written  in uppercase,  

lowercase,  or  mixed-case  letters.  Java  statements  are  case  sensitive  (and  so  are  

host  variables).  

You use  SELECT...INTO  statements  for  queries  that  return  a single  record;  for  

queries  that  return  multiple  rows  (a result  set),  you  use  an  iterator  object,  

described  in  the  next  section.  

Handling Result Sets 

Embedded  SQLJ  uses  result-set  iterator  objects  rather  than  cursors  to  manage  

result  sets  (cursors  are  used  by  languages  such  as  IBM  Informix  ESQL/C).  A 

result-set  iterator  is  a Java  object  from  which  you  can  retrieve  the  data  

returned  by  a SELECT  statement.  Unlike  cursors,  iterator  objects  can  be  

passed  as  parameters  to  a method.  

Important:   Names  of iterator  classes  must  be  unique  within  an  application.  

When  you  declare  an  iterator  class,  you  specify  a set  of Java  variables  to 

match  the  SQL  columns  that  your  SELECT  statement  returns.  There  are  two  

types  of  iterators:  positional  and  named.  

Positional  Iterators  

The  order  of  declaration  of  the  Java  variables  of  a positional  iterator  must  

match  the  order  in  which  the  SQL  columns  are  returned.  You use  a 

FETCH...INTO  statement  to  retrieve  data  from  a positional  iterator.  

For  example,  the  following  statement  generates  a positional  iterator  class  with  

five  columns,  called  CustIter:  

#sql  iterator  CustIter(  int  , String,  String,  String,  String,  String  ); 

This  iterator  can  hold  the  result  set  from  the  following  SELECT  statement:  

SELECT  customer_num,  fname,  lname,   address1,  

address2,  phone  

FROM    customer  

Named  Iterators  

The  name  of  each  Java  variable  of a named  iterator  must  match  the  name  of a 

column  returned  by  your  SELECT  statement;  order  is  irrelevant.  The  matching  

of  SQL  column  name  and  iterator  column  name  is case  insensitive.  

You use  accessor  methods  of  the  same  name  as each  iterator  column  to obtain  

the  returned  data,  as  shown  in the  example  in  “A  Simple  Embedded  SQLJ  

Program”  on  page  3-4.  The  SQLJ  translator  uses  the  iterator  column  names  to  

create  accessor  methods.  Iterator  column  names  are  case  sensitive;  therefore,  

you  must  use  the  correct  case  when  you  specify  an  accessor  method.  

 

 

Chapter  3. Building  an Embedded  SQLJ Program 3-3



You cannot  use  the  FETCH...INTO  statement  with  named  iterators.  

For  example,  the  following  statement  generates  a named  iterator  class  called  

CustRec:  

#sql  iterator  CustRec(  

int     customer_num,  

String  fname,  

String  lname  , 

String  company  , 

String  address1  , 

String  address2  , 

String  city  , 

String  state  , 

String  zipcode  , 

String  phone  

); 

This  iterator  class  can  hold  the  result  set  of  any  query  that  returns  the  

columns  defined  in  the  iterator  class.  The  result  set  from  the  query  can  have  

more  columns  than  the  iterator  class,  but  the  iterator  class  cannot  have  more  

columns  than  the  result  set.  For  example,  this  iterator  class  can  hold  the  result  

set  of  the  following  query  because  the  iterator  columns  include  all  of  the  

columns  in the  customer  table:  

SELECT  *  FROM  customer  

A Simple Embedded SQLJ Program 

This  sample  program,  Demo03.sqlj, demonstrates  the  use  of a named  iterator  

to  retrieve  data  from  a database.  This  simple  program  outlines  a standard  

sequence  for  many  Embedded  SQLJ  programs:  

1.   Import  necessary  Java  classes.  

2.   Declare  an  iterator  class.  

3.   Define  the  main()  method.  

All  Java  applications  have  a method  called  main, which  is the  entry  point  

for  the  application  (where  the  interpreter  starts  executing  the  program).  

4.   Connect  to  the  database.  

The  constructor  of the  application  makes  the  connection  to  the  database  by  

calling  the  initContext()  method  of the  ConnectionManager  class.  

5.   Run  queries.  

6.   Create  an  iterator  object  and  populate  it by  running  a query.  

7.   Handle  the  results.  

8.   Close  the  iterator.
/***************************************************************************  

 * 

 *                         IBM  CORPORATION  

 *

 

 

3-4 IBM Informix  Embedded  SQLJ User’s Guide



*                         PROPRIETARY  DATA 

 * 

 *      THIS  DOCUMENT  CONTAINS  TRADE  SECRET  DATA WHICH  IS THE PROPERTY  OF 

 *     IBM  CORPORATION.   THIS  DOCUMENT  IS SUBMITTED  TO RECIPIENT  IN 

 *      CONFIDENCE.   INFORMATION  CONTAINED  HEREIN  MAY NOT BE USED,  COPIED  OR 

 *      DISCLOSED  IN WHOLE  OR IN PART  EXCEPT  AS PERMITTED  BY WRITTEN  AGREEMENT  

 *      SIGNED  BY AN OFFICER  OF IBM  CORPORATION.  

 * 

 *      THIS  MATERIAL  IS ALSO  COPYRIGHTED  AS AN UNPUBLISHED  WORK UNDER  

 *      SECTIONS  104  AND  408  OF TITLE  17 OF THE UNITED  STATES  CODE.  

 *      UNAUTHORIZED  USE,  COPYING  OR OTHER  REPRODUCTION  IS PROHIBITED  BY LAW. 

 * 

 * 

 *  Title:         Demo03.sqlj  

 * 

 *  Description:   This  demonstrates  simple  iterator  use 

 * 

 * 

 ***************************************************************************  

*/ 

import  java.sql.*;  

import  sqlj.runtime.*;  //SQLJ  runtime  classes  

  

#sql  iterator  CustRec(  

    int    customer_num,  

    String  fname,  

    String  lname  , 

    String  company  , 

    String  address1  , 

    String  address2  , 

    String  city  , 

    String  state  , 

    String  zipcode  , 

    String  phone  

    ); 

  

public  class  Demo03  

{ 

    public  static  void  main  (String  args[])  throws  SQLException  

    { 

        Demo03  demo03  = new  Demo03();  

        try  

        { 

            demo03.runDemo();  

        } 

        catch  (SQLException  s) 

        { 

            System.err.println(  "Error  running  demo program:  " + s ); 

            System.err.println(  "Error  Code                : " + 

                                 s.getErrorCode());  

            System.err.println(  "Error  Message              : " + 

                                 s.getMessage());  

        } 

    } 

  

  

    // Initialize  database  connection  thru Connection  Manager  

    Demo03()  

    { 

        ConnectionManager.initContext();  

    } 

    void runDemo()  throws  SQLException  

    {

 

 

Chapter  3. Building  an Embedded  SQLJ Program 3-5



drop_db();  

  

        #sql  { CREATE  DATABASE  demo_sqlj  WITH LOG MODE ANSI }; 

  

        #sql  

        { 

            create  table  customer  

            ( 

            customer_num             serial(101),  

            fname                    char(15),  

            lname                    char(15),  

            company                  char(20),  

            address1                 char(20),  

            address2                 char(20),  

            city                     char(15),  

            state                    char(2),  

            zipcode                  char(5),  

            phone                    char(18),  

            primary  key  (customer_num)  

            ) 

        }; 

  

        // Insert  4 Records  in a try  block  

        try  

        { 

            #sql  

            { 

            INSERT  INTO  customer  VALUES  

                ( 101,  "Ludwig",  "Pauli",  "All Sports  Supplies",  

                  "213  Erstwild  Court",  "", "Sunnyvale",  "CA",  

                  "94086",  "408-789-8075"  

                ) 

            }; 

  

            #sql  

            { 

            INSERT  INTO  customer  VALUES  

                ( 102,  "Carole",  "Sadler",  "Sports  Spot",  

                  "785  Geary  St",  "", "San  Francisco",  "CA",  

                  "94117",  "415-822-1289"  

                ) 

            }; 

  

            #sql  

            { 

            INSERT  INTO  customer  VALUES  

                ( 103,  "Philip",  "Currie",  "Phil’s  Sports",  

                  "654  Poplar",  "P.  O. Box 3498",  "Palo  Alto",  

                  "CA",  "94303",  "415-328-4543"  

                ) 

            }; 

  

            #sql  

            { 

            INSERT  INTO  customer  VALUES  

                ( 104,  "Anthony",  "Higgins",  "Play  Ball!",  

                  "East  Shopping  Cntr.",  "422  Bay Road",  "Redwood  City",  

                  "CA",  "94026",  "415-368-1100"  

                ) 

            }; 

  

        } 

        catch  (SQLException  e)

 

 

3-6 IBM Informix  Embedded  SQLJ User’s Guide



{ 

            System.out.println("INSERT  Exception:  " + e + "\n");  

            System.out.println("Error  Code                : " + 

                               e.getErrorCode());  

            System.err.println("Error  Message              : " + 

                               e.getMessage());  

  

        } 

  

        System.out.println();  

        System.out.println(  "Running  demo program  Demo03...."  ); 

        System.out.println();  

  

        // Declare  Iterator  of type  CustRec  

        CustRec  cust_rec;  

  

        #sql  cust_rec  = { SELECT  *  FROM  customer  }; 

  

        int  row_cnt  = 0; 

        while  ( cust_rec.next()  ) 

            { 

            System.out.println("===================================");  

            System.out.println("CUSTOMER  NUMBER  :" + cust_rec.customer_num());  

            System.out.println("FIRST  NAME      :" + cust_rec.fname());  

            System.out.println("LAST  NAME       :" + cust_rec.lname());  

            System.out.println("COMPANY          :" + cust_rec.company());  

            System.out.println("ADDRESS          :" + cust_rec.address1()  +"\n"  + 

                               "                 " + cust_rec.address2());  

            System.out.println("CITY             :" + cust_rec.city());  

            System.out.println("STATE            :" + cust_rec.state());  

            System.out.println("ZIPCODE          :" + cust_rec.zipcode());  

            System.out.println("PHONE            :" + cust_rec.phone());  

            System.out.println("===================================");  

            System.out.println("\n\n");  

            row_cnt++;  

            } 

        System.out.println("Total  No Of rows Selected  :" + row_cnt);  

        cust_rec.close()  ; 

        System.out.println("\n\n\n\n\n");  

  

        drop_db();  

    } 

    void drop_db()  throws  SQLException  

    { 

        try  

        { 

            #sql { drop  database  demo_sqlj  }; 

        } 

        catch  (SQLException  s) { } 

    } 

} 

 

 

Chapter  3. Building  an Embedded  SQLJ Program 3-7



3-8 IBM Informix  Embedded  SQLJ User’s Guide



Chapter  4. The  Embedded  SQLJ  Language  

Embedded  SQLJ  Versus  Traditional  Embedded  SQL   . . . . . . . . . . . . . . . . . 4-1 

Embedded  SQLJ  Source  Files   . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 

Identifying  Embedded  SQLJ  Statements   . . . . . . . . . . . . . . . . . . . . . 4-2  

SQL  Statements   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 

Host  Variables   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 

SELECT  Statements  That  Return  a Single  Row   . . . . . . . . . . . . . . . . . . . 4-3 

Handling  Result  Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 

Positional  Iterators   . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4  

Named  Iterators   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 

Using  Column  Aliases   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  

Iterator  Methods   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 

Positioned  Updates  and  Deletes   . . . . . . . . . . . . . . . . . . . . . . . 4-7 

Monitoring  the  Execution  of an SQL  Query   . . . . . . . . . . . . . . . . . . . . 4-7  

Calling  SPL  Routines  and  Functions   . . . . . . . . . . . . . . . . . . . . . . 4-8 

SQL  and  Java  Type Mappings  . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 

Language  Character  Sets   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 

Importing  Java  Packages   . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 

SQLJ  Reserved  Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11  

Parameter,  Field,  and  Variable  Names  . . . . . . . . . . . . . . . . . . . . . 4-11 

Class  Names  and  Filenames   . . . . . . . . . . . . . . . . . . . . . . . . 4-11 

Handling  Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

In This Chapter 

This  chapter  provides  detailed  information  about  using  the  Embedded  SQLJ  

language.  For  syntax  and  reference  information  about  specific  statements,  

refer  to  the  IBM  Informix:  Guide  to SQL  Syntax. 

Embedded SQLJ Versus Traditional Embedded SQL 

Embedded  SQLJ  has  some  differences  from  the  earlier  embedded  SQL  

languages  defined  by  ANSI/ISO:  ESQL/C,  ESQL/ADA,  ESQL/FORTRAN,  

ESQL/COBOL,  and  ESQL/PL/1.  The  major  differences  are  as  follows:  

v   The  SQL  connection  statement  of  traditional  embedded  SQL  is replaced  by  

a Java  connection-context  object.  This  approach  enables  Embedded  SQLJ  

programs  to  open  multiple  database  connections  simultaneously.  

v   In  Embedded  SQLJ  there  is  no  host  variable  definition  section  (preceded  by  

a BEGIN  DECLARE  SECTION  statement  and  terminated  by  an  END  

DECLARE  SECTION  statement).  All  legal  Java  variables  can  be  used  as  

host  variables.  

 

© Copyright  IBM Corp. 1996, 2004 4-1



v   Embedded  SQLJ  does  not  include  the  WHENEVER...GOTO/  

CONTINUE  statement,  because  Java  has  well-developed  rules for  declaring  

and  handling  exceptions.  

v   Embedded  SQLJ  uses  iterator  objects  rather  than  cursors  to manage  result  

sets.  A result-set  iterator  is  a Java  object  from  which  you  can  retrieve  the  

data  returned  by  a SELECT  statement.  Unlike  cursors,  iterator  objects  can  

be  passed  as  parameters  to  methods.  

v   Embedded  SQLJ  supports  access  to  data  in  columns  of  iterator  objects  by  

name,  through  generated  accessor  methods.  You can  also  access  this  data  by  

position  using  the  FETCH...INTO  statement,  as  used  by  traditional  

embedded  SQL.  

v   Unlike  other  host  languages,  Java  allows  null  data.  Therefore,  you  do  not  

need  to  use  null  indicator  variables  with  Embedded  SQLJ.  

v   Embedded  SQLJ  does  not  include  dynamic  SQL;  you  must  use  JDBC  

instead.

The  rest  of  this  chapter  describes  how  to use  the  Embedded  SQLJ  language.  

Embedded SQLJ Source Files 

The  files  containing  your  Embedded  SQLJ  source  code  must  have  the  

extension  .sqlj; for  example,  custapp.sqlj. 

Identifying Embedded SQLJ Statements 

To identify  Embedded  SQLJ  statements  to  the  SQLJ  translator,  each  SQLJ  

statement  must  begin  with  #sql. The  SQLJ  translator  recognizes  #sql  and  

translates  the  statement  into  Java  code.  

SQL Statements 

Embedded  SQLJ  supports  SQL  statements  at the  SQL92  Entry  level,  with  the  

following  additions:  

v   The  EXECUTE  PROCEDURE  statement,  for  calling  SPL  routines  and  

user-defined  routines  

v   The  EXECUTE  FUNCTION  statement,  for  calling  stored  functions  

v   The  BEGIN...END  block

SQL  statements  must  appear  within  curly  braces,  as follows:  

#sql  

{ 

create  table  customer  

( 

customer_num             serial(101),  

fname                    char(15),

 

 

4-2 IBM Informix  Embedded  SQLJ User’s Guide



lname                    char(15),  

company                  char(20),  

address1                 char(20),  

address2                 char(20),  

city                     char(15),  

state                    char(2),  

zipcode                  char(5),  

phone                    char(18),  

primary  key  (customer_num)  

) 

}; 

An  SQL  statement  that  is not  enclosed  within  curly  braces  will  generate  a 

syntax  error. 

SQL  statements  are  case  insensitive  (unless  delimited  by  double  quotes)  and  

can  be  written  in uppercase,  lowercase,  or  mixed-case  letters.  Java  statements  

are  case  sensitive.  

Host Variables 

Host  variables  are  variables  of  the  host  language  (in  this  case  Java)  that  

appear  within  SQL  statements.  A host  variable  represents  a parameter,  

variable,  or  field  and  is  prefixed  by  a colon  ( : ), as in  the  following  example:  

#sql  [ctx]  { DELETE  FROM  customer  WHERE  customer_num  = :cust_no  }; 

You use  the  SELECT...INTO  statement  (as  shown  in  this  example),  the  

FETCH...INTO  statement  (described  in  “Positional  Iterators”  on  page  4-4),  or  

an  accessor  method  (described  in “Named  Iterators”  on  page  4-5)  to  retrieve  

data  into  host  variables.  

SELECT Statements That Return a Single Row 

You use  the  SELECT...INTO  statement  for  queries  that  return  a single  record  

of  data.  For  queries  that  return  multiple  rows  (called  a result  set)  you  use  an  

iterator  object,  as  described  in  the  next  section,  “Handling  Result  Sets”  on  

page  4-4.  

The  SELECT...INTO  statement  includes  a list  of  host  variables  in the  INTO  

clause  to  which  the  selected  data  is assigned.  For  example:  

#sql  

{ 

SELECT  *  INTO  :customer_num,  :fname,  :lname,  :company,  

:address1,  :address2,  :city,  :state,  :zipcode,  

:phone  

FROM  customer  

WHERE  customer_num  = 101  

}; 

 

 

Chapter  4. The Embedded  SQLJ Language  4-3



The  number  of  selected  expressions  must  match  the  number  of host  variables.  

The  SQL  types  must  be  compatible  with  the  host  variable  types.  If you  use  

online  checking,  the  SQLJ  translator  checks  that  the  order,  number,  and  types  

of the  SQL  expressions  and  host  variables  match.  For  information  on  how  to 

perform  online  checking,  see  “Online  Checking”  on  page  5-11.  

Handling Result Sets 

Embedded  SQLJ  uses  iterator  objects  to manage  result  sets  returned  by  

SELECT  statements.  A  result-set  iterator  is a Java  object  from  which  you  can  

retrieve  the  data  returned  from  the  database.  Iterator  objects  can  be  passed  as  

parameters  to methods  and  manipulated  like  other  Java  objects.  

Important:   Names  of  iterator  classes  must  be  unique  within  an  application.  

When  you  declare  an  iterator  object,  you  specify  a set  of  Java  variables  to  

match  the  SQL  columns  that  your  SELECT  statement  returns.  There  are  two  

types  of  iterators:  positional  and  named.  

Positional Iterators 

The  order  of  declaration  of the  Java  variables  in a positional  iterator  must  

match  the  order  in which  the  SQL  columns  are  returned.  

For  example,  the  following  statement  generates  a positional  iterator  class  

called  CustIter  with  six  columns:  

#sql  iterator  CustIter(  int  , String,  String,  String,  String,  String  ); 

This  iterator  can  hold  the  result  set  from  the  following  SELECT  statement:  

SELECT  customer_num,  fname,  lname,   address1,  

address2,  phone  

FROM    customer  

You run the  SELECT  statement  and  populate  the  iterator  object  with  the  result  

set  by  using  an  Embedded  SQLJ  statement  of  the  form:  

#sql  iterator-object  = { SELECT  ...};  

For  example:  

CustIter  cust_rec;  

#sql   [ctx]  cust_rec  = { SELECT  customer_num,  fname,  lname,   address1,  

address2,  phone  

FROM    customer  

}; 

You retrieve  data  from  a positional  iterator  into  host  variables  using  the  

FETCH...INTO  statement:  

 

 

4-4 IBM Informix  Embedded  SQLJ User’s Guide



#sql  { FETCH  :cust_rec  

INTO  :customer_num,  :fname,  :lname,  

:address1,  :address2,  :phone  

}; 

The  SQLJ  translator  checks  that  the  types  of  the  host  variables  in the  INTO  

clause  of  the  FETCH  statement  match  the  types  of  the  iterator  columns  in  

corresponding  positions.  

The  types  of the  SQL  columns  in  the  SELECT  statement  must  be  compatible  

with  the  types  of  the  iterator.  These  type  conversions  are  checked  at 

translation  time  if you  perform  online  checking.  For  information  about  setting  

up  online  checking,  see  “Online  Checking”  on  page  5-11.  For  a listing  of SQL  

and  Java  type  mappings,  see  “SQL  and  Java  Type Mappings”  on  page  4-8.  

Named Iterators 

The  name  of  each  Java  variable  of a named  iterator  must  match  the  name  of a 

column  returned  by  your  SELECT  statement;  order  is  irrelevant.  The  matching  

of  SQL  column  names  and  iterator  column  names  is case  insensitive.  

For  example,  the  following  statement  generates  a named  iterator  class  called  

CustRec:  

#sql  iterator  CustRec(  

int     customer_num,  

String  fname,  

String  lname  , 

String  company  , 

String  address1  , 

String  address2  , 

String  city  , 

String  state  , 

String  zipcode  , 

String  phone  

); 

This  iterator  can  hold  the  result  set  of  any  query  that  returns  the  columns  

defined  in  the  iterator  class.  You use  accessor  methods  of  the  same  name  as 

each  iterator  column  to  obtain  the  returned  data,  as  shown  in the  example  in  

“A  Simple  Embedded  SQLJ  Program”  on  page  3-4.  The  SQLJ  translator  uses  

the  iterator  column  names  to  create  accessor  methods.  Iterator  column  names  

are  case  sensitive;  therefore,  you  must  use  the  correct  case  when  you  specify  

an  accessor  method.  

You cannot  use  the  FETCH...INTO  statement  with  named  iterators.  

The  following  example  illustrates  the  use  of  named  iterators:  

// Declare  Iterator  of type  CustRec  

CustRec  cust_rec;  

 

 

 

Chapter  4. The Embedded  SQLJ Language  4-5



#sql  cust_rec  = { SELECT  *  FROM  customer  }; 

  

int  row_cnt  = 0; 

while  ( cust_rec.next()  ) 

{ 

System.out.println("===================================");  

System.out.println("CUSTOMER  NUMBER  :" + cust_rec.customer_num());  

System.out.println("FIRST  NAME       :" + cust_rec.fname());  

System.out.println("LAST  NAME        :" + cust_rec.lname());  

System.out.println("COMPANY          :" + cust_rec.company());  

System.out.println("ADDRESS          :" + cust_rec.address1()  +"\n"  + 

"                 " + cust_rec.address2());  

System.out.println("CITY             :" + cust_rec.city());  

System.out.println("STATE            :" + cust_rec.state());  

System.out.println("ZIPCODE          :" + cust_rec.zipcode());  

System.out.println("PHONE            :" + cust_rec.phone());  

System.out.println("===================================");  

System.out.println("\n\n");  

row_cnt++;  

} 

System.out.println("Total  No Of rows  Selected  :" + row_cnt);  

cust_rec.close()  ; 

The  next()  method  of  the  iterator  object  advances  processing  to  successive  

rows  of  the  result  set.  It  returns  FALSE  after  it fails  to  find  a row  to  retrieve.  

The  Java  compiler  detects  type  mismatches  for  the  accessor  methods.  

The  validity  of  the  types  and  names  of  the  iterator  columns  and  their  related  

columns  in the  SELECT  statement  are  checked  at translation  time  if you  

perform  online  checking.  For  information  about  setting  up  online  checking,  

see  “Online  Checking”  on  page  5-11.  

Using Column Aliases 

When  an  expression  returned  by  a SELECT  statement  has  an  SQL  name  that  is 

not  a valid  Java  identifier,  use  SQL  column  aliases  to  rename  them.  For  

example,  the  name  Not  valid  for  Java  is acceptable  as a column  name  in  SQL,  

but  not  as  a Java  identifier.  You can  use  a column  alias  that  has  a name  

acceptable  as  a Java  identifier  by  using  the  AS  clause:  

SELECT  "Not  valid  for  Java"  AS "Col1"  FROM  tablename  

When  you  create  a named  iterator  class  for  this  query,  you  specify  the  column  

alias  name  for  the  Java  variable,  as  in:  

#sql  iterator  Iterator_name  (String  Col1);  

Iterator Methods 

Both  named  and  positional  iterator  objects  have  the  following  methods:  

v   rowCount()  

Returns  the  number  of  rows  retrieved  by  the  iterator  object  

 

 

4-6 IBM Informix  Embedded  SQLJ User’s Guide



v   close()  

Closes  the  iterator;  raises  SQLException  if the  iterator  is already  closed  

v   isClosed()  

Returns  TRUE  after  the  iterator’s  close()  method  has  been  called;  otherwise,  

it returns  FALSE

Positional  iterators  also  have  the  endFetch()  method.  The  endFetch()  method  

returns  TRUE  when  no  more  rows  are  available.  

Named  iterators  also  have  the  next()  method.  The  next()  method  advances  

processing  to  successive  rows  of the  result  set.  It returns  FALSE  after  it  fails  to  

find  a row  to  retrieve.  For  an  example  of how  to  use  the  next()  method,  see  

“Named  Iterators”  on  page  4-5.  

Positioned Updates and Deletes 

To perform  positioned  updates  and  deletes  in  a result  set,  you  use  the  

WHERE  CURRENT  OF  clause  with  a host  variable  that  contains  an  iterator  

object.  For  example:  

#sql  { delete_statement/update_statement  

       WHERE  CURRENT  OF :iter  }; 

At  runtime,  the  variable  :iter  must  contain  an  open  iterator  object  that  contains  

a result  set  selected  from  the  same  table  accessed  by  the  query  in  either  

delete_statement  or  update_statement. The  current  row  of  that  iterator  object  is 

deleted  or  updated.  

Monitoring the Execution of an SQL Query 

You can  monitor  and  modify  the  execution  of  an  SQL  query  by  using  the  

execution  context  associated  with  it.  An  execution  context  is an  instance  of the  

class  sqlj.runtime.ExecutionContext; an  execution  context  is associated  with  

each  executable  SQL  operation  in  an  Embedded  SQLJ  program.  

You can  supply  an  execution  context  explicitly  for  an  SQL  statement:  

#sql  [execCtx]  {SQL_statement}; 

If you  do  not  explicitly  supply  an  execution  context,  the  SQL  statement  uses  

the  default  execution  context  for  the  connection  context  you  are  using.  

If you  want  to  supply  an  explicit  connection  context  and  an  explicit  execution  

context,  the  SQL  statement  looks  like  this:  

#sql  [connCtx,  execCtx]  {SQL_statement  }; 

You use  the  getExecutionContext()  method  of  the  connection  context  to  obtain  

that  connection’s  default  execution  context.  

 

 

Chapter  4. The Embedded  SQLJ Language  4-7



The  execution-context  object  has  attributes  and  methods  that  provide  

information  about  an  SQL  operation  and  the  ability  to  modify  its  execution.  

For  each  of  the  following  attributes,  there  is a method  called  getattribute  that  

reads  the  value  of  the  attribute,  and  a method  called  setattribute  that  sets  its  

value.  The  attributes  are:  

 MaxRows  The  maximum  number  of rows  a query  can  return  

MaxFieldSize  The  maximum  number  of bytes  that  can  be returned  as data  for  

any  column  or  output  variable  

QueryTimeout  The  number  of seconds  to  wait  for an SQL  operation  to complete  

SQLWarnings  Any  warnings  that  occurred  during  the  last  SQL  operation  

UpdateCount  The  number  of rows  updated,  inserted,  or deleted  during  the  last  

SQL  operation
  

Calling SPL Routines and Functions 

You can  call  a Stored  Procedure  Language  (SPL)  procedure  by  using  the  

EXECUTE  PROCEDURE  statement.  For  example:  

#sql  { EXECUTE  PROCEDURE  proc_name(:arg_name)  }; 

You can  call  a stored  function  by  using  the  EXECUTE  FUNCTION  statement.  

For  example:  

#sql  {EXECUTE  FUNCTION  func_name  (func_arg  ) into  :num  }; 

SQL and Java Type Mappings 

When  you  retrieve  data  from  a database  into  an  iterator  object  (see  “Handling  

Result  Sets”  on  page  4-4)  or  into  a host  variable,  you  must  use  Java  types  that  

are  compatible  with  the  SQL  types.  The  following  table  shows  valid  

conversions  from  SQL  types  to  Java  types.  

 

 

4-8 IBM Informix  Embedded  SQLJ User’s Guide



SQL  Type Java  Type 

BLOB  byte[]  

BOOLEAN  boolean  

BYTE  byte[]  

CHAR,  CHARACTER  String  

CHARACTER  VARYING  String  

CLOB  byte[]  

DATE java.sql.Date  

DATETIME  java.sql.Timestamp  

DECIMAL,  NUMERIC,  DEC  java.math.BigDecimal  

FLOAT, DOUBLE  PRECISION  double  

INT8  long  

INTEGER,  INT  int 

INTERVAL  IfxIntervalDF,  IfxIntervalYM1 

LVARCHAR  String  

MONEY  java.math.BigDecimal  

NCHAR,  NVARCHAR  String  

SERIAL  int 

SERIAL8  long  

SMALLFLOAT  float2 

SMALLINT  short  

TEXT  String  

VARCHAR  String  

1 IfxIntervalYM  and  IfxIntervalDF  are  Informix  extensions  to JDBC  2.0.2 This  mapping  

is JDBC  compliant.  You can  use  IBM  Informix  JDBC  Driver  to map  SMALLFLOAT  

data  type  (via  the  JDBC  FLOAT data  type)  to  the  Java  double  data  type  for backward  

compatibility  by  setting  the  IFX_GET_SMFLOAT_AS_FLOAT  environment  variable  to 

1.
  

You must  also  use  compatible  Java  types  for  host  variables  that  are  arguments  

to  SQL  operations.  This  table  shows  valid  conversions  from  Java  types  to SQL  

types.  

 

 

Chapter  4. The Embedded  SQLJ Language  4-9



Java  Type SQL  Type 

java.math.BigDecimal  DECIMAL  

boolean  BOOLEAN  

byte[]  BYTE  

java.sql.Date  DATE 

double  FLOAT1 

float  SMALLFLOAT  

int  INT  

long  INT8  

short  SMALLINT  

String  CHAR  

java.sql.Time  DATETIME  

java.sql.Timestamp  DATETIME  

com.informix.jdbc.IfxIntervalDF  INTERVAL  

com.informix.jdbc.IfxIntervalYM  INTERVAL  

1 This  mapping  is JDBC  compliant.  You can  use  IBM  Informix  JDBC  Driver  to map  the  

Java  double  data  type  (via  the  JDBC  FLOAT data  type)  to the  Informix  SMALLFLOAT  

data  type  for  backward  compatibility  by  setting  the  IFX_GET_SMFLOAT_AS_FLOAT  

environment  variable  to 1.
  

Important:   Unlike  other  host  languages  (for  example,  C),  Java  allows  null  

data.  Therefore,  you  do  not  need  to  use  null  indicator  variables  

with  Embedded  SQLJ. The  Java  null  value  is equivalent  to  the  

SQL  NULL  value.  

Language Character Sets 

Embedded  SQLJ  supports  Java’s  Unicode  escape  sequences.  Also,  if you  set  

your  Java  property  file.encoding  to  8859_1  (or  do  not  set  it at all),  you  can  

use  the  Latin-1  character  set.  

To process  files  with  a different  encoding—for  example,  SJIS—you  have  the  

following  choices:  

v   Use  the  Sun  JDK  tool  native2ascii  to  convert  the  native  encoded  source  to  a 

source  with  ASCII  encoding.  

v   Set  file.encoding=SJIS  in  java.properties  in  the  Java  home  directory.  

v   Invoke  the  SQLJ  translator  using  the  following  command:  

java  ifxsqlj  -Dfile.encoding=SJIS  file.sqlj 

 

 

4-10 IBM Informix  Embedded  SQLJ User’s Guide



Importing Java Packages 

Your Embedded  SQLJ  programs  need  to  import  the  JDBC  API  (java.sql.*) and  

SQLJ  runtime  (sqlj.runtime.*)  packages  to which  they  refer. The  classes  you  

are  likely  to  commonly  use  are:  

v   In  package  java.sql  for  the  JDBC  API:  

The  SQLException  class—includes  all  runtime  exceptions  raised  by  

Embedded  SQLJ—and  classes  you  explicitly  use,  such  as  java.sql.Date, 

java.sql.ResultSet. 

v   In  package  sqlj.runtime  for  SQLJ  runtime:  

SQLJ  stream  types  (explicitly  referenced):  for  example,  BinaryStream, the  

ConnectionContext  class,  and  the  reference  implementation  of  Embedded  

SQLJ  classes  (in  sqlj.runtime.ref).

SQLJ Reserved Names 

This  section  lists  names  reserved  by  the  SQLJ  translator.  Do  not  use  these  

names  in  your  Embedded  SQLJ  programming.  

Parameter, Field, and Variable Names 

The  string  _sJT  is a reserved  prefix  for  generated  variable  names.  Do  not  use  

this  prefix  for  the  names  of:  

v   Variables  declared  within  blocks  that  include  SQL  statements  

v   Parameters  to  methods  that  contain  SQL  statements  

v   Fields  in classes  that  contain  SQL  statements  or  whose  subclasses  contain  

SQL  statements

Class Names and Filenames 

Do  not  declare  classes  that  conflict  with  the  names  of  internal  classes.  Do  not  

create  files  that  conflict  with  generated  internal  resource  files.  

The  SQLJ  translator  creates  internal  classes  and  resource  files  for  use  by  

generated  code.  The  names  of  these  files  and  classes  have  a prefix  composed  

of  the  name  of  the  original  input  file  followed  by  the  string  _SJ. For  example,  

if you  translate  a file  called  File1.sqlj  that  uses  the  package  COM.foo, the  

names  of  some  of  the  internal  classes  produced  are:  

v   COM.foo.File1_SJInternalClass  

v   COM.foo.File1_SJProfileKeys  

v   COM.foo.File1_SJInternalClass$Inner  

v   COM.foo.File1_SJProfile0  

v   COM.foo.File1_SJProfile1

Generated  files  for  these  internal  classes,  which  are  created  in  the  same  

directory  as  the  input  file,  File1.sqlj, are  called:  

 

 

Chapter 4. The Embedded  SQLJ Language  4-11



v   File1_SJInternalClass.java  (includes  the  class  

COM.foo.File1_SJInternalClass$Inner) 

v   File1_SJProfileKeys.java  

v   File1_SJProfile0.ser  

v   File1_SJProfile1.ser

Files  with  the  .ser  extension  are  internal  resource  files  that  contain  information  

about  SQL  operations  in  an  .sqlj  file.  

Handling Errors 

Some  iterator  and  connection-context  methods  might  raise  exceptions  

specified  by  the  JDBC  API  SQLException  class.  For  information  about  using  

SQLException  methods  to  obtain  information  about  these  errors,  refer  to your  

JDBC  API  documentation.  

 

 

4-12 IBM Informix  Embedded  SQLJ User’s Guide



Chapter  5. Processing  Embedded  SQLJ  Source  Code  

Translating,  Compiling,  and  Running  Embedded  SQLJ  Programs   . . . . . . . . . . . . . 5-1 

The  ifxsqlj  Command   . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 

Command  Options   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Basic  Options   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

Advanced  Options   . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 

Setting  Options   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 

Setting  Options  on  the  Command  Line   . . . . . . . . . . . . . . . . . . . . 5-9  

Supplying  Options  in Property  Files   . . . . . . . . . . . . . . . . . . . . . 5-9 

Precedence  of Options   . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 

Format  of Property  Files   . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Online  Checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 

Setting  the  -user  and  -password  Options  . . . . . . . . . . . . . . . . . . . . 5-11 

Setting  the  -url  and  -driver  Options   . . . . . . . . . . . . . . . . . . . . . 5-11 

The  ifxprofp  Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12

In This Chapter 

This  chapter  describes  how  to  create  executable  Java  programs  from  your  

Embedded  SQLJ  source  code.  It explains:  

v   How  to  use  the  SQLJ  translator  

v   Basic  translation  and  compilation  options  

v   Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced Advanced AdvancedAdvancedAdvanced Advanced   



The  -driver  option  specifies  a list  of  JDBC  drivers  that  can  be  used  to  interpret  

JDBC  connection  URLs  for  online  checking.  

Both  of  these  options  are  shown  in  “Advanced  Options”  on  page  5-5.  

The ifxprofp Tool 

Embedded  SQLJ  includes  the  ifxprofp  tool.  The  tool  ifxprofp  enables  you  to 

print  out  the  information  stored  in  internal  resource  .ser  files,  for  debugging  

purposes.  You invoke  the  tool  as  follows:  

java  ifxprofp  filename.ser  

Here  is  an  example  of  the  output  of the  ifxprofp  tool:  

===================================================  

printing  contents  of profile  Demo02_SJProfile0  

created  918584057644  (2/9/99  10:14  AM)  

associated  context  is sqlj.runtime.ref.DefaultContext  

profile  loader  is sqlj.runtime.profile.DefaultLoader@1f7f1941  

contains  no customizations  

original  source  file:Demo02.sqlj  

contains  8 entries  

===================================================  

profile  Demo02_SJProfile0  entry  0 

#sql  { CREATE  DATABASE  demo_sqlj  WITH  LOG MODE  ANSI 

         }; 

line  number:59  

PREPARED_STATEMENT  executed  via EXECUTE_UPDATE  

role  is STATEMENT  

descriptor  is null  

contains  no parameters  

result  set  type  is NO_RESULT  

result  set  name  is null  

contains  no result  columns  

===================================================  

 

 

5-12 IBM Informix  Embedded  SQLJ User’s Guide



Appendix  A. Connecting  to Databases  

“Connecting  to  a Database”  on  page  3-1  describes  how  Embedded  SQLJ  

programs  connect  to  databases.  This  appendix  provides  background  

information  and  information  about  using  nondefault  connection  contexts.  

The ConnectionManager Class 

You use  the  ConnectionManager  class  to  make  a connection  to  a database,  as 

described  in  “Connecting  to  a Database”  on  page  3-1.  The  

ConnectionManager  class  has  two  methods:  

v   newConnection()  

v   initContext()

The  newConnection()  method  creates  and  returns  a new  JDBC  Connection  

object  using  the  current  values  of  the  DRIVER,  DBURL,  UID,  and  PWD  

attributes.  If  any  of  the  needed  attributes  is  null  or  a connection  cannot  be  

established,  an  error  message  is  printed  to System.out, and  the  program  exits.  

The  initContext()  method  returns  the  currently  installed  default  context.  If the  

current  default  context  is  null,  a new  default  context  instance  is created  and  

installed  using  a connection  obtained  from  a call  to getConnection. 

Database URLs 

The  DBURL  data  member  of  the  ConnectionManager  class  and  the  value  for  

the  -url  option  that  you  specify  for  online  checking  are  database  URLs.  (For  

information  about  online  checking,  see  “Online  Checking”  on  page  5-11.)  

Database  URLs  specify  the  subprotocol  (the  database  connectivity  

mechanism),  the  database  or  server  identifier,  and  a list  of properties.  

Your Embedded  SQLJ  program  uses  IBM  Informix  JDBC  Driver  to  connect  to  

an  Informix  database.  IBM  Informix  JDBC  Driver  supports  database  URLs  of  

the  following  format:  

jdbc:informix-sqli://[{ip-address|host-name}:port-number][/dbname]: 

   INFORMIXSERVER=server-name;[user=user;password=password] 

   [;name=value[;name=value]...] 

In  the  preceding  syntax:  

v   Curly  brackets  ( {}  ) together  with  vertical  lines  ( | ) denote  more  than  one  

choice  of  variable.  

v   Italics  denote  a variable  value.  

 

© Copyright  IBM Corp. 1996, 2004 A-1



v   Brackets  ( []  ) denote  an  optional  value.  

v   Words  or  symbols  not  enclosed  in  brackets  are  required  (INFORMIXSERVER=, 

for  example).

Important:   Spaces  are  not  allowed  in the  database  URL.  

The  following  table  describes  the  variable  parts  of  the  database  URL.  

 Database  URL  Variable  Required?  Description  

ip-address  or  

domain-name  

Yes The  IP address  or the  domain  name  of the  

computer  running  the  Informix  database  server  

An  example  of an IP address  is 123.45.67.89.  

An  example  of a domain  name  is myhost.com.  

port-number  Yes The  port  number  of the Informix  database  

server  

dbname  No  The  name  of the  Informix  database  to which  

you  want  to connect  

If you  do  not  specify  the  name  of a database,  a 

connection  is made  to the Informix  database  

server.  

server-name  Yes The  name  of the  Informix  server  to which  you  

want  to connect  

This  is the value  of the  INFORMIXSERVER  

environment  variable.  

The  INFORMIXSERVER  environment  variable  

is required  in the  database  URL,  unless  it is 

included  in the  property  list.  

username  Yes The  name  of the  user  you  want  to connect  to 

the  Informix  database  or database  server  as 

password  Yes The  password  of the  user  specified  by username  

name=value  No  A name-value  pair  that  specifies  a value  for the  

Informix  environment  variable  contained  in the 

name  variable,  recognized  by either  

IBM  Informix  JDBC  Driver  or Informix  

database  servers  

The  value  of name  is case  insensitive.  

For  information  about  environment  variables  

supported  by  IBM  Informix  JDBC  Driver  and  

how  to set  them,  refer  to the  IBM  Informix:  

JDBC  Driver  Programmer's  Guide.

 

 

A-2 IBM Informix Embedded  SQLJ User’s Guide



Using Nondefault Connection Contexts 

This  section  explains  how  to  use  nondefault  connection  contexts.  Embedded  

SQLJ  uses  a connection-context  object  to  manage  the  connection  to the  

database  in  which  you  want  an  SQL  statement  to  execute.  You can  specify  

different  connection-context  objects  for  different  SQL  statements  in  the  same  

Embedded  SQLJ  program,  as  shown  in  the  sample  program  

MultiConnect.sqlj  included  in  this  section.  

 To  use  a nondefault  connection  context:   

1.   Define  the  connection-context  class  by  using  an  Embedded  SQLJ  

connection  statement.  The  syntax  of the  connection  statement  is as  follows:  

#sql  [modifiers] context  java_class_name; 

modifiers  A list  of  Java  class  modifiers:  for  example,  public  

java_class_name  

The  name  of the  Java  class  of  the  new  connection  context  

1.   Create  a connection-context  object  for  connecting  to  the  

database.  

2.   Specify  the  connection-context  object  in  your  Embedded  

SQLJ  statement  in parentheses  following  the  #sql  string.

MultiConnect.sqlj 

The  sample  program  MultiConnect.sqlj  creates  two  databases  with  two  

tables,  Orders  and  Items, and  inserts  two  records  in  the  Orders  table  with  

corresponding  records  in  the  Items  table.  The  program  prints  the  order  line  

items  for  all  the  orders  from  both  tables,  which  reside  in  different  databases,  

by  creating  separate  connection  contexts  for  each  database.  

MultiConnect.sqlj  calls  the  methods  executeSQLScript()  and  getConnect(). 

These  methods  are  contained  in demoUtil.java,  which  follows  this  program.  

/***************************************************************************  

 * 

 *                            IBM  CORPORATION  

 * 

 *                            PROPRIETARY  DATA  

 * 

 *      THIS  DOCUMENT  CONTAINS  TRADE  SECRET  DATA WHICH  IS THE PROPERTY  OF 

 *      IBM  CORPORATION.   THIS  DOCUMENT  IS SUBMITTED  TO RECIPIENT  IN 

 *      CONFIDENCE.   INFORMATION  CONTAINED  HEREIN  MAY NOT BE USED,  COPIED  OR 

 *      DISCLOSED  IN WHOLE  OR IN PART  EXCEPT  AS PERMITTED  BY WRITTEN  AGREEMENT  

 *      SIGNED  BY AN OFFICER  OF IBM  CORPORATION.  

 * 

 *      THIS  MATERIAL  IS ALSO  COPYRIGHTED  AS AN UNPUBLISHED  WORK UNDER  

 *      SECTIONS  104  AND  408  OF TITLE  17 OF THE UNITED  STATES  CODE.  

 *      UNAUTHORIZED  USE,  COPYING  OR OTHER  REPRODUCTION  IS PROHIBITED  BY LAW. 

 * 

 *

 

 

Appendix  A. Connecting  to Databases A-3



*  Title:         MultiConnect.sqlj  

 * 

 *  Description:   This  demonstrates  usage  of 2 connection  contexts  using  

 *                different  URLs.  

 * 

 * 

 ***************************************************************************  

*/ 

  

import  java.sql.*;  

import  java.math.*;  

import  java.lang.*;  

import  sqlj.runtime.*;   //SQLJ  runtime  classes  

import  sqlj.runtime.ref.*;  

  

/* Declare   ConnectionContext  classes  OrdersCtx  and ItemsCtx.  

 * OrdersCtx  is related  to the  orders  table  which  is in orders_db  database  

 * ItemsCtx   is related  to the  items  table  which  is in items_db  database  

 * Instances  of these   classes  are  used  to specify  where  SQL operations  

 * on orders  table  or items  table  shld  should  execute.  

 * We create  the  2 databases  using  a default  context  using  ConnectionManager  

 * 

 * For an order  (from  the  orders  table  in the orders_db  database),  we try 

 * to query  the items  table(in  the  items_db  database)  for the line items  which  

 * make  up that  order  

 * 

 */ 

  

#sql  context  OrdersCtx;  

#sql  context  ItemsCtx;  

  

// Declare  2 named  iterators  for Items  and Orders  

  

#sql  iterator  OrdersRec  ( 

    Integer      order_num,  

    Date         order_date,  

    String       po_num,  

    Date         paid_date  

    ); 

  

#sql  iterator  ItemsRec  ( 

    Short        item_num,  

    int          order_num,  

    Short        stock_num,  

    String       manu_code,  

    Integer      quantity,  

    BigDecimal   total_price  

    ); 

  

  

  

public  class  MultiConnect  extends  demoUtil  

{ 

    private  OrdersCtx  o_ctx  = null;  

    private  ItemsCtx   i_ctx  = null;  

    private  DefaultContext  ctx  = null;  

  

    // The constructor  sets up a default  database  context  

  

    MultiConnect()  

    { 

        /* Initialize  database  connection  thru Connection  Manager  

         * and  create  a default  context

 

 

A-4 IBM Informix Embedded  SQLJ User’s Guide



*/ 

        ctx  = ConnectionManager.initContext();  

    } 

  

    public  static  void  main  (String  args[])  throws  SQLException  

    { 

        MultiConnect  mc_ob  = new MultiConnect();  

        try  

        { 

            System.out.println(  "Running  demo  program  MultiConnect...."  ); 

            mc_ob.runDemo();  

  

            //Close  the  connection  

            mc_ob.o_ctx.close()  ; 

            mc_ob.i_ctx.close()  ; 

        } 

        catch  (SQLException  s) 

        { 

            System.err.println(  "Error  running  demo program:  " + s ); 

            System.err.println(  "Error  Code                : " + 

                             s.getErrorCode());  

            System.err.println(  "Error  Message              : " + 

                             s.getMessage());  

        } 

    } 

    void runDemo()  throws  SQLException  

    { 

        // We drop  the  2 databases  using  the default  context  

  

        drop_db();  

  

        /* 

         * We create  the 2 databases  needed  for the program  using  the 

         * default  Connection  Context  

         */ 

  

        #sql  [ctx]  { CREATE  DATABASE  orders_db  WITH LOG MODE ANSI }; 

        #sql  [ctx]  { CREATE  DATABASE  items_db  WITH LOG MODE ANSI }; 

        ctx.close();  

  

        String  driver  = "com.informix.jdbc.IfxDriver";  

        String  url  = "jdbc:158.58.9.121:1527:informixserver=tulua2";  

        String  user  = "rdtest";  

        String  password  = "1RDSRDS";  

        set_driver(driver);  

        set_url(url);  

        set_user(user);  

        set_passwd(password);  

        getConnect();  

  

        // Create  the schema  and  the  tables  by running  the SQL scripts  

        executeSQLScript("./schema.sql");  

        conn.close();  

  

        // We now set up the  Connection  context  OrdersCtx  

        url  = "jdbc:158.58.9.121:1527/orders_db:informixserver=tulua2";  

        set_url(url);  

        o_ctx  = new  OrdersCtx(getConnect());  

  

        /* Change  the url to reflect  items  database  

         * Here  we are  changing  the  database  name 

         * the  machine  name  and  the  port  no could  also  be different  

         */

 

 

Appendix  A. Connecting  to Databases A-5



url  = "jdbc:158.58.9.121:1527/items_db:informixserver=tulua2";  

        set_url(url);  

        i_ctx  = new  ItemsCtx(getConnect());  

  

        // Declare  orders_rec  of type  OrdersRec  

        OrdersRec  orders_rec;  

  

        // Using  context  o_ctx  query  orders  

  

        #sql  [o_ctx]  orders_rec  = 

        { SELECT  order_num,  order_date,  po_num,  paid_date  

          FROM  orders  

        }; 

        while  ( orders_rec.next()  ) 

        { 

        System.out.println("================================="+  

                           "=====================");  

        System.out.print("ORDER  NUMBER:"  + orders_rec.order_num()  + "\t\t");  

        System.out.println("ORDER  DATE:"  + orders_rec.order_date()  ); 

        System.out.print("PURCHASE  ORDER  NUMBER:"  + 

                          orders_rec.po_num()  + "\t");  

        System.out.println("PAID  DATE:"  + orders_rec.paid_date()  ); 

        System.out.println("================================="+  

                           "=====================");  

        System.out.print("\n");  

        int  ord_no  = orders_rec.order_num().intValue();  

        printItemRec(  fetchItemRec(ord_no)  ) ; 

        } 

        System.out.println("\n");  

    } 

    ItemsRec  fetchItemRec(int  ord_no)  throws  SQLException  

    { 

  

        ItemsRec   items_rec;  

        #sql   [i_ctx]  items_rec  = 

        { SELECT  item_num,  order_num,  stock_num,  manu_code,  quantity,  

                 total_price  

          FROM    items  

          WHERE   order_num  = :ord_no  

        }; 

        return  items_rec;  

    } 

    void  printItemRec(ItemsRec  items_rec)  throws  SQLException  

    { 

        System.out.print("ITEM  NUMBER    "); 

        System.out.print("STOCK  NUMBER    "); 

        System.out.print("MANUFACTURER  CODE   "); 

        System.out.print("QUANTITY    "); 

        System.out.print("TOTAL  PRICE    "); 

        System.out.println("\n---------------------------------"+  

                           "---------------------------------------");  

        while  ( items_rec.next()  ) 

        { 

            System.out.print(items_rec.item_num()  + "\t\t");  

            System.out.print(items_rec.stock_num()  + "\t\t"  ); 

            System.out.print(items_rec.manu_code()+  "\t\t");  

            System.out.print(items_rec.quantity()  + "   " + "\t\t");  

            System.out.print(items_rec.total_price()  + "\t\t");  

            System.out.print("\n");  

        } 

        System.out.println("\n");  

 

 

 

A-6 IBM Informix Embedded  SQLJ User’s Guide



} 

    void drop_db()  throws  SQLException  

    { 

        try  

        { 

            #sql [ctx]   { drop  database  orders_db  }; 

            #sql [ctx]  { drop  database  items_db  }; 

        } 

        catch  (SQLException  s) { } 

    } 

} 

/***************************************************************************  

 * 

 *                            IBM  CORPORATION  

 * 

 *                            PROPRIETARY  DATA  

 * 

 *      THIS  DOCUMENT  CONTAINS  TRADE  SECRET  DATA WHICH  IS THE PROPERTY  OF 

 *      IBM  CORPORATION   THIS  DOCUMENT  IS SUBMITTED  TO RECIPIENT  IN 

 *      CONFIDENCE.   INFORMATION  CONTAINED  HEREIN  MAY NOT BE USED,  COPIED  OR 

 *      DISCLOSED  IN WHOLE  OR IN PART  EXCEPT  AS PERMITTED  BY WRITTEN  AGREEMENT  

 *      SIGNED  BY AN OFFICER  OF IBM  CORPORATION.  

 * 

 *      THIS  MATERIAL  IS ALSO  COPYRIGHTED  AS AN UNPUBLISHED  WORK UNDER  

 *      SECTIONS  104  AND  408  OF TITLE  17 OF THE UNITED  STATES  CODE.  

 *      UNAUTHORIZED  USE,  COPYING  OR OTHER  REPRODUCTION  IS PROHIBITED  BY LAW. 

 * 

 * 

 *  Title:         demoUtil.java  

 * 

 *  Description:   Utilities  used  in the demo  programs  

 * 

 * 

 * 

 ***************************************************************************  

*/ 

  

import  java.io.*;  

import  java.util.*;  

import  java.lang.*;  

import  java.sql.*;  

  

public  class  demoUtil  

{ 

    private  String  driver;  

    private  String  URL;  

    private  String  myURL;  

    private  String  user;  

    private  String  passwd;  

    private  int  count  = 0; 

    private  int  lineno  = 0; 

    private  int  errors  = 0; 

    private  boolean  end_of_file  = false;  

    private  FileInputStream  fs = null;  

    private  DataInputStream  in = null;  

    private  BufferedReader  br = null;  

    private  String  line  = null;  

    private  StringBuffer  read_line  = null;  

    public  Connection  conn;  

  

  

    public  void  executeSQLScript(String  SQLscript)  

    {

 

 

Appendix  A. Connecting  to Databases A-7



try  

        { 

            fs = new  FileInputStream(SQLscript);  

        } 

        catch  (Exception  e) 

        { 

            System.out.println("Script  File Not Found");  

        e.printStackTrace();  

        } 

  

        in = new  DataInputStream(fs);  

        br = new  BufferedReader(new  InputStreamReader(in));  

        line  = getNextLine();  

        read_line  = (line==null)  ? new  StringBuffer()  : new StringBuffer(line);  

        while  (!end_of_file)  

        { 

            if (line!=null  && line.indexOf(’;’)==line.length()-1)  

            { 

                tryExecute(read_line);  

                read_line  = new  StringBuffer();  

            } 

            line  = getNextLine();  

            if (line!=null)  

                read_line.append(line).append("  "); 

  

        } 

        if (read_line!=null  && read_line.length()>0)  

        { 

            tryExecute(read_line);  

        } 

        System.out.println("\n");  

    } 

    private  boolean  isComment(String  s) 

    { 

        if (s!=null)  

            s.trim();  

        return  ( 

               s==null  || s.equals("")  

               || (s.length()>=2  && s.substring(0,2).equals("--"))  

               || (s.length()>=4  && s.substring(0,4).toUpperCase().equals(  

                   "REM  "))  

               ); 

    } 

  

    private  String  getNextLine()  

    { 

        String  line = null;  

        lineno++;  

  

        try  

        { 

            line  = br.readLine();  

            if (line==null)  

                end_of_file=true;  

        } 

        catch  (IOException  e) 

        { 

            line  = null;  

            end_of_file=true;  

        } 

  

        return  ( (isComment(line))  ? null  : line);  

    }

 

 

A-8 IBM Informix Embedded  SQLJ User’s Guide



private  String  bufferToCommand(StringBuffer  sb) 

    { 

        String  s = sb.toString().trim();  

  

        // chop  off  trailing  semicolon  

        if (s.substring(s.length()-1,s.length()).equals(";"))  

            s = s.substring(0,s.length()-1);  

  

        return  s; 

    } 

    private  void  tryExecute(StringBuffer  sb) 

    { 

        String  cmd  = bufferToCommand(sb);  

        System.out.print(".");  

        System.out.flush();  

  

        try  

        { 

            count++;  

            Statement  stmt  = conn.createStatement();  

            stmt.executeUpdate(cmd);  

            stmt.close();  

        } 

        catch  (SQLException  e) 

        { 

            errors++;  

            System.out.println("SQL  Error  line "+lineno+":  "+e.getMessage());  

            System.out.println("SQLState:  " + e.getSQLState());  

            System.out.println("ErrorCode:  " + e.getErrorCode());  

            System.out.println("Offending  statement:  ’"+cmd+"’");  

            e.printStackTrace();  

        } 

    } 

    public  void  set_driver(String  driver)  

    { 

        this.driver  = driver;  

    } 

    public  void  set_url(String  url)  

    { 

        this.URL  = url;  

    } 

    public  void  set_user(String  userName)  

    { 

        this.user  = userName;  

    } 

    public  void  set_passwd(String  passwd)  

    { 

        this.passwd  = passwd;  

    } 

    public  void  connSetup()  

    { 

        try  

        { 

            Class.forName(driver);  

        } 

        catch  (Exception  e) 

        { 

            System.out.println("Failed  to load IBM Informix  JDBC driver.");  

        e.printStackTrace();  

        } 

    myURL  = URL  ; 

    myURL  = myURL  + ";user="  + user  + ";password="  + passwd;

 

 

Appendix  A. Connecting  to Databases A-9



} 

    public  Connection  getConnect()  

    { 

  

        connSetup();  

        try  

    { 

            conn  = DriverManager.getConnection(myURL);  

        } 

        catch  (SQLException  e) 

        { 

            System.out.println("Connect  Error  : " + e.getErrorCode());  

            System.out.println("Failed  to connect:  " + e.toString());  

            e.printStackTrace();  

        } 

        return  conn;  

    } 

    public  Connection  getConnect(Connection  i_conn)  

    { 

        connSetup();  

        try  

    { 

            i_conn  = DriverManager.getConnection(myURL);  

        } 

        catch  (SQLException  e) 

        { 

            System.out.println("Connect  Error  : " + e.getErrorCode());  

            System.out.println("Failed  to connect:  " + e.toString());  

            e.printStackTrace();  

        } 

        return  i_conn;  

    } 

}

 

 

A-10 IBM Informix  Embedded  SQLJ User’s Guide



Appendix  B. Sample  Programs  

The  following  table  lists  and  describes  the  online  sample  programs  that  are  

included  with  IBM  Informix  Embedded  SQLJ.  

Demo  Program  Name  Description  

Demo01.sqlj  Demonstrates  a simple  connection  to  the  

database  

Demo02.sqlj  Demonstrates  a simple  SELECT  statement  and  

the  use  of host  variables  

Demo03.sqlj  Demonstrates  the  use  of  a named  iterator  

Demo04.sqlj   Demonstrates  the  use  of  a positional  iterator  

Demo05.sqlj  Demonstrates  interoperability  between  a JDBC  

ResultSet  object  and  an  SQLJ  iterator  

Demo06.sqlj  Demonstrates  interoperability  between  a JDBC  

Connection  object  and  an  SQLJ  

connection-context  object

 The  sample  programs  are  located  in  the  IFXJLOCATION/  

demo/sqlj  directory  (IFXJLOCATION  refers  to  the  directory  where  you  chose  

to  install  Embedded  SQLJ).  The  README  file  in  the  directory  explains  how  to 

compile  and  run the  programs.  

 

© Copyright  IBM Corp. 1996, 2004 B-1



B-2 IBM Informix  Embedded  SQLJ User’s Guide



Appendix  C. Accessibility  

The  syntax  diagrams  in  the  HTML  version  of  this  manual  are  available  in  

dotted  decimal  syntax  format,  which  is an  accessible  format  that  is available  

only  if you  are  using  a screen  reader.  

Dotted Decimal Syntax Diagrams 

In  dotted  decimal  format,  each  syntax  element  is written  on  a separate  line.  If 

two  or  more  syntax  elements  are  always  present  together  (or  always  absent  

together),  the  elements  can  appear  on  the  same  line,  because  they  can  be  

considered  as  a single  compound  syntax  element.  

Each  line  starts  with  a dotted  decimal  number;  for  example,  3 or  3.1  or  3.1.1. 

To hear  these  numbers  correctly,  make  sure  that  your  screen  reader  is set  to  

read  punctuation.  All  syntax  elements  that  have  the  same  dotted  decimal  

number  (for  example,  all  syntax  elements  that  have  the  number  3.1) are  

mutually  exclusive  alternatives.  If  you  hear  the  lines  3.1  USERID  and  3.1  

SYSTEMID, your  syntax  can  include  either  USERID  or  SYSTEMID, but  not  both.  

The  dotted  decimal  numbering  level  denotes  the  level  of  nesting.  For  example,  

if a syntax  element  with  dotted  decimal  number  3 is followed  by  a series  of  

syntax  elements  with  dotted  decimal  number  3.1, all  the  syntax  elements  

numbered  3.1  are  subordinate  to the  syntax  element  numbered  3. 

Certain  words  and  symbols  are  used  next  to the  dotted  decimal  numbers  to  

add  information  about  the  syntax  elements.  Occasionally,  these  words  and  

symbols  might  occur  at  the  beginning  of  the  element  itself.  For  ease  of  

identification,  if the  word  or  symbol  is  a part  of the  syntax  element,  the  word  

or  symbol  is preceded  by  the  backslash  (\)  character.  The  * symbol  can  be  

used  next  to  a dotted  decimal  number  to  indicate  that  the  syntax  element  

repeats.  For  example,  syntax  element  *FILE  with  dotted  decimal  number  3 is  

read  as  3 \*  FILE. Format  3*  FILE  indicates  that  syntax  element  FILE  repeats.  

Format  3*  \*  FILE  indicates  that  syntax  element  * FILE  repeats.  

Characters  such  as  commas,  which  are  used  to  separate  a string  of  syntax  

elements,  are  shown  in the  syntax  just  before  the  items  they  separate.  These  

characters  can  appear  on  the  same  line  as  each  item,  or  on  a separate  line  

with  the  same  dotted  decimal  number  as  the  relevant  items.  The  line  can  also  

show  another  symbol  that  provides  information  about  the  syntax  elements.  

For  example,  the  lines  5.1*, 5.1  LASTRUN,  and  5.1  DELETE  mean  that  if you  

use  more  than  one  of  the  LASTRUN  and  DELETE  syntax  elements,  the  elements  

 

© Copyright  IBM Corp. 1996, 2004 C-1



must  be  separated  by  a comma.  If no  separator  is given,  assume  that  you  use  

a blank  to  separate  each  syntax  element.  

If a syntax  element  is preceded  by  the  % symbol,  this  identifies  a reference  that  

is defined  elsewhere.  The  string  following  the  % symbol  is the  name  of  a 

syntax  fragment  rather  than  a literal.  For  example,  the  line  2.1  %OP1  means  

that  you  should  refer  to  a separate  syntax  fragment  OP1. 

The  following  words  and  symbols  are  used  next  to  the  dotted  decimal  

numbers:  

? Specifies  an  optional  syntax  element.  A  dotted  decimal  number  

followed  by  the  ? symbol  indicates  that  all  the  syntax  elements  with  a 

corresponding  dotted  decimal  number,  and  any  subordinate  syntax  

elements,  are  optional.  If  there  is  only  one  syntax  element  with  a 

dotted  decimal  number,  the  ? symbol  is displayed  on  the  same  line  as 

the  syntax  element  (for  example,  5?  NOTIFY). If  there  is more  than  one  

syntax  element  with  a dotted  decimal  number,  the  ? symbol  is 

displayed  on  a line  by  itself,  followed  by  the  syntax  elements  that  are  

optional.  For  example,  if you  hear  the  lines  5 ?, 5 NOTIFY, and  5 

UPDATE, you  know  that  syntax  elements  NOTIFY  and  UPDATE  are  

optional;  that  is,  you  can  choose  one  or  none  of them.  The  ? symbol  is 

equivalent  to  a bypass  line  in a railroad  diagram.  

! Specifies  a default  syntax  element.  A  dotted  decimal  number  followed  

by  the  ! symbol  and  a syntax  element  indicates  that  the  syntax  

element  is  the  default  option  for  all  syntax  elements  that  share  the  

same  dotted  decimal  number.  Only  one  of  the  syntax  elements  that  

share  the  same  dotted  decimal  number  can  specify  a ! symbol.  For  

example,  if you  hear  the  lines  2?  FILE, 2.1!  (KEEP), and  2.1  

(DELETE), you  know  that  (KEEP)  is the  default  option  for  the  FILE  

keyword.  In this  example,  if you  include  the  FILE  keyword  but  do  not  

specify  an  option,  default  option  KEEP  is  applied.  A  default  option  also  

applies  to  the  next  higher  dotted  decimal  number.  In  this  example,  if 

the  FILE  keyword  is  omitted,  default  FILE(KEEP)  is used.  However,  if 

you  hear  the  lines  2?  FILE, 2.1, 2.1.1!  (KEEP), and  2.1.1  (DELETE), 

the  default  option  KEEP  only  applies  to  the  next  higher  dotted  

decimal  number,  2.1  (which  does  not  have  an  associated  keyword),  

and  does  not  apply  to  2?  FILE. Nothing  is used  if the  keyword  FILE  is 

omitted.  

* Specifies  a syntax  element  that  can  be  repeated  zero  or  more  times.  A  

dotted  decimal  number  followed  by  the  * symbol  indicates  that  this  

syntax  element  can  be  used  zero  or  more  times;  that  is,  it is optional  

and  can  be  repeated.  For  example,  if you  hear  the  line  5.1*  

data-area, you  know  that  you  can  include  more  than  one  data  area  or  

 

 

C-2 IBM Informix  Embedded  SQLJ User’s Guide



you  can  include  none.  If you  hear  the  lines  3*,  3 HOST, and  3 STATE, 

you  know  that  you  can  include  HOST, STATE,  both  together,  or  nothing.  

Notes:   

1.   If a dotted  decimal  number  has  an  asterisk  (*)  next  to it and  there  

is only  one  item  with  that  dotted  decimal  number,  you  can  repeat  

that  same  item  more  than  once.  

2.   If a dotted  decimal  number  has  an  asterisk  next  to  it  and  several  

items  have  that  dotted  decimal  number,  you  can  use  more  than  

one  item  from  the  list,  but  you  cannot  use  the  items  more  than  

once  each.  In  the  previous  example,  you  could  write  HOST  STATE, 

but  you  could  not  write  HOST  HOST. 

3.   The  * symbol  is equivalent  to a loop-back  line  in  a railroad  syntax  

diagram.

+ Specifies  a syntax  element  that  must  be  included  one  or  more  times.  A  

dotted  decimal  number  followed  by  the  + symbol  indicates  that  this  

syntax  element  must  be  included  one  or  more  times.  For  example,  if 

you  hear  the  line  6.1+  data-area, you  must  include  at  least  one  data  

area.  If  you  hear  the  lines  2+,  2 HOST, and  2 STATE, you  know  that  you  

must  include  HOST, STATE, or  both.  As  for  the  * symbol,  you  can  only  

repeat  a particular  item  if it is the  only  item  with  that  dotted  decimal  

number.  The  + symbol,  like  the  * symbol,  is equivalent  to  a loop-back  

line  in  a railroad  syntax  diagram.

 

 

Appendix  C. Accessibility  C-3



C-4 IBM Informix  Embedded  SQLJ User’s Guide



Notices  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  

document  in  all  countries.  Consult  your  local  IBM  representative  for  

information  on  the  products  and  services  currently  available  in  your  area.  Any  

reference  to  an  IBM  product,  program,  or  service  is  not  intended  to  state  or  

imply  that  only  that  IBM  product,  program,  or  service  may  be  used.  Any  

functionally  equivalent  product,  program,  or  service  that  does  not  infringe  

any  IBM  intellectual  property  right  may  be  used  instead.  However,  it is the  

user’s  responsibility  to  evaluate  and  verify  the  operation  of  any  non-IBM  

product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of this  document  does  not  give  

you  any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  

IBM  Intellectual  Property  Department  in  your  country  or  send  inquiries,  in  

writing,  to:  

IBM  World  Trade  Asia  Corporation  Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  

other  country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  

IMPLIED  WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  

OR  FITNESS  FOR  A PARTICULAR  PURPOSE.  Some  states  do  not  allow  

disclaimer  of express  or  implied  warranties  in  certain  transactions,  therefore,  

this  statement  may  not  apply  to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  

be  incorporated  in  new  editions  of the  publication.  IBM  may  make  

 

© Copyright  IBM Corp. 1996, 2004 D-1



improvements  and/or  changes  in  the  product(s)  and/or  the  program(s)  

described  in  this  publication  at  any  time  without  notice.  

Any  references  in this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  

Web sites.  The  materials  at  those  Web sites  are  not  part  of  the  materials  for  

this  IBM  product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in  any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  

Licensees  of  this  program  who  wish  to  have  information  about  it for  the  

purpose  of  enabling:  (i)  the  exchange  of  information  between  independently  

created  programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  

use  of the  information  which  has  been  exchanged,  should  contact:  

IBM  Corporation  

J46A/G4  

555  Bailey  Avenue  

San  Jose,  CA  95141-1003  

U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and  

conditions,  including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  

Agreement,  IBM  International  Program  License  Agreement,  or  any  equivalent  

agreement  between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in  other  operating  environments  

may  vary  significantly.  Some  measurements  may  have  been  made  on  

development-level  systems  and  there  is no  guarantee  that  these  measurements  

will  be  the  same  on  generally  available  systems.  Furthermore,  some  

measurements  may  have  been  estimated  through  extrapolation.  Actual  results  

may  vary.  Users  of  this  document  should  verify  the  applicable  data  for  their  

specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of 

those  products,  their  published  announcements  or  other  publicly  available  

sources.  IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  

of performance,  compatibility  or  any  other  claims  related  to non-IBM  

products.  Questions  on  the  capabilities  of non-IBM  products  should  be  

addressed  to  the  suppliers  of  those  products.  

 

 

D-2 IBM Informix  Embedded  SQLJ User’s Guide



All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  

or  withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

All  IBM  prices  shown  are  IBM’s  suggested  retail  prices,  are  current  and  are  

subject  to  change  without  notice.  Dealer  prices  may  vary.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as possible,  the  examples  include  

the  names  of individuals,  companies,  brands,  and  products.  All  of  these  

names  are  fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  

actual  business  enterprise  is  entirely  coincidental.  

 COPYRIGHT  LICENSE:   

 This  information  contains  sample  application  programs  in  source  language,  

which  illustrate  programming  techniques  on  various  operating  platforms.  You 

may  copy,  modify,  and  distribute  these  sample  programs  in  any  form  without  

payment  to  IBM,  for  the  purposes  of  developing,  using,  marketing  or  

distributing  application  programs  conforming  to the  application  programming  

interface  for  the  operating  platform  for  which  the  sample  programs  are  

written.  These  examples  have  not  been  thoroughly  tested  under  all  conditions.  

IBM,  therefore,  cannot  guarantee  or imply  reliability,  serviceability,  or  function  

of  these  programs.  You may  copy,  modify,  and  distribute  these  sample  

programs  in  any  form  without  payment  to  IBM  for  the  purposes  of 

developing,  using,  marketing,  or  distributing  application  programs  

conforming  to  IBM’s  application  programming  interfaces.  

Each  copy  or  any  portion  of  these  sample  programs  or  any  derivative  work,  

must  include  a copyright  notice  as follows:  

   © (your  company  name)  (year).  Portions  of  this  code  are  derived  from  IBM  

Corp.  Sample  Programs.  ©  Copyright  IBM  Corp.  (enter  the  year  or  years).  

All  rights  reserved.

If  you  are  viewing  this  information  softcopy,  the  photographs  and  color  

illustrations  may  not  appear.  

 

 

Notices  D-3



Trademarks 

AIX;  DB2;  DB2  Universal  Database;  Distributed  Relational  Database  

Architecture;  NUMA-Q;  OS/2,  OS/390,  and  OS/400;  IBM  Informix®; 

C-ISAM®; Foundation.2000™; IBM  Informix  

® 4GL;  IBM  

Informix®DataBlade®Module;  Client  SDK™; Cloudscape™; Cloudsync™; IBM  

Informix®Connect;  IBM  Informix®Driver  for  JDBC;  Dynamic  Connect™; IBM  

Informix®Dynamic  Scalable  Architecture™(DSA);  IBM  Informix®Dynamic  

Server™; IBM  Informix®Enterprise  Gateway  Manager  (Enterprise  Gateway  

Manager);  IBM  Informix®Extended  Parallel  Server™; i.Financial  Services™; 

J/Foundation™; MaxConnect™; Object  Translator™; Red  Brick™; IBM  

Informix® SE;  IBM  Informix® SQL;  InformiXML™; RedBack®; SystemBuilder™; 

U2™; UniData®; UniVerse®; wintegrate®are  trademarks  or  registered  

trademarks  of  International  Business  Machines  Corporation.  

Java  and  all  Java-based  trademarks  and  logos  are  trademarks  or  registered  

trademarks  of  Sun  Microsystems,  Inc.  in  the  United  States  and  other  countries.  

Windows,  Windows  NT, and  Excel  are  either  registered  trademarks  or  

trademarks  of  Microsoft  Corporation  in the  United  States  and/or  other  

countries.  

UNIX  is  a registered  trademark  in  the  United  States  and  other  countries  

licensed  exclusively  through  X/Open  Company  Limited.  

Other  company,  product,  and  service  names  used  in  this  publication  may  be  

trademarks  or  service  marks  of others.  

 

 

D-4 IBM Informix  Embedded  SQLJ User’s Guide



Index  

Special characters
__sJT prefix 4-11 

-C prefix  5-9 

-cache  option 5-5 

-compile  option 5-6 

-compiler-encoding-flag  option 5-6 

-compiler-executable  option 5-6 

-compiler-output-file  option 5-6 

-d option 5-3 

-dir option 5-3 

-driver option 5-6 

-encoding  option 5-3 

-help option  5-3 

-J prefix  5-9 

-linemap  option 5-4 

-offline  option 5-6 

-online option 5-6 

-password option 5-7 

-props  option  5-4, 5-9 

-ser2class  option  5-7 

-status option  5-4 

-url option  5-7 

-user option  5-7 

-version  option  5-4 

-vm option  5-8 

-warn  option  5-4 

.class files 1-1 

.ser files 5-1, 5-7, 5-12 

.sqlj file extension  4-2 

A
Accessibility  xvii 

dotted  decimal  format of syntax diagrams  C-1 

syntax  diagrams,  reading  in a screen  reader C-1 

Accessor  methods  3-3, 4-2, 4-5 

B
BEGIN  DECLARE  SECTION  statement  4-1 

BEGIN...END  block 4-2 

Binding  of variables  1-2 

Boldface  type viii 

Boolean  options  5-8 

C
CLASSPATH  environment  variable  3-2, 5-2 

close()  method  4-7 

Code, sample,  conventions  for xiii 

Column  aliases  4-6 

Command  options,  ifxsqlj 5-3 

Command-line  conventions
how to read xi 

sample  diagram  xi 

Compiling  code 5-1 

Compliance
with industry  standards xx 

Connecting  to a database 3-1 

Connection-context  class A-3 

Connection-context  object A-3 

ConnectionManager  class 3-1, 3-4, A-1 

ConnectionManager.java  file 3-1 

Contact  information  xxi 

Conventions
command-line  xi 

documentation  vii 

sample-code  xiii 

syntax  diagrams  ix 

syntax  notation  ix 

typographical  vii 

Curly  braces, {} 4-2 

Cursors  3-3, 4-2 

D
Database server names, setting in database  URLs A-2 

Database servers 2-1 

Database URLs 3-1, A-1 

Databases,  connecting  to 3-1 

Default  connection  context  1-2, 3-2 

Deletes,  positioned  4-7 

Demo01.sqlj  program B-1 

Demo02.sqlj  program B-1 

Demo03.sqlj  program 3-4, B-1 

Demo04.sqlj  program B-1 

Demo05.sqlj  program B-1 

Demo06.sqlj  program B-1 

demoUtil.java  program  A-3 

Dependencies,  software vii 

Disabilities,  visual
reading syntax diagrams  C-1 

Documentation  conventions  vii 

Documentation  Notes xv 

Documentation  set of all manuals  xvii 

Documentation,  types of xiv 

machine  notes xv 

online  manuals xvii 

printed  manuals xvii 

Domain  names, setting in database URLs A-2 

Dotted  decimal format of syntax diagrams  C-1 

Dynamic  SQL 4-2 

 

© Copyright  IBM Corp. 1996, 2004 X-1



E
Embedded  SQL, traditional  4-1 

END DECLARE  SECTION  statement  4-1 

endFetch()  method  4-7 

Environment  variables  viii 

Error messages  xvi 

Errors 4-12 

ESQL/C  4-1 

EXECUTE  FUNCTION  statement  4-2, 4-8 

EXECUTE  PROCEDURE  statement  4-2, 4-8 

Execution  context  4-7 

F
FETCH  statement  3-3, 4-2, 4-3, 4-4 

file.encoding  property 4-10, 5-3 

Files
.ser 5-1, 5-7, 5-12 

ConnectionManager.java  3-1 

ifxjdbc.jar  5-2 

ifxsqlj.jar  5-2 

ifxtools.jar  5-2 

iterator_name.class  5-1 

java.properties 4-10 

profilekeys.class  5-1 

Property  files 5-9 

SQLChecker.cache  5-5 

sqlj.properties 5-9 

Fixed  and Known  Defects  File xv 

Functions  4-8 

G
getExecutionContext()  method  4-7 

getMaxFieldSize()  method 4-8 

getMaxRows()  method  4-8 

getQueryTimeout()  method 4-8 

getSQLWarnings()  method  4-8 

getUpdateCount()  method  4-8 

GLS 5-3 

H
Help  xvii 

Host variables  3-2, 4-1, 4-3 

I
IBM  Informix  JDBC Driver 1-2, 2-1, A-1 

ifxjdbc.jar  file 5-2 

ifxprofp  tool 5-12 

ifxsqlj command  5-1 

ifxsqlj.jar  file 5-2 

ifxtools.jar  file 5-2 

Industry  standards,  compliance  with xx 

Informix  database  servers  2-1 

Informix  Dynamic  Server  documentation  set xvii 

INFORMIXSERVER  environment  variable  A-2 

initContext()  method  3-2, 3-4, A-1 

Installation  Guides  xiv 

Internal  resource files 5-1 

IP addresses, setting in database URLs A-2 

isClosed()  method  4-7 

Iterator objects 3-3, 3-4, 4-2, 4-4 

iterator_name.class  file 5-1 

J
Java compiler 1-1 

Java Development  Kit (JDK) 2-1 

Java interpreter 5-2 

Java types 4-8 

java.properties file 4-10 

JDBC 1-1, 1-2, 4-11, 5-6, 5-7 

K
Keywords

in syntax diagrams  xii 

L
Language  character  sets 4-10 

Latin-1 character set 4-10 

Line numbers  5-4 

M
Machine  notes xv 

main() method  3-4 

MultiConnect.sqlj  program A-3 

Multiple  database connections  4-1 

N
Name-value  pairs of database URLs A-2 

Named iterators 3-3, 4-5 

native2ascii  tool 4-10 

newConnection()  method  A-1 

next() method  4-6, 4-7 

Nondefault  connections  A-3 

Null data 4-2 

Null indicator  variables  4-10 

O
Off-line checking 5-11  

On-line  checking  5-7, 5-8, 5-11 

Online checking  5-6 

Online help xvii 

Online manuals xvii 

Online notes xiv, xv 

Output directory 5-3 

P
Passwords, setting in database URLs A-2 

PATH  environment variable 5-6 

Port numbers,  setting in database  URLs A-2 

Positional  iterators 3-3, 4-4 

Positioned  updates, deletes 4-7 

Preprocessing source code 5-1 

 

 

X-2 IBM Informix  Embedded  SQLJ User’s Guide



Printed  manuals  xvii 

profilekeys.class  file 5-1 

Property files 5-9 

R
README  file 2-2, B-1 

Release Notes xv 

Reserved  names  4-11 

Result sets 3-3, 4-4 

Root output  directory  5-3 

rowCount() method  4-6 

Running  Embedded  SQLJ programs 5-1 

S
Sample programs 2-2, 3-4, B-1 

Sample-code  conventions  xiii 

Schema  checking  1-3 

Screen reader
reading syntax  diagrams  C-1 

SELECT  statement  3-3 

SELECT...AS  statement  4-6 

SELECT...INTO  statement  3-2, 4-3 

Semantics  checking  1-2, 5-11  

Servers 2-1 

setMaxFieldSize()  method  4-8 

setMaxRows()  method  4-8 

setQueryTimeou()  method  4-8 

setUpdateCount()  method  4-8 

Software dependencies  vii 

Specifying  environment variables  A-2 

SPL routines  4-8 

SQL code xiii 

SQL statements  3-2 

SQL types 4-8 

SQL92 Entry level 4-2 

SQLChecker.cache  file 5-5 

SQLException  class 4-11 

SQLException  methods  4-12 

SQLJ consortium  1-1 

SQLJ runtime package  4-11 

SQLJ translator  1-1, 4-11,  5-1 

sqlj.properties file 5-9 

sqlj.semantics.JdbcChecker  class 5-6 

sqlj.semantics.OfflineChecker  class 5-6 

Stored  functions  4-8 

Syntax checking  1-2, 5-11  

Syntax diagrams
conventions  for ix 

keywords in xii 

reading in a screen  reader  C-1 

variables  in xii 

Syntax segment  xi 

System  requirements  vii 

T
TOC Notes xv 

Translating source code 5-1 

Type checking  1-2, 4-5, 4-6 

Type mappings  4-8 

Typographical conventions  vii 

U
Unicode  escape sequences  4-10 

Updates,  positioned  4-7 

User names, setting in database URLs A-2 

V
Variables,  in syntax diagrams  xii 

Visual  disabilities
reading syntax diagrams  C-1 

W
WHENEVER...GOTO/CONTINUE  statement  4-2 

WHERE  CURRENT  OF clause 4-7

 

 

Index X-3



X-4 IBM Informix  Embedded  SQLJ User’s Guide





����

  

Printed  in USA 

 

  

G251-2278-00  

              

 


	Informix Documentation Website
	Informix CSDK 2.90 Documentation Website
	IDS 10.0 Documentation Website
	Master Index Enterprise Edition
	Master Index Express Edition
	Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Global Language Support

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	Example Code Conventions

	Additional Documentation
	Installation Guides
	Online Notes
	Locating Online Notes
	Online Notes Filenames

	Informix Error Messages
	Manuals
	Online Manuals
	Printed Manuals

	Online Help

	Accessibility
	IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Chapter 1. Introducing IBM Informix Embedded SQLJ
	What Is Embedded SQLJ?
	How Does Embedded SQLJ Work?
	Embedded SQLJ Versus JDBC

	Chapter 2. Preparing to Use Embedded SQLJ
	What Components Do You Need?
	Setting Up Your Software
	Examples

	Chapter 3. Building an Embedded SQLJ Program
	Fundamentals of Embedded SQLJ
	SQLJ Statement Identifier
	Connecting to a Database
	Embedding SQL Statements
	Handling Result Sets
	Positional Iterators
	Named Iterators


	A Simple Embedded SQLJ Program

	Chapter 4. The Embedded SQLJ Language
	Embedded SQLJ Versus Traditional Embedded SQL
	Embedded SQLJ Source Files
	Identifying Embedded SQLJ Statements
	SQL Statements
	Host Variables
	SELECT Statements That Return a Single Row
	Handling Result Sets
	Positional Iterators
	Named Iterators
	Using Column Aliases
	Iterator Methods
	Positioned Updates and Deletes

	Monitoring the Execution of an SQL Query
	Calling SPL Routines and Functions
	SQL and Java Type Mappings
	Language Character Sets
	Importing Java Packages
	SQLJ Reserved Names
	Parameter, Field, and Variable Names
	Class Names and Filenames

	Handling Errors

	Chapter 5. Processing Embedded SQLJ Source Code
	Translating, Compiling, and Running Embedded SQLJ Programs
	The ifxsqlj Command
	Command Options
	Basic Options
	Advanced Options

	Setting Options
	Setting Options on the Command Line
	Supplying Options in Property Files
	Precedence of Options
	Format of Property Files


	Online Checking
	Setting the -user and -password Options
	Setting the -url and -driver Options

	The ifxprofp Tool

	Appendix A. Connecting to Databases
	Appendix B. Sample Programs
	Appendix C. Accessibility
	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W


