Note!

Before using this information and the product it supports, read the information in “Notices” on page D-1.

First Edition (December 2004)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by copyright law. The information contained in this publication does not include any product warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Introduction .. vii
 About This Manual vii
 Types of Users. .. viii
 Software Dependencies viii
 Assumptions About Your Locale. viii
 Demonstration Databases ix
New Features. ... x
Documentation Conventions x
 Typographical Conventions x
 Feature, Product, and Platform. xi
 Syntax Diagrams xii
 Example Code Conventions xvi
Additional Documentation xvii
 Installation Guides xvii
 Online Notes .. xvii
 Informix Error Messages xix
 Manuals .. xx
 Online Help ... xx
Accessibility ... xx
IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xx
Compliance with Industry Standards xxiii
IBM Welcomes Your Comments xxiv

Chapter 1. Overview of Auditing 1-1
Secure-Auditing Facility 1-2
 Audit Events .. 1-2
 Audit Masks .. 1-3
 Audit Process .. 1-4
 Audit Trail ... 1-6
Roles for Database Server and Audit Administration 1-6
Audit Masks and Audit Instructions 1-7
 User Masks .. 1-7
 Template Masks 1-8
 Audit Instructions 1-9
Audit Configuration 1-13
 Auditing On or Off 1-13
 Types of Auditing 1-14
 Properties of Audit Files on UNIX 1-15
 Windows Application Event Log 1-17
 Windows Message Server 1-17
 Error Modes for Writing to an Audit File 1-18
 Audit Configuration and the ADTCFG File 1-18
 Access to the Audit Trail 1-19
Audit Analysis ... 1-21
 Importance of Audit Analysis 1-21
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation for Audit Analysis</td>
<td>1-22</td>
</tr>
<tr>
<td>Strategies for Audit Analysis</td>
<td>1-24</td>
</tr>
<tr>
<td>Responses to Identified Security Problems</td>
<td>1-25</td>
</tr>
<tr>
<td>DBMS Security Threats</td>
<td>1-26</td>
</tr>
<tr>
<td>Primary Threats</td>
<td>1-26</td>
</tr>
<tr>
<td>Privileged Activity Threats</td>
<td>1-26</td>
</tr>
<tr>
<td>Shared-Memory Connection Threats on UNIX</td>
<td>1-27</td>
</tr>
<tr>
<td>Introduced Malicious Software Threats</td>
<td>1-27</td>
</tr>
<tr>
<td>Remote-Access Threats</td>
<td>1-28</td>
</tr>
<tr>
<td>Obsolete-User Threats</td>
<td>1-28</td>
</tr>
<tr>
<td>Untrusted Software Used in a Privileged Environment</td>
<td>1-28</td>
</tr>
<tr>
<td>Distributed Database Configuration Threats</td>
<td>1-29</td>
</tr>
</tbody>
</table>

Chapter 2. Audit Administration 2-1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Roles and Role Separation</td>
<td>2-2</td>
</tr>
<tr>
<td>Database Server Administrator</td>
<td>2-2</td>
</tr>
<tr>
<td>Database System Security Officer</td>
<td>2-2</td>
</tr>
<tr>
<td>Audit Analysis Officer</td>
<td>2-3</td>
</tr>
<tr>
<td>Other Administrative Roles and Users</td>
<td>2-4</td>
</tr>
<tr>
<td>Role Separation</td>
<td>2-5</td>
</tr>
<tr>
<td>Auditing Setup</td>
<td>2-8</td>
</tr>
<tr>
<td>Setting Up the Default and Global Masks</td>
<td>2-8</td>
</tr>
<tr>
<td>Specifying a Directory for the Audit Trail (UNIX)</td>
<td>2-8</td>
</tr>
<tr>
<td>Setting the Error Mode</td>
<td>2-9</td>
</tr>
<tr>
<td>Setting the Audit Level</td>
<td>2-10</td>
</tr>
<tr>
<td>Activating Auditing</td>
<td>2-11</td>
</tr>
<tr>
<td>Audit Mask Maintenance</td>
<td>2-12</td>
</tr>
<tr>
<td>Creating Audit Masks</td>
<td>2-12</td>
</tr>
<tr>
<td>Displaying Audit Masks</td>
<td>2-14</td>
</tr>
<tr>
<td>Modifying Audit Masks</td>
<td>2-15</td>
</tr>
<tr>
<td>Deleting Audit Masks</td>
<td>2-15</td>
</tr>
<tr>
<td>Audit Configuration Maintenance</td>
<td>2-15</td>
</tr>
<tr>
<td>Displaying the Audit Configuration</td>
<td>2-16</td>
</tr>
<tr>
<td>Starting a New Audit File</td>
<td>2-17</td>
</tr>
<tr>
<td>Changing the Audit Mode on UNIX</td>
<td>2-18</td>
</tr>
<tr>
<td>Changing the Audit Mode on Windows (and IDS)</td>
<td>2-18</td>
</tr>
<tr>
<td>Changing the Audit Error Mode</td>
<td>2-18</td>
</tr>
<tr>
<td>Turning Off Auditing</td>
<td>2-19</td>
</tr>
</tbody>
</table>

Chapter 3. Audit Analysis 3-1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit-Record Format</td>
<td>3-1</td>
</tr>
<tr>
<td>Audit Record Output Sample for Extended Parallel Server</td>
<td>3-4</td>
</tr>
<tr>
<td>Audit Analysis Without SQL</td>
<td>3-5</td>
</tr>
<tr>
<td>Audit Analysis with SQL</td>
<td>3-5</td>
</tr>
<tr>
<td>Planning for SQL Audit Analysis</td>
<td>3-5</td>
</tr>
<tr>
<td>Revoking and Granting Privileges to Protect Audit Data</td>
<td>3-6</td>
</tr>
<tr>
<td>Preparing Audit Analysis Records for SQL Access on Dynamic Server</td>
<td>3-6</td>
</tr>
<tr>
<td>Preparing Audit Analysis Records for SQL Access on Extended Parallel Server</td>
<td>3-9</td>
</tr>
<tr>
<td>Interpreting Data Extracted from Audit Records</td>
<td>3-11</td>
</tr>
</tbody>
</table>
Introduction

About This Manual xi
Types of Users. viii
Software Dependencies viii
Assumptions About Your Locale. viii
Demonstration Databases ix
New Features. x
Documentation Conventions. x
Typographical Conventions xi
Feature, Product, and Platform. xi
Syntax Diagrams xii
How to Read a Command-Line Syntax Diagram xiv
Keywords and Punctuation. xv
Identifiers and Names xv
Example Code Conventions xvi
Additional Documentation xvii
Installation Guides xvii
Online Notes xvii
Locating Online Notes. xviii
Online Notes Filenames. xix
Informix Error Messages xix
Manuals xx
Online Manuals xx
Printed Manuals xx
Online Help xx
Accessibility xx
IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xx
Compliance with Industry Standards xxiii
IBM Welcomes Your Comments xxiv

In This Introduction

This introduction provides an overview of the information in this manual and describes the conventions that this manual uses.

About This Manual

This manual documents the secure-auditing facility of the database server. It provides information on how to set up and administer audit trails, extract and interpret audit records, and use SQL utilities and statements for audit analysis. It also helps you avoid the misuse of administrative tools that could compromise security.
This manual is not a computer-security or trusted-facility-administration training manual. For detailed information on those topics, see the suggested material in "IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set" on page xx.

Types of Users

This manual is for the following users:
- Database server administrators
- Operating-system administrators
- Database administrators
- Users of Informix database servers who are interested in secure auditing

Before reading this manual, you should have the following background:
- A working knowledge of your computer, your operating system, and the utilities that your operating system provides
- Some experience working with relational database management systems (RDBMSs) or exposure to RDBMS concepts
- An understanding of system administration
- A familiarity with the SQL statements that pertain to the events that you want to audit

If you have limited experience with RDBMSs, SQL, or your operating system, refer to the IBM Informix: Getting Started Guide for your database server for a list of supplementary titles.

Software Dependencies

This manual assumes that you are using one of the following database servers:
- IBM Informix Extended Parallel Server, Version 8.5
- IBM Informix Dynamic Server, Version 10.0

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets. All culture-specific information is brought together in a single environment, called a Global Language Support (GLS) locale.

This manual assumes that you use the U.S. 8859-1 English locale as the default locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252 (Microsoft 1252) for Windows environments. This locale supports U.S. English format conventions for dates, times, and currency, and also supports the ISO 8859-1 or Microsoft 1252 code set, which includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.
If you plan to use nondefault characters in your data or your SQL identifiers, or if you want to conform to the nondefault collation rules of character data, you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other considerations related to GLS locales, see the IBM Informix: GLS User’s Guide.

Demonstration Databases

The DB–Access utility, which is provided with your IBM Informix database server products, includes one or more of the following demonstration databases:

- The stores Demo database illustrates a relational schema with information about a fictitious wholesale sporting-goods distributor. Many examples in IBM Informix manuals are based on the stores Demo database.

 Extended Parallel Server

- The sales Demo database illustrates a dimensional schema for data warehousing applications. For conceptual information about dimensional data modeling, see the IBM Informix: Database Design and Implementation Guide.

 End of Extended Parallel Server

Dynamic Server

- The superstores Demo database illustrates an object-relational schema. The superstores Demo database contains examples of extended data types, type and table inheritance, and user-defined routines.

 End of Dynamic Server

For information about how to create and populate the demonstration databases, see the IBM Informix: DB–Access User’s Guide. For descriptions of the databases and their contents, see the IBM Informix: Guide to SQL Reference.

The scripts that you use to install the demonstration databases reside in the $INFORMIXDIR/bin directory on UNIX platforms and in the %INFORMIXDIR%\bin directory in Windows environments.
New Features

Windows Only

The following changes affect Trusted Facility features on Windows systems:

• Changes to Windows message logging
 In previous releases, the database server message facility sent messages to the Windows Security Event log, and also to the database server log file (%INFORMIXDIR\%INFORMIXSERVER\%log). Windows XP and later Windows versions do not support message logging by applications to the Security Event log. Messages are now written to the Windows Application Event log, and also to the database server log file.

• Changes to the Secure Auditing Facility
 In previous releases, secure auditing messages were to the Windows Security Event log. Auditing messages are now sent to a log file. The directory path can be specified by the onaudit utility, and has a default value of %INFORMIXDIR\aaodir.

End of Windows Only

For a comprehensive list of new features for your database server, see the IBM Informix: Getting Started Guide.

Documentation Conventions

This section describes the conventions that this manual uses. These conventions make it easier to gather information from this and other volumes in the documentation set.

The following conventions are discussed:

• Typographical conventions
• Other conventions
• Syntax diagrams
• Command-line conventions
• Example code conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms, illustrate screen displays, describe command syntax, and so forth.
<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYWORD</td>
<td>All primary elements in a programming language statement (keywords) appear in uppercase letters in a serif font.</td>
</tr>
<tr>
<td>italics</td>
<td>Within text, new terms and emphasized words appear in italics.</td>
</tr>
<tr>
<td>italic</td>
<td>Within syntax and code examples, variable values that you are to specify appear in italics.</td>
</tr>
<tr>
<td>boldface</td>
<td>Names of program entities (such as classes, events, and tables),</td>
</tr>
<tr>
<td>boldface</td>
<td>environment variables, file and pathnames, and interface elements</td>
</tr>
<tr>
<td>monospace</td>
<td>Information that the product displays and information that you enter appear in a monospace typeface.</td>
</tr>
<tr>
<td>monospace</td>
<td>Keys that you are to press appear in uppercase letters in a sans serif font.</td>
</tr>
<tr>
<td>KEYPRESS ></td>
<td>This symbol indicates a menu item. For example, “Choose Tools > Options” means choose the Options item from the Tools menu.</td>
</tr>
</tbody>
</table>

Tip: When you are instructed to “enter” characters or to “execute” a command, immediately press RETURN after the entry. When you are instructed to “type” the text or to “press” other keys, no RETURN is required.

Feature, Product, and Platform

Feature, product, and platform markup identifies paragraphs that contain feature-specific, product-specific, or platform-specific information. Some
examples of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Extended Parallel Server

Identifies information that is specific to IBM Informix Extended Parallel Server

End of Extended Parallel Server

UNIX Only

Identifies information that is specific to UNIX platforms

End of UNIX Only

Windows Only

Identifies information that is specific to the Windows environment

End of Windows Only

This markup can apply to one or more paragraphs within a section. When an entire section applies to a particular product or platform, this is noted as part of the heading text, for example:

Table Sorting (Linux Only)

Syntax Diagrams

This guide uses syntax diagrams built with the following components to describe the syntax for statements and all commands other than system-level commands.

Note: Starting in 2004, syntax diagrams have been reformatted to conform to the IBM standard.

Syntax diagrams depicting SQL and command-line statements have changed in the following ways:

- The symbols at the beginning and end of statements are now double arrows instead of a vertical line at the end.
- The symbols at the beginning and end of syntax segment diagrams are now vertical lines instead of arrows.
• How many times a loop can be repeated is now explained in a diagram footnote instead of a number in a gate symbol.
• Syntax statements that are longer than one line now continue on the next line instead of looping down with a continuous line.
• Product or condition-specific paths are now explained in diagram footnotes instead of icons.

The following table describes syntax diagram components.

<table>
<thead>
<tr>
<th>Component represented in PDF</th>
<th>Component represented in HTML</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>>>-----------------------------</td>
<td>>>>-----------------------------</td>
<td>Statement begins.</td>
</tr>
<tr>
<td>-----------------------------<</td>
<td>-----------------------------></td>
<td>Statement continues on next line.</td>
</tr>
<tr>
<td>>-----------------------------</td>
<td>>-----------------------------</td>
<td>Statement continues from previous line.</td>
</tr>
<tr>
<td>-----------------------------<</td>
<td>-----------------------------></td>
<td>Statement ends.</td>
</tr>
<tr>
<td>------SELECT-------------------</td>
<td>------SELECT-------------------</td>
<td>Required item.</td>
</tr>
<tr>
<td>---+------------------+-------</td>
<td>------LOCAL-------------------</td>
<td>Optional item.</td>
</tr>
<tr>
<td>+++-------------------+-------</td>
<td>+++LOCAL-------------------</td>
<td>Required item with choice. One and only one item must be present.</td>
</tr>
<tr>
<td>+---DISTINCT---------+</td>
<td>'---UNIQUE-------'</td>
<td></td>
</tr>
<tr>
<td>------------------+</td>
<td>++-------------------+</td>
<td>Optional items with choice are shown below the main line, one of which you might specify.</td>
</tr>
<tr>
<td>FOR UPDATE</td>
<td>++-------------------+</td>
<td></td>
</tr>
<tr>
<td>FOR READ ONLY</td>
<td>'---FOR READ ONLY--'</td>
<td></td>
</tr>
<tr>
<td>. ---NEXT-------------</td>
<td>. ---NEXT-------------</td>
<td>The values below the main line are optional, one of which you might specify. If you do not specify an item, the value above the line will be used as the default.</td>
</tr>
<tr>
<td>. ---PRIOR------------</td>
<td>. ---PRIOR------------</td>
<td></td>
</tr>
<tr>
<td>. ---PREVIOUS---------</td>
<td>. ---PREVIOUS---------</td>
<td></td>
</tr>
</tbody>
</table>
How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed in the table in the previous section.

Creating a No-Conversion Job

```
|onpladm create job job<---p---project<---n---d---device<---D---database-->
```

```
|--t---table-

|---$---server---|---<---T---target---| Setting the Run Mode (1)
```

Notes:

1. See page 17-4

The second line in this diagram has a segment named “Setting the Run Mode,” which according to the diagram footnote, is on page 17-4. This segment is shown in the following segment diagram (the diagram uses segment start and end components).

Setting the Run Mode:

<table>
<thead>
<tr>
<th>Component represented in PDF</th>
<th>Component represented in HTML</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>, ---------------------------</td>
<td>V ---------------------------</td>
<td>Optional items. Several items are allowed; a comma must precede each repetition.</td>
</tr>
<tr>
<td>index_name</td>
<td>index_name</td>
<td></td>
</tr>
<tr>
<td>table_name</td>
<td>table_name</td>
<td></td>
</tr>
<tr>
<td>Optional items. Several items are allowed; a comma must precede each repetition.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table Reference</th>
<th>Table Reference</th>
<th>Syntax segment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>view</td>
<td>view</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td>table</td>
<td>table</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td>synonym</td>
<td>synonym</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Syntax segment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table Reference</th>
<th>Table Reference</th>
<th>Syntax segment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>view</td>
<td>view</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td>table</td>
<td>table</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td>synonym</td>
<td>synonym</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Syntax segment.</td>
</tr>
</tbody>
</table>
To construct a command correctly, start at the top left with the command. Follow the diagram to the right, including the elements that you want. The elements in the diagram are case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type `onpladm create job` and then the name of the job.
2. Optionally, type `-p` and then the name of the project.
3. Type the following required elements:
 - `-n`
 - `-d` and the name of the device
 - `-D` and the name of the database
 - `-t` and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat them an arbitrary number of times:
 - `-S` and the server name
 - `-T` and the target server name
 - The run mode. To set the run mode, follow the Setting the Run Mode segment diagram to type `-f`, optionally type `d`, `p`, or `a`, and then optionally type `l` or `u`.
5. Follow the diagram to the terminator.

Your diagram is complete.

Keywords and Punctuation
Keywords are words reserved for statements and all commands except system-level commands. When a keyword appears in a syntax diagram, it is shown in uppercase letters. When you use a keyword in a command, you can write it in uppercase or lowercase letters, but you must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as shown in the syntax diagrams.

Identifiers and Names
Variables serve as placeholders for identifiers and names in the syntax diagrams and examples. You can replace a variable with an arbitrary name,
identifier, or literal, depending on the context. Variables are also used to
represent complex syntax elements that are expanded in additional syntax
diagrams. When a variable appears in a syntax diagram, an example, or text,
it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

```
SELECT column_name FROM table_name
```

When you write a SELECT statement of this form, you replace the variables
`column_name` and `table_name` with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the
code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

```
CONNECT TO stores_demo
...
DELETE FROM customer
    WHERE customer_num = 121
...
COMMIT WORK
DISCONNECT CURRENT
```

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB–Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other
appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be
added in a full application, but it is not necessary to show it to describe
the concept being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.
Additional Documentation

For additional information, refer to the following types of documentation:

- Installation guides
- Online notes
- Informix error messages
- Manuals
- Online help

Installation Guides

Installation guides are located in the /doc directory of the product CD or in the /doc directory of the product’s compressed file if you downloaded it from the IBM Web site. Alternatively, you can obtain installation guides from the IBM Informix Online Documentation site at http://www.ibm.com/software/data/informix/pubs/library/

Online Notes

The following sections describe the online files that supplement the information in this manual. Please examine these files before you begin using your IBM Informix product. They contain vital information about application and performance issues.
<table>
<thead>
<tr>
<th>Online File</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC Notes</td>
<td>The TOC (Table of Contents) notes file provides a comprehensive directory of hyperlinks to the release notes, the fixed and known defects file, and all the documentation notes files for individual manual titles.</td>
<td>HTML</td>
</tr>
<tr>
<td>Documentation Notes</td>
<td>The documentation notes file for each manual contains important information and corrections that supplement the information in the manual or information that was modified since publication.</td>
<td>HTML, text</td>
</tr>
<tr>
<td>Release Notes</td>
<td>The release notes file describes feature differences from earlier versions of IBM Informix products and how these differences might affect current products. For some products, this file also contains information about any known problems and their workarounds.</td>
<td>HTML, text</td>
</tr>
<tr>
<td>Machine Notes</td>
<td>(Non-Windows platforms only) The machine notes file describes any platform-specific actions that you must take to configure and use IBM Informix products on your computer.</td>
<td>text</td>
</tr>
<tr>
<td>Fixed and Known</td>
<td>This text file lists issues that have been identified with the current version. It also lists customer-reported defects that have been fixed in both the current version and in previous versions.</td>
<td>text</td>
</tr>
<tr>
<td>Defects File</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site at http://www.ibm.com/software/data/informix/pubs/library/ Additionally you can locate these files before or after installation as described below.

Before Installation

All online notes are located in the /doc directory of the product CD. The easiest way to access the documentation notes, the release notes, and the fixed and known defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided in text format.

After Installation
On UNIX platforms in the default locale, the documentation notes, release notes, and machine notes files appear under the $INFORMIXDIR/release/en_us/0333 directory.

Dynamic Server

On Windows the documentation and release notes files appear in the Informix folder. To display this folder, choose Start > Programs > IBM Informix Dynamic Server version > Documentation Notes or Release Notes from the taskbar.

Machine notes do not apply to Windows platforms.

End of Dynamic Server

Online Notes Filenames

Online notes have the following file formats:

<table>
<thead>
<tr>
<th>Online File</th>
<th>File Format</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOC Notes</td>
<td>prod_os_tocnotes_version.html</td>
<td>ids_win_tocnotes_10.0.html</td>
</tr>
<tr>
<td>Documentation Notes</td>
<td>prod_bookname_docnotes_version.html/txt</td>
<td>ids_hpl_docnotes_10.0.html</td>
</tr>
<tr>
<td>Release Notes</td>
<td>prod_os_relnotes_version.html/txt</td>
<td>ids_unix_relnotes_10.0.txt</td>
</tr>
<tr>
<td>Machine Notes</td>
<td>prod_machine_notes_version.txt</td>
<td>ids_machine_notes_10.0.txt</td>
</tr>
<tr>
<td>Fixed and Known Defects File</td>
<td>prod_defects_version.txt</td>
<td>ids_defects_10.0.txt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ids_win_fixed_and_known_defects_version.txt</td>
</tr>
</tbody>
</table>

Informix Error Messages

This file is a comprehensive index of error messages and their corrective actions for the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and their corrective actions.

Dynamic Server

On Windows, use the Informix Error Messages utility to read error messages and their corrective actions. To display this utility, choose Start > Programs > IBM Informix Dynamic Server version > Informix Error Messages from the taskbar.

End of Dynamic Server
You can also access these files from the IBM Informix Online Documentation site at http://www.ibm.com/software/data/informix/pubs/library/

Manuals

Online Manuals
A CD that contains your manuals in electronic format is provided with your IBM Informix products. You can install the documentation or access it directly from the CD. For information about how to install, read, and print online manuals, see the installation insert that accompanies your CD. You can also obtain the same online manuals from the IBM Informix Online Documentation site at http://www.ibm.com/software/data/informix/pubs/library/

Printed Manuals
To order hardcopy manuals, contact your sales representative or visit the IBM Publications Center Web site at http://www.ibm.com/software/howtobuy/data.html

Online Help
IBM Informix online help, provided with each graphical user interface (GUI), displays information about those interfaces and the functions that they perform. Use the help facilities that each GUI provides to display the online help.

Accessibility
IBM is committed to making our documentation accessible to persons with disabilities. Our books are available in HTML format so that they can be accessed with assistive technology such as screen reader software. The syntax diagrams in our manuals are available in dotted decimal format, which is an accessible format that is available only if you are using a screen reader. For more information about the dotted decimal format, see the Accessibility appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
The following tables list the manuals that are part of the IBM Informix Dynamic Server, Version 10.0 and the CSDK Version 2.90, documentation set. PDF and HTML versions of these manuals are available at http://www.ibm.com/software/data/informix/pubs/library/ You can order hardcopy versions of these manuals from the IBM Publications Center at http://www.ibm.com/software/howtobuy/data.html
<table>
<thead>
<tr>
<th>Manual</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator’s Guide</td>
<td>Understanding, configuring, and administering your database server.</td>
</tr>
<tr>
<td>Administrator’s Reference</td>
<td>Reference material for Informix Dynamic Server, such as the syntax of</td>
</tr>
<tr>
<td></td>
<td>database server utilities onmode and onstat, and descriptions of</td>
</tr>
<tr>
<td></td>
<td>configuration parameters, the symsmasters tables, and logical-log records.</td>
</tr>
<tr>
<td>Backup and Restore Guide</td>
<td>The concepts and methods you need to understand when you use the</td>
</tr>
<tr>
<td></td>
<td>ON-Bar and ontape utilities to back up and restore data.</td>
</tr>
<tr>
<td>DB-Access User’s Guide</td>
<td>Using the DB-Access utility to access, modify, and retrieve data from</td>
</tr>
<tr>
<td></td>
<td>Informix databases.</td>
</tr>
<tr>
<td>DataBlade API Function</td>
<td>The DataBlade API functions and the subset of ESQL/C functions that</td>
</tr>
<tr>
<td>Reference</td>
<td>the DataBlade API supports. You can use the DataBlade API to develop</td>
</tr>
<tr>
<td></td>
<td>client LIBMI applications and C user-defined routines that access data</td>
</tr>
<tr>
<td></td>
<td>in Informix databases.</td>
</tr>
<tr>
<td>DataBlade API Programmer’s</td>
<td>The DataBlade API, which is the C-language application-programming</td>
</tr>
<tr>
<td>Guide</td>
<td>interface provided with Dynamic Server. You use the DataBlade API to</td>
</tr>
<tr>
<td></td>
<td>develop client and server applications that access data stored in</td>
</tr>
<tr>
<td></td>
<td>Informix databases.</td>
</tr>
<tr>
<td>Database Design and</td>
<td>Designing, implementing, and managing your Informix databases.</td>
</tr>
<tr>
<td>Implementation Guide</td>
<td></td>
</tr>
<tr>
<td>Enterprise Replication</td>
<td>How to design, implement, and manage an Enterprise Replication system</td>
</tr>
<tr>
<td>Guide</td>
<td>to replicate data between multiple database servers.</td>
</tr>
<tr>
<td>Error Messages file</td>
<td>Causes and solutions for numbered error messages you might receive</td>
</tr>
<tr>
<td></td>
<td>when you work with IBM Informix products.</td>
</tr>
<tr>
<td>Getting Started Guide</td>
<td>Describes the products bundled with IBM Informix Dynamic Server and</td>
</tr>
<tr>
<td></td>
<td>interoperability with other IBM products. Summarizes important features</td>
</tr>
<tr>
<td></td>
<td>of Dynamic Server and the new features for each version.</td>
</tr>
<tr>
<td>Guide to SQL: Reference</td>
<td>Information about Informix databases, data types, system catalog</td>
</tr>
<tr>
<td></td>
<td>tables, environment variables, and the stores_demo demonstration</td>
</tr>
<tr>
<td></td>
<td>database.</td>
</tr>
<tr>
<td>Guide to SQL: Syntax</td>
<td>Detailed descriptions of the syntax for all Informix SQL and SPL</td>
</tr>
<tr>
<td></td>
<td>statements.</td>
</tr>
<tr>
<td>Guide to SQL: Tutorial</td>
<td>A tutorial on SQL, as implemented by Informix products, that describes</td>
</tr>
<tr>
<td></td>
<td>the basic ideas and terms that are used when you work with a relational</td>
</tr>
<tr>
<td></td>
<td>database.</td>
</tr>
<tr>
<td>High-Performance Loader</td>
<td>Accessing and using the High-Performance Loader (HPL), to load and</td>
</tr>
<tr>
<td>User’s Guide</td>
<td>unload large quantities of data to and from Informix databases.</td>
</tr>
<tr>
<td>Microsoft Windows</td>
<td></td>
</tr>
<tr>
<td>Installation Guide for</td>
<td>Instructions for installing IBM Informix Dynamic Server on UNIX and</td>
</tr>
<tr>
<td>UNIX and Linux</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Database Server Manuals (continued)

<table>
<thead>
<tr>
<th>Manual</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/Foundation Developer’s Guide</td>
<td>Writing user-defined routines (UDRs) in the Java programming language for Informix Dynamic Server with J/Foundation.</td>
</tr>
<tr>
<td>Large Object Locator DataBlade Module User’s Guide</td>
<td>Using the Large Object Locator, a foundation DataBlade module that can be used by other modules that create or store large-object data. The Large Object Locator enables you to create a single consistent interface to large objects and extends the concept of large objects to include data stored outside the database.</td>
</tr>
<tr>
<td>Migration Guide</td>
<td>Conversion to and reversion from the latest versions of Informix database servers. Migration between different Informix database servers.</td>
</tr>
<tr>
<td>Optical Subsystem Guide</td>
<td>The Optical Subsystem, a utility that supports the storage of BYTE and TEXT data on optical disk.</td>
</tr>
<tr>
<td>Performance Guide</td>
<td>Configuring and operating IBM Informix Dynamic Server to achieve optimum performance.</td>
</tr>
<tr>
<td>R-Tree Index User’s Guide</td>
<td>Creating R-tree indexes on appropriate data types, creating new operator classes that use the R-tree access method, and managing databases that use the R-tree secondary access method.</td>
</tr>
<tr>
<td>SNMP Subagent Guide</td>
<td>The IBM Informix subagent that allows a Simple Network Management Protocol (SNMP) network manager to monitor the status of Informix servers.</td>
</tr>
<tr>
<td>Storage Manager Administrator’s Guide</td>
<td>Informix Storage Manager (ISM), which manages storage devices and media for your Informix database server.</td>
</tr>
<tr>
<td>Trusted Facility Guide</td>
<td>The secure-auditing capabilities of Dynamic Server, including the creation and maintenance of audit logs.</td>
</tr>
<tr>
<td>User-Defined Routines and Data Types Developer’s Guide</td>
<td>How to define new data types and enable user-defined routines (UDRs) to extend IBM Informix Dynamic Server.</td>
</tr>
<tr>
<td>Virtual-Index Interface Programmer’s Guide</td>
<td>Creating a secondary access method (index) with the Virtual-Index Interface (VII) to extend the built-in indexing schemes of IBM Informix Dynamic Server. Typically used with a DataBlade module.</td>
</tr>
<tr>
<td>Virtual-Table Interface Programmer’s Guide</td>
<td>Creating a primary access method with the Virtual-Table Interface (VTI) so that users have a single SQL interface to Informix tables and to data that does not conform to the storage scheme of Informix Dynamic Server.</td>
</tr>
</tbody>
</table>

Table 2. Client/Connectivity Manuals

<table>
<thead>
<tr>
<th>Manual</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Products Installation Guide</td>
<td>Installing IBM Informix Client Software Developer’s Kit (Client SDK) and IBM Informix Connect on computers that use UNIX, Linux, and Windows.</td>
</tr>
<tr>
<td>Embedded SQLJ User’s Guide</td>
<td>Using IBM Informix Embedded SQLJ to embed SQL statements in Java programs.</td>
</tr>
</tbody>
</table>

xxii IBM Informix Trusted Facility Guide
Table 2. Client/Connectivity Manuals (continued)

<table>
<thead>
<tr>
<th>Manual</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESQL/C Programmer’s Manual</td>
<td>The IBM Informix implementation of embedded SQL for C.</td>
</tr>
<tr>
<td>GLS User’s Guide</td>
<td>The Global Language Support (GLS) feature, which allows IBM Informix</td>
</tr>
<tr>
<td></td>
<td>APIs and database servers to handle different languages, cultural</td>
</tr>
<tr>
<td></td>
<td>conventions, and code sets.</td>
</tr>
<tr>
<td>JDBC Driver Programmer’s</td>
<td>Installing and using Informix JDBC Driver to connect to an Informix</td>
</tr>
<tr>
<td>Guide</td>
<td>database from within a Java application or applet.</td>
</tr>
<tr>
<td>.NET Provider Reference Guide</td>
<td>Using Informix .NET Provider to enable .NET client applications to</td>
</tr>
<tr>
<td></td>
<td>access and manipulate data in Informix databases.</td>
</tr>
<tr>
<td>ODBC Driver Programmer’s</td>
<td>Using the Informix ODBC Driver API to access an Informix database and</td>
</tr>
<tr>
<td>Manual</td>
<td>interact with the Informix database server.</td>
</tr>
<tr>
<td>OLE DB Provider Programmer’s</td>
<td>Installing and configuring Informix OLE DB Provider to enable client</td>
</tr>
<tr>
<td>Guide</td>
<td>applications, such as ActiveX Data Object (ADO) applications and Web</td>
</tr>
<tr>
<td></td>
<td>pages, to access data on an Informix server.</td>
</tr>
<tr>
<td>Object Interface for C++</td>
<td>The architecture of the C++ object interface and a complete class</td>
</tr>
</tbody>
</table>

Table 3. DataBlade Developer’s Kit Manuals

<table>
<thead>
<tr>
<th>Manual</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataBlade Developer’s Kit</td>
<td>Developing and packaging DataBlade modules using BladeSmith and</td>
</tr>
<tr>
<td>DataBlade Module Development</td>
<td>Basic orientation for developing DataBlade modules. Includes an example</td>
</tr>
<tr>
<td>Overview</td>
<td>illustrating the development of a DataBlade module.</td>
</tr>
<tr>
<td>DataBlade Module Installation</td>
<td>Installing DataBlade modules and using BladeManager to manage</td>
</tr>
<tr>
<td>and Registration Guide</td>
<td>DataBlade modules in Informix databases.</td>
</tr>
</tbody>
</table>

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International Organization of Standardization (ISO) have jointly established a set of industry standards for the Structured Query Language (SQL). IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of IBM Informix database servers comply with the SQL-92 Intermediate and Full Level and X/Open SQL Common Applications Environment (CAE) standards.
IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find useful in our manuals, which will help us improve future versions. Include the following information:

- The name and version of the manual that you are using
- Section and page number
- Your suggestions about the manual

Send your comments to us at the following email address:

docinf@us.ibm.com

This email address is reserved for reporting errors and omissions in our documentation. For immediate help with a technical problem, contact IBM Technical Support.

We appreciate your suggestions.
Chapter 1. Overview of Auditing

Secure-Auditing Facility ... 1-2
 Audit Events ... 1-2
 Audit Masks ... 1-3
 Audit Process ... 1-4
 Audit Trail ... 1-6
Roles for Database Server and Audit Administration 1-6
Audit Masks and Audit Instructions 1-7
 User Masks ... 1-7
 Template Masks .. 1-8
 Audit Instructions .. 1-9
 Resource and Performance Implications 1-9
 Suggested Minimum Set of Events to Audit 1-10
 Special Auditing Considerations 1-11
 Level of Auditing Granularity 1-11
 Use of Various Masks 1-12
Audit Configuration .. 1-13
 Auditing On or Off ... 1-13
Types of Auditing ... 1-14
 Auditing Modes on UNIX 1-14
 Auditing Modes on Windows 1-15
Properties of Audit Files on UNIX 1-15
 Location of Audit Files 1-15
 New Audit Files ... 1-16
 Audit File Names ... 1-16
Windows Application Event Log 1-17
Windows Message Server .. 1-17
 Error Modes for Writing to an Audit File 1-18
 Halt Error Modes ... 1-18
 Continue Error Mode ... 1-18
Audit Configuration and the ADTCFG File 1-18
Access to the Audit Trail 1-19
 Access to Audit Files on UNIX 1-19
 Access to Audit Records on Windows 1-21
Audit Analysis .. 1-21
 Importance of Audit Analysis 1-21
 Preparation for Audit Analysis 1-22
 Strategies for Audit Analysis 1-24
 Event Failure ... 1-24
 Event Success ... 1-24
 Insider Attack .. 1-24
 Browsing ... 1-25
 Aggregation ... 1-25
 Responses to Identified Security Problems 1-25
DBMS Security Threats ... 1-26
In This Chapter

This chapter provides an overview of auditing and of auditing terminology for Dynamic Server and for Extended Parallel Server. It describes audit events, explains in detail how audit masks are configured and used, and indicates how to perform audit analysis. It also introduces the various audit administration roles.

Secure-Auditing Facility

Auditing creates a record of selected activities that users perform. An audit administrator who analyzes the audit trail can use these records for the following purposes:

- To detect unusual or suspicious user actions and identify the specific users who performed those actions
- To detect unauthorized access attempts
- To assess potential security damage
- To provide evidence in investigations, if necessary
- To provide a passive deterrent against unwanted activities, as long as users know that their actions might be audited

Important: Make sure that users know that every action they perform against the database can be audited and that they can be held responsible for those actions.

You cannot use auditing to track transactions to reconstruct a database. The database server has archive and backup facilities for that purpose. The *IBM Informix: Backup and Restore Guide* explains these facilities.

Audit Events

Any database server activity that could potentially alter or reveal data or the auditing configuration is considered an *event*. The database server secure-auditing facility lets you audit and keep a record of events either when
they succeed or fail, or simply when the activity is attempted. You can identify each audit event by a four- or five-letter event code called an audit-event mnemonic. Appendix A, “Audit Events,” on page A-1, lists the audit-event mnemonics and describes the events that you can audit with the secure-auditing facility.

You can specify events that you want to audit in an audit mask. Auditing is based on the notion of audit events and audit masks.

Audit Masks

Audit masks specify those events that the database server should audit. You can include any event in a mask. The masks are associated with user IDs, so that specified actions that a user ID takes are recorded. Global masks _default, _require, and _exclude are specified for all users in the system.

Before you use auditing, you need to specify which audit events to audit. To specify audited events, add the events to the masks. You also need to perform other tasks, which Chapter 2, “Audit Administration,” on page 2-1 describes.

The database server does not provide auditing for objects or processes. For example, you cannot ask the database server to audit all access attempts on a certain object. You can, however, filter audit records from the audit trail based on objects with the audit-analysis tools, which Chapter 3, “Audit Analysis,” on page 3-1 describes.

Figure 1-1 represents a set of audit masks. The actual masks and their features are explained in “Audit Masks and Audit Instructions” on page 1-7.

After installation:
- Create audit masks
- Turn on auditing

![Figure 1-1. Audit Masks After Installation](image)

After installation is complete, you can create the audit masks and turn on auditing.
Important: If auditing is off, the database server does not audit any events, even if events are specified in the masks.

In addition to the three masks that [Figure 1-1](#) shows, you can specify *user masks* for individual users. User masks enable you to audit some users more than others and target different types of activities for different users. Except for the audit administrator who maintains the masks, a user cannot tell which events are being audited. For a description of user masks, see page [1-7](#).

You can also create *template masks* to create new user masks. For a description of template masks, see page [1-8](#).

Masks and their events are called *auditing instructions*, as [Figure 1-2](#) shows. You have significant flexibility regarding the auditable facets of Dynamic Server. You can select anything from minimal audit instructions, in which no events are audited, to maximal audit instructions, in which all security-relevant database server events are audited for all users.

Defining masks:
- You must specify the events to audit within one or more audit masks.
- You can create masks for individual users.
- You can change the audit instructions during regular system operation.
- You can change a single mask.

![Figure 1-2. The Auditing Instructions](#)

After you define the auditing instructions and turn on auditing, you can modify one or more audit masks as needs change and you identify potential security threats. For information on how to change audit masks, see Chapter [2](#).

Audit Process

When you turn on auditing, the database server generates *audit records* for every event that the auditing instructions specify, as [Figure 1-3](#) shows. For UNIX, specify whether the operating system or the database server manages the audit records. For details, see “Types of Auditing” on page [1-14](#).
If you use database server-managed auditing, the database server stores the audit records in a file called an *audit file*, as Figure 1-3 shows. The collection of audit records makes up the *audit trail*. (The audit trail might consist of more than one audit file.) When operating-system-managed auditing is used on UNIX, the records are stored in an operating-system audit trail.

During auditing:

![Diagram of audit process]

Figure 1-3. The Audit Process

An audit administrator needs to specify and maintain the *audit configuration*, which includes the following information:

- The audit mode
- How the database server behaves if it encounters an error when writing audit records to the audit trail

UNIVERSAL

UNIX Only

- For UNIX, the directory in which the audit trail is located
- For UNIX, the maximum size of an audit file before the database server or operating system automatically starts another audit file

Extended Parallel Server

Audit files for Extended Parallel Server are stored locally on each coserver in the directory specified by the ADPATH parameter in the ADTCFG file or by the `onaudit -p` command.

End of Extended Parallel Server
These topics are explained in “Audit Configuration” on page 1-13.

The database server generates audit records and writes them to the audit file or to an event log regardless of whether the client user that performs the audited action is local or remote. The database server includes both the user login and database server name in every audit record to help pinpoint a specific initiator and action.

Dynamic Server

In high-availability data replication (HDR), only the primary database server performs secure auditing and produces an audit trail. The onaudit utility runs on the secondary database server but does not audit any of the audit events.

Audit Trail

Review the audit trail regularly. The database server offers a data-extraction utility, onshowaudit, that you can use to select audit data for specific users or database servers.

Extended Parallel Server

On Extended Parallel Server, you can select audit data for events on a specific coserver as well as for specific users.

Roles for Database Server and Audit Administration

The operating-system administrator (OSA) can set up the following roles for database server administration and audit administration, in addition to any administrative roles that your operating system might have:

- The database server administrator (DBSA) maintains and tunes the database server.

- An audit administrator can have either or both of the following roles:
 - Database system security officer (DBSSO), who specifies and maintains the audit masks
 - Audit analysis officer (AAO), who turns auditing on and off, sets up and maintains the audit configuration, and reads and analyzes audit-trail data

After you extract data, you can specify that it be formatted to load into a database for subsequent manipulation with SQL. “Audit Analysis” on page 1-21 explains this process.
Although role separation provides more secure auditing, these roles are optional. Before the database server software is installed, the OSA, or whoever installs the database server, decides whether to have separate or combined DBSSO and AAO roles for audit administration and who should perform each role.

For detailed information about roles and role separation, see “Role Separation” on page 2-5. For information about setting up role separation and creating a user group for each role, see your IBM Informix: Installation Guide.

Audit Masks and Audit Instructions

As described in “Audit Masks” on page 1-3, an audit mask specifies a set of events to be audited when a user performs them. Audit events are derived from a combination of user and global masks. Appendix A lists the set of auditable events. The set of events is fixed, but you use masks to specify only the ones that you need to audit.

The following table lists four types of audit masks.

<table>
<thead>
<tr>
<th>Mask Type</th>
<th>Mask Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual user masks</td>
<td>username</td>
</tr>
<tr>
<td>Default mask</td>
<td>_default</td>
</tr>
<tr>
<td>Global masks</td>
<td>_require and _exclude</td>
</tr>
<tr>
<td>Template masks</td>
<td>_maskname</td>
</tr>
</tbody>
</table>

The following section describes the first three kinds of masks. For a description of template masks, see page 1-8.

User Masks

The global masks are always applied to user actions that are performed during a session in which auditing is turned on. Audit masks are applied in the following order:

1. An individual user mask or if none, the _default mask
2. The _require mask
3. The _exclude mask

When a user initiates access to a database, the database server checks whether an individual user mask exists with the same username as the account that the user uses. If an individual user mask exists, the database server reads the audit instructions in it first and ignores the _default mask. If no individual user mask exists, the database server reads and applies the audit instructions in the _default mask to that user.
In addition to default and individual masks, the database server reads and applies the audit instructions in the _require and _exclude masks. These masks are global because they apply to all users. Audit events in the _require mask are audited, even if they are not found in the _default or individual user masks. Audit events in the _exclude mask are not audited, even if the previously read masks specifically require them.

Important: If the audit instructions of these masks conflict, the instructions in the last mask to be read are used. Masks are read in the following order: username, _default, _require, and _exclude.

Users cannot tell if individual user masks exist for their accounts. Also, users do not need to do anything to enable auditing of their actions. Once an audit administrator turns on auditing, it operates automatically and users cannot disable it.

When the database server is installed, no audit masks exist. An audit administrator must specify all masks, including the default mask and the global masks.

Important: Actions that the DBSA, an audit administrator, or user informix generally performs are potentially dangerous to the security of the database server. To reduce the risk of an unscrupulous user abusing the informix account, it is recommended that the actions of informix always be audited. This procedure is intended to prevent an unscrupulous user from using informix to tamper with auditing or from granting discretionary access to another unscrupulous user.

Template Masks

As you become accustomed to the types of auditing that seem useful at your site, you might notice that certain auditing practices occur repeatedly. You can create template audit masks to help set up auditing for situations that recur or for various types of users.

For example, you might define a template mask called _guest and copy it to individual user masks for people who use your database server for a short time. You can copy a template mask to a user mask and modify it at the same time, perhaps turning off events that were audited in the template mask.

Important: All template mask names must be unique, contain fewer than eight characters, and begin with an underscore (_). These naming rules distinguish template masks from individual user masks.

You cannot create template masks with the following names because the database server already uses them:
When the database server is installed, no template masks exist. The number of template masks you can create is unlimited.

Audit Instructions

An audit administrator sets the audit instructions that the database server performs. The administrator must set an amount of auditing that is comprehensive enough to prove useful but not so exhaustive that it adversely affects system resources. When role separation exists, the DBSSO creates audit masks and the AAO configures mandatory auditing for the DBSA and the DBSSO. You can find advice on how to set the audit instructions in A Guide to Understanding Audit in Trusted Systems (published by the National Computer Security Center, NCSC-TG-001, June 1988).

This section suggests how to choose events to audit, how to set the audit instructions, and how the choices affect performance. For details of how to create and modify audit masks, see Chapter 2, “Audit Administration,” on page 2-1.

All the audit masks that the database server uses are stored in the system-monitoring interface (SMI) sysaudittable in the sysmaster database. The masks are updated automatically when the database server is upgraded to a newer version. Although information stored in the sysmaster database is available through SQL, you should use the onaudit utility for all audit-mask creation and maintenance. (See Chapter 4, “Utility Syntax,” on page 4-1.) Also, see the description of the sysmaster database in the IBM Informix: Administrator’s Reference.

Resource and Performance Implications

The amount of database server auditing enabled at any given time has a direct effect on operating-system resources and database server performance. Audit records that the database server generates are stored on disk. The greater the number of audit records generated, the more disk space required (for storage), and the greater the amount of CPU time required to process audit records (for storage, viewing, deletion, archiving, and restoration).

How system resources and performance are affected depends on these factors:

- Number of users/events audited
- Processor configuration
- System and user load
- Disk space
• Workload

For example, a system with parallel-processing capabilities, several terabytes of available disk space, 64 users, and full auditing might experience little degradation in performance and a relatively small disk-space ratio for audit data. However, a single-processor configuration with low disk space, multiple users, and full auditing might experience significant system-resource degradation and relatively rapid disk-space consumption by the audit trail.

From a system performance standpoint, the greatest overhead is incurred when you audit all database server security-related events that all users perform. Full auditing could severely degrade system performance and response time as well as require a significant amount of disk space for audit-record storage (depending on the amount of database server user activity). However, full auditing provides the most audit information and thus reduces the security risk.

You can turn off auditing to eliminate the effect on system performance, but then auditing cannot contribute to system security. At a minimum, we advise that you audit the initiation of new user sessions.

The database server event that, if audited, has the most significant effect on system performance and disk space is Read Row (RDRW). In an established database that is primarily accessed by users who search for information, every row presented to every user generates an audit record. On a high-volume system, this quickly produces large numbers of audit records.

Suggested Minimum Set of Events to Audit

Although database server audit-record generation can adversely affect database server performance and resources, it is still advisable to perform more than minimal auditing. Audit enough events to detect security violations and attempts to circumvent security mechanisms. This section discusses some of the points to remember when you balance security needs with the performance and resource effects of different audit levels.

We recommend that you audit the following events for all standard database server users, at all times, with the \texttt{require} audit mask:

• Open Database (OPDB)
• Grant/Revoke Database Access (GRDB), (RVDB)
• Grant/Revoke Table Access (GRTB), (RVTB)

\textbf{Dynamic Server}

For Dynamic Server, you should also audit the following events:

• Create Role (CRRL)
• Set Role (STRL)
• Set Session Authorization (STSA)
• Set Object Mode (STOM)
• Grant/Revoke Role (GRRL), (RVRL)
• Grant/Revoke Fragment Access (GRFR), (RVFR)

The information contained in audit records that are generated when a user modifies discretionary access to an object is important. This information indicates what process changed the access, on what objects, and on whose behalf. In a typical environment, you can expect a low-to-moderate generation rate for audit records of this nature, which results in low disk-space consumption and minimal effect on database server performance.

It is also prudent to audit all database and table Open operations for all regular database server users. Auditing all Open operations indicates the general area within the database server where users are looking. Auditing these operations should not significantly affect database server performance because these operations are performed infrequently compared with other operations.

Creative attempts to circumvent the database server security policy are virtually impossible to detect if minimal or no auditing is performed for regular database server users. If you suspect a security violation or if the database server audit records reveal in the audit trail that a particular user exhibits unusual behavior, enable full auditing for that user. In this way, you can obtain a more complete picture of the activities of the user.

Special Auditing Considerations
Certain certification and accreditation organizations require that the installation process itself be audited. After configuring the operating system to accept audit data, the OSA should make sure that the AAO audits the actions taken during installation.

Level of Auditing Granularity
The Dynamic Server secure-auditing facility can audit the following events at the fragment level of granularity and shows additional information for fragmented objects:
• Alter Table (ALTB). The partition list that follows the alter-table operation is in the event record.
• Create Index (CRIX). The index can be fragmented; the event record includes fragmentation information.
• **Create Table (CRTB).** The table can be fragmented; the event record includes fragmentation information.

• **Delete Row (DLRW).** The partition and the record ID within the partition appear in the event record.

• **Insert Row (INRW).** The partition and the record ID within the partition appear in the event record.

• **Read Row (RDRW).** The partition and the record ID within the partition appear in the event record.

• **Update Row (UPRW).** The partition and the record ID within the partition appear in the event record.

Warning: Use row-level auditing only when absolutely necessary. Row-level auditing slows the database server dramatically and fills audit directories quickly.

For more information on the fields in an audit-event record, see Appendix A.

In addition, the database server audits the following events to the RESTRICT/CASCADE level:

• Drop Table (DRTB)
• Drop View (DRVW)
• Revoke Table Access (RVTB)

For more information on the corresponding SQL statements, see the *IBM Informix: Guide to SQL Syntax.*

Use of Various Masks

The _require_ mask can be a valuable tool because it audits every database server user for the events that are specified in this mask. You can use this mask to perform the bulk of the auditing. The _require_ mask enables you to make rapid changes to the auditing configurations for all users by adding or removing items from this one mask.

The _exclude_ mask is also useful. It is read last, so its contents take precedence over the instructions in the other masks. As the name implies, the audit events that you specify in the _exclude_ mask are excluded from auditing. This exclusion is true of every event, including those specified in the _require_ mask. The Read Row audit event, for example, is a good candidate for the _exclude_ mask. Read Row is a common event that can generate huge amounts of potentially useless data in the audit trail.

How you use the _default_ and individual user masks depends on the number of users and their activities. For example, if you have only a few users, you might want to give each one an individual mask. You might then use the
default mask to audit events that are initiated by users who do not normally use your database, and configure the _default_ mask with a high level of security. To offset any detrimental effects on system performance, set up less-comprehensive individual user masks for frequent users. Or, if you have many users and do not want to create many individual user masks, leave the _default_ mask empty and rely on the _require_ mask for most of your auditing.

Audit Configuration

The AAO can monitor the audit configuration, as [Chapter 2](#) describes. Setting the audit configuration consists of performing the following tasks:

- Turning auditing on or off
- Specifying audit modes
- Using the ADTCFG file

<table>
<thead>
<tr>
<th>UNIX Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>• On UNIX, specifying database server-managed auditing or operating-system-managed auditing</td>
</tr>
<tr>
<td>• On UNIX, determining properties of the audit files</td>
</tr>
</tbody>
</table>

Sections that follow describe these topics.

Auditing On or Off

An audit administrator determines whether auditing is on or off. Auditing is turned off by default when the database server is installed. As [Chapter 2](#) "Audit Administration," on page 2-1 describes, the AAO can turn auditing on and off at any time, by using the onaudit utility, which [Chapter 4](#) "Utility Syntax," on page 4-1 describes. The database server can be in either online or quiescent mode for the changes to take effect.

When the AAO turns on auditing, all sessions, new and current, start auditing auditable events. Both existing sessions and new sessions produce records. All user sessions that are started thereafter also produce audit records.

Similarly, when the AAO turns off auditing, auditing stops for all existing sessions, and new sessions are not audited. If the AAO turns off auditing and then turns it on again while the database server is in online mode, existing sessions resume producing audit records.
Types of Auditing
When the AAO turns on auditing, the AAO can set the ADTMODE parameter in the ADTCFG file to specify the type and level of auditing.

Sections that follow briefly describe the types of auditing on UNIX and on Windows. For details, see “Changing the Audit Configuration” on page 4-10 and see Appendix B. For more information on auditing administration, see “Administrative Roles and Role Separation” on page 2-2.

Auditing Modes on UNIX
If you act as the AAO, when you turn on auditing on UNIX, you can specify that either the database server or the operating system manage audit records. You set the ADTMODE configuration parameter to a number from 0 through 8 to specify the type and level of auditing.

For example, if you set the ADTMODE configuration parameter to 1 in your ADTCFG file on UNIX, database server-managed auditing turns on automatically when the database server initializes shared memory. After you turn on auditing, only the audit events defined in audit masks are recorded. (If you specify mandatory auditing for the DBSSO or the DBSA or both when you turn on auditing, audit records are generated for all events that are executed by the specified roles.)

The AAO sets the ADTMODE configuration parameter and specifies an error mode, in case an error occurs when an audit record is stored. The AAO must ensure that the operating-system audit facility is enabled if it is to manage the audit trail.

The OSA administers operating-system auditing and can configure auditing to monitor from single-user to system-wide events. Audit events are recorded in files in an audit trail. For the database server to use an audit trail that the operating system manages, all of the following criteria must be met:
• The operating system has an audit facility.
• The operating-system audit facility is enabled.
• The database server supports operating-system auditing for this platform.

If the operating-system audit facility manages audit records, the amount of database server auditing must also be acceptable to the operating-system administrator.
Auditing Modes on Windows

Dynamic Server

When you turn on auditing on Windows, you can set the ADTMODE parameter to 0, 1, 3, 5, or 7 in the ADTCFG file to specify the type and level of auditing.

For example, if you set the ADTMODE configuration parameter to 1 in your ADTCFG file, auditing is turned on automatically during database server initialization. After you turn on auditing, the database server records only the audit events defined in the audit masks.

The AAO configures auditing and specifies an error mode, in case an error occurs when an audit record is stored.

End of Dynamic Server

Properties of Audit Files on UNIX

As “Audit Process” on page 1-4 describes, with database server-managed auditing on UNIX, the database server writes audit records to audit files in an audit trail. This section describes the audit files in more detail.

Location of Audit Files

The audit files are located in a directory that you specify with the onaudit utility or the ADTPATH configuration parameter in the $INFORMIXDIR/aaodir/adtcfg UNIX file.

Extended Parallel Server

Extended Parallel Server creates subdirectories for audit files in the path that you specify as the argument to the ADTPATH configuration parameter or as the argument to the onaudit -p command. The directory path that you specify must already exist on each node that hosts a coserver. For more information, refer to “Audit File Names” on page 1-16.

End of Extended Parallel Server

If you change the audit path, the change takes effect immediately for all existing sessions. This feature enables you to change the directory when the database server is in online mode, which is useful if the file system that contains the existing audit files becomes full.

Keep the file system that holds the audit trail cleaned out so that ample storage space is always available.
New Audit Files

When the database server writes an audit record, the database server appends the record to the current audit file. If you bring the database server out of online mode and then put it back, the database server continues to use the same audit file. The database server starts a new audit file only under the following conditions:

- When the file reaches a specified size
- When you manually direct the database server to start a new audit file, as Chapter 2 describes
- When you start database server-managed auditing

The database server starts a new audit file at the default size of 10,240 bytes, which is the minimum size for audit files. (The adtcfg.std file might list a value of 50,000 bytes as a guideline.) You can change this file size at any time when auditing is on, even when the database server writes to an audit file, as Chapter 4 describes.

The optimal size for audit files depends on your configuration. Larger files contain more data, which results in fewer files to review. However, the trade-off is that large files are more difficult to manipulate.

Audit File Names

No matter how you start a new audit file, it follows the same naming convention.

In both Dynamic Server and Extended Parallel Server, the naming convention is `dbnameinteger`, where `dbname` is the database server name as defined in the `ONCONFIG` file, and `integer` is the next integer. The series starts with 0.

For example, if a new audit file is started for a database server `maple`, and the last audit file was saved in the file `maple.123`, then the next audit file is called `maple.124`. (If `maple.124` already exists, the next available number is used.) The names are unique to a specific audit directory, so you can have `auditdir1/maple.123` and `auditdir2/maple.123`, and so on.

Extended Parallel Server

Extended Parallel Server stores audit files locally on each coserver in a directory that you specify. For example, if you specify `/disk1/audit` as the location of audit files, the audit file directories and filenames would have the following form:

`$disk1/audit/servername.coserver_id/servername.nnn`
The variable `servername.coserver_id` combines the name of the database server defined in the ONCONFIG file and the number of the coserver that hosts the audit file. All audit files are stored locally on the coserver where the audited event occurs. Only one audit file directory exists for each coserver.

For example, if the database server is named `beech`, the audit files for coserver 3 are stored on a disk attached to the node that hosts coserver 3 in `/disk1/audit/beech.3` and the audit files in the `beech.3` directory have names such as `beech.111`, `beech.112`, and so on. If the node that hosts coserver 3 also hosts coserver 4, another directory named `beech.4` is created under `/disk1/audit` to contain audit files for events that occur on coserver 4.

End of Extended Parallel Server

Windows Application Event Log

Dynamic Server

Windows systems provide an event-logging facility as a common repository for logging events and other useful information. The event-logging facility also provides a user interface to filter, view, and back up the information that is stored there.

In versions of Windows earlier than Windows XP, applications with appropriate permissions could write to the security log and to the system log. In Windows XP and later versions, however, applications cannot write to the Windows Security Event log. Auditing messages from the database server are now sent to a log file, whose directory path can be specified using the `onaudit` utility. The default pathname is `%INFORMIXDIR%\aaodir`.

Any messages that the database server writes to its log file are also written to the Windows Application Event log.

End of Dynamic Server

Windows Message Server

Dynamic Server

Dynamic Server for Windows runs as a service under the `informix` user account.

The Dynamic Server **Message Server** service communicates with the database server through the named pipes interprocess communications mechanism to receive information and to write it to the Windows Application Event log, as well as to the log file `%INFORMIXDIR%\%INFORMIXSERVER%.log`.
The database server starts **Message Server** when an instance of the database server first needs to write a message to the event log. **Message Server** does not terminate automatically when an instance of the database server terminates.

End of Dynamic Server

Error Modes for Writing to an Audit File

If the database server encounters an error when it writes to the audit file, it can **behave in various ways called error modes**. You can change the error mode, as “Setting the Error Mode” on page 2-9 describes, at any time during database server operation, even after an error occurs. See also the discussion of **onaudit** error modes in Chapter 4.

Halt Error Modes

When the database server is in a **halt** error mode (1 or 3), it does not allow the session that received the error to continue processing after it writes to the audit trail. The database server might even terminate the session or shut down, depending on the error mode. Descriptions of halt error modes follow:

- **Mode 1**: A thread is suspended but the session continues when the audit record is successfully written.
- **Mode 3**: The database server shuts down and the user session cannot continue.

Processing for the session does not continue until the error condition is resolved.

Continue Error Mode

When the database server is in **continue** error mode (0), it allows the session that received the error to continue processing after it writes to the audit trail. However, the audit record that was being written when the error occurred will be lost. The database server writes an error to the message log stating that an error made while writing an audit record has occurred.

If the error continues to occur, all subsequent attempts to write to the audit trail also generate messages in the message log, which can quickly grow very large.

Audit Configuration and the ADTCFG File

Configuration parameters in the **ADTCFG** file specify the properties of the audit configuration. For UNIX, and Windows, these configuration parameters are ADTERR, ADTMODE, ADTPATH, and ADTSIZE. For Extended Parallel Server, an additional UNIX parameter, ADTADMMODE, specifies whether to audit certain utility program events.

The pathname for the **ADTCFG** file follows.
Environment ADTCFG Pathname
UNIX $INFORMIXDIR/aaodir/adtcfg
Windows %INFORMIXDIR%\aaodir\adtcfg

If you edit the ADTCFG file to change the audit parameters, the audit configuration is not changed until you reinitialize shared memory. If you use the onaudit utility to change the audit configuration, the changes occur immediately.

Changes made with onaudit are written to an adtcfg.servernum companion file. (SERVERNUM is a parameter in the ONCONFIG file, which the IBM Informix: Administrator’s Reference describes). An audit administrator must manually copy the changes from the adtcfg.servernum file to the ADTCFG file. The intent is to make it harder for the DBSA to start an instance of the database server with invalid audit parameters. For details on how to use the onaudit utility to configure the ADTCFG file, see Chapter 4.

Access to the Audit Trail

Standard users should not be able to view or alter audit files. The audit trail (that is, the audit files) should be accessed only with the onshowaudit utility, which has its own protection, as follows:

• With role separation on, only an AAO can run onshowaudit.

UNIX Only

• With role separation off on UNIX, only user informix, a member of the informix group, or user root can run onshowaudit.

End of UNIX Only

Windows Only

• With role separation off on Windows, only user informix can run onshowaudit.

End of Windows Only

Access to Audit Files on UNIX

The following characteristics control access to audit files in a UNIX environment and protect them from being accidentally read or destroyed:

Ownership: informix
Group ID: same as $INFORMIXDIR/aaodir
Permissions: 660
Important: The AAO should be careful when selecting the directory in which the audit files are stored (ADTPATH). The directories in the path must have adequate ownership and access permissions for the level of risk that the AAO allows. The default directory (/tmp) does not have adequate protection.

The following examples show the security configuration for UNIX audit files with no role separation:

aaodir
Ownership: informix
Group ID: informix
Permissions: 775

aaodir/adtcfg.std
Ownership: informix
Group ID: informix
Permissions: 644

The following examples show the UNIX security configuration with role separation:

aaodir
Ownership: informix
Group ID: <aao_group>
Permissions: 775

aaodir/adtcfg.std
Ownership: informix
Group ID: <aao_group>
Permissions: 644

Warning: Because any account with the group ID of informix or superuser (root) ownership, or both, can access the audit trail, you must exercise care to protect these accounts and their passwords.
Access to Audit Records on Windows

The following characteristics control access to the Windows audit file and protect it from accidental viewing or deletion:

Ownership: informix
Group ID: same as %INFORMIXDIR%\aodir

The following examples show how to control access to the Windows audit file:

aodir
Ownership: informix
Group ID: Administrator

aodir\adtcfg.std
Ownership: database server administrator
Group ID: Administrator

Audit Analysis

The AAO performs audit analysis. This section explains the importance of audit analysis, how to prepare for it, some strategies for audit analysis, and how to react to a perceived security problem.

Importance of Audit Analysis

The database server audit mechanism is designed to both deter and reveal attempted, as well as successful, security violations. However, the audit data it generates is only as useful as the analysis and reviews performed on it. Never reviewing or analyzing the audit data is equivalent to disabling auditing altogether (and is, in fact, worse because auditing might reduce database server performance).

If, on the other hand, you routinely analyze and review the audit data, you might discover suspicious activity before a successful violation occurs. The first step to terminate any security violation is to detect the problem. If a database server violation should occur, the audit trail permits you to reconstruct the events that lead up to and include this violation.
Tip: To play the greatest role in the security of your database server, watch the database server activity regularly.

Become accustomed to the types of activity that occur at various times of day at your site. You become the expert on types of user activity when you perform the following actions:

- Review the database server security audit trail on a daily basis, or more frequently, if necessary.
- Note the types of activity that each user performs.

Periodically check the types of events that are audited versus the data that actually appears in the security audit trail to ensure that the audit facility is operating properly.

Your continual observance of the audit trail might be the only way to determine if some users browse through the database server. You might catch a user performing an unusual amount of activity at 2 A.M., a time of day when that user is not even at work. Once you identify a potential security anomaly, you can then investigate further to determine if anyone on the database server attempts to obtain unauthorized information, if a user misuses the database server, or if a user becomes lenient in self-regulated security enforcement.

Preparation for Audit Analysis

This section describes two methods to analyze database server audit records:

- The first method is simply to display audit data as it appears in the audit trail, which you can subject to your own audit-analysis tools. This method guarantees accuracy because no processing is done on the raw audit records.

- The second method converts the audit records into a form that can be uploaded into a table that the database server manages. You can then use SQL to generate reports based on this data. With the SQL-based method, you can create and use customized forms and reports to manipulate and selectively view audit data, which provides a flexible and powerful audit-analysis procedure. Be sure, however, that records are not deleted or modified from either the intermediate file or from the database prior to analysis.

Important: The SQL-based procedure is more convenient but remains untrusted because users can use SQL data-manipulation statements to tamper with the records that are copied into a table.

Both methods rely on a utility called onshowaudit, which Chapter 3 and Chapter 4 describe. For either method, you can extract audit events for specific users, database servers, or both.
Figure 1-4 shows the preparation process for both analysis methods. Chapter 3 explains each step in detail.

To perform audit analysis, first have audit records in your database server or operating-system audit trail. The onshowaudit utility does not remove data from the audit trail. It only reads records from the audit trail and allows them to be viewed or manipulated with standard SQL utilities.

UNIX Only

When all of the following conditions are present on UNIX, records are in the operating-system audit trail:

- The operating system supports auditing.
- The database server supports operating-system auditing on this platform.
- For records in the operating-system audit trail, your database server must be registered as a protected subsystem with your operating system, as the UNIX machine notes file describes. (See “Additional Documentation” on page xvii of the Introduction.)
- Database server users have performed activities that generated audit records.
- Operating-system auditing is on.
To clear or remove audit logs on Windows, delete the files that contain the audit trail.

Strategies for Audit Analysis

The primary threat to database server security is unauthorized disclosure or modification of sensitive information. This section discusses those and other threats that might be discovered through audit analysis.

Event Failure

The audit records that indicate that an attempted database server operation failed are particularly important in audit analysis. The audit record could indicate, for example, that a user is attempting to give sensitive data to another user who does not have the correct UNIX permissions or Windows access privileges to access the data.

Event Success

Failed operations are the most common indicators of a security problem in the audit trail. Somewhat harder to find, but of equal security importance, is any successful but unusual activity for a particular user.

For example, a user who repeatedly creates and drops databases might be attempting to discover and exploit a covert channel to relay sensitive information to an unauthorized process or individual. Watch for a marked increase in the occurrence of database server events that would typically occur infrequently during normal database server use.

Perhaps a particular user who has never granted privileges suddenly shows a great deal of activity in this area, or perhaps a user who has never written large amounts of data into a database begins to generate hundreds of new records. You must determine the extent of the abnormalities (for example, the number of objects that this user accessed) and the possible severity of the compromise (for example, the importance of the accessed objects).

Insider Attack

An insider attack occurs when an authorized user with malicious intent obtains sensitive information and discloses it to unauthorized users. An unscrupulous user of this sort might not exhibit immediately recognizable signs of system
misuse. Auditing is a countermeasure for this threat. Careful auditing might point out an attack in progress or provide evidence that a specific individual accessed the disclosed information.

Browsing

Users who search through stored data to locate or acquire information without a legitimate need are *browsing*. Browsers do not necessarily know of the existence or format of the information for which they are looking. Browsers usually execute a large number of similar queries, many of which might fail because of insufficient privileges. Auditing is a countermeasure for this threat. The behavior pattern makes browsers relatively easy to identify in the audit trail.

Aggregation

An *aggregate* is an accumulation of information that results from a collection of queries. An aggregate becomes a security threat when it comprises queries to objects that have little significance themselves but as a whole provide information that is considered more important than any component piece. The higher sensitivity of the aggregate results from the sensitivity of the associations among the individual pieces. Auditing is a countermeasure for this threat. As with browsing, careful auditing might point out an attack in progress or provide evidence that a specific individual accumulated the disclosed information.

Responses to Identified Security Problems

After you identify the user or users who are responsible for irregularities in the security audit trail, refer to your site security procedures. If your site has no security procedures regarding potential security breaches, you might consider the following actions:

- Enable additional auditing to further identify the problem.
- Shut down the database server to halt any unauthorized information flow.
- Develop a plan with the supervisor of the user to address the problem.
- Confront the specific individual.

In some cases, you might find that an otherwise authorized user is browsing a bit too widely on the database server. After some observation, you might want to talk with the supervisor of the user. It might not be wise to talk directly with an individual whose actions are being monitored.

You must ascertain whether a particular problem that is identified through the audit trail is actually someone attempting to breach security or just, for example, a programming error in a newly installed application.

The exact type of security irregularity that might occur and the specific action to take in response to it are not within the scope of this manual.
DBMS Security Threats

This section discusses responses to various kinds of security threats to the DBMS. For more information on various roles, see “Administrative Roles and Role Separation” on page 2-2.

Primary Threats

Primary threats to the security of a database server involve unauthorized disclosure or modification of sensitive information. To counter these measures, the DBSSO, DBSA, and OSA must ensure that all users of the DBMS are identified and authenticated before they are able to use or access the software or data.

Users must belong to the correct group to access the database server. They must also have a valid login ID in the operating-system password file.

In addition, all users who attempt to access data must satisfy Discretionary Access Control (DAC) restrictions before access is granted. DAC uses SQL statements to specify which users can and cannot access data in the database. Access can be allowed or revoked at the following levels:

- Database level
- Table level
- SPL routine level
- Role level
- Fragmentation level

These countermeasures are adequate for legitimate use of the product when users attempt to access the data directly. They cannot, however, counter threats of confidentiality or modification to the data posed by illegitimate use of the product, such as if a privileged user abuses his or her permissions or access privileges.

Privileged Activity Threats

Improper or unchecked activity by users with privileged roles (DBSSO, AAO, DBSA, or OSA) can introduce security vulnerabilities and possible threats to the database server. Dynamic Server is carefully designed to give the DBSSO, AAO, and DBSA only the abilities needed to do their jobs. Nevertheless, these roles, as well as those of operating-system administrators, impart sufficient power that careless use of such power could result in breaches of security.

Database Server Administrator

The DBSA controls and monitors the database server and can configure role separation during database server installation. The countermeasure to a threat from the DBSA is independent scrutiny of the DBMS audit trail. The DBSSO can enable auditing of all DBSA actions, and the AAO can review DBSA actions in the audit trail.
Database System Security Officer
The DBSSO sets up DBMS audit masks for individual users. The countermeasure to a threat from the DBSSO is independent scrutiny of the DBMS audit trail because auditing DBSSO actions are enabled by the AAO.

Operating-System Administrator
A malicious OSA also poses a serious security threat because the OSA can violate the assumptions about the product environment and the methods that underpin its security functions. As with a DBSSO, the countermeasure to an OSA threat is independent scrutiny of the activities of the OSA, as recorded in the operating-system audit trail.

Audit Analysis Officer
The AAO reviews the DBMS audit trail. The countermeasure to this threat is to ensure that an AAO is authorized to view information that might be yielded when the database audit trail is reviewed. It is also important that the output of the onshowaudit utility be accessible only to an AAO and that manipulation of this output also be audited in the operating-system audit trail.

Shared-Memory Connection Threats on UNIX
A shared-memory connection provides fast access to a database server if the client and the server are on the same computer, but it poses some security risks. False or nontrusted applications could destroy or view message buffers of their own or of other local users. Shared-memory communication is also vulnerable to programming errors if the client application explicitly addresses memory or over-indexes data arrays.

The OSA ensures that the shared-memory connection method is not specified in the configuration file for client/server connections. If the client and the server are on the same computer, a client can connect to a server with a stream-pipe connection or a network-loopback connection.

The default pathname for the UNIX configuration file is $INFORMIXDIR/etc/sqlhosts.

For more information on shared-memory connections, see the IBM Informix: Administrator’s Guide.

Introduced Malicious Software Threats
A regular user might inadvertently execute malicious software, like a Trojan horse. This software, for example, might take one of the following actions:

- Attempt to copy data for subsequent access by an unauthorized user
- Grant DAC access privileges to an unauthorized user
Make all users aware of the dangers of executing software of unknown or untrusted origin. Further, take the following steps:

- All users should regularly check the DAC protection of the software with data that they own to ensure that access privileges have not been granted without their knowledge.
- Operating-system DAC should protect the software from modification by anyone other than authorized users.

Remote-Access Threats

When a user is granted DAC access privileges, the host computer of the user is not specified. Therefore, the user can gain access to the privileged data from any computer that is configured to connect to the host computer. As a result, a user might not be aware of having remote access to privileged data when the user grants another user direct access to that data. This situation could lead to data that is inappropriately accessed remotely.

Make sure that all users are aware that access privileges are granted to user names, with no dependencies on the origin of the remote connection.

Obsolete-User Threats

A user is identified by an operating-system user name or user ID or both. The DAC privileges and individual user audit masks of the software are based on the user name. At the operating-system level, a user account might be removed and this user name might become unassigned.

If any of the DAC privileges of the software or the individual user audit mask associated with that user name are not removed before the same user name is allocated to a new user, the new user inadvertently inherits the privileges and audit mask of the previous user.

To avoid this problem, have the OSA notify the DBSA when a user account is removed from the operating system. The DBSA can then perform the actions necessary to eliminate references to this name in the DBMS. These actions might involve revoking DAC privileges and removing an individual audit mask.

Untrusted Software Used in a Privileged Environment

Problems might occur if DBSAs or OSAs execute untrusted software. Untrusted software can use the privileges of the DBSA or the OSA to perform actions that bypass or disable the security features of the product or that grant inappropriate DAC access privileges.

The primary countermeasure to this vulnerability is to make sure that DBSAs and OSAs do not execute software of unknown or untrusted origin. We further recommend that the operating-system access controls protect all software that DBSAs and OSAs execute against unauthorized modification.
Distributed Database Configuration Threats

When you set up a distributed database, you configure two or more software installations. The configurations of these software installations could be incompatible.

A distributed database user might be able to gain access to data on a remote system with an incompatible configuration when that data would not be accessible to the same user directly on the remote system. In the worst case, the software could connect two systems that have an account with the same user name but are owned by a different user. Each user is granted the privileges of the other user at access of the database that resides on the host computer of the other user.

[---------- UNIX Only ----------]

When two UNIX workstations are connected, the OSA must ensure that accounts with user names in common are owned by the same user.

[-------------------------- End of UNIX Only --------------------------]
Chapter 2. Audit Administration

Administrative Roles and Role Separation ... 2-2
 Database Server Administrator .. 2-2
 Database System Security Officer .. 2-2
 Audit Analysis Officer ... 2-3
Other Administrative Roles and Users .. 2-4
 Database Administrator ... 2-4
 Operating-System Administrator ... 2-4
 System Users .. 2-4
 Privileged Users ... 2-5
Role Separation .. 2-5
 Assigning Roles ... 2-5
 Configuring and Enforcing Role Separation 2-6
Auditing Setup ... 2-8
 Setting Up the Default and Global Masks ... 2-8
Specifying a Directory for the Audit Trail (UNIX) 2-8
Setting the Error Mode ... 2-9
Setting the Audit Level ... 2-10
Activating Auditing .. 2-11
Audit Mask Maintenance .. 2-12
 Creating Audit Masks .. 2-12
 Creating a Template Mask .. 2-12
 Creating a User Mask from a Template Mask 2-12
 Creating a User Mask Without a Template Mask 2-13
 Adding One or More Masks Using an Input File 2-13
 Displaying Audit Masks .. 2-14
 Modifying Audit Masks .. 2-15
 Deleting Audit Masks ... 2-15
Audit Configuration Maintenance ... 2-15
 Displaying the Audit Configuration ... 2-16
 Starting a New Audit File ... 2-17
Changing the Audit Mode on UNIX ... 2-18
Changing the Audit Mode on Windows (and IDS) 2-18
Turning Off Auditing ... 2-19

In This Chapter

This chapter explains how to set up and administer auditing on your database server after the database server is installed and functioning properly. This chapter discusses the following topics:

• Administrative roles and role separation
• Setting up auditing
• Maintaining audit masks
• Maintaining the audit configuration, including turning off auditing

Administrative Roles and Role Separation

This section describes the main administrative roles involved in secure auditing:

- The database server administrator (DBSA)
- Audit administrator roles:
 - The database system security officer (DBSSO)
 - The audit analysis officer (AAO)

This section also touches on the roles and responsibilities of database administrators (DBAs), operating-system administrators (OSAs), system users, and privileged users. It tells how to set up role separation and provides guidelines on how to assign roles.

Database Server Administrator

The DBSA configures, maintains, and tunes the database server. The DBSA becomes involved with the security of a database server during installation. Your *IBM Informix: Administrator’s Guide* defines the overall role of the DBSA.

Someone who has the appropriate UNIX permissions or Windows access privileges to view all the data on a database server should perform this role. It is supported by a designated account and software designed to support DBSA tasks.

To use the administrative software designed for this role, the person who performs the role of the DBSA must log in to one or more designated accounts and meet access-control requirements.

If the DBSA group is not group informix, the permissions on oninit must be modified to 6755 (granting others execute permission) so that members of the new DBSA group can start the database server.

The DBSA is responsible for granting or revoking the EXTEND role to restrict users who can register DataBlades and user-defined routines (UDRs).

Database System Security Officer

The DBSSO is a system administrator who performs all the routine tasks related to maintaining the security of a database server. These tasks include the following actions:

- Maintaining the audit masks
- Responding to security problems
- Educating users
The DBSSO performs these tasks with the `onaudit` utility. For information, see “The onaudit Utility” on page 4-2.

The DBSSO role is supported by a designated account and software. To use the audit tools, the users who fill the DBSSO role must log into the designated account and meet access-control requirements. After the DBSSO users meet the access-control requirements and use the administrative software, their actions can be audited.

Tip: A DBSSO on UNIX is any user who belongs to the group that owns `$INFORMIXDIR/dbssodir`. On Windows, the administrator uses registry settings, through the Role Separation dialog box that appears during installation, to specify DBSSO users.

Important: The `onaudit` utility can create a potential threat to the security of the database server. An unscrupulous user can abuse a DBSSO account, for example, by turning off auditing for a specific user. To reduce this risk, all actions taken through `onaudit` should be audited.

Audit Analysis Officer

The AAO configures auditing and reads and analyzes the audit trail. The AAO can specify whether and how auditing is enabled, how the system responds to error conditions, and who is responsible for managing the audit trail.

<table>
<thead>
<tr>
<th>UNIX Only</th>
</tr>
</thead>
</table>

For database server-managed auditing on UNIX, the AAO also determines the directory for the audit trail and the maximum size of each audit file. For operating-system-managed auditing on UNIX, the AAO should coordinate with the OSA how to read the data from the operating-system audit trail.

| End of UNIX Only |

The AAO can load the audit-trail data into a database server and use SQL to analyze it, either through a utility such as DB–Access or a customized application developed with an IBM Informix SQL API or application development tool.

The AAO performs these tasks with the `onaudit` and `onshowaudit` utilities, which `Chapter 4` describes. If the AAO uses `onaudit` to change the audit configuration parameters during a database server session, the new values are written to the `adtcfg.servernum` file for that instance of the database server.
The installation script for the database server creates a
$INFORMIXDIR/aaodir UNIX directory or a %INFORMIXDIR%\aaodir
Windows directory, which contains files that the AAO uses. These files
include the adtcfg audit configuration file as well as the adtcfg.std file, both
of which contain examples of valid definitions for audit configuration
parameters.

The AAO needs appropriate UNIX permissions or Windows access privileges
to view all the data in the database server to analyze events that might
involve sensitive information. The AAO decides whether to audit all actions
of the DBSSO and the DBSA.

Tip: On UNIX, an AAO is any user who belongs to the group that owns
$INFORMIXDIR/aaodir. On Windows, the administrator uses registry
settings, through the Role Separation dialog box that appears during
installation, to specify AAO users.

Other Administrative Roles and Users
A number of other, more minor, roles might be involved in database server
secure auditing. This section provides brief descriptions of these minor roles.

Database Administrator
A DBA manages access control for a specific database. A DBA cannot change
database system modes, add or delete space, or maintain or tune the system.
For information on the role and responsibilities of a DBA, see the
IBM Informix: Guide to SQL Tutorial. For information on this and other
database server roles and users, see your IBM Informix: Administrator’s Guide.

Operating-System Administrator
The OSA carries out responsibilities and tasks that the database server
requires from the operating system. The OSA enables role separation, grants
and revokes access to and from the database server if role separation is
enforced, and adds new AAO, DBSSO, and DBSA accounts as necessary. In
addition, the OSA coordinates with the DBSSO and AAO to perform various
security-related functions of the database server, such as periodic reviews of
the operating-system audit trail.

No special account exists for the operating-system needs of the database
server, and no special database server protection mechanisms are associated
with OSA tasks. For more information, refer to your operating-system
documentation.

System Users
All operating-system accounts, including those for the DBSA, DBSSO, AAO,
and the account called informix, potentially can use the database server. All
users with accounts who want to use the database server must explicitly be
Privileged Users
Privileged users are those users whom the database server recognizes as having additional privileges and responsibilities. These privileged users include the DBSA, DBSSO, AAO, and DBA. In addition, the users informix and root can also operate as any privileged user on database servers configured without role separation. Even with role separation, root can be a privileged user.

Role Separation
Role separation is a database server option that allows users to perform different administrative tasks. Role separation is based on the principle of separation of duties, which reduces security risks with a checks-and-balance mechanism in the system. For example, the person who determines what to audit (DBSSO) should be different from the person who monitors the audit trail (AAO), and both should be different from the person who is responsible for the operations of the database server (the DBSA).

Assigning Roles
This section provides general guidelines on how to assign people to accounts and give them access to perform roles. These guidelines should be amended to fit the resources and security policies of your site.

- Have one account for each person who performs a role.
 For example, if you have multiple users who perform the DBSA role, have each person work from a separate account. Establish a one-to-one mapping between accounts and users to make it easier to trace audit events to a single user.
- Have as few DBSA and DBSSO accounts as possible.
 The DBSA and DBSSO accounts can compromise the security of the database server. Limit the number of accounts that can disrupt the database server to lower the chance that an unscrupulous user can abuse a privileged account.
- Keep the DBSA and DBSSO roles separate.
 You might not have the resources or see the need to have different users perform the DBSA and DBSSO roles, nor does Dynamic Server strictly require this role separation. When you keep the DBSA and DBSSO roles separate, however, you constrain them to perform only those tasks that their duties specify and limit the risk of compromising security.
- Keep the AAO role separate from the DBSA and DBSSO roles.
Configuring the separation reseting aaodir

After you default group.

Configure

Specify (with to the configure mode

If configure you

On $INFORMIXDIR

group

The

The

of separation

is enabled

role

system.

system.

Of

Enforcement

and

including

DBSA

system.

This

limits

to perform only those tasks that their duties specify

The AAO determines whether to audit all DBSA or DBSSO actions in the system. It is essential that someone with a role different from that of the DBSA or DBSSO be in charge of auditing configuration, so that all users, including the DBSA and DBSSO, are held accountable for their actions in the system. This constrains users to perform only those tasks that their duties specify and limits the risk of compromising security.

- Limit access to the account informix because it can bypass role- separation enforcement and other database server access-control mechanisms.

Configuring and Enforcing Role Separation

The DBSA, or the person who installs the database server, enforces role separation and decides which users will be the DBSSO and AAO. To find the group for the DBSA, DBSSO, or AAO, look at the appropriate subdirectory of $INFORMIXDIR on UNIX or %INFORMIXDIR% on Windows.

On Windows, role separation is configured only during installation. On UNIX, you normally configure role separation during installation, but you can also configure it after the installation is complete or after the database server is configured. The OSA who installs the software enforces role separation, and decides which users (Windows) or groups (UNIX) will be the DBSSO and AAO. On UNIX, the group that owns $INFORMIXDIR/aaodir is the AAO group; the group that owns $INFORMIXDIR/dbssodir is the DBSSO group. By default, group informix is the DBSSO, AAO, and DBSA group.

UNIX Only

If you use the InstallShield MultiPlatform (ISMP) installer in GUI or terminal mode to install the database software, you will be asked if you want to configure role separation. If instead you use the scripted bundle installer, then the environment variable INF_ROLE_SEP controls whether you will be asked to set up separate roles. If the INF_ROLE_SEP environment variable exists (with or without a value) role separation is enabled and you will be asked to specify the DBSSO and AAO groups. (You will not be asked about the DBSA group.) If the INF_ROLE_SEP environment variable is not set, then the default group informix is used for all these roles.

You do not need to set INF_ROLE_SEP to a value to enable role separation. For example, in a C shell, issuing setenv INF_ROLE_SEP is sufficient.

After the installation is complete, INF_ROLE_SEP has no effect. You can establish role separation manually by changing the group that owns the aaodir, dbssodir, or etc directories. You can disable role separation by resetting the group that owns these directories to informix. You can have role separation enabled for the AAO without having role separation enabled for the DBSSO.
Role separation control is through the following group memberships:

- Users who can perform the DBSA role are group members of the group that owns the directory `$INFORMIXDIR/etc`.
- Users who can perform the DBSSO role are group members of the group that owns the `$INFORMIXDIR/dbssodir` directory.
- Users who can perform the AAO role are group members of the group that owns the `$INFORMIXDIR/aaodir` directory.

Note: For each of the groups, the default group is the group `informix`.

The `ls -lg` UNIX command produces the output that Figure 2-1 shows.

```
total 14
drwxrwx--- 2 informix  ix_aao  512 Nov 21 09:56 aaodir/
drwxr-xr-x 2 informix  informix 1536 Nov 30 18:35 bin/
drwxrwx--- 2 informix  ix_dbso  512 Nov 30 10:54 dbssodir/
drwxr-xr-x 10 informix informix  512 Nov 21 09:55 demo/
drwxrwxr-x 2 informix  informix 1024 Nov 30 11:37 etc/
```

Figure 2-1. Example Output Showing Role Separation

In Figure 2-1, the AAO belongs to the group `ix_aao`, the DBSSO belongs to the group `ix_dbso`, and the DBSA belongs to the group `informix`.

Users must belong to the correct group to access the database server. To find the group for database users, you must look at the contents of the `$INFORMIXDIR/dbssodir/seccfg` file. For example, the contents of a typical `seccfg` file might be `IXUSERS=*`. This group setting means that all users are allowed to connect to the database server. If the file contains a specific name such as `IXUSERS=engineer`, then only members of the group `engineer` can gain access to the database server.

End of UNIX Only

Windows Only

For Windows, role separation control is through the Role Separation dialog box, which appears during installation, and through registry settings. If the Enable Role Separation check box is checked in the Role Separation dialog box, the DBSA can specify different roles.

End of Windows Only
For more information on environment variables, see the IBM Informix: Guide to SQL Reference. For more information on configuring role separation, see your IBM Informix: Administrator’s Guide.

Auditing Setup

Auditing does not start automatically when the database server is first installed. Before any user actions are audited, the DBSSO or AAO must perform the following tasks to configure the database server for auditing:

- Specify events to audit in the default, user, and global audit masks (DBSSO)
- Specify how the database server should behave if an auditing error occurs when an audit record is written (AAO)
- Determine the desired level of auditing (AAO)
- Turn on auditing (AAO)
- Specify the directory where audit files are located (AAO)

Setting Up the Default and Global Masks

Before setting up default and global masks, the DBSSO needs to understand how the various masks work and what the implications are for different auditing instructions. Also, the DBSSO must understand which auditing events to place in which masks. For details, see [Chapter 1](#).

Use the `onaudit` utility to add audit events to audit masks. [Appendix A](#) lists the audit events and their mnemonics. [Chapter 4](#) shows the complete syntax for `onaudit`.

The following command shows how the Update Audit Mask and Delete Audit Mask audit events are added to the `_default` mask by their four-letter event codes, or mnemonics:

```
onaudit -m -u _default -e +UPAM,DRAM
```

You can add audit events to the `_require` and `_exclude` masks in the same way. For specifics, see [Chapter 4](#).

All users who initiate a database session after this command is run (and auditing is turned on) are audited for the specified events.

Specifying a Directory for the Audit Trail (UNIX)

As the AAO, when you turn on auditing, you specify that either the database server or your operating system manage audit records. If you choose to have your operating system control audit records, see your operating-system documentation for the location of those records.

If you specify that the database server store audit records, as [Chapter 1](#) describes, the database server stores audit files in a file-system directory. You
can specify the directory with the onaudit utility. For example, the following command specifies /work/audit as the UNIX file system in which the database server is to store audit files:

```
onaudit -p /work/audit
```

Note: The onaudit -p /work/audit command works only if logging is enabled or if -1 N options are included in the command line.

You can change the audit directory at any time. You can also set up the type of auditing and specify the directory with the ADTCFG file, which is described in Appendix B.

Extended Parallel Server

For Extended Parallel Server, the directory that you specify must exist on each node that hosts a coserver. For information about the naming conventions for the subdirectory and audit files, refer to “Location of Audit Files” on page 1-15.

End of Extended Parallel Server

For more information about the onaudit utility, see Chapter 4.

Setting the Error Mode

As Chapter 1 describes, the database server has three actions that it can perform if an error occurs when writing to the audit trail: a continue error mode, and two levels of severity of halt error mode. Be sure that you, as the AAO, understand the implications of each error mode before you select one.

Use the onaudit utility or the ADTCFG file to set the error mode. For the onaudit syntax, see Chapter 4. For the ADTERR configuration parameter, see Appendix B.

The following onaudit command sets the error mode to continue. The database server processes the thread and notes the error in the message log.

```
onaudit -e 0
```

The following command sets the error mode to the most severe level of halt, in which the database server shuts down:

```
onaudit -e 3
```
Setting the Audit Level

The AAO or DBSSO configures the level of auditing in the system. The AAO monitors the audit trail and handles all audit-record management.

UNIX Only

If operating-system auditing is used on UNIX, before you can configure auditing, you must configure operating-system auditing to accept database server audit data.

End of UNIX Only

The DBSSO has significant leeway regarding the auditing level of the database server. For example, a minimal audit configuration might involve auditing only DBSSO actions, database server utilities, and the start of each new database server user session. A maximal audit configuration involves auditing all security-relevant database server events for all users.

The AAO and DBSSO should coordinate efforts to determine the auditing level. For instance, to audit the DBSA actions, the DBSSO would use masks for the DBSA accounts, and the AAO would set the audit mode with the onaudit utility or the ADTCFG file.

To ensure that the appropriate database server activities are monitored, review the audit records that are stored in the operating-system audit trail, database server audit files, or Windows event log. You must configure the database server to monitor these events.

You can reconfigure auditing as usage changes and potential security threats are identified. For the onaudit syntax, see Chapter 4. For information on the ADTMODE configuration parameter, see Appendix B.

Important: Although database server audit-record generation might have a negative effect on database server performance and resources, you should perform more than the minimal database server audit. This additional audit improves the likelihood that you will detect security violations and any attempts to circumvent security mechanisms.

If you perform minimal or no auditing for database server users, it is virtually impossible to detect creative attempts to circumvent the database server security policy. If someone suspects a security violation or a particular user exhibits unusual behavior, you should enable full auditing of the suspect user to get a complete picture of the user’s activities.
Balance the security needs of your site and the performance and resource effect of different auditing levels. The auditing level at any given time has a direct effect on both the operating-system resources and the database server performance. The effect depends on the following factors:

- Number of users or events audited, or both
- Processor configuration
- System load (number of processes and users)
- Disk space
- Work load (types of processes performed)

Tip: To specify disk space, use the Windows Event Viewer administration tool.

For more information on database server performance considerations, refer to your *IBM Informix: Performance Guide.*

Activating Auditing

Auditing is turned off by default when you install the database server. Use the `onaudit` utility to turn on auditing at runtime or set the ADTMODE configuration parameter in the ADTCFG file. If you use the ADTCFG file, the setting takes effect when the database server is initialized.

The following `onaudit` command turns on auditing:

```bash
onaudit -1 1
```

After you turn on auditing, auditing changes take effect immediately for all sessions.

The AAO can configure the database server to turn on auditing when shared memory is initialized when the ADTMODE configuration parameter is set to a number from 1 through 8 (UNIX) or to 1, 3, 5, or 7 (Windows) in the ADTCFG file. For details on ADTMODE parameter values, see “Changing the Audit Configuration” on page 4-10 and Appendix B.

When the database server is initialized with auditing turned on, all user sessions generate audit records according to the individual, default, or global (_require, _exclude) mask in effect for each user.

To turn off auditing after it starts, see “Turning Off Auditing” on page 2-19.

Important: It is recommended that the OSA always enable automatic auditing for the AAO in the operating system because the AAO can change the Informix DBMS audit configuration without being audited by the database server.
Audit Mask Maintenance

You might want to change the auditing instructions as your auditing needs change. This section explains the following procedures, which you use to change audit masks:

- Creating audit masks
- Displaying audit masks
- Modifying audit masks
- Deleting audit masks

These tasks, which the DBSSO performs, apply whether the database server or your operating system administers the audit records.

Creating Audit Masks

You can create masks that more closely match the types of activities that individual users perform than do default and global masks. To create individual user masks, specify user IDs as mask names. To create template masks, preface the name of a mask with an underscore (_). Chapter 1 describes template masks and user masks.

You specify events in the mask when you create it, using the audit events from the alphabetical listing in the table "Audit-Event Mnemonics for IBM Informix Dynamic Server" on page A-1. You specify events for customized (template and user) audit masks the same way that you do for the _default, _require, and _exclude audit masks.

For example, you might want to create three template masks with different levels of security: _low, _medium, and _high. Alternatively, you might need just two templates for familiar and unfamiliar users that you copy to individual user masks: _guest and _trusted.

Creating a Template Mask

Use the onaudit utility to create template audit masks; Chapter 4 shows the syntax. The following example shows how to create a template mask called _guest with the audit events Create Database, Grant Database Access, and Grant Table Access:

onnaudit -a -u _guest -e +CRDB,GRDB,GRTB

Creating a User Mask from a Template Mask

A mask that is used as the foundation for one or more other masks is referred to as a base mask. Once you create a template mask for a given user category, you can use it as the basis of masks for individual users, adding or removing only the audit events that differ for each user.
The following example creates a user mask for the user terry, based on the _guest template mask:

```
onaudit -a -u terry -r _guest -e -CRDB
```

The terry mask has the same audit events as the _guest mask, except for the CRDB (Create Database) audit event, which was removed.

Instead of template masks, you can also use existing user _default, _require, and _exclude masks as base masks.

Tip: If you use a template or user mask as a base mask for another mask, the new mask inherits the events in the base mask. The new mask does not refer to the base mask dynamically. Future changes to the base mask are not reflected in other masks that might have been created or modified with that mask as a base.

Creating a User Mask Without a Template Mask

You can create user masks without a template mask. The following example creates a mask for the user pat with the Show Table Statistics event and the failed attempts of the Alter Table event:

```
onaudit -a -u pat -e +SSTB,FALTB
```

For the syntax for creating a user mask and another example, see [Chapter 4](#).

Adding One or More Masks Using an Input File

You can use the onaudit utility to add one or more masks to the mask table with instructions from a file that has the same format as the output of onaudit -o. The following command reads a file in /work/audit_up and adds audit masks to the mask table according to the instructions in that file:

```
onaudit -f /work/audit_up
```

Figure 2-2 shows an example of an input file. The syntax for the input file is explained in [Chapter 4](#).

<table>
<thead>
<tr>
<th>User</th>
<th>Secure</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>kickt</td>
<td>_secure1</td>
<td>+ADCK,SRDRW,GRDB,OPDB</td>
</tr>
<tr>
<td>jacks</td>
<td>-</td>
<td>+ADCK,SRDRW,GRDB,OPDB</td>
</tr>
<tr>
<td>pat</td>
<td>_secure2</td>
<td>+ALTB-CRTB,CRIX,STSN</td>
</tr>
<tr>
<td>Jaym</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Johns</td>
<td>akee</td>
<td>-SALIX</td>
</tr>
</tbody>
</table>

Figure 2-2. Example Input File

The example input file in **Figure 2-2** includes the following information:

* In the first line, the instructions specify auditing for user kickt in the new template _secure1.
The second line creates a new mask called **jacks**, which contains the events Add Chunk (ADCK), successful attempts at Read Row (SRDRW), and all attempts at Grant Database Access (GRDB) and Open Database (OPDB).

In the third line, the user **pat** is audited for all events that are specified in the template **_secure2**, and also for all attempts at Alter Table (ALTB), but not for attempts at Create Table (CRTB), Create Index (CRIX), and Start New Session (STSN).

No template is specified for the target mask **jaym** in the fourth line, and no events are indicated; the mask is empty. (This prevents the **_default** mask from being applied to **jaym**.)

In the fifth line, the target mask **johns** audits the same events as the mask **akee**, minus all successful attempts at Alter Index (SALIX).

Important: Future changes to a base mask are not reflected in other masks that might have been created or modified with that mask as a base.

An example of an audit mask input file, **adtmasks.std**, is provided in the **$INFORMIXDIR/aaodir** UNIX directory or in the **%INFORMIXDIR%\aaodir** Windows directory. The **adtmasks.std** file is intended only to serve as a guide to the DBSSO for how to set up an audit mask.

Audit masks do not work the same way as audit configuration parameters during initialization of the database server. (See “Audit Configuration and the ADTCFG File” on page 1-18.) Specifically, audit masks are not automatically read from a file and initialized.

Displaying Audit Masks

Use the **-o** option of the **onaudit** utility to display all the audit masks and the audit events that each mask contains. When you issue the **onaudit -o -y** command, the output (mask name, base mask, audit events) appears as follows:

```
_default - UPAM,DRAM
_require -
_excluse -
_guest  - CRDB,GRDB,GRTB
terry  - -CRDB
```

You can specify a mask as an argument to the **-o** option. The following example displays only the mask for user **terry**:

```onaudit -o -u terry```

A list of audit masks is helpful when you need to modify them. You can use the modified output as an input file to modify a single mask or groups of masks in a single batch. For more information, see “Modifying Audit Masks”
Tip: If you use a base mask to create or modify a mask, the base mask itself does not appear in the `onaudit -o` output for the new mask. If a mask is created or modified with a base mask, it does not refer to the base mask.

**Modifying Audit Masks**

The DBSSO can modify masks individually from the command line. (If you want to modify several masks at a time, you can create a new input file, change the appropriate masks, and reload them in the mask table.)

You can modify a single mask with the `-m` option of the `onaudit` utility. This option lets you use another mask as a base to add or remove individual audit events.

The following example shows how to modify the user mask `pat`. The `_guest` template mask forms a base from which a complete set of audit events is drawn. Settings for specific events from that file are then superseded by the events listed as arguments to the `-e` option.

```
onaudit -m -u pat -r _guest -e +ALTB,USTB
```

When you supply a base mask with the `-r` option, you replace all the audit events in the initial mask. When you change only a few events in a mask, you might not want to specify a base mask. For the syntax and another example of how to modify a mask, see [Chapter 4](#).

**Deleting Audit Masks**

You can use the `-d` option of the `onaudit` utility to delete a single mask or all masks at once. The following example deletes the individual user mask for user `terry`:

```
onaudit -d -u terry
```

For the syntax of the `onaudit` utility, see [Chapter 4](#).

---

**Audit Configuration Maintenance**

The AAO normally performs the following tasks to maintain the audit configuration:

- Displaying the audit configuration
- Changing the audit mode (including auditing specific roles)
- Changing the audit error mode
- Turning off auditing
- Starting a new audit file (including specifying a directory and maximum file size).
This section describes how to use `onaudit` to perform these tasks. For the syntax of the `onaudit` utility, see Chapter 4.

**Displaying the Audit Configuration**

You can display the current audit configuration with the `-c` option of the `onaudit` utility.

**UNIX Only**

Figure 2-3 shows output from the `onaudit -c` command on UNIX.

```
onaudit -c
Onaudit -- Audit Subsystem Control Utility
Copyright (c) IBM Corp., 1998 - 2003

Current audit system configuration:
 ADTMODE = 1
 ADTADMMODE= 0
 ADTERR = 0
 ADTPATH = /tmp
 ADTSIZE = 20000
 Audit file = 64
```

Figure 2-3. Example of Output from the `onaudit -c` Command on UNIX

In Figure 2-3, the current audit system is configured as follows:

- ADTMODE is set to 1, which indicates that database server-managed auditing is on.
- ADTADMMODE is set to 0, which indicates that `onmode`, `oninit`, and `onstat` events are not audited.
- ADTERR is set to 0, which indicates a continue error mode.
- ADTPATH shows the default directory for audit files.
- ADTSIZE, which represents the maximum size of the audit file, is specified as 20,000 bytes.
- The number of the current audit file in the current audit directory is 64.

If you are user `informix`, you can also retrieve this information from the SMI `sysadtdinfo` table in the `sysmaster` database. For details, see the IBM Informix: Administrator’s Reference.
Windows Only

Figure 2-4 shows output from the onaudit -c command on Windows.

```
onaudit -c
Onaudit -- Audit Subsystem Control Utility
Copyright IBM Corporation 1996,2004 All rights reserved

Current audit system configuration:
ADTMODE = 1
ADTERR = 0
ADTPATH = %informixdir%/aaodir
ADTESIZE = 50000
Audit file = 0
```

Figure 2-4. Example Output from the onaudit -c Command on Windows

In Figure 2-4, the current audit system is configured as follows:
- ADTMODE is set to 1, which indicates that database server-managed auditing is on.
- ADTERR is set to 0, which indicates a continue error mode.

End of Windows Only

- ADTPATH shows the default directory for audit files.
- ADTESIZE, which represents the maximum size of the audit file, is specified as 50,000 bytes.
- The number of the current audit file in the current audit directory is 0, meaning that no other audit file exists in the current series.

Starting a New Audit File

You can use a new file as the current audit file in the following ways:
- Use onaudit -s to change the maximum size of an audit file. If the audit file is already larger than the new size that you specify, the utility saves the current file and starts to write to a new one. The following example changes the default size to 20,000 bytes:
  onaudit -s 20000
- Use onaudit -n to start a new audit file without changing the maximum size. This option, which the following example shows, saves the current audit log to another file whenever you run it:
  onaudit -n
Use `onaudit -p` to change the directory in which the database server writes audit files. The following example specifies `/work/audit` as the UNIX file system where the audit files are to be kept:

```
onaudit -p /work/audit
```

The directory that you specify must exist.

---

**Extended Parallel Server**

For Extended Parallel Server, the directory must exist on each node that hosts a coserver.

---

Also, a new audit file starts every time that you start database-server-managed auditing.

You can use more than one flag at a time in an `onaudit` command. For the `onaudit` syntax to start a new audit file, change the audit-file size, or change the pathname of the audit directory, see "The `onaudit` Utility" on page 4-2.

### Changing the Audit Mode on UNIX

On UNIX, use the `onaudit` utility to change between operating-system-managed auditing and database server-managed auditing and to change the mandatory auditing of the DBSA or DBSSO or both. For example, to start basic operating-system-managed auditing, enter the following command:

```
onaudit -l 2
```

To start operating-system-managed auditing, which automatically audits the actions of the DBSA and DBSSO, enter the following command:

```
onaudit -l 8
```

### Changing the Audit Mode on Windows (and IDS)

On Windows, use the `onaudit` utility to change levels of auditing by the database server and to change the mandatory auditing of the DBSA. For example, to start basic auditing, enter the following command:

```
onaudit -l 1
```

To start auditing and automatically audit the actions of the DBSA, enter the following command:

```
onaudit -l 5
```

### Changing the Audit Error Mode

As Chapter 1 and "Setting the Error Mode" on page 2-9 explain, the database server behaves in one of three ways if it encounters an error when it writes to the current audit file. You can change the audit error mode with the `onaudit`
utility. The following example directs the database server to suspend processing of the current thread and continue the write attempt until it succeeds:

```
onaudit -e 1
```

**Turning Off Auditing**

To turn off auditing, use the **onaudit** utility. The following example shows the command that turns off auditing:

```
onaudit -l 0
```

**Warning:** Although auditing might be properly configured to audit the execution of a particular utility by a particular user, audit records might not be generated if the utility fails to execute for any of the following reasons:

- The user does not have the correct UNIX permissions or Windows access privileges to execute the utility.
- The user incorrectly specifies the command syntax of the utility.
- The utility cannot connect to shared memory.
Chapter 3. Audit Analysis

Audit-Record Format ......................................................... 3-1
Audit Record Output Sample for Extended Parallel Server .......... 3-4
Audit Analysis Without SQL .............................................. 3-5
Audit Analysis with SQL .................................................. 3-5
Planning for SQL Audit Analysis ....................................... 3-5
Revoking and Granting Privileges to Protect Audit Data ............ 3-6
Preparing Audit Analysis Records for SQL Access on Dynamic Server .................................................. 3-6
  Creating a Data File for dbload ........................................ 3-7
  Creating a Database and Table for Audit Data ...................... 3-7
  Creating a Command File for dbload ................................ 3-8
  Loading Audit Data into a Database ................................. 3-9
Preparing Audit Analysis Records for SQL Access on Extended Parallel Server ........................................ 3-9
  Creating the Database and Tables ................................. 3-9
Extract Audit Records to Load into the External Table ............... 3-11
  Loading Data from the External Table to the Database Table .... 3-11
Interpreting Data Extracted from Audit Records ..................... 3-11

In This Chapter

The importance of audit analysis cannot be stressed enough. This chapter explains the following topics:

- The format of audit records that the database server produces
- How to perform audit analysis with or without SQL
- How to extract audit information from the audit trail for quick viewing
- How to load that data into a database for analysis with SQL
- How best to perform audit analysis on the extracted audit information

This chapter applies whether you use the database server or your operating system to store and maintain the audit trail. An overview of the audit analysis process is in Chapter 1, “Overview of Auditing,” on page 1-1

Audit-Record Format

The format for database server audit records has the following parts:

<table>
<thead>
<tr>
<th>UNIX Only</th>
</tr>
</thead>
</table>

- The first part is an operating-system audit header, if operating-system auditing is used on UNIX. The audit header contains information that the
operating system supplies.

--- End of UNIX Only ---

- The database server generates the second part of the audit record, with fields that depend on the audit event.

**Dynamic Server**

Table 3-1 on page 3-2 shows the format of the database server audit records for Dynamic Server.

<table>
<thead>
<tr>
<th>ONLN</th>
<th>date and time</th>
<th>hostname or hostname. domain.ext</th>
<th>pid</th>
<th>database server name</th>
<th>user name</th>
<th>errno</th>
<th>event mnemonic</th>
<th>Additional Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONLN</td>
<td>1998-07-28</td>
<td>turk</td>
<td>4549</td>
<td>khan</td>
<td>jazt</td>
<td>0</td>
<td>CRDB</td>
<td>dbsch</td>
</tr>
<tr>
<td></td>
<td>15:43:00.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONLN</td>
<td>1998-07-28</td>
<td>turk</td>
<td>4549</td>
<td>khan</td>
<td>jazt</td>
<td>0</td>
<td>ACTB</td>
<td>dbsch:jazt:v1:103</td>
</tr>
<tr>
<td></td>
<td>15:43:18.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONLN</td>
<td>1998-07-28</td>
<td>turk</td>
<td>4549</td>
<td>khan</td>
<td>jazt</td>
<td>0</td>
<td>CLDB</td>
<td>dbsh</td>
</tr>
<tr>
<td></td>
<td>15:43:19.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONLN</td>
<td>1998-07-28</td>
<td>turk</td>
<td>4549</td>
<td>khan</td>
<td>jazt</td>
<td>0</td>
<td>ALFR</td>
<td>local:109:-:-:4:4: db1,db2,db3, rootdbs</td>
</tr>
<tr>
<td></td>
<td>15:43:21.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONLN</td>
<td>1998-07-28</td>
<td>turk</td>
<td>4549</td>
<td>khan</td>
<td>jazt</td>
<td>0</td>
<td>ALFR</td>
<td>local:109:aa5x:-: 32:4: db1,db2</td>
</tr>
<tr>
<td></td>
<td>15:43:28.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONLN</td>
<td>1998-07-28</td>
<td>turk</td>
<td>4549</td>
<td>khan</td>
<td>jazt</td>
<td>0</td>
<td>STDS</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>15:43:29.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

**ONLN**
A fixed field used to identify Dynamic Server events

**date and time**
Indicates when the audit event was recorded

**hostname**
The name of the UNIX host computer of the client application that executes the audit event

**hostname.domain.ext**
The name of the Windows host computer,
domain, and extension of the client application that executes the audit event

pid
The process ID of the client application that causes the database server to execute the audit event

database server name
The name of the database server on which the audit event is executed

user name
The login name of the user who requests the event

errno
The event result that contains the error number that the event returns, indicating success (0) or failure

event mnemonic
Database server audit event that the database server executed, such as ALFR (Alter Fragment)

additional fields
Any fields that identify databases, tables, and so on. These additional fields are audit-event fields that contain information captured in tabular form by the onshowaudit utility for audit analysis.

For operating-system-managed auditing on UNIX, the database server audit record is an additional field for the operating-system audit record. Appendix A lists the audit-event fields.

For Extended Parallel Server, audit records appear in the format shown in Table 3-2.

Table 3-2. Audit-Record Format for Extended Parallel Server

<table>
<thead>
<tr>
<th>XPS</th>
<th>coserver id</th>
<th>datetime</th>
<th>host name</th>
<th>PID</th>
<th>database server name</th>
<th>username</th>
<th>errno</th>
<th>event mnemonic</th>
<th>additional fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>xps</td>
<td>2</td>
<td>2000-01-29 03:23:51.000</td>
<td>smart</td>
<td>1752</td>
<td>dragon</td>
<td>sunny</td>
<td>0</td>
<td>ONST</td>
<td>-</td>
</tr>
<tr>
<td>xps</td>
<td>2</td>
<td>2000-01-29 03:23:53.000</td>
<td>smart</td>
<td>1754</td>
<td>dragon</td>
<td>sunny</td>
<td>0</td>
<td>STSN</td>
<td></td>
</tr>
</tbody>
</table>
**Table 3-2. Audit-Record Format for Extended Parallel Server (continued)**

<table>
<thead>
<tr>
<th>XPS</th>
<th>coserver id</th>
<th>datetime</th>
<th>host name</th>
<th>PID</th>
<th>database server name</th>
<th>username</th>
<th>errno</th>
<th>event mnemonic</th>
<th>additional fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>xps</td>
<td>2</td>
<td>2000-01-29 03:23:53.000</td>
<td>smart</td>
<td>1754</td>
<td>dragon</td>
<td>sunny</td>
<td>0</td>
<td>OPDB</td>
<td>sysmaster: 0:-</td>
</tr>
<tr>
<td>XPS</td>
<td>2</td>
<td>2000-01-29 03:23:53.000</td>
<td>smart</td>
<td>1754</td>
<td>dragon</td>
<td>sunny</td>
<td>0</td>
<td>CLDB</td>
<td>sysmaster</td>
</tr>
<tr>
<td>XPS</td>
<td>2</td>
<td>2000-01-29 03:24:44.000</td>
<td>smart</td>
<td>964</td>
<td>dragon</td>
<td>sunny</td>
<td>0</td>
<td>ONST</td>
<td>-</td>
</tr>
<tr>
<td>XPS</td>
<td>2</td>
<td>2000-01-29 03:24:46.000</td>
<td>smart</td>
<td>964</td>
<td>dragon</td>
<td>sunny</td>
<td>0</td>
<td>ONST</td>
<td>-d</td>
</tr>
</tbody>
</table>

The output for Extended Parallel Server includes the following fields that are different from the output for Dynamic Server:

- **XPS**: A fixed field that identifies Extended Parallel Server events
- **coserver id**: The number of the coserver where the event occurred

---

**Audit Record Output Sample for Extended Parallel Server**

The output sample shown in Table 3-3 shows the audit trail of events on Extended Parallel Server, one of which requires more than one record to completely describe the event.

**Table 3-3. Example Audit Records for SELECT Statement**

```plaintext
xps|2|2000-01-29 03:23:51.000|smart|2234|dragon|sunny|0:OPDB:sysmaster:0:-

xps|2|2000-01-29 03:24:23.000|smart|2234|dragon|sunny|0:SLCT:1:1:select * from customers;

xps|2|2000-01-29 03:26:53.000|smart|2234|dragon|sunny|0:SLCT:1:1:select items.stock_num, items.price, orders.order_num, items.manu_code from items, orders where item.price > 1000 and item.manu_code = 'abcdefghijklmnopqrstuvwxyz123456789012345678901234abcdefghijklmnopqrstuvwxyz123456789012345678901234';

xps|2|2000-01-29 03:26:53.000|smart|2234|dragon|sunny|0:SLCT:1:2: stuvwxyz123456789012345678901234';

xps|2|2000-01-29 03:30:15.000|smart|2234|dragon|sunny|0:SLCT:0:1:select count(stock_num) from order;
```

---
During this audit trail, three cursor SELECT events occurred. The first and third event execute short queries whose contents fit into the additional field. Each of these events generates a single audit record with the flag field set to 1. The second SELECT event, however, executes a much longer query that requires two audit records to include all of its information. The flag field in the first record is set to 1, while the flag field in the second record is set to 2.

### Audit Analysis Without SQL

Use the onshowaudit utility to extract data for audit analysis. This utility can perform some basic filtering such as user or database server name. You can then send the extracted data to standard output (for example, your screen) and use UNIX utilities such as grep, sed, and awk or Windows utilities to analyze it. You can also choose to put the data in a database and analyze it with SQL, as the next section describes.

Only the AAO can execute onshowaudit. If role separation is not enabled, user informix will be the AAO. (Superuser root on UNIX is always an AAO.) Because disclosure of audit records represents a security threat, only the AAO should read the extracted records.

For example, the following command extracts audit records for the user pat from an operating-system-managed audit file named laurel.12, on UNIX, and sends the audit records to standard output:

```
onshowaudit -I -f laurel.12 -u pat
```

The command-line syntax for how to extract information with onshowaudit is explained in Chapter 4.

### Audit Analysis with SQL

You can also use the onshowaudit utility to reformat the extracted data and redirect it to a data file and then use the dbload utility to load that data into a database table. This section explains this process.

### Planning for SQL Audit Analysis

When you plan audit analysis with the database server, consider that the audit-analysis process itself might generate audit records, depending on how the audit is configured. One way to avoid generating unwanted audit records as a result of audit analysis is to use a separate unaudited instance of the database server.

To perform audit analysis with SQL, you must use a program to access the database and table that you created. Use the DB–Access utility to construct and execute SQL statements or develop an application with an IBM Informix application development tool or an SQL API, such as IBM Informix ESQL/C.
Whether you perform analysis with DB–Access or build a customized application, remember the advice given for audit review in “Audit Analysis” on page 1-21. To view audit events for specific objects, select rows based on their value in the dbname, tabid, or row_num column.

If you discover suspicious activity based on initial analysis of the audit table in the database server, you might increase the scope of your collection of audit events to pinpoint the problem. If you feel certain you have a security problem, see “DBMS Security Threats” on page 1-26.

Revoking and Granting Privileges to Protect Audit Data

When you create a database as described in the following sections, make sure that the database is protected against unauthorized access.

Tables that you create in non-ANSI compliant databases have privileges that allow all users access. Although the default database permissions or access privileges prevent access to the tables, proper security practice protects the audit-analysis table in a database that is not ANSI-compliant by revoking access from all other users as soon as that table is created.

You can use the following SQL statements to control access:

```
REVOKE ALL ON table FROM PUBLIC
GRANT ALL ON table TO informix
```

After table privileges are revoked, generally with the REVOKE statement, you can grant individual users (for example, user informix) access to the tables with the GRANT statement. For information on SQL statements, see the IBM Informix: Guide to SQL Syntax.

Tables created in ANSI-compliant databases have privileges that allow access only by the owner, which is the appropriate security measure.

You can also use the NODEFDAC environment variable to control access. When set to yes, NODEFDAC does not allow default table privileges (Select, Insert, Update, and Delete) to be granted to PUBLIC when a new table is created in a database that is not ANSI-compliant. For details, see the IBM Informix: Guide to SQL Reference.

Preparing Audit Analysis Records for SQL Access on Dynamic Server

Take the following steps to prepare audit records for SQL analysis:

1. Create a data file to use with dbload.
2. Create a database and table in which to store the audit data.
3. Create a command file to use with dbload.
4. Load the audit data into the table.
Creating a Data File for dbload
The first step to prepare for SQL-based audit analysis is to use onshowaudit -l to extract selected audit records in dbload format and put them in an output file. The following example extracts audit records for the user pat from the database server-managed audit file laurel.11 and directs the records to the records_pat output file:

```
onshowaudit -l -f laurel.11 -u pat -l > records_pat
```

**Important:** You must remove the six header lines that appear in the output file before you use the file as input for the dbload utility because dbload cannot process the header lines.

The command-line syntax to extract information with onshowaudit is explained in Chapter 4

Creating a Database and Table for Audit Data
To load data files into a database with dbload, a database and table to receive the data must already exist. This section explains how to create the necessary database and table.

Creating a Database: Create a database to hold copies of audit records with the CREATE DATABASE statement. By default, the CREATE DATABASE statement creates the database with privileges that allow access only to the owner, which is the appropriate security measure. It is not necessary to use logging within a database created strictly for audit analysis because the data should not be modified.

The following SQL statement creates a database called auditlogs97:

```
CREATE DATABASE auditlogs97
```

You can also create an ANSI-compliant database. Although an ANSI-compliant database has the additional overhead of logging, its treatment of table permissions or access privileges makes it attractive in a secure environment. For more information about UNIX permissions or Windows access privileges, refer to "Revoking and Granting Privileges to Protect Audit Data" on page 3-6

The following SQL statement creates an ANSI-compliant database:

```
CREATE DATABASE auditlogs97 WITH LOG MODE ANSI
```

Creating a Table: Create a table to hold audit data with the CREATE TABLE statement. The order and data types of the columns is important. Use the order shown in the example in Figure 3-1. The sample schema reflects the format of the dbload data file that onshowaudit created.
The sample CREATE TABLE statement in Figure 3-1 creates an audit table with the name `frag_logs`. For information about the contents of each column, see “Interpreting Data Extracted from Audit Records” on page 3-11.

The sample CREATE TABLE statement in Figure 3-1 does not include the WITH CRCOLS option, which is for conflict resolution during database replication. To replicate the audit database, use WITH CRCOLS in the CREATE TABLE statement.

```sql
CREATE TABLE frag_logs (
 adttag CHAR(4),
 date_time DATETIME YEAR TO FRACTION(3),
 hostname CHAR(18),
 pid INT,
 server CHAR(18),
 username CHAR(8),
 errno INT,
 code CHAR(4),
 dbname CHAR(18),
 tabid INT,
 objname CHAR(18),
 extra_1 INT,
 partno INT,
 row_num INT,
 login CHAR(8),
 flags INT,
 extra_2 VARCHAR(160,1));
```

*Figure 3-1. Sample CREATE TABLE Statement for a Dynamic Server Audit Table*

The table that the statement in Figure 3-1 creates does not have any indexes. To improve audit-analysis performance, you can place indexes on columns within the table, depending on the type of analysis that you perform. For guidance on indexing columns, see your *IBM Informix: Performance Guide*.

**Creating a Command File for dbload**

To load the audit information into the table that you created, first create an ASCII command file for the dbload utility. This command file must specify the number of columns and the field delimiter that are used in the data file that onshowaudit created. For a description of command files and their use with dbload, see the *IBM Informix: Migration Guide*.

Include the following information when you create the command file for dbload:

```
Delimiter | Number of columns
 | 17
```
The following example uses the FILE statement to create a command file for dbload. The example includes the records_pat data file created in “Creating a Data File for dbload” on page 3-7 and the frag_logs table created in “Creating a Table” on page 3-7.

FILE records_pat DELIMITER '|' 17;
INSERT INTO frag_logs;

You now have the tools necessary to load a data file into the table that you created.

**Loading Audit Data into a Database**

After you have the database, table, data, and command files for audit analysis, you can load the audit data into the table with dbload.

The following example executes the commands specified in the user_records command file to load data into the auditlogs97 database created in “Creating a Database” on page 3-7.

dload -d auditlogs97 -c user_records

After the data is loaded, begin your audit analysis with SQL.

**Preparing Audit Analysis Records for SQL Access on Extended Parallel Server**

Prepare audit analysis records in the following steps:

1. If this is the first time you extract and load audit records, create the database and table into which you load the external table data. Then create an external table definition that has the same column format as the database table.

   For later operations, you can truncate the existing table and reuse it for new data. For other possible ways to reuse or expand the analysis tables, refer to your IBM Informix: Administrator’s Reference and the IBM Informix: Extended Parallel Server Performance Guide.

2. With onshowaudit, extract the audit records you want to analyze into the external table.

3. Enter the SQL statement that loads data from the external table into the database table.

**Creating the Database and Tables**

Before you can load audit records into a table, you must create a database and a table to hold the records. By default, the CREATE DATABASE statement creates the database with privileges that allow access only to the owner, which
is the appropriate security measure. You might create an ANSI-standard database for additional security, as mentioned in "Revoking and Granting Privileges to Protect Audit Data" on page 3-6.

The following SQL statement creates a database called auditlogs2000:

```sql
CREATE DATABASE auditlogs2000
```

After you create the database, create an OPERATIONAL table to contain the data for SQL access. To create a table named audit_logs with appropriate column names and data types for extracted audit data, use the statement that appears in Figure 3-2 and add location and fragmentation information as appropriate.

```sql
CREATE OPERATIONAL TABLE audit_logs (
 adttag CHAR(4),
 cosvr_id INT,
 date_time DATETIME YEAR TO FRACTION(3),
 hostname CHAR(18),
 pid INT,
 server CHAR(18),
 username CHAR(8),
 errno INT,
 code CHAR(4),
 dbname CHAR(18),
 tabid INT,
 objname CHAR(18),
 extra_1 INT,
 partno INT,
 row_num INT,
 login CHAR(8),
 flags INT,
 extra_2 VARCHAR(160,1))
...;
```

*Figure 3-2. Sample CREATE TABLE Statement for an XPS Audit Table*

You create an OPERATIONAL table so that you can use the Express mode when you load the data from the external table. For information about the characteristics of OPERATIONAL tables, refer to the IBM Informix: Extended Parallel Server Performance Guide.

After you create the database and table, use the definition of the database table, audit_logs, to create an external table definition that is used as a formatting and conversion template when you load the extracted audit data. The external table definition also specifies a file to contain records that are rejected during the load process. Because onshowaudit uses a pipe character as the delimiter, you do not need to specify the delimiter character. The statement that defines the external table appears in Figure 3-3.
After you create the database and internal table and define the external table, you do not need to repeat these steps.

### Extract Audit Records to Load into the External Table

Use `onshowaudit -l` to extract selected audit records into an output file. The following example shows how to extract audit records for the user `pat` from all database server-managed audit files and to redirect the records to the `data2load` output file:

```
onshowaudit -l -u pat -l > data2load
```

**Important:** Before you use the output file as input to the external file, remove the six header lines.

For information about the command-line syntax to extract information with `onshowaudit`, see "The `onshowaudit` Utility" on page 4-13.

### Loading Data from the External Table to the Database Table

To use the external table definition to load data from the `data2load` data file into the `audit_logs` database table, execute the SQL statement shown in Figure 3-4.

```
INSERT INTO audit_logs
SELECT * FROM load_audit;
```

**Figure 3-4. Sample INSERT Statement to Load Data**

For more information about using external tables to load data, refer to your IBM Informix: Administrator’s Reference.

### Interpreting Data Extracted from Audit Records

When you create a database table to contain audit records that you extract from audit files, you provide a column for each field in the audit record. Figure 3-5 lists recommended column names that are used in Figure 3-1 on page 3-8 and Figure 3-2 on page 3-10 and describes the information that each column contains.
<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adttag</td>
<td>ONLN or XPS, depending on the database server</td>
</tr>
<tr>
<td>cosvr_id</td>
<td>The number of the coserver on which the audited event occurred (XPS only)</td>
</tr>
<tr>
<td>date_time</td>
<td>The date and time of the audited event</td>
</tr>
<tr>
<td>hostname</td>
<td>The database server name</td>
</tr>
<tr>
<td>pid</td>
<td>The process ID</td>
</tr>
<tr>
<td>server</td>
<td>The database server name</td>
</tr>
<tr>
<td>username</td>
<td>The username associated with the audited event</td>
</tr>
<tr>
<td>errno</td>
<td>The error number, if any</td>
</tr>
<tr>
<td>code</td>
<td>The error code, if any</td>
</tr>
<tr>
<td>dbname</td>
<td>The name of the database</td>
</tr>
<tr>
<td>tabid</td>
<td>The ID number of the affected table</td>
</tr>
<tr>
<td>objname</td>
<td>The index name and the table name, or similar identifier (Not in audit tables created with Informix database servers prior to Version 7.0)</td>
</tr>
<tr>
<td>extra_1</td>
<td>Information specific to the object and event, as shown in “Audit-Event Fields” on page A-8</td>
</tr>
<tr>
<td>partno</td>
<td>Fragmentation information (Not in audit tables created with Informix database servers prior to Version 7.0)</td>
</tr>
<tr>
<td>row_num</td>
<td>The physical row number in the affected table, which combines the row ID and the old row ID and identifies each row for the events Read Row (RDRW), Insert Row (INRW), Update Current Row (UPRW), and Delete Row (DLRW)</td>
</tr>
<tr>
<td>login</td>
<td>The user login name</td>
</tr>
<tr>
<td>flags</td>
<td>The flag set for the event, as shown in “Audit-Event Fields” on page A-8</td>
</tr>
<tr>
<td>extra_2</td>
<td>Information determined by the flag. For examples, see “Audit Record Output Sample for Extended Parallel Server” on page 3-4</td>
</tr>
</tbody>
</table>

*Figure 3-5. Audit-Event Columns in Database Table for SQL Access*
Chapter 4. Utility Syntax

The onaudit Utility .......................... 4-2
Showing Audit Masks ......................... 4-3
Modifying an Audit Mask ...................... 4-4
Creating or Adding an Audit Mask .............. 4-4
   The Audit-Mask Specification ................. 4-5
   The onaudit Input-File Format ................. 4-7
Deleting an Audit Mask ....................... 4-8
Starting a New Audit File .................... 4-8
   Storing Database Server Audit Files .......... 4-8
   Storing Operating-System Audit Files .......... 4-9
Showing the Audit Configuration .............. 4-9
Changing the Audit Configuration ............. 4-10
   Using the -e Option ......................... 4-11
   Using the -l Option ......................... 4-12
Specifying Auditing for Certain Utility Command Events (XPS) .......... 4-13
The onshowaudit Utility ..................... 4-13

In This Chapter

This chapter contains syntax and usage information for the following utilities:

- The onaudit utility performs the following operations on both UNIX and Windows:
  - Displays audit masks
  - Creates audit masks
  - Modifies audit masks
  - Deletes audit masks
  - Shows the audit configuration
  - Changes global auditing activities
  - Enables and disables auditing
  - Sets the error mode
  - Establishes mandatory auditing for various administrative roles
  - Starts a new audit file in the audit trail
  - Sets the directory in which audit files reside
  - Specifies the maximum size for each audit file

- The onshowaudit utility performs the following operations on both UNIX and Windows:
  - Extracts audit information from the audit trail
  - Prepares extracted audit data for the dbload utility
The `onaudit` utility also performs the following operations on UNIX:
Determines whether the database server or the operating system manages the audit trail.

--- End of UNIX Only ---

The `onaudit` utility also performs the following operation on Windows:
Establishes auditing that the database server manages.

--- End of Windows Only ---

The `onaudit` Utility

```
>>> onaudit
```

1. Showing Audit Masks (1)
2. Creating or Adding an Audit Mask (2)
3. Modifying an Audit Mask (3)
4. Deleting an Audit Mask (4)
5. Starting a New Audit File (5)
6. Showing the Audit Configuration (6)
7. Changing the Audit Configuration (7)
8. Specifying Auditing for Certain Utility Command Events (8)
9. (9)

Notes:
1. see page 4-3
2. see page 4-4
3. see page 4-4
4. see page 4-8
5. see page 4-8
6. see page 4-9
The **onaudit** utility manages audit masks and auditing configuration.

If your system has role separation, only the DBSSO or AAO can run the **onaudit** utility. The DBSSO can perform only **onaudit** functions that involve audit masks, and the AAO can perform only **onaudit** functions that involve audit configuration parameters. Without role separation, the user **informix** or **root** can perform all these tasks.

The DBSSO can change audit masks dynamically. Changes to user, default, template, and global masks become effective immediately for user sessions.

---

**Extended Parallel Server**

You must run the **onaudit** command from coserver 1. All changes affect all coservers.

---

**End of Extended Parallel Server**

---

If you run the **onaudit** command without any options, it displays a usage summary.

### Showing Audit Masks

#### Showing Audit Masks:

```
-o [u mask] y
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o</td>
<td>Outputs audit masks.</td>
<td>None.</td>
</tr>
<tr>
<td>-u mask</td>
<td>Names a specific mask to display.</td>
<td>Can be any existing audit mask.</td>
</tr>
<tr>
<td>-y</td>
<td>Automatically responds yes to the confirmation prompt.</td>
<td>None.</td>
</tr>
</tbody>
</table>

The **-o** option of the **onaudit** utility sends the mask display to standard output, as follows:

- If the **-u mask** option is omitted, all masks are displayed.
• If the -y and -u options are omitted, onaudit requests confirmation before it displays all the masks, which can amount to a lot of data.

The following example illustrates the format of the output file. The format is the same as that of an input file for onaudit, as "Modifying an Audit Mask" describes.

```
maskname basemask audit_events
```

Because the database server keeps no record of the base mask that is used to create or modify a mask, a single hyphen (-) always appears in the basemask placeholder.

The following example shows output for the command onaudit -o -u pat. It indicates that the individual user mask pat contains the Lock Table (LKTB), Create Table (CRTB), and failed attempts of Add Chunk (ADCK) audit events.

```
pat - LKTB, CRTB, FADCK
```

### Modifying an Audit Mask

#### Modifying an Audit Mask:

```
-m The Audit-Mask Specification
```

#### Notes:

1 see page 4-5

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m</td>
<td>Modifies an existing audit mask.</td>
<td>None.</td>
</tr>
</tbody>
</table>

The following example modifies an audit mask for the user pat. The modified mask audits the events specified in the _Hsecure template mask, with the addition of all attempts of Lock Table (LKTB) and only failed attempts of Alter Table (ALTB).

```
onaudit -m -u pat -r _Hsecure -e +LKTB,FALTB
```

### Creating or Adding an Audit Mask

#### Creating or Adding an Audit Mask:

```
-a The Audit-Mask Specification
-f The onaudit Input-File Format
```

4-4 IBM Informix Trusted Facility Guide
Notes:
1 see page 4-5
2 see page 4-7

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Adds a new audit mask.</td>
<td>None.</td>
</tr>
<tr>
<td>-f</td>
<td>Names a file that can include instructions to add any or all of the audit masks to the mask table.</td>
<td>References: The syntax for the input file is described in “The onaudit Input-File Format” on page 4-7</td>
</tr>
</tbody>
</table>

The Audit-Mask Specification

The Audit-Mask Specification:

```
/u targetmask
/r basemask
```

Audit Event Specification:

```
/*
/event
```

Notes:
1 Only one occurrence of each choice is allowed. However, multiple options are allowed on the same invocation
### Multimedia Types

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Events that follow are to be added to targetmask list of audit events</td>
<td>The + is the default and thus is optional.</td>
</tr>
<tr>
<td>-</td>
<td>Events that follow are to be dropped from targetmask list of audit events</td>
<td>None.</td>
</tr>
<tr>
<td>-e</td>
<td>Indicates that audit events are to be added or removed from targetmask</td>
<td>Events specified as arguments to -e override events listed in any base mask specified with the -r option.</td>
</tr>
<tr>
<td>-r basemask</td>
<td>Name of an existing audit mask. Events currently listed in basemask are applied to targetmask.</td>
<td>Subsequent changes to basemask are not reflected in masks for which basemask has been used as a base. If no basemask is specified and no events are specified with the -e flag, onaudit creates an empty target mask.</td>
</tr>
<tr>
<td>-u targetmask</td>
<td>Names a user, template, _default, _require, or _exclude mask to be created or modified.</td>
<td>The targetmask identifier must have 32 or fewer characters.</td>
</tr>
<tr>
<td>Fevent</td>
<td>Specifies that only failed event attempts are to be audited.</td>
<td>The event can include the event code (mnemonic) for any event listed in the table “Audit-Event Mnemonics for IBM Informix Dynamic Server” on page A-1.</td>
</tr>
<tr>
<td>S event</td>
<td>Specifies that only successful event attempts are to be audited.</td>
<td>Same as for Fevent</td>
</tr>
<tr>
<td>event</td>
<td>An event to audit, whether the event execution succeeds or fails.</td>
<td>Same as for Fevent</td>
</tr>
</tbody>
</table>

**Warning:** Do not include any spaces in the events list. You might get unpredictable results.

The following example creates a new audit mask named `pat` for the user `pat`. The new mask audits the events specified in the `_secureL` template mask, but excludes Read Row (RDRW) and includes Lock Table (LKTB), successful attempts at Add Chunk (ADCK), and all attempts at Create Table (CRTB).

```bash
onaudit -a -u pat -r _secureL -e -RDRW, -e +LKTB, SADCK, CRTB
```

A user mask is only one of the three masks that specify auditing for an individual. Auditing instructions are read from the user mask first, followed by the _require and _exclude masks. For details, refer to Chapter 1, “Overview of Auditing,” on page 1-1.
The onaudit Input-File Format

The onaudit Input-File Format:

\[\text{targetmask} \rightarrow \text{basemask} \rightarrow \text{Audit Event Specification} \rightarrow \text{Audit Event Specification} \rightarrow \text{targetmask}\]

Notes:
1. See page 4-5
2. Only one occurrence of each choice is allowed. However, multiple options are allowed on the same invocation

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Events that follow are to be added to the list of audit events in targetmask.</td>
<td>None.</td>
</tr>
<tr>
<td>–</td>
<td>Used before an event, it indicates that the events that follow are to be removed from the list of audit events in targetmask. Used alone, it creates an empty mask.</td>
<td>None.</td>
</tr>
<tr>
<td>basemask</td>
<td>Name of an existing audit mask to use as a base.</td>
<td>The auditing instructions of the base mask are copied to the target mask, in addition to (or except for) the audit events that follow.</td>
</tr>
<tr>
<td>targetmask</td>
<td>Identifies the user, template, _default, _require, or _exclude mask to add.</td>
<td>Mask names must not exceed eight characters, and template mask names must begin with an underscore (_) symbol.</td>
</tr>
</tbody>
</table>

The following example uses a modified output file, created by the onaudit -o option, as the input file for onaudit -f:

onaudit -f /work/masks_feb.97

For an example of an onaudit input file, see Chapter 2.
Deleting an Audit Mask

Deleting Audit Masks:

- \(-d\)
- \(-u \text{ mask}\)
- \(-y\)

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Deletes an audit mask.</td>
<td>None.</td>
</tr>
<tr>
<td>-u mask</td>
<td>Names a specific mask to delete.</td>
<td>Mask can be any existing mask.</td>
</tr>
<tr>
<td>-y</td>
<td>Automatically responds yes to the confirmation prompt.</td>
<td>None.</td>
</tr>
</tbody>
</table>

The \(-d\) option of the `onaudit` utility deletes audit masks, as the following list describes:

- If the \(-u \text{ mask}\) option is omitted, all masks are deleted, including \_default, \_require, and \_exclude.
- Because of the potential to make a significant mistake, the `onaudit` utility prompts you for confirmation before it deletes all masks. Thus, if the \(-y\) and \(-u\) options are omitted, `onaudit` requests confirmation.

Starting a New Audit File

Starting a New Audit File:

\(-n\)

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>Starts a new audit file.</td>
<td>None.</td>
</tr>
</tbody>
</table>

Storing Database Server Audit Files

For database server-managed auditing, the \(-n\) option to the `onaudit` utility closes the current database server audit file, stores it in a specified directory, and opens a new audit file named `servername.integer`. The `servername` value is the name of the database server being audited, and `integer` is the next available integer. For example, if the last audit file saved for the `maple` database server was named `maple.123`, the next audit file is saved in a file called `maple.124`. 
For Extended Parallel Server, the \texttt{-n} option to the \texttt{onaudit} utility closes the current database server audit file, stores it in the audit-file subdirectory for each coserver, and opens new audit files named \textit{servername.integer} in each coserver-specific subdirectory of the path you specified for audit-file storage.

The subdirectory name is of the form \texttt{servername.coserver\_id}, which combines the name of the database server and the number of the coserver that hosts the audit file. All audit files are stored locally on the coserver when the audited event occurs. Only one audit file directory exists for each coserver. The names of audit files in this directory are in the same form as for Dynamic Server. For more information, see \textit{“Audit File Names” on page 1-16}.

Storing Operating-System Audit Files

For operating-system-managed files, the \texttt{-n} option to \texttt{onaudit} closes the current operating-system audit file, stores it as part of the operating-system audit trail, and opens a new audit file. For the naming conventions for files in the audit trail, see your operating-system documentation.

Showing the Audit Configuration

Showing the Audit Configuration:

\begin{tabular}{|c|c|c|}
\hline
Element & Purpose & Key Considerations \\
\hline
-c & Shows the current audit configuration. & None. \\
\hline
\end{tabular}

The \texttt{-c} option directs \texttt{onaudit} to display the current state of auditing.

\textbf{UNIX Only}

\texttt{Figure 4-1} shows an example audit-configuration output on UNIX.
You can change the audit configuration, as the next section describes.

**Changing the Audit Configuration**

Changing the Audit Configuration:

```onaudit -c
Onaudit -- Audit Subsystem Control Utility
Copyright (c) IBM Corp., 1998-2003

Current audit system configuration:
 ADTMODE = 1
 ADTERR = 0
 ADTPATH = /tmp
 ADTSIZE = 20000
 Audit file = 64
```

Figure 4-1. Sample Audit-Configuration Output on UNIX

---

End of UNIX Only

---

Windows Only

Figure 4-2 shows an example of audit-configuration output on Windows.

```onaudit -c
Onaudit -- Audit Subsystem Control Utility
Copyright (c) IBM Corp., 1998-2003

Current audit system configuration:
 ADTMODE = 1
 ADTERR = 0
 ADTPATH = %informixdir%/aaodir
 ADTSIZE = 50000
 Audit file = 0
```

Figure 4-2. Sample Audit-Configuration Output on Windows

---

End of Windows Only

---
<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
</table>
| -e error mode | Specifies the error-handling method for auditing when a record cannot be written to the auditing event log. | **Restrictions:** The *error mode* parameter can have one of the following values: 0, 1, 3.  
**Additional Information:** This option pertains to the value set for the ADTERR configuration parameter in the ADTCFG file. The value can be changed only when auditing is on. For details of the valid *error mode* values, see [“Using the -e Option” on page 4-11](#). |
| -l audit mode | Specifies the audit mode. | **Restrictions:** The *audit mode* parameter can have one of the following values on UNIX: 0, 1, 2, 3, 4, 5, 6, 7, 8.  
The *audit mode* parameter can have one of the following values on Windows: 0, 1, 3, 5, 7.  
**Additional Information:** This option pertains to the value set for the ADTMODE configuration parameter in the ADTCFG file. For details of the valid *audit mode* values, see [“Using the -l Option” on page 4-12](#). |
| -p auditdir | Specifies the directory in which the database server creates audit files. | **Restrictions:** You can change the *auditdir* value only for database server-managed auditing and only when auditing is in effect.  
**Additional Information:** This option pertains to the value set for the ADTPATH configuration parameter in the ADTCFG file. The change occurs with the next write attempt. The database server starts a new audit file in the new directory, beginning with the first available number that is equal to or greater than 0. |
| -s maxsize | Specifies the maximum size (in bytes) of an audit file. | **Restrictions:** The *maxsize* can be any value between 10,240 bytes and approximately 2 gigabytes (the maximum value of a 32-bit integer). If you specify a size that is less than the minimum, it will be set automatically at the minimum. You can specify the *maxsize* value only for database server-managed auditing and only when auditing is in effect.  
**Additional Information:** This option pertains to the value set for the ADTSIZE configuration parameter in the ADTCFG file. When an audit file reaches or exceeds *maxsize*, the database server closes the current file and starts a new audit file. |

For information on the audit configuration parameters in the ADTCFG file, see Appendix B.

Changes made to the audit configuration with `onaudit` take effect immediately for all user sessions, including existing sessions. For information on how audit-configuration changes interact with the ADTCFG file, see Chapter 1.

**Using the -e Option**

This section discusses the values that you can enter for the `-e error mode` option of `onaudit`.
To specify continue mode, enter 0 as the argument to the -e option. In continue mode, the database server continues processing the thread and notes the error in the message log. Errors for subsequent attempts to write to the audit file are also sent to the message log. For information about the message log, see your IBM Informix: Administrator’s Guide.

To specify one of the halt modes, which suspend processing or shut the database server down, enter one of the following arguments to the -e option:

- Enter 1 to suspend processing a thread when the database server cannot write a record to the current audit file and should continue the write attempt until it succeeds.
- Enter 3 to shut down the database server.

**Using the -l Option**
This section discusses the values that you can enter for the -l audit mode option of onaudit.

The value 0 turns off auditing. The database server stops auditing for all existing sessions, and new sessions are not audited.

The other values all turn on auditing, as follows:

- 1 turns on database server-managed auditing for all sessions but does not automatically audit DBSSO and the DBSA actions.

```
UNIX Only

On UNIX, 2 turns on operating-system-managed auditing but does not automatically audit DBSSO or DBSA actions.
```

```
End of UNIX Only
```

- 3 turns on database server-managed auditing and automatically audits DBSSO actions.

```
UNIX Only

On UNIX, 4 turns on operating-system-managed auditing and automatically audits DBSSO actions.
```

```
End of UNIX Only
```

- 5 turns on database server-managed auditing and automatically audits DBSA actions.

```
UNIX Only
```
• On UNIX, 6 turns on operating-system-managed auditing and automatically audits DBSA actions.

End of UNIX Only

• 7 turns on database server-managed auditing and automatically audits DBSSO and DBSA actions.

UNIX Only

• On UNIX, 8 turns on operating-system-managed auditing and automatically audits DBSSO and DBSA actions.

End of UNIX Only

Specifying Auditing for Certain Utility Command Events (XPS)

Specifying Auditing for Certain Utility Events:

-x ADTADMMODE

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-x</td>
<td>Turns the setting of the ADTADMMODE configuration parameter on and off.</td>
<td>None.</td>
</tr>
</tbody>
</table>

For information about the ADTADMMODE configuration parameter, see “ADTADMMODE (XPS)” on page B-2.

The onshowaudit Utility

The onshowaudit utility lets you extract information from an audit trail. You can direct this utility to extract information for a particular user or database server or both. This information enables you to isolate a particular subset of data from a potentially large audit trail.

The records are formatted for output. By default, onshowaudit displays the extracted information on the screen. You can redirect the formatted output to a file or pipe and can specify that onshowaudit reformat the output so you can load it into an Informix database table.

The onshowaudit utility extracts data from an audit trail but does not process the records or delete them from the audit trail. Access the audit trail only with the onshowaudit utility, which has its own protection:

• With role separation off, only user informix (and user root on UNIX) can run onshowaudit.
• With role separation on, only the AAO can run onshowaudit.

---

**UNIX Only**

The UNIX command-line syntax for onshowaudit follows.

```
 onshowaudit [-f fpath] [-u username] [-s servername] [-I]
```

**Notes:**

1. Extended Parallel Server

---

**Windows Only**

The Windows command-line syntax for onshowaudit follows

```
 onshowaudit [-f path] [-ts] [-u username -s servername] [-I loadfile]
```

---

**Important:** If you include the -I option in your onshowaudit command, you must remove the six header lines that appear in the output file before you use that file as input for dbload or for an external file.

The following table identifies the syntax terms that can appear in an onshowaudit command line.

Any command-line options that you specify determine which part of the audit trail the onshowaudit utility uses.

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>On Windows, assumes the default values for the user (current user) and the database server (INFORMIXSERVER)</td>
<td>None</td>
</tr>
<tr>
<td>-f path</td>
<td>Specifies a specific audit trail to examine, only for database server-managed auditing</td>
<td>If this option is omitted, or if path is only a filename, see the notes that immediately follow this table.</td>
</tr>
<tr>
<td>-I</td>
<td>On UNIX, uses the Informix database server audit trail</td>
<td>None</td>
</tr>
<tr>
<td>Element</td>
<td>Purpose</td>
<td>Key Considerations</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>Directs <code>onshowaudit</code> to extract information with delimiters so that it can be redirected to a file or pipe and loaded into a database table or other application that accepts delimited data.</td>
<td>For information on the file format, see Chapter 3. For information on the <code>dbload</code> utility, see the IBM Informix Migration Guide. For information on loading data with external tables, see your IBM Informix Administrator’s Reference.</td>
</tr>
<tr>
<td><code>-O</code></td>
<td>On UNIX, uses the operating-system audit trail</td>
<td>None</td>
</tr>
<tr>
<td><code>-tf</code></td>
<td>On Windows, shows only failure audit records</td>
<td>None</td>
</tr>
<tr>
<td><code>-ts</code></td>
<td>On Windows, shows only success audit records</td>
<td>None</td>
</tr>
<tr>
<td><code>-s servername</code></td>
<td>Specifies the database server about which to extract audit information</td>
<td>None</td>
</tr>
<tr>
<td><code>-c coserverid</code></td>
<td>Specifies the coserver number for which to extract audit information</td>
<td>If omitted, information for all coservers is extracted (IBM Informix Extended Parallel Server Only)</td>
</tr>
<tr>
<td><code>-u username</code></td>
<td>Specifies the login name of a user about which to extract audit information</td>
<td>None</td>
</tr>
</tbody>
</table>

If `-f` is omitted, `onshowaudit` searches for audit files in the `ADTPATH` directory (set with the `onaudit` utility or in the `ADTCFG` file). The `onshowaudit` utility extracts data from all the audit files it finds that are in sequence, starting with the lowest integer.

The `-f path` option specifies the directory and filename of the audit files. The audit directory and filename must conform to minimum security levels. The directory should be owned by user `informix`, belong to that AAO group, and should not allow public access (0770 permission). The files should have comparable permissions (0660 permission). The files should not be symbolic links to other locations. The directory, however, can be a symbolic link. If the audit directory and files are not secure, `onshowaudit` returns an error message and does not display the audit results.

If an `incomplete pathname` (nothing but a filename) is specified, the `onshowaudit` utility searches the `ADTPATH` directory for that file and extracts audit data from it.

If a `complete pathname` is specified, the `onshowaudit` utility extracts audit data from the named file.
For information on the auditing configuration parameters in the ADTCFG file, see Appendix B.

The database server does not audit the execution of the onshowaudit utility.

Warning: Version 7.2 and later versions of the onshowaudit utility can parse and process the new and updated record structures for fragmented tables and indexes, which can span multiple partitions. If you use Version 7.2 or a later version of onshowaudit to analyze records that a database server prior to Version 7.0 created, you might receive inaccurate results. Version 7.2 and later versions of onshowaudit expect to find an additional field for fragmentation (partno) in certain audit records, but this field is absent in audit records prior to Version 7.0.

UNIX Only

When you use operating-system-managed auditing on UNIX, onshowaudit calls operating-system utilities to extract from the operating-system audit trail audit records that the Informix DBMS generates.

Important: It is recommended that the OSA always enable auditing for utilities that extract audit events from the operating-system audit trail.

End of UNIX Only
Appendix A. Audit Events

This appendix contains the following tables:

- Auditable events for each database server, listed alphabetically by event mnemonic
  

- Audit-event records and their fields
  Refer to “Audit-Event Fields” on page A-8

Important: The Dynamic Server secure-auditing facility audits only the events that this appendix lists. You might encounter additional SQL statements that the secure-auditing facility does not audit.

Audit-Event Mnemonics for IBM Informix Dynamic Server

This table contains an alphabetical list of audit-event mnemonics (event codes) mapped to the name of the event.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Event Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTB</td>
<td>Access Table</td>
</tr>
<tr>
<td>ADCK</td>
<td>Add Chunk</td>
</tr>
<tr>
<td>ADLG</td>
<td>Add Transaction Log</td>
</tr>
<tr>
<td>ALFR</td>
<td>Alter Fragment</td>
</tr>
<tr>
<td>ALIX</td>
<td>Alter Index</td>
</tr>
<tr>
<td>ALME</td>
<td>Alter Access Method</td>
</tr>
<tr>
<td>ALOC</td>
<td>Alter Operator Class</td>
</tr>
<tr>
<td>ALOP</td>
<td>Alter Optical Cluster</td>
</tr>
<tr>
<td>ALTB</td>
<td>Alter Table</td>
</tr>
<tr>
<td>BGTX</td>
<td>Begin Transaction</td>
</tr>
<tr>
<td>CLDB</td>
<td>Close Database</td>
</tr>
<tr>
<td>CMTX</td>
<td>Commit Transaction</td>
</tr>
<tr>
<td>CRAG</td>
<td>Create Aggregate</td>
</tr>
<tr>
<td>CRAM</td>
<td>Create Audit Mask</td>
</tr>
<tr>
<td>CRBS</td>
<td>Create Storage Space</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Event Name</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>CRBT</td>
<td>Create Opaque Type</td>
</tr>
<tr>
<td>CRCT</td>
<td>Create Cast</td>
</tr>
<tr>
<td>CRDB</td>
<td>Create Database</td>
</tr>
<tr>
<td>CRDM</td>
<td>Create Domain</td>
</tr>
<tr>
<td>CRDS</td>
<td>Create Dbspace</td>
</tr>
<tr>
<td>CRDT</td>
<td>Create Distinct Type</td>
</tr>
<tr>
<td>CRIX</td>
<td>Create Index</td>
</tr>
<tr>
<td>CRME</td>
<td>Create Access Method</td>
</tr>
<tr>
<td>CROC</td>
<td>Create Operator Class</td>
</tr>
<tr>
<td>CROP</td>
<td>Create Optical Cluster</td>
</tr>
<tr>
<td>CRRL</td>
<td>Create Role</td>
</tr>
<tr>
<td>CRRT</td>
<td>Create Named Row Type</td>
</tr>
<tr>
<td>CRSN</td>
<td>Create Synonym</td>
</tr>
<tr>
<td>CRSP</td>
<td>Create SPL Routine</td>
</tr>
<tr>
<td>CRTB</td>
<td>Create Table</td>
</tr>
<tr>
<td>CRTR</td>
<td>Create Trigger</td>
</tr>
<tr>
<td>CRVW</td>
<td>Create View</td>
</tr>
<tr>
<td>DLRW</td>
<td>Delete Row</td>
</tr>
<tr>
<td>DNCK</td>
<td>Bring Chunk Off-line</td>
</tr>
<tr>
<td>DNDM</td>
<td>Disable Disk Mirroring</td>
</tr>
<tr>
<td>DRAG</td>
<td>Drop Aggregate</td>
</tr>
<tr>
<td>DRAM</td>
<td>Delete Audit Mask</td>
</tr>
<tr>
<td>DRBS</td>
<td>Drop Storage Space</td>
</tr>
<tr>
<td>DRCK</td>
<td>Drop Chunk</td>
</tr>
<tr>
<td>DRCT</td>
<td>Drop Cast</td>
</tr>
<tr>
<td>DRDB</td>
<td>Drop Database</td>
</tr>
<tr>
<td>DRDM</td>
<td>Drop Domain</td>
</tr>
<tr>
<td>DRDS</td>
<td>Drop Dbspace</td>
</tr>
<tr>
<td>DRIX</td>
<td>Drop Index</td>
</tr>
<tr>
<td>DRLG</td>
<td>Drop Transaction Log</td>
</tr>
<tr>
<td>DRME</td>
<td>Drop Access Method</td>
</tr>
<tr>
<td>DROC</td>
<td>Drop Operator Class</td>
</tr>
<tr>
<td>DROP</td>
<td>Drop Optical Cluster</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Event Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>DRRL</td>
<td>Drop Role</td>
</tr>
<tr>
<td>DRRT</td>
<td>Drop Named Row Type</td>
</tr>
<tr>
<td>DRSN</td>
<td>Drop Synonym</td>
</tr>
<tr>
<td>DRSP</td>
<td>Drop SPL Routine</td>
</tr>
<tr>
<td>DRTB</td>
<td>Drop Table</td>
</tr>
<tr>
<td>DRTR</td>
<td>Drop Trigger</td>
</tr>
<tr>
<td>DRTY</td>
<td>Drop Type</td>
</tr>
<tr>
<td>DRVW</td>
<td>Drop View</td>
</tr>
<tr>
<td>EXSP</td>
<td>Execute SPL Routine</td>
</tr>
<tr>
<td>GRDB</td>
<td>Grant Database Access</td>
</tr>
<tr>
<td>GRDR</td>
<td>Grant Default Role</td>
</tr>
<tr>
<td>GRFR</td>
<td>Grant Fragment Access</td>
</tr>
<tr>
<td>GRRL</td>
<td>Grant Role</td>
</tr>
<tr>
<td>GRTB</td>
<td>Grant Table Access</td>
</tr>
<tr>
<td>INRW</td>
<td>Insert Row</td>
</tr>
<tr>
<td>LGDB</td>
<td>Change Database Log Mode</td>
</tr>
<tr>
<td>LKTB</td>
<td>Lock Table</td>
</tr>
<tr>
<td>LSAM</td>
<td>List Audit Masks</td>
</tr>
<tr>
<td>LSDB</td>
<td>List Databases</td>
</tr>
<tr>
<td>MDLG</td>
<td>Modify Transaction Logging</td>
</tr>
<tr>
<td>ONAU</td>
<td>onaudit</td>
</tr>
<tr>
<td>ONBR</td>
<td>onbar</td>
</tr>
<tr>
<td>ONCH</td>
<td>oncheck</td>
</tr>
<tr>
<td>ONIN</td>
<td>oninit</td>
</tr>
<tr>
<td>ONLG</td>
<td>onlog</td>
</tr>
<tr>
<td>ONLO</td>
<td>onload</td>
</tr>
<tr>
<td>ONMN</td>
<td>onmonitor</td>
</tr>
<tr>
<td>ONMO</td>
<td>onmode</td>
</tr>
<tr>
<td>ONPA</td>
<td>onparams</td>
</tr>
<tr>
<td>ONPL</td>
<td>onupload</td>
</tr>
<tr>
<td>ONSP</td>
<td>onspaces</td>
</tr>
<tr>
<td>ONST</td>
<td>onstat</td>
</tr>
<tr>
<td>ONTP</td>
<td>ontape</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Event Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ONUL</td>
<td>onunload</td>
</tr>
<tr>
<td>OPDB</td>
<td>Open Database</td>
</tr>
<tr>
<td>RDRW</td>
<td>Read Row</td>
</tr>
<tr>
<td>RLOP</td>
<td>Release Optical Cluster</td>
</tr>
<tr>
<td>RLTX</td>
<td>Rollback Transaction</td>
</tr>
<tr>
<td>RMCK</td>
<td>Clear Mirrored Chunks</td>
</tr>
<tr>
<td>RNDB</td>
<td>Rename Database</td>
</tr>
<tr>
<td>RNDS</td>
<td>Rename dbspace</td>
</tr>
<tr>
<td>RNTC</td>
<td>Rename Table/Column</td>
</tr>
<tr>
<td>RSOP</td>
<td>Reserve Optical Cluster</td>
</tr>
<tr>
<td>RVDB</td>
<td>Revoke Database Access</td>
</tr>
<tr>
<td>RVFR</td>
<td>Revoke Fragment Access</td>
</tr>
<tr>
<td>RVRL</td>
<td>Revoke Role</td>
</tr>
<tr>
<td>RVTB</td>
<td>Revoke Table Access</td>
</tr>
<tr>
<td>SCSP</td>
<td>SYSTEM Command, SPL Routine</td>
</tr>
<tr>
<td>SEOP</td>
<td>SET ENVIRONMENT OPTCOMPIND &lt;value&gt;</td>
</tr>
<tr>
<td>STCN</td>
<td>Set Constraint</td>
</tr>
<tr>
<td>STDF</td>
<td>Set Debug File</td>
</tr>
<tr>
<td>STDP</td>
<td>Set Database Password</td>
</tr>
<tr>
<td>STDQ</td>
<td>Set Dataskip</td>
</tr>
<tr>
<td>STIL</td>
<td>Set Isolation Level</td>
</tr>
<tr>
<td>STLM</td>
<td>Set Lock Mode</td>
</tr>
<tr>
<td>STOM</td>
<td>Set Object Mode</td>
</tr>
<tr>
<td>STOP</td>
<td>Stop Statement</td>
</tr>
<tr>
<td>STPR</td>
<td>Set Pdqpriority</td>
</tr>
<tr>
<td>STRL</td>
<td>Set Role</td>
</tr>
<tr>
<td>STRS</td>
<td>Set Resident</td>
</tr>
<tr>
<td>STRT</td>
<td>Start Statement</td>
</tr>
<tr>
<td>STSA</td>
<td>Set Session Authorization</td>
</tr>
<tr>
<td>STSC</td>
<td>Set Statement Cache</td>
</tr>
<tr>
<td>STSN</td>
<td>Start New Session</td>
</tr>
<tr>
<td>STTX</td>
<td>Set Transaction Mode</td>
</tr>
</tbody>
</table>
### Audit-Event Mnemonics for IBM Informix Extended Parallel Server

This table contains an alphabetical list of audit-event mnemonics (event codes) mapped to the name of the event.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Event Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASSL</td>
<td>Alter Logslice Add Logs</td>
</tr>
<tr>
<td>AASS</td>
<td>Alter Dbslice Add Dbspace</td>
</tr>
<tr>
<td>ACTB</td>
<td>Access Table</td>
</tr>
<tr>
<td>ADCK</td>
<td>Add Chunk</td>
</tr>
<tr>
<td>ADLG</td>
<td>Add Transaction Log</td>
</tr>
<tr>
<td>ALFR</td>
<td>Alter Fragment</td>
</tr>
<tr>
<td>ALME</td>
<td>Alter Access Method</td>
</tr>
<tr>
<td>ALT B</td>
<td>Alter Table</td>
</tr>
<tr>
<td>BGTX</td>
<td>Begin Transaction</td>
</tr>
<tr>
<td>CLDB</td>
<td>Close Database</td>
</tr>
<tr>
<td>CM TX</td>
<td>Commit Transaction</td>
</tr>
<tr>
<td>CRAM</td>
<td>Create Audit Mask</td>
</tr>
<tr>
<td>CRBT</td>
<td>Create Opaque Type</td>
</tr>
<tr>
<td>CRC G</td>
<td>Create Cogroup</td>
</tr>
<tr>
<td>CR CT</td>
<td>Create Cast</td>
</tr>
<tr>
<td>CR DB</td>
<td>Create Database</td>
</tr>
<tr>
<td>CR DS</td>
<td>Create Dbspace</td>
</tr>
<tr>
<td>CR DT</td>
<td>Create Distinct Type</td>
</tr>
<tr>
<td>C RIX</td>
<td>Create Index</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Event Name</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>CRLS</td>
<td>Create Logical Logslice</td>
</tr>
<tr>
<td>CRME</td>
<td>Create Access Method</td>
</tr>
<tr>
<td>CRSL</td>
<td>Create Dbslice</td>
</tr>
<tr>
<td>CRSN</td>
<td>Create Synonym</td>
</tr>
<tr>
<td>CRSP</td>
<td>Create SPL Routine</td>
</tr>
<tr>
<td>CRTB</td>
<td>Create Table</td>
</tr>
<tr>
<td>CRTR</td>
<td>Create Trigger</td>
</tr>
<tr>
<td>CRVW</td>
<td>Create View</td>
</tr>
<tr>
<td>DLRW</td>
<td>Delete Row</td>
</tr>
<tr>
<td>DNCK</td>
<td>Bring Chunk Off-line</td>
</tr>
<tr>
<td>DNDM</td>
<td>Disable Disk Mirroring</td>
</tr>
<tr>
<td>DPPG</td>
<td>Display Page</td>
</tr>
<tr>
<td>DRAM</td>
<td>Delete Audit Mask</td>
</tr>
<tr>
<td>DRCG</td>
<td>Drop Cogroup</td>
</tr>
<tr>
<td>DRCK</td>
<td>Drop Chunk</td>
</tr>
<tr>
<td>DRDB</td>
<td>Drop Database</td>
</tr>
<tr>
<td>DRDS</td>
<td>Drop Dbspace</td>
</tr>
<tr>
<td>DRIIX</td>
<td>Drop Index</td>
</tr>
<tr>
<td>DRLL</td>
<td>Drop Logical Log</td>
</tr>
<tr>
<td>DRLS</td>
<td>Drop Logical Logslice</td>
</tr>
<tr>
<td>DRSL</td>
<td>Drop Dbslice</td>
</tr>
<tr>
<td>DRSN</td>
<td>Drop Synonym</td>
</tr>
<tr>
<td>DRSP</td>
<td>Drop SPL Routine</td>
</tr>
<tr>
<td>DRTB</td>
<td>Drop Table</td>
</tr>
<tr>
<td>DRTR</td>
<td>Drop Trigger</td>
</tr>
<tr>
<td>DRVW</td>
<td>Drop View</td>
</tr>
<tr>
<td>EXSP</td>
<td>Execute SPL Routine</td>
</tr>
<tr>
<td>GRDB</td>
<td>Grant Database Access</td>
</tr>
<tr>
<td>GRTB</td>
<td>Grant Table Access</td>
</tr>
<tr>
<td>INRW</td>
<td>Insert Row</td>
</tr>
<tr>
<td>LKTB</td>
<td>Lock Table</td>
</tr>
<tr>
<td>LSAM</td>
<td>List Audit Masks</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Event Name</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>LSDB</td>
<td>List Databases</td>
</tr>
<tr>
<td>MDLG</td>
<td>Modify Transaction Logging</td>
</tr>
<tr>
<td>ONAU</td>
<td>onaudit</td>
</tr>
<tr>
<td>ONIN</td>
<td>oninit</td>
</tr>
<tr>
<td>ONLG</td>
<td>onlog</td>
</tr>
<tr>
<td>ONMO</td>
<td>onmode</td>
</tr>
<tr>
<td>ONST</td>
<td>onstat</td>
</tr>
<tr>
<td>OPDB</td>
<td>Open Database</td>
</tr>
<tr>
<td>RDRW</td>
<td>Read Row</td>
</tr>
<tr>
<td>RLTX</td>
<td>Rollback Transaction</td>
</tr>
<tr>
<td>RNDB</td>
<td>Rename Database</td>
</tr>
<tr>
<td>RNTC</td>
<td>Rename Table/Column</td>
</tr>
<tr>
<td>RVDB</td>
<td>Revoke Database Access</td>
</tr>
<tr>
<td>RVDR</td>
<td>Revoke Default Role</td>
</tr>
<tr>
<td>RVTB</td>
<td>Revoke Table Access</td>
</tr>
<tr>
<td>SCSP</td>
<td>SYSTEM Command, SPL Routine</td>
</tr>
<tr>
<td>SLCT</td>
<td>Select</td>
</tr>
<tr>
<td>STCN</td>
<td>Set Constraint</td>
</tr>
<tr>
<td>STDF</td>
<td>Set Debug File</td>
</tr>
<tr>
<td>STDG</td>
<td>Set Dataskip</td>
</tr>
<tr>
<td>STEX</td>
<td>Set Explain</td>
</tr>
<tr>
<td>STIL</td>
<td>Set Isolation Level</td>
</tr>
<tr>
<td>STLM</td>
<td>Set Lock Mode</td>
</tr>
<tr>
<td>STOP</td>
<td>Stop Statement</td>
</tr>
<tr>
<td>STPR</td>
<td>Set Pdqpriority</td>
</tr>
<tr>
<td>STRT</td>
<td>Start Statement</td>
</tr>
<tr>
<td>STSN</td>
<td>Start New Session</td>
</tr>
<tr>
<td>STTX</td>
<td>Set Transaction Mode</td>
</tr>
<tr>
<td>TCTB</td>
<td>Truncate Table</td>
</tr>
<tr>
<td>UTLB</td>
<td>Unlock Table</td>
</tr>
<tr>
<td>UPAM</td>
<td>Update Audit Mask</td>
</tr>
<tr>
<td>UPCK</td>
<td>Bring Chunk Online</td>
</tr>
<tr>
<td>UPDM</td>
<td>Enable Disk Mirroring</td>
</tr>
</tbody>
</table>
Mnemonic | Event Name
---------|-------------
UPRW     | Update Row
USTB     | Update Statistics, Table

Audit-Event Fields

The following table lists audit-event information in alphabetic order by mnemonic code. All events appear in this list, both Dynamic Server events and Extended Parallel Server events.

The list shows the audit-event information that is captured in tabular form by the `onshowaudit` utility for audit analysis:

- The Event column shows the event name.
- The Mnemonic column lists the acronym that database server utilities use to identify audit events.
- The remaining columns `dbname`, `tabid`, `objname`, `extra_1`, `partno`, `row_num`, `login`, `flags`, and `extra_2` have variable contents, depending on which event a row represents.

For some events, the `onshowaudit` utility puts two different pieces of information in the `extra_2` field. In this case, the two parts are separated by a semicolon.

Tip: Granted lists can be long for SQL statements such as GRANT and REVOKE. If the list for an event to be audited does not fit into a single record, the database server creates several audit records to carry the complete information.
<table>
<thead>
<tr>
<th>Event</th>
<th>Mnemonic</th>
<th>dbname</th>
<th>tabid</th>
<th>objname</th>
<th>extra_1</th>
<th>partno</th>
<th>row_num</th>
<th>login</th>
<th>flags</th>
<th>extra_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter Logslice, Add Logs</td>
<td>AASL</td>
<td>slicename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter Dbslice Add Dbspace</td>
<td>AASS</td>
<td>slicename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mirror</td>
</tr>
<tr>
<td>Access Table</td>
<td>ACTB</td>
<td>dbname</td>
<td>owner name, tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>status</td>
</tr>
<tr>
<td>Chunk, Add</td>
<td>ADCK</td>
<td>dbspace name</td>
<td></td>
<td></td>
<td>offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>path and size</td>
</tr>
<tr>
<td>Transaction Log, Add</td>
<td>ADLG</td>
<td>dbspace name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log size</td>
</tr>
<tr>
<td>Alter Fragment</td>
<td>ALFR</td>
<td>dbname</td>
<td>tabid</td>
<td>idbname</td>
<td>operation typ</td>
<td></td>
<td></td>
<td>owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index, Alter</td>
<td>ALIX</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td>cluster</td>
<td></td>
</tr>
<tr>
<td>Access Method, Alter</td>
<td>ALME</td>
<td>dbname</td>
<td>access method ID</td>
<td>access method name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Class, Alter</td>
<td>ALOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Cluster, Alter</td>
<td>ALOP</td>
<td>dbname</td>
<td>cluster size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td>cluster name</td>
<td></td>
</tr>
<tr>
<td>Table, Alter</td>
<td>ALTB</td>
<td>dbname</td>
<td>old tabid</td>
<td>new tabid</td>
<td></td>
<td></td>
<td>frag_id</td>
<td></td>
<td></td>
<td>new part-nolist</td>
</tr>
<tr>
<td>Transaction, Begin</td>
<td>BGTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database, Close</td>
<td>CLDB</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transaction, Commit</td>
<td>CMTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate, Create</td>
<td>CRAG</td>
<td>dbname</td>
<td>aggregate name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit Mask, Create</td>
<td>CRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>user id</td>
<td></td>
</tr>
<tr>
<td>Storage Space, Create</td>
<td>CRBS</td>
<td>storage space name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td>mirror status</td>
<td>media</td>
</tr>
<tr>
<td>Opaque Type, Create</td>
<td>CRBT</td>
<td>dbname</td>
<td>opaque type name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>opaque type</td>
<td>owner</td>
<td></td>
</tr>
<tr>
<td>Create Cogroup</td>
<td>CRCG</td>
<td>cogroup name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coserver range</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Mnemonic</td>
<td>dbname</td>
<td>tabid</td>
<td>objname</td>
<td>extra_1</td>
<td>partno</td>
<td>row_num</td>
<td>login</td>
<td>flags</td>
<td>extra_2</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Cast, Create</td>
<td>CRCT</td>
<td>dbname</td>
<td>type</td>
<td>name</td>
<td>function</td>
<td>to</td>
<td>type</td>
<td>owner</td>
<td>or</td>
<td>&quot;&quot;</td>
</tr>
<tr>
<td>Database Create</td>
<td>CRDB</td>
<td>dbname</td>
<td></td>
<td></td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td>CRCS</td>
<td>dbname</td>
<td></td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain, Create</td>
<td>CRDM</td>
<td>dbname</td>
<td></td>
<td></td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distinct Type, Create</td>
<td>CRDT</td>
<td>dbname</td>
<td>tabid</td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index, Create</td>
<td>CRIX</td>
<td>dbname</td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Log Create</td>
<td>CRLL</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Log Slice Create</td>
<td>CRLS</td>
<td>dbname</td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Class, Create</td>
<td>CROC</td>
<td>dbname</td>
<td></td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Cluster, Create</td>
<td>CROP</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role, Create</td>
<td>CRRL</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Type, Create</td>
<td>CRRT</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Delete, Delete</td>
<td>DLRW</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row Update, Delete</td>
<td>DLRW</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row, Delete</td>
<td>DLRW</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL Routine, Create</td>
<td>CRSP</td>
<td>dbname</td>
<td>proc. id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table, Create</td>
<td>CRTB</td>
<td>dbname</td>
<td></td>
<td></td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger, Create</td>
<td>CRTR</td>
<td>dbname</td>
<td></td>
<td></td>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View, Create</td>
<td>CRVW</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-10  IBM Informix Trusted Facility Guide
<table>
<thead>
<tr>
<th>Event</th>
<th>Mnemonic</th>
<th>dbname</th>
<th>tabid</th>
<th>objname</th>
<th>extra_1</th>
<th>partno</th>
<th>row_num</th>
<th>login</th>
<th>flags</th>
<th>extra_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chunk, Bring</td>
<td>DNCK</td>
<td></td>
<td></td>
<td></td>
<td>chunk number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-line</td>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td>DNDM</td>
<td></td>
<td></td>
<td></td>
<td>dbspace number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirroring, Disable</td>
<td></td>
</tr>
<tr>
<td>Display Page</td>
<td>DPPG</td>
<td></td>
<td></td>
<td></td>
<td>page-num</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate, Drop</td>
<td>DRAG</td>
<td>dbname</td>
<td></td>
<td>aggregate name</td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit Mask, Delete</td>
<td>DRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>user id</td>
</tr>
<tr>
<td>Storage Space, Drop</td>
<td>DRRS</td>
<td></td>
<td></td>
<td>storage space name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cogroup, Drop</td>
<td>DRCG</td>
<td></td>
<td></td>
<td>cogroup name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chunk, Drop</td>
<td>DRCK</td>
<td>dbspace name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mirror status</td>
<td>path</td>
<td></td>
</tr>
<tr>
<td>Cast, Drop</td>
<td>DRCT</td>
<td>dbname</td>
<td></td>
<td>type ID of from type</td>
<td>xid of the from type</td>
<td>type of the to type</td>
<td>xid of the to type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database, Drop</td>
<td>DRDB</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain, Drop</td>
<td>DRDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dbspace, Drop</td>
<td>DRDS</td>
<td>dbspace name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index, Drop</td>
<td>DRIX</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td></td>
<td>index name</td>
</tr>
<tr>
<td>Transaction Log, Drop</td>
<td>DRLG</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>log number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Log, Drop</td>
<td>DRLL</td>
<td></td>
<td></td>
<td></td>
<td>logid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Logslice, Drop</td>
<td>DRLS</td>
<td>logslice name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Method, Drop</td>
<td>DRME</td>
<td>dbname</td>
<td></td>
<td>access method ID</td>
<td>access method name</td>
<td>access method name</td>
<td>access method owner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Class, Drop</td>
<td>DROC</td>
<td>dbname</td>
<td></td>
<td>operator class name</td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Cluster, Drop</td>
<td>DROP</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>owner</td>
<td></td>
<td>cluster name</td>
</tr>
<tr>
<td>Role, Drop</td>
<td>DRRL</td>
<td>dbname</td>
<td></td>
<td>rolename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Mnemonic</td>
<td>dbname</td>
<td>tabid</td>
<td>objname</td>
<td>extra_1</td>
<td>partno</td>
<td>row_num</td>
<td>login</td>
<td>flags</td>
<td>extra_2</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Named Row Type, Drop</td>
<td>DRRT</td>
<td>dbname</td>
<td>xid of dropped type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dbslice, Drop</td>
<td>DRSL</td>
<td>dbslice name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synonym, Drop</td>
<td>DRSN</td>
<td>dbname</td>
<td>syn. tabid</td>
<td>owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL Routine, Drop</td>
<td>DRSP</td>
<td>dbname</td>
<td>proc. id</td>
<td>owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table, Drop</td>
<td>DRTB</td>
<td>dbname</td>
<td>tabid</td>
<td>tabname</td>
<td>owner</td>
<td>drop-flag</td>
<td></td>
<td></td>
<td>partlist</td>
<td></td>
</tr>
<tr>
<td>Trigger, Drop</td>
<td>DRTR</td>
<td>dbname</td>
<td></td>
<td>trigger id</td>
<td>owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type, Drop</td>
<td>DRTY</td>
<td>dbname</td>
<td></td>
<td>type name</td>
<td>type</td>
<td>owner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View, Drop</td>
<td>DRVW</td>
<td>dbname</td>
<td>view</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL Routine, Execute</td>
<td>EXSP</td>
<td>dbname</td>
<td>proc. id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Database Access</td>
<td>GRDB</td>
<td>dbname</td>
<td></td>
<td>privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Default Role</td>
<td>GRDB</td>
<td>dbname</td>
<td></td>
<td>privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Fragment Access</td>
<td>GRFR</td>
<td>dbname</td>
<td>tabid</td>
<td>fragment</td>
<td>privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Role</td>
<td>GRRR</td>
<td>dbname</td>
<td></td>
<td>rolename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant Table Access</td>
<td>GRTB</td>
<td>dbname</td>
<td>tabid</td>
<td>privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row, Insert</td>
<td>INRW</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td>frag_id</td>
<td>rowid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database Log Mode, Change</td>
<td>LGDB</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td>log status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table, Lock</td>
<td>LKTB</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td>lock mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit Masks, List</td>
<td>LSAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Databases, List</td>
<td>LSDB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modify Transaction Logging</td>
<td>MDLG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>buffered log flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Mnemonic</td>
<td>dbname</td>
<td>tabid</td>
<td>objname</td>
<td>extra_1</td>
<td>partno</td>
<td>row_num</td>
<td>login</td>
<td>flags</td>
<td>extra_2</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>onaudit</td>
<td>ONAU</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onbar</td>
<td>ONBAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oncheck</td>
<td>ONCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oninit</td>
<td>ONIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onlog</td>
<td>ONLG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onload</td>
<td>ONLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onmonitor</td>
<td>ONMN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onmode</td>
<td>ONMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onparams</td>
<td>ONPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onupload</td>
<td>ONPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onspaces</td>
<td>ONSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ontape</td>
<td>ONTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onunload</td>
<td>ONUL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database, Open</td>
<td>OPDB</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row, Read</td>
<td>RDRW</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td>partno</td>
<td>frag_id</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Cluster, Release</td>
<td>RLOP</td>
<td>family name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transaction, Rollback</td>
<td>RLTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chunks, Clear Mirrored</td>
<td>RMCK</td>
<td></td>
<td>dbspace number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rename Database</td>
<td>RNDB</td>
<td>dbname</td>
<td>new dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rename dbspace</td>
<td>RNDS</td>
<td>dbname</td>
<td>new dbspace name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table/ Column, Rename</td>
<td>RNTC</td>
<td>dbname</td>
<td>tabid</td>
<td>new tab/ colname</td>
<td>colno(*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Cluster, Reserve</td>
<td>RSOP</td>
<td>family name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Appendix A. Audit Events
A-13
<table>
<thead>
<tr>
<th>Event</th>
<th>Mnemonic</th>
<th>dbname</th>
<th>tabid</th>
<th>objname</th>
<th>extra_1</th>
<th>partno</th>
<th>row_num</th>
<th>login</th>
<th>flags</th>
<th>extra_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revoke Database Access</td>
<td>RVDB</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revoke Default Role</td>
<td>RVDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revoke Fragment Access</td>
<td>RVFR</td>
<td>dbname</td>
<td>tabid</td>
<td>fragment</td>
<td>privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revoke Role</td>
<td>RVRL</td>
<td>dbname</td>
<td>tabid</td>
<td>rolename</td>
<td></td>
<td>revoker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revoke Table Access</td>
<td>RVTB</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td>privilege</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL Routine, System Command</td>
<td>SCSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>command string</td>
</tr>
<tr>
<td>SET ENVIRONMENT OPTCOMPIND</td>
<td>SHOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td>SLCT</td>
<td></td>
<td>typ</td>
<td></td>
<td></td>
<td>serial numbers</td>
<td>query content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constraint, Set</td>
<td>STCN</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>constraint mode</td>
</tr>
<tr>
<td>Set Debug File</td>
<td>STDF</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>constraint names</td>
</tr>
<tr>
<td>Set Database Password</td>
<td>STDP</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>file path</td>
</tr>
<tr>
<td>Set Dataaskip</td>
<td>STD5</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>user id</td>
</tr>
<tr>
<td>Set Explain</td>
<td>STEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>skip flag dbspacelist</td>
</tr>
<tr>
<td>Isolation Level, Set</td>
<td>STIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>isolation level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Lock Mode</td>
<td>STLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wait flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Object Mode</td>
<td>STOM</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td>command mode flag</td>
<td>object names</td>
<td>object typeflag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop Statement</td>
<td>STOP</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Pdgpriority</td>
<td>STPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>prelev</td>
<td></td>
</tr>
<tr>
<td>Set Role</td>
<td>STRL</td>
<td>dbname</td>
<td>rolename</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Resident</td>
<td>STRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Mnemonic</td>
<td>dbname</td>
<td>tabid</td>
<td>objname</td>
<td>extra_1</td>
<td>partno</td>
<td>row_num</td>
<td>login</td>
<td>flags</td>
<td>extra_2</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Start Statement</td>
<td>STRT</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td>Vio_tid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dia_tid</td>
</tr>
<tr>
<td>Set Session Authorization</td>
<td>STSA</td>
<td>dbname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>new</td>
<td>username</td>
</tr>
<tr>
<td>Set Statement Cache</td>
<td>STSC</td>
<td>dbname</td>
<td></td>
<td>statement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>name</td>
</tr>
<tr>
<td>Start New Session</td>
<td>STSN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Transaction Mode</td>
<td>STTX</td>
<td></td>
<td></td>
<td></td>
<td>operation</td>
<td>mode</td>
<td></td>
<td></td>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>Truncate Table</td>
<td>TCTB</td>
<td>dbname</td>
<td>tabid</td>
<td>tabname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Cluster, Time</td>
<td>TMOP</td>
<td>dbname</td>
<td>tabid</td>
<td>tabname</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>time</td>
<td>flags</td>
</tr>
<tr>
<td>Table, Unlock</td>
<td>ULTB</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit Mask, Update</td>
<td>UPAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>user id</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chunk, Bring Online</td>
<td>UPCK</td>
<td></td>
<td></td>
<td></td>
<td>chunk</td>
<td>number</td>
<td></td>
<td></td>
<td></td>
<td>flags</td>
</tr>
<tr>
<td>Disk Mirroring, Enable</td>
<td>UPDM</td>
<td></td>
<td></td>
<td></td>
<td>dbspace</td>
<td>number</td>
<td></td>
<td></td>
<td>mirerr</td>
<td>status</td>
</tr>
<tr>
<td>Row, Update Current</td>
<td>UPRW</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td>old partno</td>
<td>old rowid</td>
<td>new rowid</td>
<td>new partno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL, Routine, Update Statistics</td>
<td>USSP</td>
<td>dbname</td>
<td>proc. id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table, Update Statistics</td>
<td>USTB</td>
<td>dbname</td>
<td>tabid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTES:

1. Mirror Status:
   0  Not mirrored
   1  Mirrored
2. Buffered Log Flag:
   0  Buffering turned off
   1  Buffering turned on
3. Isolation Level:
   0  No transactions
   1  Dirty Read
   2  Committed Read
   3  Cursor Stability
   5  Repeatable Read
4. Grantees, Revokees, Select Columns, Update Columns:
   These can be lists of comma-separated names. If longer than 166 characters, the audit processing described in "Audit Analysis with SQL" on page 3-5 truncates the lists to 166 characters.
5. Database Privileges:
   Table-Level Privileges:
   1  Select
   2  Insert
   4  Delete
   8  Update
   16  Alter
   32  Index
   64  Reference
   4096 Execute Procedure (When Grant privilege is executed. tabid refers to the procedure ID.)
   Database-Level Privileges:
   256  Connect
   512  DBA
   1024  Resource
6. Log Status:
   1  Logging on
   2  Buffered logging
   4  ANSI-compliant
7. Synonym Type:
   0  Private
   1  Public
8. Lock Mode:
   0  Exclusive
   1  Shared
9. Cluster Flag:
0    Not cluster
1    Cluster

10. Chunk Flag:
    0    Check root reserve size
    1    Check entire chunk
    <0  Check silently

11. Constraint Mode:
    0    Deferred
    1    Immediate

12. Explain Flag:
    0    Explain turned off
    1    Explain turned on

13. Wait Flag:
    -1    Wait forever
    0    Do not wait
    >0   Waiting period (in seconds)

14. If the user request is turned down because of the authorization, those
    fields are either 0 or blank, depending on the data type.

15. Fragmentation Flag:
    0    Not fragmented
    1    In dbspace
    2    Fragment by round robin
    4    Fragment by expression
    8    Fragment same as table

16. Skip Flag:
    0    DATASKIP for all the dbspaces is turned OFF
    1    DATASKIP for the following dbspaces is turned ON
    2    DATASKIP for all the dbspaces is turned ON
    3    DATASKIP is set to the default

17. Priority Level:
    -1   PDQPRIOIRITY is set to the default
    0   PDQPRIOIRITY is turned OFF
    1   PDQPRIOIRITY is LOW
    100 PDQPRIOIRITY is HIGH
    n   any other positive integer less than 100 that the user entered in the
         SET PDQPRIOIRITY statement

18. Operation Type:
    4    Add a new fragment
    8    Modify fragmentation
    16   Drop a fragment
    32   Initialize fragmentation
    64   Attach table(s)
    128  Detach fragment
19. Mode Flag:
   0  Read/Write if operation is Set Access Mode; Dirty Read if operation is Set Isolation Level
   1  Read-only if operation is Set Access Mode; Committed Read if operation is Set Isolation Level
   2  Cursor Stability
   3  Repeatable Read

20. Operation:
   0  Set Access Mode
   1  Set Isolation Level

21. Dropflags:
   0  Cascade
   1  Restrict

22. Command Mode Flag:
   1  Disabled
   2  Filtering without error
   4  Filtering with error
   8  Enabled

23. Object Type Flag:
   1  Constraint
   2  Index
   3  Constraints and indexes
   4  Trigger
   5  Triggers and constraints
   6  Triggers and indexes
   7  All

24. Type: 0 singleton select; 1 cursor select. For singleton select: a successful event means one row is selected and returned; for cursor select, a successful event indicates a cursor has been opened successfully.

25. The flags field records the serial number for the current record within the multiple records created for one single event. These serial numbers range from 1 and up for each set of records and explicitly identify the order of the audit records that resulted from one single SELECT event. They are useful when you load the audit trail into a database for analysis. See Table 3-2 on page 3-3 for an example.

26. The extra_2 field has a limited size of 160 bytes. The query content can be long, and continuous multiple audit records will be created in the audit trail to carry complete information when necessary.
Appendix B. The ADTCFG File

This appendix contains a list of the configuration parameters in the ADTCFG file and a short discussion of each configuration parameter.

ADTCFG Configuration Parameters

In the discussions in this appendix, each configuration parameter has one or more of the following attributes (depending on their relevance):

- **default value**: Default value that appears in the adtcfg.std file
- **if not present**: Value that is supplied if the parameter is missing from your ADTCFG file
- **units**: Units in which the parameter is expressed
- **separators**: Separators that can be used when the parameter value has several parts. Do not use white space within a parameter value
- **range of values**: Valid values for this parameter
- **takes effect**: Time at which a change to the value of the parameter actually affects the operation of the database server
- **utility**: Name of the command-line utility that you can use to change the value of the parameter
- **refer to**: Cross-reference to further discussion

ADTCFG File Conventions

The UNIX file $INFORMIXDIR/aaodir/adtcfg or the Windows file %INFORMIXDIR%\aaodir\adtcfg is called the ADTCFG configuration file or simply the ADTCFG file. In the ADTCFG file, each parameter is on a separate line. The file can also contain blank lines and comment lines that start with a pound (#) symbol. The syntax of a parameter line is as follows:

```
PARAMETER_NAME parameter_value # comment
```

Parameters and their values in the ADTCFG file are case sensitive. The parameter names are always in uppercase letters. You must put white space (tabs, spaces, or both) between the parameter name, parameter value, and optional comment. Do not use any tabs or spaces within a parameter value.

For information about additional Dynamic Server configuration parameters, see the IBM Informix: Administrator's Reference.
ADTADMMODE (XPS)

**default value** 0

**range of values** 0, 1

0 = ADTADMMODE is off.
ONIN (oninit), ONMO (onmode), and ONST (onstat) events are not audited even if they are specified in a user mask.

1 = ADTADMMODE is on.
ONIN (oninit), ONMO (onmode), and ONST (onstat) events are audited for all users even if they are not specified in a user mask.

**takes effect** When onaudit is run to change the value or after shared memory is initialized. ADTMODE must be nonzero (auditing is on). See "ADTMODE" on page B-3

**utility** onaudit (onaudit -x adtadmmode)

For Extended Parallel Server only, ADTADMMODE specifies whether three of the database server utility-command events are audited. The user mask does not determine whether these events are audited.

ADTERR

**default value** 0

**range of values** 0, 1, 3

0 = *continue* error mode
When it encounters an error as it writes an audit record, the database server writes a message of the failure into the message log. It continues to process the thread.

1 = *halt* error mode: suspend thread processing
When the database server encounters an error as it writes an audit record, the database server suspends processing of the thread until it successfully writes a record.

3 = *halt* error mode: shut down system
When the database server encounters an error as it writes an audit record, the database server shuts down.

**takes effect** When onaudit is run to change the value or after shared memory is initialized. ADTMODE must be nonzero (auditing is on).
utility onaudit (onaudit -e errormode)

ADTERR specifies how the database server behaves when it encounters an error while it writes an audit record.

### ADTMODE

default value 0

range of values 0 through 8

- 0 = auditing disabled
- 1 = database server-managed auditing on; starts auditing for all sessions
- 2 = operating-system-managed auditing on (UNIX only)
- 3 = database server-managed auditing on; audits DBSSO actions
- 4 = operating-system-managed auditing on; audits DBSSO actions (UNIX only)
- 5 = database server-managed auditing on; audits database server administrator actions
- 6 = operating-system-managed auditing on; audits database server administrator actions (UNIX only)
- 7 = database server-managed auditing on; audits DBSSO and database server administrator actions
- 8 = operating-system-managed auditing on; audits DBSSO and database server administrator actions (UNIX only)

takes effect When onaudit is run to change the value or after shared memory is initialized

utility onaudit (onaudit -l auditmode)

ADTMODE controls whether the database server or the operating system manages auditing of user actions on UNIX.

### ADTPATH

default value /tmp (on UNIX), %informixdir%\aaodir (on Windows)

range of values Any valid directory path

takes effect When onaudit is run to change the value or after shared memory is initialized
utility onaudit (onaudit -p auditdir)

ADTPATH specifies the directory in which the database server saves audit files. Make sure that the directory that you specify has appropriate access privileges to prevent unauthorized use of audit records.

To change the ADTPATH value with onaudit, database server-managed auditing must be on.

---- Extended Parallel Server ----

For Extended Parallel Server, the path you specify must exist on each node that hosts a coserver. Audit files are stored locally on each coserver, as described in "Location of Audit Files" on page 1-15 The database server creates subdirectories for audit files in the path that you specify.

End of Extended Parallel Server

--- ADTSIZE ---

default value 10, 240

units Bytes

range of values Between 10,240 bytes and approximately 2 gigabytes (the maximum value of a 32-bit integer)

takes effect When onaudit is run to change the value or after shared memory is initialized

utility onaudit (onaudit -s maxsize)

ADTSIZE specifies the maximum size of an audit file. When a file reaches the maximum size, the database server saves the audit file and creates a new one. This parameter applies only to database server-managed auditing.
Appendix C. Accessibility

The syntax diagrams in the HTML version of this manual are available in dotted decimal syntax format, which is an accessible format that is available only if you are using a screen reader.

Dotted Decimal Syntax Diagrams

In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), the elements can appear on the same line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that your screen reader is set to read punctuation. All syntax elements that have the same dotted decimal number (for example, all syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, the word or symbol is preceded by the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is read as 3 \* FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol that provides information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements...
must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the $ symbol, this identifies a reference that is defined elsewhere. The string following the $ symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 $P1 means that you should refer to a separate syntax fragment $P1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed by the ? symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element (for example, 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicates that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this example, if you include the FILE keyword but do not specify an option, default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data-area, you know that you can include more than one data area or
you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:
1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you could write HOST STATE, but you could not write HOST HOST.
3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

+ Specifies a syntax element that must be included one or more times. A dotted decimal number followed by the + symbol indicates that this syntax element must be included one or more times. For example, if you hear the line 6.1+ data-area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. As for the * symbol, you can only repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loop-back line in a railroad syntax diagram.
IBM may not offer the products, services, or features discussed in this document in all countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.
Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix®; C-ISAM®, Foundation.2000™; IBM Informix® 4GL; IBM Informix®DataBlade® Module; Client SDK™; Cloudscape™; Cloudsync™; IBM Informix®Connect; IBM Informix®Driver for JDBC; Dynamic Connect™; IBM Informix®Dynamic Scalable Architecture™ (DSA); IBM Informix®Dynamic Server™; IBM Informix®Enterprise Gateway Manager (Enterprise Gateway Manager); IBM Informix®Extended Parallel Server™; i.Financial Services™; J/Foundation™; MaxConnect™; Object Translator™; Red Brick™; IBM Informix® SE; IBM Informix® SQL; InformiXML™; RedBack®; SystemBuilder™; U2™; UniData®; UniVerse®; wintegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.
Index

A

AAO.
See Audit analysis officer.
aaodir directory 1-17, 2-4
Access privileges, Windows 1-24, 2-2, 2-4
Access to audit trail, controlling 1-19, 1-21, 3-6
Accessibility xx
dotted decimal format of syntax diagrams C-1
syntax diagrams, reading in a screen reader C-1
Adding audit masks 2-12
Administrative roles
audit analysis officer 2-3
database administrator 2-4
database server administrator 2-2
database system security officer 2-2
listed 1-6
operating-system administrator 2-4
Administrator
audit analysis officer 2-3
database 2-4
database server 2-2
database system security officer 2-2
operating system 2-4
ADTADMMODE configuration parameter
changing dynamically 4-13
described B-2
ADTCFG file
aodir directory 2-4
ADTADMMODE configuration parameter B-2
adcfg.std file 1-16
ADT.MODE configuration parameter 1-14, 1-15
audit configuration
UNIX 1-18, 4-11
Windows 1-18, 4-11
configuration parameters 2-16, 2-17
conventions used B-1
description of B-1
UNIX audit file size 1-15
white space B-1
ADTERR configuration parameter 2-16, 2-17, B-3
adtmasks.std file 2-14
ADT.MODE configuration parameter 1-15, 2-16, 2-17, B-3
ADTPATH configuration parameter 1-15, 2-16, 2-17, B-3
ADTSIZE configuration parameter 2-16, 2-17, B-4
Aggregation 1-25
Application Event log, Windows 1-17, 1-18

Audit
features 1-2
minimum events to audit 1-10
performance 1-9
process for 1-4
reasons for 1-2
record format 3-1
turning on auditing 2-11
Audit administrator
audit analysis officer 1-6, 2-2
audit configuration 1-5, 1-19
audit instructions 1-9
audit masks 1-4, 1-8
audit-trail analysis 1-2
auditing on or off 1-8, 1-13
database system security officer 1-6, 2-2
roles 1-6, 2-2
security risk 1-8
Audit analysis
creating a data file 3-7
importance of 1-21
loading audit data into a database 3-9
overview 1-21
preparing for 1-22
records indicating event failure 1-24
records indicating event success 1-24
strategies for 1-24
with SQL
creating a command file 3-8
creating a database and table 3-7
description 3-5
performing 3-5
preparing for 3-6
without database 3-5
without SQL 3-5
Audit analysis officer (AAO)
audit administrator 1-6, 2-2
role description 2-3
security threats 1-27
UNIX 2-4
Windows registry settings 2-4
Audit configuration
ADTCFG file 1-18
changing from a command line 4-10
showing
from a command line 2-16, 4-9
with onshowaudit 4-9
UNIX onaudit output 4-9

© Copyright IBM Corp. 1996, 2004
Audit configuration (continued)

Windows

ADTCFG file 4-11
onaudit output 4-10

Audit data
controlling access to 3-6
creating a table for 3-7
loading into database 3-9
privileges to protect 3-6

Audit error mode
and onaudit 4-11
changing 2-18
in ADTCFG file B-3
setting 2-9

Audit events
alphabetical listing of codes A-1, A-5
displaying 2-14
fields shown A-8
listed A-8
minimum ones to audit 1-10

Audit files, UNIX

See also Audit trail.
controlling access to 1-19
directory
  specifying with ADTPATH B-3
  specifying with onaudit 4-11
error modes when writing to 1-18
extracting information with onshowaudit 4-13
location of 1-15
naming 1-16
properties of 1-15
specifying maximum size
  with ADTSIZE B-4
  with onaudit 4-11
starting
  new file 1-16
  with onaudit 4-8, 4-13
storage
  in database server 4-8
  in operating system 4-9
write errors 4-12

Audit instructions
minimum events to audit 1-10
resource and performance implications 1-9
who sets 1-9

Audit level, setting 2-10

Audit masks
_default mask 1-7
Exclude mask 1-7
_require mask 1-7
adding 2-12
base mask 2-12
compulsory masks 1-8
conflict in audit instructions 1-8, A-1
creating a template 2-12

Audit masks (continued)
creating a user mask from a template mask 2-12
creating from a command line 4-4
deleting 2-15, 4-8
displaying 2-14
how to use 1-12
individual user mask 1-7
maintaining 2-12
modifying
  command syntax for 4-4
  from a command line 2-15
  from an input file 2-13
  instructions 2-15
  restricted names 1-8
setting up default and compulsory 2-8
showing 4-3
specification with onaudit 4-5
templates 1-8
types, listed 1-7
user mask 1-7

Audit records
controlling access to 1-19
interpreting extracted information 3-11

Audit trail
administration 2-12, 2-14
controlling access to 1-19, 1-21
extracting information with onshowaudit 4-14
multiple records for single event 3-4
operating-system, UNIX 1-5
reviewing 1-6
starting a new UNIX file 2-17
starting auditing from a command line 4-8, 4-13
storing
  in database server 1-14
  in operating system 1-14
UNIX file permissions 1-19, 1-20, 1-21
UNIX files 1-19
Windows access privileges 1-21
Windows Application Event log 1-19

Audit trail, controlling access to 1-21

Auditing
ADTCFG file
  UNIX 1-18, 4-11
  Windows 1-18, 4-11
creating user masks from template masks 2-12
displaying fragmentation information 1-11
error mode levels 4-11
granularity 1-11
operating system versus database server 1-14
setting the level 2-10
setting up 2-8
specifying UNIX directory
  with ADTPATH B-3
  with onaudit 4-11
turning off 1-13, 2-19, 4-12
Auditing (continued)
  turning on  1-13, 2-11, 4-12

B
  Base mask, defined  2-12
  Boldface type  xi
  Browsing  1-25

C
  Changing the audit error mode  2-18
  Changing the system audit configuration  4-10
  Code set, ISO 8859-1  viii
  Code, sample, conventions for  xvi
  Command files
    creating for dbload  3-8
    use with dbload  3-8
  Command-line conventions
    how to read  xiv
    sample diagram  xiv
  Compliance
    with industry standards  xxiii
  Compulsory audit masks
    setting up  2-8
    when applied  1-7
  Configuration parameters
    ADTADDMODE  B-2
    ADTERR  2-16, 2-17, B-3
    ADTMODE  2-16, 2-17, B-3
    ADTPATH  2-16, 2-17, B-4
    ADTSIZE  2-16, 2-17, B-4
    described  B-1
    listed  2-16, 2-17
  Configuration, audit
    displaying  2-16
    maintaining  2-15
    overview  1-13
    tasks listed  1-13
  Configuring role separation  2-6
  Contact information  xxiv
  Continue error modes  1-18
  Controlling access to audit trail  1-19, 1-21, 3-6
  Conventions
    command-line  xiv
    documentation  x
    sample-code  xvi
    syntax diagrams  xii
    syntax notation  xii
    typographical  x
  Coserver  1-17, B-4
  Creating a data file  3-7
  Creating a database and table for audit data  3-7
  Creating a user mask from a template mask  2-12
  Creating an audit mask from a command line  4-4

D
  DAC.
    See Discretionary Access Control.
  Data
    audit, loading into database  3-9
    creating a file for dbload  3-7, 3-11
    extracting with onshowaudit  3-5
  Database
    creating for Dynamic Server audit records  3-7
    creating for XPS audit records Extended Parallel Server
      creating database for audit records  3-9
    sysmaster  2-16
  Database administrator (DBA)  2-4
  Database server
    audit log  4-15
    auditing  1-14, 4-13
    managing auditing
      with ADTMODE  B-3
      with onaudit  4-12
    monitoring events and users  2-10
    naming convention  1-16
    quiescent mode  1-13
  Database server administrator (DBSA)
    administrative role  2-2
    role description  2-2
    security threats  1-26
  Database system security officer (DBSSO)
    audit administrator  1-6, 2-2
    role description  2-2
    security threats  1-27
    UNIX  2-3
    Windows registry settings  2-3
  DB-Access utility  ix
  DBA.
    See Database administrator.
  dbload utility
    creating a command file  3-8
    creating a data file  3-7
    creating a database and table for  3-7
    creating onshowaudit output files for  4-13
    loading audit data into a database  3-9
    redirecting onshowaudit output  4-13
  DBMS security threats  1-26
  DBSSO.
    See Database system security officer.
  dbssodir directory  2-3
  Default audit mask  1-7
  setting up  2-8
  when applied  1-7
  Default locale  viii
  Deleting audit masks  2-15, 4-8
  Demonstration databases  ix
  Directory
    aaodir  2-4
Directory (continued)
specifying for UNIX audit files
  with ADTPATH  B-3
  with onaudit  2-8, 4-11
Disabilities, visual
  reading syntax diagrams  C-1
Discretionary Access Control (DAC)  1-26
Displaying
  audit configuration  2-16, 4-9
  audit masks  2-14, 4-3
Distributed database configuration threats  1-29
Documentation
  conventions x
Documentation Notes xviii
Documentation set of all manuals xx
Documentation, types of xvii
  machine notes xviii
  online manuals xx
  printed manuals xx
Dotted decimal format of syntax diagrams  C-1
Dynamic Server
  audit record format for  3-2
  extracting and loading audit records for  3-6
E
en_us.8859-1 locale  viii
Enable Role Separation check box  2-7
Enforcing role separation  2-6
Environment variable
  INF_ROLE_SEP  2-6
  NODEFDAC  3-6
Environment variables xi
Error messages xix
Error messages log, size of  1-18
Error mode
  and ADTERR  B-3
  and onaudit  4-11
  changing  2-18
  continue  1-18
  halt  1-18
  implications of  2-9
  setting  2-9
  when writing to an audit file  1-18
Event codes, alphabetical listing  A-1, A-5
Event failure  1-24
Event success  1-24
Events
  defined  1-2
  fields shown  A-8
  level of auditing for specified  1-12
  mnemonics listed  A-1, A-5
  which ones to audit  1-10
Exclude audit mask  1-7
Extended Parallel Server
  audit record format  3-3
  extracting and loading audit records for  3-9
Extended Parallel Server (continued)
specifying location in ADTCFG file  B-4
F
Files for audit events  A-8
File
  ADTCFG  1-15
    data, creating for dbload  3-7, 3-11
    input
      for modifying masks  2-13
      for onaudit  4-7
  UNIX audit
    controlling access to
      location of  1-15
      naming  1-16
      starting new file  1-16
      starting with onaudit  4-8, 4-13
    storage in database server  4-8
    storage in operating system  4-9
FILE statement  3-9
Fixed and Known Defects File  xviii
Format
  for audit records  3-1
  for dbload data file  3-7
  for onaudit input file  4-7
Fragmentation, information in audit events  1-11
G
Global Language Support (GLS)  viii
Guidelines for assigning roles  2-5
H
Halt modes  1-18, 4-12
Help  xx
I
Industry standards, compliance with  xxiii
INF_ROLE_SEP environment variable  2-6
Informix Dynamic Server documentation set xx
informix user account  1-17, 2-4, 2-5, 4-13
INFORMIXDIR/bin directory  ix
Input file for onaudit utility  4-7
Insider attack  1-24
Installation Guides xvii
ISO 8859-1 code set viii
IXUSERS seccfg setting  2-7
K
Keywords
  in syntax diagrams xv
L
Level of auditing, determining  2-10
Loading onshowaudit data into a database table  3-9
Locale  viii
  default  viii
Locale (continued)  
en_us.8859-1 ix  

M  
Machine notes  x  
Malicious software security threats  1-27  
Manual  
   purpose of  vii  
   types of users  viii  
Mask  
   _default  1-7  
   _exclude  1-7  
   _require  1-7  
   creating  
      template  2-12  
      user mask from a template mask  2-12  
      user mask without a template mask  2-13  
      with onaudit  4-4  
   deleting  2-15, 4-8  
   displaying  2-14  
   how to use  1-12  
   modifying  
      from an input file  2-13  
      from the command line  2-15  
      with onaudit  4-4  
   onaudit input-file format  4-7  
   setting up compulsory  2-8  
   setting up default  2-8  
   showing with onaudit  4-3  
   specification with onaudit  4-5  
   template  1-8  
   types, listed  1-7  
   user  1-7  
Message facility  x  
Message log  4-12  
Message Server service  1-17  
Mnemonics, alphabetical listing for events  A-1, A-5  
Modifying audit masks  2-15, 4-4  

N  
Named pipes interprocess communications  1-17  
New features, Version 9.2  x  
NODEFDAC environment variable  3-6  

O  
Obsolete user security threats  1-28  
onaudit utility  x  
   ADTADMMODE parameter  B-2  
   ADTERR parameter  B-2  
   ADTMODE parameter  B-3  
   ADTPATH parameter  B-3  
   ADTSIZE parameter  B-4  
   audit events, adding to audit masks  2-8  
   audit file location  1-15  
   audit masks  
      creating  4-4  
   onaudit utility (continued)  
      audit masks (continued)  
      deleting  2-15, 4-8  
      described  1-9  
      displaying  2-14  
      showing from command line  4-3  
      auditing mode levels  4-11  
      auditing on or off  1-13  
      changing the audit error mode  2-18  
      changing the system audit configuration  4-10  
      description of  4-1, 4-2  
      displaying the audit configuration  2-16  
      error modes  1-18  
      error-mode levels  4-11  
      fragmentation information  1-11  
      HDR limitations  1-6  
      input-file format  4-7  
      level of auditing for certain events  1-12  
      masks, modifying  2-13, 4-4  
      railroad diagram of  4-2  
      setting the error mode  2-9  
      showing the audit configuration  4-9  
      specifying a directory for UNIX audit files  2-8  
      starting a new UNIX audit file  4-8  
      storage of audit records  4-8  
      syntax  4-2  
      template mask  
         creating  2-12  
         creating a user mask from  2-13  
         creating a user mask without  2-13  
         turning off auditing  2-19  
         turning on auditing  2-11  
      UNIX operations  4-2  
      used by AAO  2-3  
      used by DBSSO  2-3  
      who can run  4-3  
      Windows operations  4-2  
      ONCONFIG file  1-16, 1-17, 1-19  
      Online help  xx  
      Online manuals  xx  
      Online mode  1-13  
      Online notes  xvii, xviii  
      onshowaudit utility  
         audit trail access  1-19  
         data extraction from audit trail  1-6, 1-22  
         description of  4-1  
         extracting data for audit analysis  3-5  
         listing of audit events for analysis  A-8  
         output accessible by AAO  1-27  
         role separation  1-19  
         syntax  4-14  
         used by AAO  2-3  
         using dbload with  3-7  
         who can run  4-14
Operating system
audit log 4-15
audit record format 3-1
auditing 1-14
coordinating auditing between AAO and OSA 2-3
managing auditing
with ADTMODE 1-14, B-3
with onaudit 4-12
protected subsystem for audit trail 1-23
storing audit records 1-14, 2-8
Operating-system administrator (OSA)
administrative role 2-4
role defined 2-4
security threats 1-27
Operating-system audit trail, UNIX 1-5
OSA.
See Operating-system administrator.

P
Parameters, configuration
ADTADMMODE B-2
ADTERR 2-16, 2-17, B-2
ADTMODE 2-16, 2-17, B-3
ADTPATH 2-16, 2-17, B-3
ADTSIZE 2-16, 2-17, B-4
described B-1
listed 2-16, 2-17
Path, specifying for auditing
with ADTPATH B-3
with onaudit 4-11
Performance implications of auditing 1-9
Performing SQL audit analysis 3-5
Permissions, UNIX 1-24, 2-2, 2-4
Preparing for audit analysis 1-22, 3-6
Primary security threats 1-26
Printed manuals xx
Privileged activity security threats 1-26
Privileged environment, security threat from untrusted software 1-28
Privileged users 2-5
Privileges to protect audit data 3-6
Purpose of manual vii

Q
Queries by browsers 1-25
Quiescent mode 1-13

R
Raw audit records 1-22
Registry settings, Windows
for AAO 2-4
for DBSSO 2-3
for role separation 2-7
Release Notes xviii
Remote access to data, security threat 1-28
Require audit mask 1-7
Resource implications of auditing 1-9
Responding to security problems 1-25
Role separation and onshowaudit 1-19
Role Separation dialog box 2-3, 2-7
Roles
administrative, listed 1-6
assigning 2-5
audit analysis officer 2-3
configuring and enforcing 2-6
database administrator 2-4
database server administrator 2-2
database system security officer 2-2
no separation, security configuration for 1-20
operating-system administrator 2-4
separation 1-20, 2-5, 2-7
root user account 2-5, 4-13

S
sales_demo database ix
Sample-code conventions xvi
Screen reader
reading syntax diagrams C-1
seccfg file 2-7
Security configuration for audit files 1-20
Security Event log, Windows 1-17
Security threats
aggregation 1-25
audit analysis officer 1-27
browsing 1-25
database server administrator 1-26
database system security officer 1-27
DBMS 1-26
distributed databases configuration 1-29
granting remote access to data 1-28
insider attack 1-24
introduction of malicious software 1-27
obsolete user 1-28
operating-system administrator 1-27
primary 1-26
privileged activity 1-26
responses to 1-25
setting the auditing level 2-10
shared-memory connection 1-27
untrusted software in privileged environment 1-28
SERVERNUM configuration parameter 1-19
Session, effects of errors 1-18
setenv utility 2-6
Shared-memory connection 1-27
Showing
audit configuration 4-9
audit masks 4-3
Size, specifying maximum for UNIX audit files
with ADTSIZE B-4
with onaudit 4-11
SMI sysadinfo table 2-16
Windows (continued)
  audit trail in Application Event log  1-19
  default locale for  viii
  onaudit output  4-10
  operations with onaudit  4-2
  registry settings
    for AAO  2-4
    for DBSSO  2-3
    for role separation  2-7
  Security Event log  x, 1-17
Windows XP  x

Z
  Zero (0)
    ADTADMMODE setting  2-16
    ADTERR setting  2-16
    ADTMODE default value  B-3
    continue error code  1-18
    onaudit error mode  2-9