IBM Informix
Version 11.70

IBM Informix Backup and Restore Guide
Contents

Introduction

<table>
<thead>
<tr>
<th>In this introduction</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>About this publication</td>
<td>xi</td>
</tr>
<tr>
<td>Types of users</td>
<td>xi</td>
</tr>
<tr>
<td>Software dependencies</td>
<td>xi</td>
</tr>
<tr>
<td>Assumptions about your locale</td>
<td>xii</td>
</tr>
<tr>
<td>Demonstration database</td>
<td>xii</td>
</tr>
</tbody>
</table>

What's New in the Backup and Restore Guide, Version 11.70

Example code conventions	xiii
Additional documentation	xiii
Compliance with industry standards	xiv

Syntax diagrams

How to read a command-line syntax diagram	xv
Keywords and punctuation	xvi
Identifiers and names	xvi

How to Provide Documentation Feedback

<table>
<thead>
<tr>
<th>Part 1. Overview of backup and restore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1. Backup and restore concepts</td>
</tr>
<tr>
<td>Recovery system</td>
</tr>
<tr>
<td>Backup systems</td>
</tr>
<tr>
<td>Logical-log backup</td>
</tr>
<tr>
<td>Restore systems</td>
</tr>
<tr>
<td>Comparing ON-Bar and ontape</td>
</tr>
</tbody>
</table>

Chapter 2. Plan for backup and restore	2-1
Plan a recovery strategy	2-1
Types of data loss	2-1
Determine failure severity	2-1
Data use determines your backup schedule	2-1
Schedule backups	2-2
Security requirements for label-based access control	2-2
Plan a backup system for a production database server	2-3
Evaluate hardware and memory resources	2-3
Evaluate backup and restore time	2-3
Evaluate logging and transaction activity	2-4
Compress row data	2-4
Transform data with external programs	2-4

Part 2. ON-Bar backup and restore system

Chapter 3. Overview of the ON-Bar backup and restore system	3-1
Where to find information on tasks for ON-Bar, ISM, and TSM	3-1
ON-Bar components for Informix	3-3
ON-Bar utilities	3-4
IBM Informix Storage Manager	3-5
IBM Tivoli Storage Manager	3-5
Third-party storage managers	3-6
XBSA interface	3-6
ON-Bar tables	3-7
ON-Bar boot files	3-7
ON-Bar activity log	3-8
Transform data with external filter programs	3-9
Chapter 4. Configure the storage manager and ON-Bar

Configure a storage manager
Configure a third-party storage manager
Configure ISM
Configure TSM
Update the sm_versions file
Updating the storage-manager definition in sm_versions
Validate your storage manager
Configure ON-Bar
The bargroup group (UNIX)
Your customized onbar script is saved on new installations
Set ISM environment variables and ONCONFIG parameters
Set the IBM Informix for TSM environment variables
Specify the location of the XBSA Library
Specify ON-Bar configuration parameters
ON-Bar configuration parameters on Informix
Verify the configuration
Choose storage managers and storage devices
Features that ISM supports
Features that ISM does not support
Features that TSM supports
Storage device requirements

Chapter 5. Back up with ON-Bar

Summary of ON-Bar tasks
Prepare for a backup
Data ON-Bar backs up
Administrative files to back up
Install and configure a storage manager
Whole-system backup
Parallel backup
Standard backup
Incremental backup
Physical backup
Choose a backup level
Collect information about your system before a backup
Back up storage spaces and logical logs
Backup syntax
Back up after changing the physical schema
Use ISM during a backup
Use ISA to back up and verify
ON-Bar backup examples
Back up table types
View recent ON-Bar activity
Back up logical logs
Back up logical logs on Informix
Monitor logical-log backups
Salvage logical-log files
ON-Bar backup processes
Backup sequence on Informix

Chapter 6. Restore data with ON-Bar

ON-Bar restore types
Warm restore
Cold restore
Mixed restore
Parallel restore
Point-in-time restore
Imported restore
Rename chunks restore
AC_MSGPATH parameter ... 9-2
AC_STORAGE parameter ... 9-3
AC_TIMEOUT parameter .. 9-3
AC_VERBOSE parameter ... 9-4
ON-Bar parameters in ONCONFIG 9-4
ALARMPROGRAM parameter 9-4
ALRM_ALL_EVENTS parameter 9-5
BACKUP_FILTER parameter 9-5
BAR_ACT_LOG parameter 9-6
BAR_BSALIB_PATH parameter 9-6
BAR_DEBUG parameter ... 9-7
BAR_DEBUG_LOG parameter 9-7
BAR_HISTORY parameter 9-8
BAR_IxBAR_PATH parameter 9-8
BAR_MAX_BACKUP parameter 9-9
BAR_NB_XPORT_COUNT parameter 9-10
BAR_PERFORMANCE parameter 9-10
BAR_PROGRESS_FREQ parameter 9-11
BAR_RETRY parameter 9-12
BAR_SIZE_FACTOR parameter 9-12
BAR_XFER_BUF_SIZE parameter 9-13
ISM_DATA_POOL parameter 9-13
ISM_LOG_POOL parameter 9-14
LTAPEDEV parameter ... 9-14
RESTARTABLE_RESTORE parameter 9-14
RESTORE_FILTER parameter 9-15
Files that ON-Bar, ISM, and TSM use 9-16

Chapter 10. ON-Bar catalog tables 10-1
The bar_action table .. 10-1
The bar_instance table 10-1
The bar_ixbar table ... 10-3
The bar_object table ... 10-4
The bar_server table ... 10-5
The bar_syncdeltab table 10-5
ON-Bar catalog map ... 10-5

Chapter 11. ON-Bar messages and return codes 11-1
About ON-Bar messages ... 11-1
Message format ... 11-1
Message numbers ... 11-1
ON-Bar usage messages 11-2
-43000 .. 11-2
-43001 .. 11-2
-43006 .. 11-2
-43007 .. 11-3
-43357 .. 11-3
ON-Bar return codes ... 11-4

Part 3. Backup and restore system for ontape

Chapter 12. Configure ontape 12-1
Configuration parameters for ontape 12-1
Data transformation filter parameters for ontape 12-1
Tape and tape device parameters for ontape 12-2
Set the tape-device parameters 12-3
Specify the tape-block-size parameters 12-5
Specify the tape-size parameters 12-5
Check and change ontape configuration parameters 12-6
Change TAPEDEV to /dev/null 12-6
Chapter 13. Back up with ontape

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of ontape tasks</td>
<td>13-1</td>
</tr>
<tr>
<td>Start ontape</td>
<td>13-1</td>
</tr>
<tr>
<td>Exit codes for ontape</td>
<td>13-1</td>
</tr>
<tr>
<td>Change database logging status</td>
<td>13-1</td>
</tr>
<tr>
<td>Create a backup</td>
<td>13-2</td>
</tr>
<tr>
<td>Backup levels</td>
<td>13-2</td>
</tr>
<tr>
<td>Back up after changing the physical schema</td>
<td>13-3</td>
</tr>
<tr>
<td>Prepare for a backup</td>
<td>13-3</td>
</tr>
<tr>
<td>Perform a backup</td>
<td>13-7</td>
</tr>
<tr>
<td>Back up to Amazon Simple Storage Service</td>
<td>13-9</td>
</tr>
<tr>
<td>When the logical-log files fill during a backup</td>
<td>13-11</td>
</tr>
<tr>
<td>When a backup terminates prematurely</td>
<td>13-12</td>
</tr>
<tr>
<td>Monitor backup history using oncheck</td>
<td>13-12</td>
</tr>
<tr>
<td>Back up logical-log files with ontape</td>
<td>13-12</td>
</tr>
<tr>
<td>Before you back up the logical-log files</td>
<td>13-13</td>
</tr>
<tr>
<td>When to back up logical-log files</td>
<td>13-14</td>
</tr>
<tr>
<td>Start an automatic logical-log backup</td>
<td>13-14</td>
</tr>
<tr>
<td>Starting a continuous logical-log file backup</td>
<td>13-14</td>
</tr>
<tr>
<td>End a continuous logical-log backup</td>
<td>13-15</td>
</tr>
<tr>
<td>Devices that logical-log backups must use</td>
<td>13-16</td>
</tr>
</tbody>
</table>

Chapter 14. Restore with ontape

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of physical restore</td>
<td>14-1</td>
</tr>
<tr>
<td>Full-system restore</td>
<td>14-1</td>
</tr>
<tr>
<td>Restores of dbspaces, blobspaces, and sbspaces</td>
<td>14-1</td>
</tr>
<tr>
<td>Cold, warm, or mixed restores</td>
<td>14-2</td>
</tr>
<tr>
<td>Cold restores</td>
<td>14-2</td>
</tr>
<tr>
<td>Warm restores</td>
<td>14-2</td>
</tr>
<tr>
<td>Mixed restores</td>
<td>14-2</td>
</tr>
<tr>
<td>Perform a restore</td>
<td>14-3</td>
</tr>
<tr>
<td>Restore the whole system</td>
<td>14-5</td>
</tr>
<tr>
<td>Gather the appropriate tapes</td>
<td>14-5</td>
</tr>
<tr>
<td>Decide on a complete cold or a mixed restore</td>
<td>14-5</td>
</tr>
<tr>
<td>Verify your database server configuration</td>
<td>14-5</td>
</tr>
<tr>
<td>Perform a cold restore</td>
<td>14-6</td>
</tr>
<tr>
<td>Restore selected storage spaces</td>
<td>14-8</td>
</tr>
<tr>
<td>Restore raw tables</td>
<td>14-9</td>
</tr>
<tr>
<td>Configuring continuous log restore using ontape</td>
<td>14-9</td>
</tr>
<tr>
<td>Rename chunks during a restore</td>
<td>14-10</td>
</tr>
<tr>
<td>Validation sequence for renaming chunks</td>
<td>14-10</td>
</tr>
<tr>
<td>New chunk requirements</td>
<td>14-11</td>
</tr>
<tr>
<td>Rename chunks with command line options</td>
<td>14-11</td>
</tr>
<tr>
<td>Rename chunks with a file</td>
<td>14-11</td>
</tr>
<tr>
<td>Rename chunks while specifying other options</td>
<td>14-11</td>
</tr>
<tr>
<td>Rename a chunk to a nonexistent device</td>
<td>14-12</td>
</tr>
<tr>
<td>Restore from standard input</td>
<td>14-12</td>
</tr>
<tr>
<td>Restore data to a remote server</td>
<td>14-13</td>
</tr>
<tr>
<td>Simultaneous backup and restore using standard I/O</td>
<td>14-14</td>
</tr>
</tbody>
</table>

Chapter 15. Perform an external backup and restore

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recover data using an external backup and restore</td>
<td>15-1</td>
</tr>
<tr>
<td>Data that is backed up in an external backup</td>
<td>15-1</td>
</tr>
<tr>
<td>Rules for an external backup</td>
<td>15-1</td>
</tr>
<tr>
<td>Performing an external backup</td>
<td>15-2</td>
</tr>
<tr>
<td>Prepare for an external backup</td>
<td>15-2</td>
</tr>
</tbody>
</table>
Part 4. Verify and restore backups with archecker

Chapter 16. Verify backups .. 16-1
- The archecker configuration file 16-1
- Verify backups using archecker in integrated mode 16-1
 - Syntax for archecker using integrated mode 16-1
 - Estimate the amount of temporary space for archecker 16-2
 - Verify backups ... 16-3
 - Interpret verification messages 16-4
 - Verification failures 16-4
 - Fixing backup verification problems 16-5
 - Verification process with archecker 16-6
- Verifying backups using archecker in stand-alone mode 16-7
- Syntax for archecker ... 16-8

Chapter 17. Perform table-level restores using the archecker utility .. 17-1
- Overview of archecker ... 17-1
- Configuration file ... 17-2
- Schema command file ... 17-2
- Table-level restore and locales 17-2
- Data restore with archecker 17-2
 - Physical restore ... 17-3
 - Logical restore .. 17-3
- Syntax for archecker table-level restores 17-4
 - Manually control a logical restore 17-5
 - Performing a restore with multiple storage managers 17-6
 - Perform a parallel restore 17-6
 - Restore transformed data 17-7
 - When to delete restore files 17-7
- The archecker schema reference 17-8
 - The CREATE TABLE statement 17-8
 - The CREATE EXTERNAL TABLE statement 17-9
 - The DATABASE statement 17-10
 - The INSERT statement 17-11
 - The RESTORE statement 17-12
 - The SET statement .. 17-12
 - Schema command file examples 17-13

Chapter 18. The archecker configuration parameter reference .. 18-1
- Configuration parameters .. 18-1
 - AC_DEBUG parameter .. 18-2
 - AC_IXBAR parameter .. 18-2
 - AC_LTAPEBLOCK parameter 18-2
 - AC_LTAPEDEV parameter 18-2
 - AC_MSGPATH parameter .. 18-2
 - AC_RESTORE_FILTER parameter 18-3
 - AC_SCHEMA parameter .. 18-3
 - AC_STORAGE parameter 18-3
 - AC_TAPEBLOCK parameter 18-3
 - AC_TAPEDEV parameter .. 18-4
 - AC_VERBOSE parameter .. 18-4
Contents

Part 5. Appendixes

Appendix A. Troubleshooting ... A-1
Corrupt page during an archive ... A-1
Log backup already running ... A-1
No server connection during a restore A-2
Drop a database before a restore A-2
No dbspaces or blobspaces during a backup or restore A-2
Restore blobspace BLOBs .. A-3
Changing the system time on the backup system A-3

Appendix B. The onstat command reference B-1
The onstat -d command .. B-1
The onstat -l command .. B-4

Appendix C. Migrate data, servers, and tools C-1
Use data-migration tools for recovery C-1
Preparing for a database server or storage-manager upgrade C-1
Upgrade your storage manager ... C-1
Change storage-manager vendors C-1
Migrating from ontape to ON-Bar C-2
Migrate private ON-Bar scripts .. C-2

Appendix D. GLS support .. D-1
Use GLS with ON-Bar ... D-1
 Identifiers that support non-ASCII characters D-1
 Identifiers that require 7-bit ASCII characters D-1
 Locale of ON-Bar messages ... D-1
Use the GL_DATETIME environment variable with ON-Bar D-2
 Point-in-time restore example .. D-2
Use GLS with ontape ... D-2

Appendix E. Accessibility .. E-1
Accessibility features for IBM Informix products E-1
 Accessibility features .. E-1
 Keyboard navigation .. E-1
 Related accessibility information E-1
 IBM and accessibility .. E-1
 Dotted decimal syntax diagrams E-1

Notices ... F-1
Trademarks ... F-3

Index ... X-1
Introduction

In this introduction

This introduction provides an overview of the information in this manual and describes the conventions it uses.

About this publication

These topics describe how to use the IBM® Informix® ON-Bar and ontape utilities to back up and restore database server data. These utilities enable you to recover your databases after data is lost or becomes corrupt due to hardware or software failure or accident.

ON-Bar requires IBM Informix Storage Manager, Version 2.2, IBM Tivoli® Storage Manager, or a third-party storage manager to manage the storage devices.

Important: The ontape utility does not require a storage manager and works on IBM Informix only.

Types of users

These topics were written for the following users:

• Database administrators
• System administrators
• Backup operators
• Technical support personnel

These topics are written with the assumption that you have the following background:

• Some experience with storage managers, which are applications that manage the storage devices and media that contain backups
• A working knowledge of your computer, your operating system, and the utilities that your operating system provides
• Some experience working with relational databases or exposure to database concepts
• Some experience with database server administration, operating-system administration, or network administration

If you have limited experience with relational databases, SQL, or your operating system, refer to the IBM Informix Getting Started Guide for your database server for a list of supplementary titles.

Software dependencies

This publication is written with the assumption that you are using IBM Informix Version 11.70 as your database server.
Assumptions about your locale

IBM Informix products can support many languages, cultures, and code sets. All the information related to character set, collation, and representation of numeric data, currency, date, and time is brought together in a single environment, called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are using the default locale, en_us.8859-1. This locale supports U.S. English format conventions for date, time, and currency. In addition, this locale supports the ISO 8859-1 code set, which includes the ASCII code set plus many 8-bit characters such as "è", "é", and "ñ".

If you plan to use nondefault characters in your data or your SQL identifiers, or if you want to conform to the nondefault collation rules of character data, you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other considerations related to GLS locales, see the IBM Informix GLS User’s Guide.

Demonstration database

The DB-Access utility, which is provided with the database server products, includes one or more of the following demonstration databases:

- The stores_demo database illustrates a relational schema with information about a fictitious wholesale sporting-goods distributor. Many examples in IBM Informix manuals are based on the stores_demo database.
- The superstores_demo database illustrates an object-relational schema. The superstores_demo database contains examples of extended data types, type and table inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the $INFORMIXDIR/bin directory on UNIX and in the %INFORMIXDIR%/bin directory on Windows.

What's New in the Backup and Restore Guide, Version 11.70

This publication includes information about new features and changes in existing functionality.

Table 1. What's New in IBM Informix Backup and Restore Guide for version 11.70.xC1

<table>
<thead>
<tr>
<th>Overview</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Informix Dynamic Server editions were withdrawn and new Informix editions are available. Some products were also renamed. The publications in the Informix library pertain to the following products:</td>
<td></td>
</tr>
<tr>
<td>• IBM Informix database server, formerly known as IBM Informix Dynamic Server (IDS)</td>
<td></td>
</tr>
<tr>
<td>• IBM OpenAdmin Tool (OAT) for Informix, formerly known as OpenAdmin Tool for Informix Dynamic Server (IDS)</td>
<td></td>
</tr>
<tr>
<td>• IBM Informix SQL Warehousing Tool, formerly known as Informix Warehouse Feature</td>
<td></td>
</tr>
<tr>
<td>Backup and restore is now cloud aware</td>
<td>“Back up to Amazon Simple Storage Service” on page 13-9</td>
</tr>
<tr>
<td>You can use the <code>ontape</code> utility to back up and restore Informix database data to or from cloud storage. Storing data on the cloud provides scalable storage that can be accessed from the web.</td>
<td></td>
</tr>
</tbody>
</table>

Example code conventions

Examples of SQL code occur throughout this publication. Except as noted, the code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by semicolons. For instance, you might see the code in the following example:

```
CONNECT TO stores_demo
...

DELETE FROM customer
   WHERE customer_num = 121
...

COMMIT WORK
DISCONNECT CURRENT
```

To use this SQL code for a specific product, you must apply the syntax rules for that product. For example, if you are using an SQL API, you must use EXEC SQL at the start of each statement and a semicolon (or other appropriate delimiter) at the end of the statement. If you are using DB–Access, you must delimit multiple statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in a full application, but it is not necessary to show it to describe the concept being discussed.

For detailed directions on using SQL statements for a particular application development tool or SQL API, see the documentation for your product.

Additional documentation

Documentation about this release of IBM Informix products is available in various formats.
All of the product documentation (including release notes, machine notes, and documentation notes) is available from the information center on the web at http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp. Alternatively, you can access or install the product documentation from the Quick Start CD that is shipped with the product.

Compliance with industry standards

IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of IBM Informix database servers comply with the SQL-92 Intermediate and Full Level and X/Open SQL Common Applications Environment (CAE) standards.

The IBM Informix Geodetic DataBlade® Module supports a subset of the data types from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing Standard 173, as referenced by the document Content Standard for Geospatial Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata Standard).

Syntax diagrams

Syntax diagrams use special components to describe the syntax for statements and commands.

Table 2. Syntax Diagram Components

<table>
<thead>
<tr>
<th>Component represented in PDF</th>
<th>Component represented in HTML</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>>>>----------------------</td>
<td>>>----------------------</td>
<td>Statement begins.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>>-----------------------</td>
<td>>----------------------</td>
<td>Statement continues on next line.</td>
</tr>
<tr>
<td>>>>----------------------</td>
<td>>----------------------</td>
<td>Statement continues from previous line.</td>
</tr>
<tr>
<td>>>>----------------------</td>
<td>>----------------------</td>
<td>Statement ends.</td>
</tr>
<tr>
<td>SELECT----------------------</td>
<td>SELECT----------------------</td>
<td>Required item.</td>
</tr>
<tr>
<td>LOCAL------------------------</td>
<td>LOCAL------------------------</td>
<td>Optional item.</td>
</tr>
<tr>
<td>ALL-------------------------</td>
<td>ALL-------------------------</td>
<td>Required item with choice. Only one item must be present.</td>
</tr>
<tr>
<td>DISTINCT---------------------</td>
<td>DISTINCT---------------------</td>
<td></td>
</tr>
<tr>
<td>UNIQUE----------------------</td>
<td>UNIQUE----------------------</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Syntax Diagram Components (continued)

<table>
<thead>
<tr>
<th>Component represented in PDF</th>
<th>Component represented in HTML</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>|--FOR UPDATE|--</td>
<td>--+--FOR UPDATE--++</td>
<td>Optional items with choice are shown below the main line, one of which you might specify.</td>
</tr>
<tr>
<td>|--FOR READ ONLY|--</td>
<td>'--FOR READ ONLY--'</td>
<td></td>
</tr>
<tr>
<td>|--NEXT|--</td>
<td>+---NEXT--------+</td>
<td>The values below the main line are optional, one of which you might specify. If you do not specify an item, the value above the line will be used as the default.</td>
</tr>
<tr>
<td>|--PRIOR|-- |--PREVIOUS|--</td>
<td>+--PRIOR--------+ '---PREVIOUS-----'</td>
<td></td>
</tr>
<tr>
<td>|--index_name|-- |--table_name|--</td>
<td>+---index_name---+ '---table_name---'</td>
<td>Optional items. Several items are allowed; a comma must precede each repetition.</td>
</tr>
<tr>
<td>|--Table Reference|-- |--Table Reference|--</td>
<td>>>-</td>
<td>Table Reference</td>
</tr>
<tr>
<td>Table Reference</td>
<td>Table Reference</td>
<td>Syntax segment.</td>
</tr>
<tr>
<td>|--view|-- |--table|-- |--synonym|--</td>
<td>+++++-view--------+ +++++-table--------+ '++++-synonym--------'</td>
<td></td>
</tr>
</tbody>
</table>

How to read a command-line syntax diagram

Command-line syntax diagrams use similar elements to those of other syntax diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

```plaintext
>>-onpladm create job--job | -p-project | -n- d-device- | -D-database- | \\

- t-table
```

Notes:

1. See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is shown in the following segment diagram. Notice that the diagram uses segment start and end components.

Setting the run mode:

![Diagram of run mode settings]

To see how to construct a command correctly, start at the upper left of the main diagram. Follow the diagram to the right, including the elements that you want. The elements in this diagram are case-sensitive because they illustrate utility syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type `onpladm create job` and then the name of the job.
2. Optionally, type `-p` and then the name of the project.
3. Type the following required elements:
 - `-n`
 - `-d` and the name of the device
 - `-D` and the name of the database
 - `-t` and the name of the table
4. Optionally, you can choose one or more of the following elements and repeat them an arbitrary number of times:
 - `-S` and the server name
 - `-T` and the target server name
 - `The run mode. To set the run mode, follow the Setting the Run Mode segment diagram to type `-f`, optionally type `d`, `p`, or `a`, and then optionally type `l` or `u`.
5. Follow the diagram to the terminator.

Keywords and punctuation

Keywords are words reserved for statements and all commands except system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters. When you use a keyword in a command, you can write it in uppercase or lowercase letters, but you must spell the keyword exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as shown in the syntax diagrams.

Identifiers and names

Variables serve as placeholders for identifiers and names in the syntax diagrams and examples.
You can replace a variable with an arbitrary name, identifier, or literal, depending on the context. Variables are also used to represent complex syntax elements that are expanded in additional syntax diagrams. When a variable appears in a syntax diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a simple SELECT statement.

```
SELECT column_name FROM table_name
```

When you write a SELECT statement of this form, you replace the variables `column_name` and `table_name` with the name of a specific column and table.

How to Provide Documentation Feedback

You are encouraged to send your comments about IBM Informix user documentation.

Use one of the following methods:

- Send email to `docinf@us.ibm.com`
- Go to the information center at http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp and open the topic that you want to comment on. Click the feedback link at the bottom of the page, fill out the form, and submit your feedback.
- Add comments to topics directly in the Informix information center and read comments that were added by other users. Share information about the product documentation, participate in discussions with other users, rate topics, and more! Find out more at http://publib.boulder.ibm.com/infocenter/idshelp/v117/topic/com.ibm.start.doc/contributing.htm

Feedback from all methods is monitored by the team that maintains the user documentation. The feedback methods are reserved for reporting errors and omissions in the documentation. For immediate help with a technical problem, contact IBM Technical Support. For instructions, see the IBM Informix Technical Support website at http://www.ibm.com/planetwide/

We appreciate your suggestions.
Part 1. Overview of backup and restore
Chapter 1. Backup and restore concepts

IBM Informix provides two utilities for backing up and restoring database server data. Both utilities back up and restore storage spaces and logical logs. However, they do support different features and it is important to know the differences. These topics explain basic backup and restore concepts for IBM Informix database servers and compares the ON-Bar and ontape utilities.

ON-Bar backs up and restores storage spaces (dbspaces) and logical file, using a storage manager, whereas ontape does not use a storage manager.

<table>
<thead>
<tr>
<th>Utility</th>
<th>Storage manager</th>
<th>Where discussed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-Bar</td>
<td>IBM Informix Storage Manager (ISM)</td>
<td>Chapter 3, “Overview of the ON-Bar backup and restore system,” on page 3-1 through Chapter 11, “ON-Bar messages and return codes,” on page 11-1</td>
</tr>
<tr>
<td></td>
<td>IBM Tivoli Storage Manager (TSM)</td>
<td>Chapter 12, “Configure ontape,” on page 12-1 through Chapter 14, “Restore with ontape,” on page 14-1</td>
</tr>
<tr>
<td></td>
<td>Third-party storage manager</td>
<td></td>
</tr>
<tr>
<td>ontape</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Informix does not show errors in standard output (stdout) if an error occurs when you use onbar -b to back up storage spaces or onbar -r to restore storage spaces. Therefore, when you use onbar -b or onbar -r, you must check information in the ON-Bar activity log (bar_act_log). As ON-Bar backs up and restores data, it writes progress messages, warnings, and error messages to the bar_act.log.

Recovery system

A recovery system enables you to back up your database server data and later restore it if your current data becomes corrupted or inaccessible. The causes of data corruption or loss can range from a program error to a disk failure to a disaster that damages the entire facility. A recovery system enables you to recover data that you already lost due to such mishaps.

Backup systems

A backup is a copy of one or more dbspaces (also called storage spaces) and logical logs that the database server maintains. You can also back up blobspaces and sbspaces. For a description of storage spaces, see your IBM Informix Administrator’s Guide.

The backup copy is typically written to a secondary storage medium such as disk, magnetic tape, or optical disk. We recommend that you store the media offline and keep a copy off site if possible.

Important: Database backups do not replace ordinary operating-system backups, which back up files other than IBM Informix database files.

The following figure illustrates the basic concept of a database backup.
You do not always have to back up all the storage spaces. If some tables change daily but others rarely change, it is inefficient to back up the storage spaces that contain the unchanged tables every time that you back up the database server. You need to plan your backup schedule carefully to avoid long delays for backing up or restoring data.

To provide a more flexible backup environment, ON-Bar and ontape support the following three backup levels:

Level 0
Level 0 backs up all used pages that contain data for the specified storage spaces.
You need all these pages to restore the database to the state that it was in at the time that you made the backup.

Level 1
Level 1 backs up only data that has changed since the last level-0 backup of the specified storage spaces.
All changed table and index pages are backed up, including those pages with deleted data. The data that is copied to the backup reflects the state of the changed data at the time that the level-1 backup began.

Level 2
Level 2 backs up only data that has changed since the last level-1 backup of the specified storage spaces.
A level-2 backup contains a copy of every table and index page in a storage space that has changed since the last level-1 backup.

Important: If disks and other media are destroyed and need to be replaced, you need at least a level-0 backup of all storage spaces and relevant logical logs to restore data completely on the replacement hardware.

For details, see Chapter 5, “Back up with ON-Bar,” on page 5-1 and Chapter 13, “Back up with ontape,” on page 13-1.

Logical-log backup
A logical-log backup is a copy to disk or tape of all full logical-log files. The logical-log files store a record of database server activity that occurs between backups.

To free full logical-log files, back them up. The database server reuses the freed logical-log files for recording new transactions. For a complete description of the logical log, see your IBM Informix Administrator’s Guide.

Restriction: Even if you do not specify logging for databases or tables, you need to back up the logical logs because they contain administrative information such as
checkpoint records and additions and deletions of chunks. When you back up these logical-log files, you can do warm restores even when you do not use logging for any of your databases.

Manual and continuous logical-log backups

A manual logical-log backup backs up all the full logical-log files and stops at the current logical-log file.

If you turn on continuous logical-log backup, the database server backs up each logical log automatically when it becomes full. If you turn off continuous logical-log backup, the logical-log files continue to fill. If all logical logs are filled, the database server hangs until the logs are backed up.

Log salvage

When the database server is offline, you can perform a special logical-log backup, called a log salvage. In a log salvage, the database server accesses the log files directly from disk. The log salvage backs up any logical logs that have not yet been backed up and are not corrupted or destroyed. The log salvage enables you to recover all of your data up to the last available and uncorrupted logical-log file and the last complete transaction.

Save logical-log backups

Perform frequent logical-log backups for the following reasons:

- To free full logical-log files
- To minimize data loss if a disk that contains logical logs fails
- To ensure that restores contain consistent and the latest transactions

Save the logical-log backups from the last two level-0 backups so that you can use them to complete a restore. If a level-0 backup is inaccessible or unusable, you can restore data from an older backup, if you have one. If any of the logical-log backups are also inaccessible or unusable, however, you cannot roll forward the transactions from those logical-log files or from any subsequent logical-log files.

Important: You will lose transactions in logical-log files that are not backed up or salvaged.

To illustrate, as the following figure shows, suppose you perform a level-0 backup on Monday at 10 p.m. and then back up the logical logs on Tuesday at midnight. On Wednesday at 11 a.m., you suffer a mishap that destroys your databases. You would be unable to restore the transactions that occurred between midnight on Tuesday and 11 a.m. on Wednesday unless you had continuous logical-log backup set up.

If the disks that contain the storage spaces with the logical logs are damaged, the transactions after midnight on Tuesday might be lost. To restore these transactions from the last logical-log backup, try to salvage the logical logs before you repair or replace the bad disk and then perform a cold restore.
A restore recreates database server data from backed-up storage spaces and logical-log files. A restore recreates database server data that has become inaccessible because of any of the following conditions:

- You need to replace a failed disk that contains database server data.
- A logic error in a program has corrupted a database.
- You need to move your database server data to a new computer.
- A user accidentally corrupted or destroyed data.

To restore data up to the time of the failure, you must have at least one level-0 backup of each of your storage spaces from before the failure and the logical-log files that contain all transactions since these backups.

Warm, cold, and mixed restores

When you restore data, you must decide whether to do so while the database server is in quiescent, online, or offline. The types of restores are as follows:

- If you restore noncritical dbspaces while the database server is online or quiescent, that process is called a *warm restore*.
- When IBM Informix is offline, you can perform only a *cold restore*.
- A *mixed restore* is a cold restore of some storage spaces followed by a warm restore of the remaining storage spaces.

Warm restore

As the following figure shows, a warm restore restores noncritical storage spaces. A warm restore consists of one or more physical restores, a logical-log backup, and a logical restore.
You cannot perform more than one simultaneous warm restore.

Cold restore

As the following figure shows, a cold restore salvages the logical logs, and restores the critical dbspaces (root dbspace and the dbspaces that contain the physical log and logical-log files), other storage spaces, and the logical logs.

You can perform a cold restore onto a computer that is not identical to the one on which the backup was performed by giving any chunk a new path name and offset during the restore.

When restoring a whole-system backup, it is not necessary to restore the logical logs. A whole-system backup contains a snapshot of the entire instance at the moment the backup was performed, which is logically consistent across all dbspaces.
When restoring a standard backup, you must restore the logical logs by performing a logical restore.

Physical and logical restores

- **Physical restore**: ON-Bar and **ontape** restore database server data in two phases:
 - The first phase is the physical restore, which restores data from backups of all or selected storage spaces.
 - The second phase is the logical restore, which restores transactions from the logical-log backups. The database server automatically knows which logical logs to restore.

Logical restore

As the following figure shows, the database server *replays* the logical logs to reapply any database transactions that occurred after the last backup. The logical restore applies only to the physically restored storage spaces.

For more information, see Chapter 6, “Restore data with ON-Bar,” on page 6-1 and Chapter 14, “Restore with ontape,” on page 14-1.
Comparing ON-Bar and ontape

IBM Informix provides two backup and restore utilities:

ON-Bar
Backs up and restores storage spaces (dbspaces) and logical files, using a storage manager to track backups and storage media. Use this utility when you need to:
- Select specific storage spaces
- Back up to a specific point in time
- Perform separate physical and logical restores
- Back up and restore different storage spaces in parallel
- Use multiple tape drives concurrently for backups and restores
- Perform imported restores
- Perform external backups and restores

ontape
Logs, backs up, and restores data, and enables you to change the logging status of a database. It does not use a storage manager. Use this utility when you need to:
- Back up and restore data without a storage manager
- Back up without selecting storage spaces
- Change the logging mode for databases

Restriction: The backup tapes that ontape and ON-Bar produce are not compatible. You cannot create a backup with ontape and restore it with ON-Bar, or vice versa.

The following table compares ON-Bar and ontape. If you are switching to ON-Bar and ISM from ontape, note that ON-Bar works differently.

<table>
<thead>
<tr>
<th>Can the utility...</th>
<th>ON-Bar</th>
<th>ontape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a storage manager to track backups and storage media?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Back up all database server data?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Back up selected storage spaces?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Back up logical-log files?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Perform continuous logical-log backups?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Perform continuous logical-log restore?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Back up while the database server is online?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Back up while the database server is in quiescent mode?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Restore all database server data?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Restore selected storage spaces?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Back up and restore storage spaces serially?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Perform cold restores with the database server offline?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Initialize high availability data replication?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Restore data to a specific point in time?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Perform separate physical and logical restores?</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 1-1. Differences between ON-Bar and ontape (continued)

<table>
<thead>
<tr>
<th>Can the utility...</th>
<th>ON-Bar</th>
<th>ontape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up and restore different storage spaces in parallel?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Use multiple tape drives concurrently for backups and restores?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Restart a restore?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Rename a chunk path name or device during a cold restore?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Perform imported restores?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Perform external backups and restores?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Monitor performance?</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Change logging mode for databases?</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Transform data with external programs?</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Back up to or restore from cloud storage?</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Additional differences:

- **Emergency boot files and sysutils database**

 The **ontape** utility does not use the **sysutils** database or the emergency boot files.

- **Simultaneous sessions**

 ON-Bar, with ISM, supports up to four simultaneous sessions per ISM instance. The **ontape** utility supports two simultaneous sessions, one for physical backup or restore, and one for log backup.

- **Device support and storage management**

 The **ontape** utility supports remote backup devices on other hosts. ON-Bar with ISM, does not.

 ON-Bar, with ISM, supports different sets of tape drives on various hardware platforms.

 You can use ON-Bar with third-party storage managers to obtain more sophisticated device support and storage management.

- **Changing the logging mode of a database**

 You cannot change the logging mode for ON-Bar; however you can use the **ondblog** utility to do this task when using ON-Bar.

 You can also use the SQL administration API alternative, ALTER LOGMODE.

 See *IBM Informix Administrator’s Guide* for more information.
Chapter 2. Plan for backup and restore

These topics describe the planning concepts for backup and restore.

Plan a recovery strategy

Before you use ON-Bar or ontape, plan your recovery goals.

Types of data loss

The first step is to determine how much data loss, if any, is acceptable. The following types of data loss can occur:

- Deletion of the following:
 - Rows, columns, tables, or databases
 - Chunks, storage spaces, or logical logs
- Data corruption or incorrect data created
- Hardware failure (such as a disk that contains chunk files fails or a backup tape that wears out)
- Database server failure
- Natural disaster

Determine failure severity

After you determine your recovery goals, create your recovery plan. Develop a recovery plan for multiple levels of failure, as the following table shows.

<table>
<thead>
<tr>
<th>Failure severity</th>
<th>Data loss</th>
<th>Suggested recovery plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Noncritical data is lost.</td>
<td>Restore of the data can wait until a nonpeak time. Use a warm restore.</td>
</tr>
<tr>
<td>Medium</td>
<td>The data that is lost is critical for your business but does not reside in a critical dbspace.</td>
<td>Perform a warm restore of this data as soon as possible.</td>
</tr>
<tr>
<td>Large</td>
<td>Critical dbspaces are lost.</td>
<td>Use a mixed restore to restore the critical data right away and a warm restore to restore noncritical data during off-peak hours.</td>
</tr>
<tr>
<td>Disaster</td>
<td>All data is lost.</td>
<td>Perform a cold or mixed restore as soon as possible.</td>
</tr>
</tbody>
</table>

Data use determines your backup schedule

After you develop your recovery plan, create a backup plan. How you use the data also determines how you plan your backup schedule, as follows:

- Data usage
 - How do users use the data?
- Critical dbspaces (root dbspace and dbspaces that contain the physical log and at least one logical-log file)
- Critical business application data
- Long-term data storage for legal or record-keeping reasons
- Data sharing among groups
- Test data

Transaction Time
How much transaction time can be lost? Also, how long might it take to re-enter lost transactions manually? For example, can you afford to re-enter all transactions that occurred over the past three hours?

Quantity and Distribution
How much data can you afford to lose? For example, you lost one fourth of your customer profiles, or you lost the Midwest regional sales figures but the West Coast figures are intact.

Ask the following questions to assist in deciding how often and when you want to back up the data:

- Does your business have down time where the system can be restored?
- If your system is 24x7 (no down time), is there a nonpeak time where a restore could occur?
- If a restore must occur during a peak period, how critical is the time?
- Which data can you restore with the database server online (warm restore)? Which data must be restored offline (cold restore)?
- How many storage devices are available to back up and restore the data?

Schedule backups

The following table shows a sample backup plan for a small or medium-sized system. Tailor your backup plan to the requirements of your system. The more often the data changes and the more important it is, the more frequently you need to back it up. For more information, see “Choose a backup level” on page 5-5.

Table 2-2. Sample backup plan

<table>
<thead>
<tr>
<th>Backup level</th>
<th>Backup schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete backup (level-0)</td>
<td>Saturday at 6 p.m.</td>
</tr>
<tr>
<td>Incremental backup (level-1)</td>
<td>Tuesday and Thursday at 6 p.m.</td>
</tr>
<tr>
<td>Incremental backup (level-2)</td>
<td>Daily at 6 p.m.</td>
</tr>
<tr>
<td>Level-0 backup of storage spaces that are updated frequently</td>
<td>Hourly</td>
</tr>
</tbody>
</table>

Important: Perform a level-0 backup after you change the physical schema, such as adding a chunk to a storage space. (See “Collect information about your system before a backup” on page 5-6.)

Security requirements for label-based access control

For label-based access control (LBAC), the person who runs ON-Bar or ontape does not require an exemption to security policies or additional privilege to back up or restore data. LBAC protection remains intact after you restore data using ON-Bar or ontape.
Plan a backup system for a production database server

To plan for adequate backup protection for your data, analyze your database server configuration and activity and the types of backup media available at your installation. Also, consider your budget for storage media, disks, computers and controllers, and the size of your network.

Evaluate hardware and memory resources

Evaluate the following database server and hardware configuration elements to determine which storage manager and storage devices to use:

- The number of I/O virtual processors
- The amount of memory available and the distribution of processor activity

Evaluate backup and restore time

How long your backup or restore takes depends on your database server configuration and the database size:

- The speed of disks or tape devices
 The faster the storage devices, the faster the backup or restore time.
- The number of incremental backups that you want to restore if a disk or system failure requires you to rebuild the database
 Incremental backups use less storage space than full backups and also reduce restore time.
- The size and number of storage spaces in the database
 Backups: Many small storage spaces take slightly longer to back up than a few large storage spaces of the same total size.
 Restores: A restore usually takes as long to recover the largest storage space and the logical logs.
- Whether storage spaces are mirrored
 If storage spaces are mirrored, you reduce the chance of having to restore damaged or corrupted data. You can restore the mirror at nonpeak time with the database server online.
- The length of time users are interrupted during backups and restores
 If you perform backups and warm restores while the database server is online, users can continue their work but might notice a slower response. If you perform backups and warm restores with the database server in quiescent mode, users must exit the database server. If you perform a cold restore with the database server offline, the database server is unavailable to users, so the faster the restore, the better. An external backup and restore eliminates system downtime.
- The backup schedule
 Not all storage spaces need to be included in each backup or restore session. Schedule backups so that you can back up more often the storage spaces that change rapidly than those that seldom or never change. Be sure to back up each storage space at level-0 at least once.
- The layout of the tables across the dbspaces and the layout of dbspaces across the disks
 When you design your database server schema, organize the data so that you can restore important information quickly. For example, you should isolate
critical and frequently used data in a small set of storage spaces on the fastest
disks. You also can fragment large tables across dbspaces to balance I/O and
maximize throughput across multiple disks. For more information, see your IBM
Informix Performance Guide.

- The database server and system workload
 The greater the workload on the database server or system, the longer the
 backup or restore time.
- The values of backup and restore configuration parameters
 For example, the number and size of data buffers that ON-Bar uses to exchange
data with the database server can affect performance. Use the
 BAR_NB_XPORT_COUNT and BAR_XFER_BUF_SIZE configuration parameters
to control the number and size of data buffers.

Evaluate logging and transaction activity

The following database server usage requirements also affect your decisions about
the storage manager and storage devices:
 - The amount and rate of transaction activity that you expect
 - The number and size of logical logs
 If you need to restore data from a database server with very little transaction
 activity, define many small logical logs. You are less likely to lose data because
 of infrequent logical-log backups.
 - How fast the logical-log files fill
 Back up log files before they fill so that the database server does not hang.
 - Database and table logging modes
 When you use many nonlogging databases or tables, logical-log backups might
 become less frequent.

Compress row data

Compressing row data can make backing up and restoring data more efficient.

Compressing row data prior to backing it up can improve the speed of backing up
and restoring and requires less backup media. A smaller size of data results in the
following advantages over uncompressed data during backup and restore:
 - Backing up is quicker.
 - Restoring is quicker.
 - The logical logs are smaller.
 - The backup image is smaller.

Using an external compression utility to compress a backup image of compressed
row data might not reduce the size of the backup image, because already
compressed data usually cannot be further compressed. In some cases, the size of
the backup image of compressed row data might be larger than the size of the
backup image that was compressed by an external utility.

Transform data with external programs

You can use external programs as filter plug-ins to transform data to a different
format prior to a backup and transform it back following the restore.
To compress or transform data, use the BACKUP_FILTER and RESTORE_FILTER configuration parameters to call external programs.

Tip: If you compress row data prior to backing it up, compressing the backup image with an external utility might not result in a smaller backup image.

The filter can be owned by anyone, but should not have write access to non-privileged users. Permission on the filters will be same as that of permission on any other executable that is called by an IBM Informix server or an Informix utilities.

See "Transforming with filters during backup and restore" on page 3-9 for more information.
Part 2. ON-Bar backup and restore system
Chapter 3. Overview of the ON-Bar backup and restore system

These topics introduce the components of ON-Bar and describes how it works. The following topics are covered:

- Where to find information on ON-Bar, ISM, and TSM
- ON-Bar for IBM Informix
- ON-Bar utilities

The following table shows which database server versions support ON-Bar, IBM Informix Storage Manager (ISM), Version 2.2, and Tivoli Storage Manager (TSM).

Table 3-1. IBM Informix support for ON-Bar, ISM and TSM

<table>
<thead>
<tr>
<th>Database server</th>
<th>Version</th>
<th>ON-Bar support</th>
<th>ISM support</th>
<th>TSM support</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Informix</td>
<td>Version 7.24</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Version 7.3x</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IBM Informix Universal Server</td>
<td>Version 9.1x</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Version 9.2x</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Version 9.30</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Version 9.40</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Version 10.00</td>
<td>X</td>
<td>X</td>
<td>5.1.6 or later</td>
</tr>
<tr>
<td>IBM Informix</td>
<td>Version 11.70</td>
<td>X</td>
<td>X</td>
<td>5.3.2 or later</td>
</tr>
</tbody>
</table>

Where to find information on tasks for ON-Bar, ISM, and TSM

The task-documentation matrix in the following table provides a quick reference to locating ON-Bar commands and ISM and TSM information.

Table 3-2. ON-Bar, ISM, and TSM task-documentation matrix

<table>
<thead>
<tr>
<th>If you want to:</th>
<th>Topic or publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run ON-Bar backup and restore commands from SQL</td>
<td>IBM Informix Administrator’s Guide and IBM Informix Guide to SQL: Syntax</td>
</tr>
<tr>
<td>Learn backup and restore concepts</td>
<td>Chapter 1, “Backup and restore concepts,” on page 1-1</td>
</tr>
<tr>
<td>Configure and use ON-Bar, ISM, TSM, or another storage manager</td>
<td>Chapter 4, “Configure the storage manager and ON-Bar,” on page 4-1</td>
</tr>
</tbody>
</table>

IBM Informix Storage Manager Administrator’s Guide

Tivoli Storage Manager Administrator’s Guide

Third-party storage-manager manual
Table 3-2. ON-Bar, ISM, and TSM task-documentation matrix (continued)

<table>
<thead>
<tr>
<th>If you want to:</th>
<th>Topic or publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the <code>onbar</code> script to customize ON-Bar, ISM, and TSM operations</td>
<td>Chapter 4, “Configure the storage manager and ON-Bar,” on page 4-1 (setup)</td>
</tr>
<tr>
<td></td>
<td>Chapter 8, “Customize and maintain ON-Bar,” on page 8-1 (customization)</td>
</tr>
<tr>
<td>Use ON-Bar, ISM, and TSM configuration parameters</td>
<td>Chapter 9, “ON-Bar configuration parameters,” on page 9-1</td>
</tr>
<tr>
<td>See a list of the files that ON-Bar, ISM, and TSM use</td>
<td>IBM Informix Storage Manager Administrator’s Guide</td>
</tr>
<tr>
<td></td>
<td>IBM Informix Storage Manager Administrator’s Guide</td>
</tr>
<tr>
<td></td>
<td>Tivoli Storage Manager Administrator’s Guide</td>
</tr>
<tr>
<td>Set up ISM, TSM, or other storage manager to use certain storage devices for</td>
<td>IBM Informix Storage Manager Administrator’s Guide</td>
</tr>
<tr>
<td>backup and restore operations</td>
<td>Tivoli Storage Manager Administrator’s Guide</td>
</tr>
<tr>
<td>Manage backup media and storage devices for ON-Bar</td>
<td>Third-party storage-manager manual</td>
</tr>
<tr>
<td>Track the location of all backup data</td>
<td></td>
</tr>
<tr>
<td>Move backup data through a managed life cycle</td>
<td></td>
</tr>
<tr>
<td>Back up storage spaces and logical logs:</td>
<td>“Back up storage spaces and logical logs” on page 5-7</td>
</tr>
<tr>
<td>• <code>onbar -b</code> -L [0112] (standard backup)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -b</code> -O (override error checking)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -b</code> -w (whole-system backup)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -b</code> -F (fake backup)</td>
<td></td>
</tr>
<tr>
<td>Back up logical logs only:</td>
<td>“Back up logical logs” on page 5-14</td>
</tr>
<tr>
<td>• <code>onbar -b</code> -l</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -b</code> -l -s (log salvage)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -b</code> -l -c (backup includes current log)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -b</code> -l -C (continuous log backup)</td>
<td></td>
</tr>
<tr>
<td>View backed-up logical logs using <code>onbar -P</code></td>
<td>“View backed-up logical logs” on page 5-16</td>
</tr>
<tr>
<td>Verify backups before you use the data in a restore:</td>
<td>Chapter 16, “Verify backups,” on page 16-1</td>
</tr>
<tr>
<td>• <code>onbar -v</code> (verify backup)</td>
<td></td>
</tr>
<tr>
<td>Perform warm or cold restores:</td>
<td>Chapter 6, “Restore data with ON-Bar,” on page 6-1</td>
</tr>
<tr>
<td>• <code>onbar -r</code> (parallel restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -r</code> -p (physical restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -r</code> -l (logical restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -r</code> -O (override error checking)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -r</code> -t (point-in-time restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -r</code> -n (point-in-log restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -r</code> -w (whole-system restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -RESTART</code> (restartable restore)</td>
<td></td>
</tr>
<tr>
<td>• <code>onbar -rename</code> (rename chunks restore)</td>
<td></td>
</tr>
<tr>
<td>Perform external backups and restores:</td>
<td>Chapter 15, “Perform an external backup and restore,” on page 15-1</td>
</tr>
<tr>
<td>• <code>onmode -c</code> block</td>
<td>unblock (external backup)</td>
</tr>
<tr>
<td>• <code>onbar -r</code> -e (external restore)</td>
<td></td>
</tr>
<tr>
<td>Use the <code>onsmssync</code> utility to expire old backup objects</td>
<td>Chapter 8, “Customize and maintain ON-Bar,” on page 8-1</td>
</tr>
<tr>
<td>Refer to the tables in the <code>sysutils</code> database and the Backup Scheduler tables</td>
<td>Chapter 10, “ON-Bar catalog tables,” on page 10-1</td>
</tr>
<tr>
<td>in the <code>sysmaster</code> database</td>
<td></td>
</tr>
<tr>
<td>Find corrective actions to ON-Bar error messages</td>
<td>The <code>finderr</code> utility on UNIX or IBM Informix Error Messages on Windows</td>
</tr>
</tbody>
</table>
Table 3-2. ON-Bar, ISM, and TSM task-documentation matrix (continued)

<table>
<thead>
<tr>
<th>If you want to:</th>
<th>Topic or publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find ON-Bar return codes</td>
<td>Chapter 11, “ON-Bar messages and return codes,” on page 11-1</td>
</tr>
<tr>
<td>Use GLS with ON-Bar</td>
<td>Appendix D, “GLS support,” on page D-1</td>
</tr>
<tr>
<td>• Create and delete storage spaces and chunks</td>
<td>IBM Informix Administrator’s Guide for your database server</td>
</tr>
<tr>
<td>• Manage database-logging status, logical-log files, and the physical log</td>
<td></td>
</tr>
<tr>
<td>• Perform fast recovery</td>
<td>IBM Informix Administrator’s Guide for your database server</td>
</tr>
<tr>
<td>• Locate complete information on all database server configuration parameters</td>
<td>IBM Informix Administrator’s Reference</td>
</tr>
<tr>
<td>• Use the <code>ondblog</code> utility to change the logging mode</td>
<td></td>
</tr>
<tr>
<td>• Use the <code>onlog</code> utility to display logical-log records</td>
<td></td>
</tr>
<tr>
<td>Restoring table-level data with <code>archecker</code></td>
<td>Chapter 17, “Perform table-level restores using the archecker utility,” on page 17-1</td>
</tr>
</tbody>
</table>

ON-Bar components for Informix

The following figure shows the following components of ON-Bar for IBM Informix:

- Storage spaces (dbspaces, blobspaces, and sbspaces) and logical logs to be backed up or restored
- The ON-Bar catalog tables in the `sysutils` database
- The `onbar` script (onbar.sh on UNIX or onbar.bat on Windows)
- The `onbar-driver (onbar_d)`
- The XBSA shared library for the storage manager on your system
 Use either ISM, TSM, or a storage manager that a third-party vendor provides.
- Backup data on storage media
- The ON-Bar activity log
- The ON-Bar emergency boot file

ON-Bar communicates with both the database server and the storage manager. Use the `onbar` command to start a backup or restore. For a backup session, ON-Bar requests the contents of storage spaces and logical logs from the database server and passes them to the storage manager. The storage manager stores the data on storage media. For a restore session, ON-Bar requests the backed up data from the storage manager and restores it on the database server.

If you specify a parallel backup or restore, the `onbar-driver (onbar_d)` creates child `onbar_d` processes that perform backup and restore operations. Each child processes one storage space, then returns. ON-Bar processes log files serially. If you specify a serial backup or restore, the `onbar-driver` performs the operation one object at a time.

The `onbar_d` processes write status and error messages to the ON-Bar activity log and write information to the emergency boot file that is used in a cold restore. For more details, see “Backup sequence on Informix” on page 5-18.
ON-Bar includes the following utilities. You can call ON-Bar from the command line, a script, a scheduler such as `cron` (UNIX), or a storage-manager process.

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar</td>
<td>An editable shell script on UNIX and a batch file (<code>onbar.bat</code>) in Windows that starts the onbar-driver. Use the <code>onbar</code> script or batch file to check the storage-manager version and customize backup and restore operations.</td>
</tr>
<tr>
<td>onbar_d</td>
<td>When you use the <code>onbar</code> command, it calls the onbar_d utility that starts the onbar-driver. The onbar-driver starts and controls backup and restore activities. The onbar_d utility transfers data between IBM Informix and the storage manager.</td>
</tr>
<tr>
<td>onmsync</td>
<td>Synchronizes the contents of the sysutils database, the emergency boot files, and the storage manager catalogs. Can be used to purge backups that are no longer needed according to user-selectable policies.</td>
</tr>
<tr>
<td>ondblog</td>
<td>Changes the database-logging mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>archecker</td>
<td>Verifies backups and restores table-level data</td>
</tr>
</tbody>
</table>

IBM Informix Storage Manager

ON-Bar is packaged with IBM Informix Storage Manager (ISM). However, you can purchase a third-party storage manager if you prefer. You must use a storage manager to perform backups and restores with ON-Bar. The *storage manager* is an application that manages the storage devices and media that contain backups. The storage manager handles all media labeling, mount requests, and storage volumes.

The ISM server resides on the same computer as ON-Bar and the IBM Informix database server; your storage devices are attached to this computer as well. ISM can store data on simple tape drives, optical disk devices, and file systems. ISM also performs the following functions:

- Configures up to four storage devices
- Adds, changes, and deletes administrative users
- Labels and mounts storage volumes on your storage devices
- Manages storage volumes
- Compresses and decompresses data
- Encrypts and decrypts data

For more information, see “Configuring a third-party storage manager” on page 4-1, “Choose storage managers and storage devices” on page 4-9, Chapter 9, “ON-Bar configuration parameters,” on page 9-1, and the IBM Informix Storage Manager Administrator’s Guide.

IBM Tivoli Storage Manager

IBM Tivoli Storage Manager (TSM) is a client/server program that provides storage management solutions to customers in a multivendor computer environment. TSM provides an automated, centrally scheduled, policy-managed backup, archive, and space-management facility for file servers and workstations.

TSM stores data on separate TSM servers. Your IBM Informix database servers are TSM clients using the library that implement XBSA functions for using TSM with IBM Informix database servers (IBM Informix Interface for TSM). IBM Informix Interface for TSM is part of your IBM Informix database server installation. TSM is distributed separately.

TSM efficiently manages disk, optical, and tape library resources. TSM provides the following functions:

- Reduces network complexity with interfaces and functions that span network environments.
- Increases administrator productivity by automating repetitive processes, scheduling unattended processes, and administering TSM from anywhere in the network
- Reduces risk of data loss with scheduled routine backups
- Optimizes existing storage resources with automated movement of files from client file systems to TSM storage

TSM provides the following services:
Backup and restore services to generate scheduled backups and restore data when required
Archive and retrieve services to provide point-in-time copies of data for long-term storage
Server hierarchical storage management services to automate migration from expensive storage media to less expensive storage media
Automation services to automate common storage administration tasks
Administration services to support routine monitoring, administration, and accounting, including the following functions:
 - Set client and server options
 - Define devices
 - Format storage volumes
 - Add additional clients
 - Label tape volumes
Security services to control user access
Disaster recovery management to implement a comprehensive backup and recovery procedures

Third-party storage managers
Some third-party storage managers can manage stackers, robots, and jukeboxes as well as simple tape and disk devices. These storage managers might perform these additional functions:
 - Schedule backups
 - Support networked and distributed backups and restores

Find information on the third-party storage managers that ON-Bar supports at http://www.ibm.com/software/data/informix/support.

Make sure that the storage manager has passed the IBM Informix validation process. The validation process is specific to the backup and restore product version, the operating-system version, and the IBM Informix database server version.

XBSA interface
ON-Bar and the storage manager communicate through the X/Open Backup Services Application Programmer’s Interface (XBSA), which enables the storage manager to manage media for the database server. By using an open-system interface to the storage manager, ON-Bar can work with a variety of storage managers that also use XBSA.

Each storage manager develops and distributes a unique version of the XBSA shared library. You must use the version of the XBSA shared library provided with the storage manager. For example, if you use ISM, use the XBSA shared library provided with ISM. ON-Bar and the XBSA shared library must be compiled the same (32-bit or 64-bit).

ON-Bar uses XBSA to exchange the following types of information with a storage manager:

Control data
ON-Bar exchanges control data with a storage manager to verify that
ON-Bar and XBSA are compatible, to ensure that objects are restored to the proper instance of the database server and in the proper order, and to track the history of backup objects.

Backup or restore data
During backups and restores, ON-Bar and the storage manager use XBSA to exchange data from specified storage spaces or logical-log files.

ON-Bar uses XBSA transactions to ensure data consistency. All operations included in a transaction are treated as a unit. All operations within a transaction must succeed for objects transferred to the storage manager to be restorable.

ON-Bar tables
ON-Bar uses the following catalog tables in the sysutils database to track backup and restore operations:

- The bar_server table tracks instances of the database server.
- The bar_object table tracks backup objects. A backup object is a backup of a dbspace, blobspace, sbspace, or logical-log file.
- The bar_action table tracks all backup and restore attempts against each backup object, except some log salvage and cold restore events.
- The bar_instance table describes each object that is backed up during a successful backup attempt.

The onsmsync utility uses the following tables to track its operations:

- The bar_ixbar table contains history of all unexpired successful backups in all timelines. It is maintained and used by onsmsync only.
- The bar_syncdeltab table is normally empty except when onsmsync is running. It is maintained and used by onsmsync only.

For a description of the content of these tables, see Chapter 10, “ON-Bar catalog tables,” on page 10-1.

ON-Bar boot files
The ON-Bar emergency boot files reside in the $INFORMIXDIR/etc directory on UNIX and in the %INFORMIXDIR%\etc directory on Windows. The emergency boot files contain the information that you need to perform a cold restore and are updated after every backup.

ON-Bar must be able to restore objects from a storage manager even when the tables in the sysutils database are not available. During a cold restore, the database server is not available to access sysutils, so ON-Bar obtains the information it needs for the cold restore from the emergency boot file.

Restriction: Do not modify the emergency boot file(s) in any way. Doing so might cause ON-Bar to select the wrong backup as part of a restore, possibly leading to data corruption or system failure. Removing or modifying emergency boot file entries for logical log files is particularly discouraged.

ON-Bar uses one emergency boot file on IBM Informix. The file name for the boot file is ixbar.servernum, where servernum is the value of the SERVERNUM configuration parameter.

You can override the default path and name of the boot file by changing the information specified in the BAR_IXBAR_PATH configuration parameter.
ON-Bar activity log

ON-Bar writes informational, progress, warning, error, and debugging messages to the ON-Bar activity log. You can use the activity log to:

- Monitor backup and restore activities such as, which storage spaces and logical logs were backed up or restored, the progress of the operation, and approximately how long it took.
- Verify whether a backup or restore succeeded.
- Track errors from the ondblog utility.
- Track ON-Bar performance statistics

For a list of ON-Bar informational, warning, and error messages, use the finderr or Find Error utility or view IBM Informix Error Messages at http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp.

Specify the location of the activity log

For information on how to change the location of the ON-Bar activity log, see “BAR_ACT_LOG parameter” on page 9-6.

Specify the level of ON-Bar debugging

You can set the level of debugging messages the ON-Bar utility prints in the ON-Bar debug log with the BAR_DEBUG configuration parameter. The ON-Bar debug log is specified by the BAR_DEBUG_LOG configuration parameter. By default, no debugging messages are printed.

You can update the value of BAR_DEBUG by editing the onconfig file. When the updated value of BAR_DEBUG takes affect depends on your database server:

- For IBM Informix, the new value of BAR_DEBUG takes affect immediately for any currently executing ON-Bar command and any subsequent commands. Any ON-Bar command that is currently executing when you update BAR_DEBUG reads the new value of BAR_DEBUG and prints debug messages at the new level.

Specify the location of the debug log

For information on how to change the location of the ON-Bar debug log, see “BAR_DEBUG_LOG parameter” on page 9-8.

Monitor the progress of a backup or restore

If your backup or restore operations take a long time to complete, knowing the progress is especially useful. Use the BAR_PROGRESS_FREQ configuration parameter to specify, in minutes, the frequency of the progress messages written to the ON-Bar activity log. For information on how to change the frequency of the progress messages, see “BAR_PROGRESS_FREQ parameter” on page 9-11.

Monitor backup and restore performance

You can monitor ON-Bar performance with the BAR_PERFORMANCE configuration parameter. This parameter helps you determine the level of performance reporting in the ON-Bar activity log. You can track the performance of ON-Bar processing and the performance of transferring objects between ON-Bar and the storage manager. See “BAR_PERFORMANCE parameter” on page 9-10 to learn how to set the level of reporting.
Transform data with external filter programs

You can use external programs to transform data to a different format prior to a backup and transform the data back to its original format following a restore. These programs are called filters. Filters can be used for compression or other data transformations.

ON-Bar and ontape both call the filters with the path specified by the BACKUP_FILTER and RESTORE_FILTER configuration parameters.

Transforming with filters during backup and restore

You can transform data during backup and restore by calling external programs as filter plug-ins.

To use filters:
1. Define the BACKUP_FILTER and RESTORE_FILTER configuration parameters in the onconfig file.
 - BACKUP_FILTER path_name options
 - RESTORE_FILTER path_name options
2. Optional: To identify a unique server instance, use the following three parameters:
 - INFORMIXSERVER
 Name of the IBM Informix server
 - SERVERNUM
 A configuration parameter in the onconfig file.
 - Hostname
 The machine name.

For example, you can use the UNIX compression utility to compress data before backing it up and decompress it following restore:

- To compress the data, use the BACKUP_FILTER parameter.
 For example: BACKUP_FILTER/bin/compress
 With this backup filter configuration, the backup filter is called from ontape or ON-Bar as /bin/compress
 The output produced by this filter is saved as a single object to the storage manager.
- To restore transformed data, use the RESTORE_FILTER parameter.
 Prerequisite: The data must have previously been transformed with the BACKUP_FILTER parameter.
 For example: RESTORE_FILTER/bin/uncompress
 If this object is used for restoring, the RESTORE_FILTER is called as follows during restore: /bin/uncompress
 The data passed to the filter to be on uncompressed, was compressed by the BACKUP_FILTER.
Chapter 4. Configure the storage manager and ON-Bar

These topics provide the information that you need to plan and to set up ON-Bar with a storage manager:

• Installing and configuring a storage manager
• Configuring ON-Bar
• Steps to take before making a test backup
• Choosing storage managers and storage devices

Configure a storage manager

This section discusses installing and configuring a storage manager.

Configuring a third-party storage manager

Storage managers have slightly different installation and configuration requirements. Make sure that you follow the manufacturer's instructions carefully. If you have difficulty with the storage-manager installation and configuration, please contact the manufacturer directly. For the list of certified storage managers for your ON-Bar version, consult your sales representative.

Important: Some storage managers let you specify the kind of data to back up to specific storage devices. Configure the storage manager to back up logical logs to one device and storage spaces to a different device for more efficient backups and restores.

To configure a third-party storage manager:

1. Set ON-Bar configuration parameters and environment variables.
2. Configure the storage manager so that ON-Bar can communicate correctly with it. For information, see your storage-manager documentation.
3. Configure your storage devices by following the instructions in your storage-manager documentation. The storage manager must know the device names of the storage devices that it should use.
4. Label your storage volumes.
5. Mount the storage volumes on the storage devices.
6. Update the storage-manager definition in the `sm_versions` file. For more information, see [“Update the sm_versions file” on page 4-4](#).
7. Verify that the BAR_BSALIB_PATH configuration parameter points to the correct XBSA shared library for your storage manager. For more information, see [“Specify the location of the XBSA Library” on page 4-7](#).

After you configure the storage manager and storage devices and label volumes for your database server and logical-log backups, you are ready to initiate a backup or restore operation with ON-Bar.

Configure ISM

For instructions on how to set up IBM Informix Storage Manager (ISM) to work with ON-Bar, see the *IBM Informix Storage Manager Administrator’s Guide*. The ISM
server is installed with the IBM Informix on UNIX or Windows. Several database server instances can share one ISM instance.

Restriction: Install one copy of ISM on each computer to prevent possible conflicts with the XBSA shared library. Do not run ISM and Legato NetWorker on the same computer because they conflict with each other.

Configure TSM

To use IBM Tivoli Storage Manager (TSM) with IBM Informix databases, you must install and configure the Tivoli Storage Manager client on your database server computer and Tivoli Storage Manager on your storage computer.

For more information about TSM, read the following manuals:
- *Tivoli Storage Manager Backup-Archive Clients Installation and User’s Guide*
- *Tivoli Storage Manager Using the Application Program Interface*
- *Tivoli Storage Manager Administrator’s Guide*
- *Tivoli Storage Manager Administrator’s Reference*

In addition, you must configure IBM Informix Interface for TSM and perform other TSM configuration tasks on your IBM Informix database server computer. These tasks are explained in the following sections.

Edit the TSM client options files

The IBM Informix Interface for Tivoli Storage Manager (TSM) communicates with the TSM server using the TSM API. By default, IBM Informix Interface for TSM uses the client user options file (`dsm.opt`) and client system options file (`dsm.sys`) located in the TSM API installation directory:

- Specify the TSM server to use in the client user options file, `dsm.opt`.
- Identify the TSM server name, communication method, and server options in the client system options file, `dsm.sys`.

Use the sample `dsm.opt.smp` and `dsm.sys.smp` files distributed with the TSM API to help you get started quickly.

You must be the **root** user to perform edits to the `dsm.opt` and `dsm.sys` files.

See *TSM Installing the Clients* and *TSM Trace Facility Guide* for information regarding options you can specify in these files.

Edit the TSM client user options file:

The IBM Tivoli Storage Manager (TSM) client user options file, `dsm.opt`, must refer to the correct TSM server instance, as listed in the `dsm.sys` file.

Set the following options in the `dsm.opt` file:

- **SERVERNAME**
 - Identifies which TSM server instance, as listed in the `dsm.sys` file, that IBM Informix Interface for TSM contacts for services.

- **TRACEFILE**
 - Sends trace output information to a designated file.
TRACEFLAG
 Sets specific trace flags

Edit the TSM client system options file:

The IBM Tivoli Storage Manager (TSM) client systems options file, dsm.sys, must refer to the correct TSM server address and communication method.

The following TSM options are the most important to set in the dsm.sys file:

SERVERNAME
 Specifies the name you want to use to identify a server when it is referred to in the dsm.opt file and to create an instance that contains options for that server.

COMMMETHOD
 Identifies the communication method.

TCPSERVERADDRESS
 Identifies the TSM server.

PASSWORDACCESS
 Specifies GENERATE to store the TSM password.

The SERVERNAME option in the dsm.opt and dsm.sys files define server instance names only. The TCPSERVERADDRESS option controls which server is actually contacted.

You can set up multiple server instances in the dsm.sys file. See the Tivoli Storage Manager Backup-Archive Client Installation and User’s Guide for information about multiple server instances.

Assign a TSM management class for a backup

When you back up a database, the default management class for your node is used. You can override the default value with a different value that is specified in the INCLUDE option. This option is placed in the include-exclude options file. The file name of the include-exclude options file is in the client system options file (dsm.sys). For more information, see the Tivoli Storage Manager Backup-Archive Client Installation and User’s Guide.

Use the following naming conventions for ON-Bar files:

- A database backup:
 /dbservername/dbservername/dbspacename/level

- A log backup:
 /dbservername/dbservername/server_number/unique_logid

For a database backup, an example of the INCLUDE statement is as follows:

Include /dbserverA/dbserverA/dbspaceA/* InformixDbMgmt

For a logical log backup, an example of the INCLUDE statement is as follows:

Include /dbserverA/dbserverA/55/* InformixLogMgmt

where the number 55 is the value of the SERVERNUM parameter in the onconfig file.
Register with the TSM server

Before backing up to and recovering from an IBM Tivoli Storage Manager (TSM) server, you must have a TSM registered node name and a password. The process of setting up a node name and password is called registration. After the IBM Informix Interface for TSM node is registered with a TSM server, you can begin using the IBM Informix Interface for TSM to back up and restore your IBM Informix storage spaces and logical logs. If your workstation has a node name assigned to the TSM backup-archive client, you should have a different node name for IBM Informix Interface for TSM. For information about performing the registration process, see the Tivoli Storage Manager Backup-Archive Client Installation and User’s Guide.

Initializing the IBM Informix Interface for TSM password

To initialize the password for IBM Informix Interface for TSM, use the txbsapswd program. This program sets up a connection with the server instance that you specified in the dsm.opt file. You must run the txbsapswd program as user root before using IBM Informix Interface for TSM.

To initialize the password:
1. Start the txbsapswd program located in the $INFORMIXDIR/bin directory.
2. Enter the password and press Return. To retain your current password, press Return without a value.

Update the sm_versions file

The storage manager must have an entry in the sm_versions file. If you are using IBM Informix Storage Manager, put ism in the sm_name field of the sm_versions file. To find out which code name to use in sm_versions for third-party storage managers, see the storage-manager documentation.

The Tivoli storage manager backup module is also supported by Informix and is bundled with the Informix software. If you are using Tivoli storage manager, put tsm in the sm_name field of the sm_versions file. The value adsm is also valid but will be deprecated in a future release.

The storage-manager definition in the sm_versions file uses this format:

1|XBSA_ver|sm_name|sm_ver

In the format, XBSA_ver is the release version of the XBSA shared library for the storage manager, sm_name is the name of the storage manager, and sm_ver is the storage-manager version. The maximum field length is 128 characters.

The following example shows the ISM definition in the sm_versions file:

1|1.0.1|ism| ISM.2.20.UC1.114|

The following example shows the TSM definition in the sm_versions file:

1|5.3|tsm|5

Before ON-Bar starts a backup or restore process, it calls the currently installed version of the storage-manager-specific XBSA shared library to get its version number. If this version is compatible with the current version of ON-Bar and is defined in the sm_versions file, ON-Bar begins the requested operation.
Updating the storage-manager definition in sm_versions

To update the storage-manager definition in sm_versions:

1. Copy the sm_versions.std template to a new file, sm_versions in the $INFORMIXDIR/etc directory on UNIX or the %INFORMIXDIR%\etc directory on Windows.

2. If you are using IBM Informix Storage Manager (ISM), issue the ism_startup -init command to automatically update sm_versions with the correct version number and storage-manager name or manually edit sm_versions.

 Important: The ism_startup -init command erases records of previous backups.

3. If you are using an ISM patch, you must manually edit sm_versions.

4. If you are using a third-party storage manager, the vendor supplies the definition for the sm_versions file. Create your own sm_versions file with the correct data for the storage manager using the format in sm_versions.std as a template.

5. Stop any ON-Bar processes (onbar_d, onbar_w, or onbar_m) that are currently running and restart them for the changes to take effect.

Validate your storage manager

When you convert or revert an IBM Informix database server, the storage manager that you used on the old version might not be validated for the version that you are migrating to. Verify that the storage-manager vendor has successfully completed the IBM Informix validation process for the database server version and platform. If not, you need to install a validated storage manager before you perform backups with ON-Bar.

Configure ON-Bar

ON-Bar is installed with your IBM Informix database server software. To use ON-Bar with installed storage managers, you set specific parameters in the onconfig file. Use the onconfig.std file as a template.

The bargroup group (UNIX)

If you want users other than informix or root to execute ON-Bar commands, you can create a bargroup group. Members of bargroup can execute ON-Bar commands. The bargroup group on UNIX is similar to the Informix-Admin group on Windows. For instructions on how to create a group, see your UNIX documentation.

Restriction: For security, it is recommended that ON-Bar commands not be run by the root user.

Your customized onbar script is saved on new installations

When the installation program installs the database server files, including the ON-Bar files, the onbar script is distributed as a shell script so that you can add preprocessing or postprocessing steps to the script.

The onbar script is distributed as a file named onbar.sh (UNIX) or onbar.bat (Windows). When the install program installs the database server files over an
existing installation, it checks whether any difference exists between the new `onbar` script and the old `onbar` script to prevent the loss of your existing `onbar` script.

- If the two scripts are the same, the installation program renames the `onbar.sh` or `onbar.bat` file to `onbar`, the new `onbar` script overwrites the old `onbar` script, and no data is lost.

- If a difference exists between the new `onbar` script and the old `onbar` script, the installation program renames the `onbar.sh` or `onbar.bat` file to `onbar`, renames the old `onbar` script to the form `onbar.date`, and issues a message that the existing `onbar` script was renamed.

If you see a message that the old `onbar` script has been renamed by appending a date, look at the new `onbar` script (file name `onbar`) and integrate the contents of the old `onbar` script into the new `onbar` script. For example, if `onbar` has been renamed to `onbar.2000.12.15`, integrate the contents of `onbar.2000.12.15` into `onbar`.

For information on using the `onbar` script, see “Customize ON-Bar and storage-manager commands” on page 8-1. For information on installing the database server, see your IBM Informix Installation Guide.

Set ISM environment variables and ONCONFIG parameters

When you use IBM Informix Storage Manager (ISM), you need to set certain environment variables. For information, see the IBM Informix Storage Manager Administrator’s Guide.

You can set these environment variables in the `onbar` script or in your environment.

If you use ISM, you can specify the volume pool names for storage spaces and logical logs in the ISM_DATA_POOL and ISM_LOG_POOL parameters in the `onconfig` file. The ISM_DATA_POOL configuration parameter specifies the volume pool that you use for backing up storage spaces. The ISM_LOG_POOL configuration parameter specifies the volume pool that you use for backing up logical logs.

If you do not set these configuration parameters, they default to the volume pool names ISMData and ISMLogs, respectively.

Set the IBM Informix for TSM environment variables

When you use the IBM Informix Interface for TSM, you need to set certain environment variables in the user’s environment. The following table describes these environment variables.

<table>
<thead>
<tr>
<th>Environment variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSMI_CONFIG</td>
<td>The fully qualified name for the client user option file (<code>dsm.opt</code>). The default value is <code>dsm.opt</code> in the TSM API installation directory.</td>
</tr>
<tr>
<td>DSMI_DIR</td>
<td>Points to the TSM API installed path. This environment variable needs to be defined only if the TSM API is installed in a different path from the default path. The DSMI_DIR environment variable is also used to find the <code>dsm.sys</code> file.</td>
</tr>
</tbody>
</table>
Table 4-1. IBM Informix for TSM environment variables (continued)

<table>
<thead>
<tr>
<th>Environment variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSMI_LOG</td>
<td>Points to the directory that contains the API error log file (dsierror.log). For error log files, create a directory for the error logs to be created in, then set the DSMI_LOG environment variable to that directory. The API error log file must have writable rights by the user performing the backup.</td>
</tr>
</tbody>
</table>

The following example shows how to set up these environment variables for Solaris 32-bit if the TSM API is installed in the /opt/Tivoli/tsm/client/api directory:

```
export DSMI_CONFIG=/opt/Tivoli/tsm/client/api/bin/dsm.opt
export DSMI_DIR=/opt/Tivoli/tsm/client/api/bin
export DSMI_LOG=/home/user_a/logdir
```

Specify the location of the XBSA Library

UNIX

By default, ON-Bar looks for the XBSA shared library in $INFORMIXDIR/lib/ibsad001.so on UNIX. To specify a different name or location of the XBSA shared library, use the BAR_BSALIB_PATH configuration parameter. You can also make $INFORMIXDIR/lib/ibsad001.so a symbolic link to the correct library.

For example, if you are using ISM, you can do either of the following:

- Link $INFORMIXDIR/lib/ibsad001.so to $INFORMIXDIR/lib/libbsa.so
- Set BAR_BSALIB_PATH to $INFORMIXDIR/lib/libbsa.so

For example, if you are using TSM, you can do either of the following:

- Link $INFORMIXDIR/lib/ibsad001.so to $INFORMIXDIR/lib/libtxbsa.so
- Set BAR_BSALIB_PATH to $INFORMIXDIR/lib/libtxbsa.so

Windows

On Windows, because no default XBSA shared library name exists, you must specify its name and location in the BAR_BSALIB_PATH configuration parameter.

- If you are using ISM, set BAR_BSALIB_PATH to %ISMDIR%\bin\libbsa.dll.
- If you are using TSM, set BAR_BSALIB_PATH to %DIR%\bin\libtxbsa.dll.

If you are using a third-party storage manager, ON-Bar must use the version of the XBSA library that the storage-manager manufacturer provides. For more information, see "BAR_BSALIB_PATH parameter" on page 9-6 and your release notes.

Important: To set the path name of the XBSA library with the BAR_BSALIB_PATH configuration parameter in the onconfig file, specify the absolute path name. If you specify a relative path name, then the following message is written to the ON-Bar activity log: BAR_BSALIB_PATH in ONCONFIG is not an absolute path name.
Specify ON-Bar configuration parameters

Before you begin your first backup, review the default ON-Bar parameters in the `onconfig` file and adjust the values as needed. For more information, see "Verify the configuration" on page 4-9. For the complete list of database server configuration parameters and their default values, see the IBM Informix Administrator's Reference.

ON-Bar configuration parameters on Informix

Restriction: ON-Bar does not use the TAPEDEV, TAPEBLK, TAPESIZE, LTAPEBLK, and LTAPESIZE configuration parameters.

ON-Bar on IBM Informix uses the following configuration parameters:

<table>
<thead>
<tr>
<th>Configuration parameter</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>"ALARMPROGRAM parameter" on page 9-4</td>
<td>Specifies a script that handles alarms For ON-Bar, set this script to log_full.sh to automatically back up log files when they become full.</td>
</tr>
<tr>
<td>"ALRM_ALL_EVENTS parameter" on page 9-5</td>
<td>Causes ALARMPROGRAM to execute every time an alarm event is invoked.</td>
</tr>
<tr>
<td>"BACKUP_FILTER parameter" on page 9-5</td>
<td>Specifies the location and name of an external filter program used in data transformation.</td>
</tr>
<tr>
<td>"BAR_ACT_LOG parameter" on page 9-6</td>
<td>Specifies the location and name for the ON-Bar activity log file.</td>
</tr>
<tr>
<td>"BAR_BSALIB_PATH parameter" on page 9-6</td>
<td>Specifies the full path and name of the XBSA shared library provided by the storage manager to communicate between ON-Bar and the storage manager.</td>
</tr>
<tr>
<td>"BAR_DEBUG parameter" on page 9-7</td>
<td>Specifies the level of debugging information to display in the ON-Bar activity log file. You can dynamically update the value of BAR_DEBUG in the onconfig file during a session.</td>
</tr>
<tr>
<td>"BAR_DEBUG_LOG parameter" on page 9-8</td>
<td>Specifies the location and name of the ON-Bar debug log.</td>
</tr>
<tr>
<td>"BAR IXBAR_PATH parameter" on page 9-8</td>
<td>Specifies the location where the ON-Bar ixbar boot file is created. You can change the file name and path.</td>
</tr>
<tr>
<td>"BAR_HISTORY parameter" on page 9-8</td>
<td>Specifies whether the sysutils database maintains the backup history.</td>
</tr>
<tr>
<td>"BAR_MAX_BACKUP parameter" on page 9-9</td>
<td>Specifies the maximum number of processes per onbar command.</td>
</tr>
<tr>
<td>"BAR_NB_XPORT_COUNT parameter" on page 9-10</td>
<td>Specifies the number of shared-memory data buffers for each onbar_d worker or child process.</td>
</tr>
<tr>
<td>"BAR_PERFORMANCE parameter" on page 9-10</td>
<td>Specifies whether timestamps and transfer rates of storage-manager operations are recorded in the activity log.</td>
</tr>
<tr>
<td>"BAR_PROGRESS_FREQ parameter" on page 9-11</td>
<td>Specifies in minutes how frequently the backup or restore progress messages display in the activity log.</td>
</tr>
<tr>
<td>"BAR_RETRY parameter" on page 9-12</td>
<td>Specifies how many times ON-Bar should retry a backup, logical-log backup, or restore operation if the first attempt fails.</td>
</tr>
<tr>
<td>"BAR_XFER_BUF_SIZE parameter" on page 9-13</td>
<td>Specifies the size in pages of the buffers that the database server uses to exchange data with each onbar_d worker or child process.</td>
</tr>
<tr>
<td>"ISM_DATA_POOL parameter" on page 9-13</td>
<td>Specifies the volume pool that you use for backing up storage spaces (ISM).</td>
</tr>
<tr>
<td>Configuration parameter</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ISM_LOG_POOL parameter on page 9-14</td>
<td>Specifies the volume pool that you use for backing up logical logs (ISM)</td>
</tr>
<tr>
<td>“LTAPEDEV parameter” on page 9-14</td>
<td>For ontape, specifies the tape device where logical logs are backed up. For ON-Bar, specifies whether to back up logs.</td>
</tr>
<tr>
<td></td>
<td>If this configuration parameter is set to /dev/null on UNIX or NUL on Windows, the backup utility will been able to back up the logical logs.</td>
</tr>
<tr>
<td>“RESTARTABLE_RESTORE parameter” on page 9-14</td>
<td>Turns restartable restore on or off</td>
</tr>
<tr>
<td>“RESTORE_FILTER parameter” on page 9-15</td>
<td>Specifies the location and name of an external filter program that restores transformed data to its original state</td>
</tr>
</tbody>
</table>

Verify the configuration

Check the items in the following list to make sure that ON-Bar and your storage manager are set up correctly:

- The storage manager is installed and configured to manage specific storage devices.
- For UNIX, make sure that the BAR_BSALIB_PATH configuration parameter specifies correctly the XBSA shared library or it is not set and the library is in the default location.
- For Windows, make sure that the BAR_BSALIB_PATH configuration parameter specifies correctly the XBSA shared library.
- The sm_versions file contains a row that identifies the version number of the storage-manager-specific XBSA shared library.

After you verify that ON-Bar and your storage manager are set up correctly, run ON-Bar on your test database to make sure that you can back up and restore data. For more information, follow the instructions in Chapter 5, “Back up with ON-Bar,” on page 5-1.

Choose storage managers and storage devices

The storage manager manages the storage devices to which the backed-up data is written. IBM Informix Storage Manager is included with your database server. For information on how to use ISM, refer to the IBM Informix Storage Manager Administrator’s Guide.

If you choose a different storage manager, consider whether it has the features that you need to back up your storage spaces and logical logs. When you choose storage devices, make sure that they are compatible with the storage manager that you choose. The storage devices should have the speed and capacity that your backups require. The storage manager should be easy to use and work on your operating system.

Features that ISM supports

IBM Informix Storage Manager (ISM) supports the following storage-manager features:
• Back up logical logs and storage spaces to different devices and to specify whether to use encryption or compression for data.
• Write the output of parallel backups to a single device, medium, or volume. Some backup devices can write data faster than the disks used to hold storage spaces can be read.
• Automatic switch from one tape device to another when the volume in the first device fills.
• Migration of data from one backup medium to another. For speed, you can back up logical logs or storage spaces to disk, but you must move them later to tape or other removable media or your disk will become full.
• Clone copies of backup data for on-site and off-site storage.
• Automatic expiration of data. Once all data on a backup media expires, you can reuse the media.

Features that ISM does not support

IBM Informix Storage Manager (ISM) does not support the following features:
• Distributing a single data stream across multiple devices simultaneously, which improves throughput if you have several slow devices
• Using different encryption or compression methods for specified storage spaces or databases
• Scheduling backups
• Support for devices such as tape libraries, jukeboxes, silos, tape autochangers, and stackers
• Remote host operations

Third-party storage managers might support these features.

Features that TSM supports

IBM Tivoli Storage Manager (TSM) supports all the features that IBM Informix Storage Manager supports and all the features listed in the previous section that ISM does not support. TSM supports the following additional features:
• Create policies to automate storage management and enforce data management goals.
• Automated circulation of media through the storage management process.
• Implement a progressive backup methodology so that files are backed up incrementally to reduce network traffic, while recovery media is consolidated to provide better performance.
• Use the Network Data Management Protocol to back up and restore file systems stored on a network-attached storage file server.

Storage device requirements

Ask the following interrelated questions to determine what storage devices you need. For example, the speed and type of storage devices partly determine the number of storage devices that you need.
• What kind of storage devices do you need?
The transaction volume and the size of your database are major factors in
determining the kind of storage devices that you need.

IBM Informix Storage Manager supports simple tape devices such as QIC, 4 mm,
8 mm, DLT, optical devices, and disk backups. If ISM cannot manage the storage
devices that you need, you need to purchase a different storage manager. For
more information, see the IBM Informix Storage Manager Administrator’s Guide.

- What is the availability requirement for each device?
 Is it important for your storage devices to allow random as well as sequential
 access? If so, you cannot use tape storage devices.

- How many storage devices do you need?
 ISM supports up to four devices per host. The number of storage devices that
 you need depends on the kind of storage devices you have, how much
 transaction activity occurs on the database server, how fast throughput is, how
 much time you can allow for backups, and other similar factors.
Chapter 5. Back up with ON-Bar

These topics explain how to use the ON-Bar utility to back up and verify storage spaces (dbspaces, blobspaces, and sbspaces) and logical-log files. The onbar utility is a wrapper to onbar_d, the ON-Bar driver. Use any of the following methods to execute ON-Bar backup and restore commands:

- Issue ON-Bar commands.

 To execute ON-Bar commands, you must be user root or informix or a member of the bargroup group on UNIX or a member of the Informix-Admin group on Windows. (For more information, see “The bargroup group (UNIX)” on page 4-5.)

- Include ON-Bar and ISM commands in a shell or batch script.

 For information, see “Customize ON-Bar and storage-manager commands” on page 8-1.

- Call ON-Bar from a job-scheduling program.

- Set event alarms that trigger a logical-log backup.

 For information, see “Back up logical logs on Informix” on page 5-14.

Summary of ON-Bar tasks

You can use ON-Bar to complete a variety of tasks, including the following tasks:

- “Back up storage spaces and logical logs” on page 5-7
- “View recent ON-Bar activity” on page 5-13
- “Back up logical logs” on page 5-14
- “View backed-up logical logs” on page 5-16
- “Syntax for archecker using integrated mode” on page 16-1
- “Perform a restore” on page 6-10
- “Performing an external restore” on page 7-7

The following table summarizes frequently-used commands:

Table 5-1. ON-Bar command summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar -b</td>
<td>Back up storage spaces</td>
</tr>
<tr>
<td>onbar -b -w</td>
<td>Back up the whole system. Perform a whole-system backup.</td>
</tr>
<tr>
<td>onbar -b -w -L 1</td>
<td>Perform a level-1 (incremental) whole system backup.</td>
</tr>
<tr>
<td>onbar -b -w -L 2</td>
<td>Perform a level-2 (incremental) whole system backup.</td>
</tr>
<tr>
<td>onbar -b -O</td>
<td>Override error checks during backup</td>
</tr>
<tr>
<td>onbar -b -F</td>
<td>Perform a fake backup</td>
</tr>
<tr>
<td>onbar -b -I -c</td>
<td>Include the current log in the log backup</td>
</tr>
<tr>
<td>onbar -I -O</td>
<td>Override error checks to back up logs when blobspaces are offline</td>
</tr>
<tr>
<td>onbar -b -I -C</td>
<td>Start a continuous logical-log backup</td>
</tr>
</tbody>
</table>
Table 5-1. ON-Bar command summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar -b -L 1</td>
<td>Performs a level-1 backup, backing up all changes in the storage spaces since the last level-0 backup. Also performs a level-0 backup of used logical logs.</td>
</tr>
<tr>
<td>onbar -b -f path</td>
<td>Backs up a list of storage spaces and logical logs that are specified in a file.</td>
</tr>
<tr>
<td>onbar -m</td>
<td>Prints 20 lines of recent ON-Bar activity from the activity log file.</td>
</tr>
<tr>
<td>onbar -m num_of_lines num_of_sec</td>
<td>Prints a specified number of lines of recent ON-Bar activity at an interval of every specified number of seconds.</td>
</tr>
<tr>
<td>onbar -b -l</td>
<td>Performs a backup of full logical-log files.</td>
</tr>
<tr>
<td>onbar -b -l -c</td>
<td>Closes and backs up the current logical log and the other full logical logs.</td>
</tr>
<tr>
<td>onbar -b -l -C</td>
<td>Starts a continuous log backup of logical logs.</td>
</tr>
<tr>
<td>onbar -b -l -O</td>
<td>Overrides normal logical backup restrictions such as when a blobspace is offline.</td>
</tr>
<tr>
<td>onbar -b -l -s</td>
<td>Salvages any logical logs that are still on disk after a database server failure.</td>
</tr>
<tr>
<td>onbar -P</td>
<td>View logical logs that have been backed up using the onbar utility.</td>
</tr>
<tr>
<td>onbar -V</td>
<td>Displays the software version number and the serial number of IBM Informix.</td>
</tr>
<tr>
<td>onbar -v</td>
<td>Use the archecker utility to verify that a backup is usable!</td>
</tr>
<tr>
<td>onbar -v -f path</td>
<td>Verify the backed-up storage spaces listed in the file bkup1.</td>
</tr>
<tr>
<td>onbar -v -t "YYYY-MM-DD HH:MM:SS"</td>
<td>Perform a point-in-time verification.</td>
</tr>
<tr>
<td>onbar -v -w</td>
<td>Verify a whole-system backup.</td>
</tr>
<tr>
<td>onbar -version</td>
<td>Displays version information on the build operation system, build number, and build date of IDS.</td>
</tr>
</tbody>
</table>

Prepare for a backup

This section explains the preliminary steps that you must take before you back up storage spaces and logical logs.
Data ON-Bar backs up

ON-Bar backs up the critical dbspaces first, then the remaining storage spaces, and finally the logical logs. (The critical dbspaces are the rootdbs and the dbspaces that contain the logical logs and physical log.) ON-Bar can back up and restore the largest storage space that your database server supports.

The follow table lists the types of data ON-Bar backs up.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dbspaces that contain tables or indexes</td>
<td>See “Back up storage spaces and logical logs” on page 5-7. ON-Bar also backs up the reserved pages in the root dbspace.</td>
</tr>
<tr>
<td>Blobspaces</td>
<td>See “Backing up blobspaces in a logging database” on page 5-12.</td>
</tr>
<tr>
<td>ISM catalog</td>
<td>If you use IBM Informix Storage Manager, the ISM catalog is in $INFORMIXDIR/ism on UNIX and %ISMDIR% on Windows.</td>
</tr>
<tr>
<td>Logical-log files</td>
<td>See “Back up logical logs” on page 5-14.</td>
</tr>
<tr>
<td>Sbspaces</td>
<td>See “Back up smart large objects in sbspaces” on page 5-12.</td>
</tr>
</tbody>
</table>

Administrative files to back up

ON-Bar backups safeguard your data. They do not replace normal operating-system backups of important configuration files.

Important: For use in an emergency, you should have a backup copy of the current version of the following administrative files. You will need to restore these files if you need to replace disks or if you restore to a second computer system (imported restore).

The following is a list of administrative files that you should back up.

- onconfig file
- Emergency boot files
- sm_versions file
- sqlhosts file (UNIX)
- Storage-Manager configuration and data files
- Simple-large-object data in blobspaces that are stored on disks or optical platters
- Externally stored data such as external tables that a DataBlade maintains

Although ON-Bar does not back up the following items, ON-Bar automatically recreates them during a restore. You do not need to make backup copies of these files:

- The dbspace pages that are allocated to the database server but that are not yet allocated to a tblspace extent
- Mirror chunks, if the corresponding primary chunks are accessible
- Temporary dbspaces

ON-Bar does not back up or restore the data in temporary dbspaces. Upon restore, the database server recreates empty temporary dbspaces.
Install and configure a storage manager

Before you can create a backup with ON-Bar, you must configure your storage manager and start it. For information about configuring IBM Informix Storage Manager, see the IBM Informix Storage Manager Administrator's Guide. For information about configuring third-party storage managers, see Chapter 4, “Configure the storage manager and ON-Bar,” on page 4-1, and your storage-manager manuals.

Make sure your storage manager is ready to receive data before you begin a backup or restore. To improve performance, it is recommended that you reserve separate storage devices for storage-space and logical-log backups. If you are backing up to tape or optical disk, label and mount all volumes in the storage device. The backup or restore might pause until you mount the requested tape or disk.

Whole-system backup

A whole-system backup (onbar -b -w) is a backup of all storage spaces and logical logs based on a single checkpoint. That time is stored with the backup information. The advantage of using a whole-system backup is that you can perform a cold restore of the storage spaces with or without the logical logs. Because the data in all storage spaces is consistent in a whole-system backup, you do not need to restore the logical logs to make the data consistent. Level 0, 1, or 2 backups are supported. For an example, see “Perform a whole-system backup” on page 5-12.

Whether a whole-system backup is serial or parallel depends on the setting of the BAR_MAX_BACKUP configuration parameter:

- If BAR_MAX_BACKUP is set to 1 (one), then onbar -b -w performs a serial backup.
- If BAR_MAX_BACKUP is set to an integer value greater than 1, then onbar -b -w performs a parallel backup.

For more information about the BAR_MAX_BACKUP parameter, see “BAR_MAX_BACKUP parameter” on page 9-9.

Parallel backup

A parallel backup is a standard backup (onbar -b or whole-system backup (onbar -b -w) that runs multiple simultaneous processes, each process backing up a different dbspace. For parallel backup, dbspaces are backed up by number of used pages.

Set the number of simultaneous processes that can be run with the BAR_MAX_BACKUP configuration parameter. In most cases, parallel backups complete faster than serial backups, which use only one process.

To force a serial backup, set the BAR_MAX_BACKUP configuration parameter to 1.

For more information about the BAR_MAX_BACKUP parameter, see “BAR_MAX_BACKUP parameter” on page 9-9.

Standard backup

A standard backup (that is, a backup performed without specifying the -w flag) is a backup of selected or all storage spaces. The setting of BAR_MAX_BACKUP determines whether the backup is parallel or serial. In a standard backup, the database server performs a checkpoint for each storage space as it is backed up.
Therefore, to make the data consistent, you must restore the logical logs when restoring from a standard backup. For an example, see “Perform a level-0 backup of all storage spaces” on page 5-10.

Incremental backup

An *incremental backup* of a storage space backs up only those pages that have been modified since the last backup of the storage space. ON-Bar supports the following types of backups:

- Full backups, also called level-0 backups
- Incremental backups of full backups, also called level-1 backups
- Incremental backups of incremental backups, also called level-2 backups
- Incremental whole system backups

Use the -L option to the ON-Bar backup command to select the level of backup. By default ON-Bar performs a level-0 backup.

Restriction: You cannot perform incremental backups on logical logs.

Physical backup

A *physical backup* (*onbar -b -p*) backs up just the storage spaces. You can back up specific or all storage spaces.

Example command: *onbar -b -p -L 0*

Using -p for a dbspace backup with ON-Bar will only backup the storage spaces, but it will not start an implicit logical log file backup. Instead, a warning message will be written to the ON-Bar activity log file to let the user know, that log file backup was not initiated. The message will also contain the log unique ID of the latest log file that will be required for a restore of the storage spaces. This is the log file that contains the archive checkpoint of the last dbspace backed up.

Example message:

```
2006-12-14 09:30:35 14277 14275 (-43354) WARNING: Logical logs were
not backed up as part of this operation. Logs through log unique ID 9
are needed for restoring this backup. Make sure these logs are backed
up separately.
```

If necessary, then a log switch is initiated, so that this log can be backed up. If the current log is already newer than the log with the archive checkpoint of the last storage space, then no log switch is initiated.

Choose a backup level

ON-Bar supports level-0, level-1, and level-2 backups. It is good practice to create a backup schedule that keeps level-1 and level-2 backups small and to schedule frequent level-0 backups. With such a backup schedule, you avoid having to restore large level-1 and level-2 backups or many logical-log backups.

Level-0 backups

Level-0 backups can be time-consuming because ON-Bar writes all the disk pages to backup media. Level-1 and level-2 backups might take almost as much time as a level-0 backup because the database server must scan all the data to determine what has changed since the last backup. It takes less time to restore data from level-0, level-1, and level-2 backups than from level-0 backups and a long series of logical-log backups.
Level-1 backups

A level-1 backup takes less space and might take less time than a level-0 backup because only data that changed since the last level-0 backup is copied to the storage manager.

If you request an incremental backup where no previous incremental backup exists, ON-Bar automatically performs the lower-level backup. For example, if you request a level-1 backup but no level-0 backup exists for one of the storage spaces, ON-Bar automatically performs a level-0 backup of that dbspace and a level-1 backup of the other storage spaces.

If you request a whole-system level-1 backup and no level-0 backup exists, ON-Bar performs a whole-system level-0 backup. If you request a whole-system level-2 backup but the level-1 backup does not exist, ON-Bar performs a whole-system level-1 backup.

Level-2 backups

A level-2 backup takes less space and might take less time than a level-1 backup because only data that changed since the last level-1 backup is copied to the storage manager.

Collect information about your system before a backup

To ensure that you can restore the data, perform the following tasks:

- Print or keep a copy of essential database server configuration information.
- Verify data consistency.
- Keep track of the number of rows in each table (optional).

After you complete the backup, verify it with the `archecker` utility. For more information, see Chapter 16, “Verify backups,” on page 16-1.

Ensure that you have enough logical-log space

ON-Bar checks for available logical-log space at the beginning of a backup. If the logs are nearly full, ON-Bar backs up and frees the logs before attempting to back up the storage spaces. If the logs contain ample space, ON-Bar backs up the storage spaces, then the logical logs.

Monitor the logs so that you can back them up before they fill. If insufficient space exists in the logical log, the database server will stop responding. If the database server stops responding, add more logical-log files and retry the ON-Bar command.

Copy database server configuration information

Copy the following database server configuration files. For more information, see “Administrative files to back up” on page 5-3.

- The `sqlhosts` file (UNIX only)
- The emergency boot files
- The `onconfig` file
- The `sm_versions` file

Verify database integrity

To ensure the integrity of your backups, periodically verify that all database server data is consistent before you create a level-0 backup. You do not need to check for
consistency before every level-0 backup. It is recommended that you do not
discard a backup that is known to be consistent until the next time that you verify
the consistency of your databases. For information on using the oncheck utility, see
the IBM Informix Administrator’s Reference.

Back up storage spaces and logical logs

You can back up storage spaces and logical logs only when the database server is
in online, quiescent, or fast-recovery mode. However, you can salvage logical logs
with the database server offline.

The storage-space chunks can be stored on raw disk storage space, in cooked files,
or on an NTFS file system (Windows).

Only online storage spaces are backed up. Use the onstat -d command to
determine which storage spaces are online. After you begin the backup, monitor its
progress in the ON-Bar activity log and database server message log.

Important: You must back up each storage space at least once. ON-Bar cannot
restore storage spaces that it has never backed up.

Backup syntax

Back up storage spaces and logical logs

```
onbar -b -l level -O -f filename
dbspace_list
-w
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b</td>
<td>Specifies a backup</td>
<td>You must specify the -b parameter first.</td>
</tr>
<tr>
<td></td>
<td>Backs up the storage spaces, logical logs, including the current logical log, and the ISM catalog, if it exists.</td>
<td>Important: During a backup, if ON-Bar encounters a down dbspace, it skips it and later returns an error.</td>
</tr>
<tr>
<td>dbspace_list</td>
<td>Names storage spaces to be backed up</td>
<td>If you do not enter dbspace_list or -f filename, ON-Bar backs up all online storage spaces on the database server. If you enter more than one storage-space name, use a space to separate the names.</td>
</tr>
<tr>
<td>-f filename</td>
<td>Backs up the storage spaces that are listed in the text file whose path name filename provides</td>
<td>The file name can be any valid UNIX or Windows file name, including simple (listfile_1), relative (.../backup_lists/listfile2 or ..\backup_lists\listfile2), and absolute (/usr//backup_lists\listfile3 or c:\backup_lists\listfile3) file names. For the format of this file, see Figure 5-1 on page 5-11. The file can list multiple storage spaces per line.</td>
</tr>
<tr>
<td>Element</td>
<td>Purpose</td>
<td>Key considerations</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>-F</td>
<td>Performs a fake backup</td>
<td>You can execute this option whether or not a storage-manager application is running. ON-Bar ignores <code>dbspace_list</code> if you specify it. Use fake backups to change database logging modes; to allow the user to use new logs, chunks, or mirrors without performing a backup; or in special situations when you, the administrator, judge that a backup is not needed. No backup actually occurs, so no restore is possible from a fake backup. It is recommended that you use fake backups sparingly, if at all. Alternatively, you can use the SQL administration API equivalent: ARCHIVE FAKE. See IBM Informix Administrator’s Reference for more information.</td>
</tr>
<tr>
<td>-L level</td>
<td>Specifies the level of backup to perform on storage spaces:</td>
<td>If you request an incremental backup and ON-Bar finds that no previous level backup has been performed for a particular storage space, ON-Bar backs up that storage space at the previous level. For example, if you request a level-1 backup, and ON-Bar finds no level-0 backup, it makes a level-0 backup instead. For more information, see “Perform an incremental backup” on page 5-11.</td>
</tr>
<tr>
<td>-O</td>
<td>Overrides normal backup restrictions</td>
<td>Use this option to back up logical logs when blobspaces are offline. If a log backup occurs when blobspaces are offline, return code 178 displays in the ON-Bar activity log.</td>
</tr>
<tr>
<td>-w</td>
<td>Performs a whole-system backup</td>
<td>Backs up all storage spaces, critical dbspaces, and logical logs serially. If you do not save the logical logs, you must use the -w option.</td>
</tr>
</tbody>
</table>

Back up after changing the physical schema

This section describes what to back up after you change the physical schema.

When to back up the root dbspace and modified storage spaces

You must perform a level-0 backup of, at minimum, the root dbspace and the modified storage spaces to ensure that you can restore the data after you:

- Add or drop mirroring.
- Move, drop, or resize a logical-log file.
- Change the size or location of the physical log.
- Change your storage-manager configuration.
- Add, move, or drop a dbspace.
- Add, move, or drop a chunk to any type of storage space.
- Add, move, or drop a blobspaces or sbspace.

For example, if you add a new dbspace `dbs1`, you will see a warning in the message log that asks you to perform a level-0 backup of the root dbspace and the new dbspace. If you attempt an incremental backup of the root dbspace or the new dbspace instead, ON-Bar automatically performs a level-0 backup of the new dbspace.
Tip: Although you no longer need to backup immediately after adding a log file, your next backup should be level-0 because the data structures have changed.

Important: If you create a new storage space with the same name as a deleted storage space, perform a level-0 backup twice:
1. Back up the root dbspace after you drop the storage space and before you create the new storage space with the same name.
2. After you create the new storage space, back up the root dbspace and the new storage space.

When to back up the modified storage spaces only

You must perform a level-0 backup of the modified storage spaces to ensure that you can restore the data when you:

- Convert a nonlogging database to a logging database.
- Convert a raw, static, or operational table to standard. This backup ensures that the unlogged data is restorable before you switch to a logging table type.

Use ISM during a backup

Use the ism_watch command to monitor backups and restores sent to the IBM Informix Storage Manager (ISM) server. During a backup, the ISM server automatically routes storage-space data to volumes in the ISMData volume pool and logical-log files to volumes in the ISMLogs volume pool.

Always keep the volumes from the ISMLogs pool mounted to ensure that a storage device is always available to accept logical-log data. If the volume is not mounted, the backup will pause. For more information on using devices and ISM commands, see the IBM Informix Storage Manager Administrator’s Guide.

During the backup operation, ISM creates save sets of the backed up data and enters information about the backed up data in the ISM catalog. You can also use the ism_catalog -create_bootstrap command to back up the ISM catalog:

If you use the onbar script to back up storage spaces and logical logs, it backs up the ISM catalog automatically. If you call onbar_d directly, you must use the ism_catalog -create_bootstrap command.

Back up the ISM catalog

The ism_catalog -create_bootstrap command creates a full backup of the IBM Informix Storage Manager (ISM) catalog when it is first used, but subsequently performs incremental backups. Therefore, the media or volume containing the first bootstrap creation is always necessary in order to restore the bootstrap successfully.

To avoid the need for the first media or volume during bootstrap restore, a full bootstrap backup must be performed every time. To accomplish this, the level must be specified explicitly by using, the underlying savegrp command that ism_catalog -create_bootstrap calls.

To perform a full backup of the ISM catalog every time, run the $INFORMIXDIR/bin/savegrp -O -l full ISMData command as the user root.

In this command, -O is a capital O (not a zero), and ISMData is the pool name where the bootstrap data is saved.
You can edit the $INFORMIXDIR/bin/onbar shell script to replace the ism_catalog -create_bootstrap command with the savegrp command.

Redirect the output (both stdout and stderr) of the savegrp command to the ON-Bar activity log file (specified by the BAR_ACT_LOG configuration parameter in onconfig file).

Use ISA to back up and verify

IBM Informix Server Administrator (ISA) is a browser-based tool for performing administrative tasks such as ON-Bar and onstat commands. You can use ISA to perform the following ON-Bar tasks:
- View messages in the ON-Bar activity log.
- Perform level-0, level-1, or level-2 backups.
 - Back up storage spaces (onbar -b).
 - Back up the whole system (onbar -b -w).
 - Override error checks during the backup (onbar -b -O).
 - Perform a fake backup (onbar -b -F).
- Back up the logical logs.
 - Include the current log in the log backup (onbar -b -l -c).
 - Override error checks to back up logs when blobspaces are offline (onbar -l -O).
 - Start a continuous logical-log backup (onbar -b -l -C).
- Verify backups.
- Edit the onbar script.

For more information, see the IBM Informix Server Administrator online help.

ON-Bar backup examples

The following topics contain examples of ON-Bar syntax for backing up storage spaces.

Perform a level-0 backup of all storage spaces

To perform a standard, level-0 backup of all online storage spaces and used logical logs, use one of the following commands:
- onbar -b
- onbar -b -L 0

ON-Bar never backs up offline storage spaces, temporary dbspaces, or temporary sbspaces.

Important: Save your logical logs so that you can restore from this backup.

Perform a level-0 backup of specified storage spaces

To perform a level-0 backup of specified storage spaces and all logical logs (for example, two dbspaces named fin_dbspace1 and fin_dbspace2), use the -b option as the following example shows. You could also specify the -L 0 option, but it is not necessary.

onbar -b fin_dbspace1 fin_dbspace2
Perform an incremental backup

An incremental backup backs up all changes in the storage spaces since the last level-0 backup and performs a level-0 backup of used logical logs. To perform a level-1 backup, use the -L 1 option, as the following example shows:

```
onbar -b -L 1
```

Back up a list of storage spaces specified in a file

To back up a list of storage spaces specified in a file and the logical logs, use the following command:

```
onbar -b -f /usr/informix/backup_list/listfile3
```

The format of the file is as follows:

- Each line can list more than one storage space, separated by spaces or a tab.
- Comments begin with a # or ; symbol and continue to the end of the current line.
- ON-Bar ignores all comment or blank lines in the file.
- Specify only spaces (dbspace, blobspace, and so forth) names to ON-Bar in a file or command line. ON-Bar backs up all the chunks that belong to the spaces. Do not specify storage space names with paths.

The following shows a sample file that contains a list of storage spaces to be backed up (blobsp2.1, my_dbspace1, blobsp2.2, dbsl.1, rootdbs.1, and dbsl.2). You can also use this file to specify a list of storage spaces to be restored.

```
blobsp2.1
  # a comment    ignore this text
      my_dbspace1  # back up this dbspace
  ; another comment
blobsp2.2  dbsl.1
rootdbs.1  dbsl.2 ; backing up two spaces
```

Figure 5-1. Sample file with a list of storage spaces

Back up specific tables

To back up a specific table or set of tables in ON-Bar, store these tables in a separate dbspace and then back up this dbspace.

If you need to restore only that table, you must warm restore the entire dbspace to the current time (onbar -r). This procedure does not allow you to recover from accidentally dropping or corrupting a table because it would be dropped again during logical restore.

Retry skipped storage spaces during a backup

You cannot back up storage spaces that are down or temporarily inaccessible. If a storage space is down, ON-Bar skips it during the backup and writes a message to the activity log. Take one of the following actions:

- Retry the backup later when the storage space is back online.
• Restore these storage spaces from an older backup, if available. Make sure that at least one level-0 backup of each storage space exists or else it might not be restorable. For details, see “Restore from an older backup” on page 6-17.

Perform a whole-system backup

A whole system backup can help you restore your system without a log restore. You can perform an incremental (level 1 or level 2) whole system backup in conjunction with a level 0 whole system backup.

To perform a serial, level-0 backup of all online storage spaces and logical logs, use one of the following commands:

• **onbar -b -w**
• **onbar -b -w -L 0**

You can run a level-1 whole system backup with the **onbar -b -w -L 1** command.

For more details, see “Perform a whole-system restore” on page 6-12.

Back up smart large objects in sbspaces

You can back up smart large objects in one or more sbspaces or include them in a whole-system backup. In a level-0 backup, the entire sbspace is backed up. In a level-1 or level-2 backup, the modified sbpages in the sbspace are backed up.

The following example performs a level-0 backup of the **s9sbspace** sbspace:

onbar -b -L 0 s9sbspace

When you turn on logging for a smart large object, you must immediately perform a level-0 backup to ensure that the object is fully recoverable. For details on logging sbspaces, see the *IBM Informix Administrator’s Guide*.

Use fake backups in a data warehouse

The High-Performance Loader (HPL) in Express mode loads tables in read-only mode. A backup changes the table to update mode. Use one of the following commands:

• **onbar -b** (the recommended way)
• **onbar -b -F**

Restriction: It is recommended that you use fake backups on test systems, not on production systems. You cannot restore data from a fake backup. If you performed a fake backup, you must reload the table to be able to restore the data.

Backing up blobspaces in a logging database

You can back up a blobspaces in a database that uses transaction logging.

Before you back up a new blobspace, make sure that the log file that recorded the creation of the blobspace is no longer the current log file.

Blobspaces are not available for use until the log file is not the current log file. You can run the **onstat -l** command to verify the logical-log status.

For information on switching log files, see the **onmode** topics in the *IBM Informix Administrator’s Reference*.
Follow these steps when you back up blobspaces in a database that uses transaction logging:

Important: If you perform a warm restore of a blobspace without backing up the logical logs after updating or deleting data in it, that blobspace might not be restorable.

1. To verify the logical-log status, use the `onstat -l` or `xctl onstat -l` command.
2. To switch to the next log file, use the `onmode -l` command.
3. If you update or delete simple large objects in a blobspace, you must back up all the log files, including the current log file.
4. If the blobspace is online, use the `onbar -b -l -c` command.
 When users update or delete simple large objects in blobspaces, the blobpages are not freed for reuse until the log file that contains the delete records is freed. To free the log file, you must back it up.
5. Back up the blobspaces with the `onbar -b` or `onbar -b -w` command.

Back up logical logs when blobspaces are offline

To back up the logical logs when a blobspace is offline, use the `onbar -b -l -O` or `onbar -b -O` command. If this backup is successful, ON-Bar returns 178.

To salvage the logical logs, use the `onbar -b -s -O` command.

Important: If you back up logical logs that contain changes to a blobspace while it is offline, the simple large objects in that blobspace will not be restorable. If an offline blobspace has not changed, it will be restorable.

Back up table types

The following table discusses backup scenarios for different table types. For more information about the table types, see the chapter on data storage in the *IBM Informix Administrator’s Guide*.

<table>
<thead>
<tr>
<th>Table type</th>
<th>Can you back up this type of table?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Yes</td>
</tr>
<tr>
<td>Temp</td>
<td>No</td>
</tr>
<tr>
<td>Raw</td>
<td>Yes. If you update a raw table, you cannot reliably restore the data unless you perform a level-0 backup after the update. Backing up only the logical logs is not enough.</td>
</tr>
</tbody>
</table>

Important: Perform a level-0 backup before you alter a raw, static, or operational table to type STANDARD.

View recent ON-Bar activity

You can view recent ON-Bar activity using the `onbar -m` utility. Only users who have permission to perform backup and restore operations can use this option.
View recent ON-Bar activity

```bash
onbar -m [lines] [-r [seconds]]
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-m</code></td>
<td>Prints the recent activity of ON-Bar from the activity log file</td>
<td>Default is 20 lines</td>
</tr>
<tr>
<td><code>lines</code></td>
<td>Specifies the number of lines to output</td>
<td>None</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Causes the onbar <code>-m</code> utility to repeat</td>
<td>Default is 5 seconds</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Specifies the number of seconds to wait before repeating.</td>
<td>None</td>
</tr>
</tbody>
</table>

Back up logical logs

For background information, see “Logical-log backup” on page 1-2. You can either back up the logical logs separately or with storage spaces. It is recommended that you back up the logical logs as soon as they fill so that you can reuse them and to protect against data loss if the disks that contain the logs are lost. If the log files fill, the database server pauses until you back up the logical logs.

You can either back up the logical logs manually or start a continuous logical-log backup. Logical-log backups are always level 0. After you close the current logical log, you can back it up.

Back up logical logs on Informix

If you do not use whole-system backups, you must back up logical logs because you must restore both the storage spaces and logical logs.

If you perform whole-system backups and restores, you can avoid restoring logical logs. It is recommended that you also back up the logical logs when you use whole-system backups. These log backups allow you to recover your data to a time after the whole-system backup, minimizing data loss. The following diagram shows the syntax for `onbar -b -l` commands.

If you are running continuous logical log backup and then start a whole system backup, the ON-Bar process attempts to save the logical logs. Because the continuous logical log backup is running, an error message is returned indicating that a logical log backup is already running, and the whole system backup returns a non-zero error code. In this case the logical logs are backed up only once. To avoid the error, create a physical log using `onbar -b -w -p`.

Back up logical logs

```bash
onbar -b -l [C] [-c] [-s] [-O]
```
Command Purpose Key considerations

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>onbar -b -l</code></td>
<td>Performs a backup of full logical-log files</td>
<td>The current logical-log file is not backed up. If you are using ISM, it also backs up the ISM catalog.</td>
</tr>
<tr>
<td><code>onbar -b -l -c</code></td>
<td>Closes and backs up the current logical log as well as the other full logical logs</td>
<td>None</td>
</tr>
<tr>
<td><code>onbar -b -l -C</code></td>
<td>Starts a continuous log backup</td>
<td>Reserve a dedicated storage device and terminal window because the continuous log backups run indefinitely waiting for logical logs to fill. To stop a continuous log backup, kill the ON-Bar process with an interrupt (<code>^C</code> or SIGTERM).</td>
</tr>
<tr>
<td><code>onbar -b -l -O</code></td>
<td>Overrides normal logical backup restrictions such as when a blobspace is offline</td>
<td>If a log backup occurs when blobspaces are offline, return code 178 displays in the ON-Bar activity log.</td>
</tr>
<tr>
<td><code>onbar -b -l -s</code></td>
<td>Salvages any logical logs that are still on disk after a database server failure</td>
<td>If possible, use this option before you replace a damaged disk. If you use <code>onbar -r</code> to perform a cold restore on an undamaged disk, ON-Bar automatically salvages the logical logs. For information, see “Salvage logical logs” on page 6-11.</td>
</tr>
</tbody>
</table>

Perform a continuous backup of logical logs

You can start a continuous logical-log backup in the following ways:

- Specify `onbar -b -l -C`.
- Set the ALARMPROGRAM parameter to the full path for `log_full.sh` on UNIX or `log_full.bat` on Windows.
- Set the ALARMPROGRAM parameter to the full path for `alarmprogram.sh` on UNIX or `alarmprogram.bat` on Windows and set the BACKUPLOGS parameter within the file to `Y`.
- You can write your own event alarm and set ALARMPROGRAM to it. For more information, see “ALARMPROGRAM parameter” on page 9-4 and the IBM Informix Administrator’s Reference.

After the continuous logical-log backup starts, it runs indefinitely waiting for logical logs to fill. To stop the continuous logical-log backup, kill the ON-Bar process.

If an error occurs while the continuous logical-log backup is running, it stops. If it stops, reissue the `onbar -b -l -C` command.

Tip: Reserve a dedicated storage device to improve performance during continuous logical-log backups.

Perform a manual backup of logical logs

To start a manual logical-log backup, use the `onbar -b -l` command. If you set ALARMPROGRAM to `no_log.sh` or `no_log.bat`, you must initiate a logical-log backup manually.

To back up the current logical-log file, use the `onbar -b -l -c` command.

Use ALARMPROGRAM to set the log backup mode

Use the ALARMPROGRAM configuration parameter to control continuous log backups. If ALARMPROGRAM is set to `log_full.sh` or `log_full.bat`, when a
logical-log file fills, the database server triggers event alarm 23. This event alarm calls `onbar -b -l` to back up the full logical-log file. Restart the database server after you change the value of ALARMPROGRAM.

To turn off continuous log backups, set ALARMPROGRAM to `$INFORMIXDIR/etc/no_log.sh` or `%INFORMIXDIR%/etc/no_log.bat`.

To generate email or pager messages to a designated DBA when a specific error level is triggered, set ALARMPROGRAM to `$INFORMIXDIR/etc/alarmprogram.sh` or `%INFORMIXDIR%/etc/alarmprogram.bat`. Then edit the file to turn automatic logging on, set the level of errors, and insert the email address of the DBA.

Additionally, you can set the ALRM_ALL_EVENTS configuration parameter to allow the ALARMPROGRAM script to execute every time any alarm event is triggered.

View backed-up logical logs

You can use the `onbar -P` command to view logical logs that have been backed up using the `onbar` utility.

In order to view the backed-up logical logs, the storage manager must be running.

The `onbar -P` command can be used by anyone who has permission to perform backup and restore operations.

The output of this command is displayed to `stdout`.

You cannot view logs that have not been backed up, which are still on the disk or in shared memory. The contents of these logical logs can only be viewed with the `onlog` utility.

View backed-up logical logs

```
>>>onbar -P -n unique_id
        starting_id ending_id [l] [q] [b]

[ u username] [ t tblspace_num] [ x transaction_num]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b</td>
<td>Display logical-log records associated with blobpages</td>
<td>Additional Information: The database server stores these records on the logical-log backup media as part of blobspace logging.</td>
</tr>
<tr>
<td>ending_id</td>
<td>The ID of the last log to display</td>
<td>Must be a later ID than starting_id</td>
</tr>
<tr>
<td>-l</td>
<td>Display the long listing of the logical-log record</td>
<td>Additional Information: The long listing of a log record includes complex hexadecimal and ASCII dumps of the entire log record. The listing is not intended for casual use.</td>
</tr>
<tr>
<td>-n</td>
<td>Display the logical-log records contained in the log file that you specify with unique_id</td>
<td>Additional Information: The <code>unique_id</code> is the unique ID number of the logical log. To determine the <code>unique_id</code> of a specific logical-log file, use the <code>onstat -l</code> command.</td>
</tr>
<tr>
<td>-P</td>
<td>Print backed-up logical log information</td>
<td>This option can only be used to view logical logs that have been backed-up</td>
</tr>
<tr>
<td>-q</td>
<td>Do not display program header</td>
<td>None</td>
</tr>
</tbody>
</table>
Command Purpose Key considerations

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>starting_id</td>
<td>The ID of the first log to display</td>
<td>Must be an earlier ID than ending_id</td>
</tr>
<tr>
<td>-t tblspace_num</td>
<td>Display the records associated with the tblspace that you specify</td>
<td>Restriction: Unsigned integer. The number must be greater than zero and must exist in the partnum column of the systables system catalog table. Additional Information: Specify <code>tblspace_num</code> as either an integer or hexadecimal value. If you do not use a prefix of <code>0x</code>, the value is interpreted as an integer. To determine the tblspace number of a particular tblspace, query the systables system catalog table. For more information, see the IBM Informix Administrator’s Reference.</td>
</tr>
<tr>
<td>-u username</td>
<td>Displays the records for a specific user</td>
<td>Restriction: The user name must be an existing login name and conform to operating-system-specific rules for login names.</td>
</tr>
<tr>
<td>unique_id</td>
<td>ID of the log to display</td>
<td>None</td>
</tr>
<tr>
<td>-x transaction_num</td>
<td>Display only the records associated with the transaction that you specify</td>
<td>Restriction: The <code>transaction_num</code> must be an unsigned integer between zero and TRANSACTIONS -1, inclusive. Additional Information: Use the <code>-x</code> option only in the unlikely situation of an error being generated during a rollforward. When this situation occurs, the database server sends a message to the message log that includes the transaction ID of the offending transaction. You can use this transaction ID with the <code>-x</code> option to investigate the cause of the error.</td>
</tr>
</tbody>
</table>

The following example shows how to use this command with all options:

```
onbar -P -n 2 -l -q -b -u "informix" -t 1048722 -x 1
```

The output for this command might be the following:

```
log uniqid: 2.
1665d0 120 DPT 1 2 0 5
 00000078 0002006c 00000010 0000fefe ...x...l ........
 00000001 00000000 000077e3 00000000 ...........w.....
 00000005 00000005 00002a24 00000001 ..........*$....
 00100004 0a0c21b8 00002a48 00000000 ..........! ..........*H....
 00100006 0a0c2288 00002e01 00000001 ......". ..........*
 0010001b 0a0c3810 00002e01 00000001 ......B. ..........*+
 00100015 0a0c3a18 00002a3d 00000001 .......... ..........*n....
 00100005 0a0c57c0 ..........W.
166648 60 CKPOINT 1 0 1665d0 1
 0000003c 00000042 00000010 0000fefe ...<...B ........
 00000001 001665d0 000077e3 00000000 ..........e. ..........w.....
 00010005 00000002 00000002 001665a0 .......... ..........e.
 00000007 ffffffff 00084403 .......... ..........D.
```

Monitor logical-log backups

To find out if a logical-log file is ready to be backed up, check the flags field of onstat -l. After the logical-log file is marked as backed up, it can be reused. When the flags field displays any of the following values, the logical-log file is ready to be backed up:

```
U-------
U-------L
```
The value \textit{U} means that the logical-log file is used. The value \textit{L} means that the last checkpoint occurred when the indicated logical-log file was current. The value \textit{C} indicates the current log. If \textit{B} appears in the third column, the logical-log file is already backed up and can be reused.

\texttt{U-B---L}

The following example shows the output of \texttt{onstat -l} when you use it to monitor logical logs on the database server:

```
Logical Logging
Buffer bufused bufsize numrecs numpages numwrits recs/pages pages/io
L-2  0 16   1  1  1  1.0  1.0
Subsystem numrecs Log Space used
OLDRSAM  1  32
address number  flags uniqid  begin   size  used  %used
a038e78  1  U-B----  1 10035f  500  500  100.00
a038e94  2  U-B----  2 100553  500  500  100.00
a038eb0  3  U---C-L  3 100747  500  366  73.20
a038ecc  4  F------  0 10093b  500   0   0.00
a038ee8  5  F------  0 100b2f  500   0   0.00
a038f04  6  F------  0 100d23  500   0   0.00
```

\textbf{Important:} If you turn off continuous logical-log backup, you must monitor your logical logs carefully and start logical-log backups as needed.

The flag values \texttt{U---C-L} or \texttt{U---C--} represent the current logical log. While you are allowed to back up the current logical log, doing so forces a log switch that wastes logical-log space. Wait until a logical-log file fills before you back it up.

Salvage logical-log files

Use \texttt{onbar -b -l -s} to salvage the logs.

ON-Bar salvages logical logs automatically before a cold restore unless you specify a physical restore only. ON-Bar salvages the logical logs that are used before it restores the root dbspace. To make sure that no data is lost before you start the cold restore, manually salvage the logical logs in the following situations:

- If you must replace the media that contains the logical logs
 - If the media that contains the logical logs is no longer available, the log salvage will fail, resulting in data loss.
- If you plan to specify a physical restore only (\texttt{onbar -r -p})

For more information, see “Salvage logical logs” on page 6-11 and “Performing a cold restore” on page 6-12.

ON-Bar backup processes

This section explains how ON-Bar performs backup operations on the database server. You can perform a backup when the database server is in online or quiescent mode. The original ON-Bar process is called the \textit{driver}, and each new ON-Bar process that it creates is called an \texttt{onbar_d} \textit{child} process.

Backup sequence on Informix

The figure below describes the ON-Bar backup sequence. When you issue a backup command, the \texttt{onbar-driver} builds a list of storage spaces and creates a backup session.
In a parallel backup (if BAR_MAX_BACKUP is not set to 1), the onbar-driver starts one or more onbar_d child processes and assigns backup tasks to them. Each onbar_d child process backs up one storage space. Each onbar_d child exits when the backup of its storage space is done. The onbar-driver keeps creating new children until all the storage spaces are backed up. Then the onbar-driver backs up the logical logs.

The onbar_driver backs up dbspaces by the number of used pages. The dbspace with the most used pages is backed up first; the dbspace with the fewest is backed up last.

If you specify a whole-system backup or set BAR_MAX_BACKUP to 1, the onbar_driver backs up the storage spaces and logical logs. No onbar_d child processes are created.

When the backup is complete, the onbar-driver determines whether an error occurred and returns a status in the ON-Bar activity log. After each object is backed up, information about it is added to the emergency boot file on the database server and to the sysutils database.
Figure 5-2. ON-Bar backup process on IBM Informix
Chapter 6. Restore data with ON-Bar

These topics describe the different types of restores that ON-Bar performs.

ON-Bar restore types

You can restore storage spaces stored in both raw and cooked files. If your system contains primary and mirror storage spaces, ON-Bar writes to both the primary and mirror chunks at the same time during the restore, except for an external restore. Mirroring is a strategy that pairs a primary chunk of one storage space with an equal-sized mirror chunk.

Restriction: You cannot specify temporary dbspaces in a warm or cold restore. When you restore the critical dbspaces (for example, the root dbspace), the database server recreates the temporary dbspaces, but they are empty.

Warm restore

The database server is in online, quiescent, or fast-recovery mode in a warm restore. Unless your database server has failed, you can restore noncritical storage spaces in a warm restore in the following circumstances:

- The storage space is online, but one of its chunks is offline, recovering, or inconsistent.
- The storage space is offline or down.

If the database server goes offline but the critical dbspaces are all right, bring the database server online and perform a warm restore. If the database server goes offline and a critical dbspace is down, perform a cold restore. For details, see "Cold restore."

A warm restore can be performed after a dbspace has been renamed and a level 0 archive of the root dbs and renamed dbspace is taken.

Restriction: Warm restores are not supported for Enterprise Replication servers.

Cold restore

If a critical dbspace is damaged because of a disk failure or corrupted data, the database server goes offline automatically. If a critical dbspace goes down, you must perform a cold restore of all critical dbspaces.

The database server must be offline for a cold restore. You can perform a cold restore of all storage spaces regardless of whether they were online or offline when the database server went down.

Perform a cold restore when the database server fails or you need to perform one of the following tasks:
- Point in time restore
- Point in log restore
- Whole system restore
- Imported restore
- Renaming chunks
A cold restore starts by physically restoring all critical storage spaces, then the noncritical storage spaces, and finally the logical logs. The database server goes into recovery mode after the reserved pages of the root dbspace are restored. When the logical restore is complete, the database server goes into quiescent mode. Use the `onmode` command to bring the database server online. For more information, see “Performing a cold restore” on page 6-12.

Tip: If you mirror the critical dbspaces, you are less likely to have to perform a cold restore after a disk failure because the database server can use the mirrored storage space. If you mirror the logical-log spaces, you are more likely to be able to salvage logical-log data if one or more disks fail.

A cold restore can be performed after a dbspace has been renamed and a level-0 backup of the rootdbs and renamed dbspace is performed.

Required: Cold restores are required for Enterprise Replication servers before resuming replication, warm restores are not supported.

Mixed restore

A *mixed restore* is a cold restore of an initial group of storage spaces followed by one or more warm restores of the remaining storage spaces. The initial set of storage spaces you restore in the cold restore must include all critical storage spaces in the server. To the extent that you do not restore all storage spaces during the initial cold restore and avoid the time necessary to restore them, you can bring the server online faster than if you were to perform a cold restore of the entire server. You can then restore the remaining storage spaces in one or more warm restores.

The storage spaces that you do not restore during the cold restore are not available until after you restore them during a warm restore, although they might not have been damaged by the failure. While a mixed restore makes the critical data available sooner, the complete restore takes longer because the logical logs are restored and replayed several times, once for the initial cold restore and once for each subsequent warm restore.

Parallel restore

If you perform a restore using the `onbar -r` command while the BAR_MAX_BACKUP parameter is set to an integer value greater than 1, ON-Bar restores the storage spaces in parallel and replays the logical logs once. The dbspaces are restored by number of used pages.

If BAR_MAX_BACKUP is set to 1, ON-Bar restores the storage spaces serially. If you did not perform a whole-system backup, you must use the `onbar -r` command to restore the data.

For information about setting the BAR_MAX_BACKUP parameter, see “BAR_MAX_BACKUP parameter” on page 9-9.

Point-in-time restore

A *point-in-time restore* is a cold restore that you can use to undo mistakes that might otherwise not be fixable. An example of such a mistake is dropping a table by mistake. A full restore restores the table during the physical restore but drops it again during the logical restore. A point-in-time restore lets you restore the data to the moment just before the table was dropped.
When you restore the database server to a specific time, any transactions that were uncommitted at the specified point in time are lost. Also, all transactions after the point-in-time restore are lost. For information on how to restore to a specific time, see “Restore data to a point-in-time” on page 6-15.

Imported restore
ON-Bar allows you to restore objects to a different database server instance than the one from which the data was backed up. This type of restore is called an imported restore.

You can perform imported restores using whole-system, serial, or parallel backups. You must use compatible versions of XBSA and storage managers for both operations. If you perform a parallel imported restore, it must include all storage spaces, logical logs, and administrative files from the source database server to synchronize the instance. For more information, see “Transfer data with the imported restore” on page 6-24.

You cannot use a backup from one database server version to restore on a different version.

Rename chunks restore
ON-Bar allows you to rename chunks by specifying new chunks paths and offsets during a cold restore. This option is useful if you need to restore storage spaces to a different disk from the one on which the backup was made. You can rename any type of chunk, including critical chunks and mirror chunks.

The ON-Bar rename chunk restore only works for cold restores. The critical dbspaces (the rootdbs and any dbspace containing logical or physical logs) must be restored during a cold restore. If you do not specify the list of dbspaces to be restored, then the server will restore the critical dbspaces and all the other dbspaces. But if you specify the list of dbspaces to be restored, then the critical dbspaces must be included in the list.

For more information, see “Rename chunks during a restore” on page 6-20.

You can rename chunks during an external cold restore. See “Rename chunks” on page 7-6 for more information.

Restartable restore
If a failure occurs with the database server, media, or ON-Bar during a restore, you can restart the restore from the place that it failed. You do not have to restart the restore from the beginning. The RESTARTABLE_RESTORE parameter controls whether ON-Bar is able to keep track of the storage spaces and logical logs that were restored successfully.

You can restart the following types of restores:

• Whole system
• Point in time
• Storage spaces
• Logical part of a cold restore

For more details, see “Use restartable restore to recover data” on page 6-29 and “RESTARTABLE_RESTORE parameter” on page 9-14.
Continuous log restore

Normal log restore restores all of the available log file backups and applies the log records. After the last available log is restored and applied, the log restore finishes. Transactions that are still open are rolled back in the transaction cleanup phase, then the server is brought into quiescent mode. After the server is quiesced, no more logical logs can be restored.

With continuous log restore, instead of transaction cleanup the server is put into log restore suspended state after the last available log is restored. The restore client (ontape or ON-Bar) exits and returns control to you. With the server in this state, you can start another logical restore after additional logical logs become available. As long as you start each log restore as a continuous log restore, you can continue this cycle indefinitely.

One use of continuous log restore is to keep a second system available in case the primary system fails. You can restore logical logs backed up on the primary system on the secondary system as they become available. If the primary system fails, you can restore remaining available logical logs on the secondary system and bring that secondary system online as the new primary system.

Continuous log restore requires much less network bandwidth than High-Availability Data Replication (HDR) and enterprise data replication (ER). Continuous log restore is more flexible than HDR and ER because you can start continuous log restore at any time. As a result, continuous log restore is more robust than HDR or ER in unpredictable circumstances, such as intermittent network availability.

For more information, see “Configuring continuous log restore using ON-Bar” on page 6-19 and “Configuring continuous log restore using ontape” on page 14-9.

Pre-recovery checklist

Use this checklist to help you decide if a restore is required.

• Determine if you need to restore. If one or more of these problems is true, you need to do a recover to fix the problem:
 – Has data been lost or corrupted?
 – Does a committed transaction error need to be undone?
 – Is the database server down or has a disk failed?
 – Is a storage space or chunk down or inconsistent?
• Review the following files and outputs to obtain information about your system and to determine the problem:
 – The onstat -d and onstat -l outputs
 – The database server message log
 – The ON-Bar activity log
 – The storage-manager logs
 – The oncheck output
 – The oncfg files
 – The physical data layout (disks)
 – The database schema (dbschema command)
 – The af* files (assertion failures), if any
 – The core dump files, if any
- The ism_chk.pl report
 The ism_chk.pl report is useful when you investigate backup or restore problems. For details, see the IBM Informix Storage Manager Administrator’s Guide.
- Estimate how long the restore will take.
- Determine whether a warm or cold restore is needed. See "Warm, cold, and mixed restores" on page 1-4 for more information.
- If you need to take the database server offline for the restore, ask your client users to log off the system.
- If you suspect a problem with the storage manager or the XBSA connection, the operating system, or the storage media, contact your vendor to resolve the problem before doing a restore.

Monitor restores
To determine the state of each storage space and its chunks, or the status of the restore, examine the output of the onstat -d command. The onstat -d command works only with the database server online.

The following table describes the information in the second position of the flags column in the first (storage spaces) and second (chunks) sections of the onstat -d command output and the actions required to solve the problems.

<table>
<thead>
<tr>
<th>onstat -d flag</th>
<th>Storage space or chunk state</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No flag)</td>
<td>Storage space no longer exists.</td>
<td>Perform a point-in-time cold restore to a time before the storage space was dropped.</td>
</tr>
<tr>
<td>D</td>
<td>Chunk is down or storage space is disabled.</td>
<td>Perform a warm restore of the affected storage space.</td>
</tr>
<tr>
<td>I</td>
<td>Chunk has been physically restored, but needs a logical restore.</td>
<td>Perform a logical restore.</td>
</tr>
<tr>
<td>L</td>
<td>Storage space is being logically restored.</td>
<td>Retry the logical restore.</td>
</tr>
<tr>
<td>N</td>
<td>Chunk is renamed and either down or inconsistent.</td>
<td>Perform a warm restore of the chunk when the physical device is available.</td>
</tr>
<tr>
<td>O</td>
<td>Chunk is online.</td>
<td>No action required.</td>
</tr>
<tr>
<td>P</td>
<td>Storage space is physically restored.</td>
<td>Perform a logical restore, if one is not already in progress.</td>
</tr>
<tr>
<td>R</td>
<td>Storage space is being restored.</td>
<td>Perform a physical or logical restore.</td>
</tr>
<tr>
<td>X</td>
<td>Storage space or chunk is newly mirrored.</td>
<td>No action required.</td>
</tr>
</tbody>
</table>

Ensure that storage devices are available

Verify that storage devices and files are available before you begin a restore. For example, when you drop a dbspace or mirroring for a dbspace after your level-0 backup, you must ensure that the dbspace or mirror chunk device is available to the database server when you begin the restore. If the storage device is not available, the database server cannot write to the chunk and the restore fails.

When you add a chunk after your last backup, you must ensure that the chunk device is available to the database server when it rolls forward the logical log.
Restore save sets with ISM

If you are using IBM Informix Storage Manager (ISM), you can restore data from save sets on the storage volume. When the ISM server receives a restore request, the `ism_watch` command prompts you to mount the required storage volume on the storage device. When you mount the volume, the restore will resume.

You can set the retention period for either a save set or volume. Unless all the save sets on the volume have expired, you can use ON-Bar to restore it.

After the retention period for a save set expires, ON-Bar can no longer restore it. To recreate an expired save set, use the `ism_catalog -recreate from` command.

If you set the retention period for a volume, ISM retains the save sets until all the save sets on that volume have expired. To recover an expired volume, use the `ism_catalog -recover from` command. For more information, see the *IBM Informix Storage Manager Administrator's Guide*.

Perform a complete restore

This diagram shows the syntax for the `onbar -r` commands.

Perform a complete restore

```
'onbar -r
  -e -0
  -f filename
  -O (1)
  -t time
  -n log
  -t time
  -n log
```

Notes:

1. See "Syntax" on page 6-21

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>onbar -r</code></td>
<td>Specifies a restore</td>
<td>In a cold restore, the <code>-r</code> option restores all storage spaces, salvages and restores the logical logs. In a warm restore, the <code>-r</code> option restores all offline storage spaces and restores the logical logs. You must specify the <code>-r</code> option first.</td>
</tr>
<tr>
<td><code>dbspace_list</code></td>
<td>Names one or more dbspaces, blobspaces, or sbspaces</td>
<td>ON-Bar restores only the storage spaces listed. If it is a cold restore, you must list all the critical dbspaces. If you enter more than one storage-space name, use a space to separate the names.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Specifies an external restore</td>
<td>After you externally restore the storage spaces with a third-party utility, run <code>onbar -r -e</code> to mark the storage spaces as physically restored, restore the logical logs, and bring the storage spaces back online. For details, see "External restore commands" on page 7-6.</td>
</tr>
<tr>
<td>Element</td>
<td>Purpose</td>
<td>Key considerations</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>-f filename</td>
<td>Restores the storage spaces that are listed in the text file whose path name filename provides</td>
<td>The file name can be any valid UNIX or Windows file name, including simple (listfile_1), relative (..\backup_lists\listfile2 or ..\backup_lists\listfile2), and absolute (/usr/informix/backup_lists/listfile3 or c:\informix\backup_lists\listfile3) file names. This file can list multiple storage spaces per line.</td>
</tr>
<tr>
<td>-n log</td>
<td>Indicates the uniqid of the log to restore in a cold restore</td>
<td>A point-in-log restore is a special kind of point-in-time restore. You must restore all storage spaces in a point-in-log restore so that the data is consistent. If any logical logs exist after this one, ON-Bar does not restore them and their data is lost.</td>
</tr>
</tbody>
</table>
| -O |Overrides internal error checks. Allows the restore of online storage spaces. Forces the recreation of chunk files that no longer exist. | Used to override internal error checks to perform the following tasks:
- Force the restore of online storage spaces. If a storage space in the list of storage spaces to restore is online, the -O option allows ON-Bar to bring the storage space offline and then restore it. If this operation succeeds, ON-Bar completes with an exit code of 177.
- Force the creation of nonexistent chunk files. If a chunk file for a storage space being restored no longer exists, the -O option allows ON-Bar to recreate it. The newly created chunk file is cooked disk space, not raw disk space. If ON-Bar successfully recreates the missing chunk file, ON-Bar completes with an exit code of 179.
- Force a cold restore to proceed if a critical storage space is missing. In a cold restore, ON-Bar checks whether every critical space is being restored. This check occasionally causes false warnings. Use the -O option to override this check. If the warning was valid, the restore fails. If the warning was false and ON-Bar successfully restores the server, ON-Bar completes with an exit code of 115. |
| -RESTART | Restarts a restore after a database server or ON-Bar failure | For the restore to be restartable, the RESTARTABLE_RESTORE configuration parameter must be set to ON when the restore failure occurs. If RESTARTABLE_RESTORE is set to OFF, the -RESTART option does not work. For more information, see “Use restartable restore to recover data” on page 6-29. |
| -t time | Specifies the time of the last transaction to be restored from the logical logs in a cold restore | You must specify the onbar -r -t option (point-in-time) in a cold restore only and must restore all storage spaces to the same time. For more information, see “Restore data to a point-in-time” on page 6-15. |
| -w | Performs a whole-system restore of all storage spaces and logical logs from the last whole-system backup | You must specify the -w option in a cold restore. If you specify onbar -r -w without a whole-system backup, return code 147 appears because ON-Bar cannot find any storage spaces backed up as part of a whole-system backup. |

Perform a physical-only or logical-only restore

This diagram shows the syntax for a physical-only or logical-only restore.
Perform a physical-only or logical-only restore

```
onbar -r -C -X -t time -n log
```

```
-p
```

```
-e -t time -f filename
```

```
dbspace_list
```

Notes:
1. See “Syntax” on page 6-21

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar -r</td>
<td>If specified with the -p option, restores the storage spaces only. If specified with the -l option, restores the logical logs only.</td>
<td>You must specify the -r option first.</td>
</tr>
<tr>
<td>-C</td>
<td>Restores logs from the current logical log tape without sending prompts to mount the tape.</td>
<td>The server is placed in suspend log restore state, and the command exits after the last applicable log is restored. The server sends a prompt if a log spans tapes. The configuration parameter RESTARTABLE_RESTORE does not impact continuous log restoration.</td>
</tr>
<tr>
<td>dbspace_list</td>
<td>Names one or more dbspaces, blobspaces, or sbspaces to be restored.</td>
<td>ON-Bar restores only the storage spaces listed. If it is a cold restore, you must list all the critical dbspaces. If you enter more than one storage-space name, use a space to separate the names.</td>
</tr>
<tr>
<td>-e</td>
<td>Specifies an external restore.</td>
<td>After you externally restore the storage spaces with a third-party utility, run onbar -r -e to mark the storage spaces as physically restored, restore the logical logs, and bring the storage spaces back online. For details, see “External restore commands” on page 7-6.</td>
</tr>
<tr>
<td>-f filename</td>
<td>Restores the storage spaces that are listed in the text file whose path name filename provides. Use this option to avoid entering a long list of storage spaces every time that you use this option.</td>
<td>The file name can be any valid UNIX or Windows file name, including simple (listfile1), relative (../backup_lists/listfile2 or ..\backup_lists\listfile2), and absolute (/usr/informix/backup_lists/listfile3 or c:\informix\backup_lists\listfile3) file names. This file can list multiple storage spaces per line.</td>
</tr>
<tr>
<td>-l</td>
<td>Specifies a logical restore only. Restores and rolls forward the logical logs.</td>
<td>The logical restore applies only to those storage spaces that have already been physically restored.</td>
</tr>
</tbody>
</table>
Use ISA to restore data

You can use IBM Informix Storage Manager (ISA) to perform backups and restores with ON-Bar. For more information, see the ISA online help.

Examples of ON-Bar restore commands

The following topics contain examples of ON-Bar syntax for restoring data.

For an example of renaming chunks during a cold restore, see “Rename chunks during a restore” on page 6-20.
Perform a restore

To perform a complete cold or warm restore, use the **onbar -r** command. ON-Bar restores the storage spaces in parallel. To speed up restores, you can add additional CPU virtual processors. To perform a restore, use the **onbar -r** command.

In a warm restore, the -r option restores all down storage spaces and logical logs, and skips online storage spaces. A **down** storage space means it is offline or a chunk in it is inconsistent.

You cannot perform more than one warm restore simultaneously. If you need to restore multiple storage spaces, specify the set of storage spaces to restore to ON-Bar (see **Restore specific storage spaces**) or allow ON-Bar to restore all down storage spaces by not explicitly specifying any spaces.

In a cold restore, the -r option automatically salvages the logical logs, and restores all storage spaces and appropriate logical logs.

Tip: For faster performance in a restore, assign separate storage devices for backing up storage spaces and logical logs. If physical and logical backups are mixed together on the storage media, it takes longer to scan the media during a restore.

Restore specific storage spaces

To restore particular storage spaces (for example, a dbspaces named fin_dbspace1 and fin_dbspace2), use the -r option, as the following example shows:

```
onbar -r fin_dbspace1 fin_dbspace2```

You can also specify the storage spaces to restore by listing them in a text file and passing the path name of the file to ON-Bar with the -f option.

If any of the dbspaces that you request to restore are online, they are skipped in the restore. ON-Bar writes a message to the activity log about the skipped dbspaces.

**Perform a logical restore**

To perform a logical restore, use the **onbar -r -l** command.

**Important:** Because the logical-log files are replayed using temporary space during a warm restore, make sure that you have enough temporary space for the logical restore.

The minimum amount of temporary space that the database server needs is equal to the total logical-log space for the database server instance, or the number of log files to be replayed, whichever is smaller.

**Important:** To improve performance, replay logical-log transactions in parallel during a warm restore. Use the ON_RECVRY_THREADS configuration parameter to set the number of parallel threads. To replay logical-log transactions in parallel during a cold restore, use the OFF_RECVRY_THREADS configuration parameter. For more information, see your **IBM Informix Performance Guide**.
Perform a physical restore followed by a logical restore

In certain situations, you might want to perform a restore in stages. If multiple devices are available for the restore, you can restore multiple storage spaces separately or concurrently, and then perform a single logical restore.

For information on what actions to take when an error occurs during a physical or logical restore, see “Resolve a failed restore” on page 6-32.

Performing a warm restore in stages:

To perform a warm restore in stages:
1. Perform a physical restore: `onbar -r -p`
2. Back up the logical logs: `onbar -b -l`
3. Perform a logical restore: `onbar -r -l`

Performing a cold restore in stages:

To perform a cold restore in stages:
1. Optional: Salvage the logical logs manually using the `onbar -b -l -s` command. To perform a cold restore without salvaging the logical logs, skip this step.
2. Perform a physical restore using the `onbar -r -p` command.
3. Perform a logical restore using the `onbar -r -l` command.
4. Synchronize the `sysutils` database and emergency boot files using the `onmsync` utility. You must run `onmsync` (without arguments) after performing a cold restore that salvages logs.

Salvage logical logs

Decide whether you want to salvage the logical logs before you perform a cold restore. If not, the data in the logical logs that has not been backed up is lost. If a disk is damaged, salvage the logs if they are still accessible before you replace the disk. For more information, see “Performing a cold restore” on page 6-12.

The `onbar -r` command automatically salvages the logical logs. Use the `onbar -r -p` and `onbar -r -l` commands if you want to skip log salvage.

If you set the LTAPEDEV configuration parameter to `/dev/null` on UNIX or to `NUL` on Windows, the logical logs are not salvaged in any ON-Bar restore (`onbar -r` or `onbar -r -w`, for example).

Avoid salvaging the logical logs in the following situations:

- When you perform an imported restore
  Salvage the logical logs on the source database server but not on the target database server. For more information, see “Transfer data with the imported restore” on page 6-24.
- If you reinitialize the database server (`oninit -i`) before you perform a cold restore
  Reinitialization creates new logical logs that do not contain the data that you want to restore.
- If you install a new disk for the dbspace that contains the logical logs
  Salvage the logs from the old disk, but not from the new disk.
Performing a cold restore

If a critical storage space is damaged because of a disk failure or corrupted data, you must perform a cold restore. If a disk fails, you need to replace it before you can perform a cold restore to recover data.

Important: Back up all storage spaces before you perform a cold restore. If you do not and you try to perform a cold restore, data in the storage spaces that were not backed up will be lost. The storage space is marked as offline after the cold restore. Drop the storage space so that you can reuse its disk space.

To perform a cold restore with automatic log salvage:
1. Copy the administrative files to a safe place: onconfig, sqlhosts (UNIX only), emergency boot files, and oncfg files
2. Take the database server offline by using the onmode -ky command.
3. If the disk that contains the logical-log files needs to be replaced or repaired, use the onbar -b -l -s command to salvage logical-log files on the damaged disk.
4. Then repair or replace the disk.
5. If the files in INFORMIXDIR were destroyed, copy the previously saved administrative files to their original locations.
   However, if you did the cold restore because a critical dbspace was lost, you do not need to copy the administrative files. For more information, see “Administrative files to back up” on page 5-3.
6. To restore the critical and noncritical storage spaces, use the onbar -r command. When the restore is complete, the database server is in quiescent mode.
7. To bring the database server online, use the onmode -m command.

Perform a whole-system restore

A whole-system restore must be a cold restore and it must restore all storage spaces. A whole-system restore does not require you to restore the logical logs.

A whole-system restore requires a whole-system backup. However, you can perform a plain restore of a whole-system backup. If you use onbar -b -w to back up the whole system, you can restore with any of the following commands:

onbar -r -w
   Whole-system restore (salvages logs automatically)

onbar -r -p -w
   Physical-only whole-system restore (no log salvage)

onbar -r
   Parallel restore of the whole-system backup

onbar -r dbspaces
   Restore dbspaces from a whole-system backup

onbar -r -t time
   Point-in-time restore

onbar -r -t time -w
   Whole-system point-in-time restore
If you use `onbar -r -p -w`, the database server is in fast recovery mode when the restore completes. Perform either a logical restore (`onbar -r -l`) or use `onmode -m` to bring the database server online. For more information, see “Perform a whole-system backup” on page 5-12.

Restoring the data from a whole-system backup when LTAPEDEV is null:

**Restriction:** A whole-system backup with LTAPEDEV set to `/dev/null` on UNIX or to `NUL` on Windows does not back up the logical logs.

To restore the data from a whole-system backup when LTAPEDEV is null:

1. Upon restore, you must use the `onbar -r -w -p` command.
   - When the physical-only whole-system restore completes, the database server is in fast recovery mode.
2. If the database server is offline, use the `onmode -sy` command to perform fast recovery.
3. If the database server is online, use the `onmode -m` command to perform fast recovery.

**The -O option in a whole-system restore:**

Use the -O option with a whole-system restore only to recreate missing chunk files. You cannot use the `onbar -r -w -O` command when the database server is online because the root dbspace cannot be taken offline during the whole-system restore.

**Restore data using a mixed restore**

You can use mixed restore to reduce the time until urgent data becomes online and available when you need to restore the server. Urgent data is data that you deem as critical to your business operation, and should not be confused with critical dbspaces in the IBM Informix (the root dbspace and any dbspaces containing the physical or logical logs).

In a mixed restore you perform a cold restore on only the critical dbspaces and dbspaces containing your urgent data first. Because you do not restore all dbspaces in the system and you save the time necessary to restore those dbspaces, you can bring the server online faster. You then restore the remaining dbspaces in one or more warm restores.

**Important:** You should run the `onsmsync` utility, without arguments, after the initial cold restore but before any warm restores.

For example, consider a database server with four dbspaces in addition to the root dbspace: `logdbs`, `dbs_1`, `dbs_2`, and `dbs_3`. Suppose the logical logs are stored in `logdbs` and the physical log is in the root dbspace. The critical dbspaces that must be restored during the initial cold restore are `rootdbs` and `logdbs`:

```
onbar -r rootdbs logdbs dbs_1
```

When the cold restore completes, you can bring the server online and any data stored in `rootdbs`, `logdbs`, and `dbs_1` becomes accessible.

Next, run the `onsmsync` utility without arguments: `onsmsync`

You can then perform a warm restore of `dbs_2`:

```
onbar -r dbs_2
```
Finally, you can perform a warm restore of all remaining dbspaces (for this example, only **dbs_3**):

```
onbar -r
```

Instead of performing two warm restores, you could have issued the `onbar -r` command, without specifying a list of dbspaces, immediately after the initial cold restore. This command would have restored all dbspaces remaining to be restored: `dbs_2` and `dbs_3`. Conversely, in a larger system with dozens of dbspaces, you could divide the warm restore portion of the mixed restore into several warm restores, each restoring only a small subset of the dbspaces remaining to be restored in the system.

**Tip:** If you do not run `onsmsync` after the cold part of the mixed restore, ON-Bar automatically runs `onsmsync`. You should run `onsmsync` as a separate step so that you can address any errors that might occur. If you allow ON-Bar to run `onsmsync` and `onsmsync` fails, the restore proceeds but might fail.

**Tip:** You can perform both the initial cold restore and each subsequent warm restore in stages, as described in the section “Perform a physical restore followed by a logical restore” on page 6-11.

**Strategies for using mixed restore:**

To successfully implement a mixed-restore strategy, you should carefully select the set of dbspaces in which you place your databases and database objects at the time you create them. ON-Bar backs up and restores physical, not logical, entities. Thus, ON-Bar cannot restore a particular database or a particular set of tables. Instead, ON-Bar restores a particular set of storage spaces. It is up to you to track what is stored in those storage spaces.

For example, consider a database with the catalogs in the dbspace `cat_dbs`:

```
create database mydb in cat_dbs with log;
```

A table in this database is fragmented among the dbspaces `tab_dbs_1` and `tab_dbs_2`:

```
create table mytab (i integer, c char(20))
fragment by round robin in tab_dbs_1, tab_dbs_2;
```

An index for the table is stored in the dbspace `idx_dbs`:

```
create index myidx on mytab(i) in idx_dbs;
```

If you need to restore the server, you cannot access all of the data in the example database until you have restored the dbspaces containing the database catalogs, table data, and index: in this case, the dbspaces `cat_dbsp`, `tab_dbs_1`, `tab_dbs_2`, and `idx_dbsp`.

To simplify the management and tracking of your data, it is recommended that you divide your set of dbspaces into subsets in which you store data of a particular urgency. When you create your database objects, place them in dbspaces appropriate to their urgency. For example, if you have data with three levels of urgency, you might want to place all the objects (database catalogs, tables, and indexes) associated with your most urgent data in a particular set of dbspaces or dbslices: for example, `urgent_dbs_1`, `urgent_dbs_2`, … `urgent_dbs_n`. You would place all the objects associated with less urgent data in a different set of dbspaces (or dbslices): for example, `less_urgent_dbs_1`, `less_urgent_dbs_2`, …
less_urgent_dbs_k. Lastly, you would place your remaining data in a different set of dbspaces (or dbslices): for example, non_urgent_dbs_1, non_urgent_dbs_2, .... non_urgent_dbs_r.

If you need to restore the server, you would first perform a cold restore of all critical dbspaces and dbspaces containing urgent data, urgent_dbs_1 through urgent_dbs_n. For example, assume logical logs are distributed among two dbspaces, logdbsp_1 and logdbsp_2, and the physical log is in rootdbs. The critical dbspaces are therefore rootdbs, logdbsp_1, and logdbsp_2.

You would perform the initial cold restore by issuing the following ON-Bar command:

```
onbar -r rootdbs logdbsp_1 logdbsp_2 urgent_dbs_1 ... urgent_dbs_2
```

At this point you can bring the server online and all business-urgent data is available.

Next, perform a warm restore for the less-urgent data:

```
onsm.sync
onbar -r less_urgent_dbs_1 less_urgent_dbs_2 less_urgent_dbs_k
```

Finally, you can perform a warm restore for the rest of the server by issuing the following command: onbar -r non_urgent_dbs_1 non_urgent_dbs_2 ...
non_urgent_dbs_r

Alternatively, you can use the onbar -r command to restore all storage spaces:

**Restore data to a point-in-time**

A point-in-time restore enables you to restore the database server to the state it was in at a particular point in time. A point-in-time restore is typically used to recover from a mistake. For example, if you accidentally dropped a database, you can restore the server to a point in time just before you dropped the database.

A point-in-time restore is specified by including the -t option in the ON-Bar command; for example, onbar -r -t time. If you use the onbar -r -t time command, you must restore all storage spaces to the same point in time.

**Important:** To determine the appropriate date and time for the point-in-time restore, use the onlog utility that the IBM Informix Administrator’s Reference describes. The onlog output displays the date and time of the committed transactions in the logical log. All data transactions that occur after time or last_log are lost.

**Perform a cold point-in-time restore:**

To restore database server data to its state at a specific date and time, enter a command using the date and time format for your GLS locale, as this example shows:

```
onbar -r -t "2004-05-10 11:35:57"
```

In this example, the restore replays transactions that committed on or before the specified time, including any transactions with a commit time of 11:35:57. Transactions in progress but not committed by 11:35:57 are rolled back.
Quotation marks are recommended around the date and time. The format for the English locale is `yyyy-mm-dd hh:mm:ss`. If the `GL_DATETIME` environment variable is set, you must specify the date and time according to that variable. For an example of using a point-in-time restore in a non-English locale, see “Point-in-time restore example” on page D-2.

You can also perform a whole-system, point-in-time restore.

**Perform a point-in-time cold restore in stages:**

You can perform a point-in-time cold restore in stages, similar to an ordinary restore in stages as described in the section “Perform a physical restore followed by a logical restore” on page 6-11. Use the `-t` option for both the physical and logical restore steps:

```
onbar -r -p -t "2004-05-10 11:35:57"
onbar -r -l -t "2004-05-10 11:35:57"
```

In the `onbar` command examples above, the point-in-time values for the `-t` options are identical for the physical restore and for the logical restore operations. Specifying the same point in time for both is usually appropriate, but these two DATETIME values can also be different. When you specify the physical restore timestamp for `onbar -r -p -t`, you request a certain set of dbspaces backups. The logical recovery can be to the same point in time as the physical backups, but in some cases, you might not necessarily want a logical restore recovery to the same point in time.

For example you might detect that your current backup is corrupt, and that you need to restore the previous backup. In this case, you would start your physical restore with the timestamp of your previous backup, and afterwards start the logical recovery to a more recent timestamp.

**Perform a point-in-time mixed restore:**

You can perform a point-in-time mixed restore. Supply a point-in-time value to the initial cold restore by using the `-t` option, then restore the remaining storage spaces in one or more warm restores. Do not include the `-t` option in the warm restores.

The following example performs a cold restore for a subset of the storage spaces (including all critical dbspaces) in the initial cold restore, and then performs a warm restore for `dbspace_2` and `dbspace_3`, followed by a warm restore of `dbspace_4` and `dbspace_5`, and finally performs a warm restore of all remaining storage spaces:

```
onbar -r -t "2004-05-10 11:35:57" rootdbs logspace_1 dbspace_1
onmsync
onbar -r dbspace_2 dbspace_3
onbar -r dbspace_4 dbspace_5
onbar -r
```

**Tip:** You can perform the cold part of the mixed restore in stages, as described in the section “Perform a point-in-time cold restore in stages.” Supply a list of dbspaces or dbslices to the physical restore. For example:

```
onbar -r -p -t "2004-05-10 11:35:57" rootdbs_1 dbslice_1
onbar -r -l -t "2004-05-10 11:35:57"
```

**Perform a point-in-time restore with multiple timelines:**
When you perform more than one point-in-time restore, you create multiple timelines. You can specify any time in any timeline with the onbar -r -t time command.

**Perform a point-in-time warm restore:**

You cannot perform a point-in-time warm restore. A warm restore of a dbspace will always roll forward the dbspace to the latest time available in the logical logs.

**Restore from an older backup**

By default, ON-Bar restores the latest backup. If you do not want to restore this backup (for example, when backup verification failed or the backup media was lost), you can restore from an older backup.

**Restoring from an older backup using a physical point-in-time restore:**

To restore from an older backup using a physical point-in-time restore:

1. Find the time of the older backup in the message log or ON-Bar activity log or from the storage manager.
2. Issue the following commands to restore all or specific storage spaces:
   - `onbar -r -p -t time [dbspaces_from_older_backup]`
   - `onbar -r -p [remaining_dbspaces]`
   - `onbar -r -l`

**Restoring from an older backup by expiring the bad backup:**

To restore from an older backup by expiring the bad backup:

1. Expire the bad backup in the storage manager.
2. Run the onsmsync utility without arguments.
3. Issue the onbar -r command to restore the data.

**Perform a point-in-log restore**

A point-in-log restore is similar to a point-in-time restore. The point-in-log restore stops at the time of the last committed transaction listed in the logical log. You must use point-in-log restore in a cold restore only and you must restore all storage spaces. To perform a point-in-log restore, use the onbar -r -n log_id command.

You can specify any log ID from any timeline to restore to a specific logical log. If the specific logical log applies to more than one timeline, then ON-Bar uses the latest one.

**Restore online storage spaces**

Use the onbar -r -O dbsp1 dbsp2 command to force a restore of online storage spaces (except critical dbspaces) in a warm restore.

The database server automatically shuts down each storage space before it starts to restore it. Taking the storage space offline ensures that users do not try to update its tables during the restore process.

For special considerations on using the -O option, see “The -O option in a whole-system restore” on page 6-13.
Recreating chunk files during a restore

If the disk or file system fails, one or more chunk files could be missing from the dbspace. If you use the -O option in a warm or cold restore, ON-Bar recreates the missing chunk files, including any necessary directories, before restoring the dbspace as long as enough space exists on the file system. The newly created chunk files are cooked files and are owned by group informix on UNIX or group Informix-Admin on Windows.

Restoring when using cooked chunks:

Restriction: ON-Bar does not recreate chunk files during a logical restore if the logical logs contain chunk-creation records.

To restore when using cooked chunks:
1. Install the new disk.
2. Based on your system, perform one of the following:
   - On UNIX, mount the device as a file system.
   - On Windows, format the disk.
3. Allocate disk space for the chunk file. For instructions, see the chapter on managing data in the IBM Informix Administrator’s Guide.
4. Issue the onbar -r -O crashedspace command to recreate the chunk files and restore the dbspace.

Restoring when using raw chunks:

To restore when using raw chunks:
1. Install the new disk.
2. For UNIX, if you use symbolic links to raw devices, create new links for the down chunks that point to the newly installed disk. ON-Bar restores the chunk file to where the symbolic link points.
3. Issue the onbar -r crashedspace command to restore the dbspace.

Restoring a dropped storage space

If you accidentally drop a storage space, you can use a point-in-time restore or a point-in-log restore to recover it.

Restoring a dropped storage space using separate physical and logical restores:

In this example, the database server has dbspace1, which was dropped accidentally, and dbspace2.

To restore a dropped storage space using separate physical and logical restores:
1. Use onlog or the database server message log to obtain a time before dbspace1 was dropped.
2. Shut down the database server.
3. Perform a physical-only restore of all storage spaces using the onbar -r -p -t time rootdbs dbspace1 dbspace2 command.
4. To restore the dropped storage space and prevent the logical log from replaying the drop, enter one of the following commands:
   - If you use the point-in-log command, specify the uniqid of the log before the log that contains the drop command: onbar -r -l -n uniqid
If you use the logical point-in-time command, use the same time as in step 3 on page 6-18:

```
onbar -r -l -t time
```

Restoring a dropped storage space when the chunk files were also deleted:

**Important:** You must restore the data to a point-in-time before the storage space was dropped in both the physical and logical restores.

To restore a dropped storage space when the chunk files were also deleted:
1. Use the `onlog` utility to find the logical-log file that contains the dropped transaction for the storage space.
2. To restore a dropped storage space when the chunk files were deleted, use the `onbar -r -t time -O` command. The point-in-time restore restores the dropped storage space and automatically recreates the chunk files.

**Restoring data when reinitializing the database server**

Any backups that you performed before reinitializing the database server are unusable. During initialization, ON-Bar saves the emergency boot file elsewhere and starts a new, empty emergency boot file. Do not use the copy of the emergency boot file unless you want to restore the previous database server instance.

**Reinitializing the database server after a failure when you do not need the old data:**

To reinitialize the database server after a failure when you do not need the old data:
1. Do not copy the old emergency boot file into the database server directory (`$INFORMIXDIR/etc` on UNIX or `%INFORMIXDIR%\etc` on Windows).
2. To perform a complete backup, use `ON-Bar-b`.

**Reinitializing the database server and restore the old data:**

To reinitialize the database server and restore the old data:
1. Before you reinitialize the database server, copy the administrative files (emergency boot, oncfg, and onconfig files) to a different directory, if possible.
2. Reinitialize the database server. Any changes made after reinitialization are lost.
3. Recopy the administrative files into the database server directory because you need the information in the old emergency boot file. If the administrative files are unavailable, copy them from the last backup into the database server directory.
4. Perform a restore. Do not salvage the logical logs.
5. Verify that you restored the correct instance of the critical and noncritical storage spaces.

---

**Configuring continuous log restore using ON-Bar**

Ensure that the version of IBM Informix is identical on both the primary and secondary systems.

Use continuous log restore to keep a second system (hot backup) available to replace the primary system if the primary system fails. For more information, see "Continuous log restore" on page 6-4.
To configure continuous log restore using ON-Bar:

1. On the primary system, perform a level-0 backup with the `onbar -b -L 0` command.

2. Import the backup objects that were created to the storage manager of the secondary server. For more information about importing backup objects, see "Importing a restore" on page 6-25.

3. On the secondary system, perform a physical restore with the `onbar -r -p` command. After the physical restore completes on the secondary system, the database server waits in fast recovery mode to restore logical logs.

4. On the primary system, back up logical logs with the `onbar -b -l` command.

5. Transfer the backed up logical logs to the secondary system and restore them with the `onbar -r -l -C` command.

6. Repeat steps 4 and 5 for all logical logs that are available to back up and restore.

7. If you are doing continuous log restore on a secondary system as an emergency standby, run the following commands to complete restoring logical logs and quiesce the server:
   - If logical logs are available to restore, run the `onbar -r -l` command.
   - After all available logical logs are restored, run the `onbar -r -l -X` command.

### Rename chunks during a restore

You can rename chunks by specifying new chunks paths and offsets during a cold restore with ON-Bar. This option is useful if you need to restore storage spaces to a different disk from the one on which the backup was made. You can rename any type of chunk, including critical chunks and mirror chunks.

**Tip:** If you use symbolic links to chunk names, you might not need to rename chunks; you need only edit the symbolic name definitions. For more information, see the *IBM Informix Administrator’s Guide*.

### Key considerations

During a cold restore, ON-Bar performs the following validations to rename chunks:

1. It validates that the old chunk path names and offsets exist in the archive reserved pages.

2. It validates that the new chunk path names and offsets do not overlap each other or existing chunks.

3. If renaming the primary root or mirror root chunk, it updates the configuration file parameters `ROOTPATH` and `ROOTOFFSET`, or `MIRRORPATH`, and `MIRROROFFSET`. The old version of the `onconfig` file is saved as `$ONCONFIG localtime`.

4. It restores the data from the old chunks to the new chunks (if the new chunks exist).

5. It writes the rename information for each chunk to the online log.

If either of the validation steps fail, the renaming process stops and ON-Bar writes an error message to the ON-Bar activity log.

**Important:**
Perform a level-0 archive after you rename chunks; otherwise you will have to restore the renamed chunk to its original path name and then rename the chunk again.

If you add a chunk after performing a level-0 archive, that chunk cannot be renamed during a restore. Also, you cannot safely specify that chunk as a new path in the mapping list.

Renaming chunks for database servers participating in HDR involves a significant amount of time offline for both database servers. For more information, see the IBM Informix Administrator’s Guide.

### New-chunk requirements
When you rename a chunk, you must follow specific guidelines.

To rename a chunk, follow these guidelines for new chunks:

- The new chunk does not need to exist. You can install the new chunk later and perform a warm restore of a storage space containing it. If you specify a nonexistent chunk, ON-Bar records the rename information in the chunk reserved pages, but does not restore the data. The renamed (but not restored) chunks have a status of offline, designated by an N flag in the output of the onstat -d command.
- New chunks must have the proper permissions. Rename operations fail unless the chunks have the proper permissions. For more information, see the IBM Informix Administrator’s Guide.

### Syntax
This diagram shows the ON-Bar syntax for renaming chunks during a cold restore.

**Renaming chunks:**

```
<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar -r</td>
<td>Specifies a restore</td>
<td>You must specify the -r parameter first.</td>
</tr>
<tr>
<td>-rename</td>
<td>Renames one or more chunks</td>
<td></td>
</tr>
<tr>
<td>-e</td>
<td>Specifies an external restore</td>
<td>You can rename chunks during an external cold restore.</td>
</tr>
</tbody>
</table>
```
### Element Purpose

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-f filename</code></td>
<td>Specifies a file containing the names and offsets of chunks to be renamed and their new locations</td>
<td>The file name can be any valid UNIX or Windows file name, including simple (listfile_1), relative (..\backup_lists\listfile_2 or ..\backup_lists\listfile2), and absolute (/usr/informix/backup_lists/listfile3 or c:\informix\backup_lists\listfile3) file names. In the file, list the old chunk path name, the old offset, the new chunk path name, and the new offset. Put a blank space or a tab between each item. Put information for each chunk on a separate line. Blank lines are ignored. Begin comment lines with a # symbol.</td>
</tr>
<tr>
<td><code>-p old_path</code></td>
<td>Specifies the chunk to be renamed and its new location</td>
<td>The variables for this element are:</td>
</tr>
<tr>
<td><code>-o old_offset</code></td>
<td>Use to rename one or more chunks at one time</td>
<td><code>old_path</code> The current path and filename of the chunk.</td>
</tr>
<tr>
<td><code>-n new_path</code></td>
<td></td>
<td><code>old_offset</code> The current offset of the chunk, in kilobytes.</td>
</tr>
<tr>
<td><code>-o new_offset</code></td>
<td></td>
<td><code>new_path</code> The new path and file name of the chunk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>new_offset</code> The new offset of the chunk.</td>
</tr>
</tbody>
</table>

You can use the following options after the `-rename` command:

- `-e`
- `-f filename`
- `dbspace_list`
- `-t time`
- `-n log`
- `-w`
- `-p`

For more information on these options, see “Perform a complete restore” on page 6-6.

### Examples of renaming chunks during a restore

To rename a chunk, provide the old chunk location and the new chunk location, either at the command line or in a file.

The following table lists example values for two chunks that are used in the examples in this section.

<table>
<thead>
<tr>
<th>Element</th>
<th>Value for first chunk</th>
<th>Value for second chunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old path</td>
<td>/chunk1</td>
<td>/chunk2N</td>
</tr>
<tr>
<td>Old offset</td>
<td>0</td>
<td>10000</td>
</tr>
<tr>
<td>New path</td>
<td>/chunk1N</td>
<td>/chunk2N</td>
</tr>
<tr>
<td>New offset</td>
<td>20000</td>
<td>0</td>
</tr>
</tbody>
</table>

Here the Old offset and the New offset values are in units of kilobytes.
Rename chunks with command line options

To rename the chunks by supplying information on the command line, use this command:

```
onbar -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
 -rename -p /chunk2 -o 10000 -n /chunk2N -o 0
```

Perform a level-0 archive after the rename and restore operation is complete.

Rename chunks with a file

To rename the chunks by supplying a file named listfile, use the `onbar -r -rename -f listfile` command.

The contents of the listfile file are:

```
/chunk1 0 /chunk1N 20000
/chunk2 10000 /chunk2N 0
```

Perform a level-0 archive after the rename and restore operation is complete.

Rename chunks while specifying other options

To rename the chunks using command-line options while performing a physical restore on `dbspace1` and `dbspace2`, where `rootdbs` is the name of the rootdbs, use the following command:

```
onbar -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
 -rename -p /chunk2 -o 10000 -n /chunk2N -o 0
 -p rootdbs dbspace1 dbspace2
```

Alternatively, to rename the chunks using file while performing a physical restore on `dbspace1` and `dbspace2`, use the following command:

```
onbar -r -rename -f listfile -p rootdbs dbspace1 dbspace2
```

Perform a level-0 archive after the rename and restore operation is complete.

Renaming a chunk to a nonexistent device

To rename a chunk to a device that does not yet exist, you specify the new path name, but you do not restore its storage spaces until after you install the physical device. This option is useful if you need to rename a chunk and it is convenient to perform a cold restore before you install the new device. When the new chunk device is ready, you can perform a warm restore of a storage space onto it.

You can combine renaming chunks with existing devices and renaming chunks with nonexistent devices in the same rename operation. This example shows how to rename a single chunk to a nonexistent device name.

The following table lists example values for the chunks used in this example.

<table>
<thead>
<tr>
<th>Storage space</th>
<th>Old chunk path</th>
<th>Old offset</th>
<th>New chunk path</th>
<th>New offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>sbspace1</td>
<td>/chunk3</td>
<td>0</td>
<td>/chunk3N</td>
<td>0</td>
</tr>
</tbody>
</table>

To rename a chunk to a nonexistent device:

1. Rename the chunk using the following command: `onbar -r -rename -p /chunk3 -o 0 -n /chunk3N -o 0`
2. When the following prompt appears, enter y to continue:
   The chunk /chunk3N does not exist. If you continue, the
   restore may fail later for the dbspace which contains this chunk.
   Continue without creating this chunk? (y/n)
   The chunk /chunk3 is renamed to /chunk3N, but the data has not yet been
   restored to /chunk3N.
3. Perform a level-0 archive.
4. Add the physical device for /chunk3N.
5. Perform a warm restore of sbspace1 using the onbar -r sbspace1 command.
6. Perform a level-0 archive.

Transfer data with the imported restore

With the imported restore feature, you can transfer all the data from one instance of
the database server to the same instance on a foreign host. For example, you can
back up data on one computer and restore the data on a different computer. You
can perform imported restores using whole-system, parallel, or serial backups.

The imported restore is useful in the following situations:
- Disaster recovery
- Database server upgrade
- Initialization of High-Availability Data Replication (HDR)

When you prepare for an imported restore, consider these points:
- Make sure that your storage manager supports imported restores.
- The whole-system backup must include all storage spaces; logical logs are
  optional.
  The parallel backup must include all storage spaces and logical logs.
- You can change the database server name in an imported restore.

Restriction: You cannot use a backup from one database server version to restore
on a different version.

For information on importing a restore with IBM Informix Storage Manager, see
the IBM Informix Storage Manager Administrator’s Guide. For information on using
HDR, see the IBM Informix Administrator’s Guide. If you are using a third-party
storage manager, use the following procedure for an imported restore.

Setting up an imported restore

To set up an imported restore:
1. Install the database server and the storage manager on the target computer.
   Both computers must have the following:
   - Identical hardware and operating systems
   - Identical database server versions
   - Be on the same LAN or WAN
   - Identical storage-manager versions
   - Compatible XBSA libraries
The source computer (also called the *primary server*) contains the current instance that you want to replicate. The target computer (also called the *secondary server*) contains the computer where you want to replicate the source instance.

2. Set up the storage manager on the target database server instance.
   a. Define the same type of storage devices as on the source instance.
   b. Label the storage media with the correct pool names.
   c. Mount the storage devices.
   d. Update the `sm_versions` file on the target computer with the storage-manager version.

**Importing a restore**

When importing a restore, you must back up your data and migrate the storage manager objects to the target server, do a physical restore and a logical restore.

**Before you back up the data, set the storage-manager environment variables.** See "Customize ON-Bar and storage-manager commands" on page 8-1 for more information.

**Backing up the data and migrating the storage-manager objects**

To back up the data and migrate the storage-manager objects:

1. Perform a level-0 backup (*ON-Bar -b* or *onbar -b -w*) of all storage spaces on the source database server.
   
   **Restriction:** Do not perform an incremental backup.

2. If you are using IBM Informix Storage Manager, follow these steps:
   a. Shut down the storage manager on both computers.
   b. Create a tar file of the storage-manager directories on the source computer.
   c. Copy this tar file and unpack it on the target computer.

   With other storage managers, you might be able to use backup tapes or import the storage-manager directories over the network. For more information, see your storage-manager documentation.

3. Mount the transferred storage volumes.
   - If the backup files are on disk, copy them from the source computer to the target computer.
   - If the backup is *ontape*, mount the transferred volumes on the storage devices that are attached to the target computer. Both the source and target computers must use the same type of storage devices such as 8 mm tape or disk.
   - If the backup is on the backup server, retrieve the backup from that backup server. Some storage managers support remote backups to a backup server.

4. Use storage-manager commands (such as `nsradmin -c`) to add the source host name as a client on the target computer.

**Performing the imported restore**

**Important:** Every chunk (including mirrors) must match exactly in size, location, and offset on the source and target computers for the imported restore to complete.

To perform the imported restore:
1. Copy the following files from the source computer to the target computer

<table>
<thead>
<tr>
<th>File</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency boot file</td>
<td>Rename the emergency boot file with the target database server number. For example, rename ixbar.51 to ixbar.52. The emergency boot file needs only the entries from the level-0 backup on the source computer. The file name is ixbar.servernum.</td>
</tr>
<tr>
<td>The oncfg files: oncfg_servername.servernum</td>
<td>ON-Bar needs the oncfg file to know what dbspaces to retrieve. Rename the oncfg file with the target database server name and number. For example, rename oncfg_bostonserver.51 to oncfg_chicagoserver.52. The file name should match the DBSERVERNAME and SERVERNUM on the target computer.</td>
</tr>
<tr>
<td>The onconfig file</td>
<td>In the onconfig file, update the DBSERVERNAME and SERVERNUM parameters with the target database server name and number.</td>
</tr>
<tr>
<td>Storage-manager configuration files, if any</td>
<td>The storage-manager configuration files might need updating.</td>
</tr>
</tbody>
</table>

2. Restore the data in one of the following ways:

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you have never run an Informix instance on the target server</td>
<td>Use the onbar -r command to restore the data.</td>
</tr>
<tr>
<td>If you are importing a whole-system backup</td>
<td>Use the onbar -r-w-p command to restore the data.</td>
</tr>
<tr>
<td>If you have run an Informix instance on the target server.</td>
<td>Restore the data in two stages:</td>
</tr>
<tr>
<td></td>
<td>1. Use the ON-Bar -r-p command to restore the physical data.</td>
</tr>
<tr>
<td></td>
<td>2. Use the ON-Bar -r-l command to restore the logical logs.</td>
</tr>
<tr>
<td></td>
<td>This avoids salvaging the logs and any potential corruption of the instance.</td>
</tr>
</tbody>
</table>

3. Before you expire objects on the target computer and the storage manager using the onmsync utility, perform one of the following tasks: Otherwise, onmsync expires the incorrect objects.

   - Manually edit the emergency boot file viz ixbar.servernum in the $INFORMIXDIR/etc directory on the target computer to replace the IBM Informix server name that is used on the source computer with the IBM Informix server name of the target computer.
   - Execute the onmsync -b command as user informix on the target computer to regenerate the emergency boot file from the sysutils database only, so that the newly regenerated emergency boot file reflects the server name of the target computer.
Initializing High-availability Data Replication with ON-Bar

Follow the steps for the imported restore and then start HDR and perform a physical-only restore on the target computer. Also see “Initializing HDR with an external backup and restore” on page 7-9.

Important: If you use ON-Bar to perform the backup and restore, **ontape** is required on both database servers. You cannot remove **ontape** from database servers participating in HDR.

Performing the imported restore

To perform the imported restore:
1. Follow the steps in “Setting up an imported restore” on page 6-24.
2. On the source computer, add entries into your **sqlhosts** file or registry to recognize the target instance.
3. Verify that the source and target database servers can communicate over the network. For more information on **sqlhosts**, see the *IBM Informix Administrator’s Guide*.
4. Follow the steps in “Backing up the data and migrating the storage-manager objects” on page 6-25.
5. Copy the emergency boot files, **onconfig** file, and storage manager files from the source computer to the target computer.

Initializing High-Availability Data Replication

To initialize High-Availability Data Replication:
1. Start HDR on the source database server, use the following command: **onmode -d primary secondary_dbservername**
   You might see the following messages in the database server message log:
   19:28:15 DR: new type = primary, secondary server name = solo_724
   19:28:15 DR: Trying to connect to secondary server ...
   19:28:18 DR: Primary server connected
   19:28:18 DR: Receive error
   19:28:18 DR: Failure recovery error (2)
   19:28:19 DR: Turned off on primary server
   19:28:20 Checkpoint Completed: duration was 0 seconds.
   19:28:20 DR: Cannot connect to secondary server
   19:28:31 DR: Primary server connected
   19:28:31 DR: Receive error
   19:28:31 DR: Failure recovery error (2)
   19:28:32 DR: Turned off on primary server
   19:28:33 Checkpoint Completed: duration was 0 seconds.
   19:28:33 DR: Cannot connect to secondary server
2. Perform a physical-only restore on the target computer using the **onbar -r -p** command. If you performed a whole-system backup (**onbar -b -w**), you could optionally use **onbar -r -w -p** to restore the storage spaces only.
3. Check the database server message log, ON-Bar activity log, and the storage-manager error log to see whether the restore was successful.
4. To start HDR on the target database server, use the following command: **onmode -d secondary primary_dbservername**
   If the logical logs needed to synchronize, the two database servers are still present on the source database server, the target server retrieves them from the source database server.
While the database servers are synchronizing, the logical logs are transferred automatically from the source to the target server.

If the logical logs are not on the source database server, you are prompted to restore the required logical logs. If the target database server requires a log number that no longer exists because it was overwritten, ON-Bar will need to retrieve that logical log from the backup.

The following `online.log` messages might display while the database servers are synchronizing:

19:37:10 DR: Server type incompatible
19:37:23 DR: Server type incompatible
19:37:31 DR: new type = secondary, primary server name = bostonserver
19:37:31 DR: Trying to connect to primary server ...
19:37:36 DR: Secondary server connected
19:37:36 DR: Failure recovery from disk in progress ...
19:37:37 Logical Recovery Started.
19:37:37 Start Logical Recovery - Start Log 11, End Log ?
19:37:37 Starting Log Position - 11 0x629c
19:37:44 Checkpoint Completed: duration was 0 seconds.
19:37:45 Checkpoint Completed: duration was 0 seconds.
19:37:47 Checkpoint Completed: duration was 0 seconds.
19:37:48 DR: Secondary server operational
19:37:49 Checkpoint Completed: duration was 0 seconds.

### Restore nonlogging databases and tables

**Important:** If you do not use logging for your databases or tables, ON-Bar can only restore the data up to the time it was most recently backed up. Changes made to data since the last standard backup are not restorable. If you do not use logging, you would need to redo lost transactions manually.

If logical-log backups are disabled because LTapeDev is set to `/dev/null` or `NUL`, you can restore only whole-system backups.

**Restriction:** It is strongly recommended that you do not set LTapeDev to `/dev/null` or `NUL`, or LOG_BACKUP_MODE to NONE.

### Restore table types

The following table discusses restore scenarios for different table types. For more information about the table types, see the IBM Informix Administrator’s Guide and the IBM Informix Guide to SQL: Syntax.

<table>
<thead>
<tr>
<th>Table type</th>
<th>Can you restore this type of table?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Yes. Warm restore, cold restore, and point-in-time restore work.</td>
</tr>
<tr>
<td>Temp</td>
<td>No.</td>
</tr>
<tr>
<td>Raw</td>
<td>When you restore a raw table, it contains only data that was on disk at the time of the last backup. Because raw tables are not logged, changes that occurred since the last backup cannot be restored.</td>
</tr>
</tbody>
</table>
**Restore tables with large objects**

ON-Bar supports table-level restores of smart large objects and binary large objects.

- **Smart large objects**
  
  Table-level restore also supports smart large objects for physical restore only (restore from level-0 archive).
  
  The storage location of the smart large object columns being restored must be specified with the PUT clause in the CREATE TABLE statement. The restored smart large objects are created with the create-time flags LO_NOLOG and LO_NOKEEP_LASTACCESS_TIME. These flags override the LOG and KEEP ACCESS TIME column attributes if they are specified in the target table for the smart large object column.

- **Binary large objects**
  
  Table-level restore supports restoring tblspace binary large objects, but not blobspace binary large objects. If you attempt to restore a blobspace binary large object, the value is set to NULL and a warning is issued.

**Use restartable restore to recover data**

If a failure occurs with the database server, media, or ON-Bar during a restore, you can restart the restore from the place that it failed. By default, the RESTARTABLE_RESTORE parameter is ON. If it is OFF, you must shut down and restart the database server before you begin the original restore. To restart a failed warm or cold restore, issue the `onbar -RESTART` command. All restarted restores resume where the last restore failed.

**Important**: Set RESTARTABLE_RESTORE to ON if your system is large or unstable. If your system is small, consider turning off restartable restore for faster restore performance only if you have the time to repeat a failed restore from the beginning.

If the failure occurred during a physical restore, ON-Bar restarts the restore at the storage space and level where the failure occurred. It does not matter whether the restore was warm or cold.

If a failure occurred during a cold logical restore, ON-Bar restarts the logical restore from the most recent log checkpoint. Restartable logical restore is supported for cold restores only. However, if the failure during a warm restore caused the database server to shut down, do not restart the restore. Instead, use the `archecker` utility to verify the backup and start the whole restore from the beginning.

**Restriction**: Restartable restore does not work for the logical part of a warm restore.

**Restartable restore example**

The following example shows how to use restartable restore for a cold restore:

1. Make sure that RESTARTABLE_RESTORE is set to ON.
   
   If you just set RESTARTABLE_RESTORE to ON, shut down and restart the database server for the changes to take effect.

2. Restore several storage spaces: `onbar -r rootdbs dbs1 dbs2 dbs3 dbs4`
   
   The database server fails while restoring `dbs3`.
3. Restart the restore: onbar -RESTART
   ON-Bar automatically starts restoring dbs3, dbs4, and the logical logs.

4. If necessary, bring the database server online: onmode -m

**Important:** If a restore fails with RESTARTABLE_RESTORE set to OFF, the onbar
-RESTART option will not work. Use the onbar -r command to repeat the restore
from the beginning.

## Restart a restore

You can restart a point-in-time, whole-system, or parallel restore. The physical
restore restarts at the storage space and level where the failure occurred. If the
restore failed while some, but not all, chunks of a storage space were restored,
even a restarted restore must restore all chunks of that storage space again. If
storage spaces and incremental backups are restored successfully before the failure,
they are not restored again.

The following shows how a restartable restore works when the restore failed
during a physical restore of dbspace2. For example, you set
RESTARTABLE_RESTORE to ON before you begin the restore. The level-0, level-1,
and level-2 backups of rootdbs, and the level-0 and level-1 backups of dbspace1
and dbspace2 are successfully restored. The database server fails while restoring
the level-1 backup of dbspace2. When you restart the restore, ON-Bar restores the
level-2 backup of dbspace 1, the level-1 and level-2 backups of dbspace2, and the
logical logs.

![Diagram of Restartable Physical Restore](image-url)

**Figure 6-1. Restartable physical restore**

## Interaction between restartable restore and BAR_RETRY value

If BAR_RETRY > 1, ON-Bar automatically retries the failed storage space or logical
log. If this retry is successful, the restore continues and no restart is needed.

If BAR_RETRY = 0 or 1, ON-Bar does not retry the failed storage space or logical
log. If the database server is still running, ON-Bar skips the failed storage space
and attempts to restore the remaining storage spaces.

The following table shows what to expect with different values for BAR_RETRY in
a different restarted restore example.
Table 6-2. Restartable restore results with different BAR_RETRY values

<table>
<thead>
<tr>
<th>ON-Bar command</th>
<th>BAR_RETRY = 2</th>
<th>BAR_RETRY = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar -r dbs1 dbs2 dbs3</td>
<td>restore level-0 dbs1, dbs2, dbs3</td>
<td>restore level-0 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td>restore level-1 dbs1 FAILS</td>
<td>restore level-1 dbs1 FAILS</td>
</tr>
<tr>
<td></td>
<td>restore level-1 dbs1 RETRY PASSES</td>
<td>restore level-1 dbs1 RETRY PASSES</td>
</tr>
<tr>
<td></td>
<td>restore level-1 dbs2, dbs3</td>
<td>restore level-1 dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td>restore level-2 dbs1, dbs2, dbs3</td>
<td>restore level-2 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td>restore logical logs</td>
<td>restore logical logs</td>
</tr>
<tr>
<td>onbar -RESTART</td>
<td>No restart is needed because everything was successfully restored.</td>
<td>restore level-1 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>restore level-2 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>restore logical logs</td>
</tr>
<tr>
<td>onbar -r dbs1 dbs2 dbs3</td>
<td>restore level-0 dbs1, dbs2, dbs3</td>
<td>restore level-0 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td>restore level-1 dbs1 FAILS</td>
<td>restore level-1 dbs1 FAILS</td>
</tr>
<tr>
<td></td>
<td>restore level-1 dbs1 RETRY FAILS</td>
<td>onbar -RESTART</td>
</tr>
<tr>
<td></td>
<td>restore level-1 dbs2, dbs3</td>
<td>restore level-1 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td>restore level-2 dbs2, dbs3</td>
<td>restore level-2 dbs1, dbs2, dbs3</td>
</tr>
<tr>
<td></td>
<td>restore logical logs</td>
<td>restore logical logs</td>
</tr>
<tr>
<td>onbar -r dbs1 dbs2</td>
<td>restore level-1 dbs1</td>
<td>restore level-1 dbs1</td>
</tr>
<tr>
<td></td>
<td>restore level-2 dbs1</td>
<td>restore level-2 dbs1</td>
</tr>
<tr>
<td></td>
<td>restore logical logs</td>
<td>restore logical logs</td>
</tr>
</tbody>
</table>

Restart a logical restore

If a restore fails during the logical phase and you restart the restore, ON-Bar verifies that the storage spaces have been restored successfully, skips the physical restore, and restarts the logical restore. The figure below shows a cold restore that failed while restoring logical log LL-3. When you restart the cold logical restore, log replay starts from the last restored checkpoint. In this example, the last checkpoint is in logical log LL-2.

If a failure occurs during a cold logical restore, ON-Bar restarts it at the place that it failed.

**Important:** If a failure occurs during a warm logical restore, you have to restart it from the beginning. If the database server is still running, use the `onbar -r -l` command to complete the restore.
Set the RESTARTABLE_RESTORE parameter to ON. A restartable restore makes the logical restore run more slowly if many logical logs need to be restored, but it saves you time if something goes wrong and you need to restart. Restartable restore does not affect the speed of the physical restore.

### Resolve a failed restore

What is retried, what is restartable, and what command you use to restart the restore depends on what failed and how serious it was. You can save some failed restores even if restartable restore is turned off. For example, if the restore fails because of a storage-manager or storage-device error, you can fix the tape drive or storage-manager problem, remount a tape, and then continue the restore.

The following table shows what results to expect when physical restore fails. Assume that BAR_RETRY > 1 in each case.

#### Table 6-3. Failed physical restore scenarios

<table>
<thead>
<tr>
<th>Type of error</th>
<th>RESTARTABLE_RESTORE setting</th>
<th>What to do when the physical restore fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database server, ON-Bar, or storage-manager error (database server is still running)</td>
<td>ON or OFF</td>
<td>ON-Bar retries each failed restore. If the storage manager failed, fix the storage-manager error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the retried restore fails, issue <code>onbar -r spaces</code> where <code>spaces</code> is the list of storage spaces not yet restored. Use <code>onstat -d</code> to obtain the list of storage spaces that need to be restored. ON-Bar restores the level-0 backup of each storage space, then the level-1 and level-2 backups, if any.</td>
</tr>
<tr>
<td>ON-Bar or storage-manager error (database server is still running)</td>
<td>ON</td>
<td>Issue the <code>onbar -RESTART</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the storage manager failed, fix the storage-manager error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The restore restarts at the storage space and backup level where the first restore failed. If the level-0 backup of a storage space was successfully restored, the restarted restore skips the level-0 backup and restores the level-1 and level-2 backups, if any.</td>
</tr>
<tr>
<td>Database server failure</td>
<td>ON or OFF</td>
<td>Because the database server is down, perform a cold restore. Use <code>onbar -r</code> to restore the critical dbspaces and any noncritical spaces that were not restored the first time.</td>
</tr>
</tbody>
</table>
Table 6-3. Failed physical restore scenarios (continued)

<table>
<thead>
<tr>
<th>Type of error</th>
<th>RESTARTABLE_RESTORE setting</th>
<th>What to do when the physical restore fails?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database server failure</td>
<td>ON</td>
<td>Issue the onbar -RESTART command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The restore restarts at the storage space and backup level where the first restore failed. If the level-0 backup of a storage space was successfully restored, the restarted restore skips the level-0 backup and restores the level-1 and level-2 backups, if any.</td>
</tr>
</tbody>
</table>

The following table shows what results to expect when logical restore fails.

Table 6-4. Failed logical restore scenarios

<table>
<thead>
<tr>
<th>Type of error</th>
<th>RESTARTABLE_RESTORE setting</th>
<th>What to do when a logical restore fails?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database server or ON-Bar error in a cold restore (database server is still running)</td>
<td>ON</td>
<td>Issue the onbar -RESTART command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The logical restore restarts at the last checkpoint. If this restore fails, shut down and restart the database server to initiate fast recovery of the logical logs. All logical logs not restored are lost.</td>
</tr>
<tr>
<td>Database server or ON-Bar error (database server is still running)</td>
<td>ON or OFF</td>
<td>Issue the onbar -r -l command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The restore should restart at the failed logical log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If onbar -r -l still fails, shut down and restart the database server. The database server will complete fast recovery. All logical logs that were not restored are lost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If fast recovery does not work, you have to do a cold restore.</td>
</tr>
<tr>
<td>Database server error</td>
<td>ON</td>
<td>If the cold logical restore failed, issue onbar -RESTART.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the warm logical restore failed, issue the onbar -r -l command. If that fails, restart the entire restore from the beginning.</td>
</tr>
<tr>
<td>Storage-manager error</td>
<td>ON or OFF</td>
<td>ON-Bar retries each failed logical restore. If the retried restore fails, the logical restore is suspended. Fix the storage-manager error. Then issue the onbar -r -l command. The restore should restart at the failed logical log.</td>
</tr>
</tbody>
</table>

ON-Bar restore processes

These topics explain how ON-Bar performs restore operations on the database server. If the database server is in quiescent mode or is online, you can perform a warm restore. ON-Bar gathers storage-space and logical-log backup data from the sysutils database and then requests a restore from the database server.

If you have lost critical dbspaces, you must perform a cold restore. ON-Bar gathers backup data from the emergency boot file and then restores the storage spaces and logical logs.
Warm-restore sequence

In a warm restore, the onbar-driver creates a list of restore objects. In a parallel restore (if BAR_MAX_BACKUP is not set to 1), the ON-Bar driver starts onbar_d child processes. The onbar_d processes transfer data between the storage manager and the database server until the warm restore is complete. Each onbar_d process processes one storage space. In a serial restore, the onbar-driver restores the storage spaces one at a time. Then the onbar-driver performs the logical backup and restore. After each object is restored, information about it is added to the sysutils database.

For each storage space, ON-Bar restores the last level-0 backup, the level-1 backup (if it exists), and the level-2 backup (if it exists). After the physical restore is complete, ON-Bar backs up the logical logs to get the latest checkpoint and then restores the logical logs. This logical backup allows data to be restored up to the moment of failure.

The following figure describes the ON-Bar warm-restore sequence.

Figure 6-3. ON-Bar warm-restore sequence on IBM Informix
Cold-restore sequence

In a cold restore, ON-Bar performs the following steps in order:
1. Salvages the logical logs
2. Restores the root dbspace
3. Restores the critical dbspaces
4. Restores blobspaces
5. Restores noncritical dbspaces and sbspaces
6. Restores logical logs

For each storage space, ON-Bar restores the last level-0 backup, the level-1 backup (if it exists), and the level-2 backup (if it exists). Finally, ON-Bar restores the logical logs.

The following figure describes the ON-Bar cold-restore sequence. ON-Bar uses the backup emergency boot file to determine what restores are required.

![Diagram](image)

Figure 6-4. ON-Bar cold-restore sequence on IBM Informix
Chapter 7. External backup and restore

These topics discuss recovering data using external backup and restore.

External backup and restore overview

An external backup and restore eliminates the downtime of systems because the backup and restore operations are performed external to the IBM Informix system. ON-Bar does not move the data during the backup or physical restore. An external backup allows you to copy disks that contain storage-space chunks without using ON-Bar. When disks fail, replace them and use third-party software to restore the data, then use ON-Bar for the logical restore. For more information, see "Data restored in an external restore” on page 7-5.

The following are typical scenarios for external backup and restore:

- Availability with disk mirroring
  If you use hardware disk mirroring, you can get your system online faster with external backup and restore than with conventional ON-Bar commands.

- Cloning
  You can use external backup and restore to clone an existing production system for testing or migration without disturbing the production system.

The following figure shows how to perform a backup using mirroring.

Figure 7-1. Perform a backup with mirroring

In this configuration, the database server is running continuously, except for the short time when the database server is blocked to break the mirror. The mirrored disks contain a copy of the database server storage spaces. To create a backup, block the database server to stop transactions and disable mirroring. The mirrored disks now contain a copy of the consistent data at a specific point in time. After
disabling mirroring, unblock the database server to allow transactions to resume and then backup the logical logs. Copy the data from the offline mirrored disks to backup media using external commands. Now you can resume mirroring.

**Block before backing up**

Before you begin an external backup, block the database server. Blocking forces a checkpoint, flushes buffers to disk, and blocks user transactions that involve temporary tables. During the blocking operation, users can access that database server or coserver in read-only mode. Then you can physically back up or copy the data to another set of disks or storage media using operating-system or third-party tools. When you complete the external backup, unblock the database server so that transactions can resume. You should include all the chunk files in each storage space, administrative files, such as onconfig, and the emergency boot file, in an external backup.

**Important:** To make tracking backups easier, you should back up all storage spaces in each external backup.

ON-Bar treats an external backup as equivalent to a level-0 backup. You cannot perform an external backup and then use ON-Bar to perform a level-1 backup, or vice versa because ON-Bar does not have any record of the external backup. For more information, see “Performing an external backup when chunks are not mirrored” on page 7-4.

**Rules for an external backup**

Before you begin an external backup, review the rules for performing an external backup.

The rules that you must follow are:

- The database server must be online or in quiescent mode during an external backup.
- Use ON-Bar to back up all logical logs including the current log so that you can restore the logical logs at the end of the external restore.
- Suspend continuous logical-log backups before you block the database server for an external backup. After the external backup is complete, resume the continuous logical-log backup.
- To stop continuous logical-log backup, use the **CTRL-C** command. To resume continuous logical-log backup, use the **onbar -b -l -C** command.
- Wait until all ON-Bar backup sessions have completed before you block the database server. If any backup sessions are active, the block command displays an error message.
- Any OLTP work or queries are suspended while the database server is blocked. They resume after the database server is unblocked.
- All critical dbspaces of the database server instance must be backed up together simultaneously within the same command bracket of **onmode -c block ... onmode -c unblock**. Backups of different critical dbspaces done at different times cannot be restored to a consistent system.
- On AIX® operating systems, if the server is running with concurrent I/O because the DIRECT_IO configuration parameter is set to enable concurrent I/O, an online external backup program must also use concurrent I/O.
Important: Because the external backup is outside the control of ON-Bar, you must track these backups manually. For more information, see “Track an external backup.”

Prepare for an external backup

These topics describe the commands used to prepare for an external backup. For the procedure, see “Performing an external backup when chunks are not mirrored” on page 7-4.

Block and unblock database server

This topic shows the syntax of the block and unblock commands on IBM Informix.

```
 onmode -c
 block
 unblock
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>onmode -c</td>
<td>Performs a checkpoint and blocks or unblocks the database server</td>
<td>None.</td>
</tr>
<tr>
<td>block</td>
<td>Blocks the database server from any transactions</td>
<td>Sets up the database server for an external backup. While the database server is blocked, users can access it in read-only mode. Sample command: <code>onmode -c block</code></td>
</tr>
<tr>
<td>unblock</td>
<td>Unblocks the database server, allowing data transactions and normal database server operations to resume</td>
<td>Do not unblock until the external backup is finished. Sample command: <code>onmode -c unblock</code></td>
</tr>
</tbody>
</table>

Track an external backup

The database server and ON-Bar do not track external backups. To track the external backup data, use a third-party storage manager or track the data manually.

The following table shows which items we recommend that you track in an external backup. ON-Bar keeps a limited history of external restores.

<table>
<thead>
<tr>
<th>Items to track</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full path names of each chunk file for each backed up storage space</td>
<td><code>/work/dbspaces/rootdbs</code> (UNIX) c:\work\dbspaces\rootdbs (Windows)</td>
</tr>
<tr>
<td>Object type</td>
<td>Critical dbspaces, noncritical storage spaces</td>
</tr>
<tr>
<td><code>ins_copyid_hi</code> and <code>ins_copyid_lo</code></td>
<td>Copy ID that the storage manager assigns to each backup object</td>
</tr>
<tr>
<td>Backup date and time</td>
<td>The times that the database server was blocked and unblocked</td>
</tr>
<tr>
<td>Backup media</td>
<td>Tape volume number or disk path name</td>
</tr>
<tr>
<td>Database server version</td>
<td>The database server version from which the backup was taken.</td>
</tr>
</tbody>
</table>
Performing an external backup when chunks are not mirrored

The database server must be online or in quiescent mode during an external backup.

To perform an external backup when chunks are not mirrored:
1. To obtain an external backup, block the database server using the `onmode -c block` command. The system takes a checkpoint and suspends all update transactions. Users can access the database server in read-only mode.
2. To back up the storage spaces and administrative files, use a copy command, such as `cp`, `dd`, or `tar` on UNIX or `copy` on Windows, or a file-backup program. You must back up all chunks in the storage spaces.
3. To allow normal operations to resume, unblock the database server using the `onmode -c unblock` command.
4. Back up all the logical logs including the current log so that checkpoint information is available for the external restore.

**Important:** Because external backup is not done through ON-Bar, you must ensure that you have a backup of the current logical log from the time when you execute the `onmode -c block` command. Without a backup of this logical-log file, the external backup is not restorable.
5. After you perform an external backup, back up the current log using the `onbar -b -l -c` command.

If you lose a disk, or the whole system, you are now ready to perform an external restore.

RS secondary server external backup

You can perform an external backup of an RS secondary server. Performing a backup of an RS secondary server will block that RS secondary server, but will not block the primary server.

You can perform a logical restore from the logs backed up from the primary instance. The backup obtained from the secondary server cannot be restored with level-1 or level-2 backups.

**Important:** The external backup will not be complete if the database instance contains any of the following:
- Nonlogging smart large objects
- Regular blobspaces
- Nonlogging databases
- Raw tables

If an external backup is performed on an instance that contains any of the above items, then the backup will be incomplete and cannot be used to restore the primary server.

Performing an external backup of an RS secondary server

To perform an external backup of an RS secondary server, the STOP_APPLY configuration parameter must not be enabled. An error is returned if STOP_APPLY is enabled. The server switches to STOP_APPLY mode when a backup is
performed on an RS secondary. After the archive checkpoint is processed, the RS secondary server stops applying logical logs, but continues receiving logs from the primary server.

The primary database server must be online or in quiescent mode during an external backup.

To perform an external backup:
1. Ensure that the LOG_STAGING_DIR configuration parameter on the RS secondary server is set to point to a valid staging directory.
2. To obtain an external backup, block the database server using the **onmode -c block** command. The **timeout** parameter indicates the number of seconds that the RS secondary server waits to receive a checkpoint. The **timeout** parameter is valid only when the **onmode -c block** command is run on an RS secondary server. You must wait for the **onmode -c block** command to return successfully before proceeding with the external backup.
3. To back up the storage spaces and administrative files, use a copy command, such as `cp`, `dd`, or `tar` on UNIX or `copy` on Windows, or a file-backup program. You must back up all chunks in the storage spaces.
4. To resume normal operations, unblock the database server by using the **onmode -c unblock** command.
5. After performing the external backup, back up the current log and any new logs using the ON-Bar or **ontape** utilities.

**Important:** Logical log backup is only possible on the primary server.

Depending on whether DELAY_APPLY is in effect, the logs that are required for the restore process are not necessarily those logs that are currently active on the primary server because some logs might have been archived.

After taking an external backup, you can perform an external restore if a disk or the whole system fails,

### Data restored in an external restore

If you lose a disk, or the whole system, you can externally restore data only if it was externally backed up. You must use the same third-party utility for both the external backup and restore. To externally restore the storage spaces, copy the backed-up data to disk. Use the **onbar -r -e** command to mark the storage spaces as physically restored, replay the logical logs, and bring the storage spaces back online. If you do not specify an external restore command, the database server thinks that these storage spaces are still down.

You can perform these types of external restores:
- **Warm external restore**
  - Mark noncritical storage spaces as physically restored, then perform a logical restore of these storage spaces.
- **Cold external restore**
  - Mark storage spaces as physically restored, then perform a logical restore of all storage spaces. Optionally, you can do a point-in-time cold external restore.
**Restriction:** When you perform a cold external restore, ON-Bar does not first attempt to salvage logical-log files from the database server because the external backup has already copied over the logical-log data.

To salvage logical logs, perform `onbar -l -s` before you copy the external backup and perform the external restore (`onbar -r -e`).

**Rename chunks**

You can rename chunks in an external cold restore using the rename options syntax for other restores. Use the following commands to specify new chunk names during restore:

```bash
onbar -r -e -rename -f filename
```

or

```bash
onbar -r -e rename -p old_path -o old_offset -n new_path -o new_offset
```

**External restore commands**

Use the `onbar -r -e` command to perform a warm or cold external restore. This command marks the storage spaces as physically restored and restores the logical logs. The following diagram shows the external restore syntax.

**Performing an external restore with ON-Bar**

```
├──onbar -r -e
│ ├── Rename chunks
│ │ ├── (1)
│ │ │ └── p
│ │ │ └── t
│ │ │ └── n
│ │ └── f
│ │ └── filename
│ └── dbspace_list
│ └── (2)
│ └── w
│ └── t
│ └── n
```

**Notes:**

1. See "Syntax" on page 6-21

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>onbar -r</code></td>
<td>Specifies a restore</td>
<td>In a cold restore, if you do not specify storage space names, all of them are marked as restored.</td>
</tr>
<tr>
<td><code>-e</code></td>
<td>Specifies an external restore</td>
<td>Must be used with the <code>-r</code> option. In a warm external restore, marks the down storage spaces as restored unless the <code>-O</code> option is specified.</td>
</tr>
<tr>
<td><code>dbspace_list</code></td>
<td>Names one or more storage spaces to be marked as restored in a warm restore</td>
<td>If you do not enter <code>dbspace_list</code> or <code>-f filename</code> and the database server is online or quiescent, ON-Bar marks only the down storage spaces as restored. If you enter more than one storage-space name, use a space to separate the names.</td>
</tr>
</tbody>
</table>

IBM Informix Backup and Restore Guide
Element	Purpose	Key considerations
-filename | Restores the storage spaces that are listed in the text file whose path name filename provides | To avoid entering a long list of storage spaces every time, use this option. The filename can be any valid UNIX or Windows file name.
-n last_log | Indicates the number of the last log to restore | If any logical logs exist after this one, ON-Bar does not restore them and data is lost. The -n option does not work with the -p option.
-O | Restores online storage spaces | None.
-p | Specifies an external physical restore only | After the physical restore completes, you must perform a logical restore.
-t time | Restores the last backup before the specified point in time. If you pick a backup made after the point in time, the restore will fail. | You can use a point-in-time restore in a cold restore only. You must restore all storage spaces. How you enter the time depends on your current GLS locale convention. If the GLS locale is not set, use English-style date format. See "Restore data to a point-in-time" on page 6-15.
-w | Performs a whole-system restore of all storage spaces and logical logs from the last whole-system backup | You must specify the -w option in a cold restore. If you specify onbar -r -w without a whole-system backup, return code 147 appears because ON-Bar cannot find any storage spaces backed up as part of a whole-system backup.

Rules for an external restore

Before you begin an external restore, know the following rules:
- You must externally restore from an external backup. Although the external backup is treated as a level-0 backup, it might actually be a non-Informix incremental backup.
- A warm external restore restores only noncritical storage spaces.
- You cannot externally restore temporary dbspaces.
- You cannot externally restore from regular ON-Bar backups.
- You cannot verify that you are restoring from the correct backup and that the storage media is readable using ON-Bar.
- If the external backups are from different times, the external restore uses the beginning logical log from the oldest backup.

These rules apply to cold external restores only:
- Salvage the logical logs (onbar -b -l -s) before you switch the disks that contain the critical storage spaces.
- If you are restoring critical dbspaces, the database server must be offline.
- Point-in-time external restores must be cold and restore all storage spaces.
- The external backups of all critical dbspaces of the database server instance must have been simultaneous. All critical dbspaces must have been backed up within the same onmode -c block ... onmode -c unblock.

Performing an external restore

This section describes procedures for performing cold and warm external restores.
Performing a cold external restore

If you specify the `onbar -r -e` command in a cold restore, you must restore all storage spaces. Use the `onbar -r -e -p` command to restore all or specific storage spaces.

To perform a cold external restore:
1. Shut down the database server using the `onmode -ky` command.
2. Salvage the logical logs using the `onbar -b -l -s` command.
3. To restore the storage spaces from an external backup, use a copy command, such as `cp`, `dd`, or `tar` on UNIX or a file-backup program.
   You must restore the storage spaces to the same path as the original data and include all the chunk files.
4. To perform an external restore of all storage spaces and logical logs, use the `onbar -r -e` command.
5. To perform a point-in-time external restore of all storage spaces, use the `onbar -r -e -t datetime` command.
   This step brings the database server to fast-recovery mode.
   ON-Bar and the database server roll forward the logical logs and bring the storage spaces online.

Mixed external restore restriction

ON-Bar does not support mixed external restores. For example, the following sequence of commands might fail:
* `onbar -r -e rootdbs`
* `onbar -r -e other_dbspaces`

Performing a warm external restore

The database server is online during a warm external restore. A warm external restore involves only noncritical storage spaces.

To perform a warm external restore:
1. To restore the storage spaces from an external backup, use a copy command, such as `cp`, `dd`, or `tar` on UNIX or a file-backup program.
   You must restore the storage spaces to the same path as the original data and include all the chunk files for each restored storage space.
2. Perform a warm external restore of the noncritical storage spaces to bring them online.
   * To restore selected storage spaces and all logical logs, use the `onbar -r -e dbspace_list` command.
   * To restore the down noncritical storage space named dbsp1 and logical logs in separate steps, use the following commands:
     `onbar -r -e -p dbsp1`
     `onbar -r -l dbsp1`
   * To restore all the noncritical storage spaces and logical logs, use the `onbar -r -e -O` command.
## Examples of external restore commands

The following table contains examples of external restore commands.

<table>
<thead>
<tr>
<th>External restore command</th>
<th>Action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>onbar -r -e</td>
<td>Complete external restore</td>
<td>In a cold restore, restores everything. In a warm restore, restores all down noncritical storage spaces.</td>
</tr>
<tr>
<td>onbar -r -e -p</td>
<td>Physical external restore and separate logical restore</td>
<td>If the external backups come from different times, you must perform a logical restore. The system restores the logical logs from the oldest external backup.</td>
</tr>
<tr>
<td>onbar -r -l</td>
<td>External restore of selected storage spaces and logical logs</td>
<td>Use this command in a warm external restore only.</td>
</tr>
<tr>
<td>onbar -r -e dbspaces_list</td>
<td>External restore of selected storage spaces and separate logical restore</td>
<td>Use this command in a warm external restore only.</td>
</tr>
<tr>
<td>onbar -r -e -t datetime</td>
<td>External point-in-time (cold) restore</td>
<td>Be sure to select a collection of backups from before the specified time.</td>
</tr>
<tr>
<td>onbar -r -e rename -p old_path -o old_offset -n new_path -o new_offset</td>
<td>External (cold) restore with renamed chunks</td>
<td>Use this command to rename chunks in cold external restore only.</td>
</tr>
<tr>
<td>onbar -r -e -w</td>
<td>Whole-system external restore</td>
<td>When you use onbar -r -e -w -p, back up all storage spaces in one block and unblock session. That way, all storage spaces have the same checkpoint.</td>
</tr>
</tbody>
</table>

## Initializing HDR with an external backup and restore

You can use external backups to initialize High-Availability Data Replication (HDR). For more information on HDR, see “Initializing High-availability Data Replication with ON-Bar” on page 6-27 and the IBM Informix Administrator’s Guide.

To initialize HDR with an external backup and restore:

1. Block the source database server with the onmode -c block command.
2.Externally back up all chunks on the source database server.
3. When the backup completes, unblock the source database server using the onmode -c unblock command.
4. Make the source database server the primary server using the following command: onmode -d primary secondary_servername
5. On the target database server, restore the data from the external backup with a copy or file-backup program.
6. On the target database server, restore the external backup of all chunks using the onbar -r -e -p command. On HDR, secondary server can restore only level-0 archives.
7. Make the target database server the secondary server using the following command: onmode -d secondary primary_servername
8. If the logical-log records written to the primary database server since step 1 still reside on the primary database server disk, the secondary database server reads these records to perform the logical recovery. Otherwise, perform the logical recovery using the onbar -r -l command.
The database server operational messages appear in the message log on the primary and secondary servers.
Chapter 8. Customize and maintain ON-Bar

These topics discuss the following:
- Customizing ON-Bar and storage-manager commands with the onbar script
- Starting onbar-worker processes manually
- Expiring and synchronizing the backup history

Customize ON-Bar and storage-manager commands

When you issue ON-Bar commands from the command line, the arguments are passed to the onbar script and then to onbar_d. Use the onbar shell script on UNIX or the onbar batch file on Windows to customize backup and restore commands, start IBM Informix Storage Manager (ISM), and back up the ISM catalog. The onbar script is located in the $INFORMIXDIR/bin directory on UNIX and in the %INFORMIXDIR%\bin directory on Windows.

The default onbar script assumes that the currently installed storage manager is ISM and backs up the ISM catalogs. If you are using a different storage manager, edit the onbar script, delete the ISM-specific lines, and optionally, add storage-manager commands.

For background information on the onbar script or batch file, see "ON-Bar utilities" on page 3-4 and "Your customized onbar script is saved on new installations" on page 4-5.

The default onbar script contains the following sections:
- Add startup processing here
  Use this section to initialize the storage manager, if necessary, and set environment variables.
- End startup processing here
  This section starts the onbar_d driver and checks the return code. Use this section for onbar_d and storage-manager commands.
- Add cleanup processing here
  The code in this section backs up the ISM catalogs to the ISMDATA volume pool after the backup operation is complete. If you are using a third-party storage manager, delete the ISM-specific information.
  If you use a name other than ISMDATA for the volume pool, change it to the name specified in the ISM_DATA_POOL configuration parameter.
  The archcker temporary files are also removed.
- End cleanup processing here
  Use this section to return onbar_d error codes.

Important: Edit the onbar script carefully. Accidental deletions or changes might cause undesired side effects. For example, backup verification might leave behind temporary files if the cleanup code near the end of the onbar script is changed.
Print the backup boot files

Use the following examples of what to add to the `onbar` script to print the emergency boot file if the backup is successful. Each time that you issue the `onbar -b` command, the emergency boot file is printed.

The following example is for UNIX:

```bash
onbar_d "$@" # receives onbar arguments from command line
return_code = $? # check return code
if [return_code -eq 0 -a "$1" = "-b"]; then
 # if backup (onbar -b) is successful, prints emergency boot file
 servernum='awk '/^SERVERNUM/ {print $2}' $INFORMIXDIR/etc/$ONCONFIG'
lpr \$INFORMIXDIR/etc/ixbar.$servernum
fi
exit $return_code
```

The following example is for Windows:

```bash
@echo off
%INFORMIXDIR%\bin\onbar_d %*
set onbar_d_return=%errorlevel%
if "%onbar_d_return%" == "0" goto backupcom
goto skip
REM Check if this is a backup command
:backupcom
if "%1" == "-b" goto printboot
goto skip
REM Print the onbar boot file
:printboot
print %INFORMIXDIR%\etc\ixbar.???
REM Set the return code from onbar_d (this must be on the last line of the script)
:skip
%INFORMIXDIR%\bin\set_error %onbar_d_return%
:end
```

Migrate backed-up logical logs to tape

You can set up your storage manager to back up logical logs to disk and then write a script to automatically migrate the logical logs from disk to tape for off-site storage. Edit the `onbar` script to call this migration script after the `onbar_d` process completes. The following example shows a script that calls the migration script:

The following example is for UNIX:

```bash
onbar_d "$@" # starts the backup or restore
EXIT_CODE=$? # any errors?
PHYS_ONLY=false # if it's physical-only, do nothing
for OPTION in $*; do
 if ["OPTION" = "-p"]; then
 PHYS_ONLY = true
 fi
```
done
if ! PHYS_ONLY; then  # if logs were backed up, call another
    migrate_logs  # program to move them to tape
fi

This example for Windows invokes the migration script:
%INFORMIXDIR%\bin\onbar_d %*
set onbar_d_return=%errorlevel%
if "%onbar_d_return%" == "0" goto backupcom
goto skip
REM Check if the command is a backup command
:backupcom
if "%1" == "-b" goto m_log
if "%1" == "-l" goto m_log
goto skip
REM Invoke the user-defined program to migrate the logs
:m_log
migrate_log
REM Set the return code from onbar_d (this must be on the last line of the script)
:skip
%INFORMIXDIR%\bin\set_error %onbar_d_return%
:end

Expire and synchronize the backup catalogs

ON-Bar maintains a history of backup and restore operations in the sysutils database and an extra copy of the backup history in the emergency boot file. ON-Bar uses the sysutils database in a warm restore when only a portion of the data is lost. ON-Bar uses the emergency boot file in a cold restore because the sysutils database cannot be accessed. You can use the onsmsync utility to regenerate the emergency boot file and expire old backups.

Depending on the command options you supply, the onsmsync utility can remove the following items from the sysutils database and the emergency boot file:
- Backups that the storage manager has expired
- Old backups based on the age of backup
- Old backups based on the number of times they have been backed up

Use onsmsync with the database server online or in quiescent mode to synchronize both the sysutils database and the emergency boot file.

To synchronize the sysutils database:
1. Bring the database server online or to quiescent mode.
2. Run the onsmsync utility without any options.

The onsmsync utility synchronizes the sysutils database, the storage manager, and the emergency boot file as follows:
- Adds backup history to sysutils that is in the emergency boot file but is missing from the sysutils database.
- Removes the records of restores, whole-system restores, fake backups, successful and failed backups from the `sysutils` database.
- Expires old logical logs that are no longer needed.
- Regenerates the emergency boot file from the `sysutils` database.

### Choose an expiration policy

You can choose from the following three expiration policies:

**Retention date** (-t)

Deletes all backups before a particular date and time.

**Retention interval** (-i)

Deletes all backups older than some period of time.

**Retention generation** (-g)

Keeps a certain number of versions of each backup.

ON-Bar always retains the latest level-0 backup for each storage space. It expires all level-0 backups older than the specified time unless they are required to restore from the oldest retained level-1 backup.

ON-Bar expires all level-1 backups older than the specified time unless they are required to restore from the oldest retained level-2 backup.

ON-Bar retains a whole-system backup that starts before the specified retention time and ends after the specified retention time.

### The onsmsync utility

The order of the commands does not matter except that the storage-space names or file name must come last.

**Tip:** To control whether the `sysutils` database maintains a history for expired backups and restores, use the BAR_HISTORY configuration parameter. For information, see "BAR_HISTORY parameter" on page 9-8.

```
>> onsmsync
 -g generation
 -t time
 -i interval
 -s
 -0
 -f filename
 -b
 dbspace_list
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>no options</td>
<td>Synchronizes the <code>sysutils</code> database and emergency boot file with the storage-manager catalog</td>
<td>None.</td>
</tr>
<tr>
<td>Element</td>
<td>Purpose</td>
<td>Key considerations</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>-b</td>
<td>Regenerates both the emergency boot file (<code>ixbar.servernum</code>) and the <code>sysutils</code> database from each other.</td>
<td>If the <code>ixbar</code> file is empty or does not exist, <code>onsmsync -b</code> recreates the <code>ixbar</code> file and populates it from the <code>sysutils</code> tables. If the <code>ixbar</code> is not empty and contains object data, <code>onsmsync -b</code> updates the <code>sysutils</code> database and the <code>ixbar</code> file so that they are in sync. If the <code>ixbar</code> file has entries and the <code>sysutils</code> database has been rebuilt, but is empty because it does not contain data, <code>onsmsync -b</code> recreates the <code>sysutils</code> data from the <code>ixbar</code> file. The -b element is not used with the other <code>onsmsync</code> options. Additionally, it does not synchronize with the storage manager.</td>
</tr>
</tbody>
</table>

- `dbspace_list` Lists the storage spaces to expire If you enter more than one storage space, use a space to separate the names. |
- `-f filename` Specifies the path name of a file that contains a list of storage spaces to expire Use this option to avoid entering a long list of storage spaces. The file name can be any valid UNIX or Windows file name. |
- `-g generation` Retains a certain number of versions of each level-0 backup The latest generation of backups are retained and all earlier ones are expired. |
- `-i interval` Expires all backups older than some period of time Retains backups younger than this interval. Backups older than interval are not expired if they are needed to restore from other backups after that interval. Use the ANSI or GLS format for the `interval`: YYYY-MM or DD HH:MM:SS |
- `-s` Skips backups that the storage manager has expired Use this option to skip synchronizing objects that are already expired from the storage manager. The object expiration will be based on other arguments if the -s option is provided. |
- `-O` Enforces expiration policy strictly If used with the -t, -g, or -i option, expires all levels of a backup, even if some of them are needed to restore from a backup that occurred after the expiration date. The -O option does not affect logical-log expiration. See ["expire all backups"](page 8-7) on page 8-7. |
- `-t datetime` Expires all backups before a particular date and time Retains backups younger than this `datetime`. Backups older than `datetime` are not expired if they are needed to restore from other backups after that `datetime`. Use the ANSI or GLS_DATETIME format for `datetime`. |

### Remove expired backups

If called with no options, the `onsmsync` utility compares the backups in the `sysutils` database and emergency boot file with the backups in the storage-manager catalog. The `onsmsync` utility removes all backups that are not in the storage manager catalog from the `sysutils` database and emergency boot file.

### Expiring old backups on ISM

IBM Informix Storage Manager (ISM) and certain third-party storage managers do not allow the `onsmsync` utility to delete backups from the storage manager. First, manually expire or delete the old backups from the storage manager. Then, run `onsmsync` without any parameters.

To expire old backups on ISM:
1. To manually expire the old backups from ISM, use the `ism_config -retention #days` command.
   For more information, see the IBM Informix Storage Manager Administrator’s Guide.

2. Run `onmsync` without any options.

**Regenerate the emergency boot file**

To regenerate the emergency boot file only, use the `onmsync -b` command.

The `onmsync -b` command saves the old emergency boot file as `ixbar.server_number.system_time` and regenerates it as `ixbar.server_number`.

**Regenerate the sysutils database**

If you lose the `sysutils` database, use the `bldutil` utility in `$INFORMIXDIR/etc` on UNIX or `%INFORMIXDIR%\etc` on Windows to recreate the `sysutils` database with empty tables.

Then use the `onmsync` utility to recreate the backup and restore data in `sysutils`.

**Restriction:** If both the `sysutils` database and emergency boot file are missing, you cannot regenerate them with `onmsync`. Be sure to back up the emergency boot file with your other operating-system files.

**Delete a bad backup**

The `onmsync` utility cannot tell which backups failed verification. If the latest backup failed verification but an earlier one was successful, you must manually delete the failed backup records from the storage manager and then run `onmsync` with no options to synchronize ON-Bar. For more information, see Chapter 16, “Verify backups,” on page 16-1.

**Expire backups based on the retention date**

The following example expires backups that started before November 24, 2006 and all fake backups, failed backups, and restores:

```
onmsync -t "2006-11-24 00:00:00"
```

**Expire a generation of backups**

The following example retains the latest three sets of level-0 backups and the associated incremental backups, and expires all earlier backups and all restores, fake backups, and failed backups: `onmsync -g 3`

**Expire backups based on the retention interval**

The following example expires all backups that are older than three days and all fake backups, failed backups, and restores:

```
onmsync -i "3 00:00:00"
```

The following example expires all backups older than 18 months (written as 1 year + 6 months):

```
onmsync -i "1-6"
```
**Expire backups with multiple point-in-time restores**

If you perform more than one point-in-time restores, multiple timelines for backups exist.

The following figure shows three timelines with their backups.

![Multiple timelines for backups](image)

In this example, the second timeline begins with a point-in-time restore to backup 1. The second timeline consists of backups 1, 5, 6, 7, and 8. The third timeline (in bold) consists of backups 1, 5, and 9. The third timeline is considered the current timeline because it contains the latest backup.

When you run the `onsmsync` utility to expire old backups, `onsmsync` removes the old backups from the current timeline, and make sure that the current timeline is restorable from the backup objects that are retained. All other backups that are not in the current timeline are also expired but `onsmsync` does not make sure that the other timelines are restorable from the objects retained.

The `onsmsync` utility applies expiration policies in the following order to make sure that objects from current timeline are expired according to the specified expiration policy and that the current timeline is restorable:

- Apply the expiration policy on all sets of backup objects.
- Unexpire backup objects that belong to the current timeline.
- Apply the expiration policy on the current timeline to ensure that the current timeline is restorable.

At the same time, the expiration policy is applied to backups in other timelines.

For example, if you execute the `onsmsync -g 2` command on the example in the previous figure, backup 1 from the current timeline is expired, and backups 2, 3, 4, 6, and 7 from the first and second timelines are expired. Backups 1, 5, and 9 from the current timeline are retained. Backup 8 is retained from other timelines.

**Expire all backups**

The `onsmsync` utility retains the latest level-0 backup unless you use the `-O` option. If you use the `-O` and `-t` options, all backups from before the specified time are removed even if they are needed for restore. If you use the `-O` and `-i` options, all backups from before the specified interval are removed even if they are needed for restore.
For example, to expire all backups, specify the following:

```
onmsync -O -g 0
```

**Important:** If you use the `-O` option with the `-t`, `-i`, or `-g` options, you might accidentally delete critical backups, making restores impossible.

---

**Monitor the performance of ON-Bar and the storage managers**

You can monitor the performance of ON-Bar and your storage manager. You can specify the level of performance monitoring and have the statistics print to the ON-Bar activity log. The `BAR_PERFORMANCE` configuration parameter specifies whether to gather statistics. The following statistics are gathered:

- Total time spent in XBSA calls.
- Total time spent in Archive API calls.
- Time spent by ON-Bar in transferring data to and from XBSA (storage manager calls).
- Time spent by ON-Bar in transferring data between ON-Bar to IBM Informix.
- Amount of data transferred to or from the XBSA API.
- Amount of data transferred to or from the Archive API.

---

**Set ON-Bar performance statistics levels**

To specify the level of performance statistics that are printed to the ON-Bar activity log, set the `BAR_PERFORMANCE` configuration parameter in the `onconfig` file.

For example, the `BAR_PERFORMANCE 1` setting displays the time spent transferring data between the IBM Informix instance and the storage manager.

See [“BAR_PERFORMANCE parameter” on page 9-10](#) for information about the options for this parameter.

---

**View ON-Bar backup and restore performance statistics**

To view ON-Bar performance results, open the ON-Bar activity log. See [“BAR_ACT_LOG parameter” on page 9-6](#) to determine where the activity log is located.

When `BAR_PERFORMANCE` is set to 1 or 3, the activity report will display a transfer rate report:
When BAR_PERFORMANCE is set to 2 or 3, the activity report will have microsecond timestamps as shown in the following example:

2007-06-03 15:38:02 8597 8595 Begin restore logical log 310 (Storage Manager copy ID: 28206 0).
2007-06-03 15:38:03 8597 8595 Completed restore logical log 310.
2007-06-03 15:38:08 8597 8595 Completed logical restore.
2007-06-03 15:38:19 8597 8595 PERFORMANCE INFORMATION

<table>
<thead>
<tr>
<th>OBJECT</th>
<th>XBSA API NAME</th>
<th>XBSA API xfer-kbytes</th>
<th>XBSA API xfer-time</th>
<th>XBSA API RATIO(kb/s)</th>
<th>XBSA API API-TIME</th>
<th>SERVER API NAME</th>
<th>SERVER API xfer-kbytes</th>
<th>SERVER API xfer-time</th>
<th>SERVER API RATIO(kb/s)</th>
<th>SERVER API API-TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>309</td>
<td>62</td>
<td>0.479</td>
<td>129</td>
<td>1.076</td>
<td>62</td>
<td>0.019</td>
<td>3320</td>
<td>0.318</td>
<td>3320</td>
<td>0.318</td>
</tr>
<tr>
<td>310</td>
<td>62</td>
<td>0.407</td>
<td>152</td>
<td>1.098</td>
<td>62</td>
<td>0.025</td>
<td>2522</td>
<td>0.055</td>
<td>2522</td>
<td>0.055</td>
</tr>
<tr>
<td>rootdbs</td>
<td>5608</td>
<td>0.418</td>
<td>9436</td>
<td>1.044</td>
<td>5608</td>
<td>0.322</td>
<td>653</td>
<td>0.031</td>
<td>653</td>
<td>0.031</td>
</tr>
<tr>
<td>datadb01</td>
<td>62</td>
<td>0.480</td>
<td>127</td>
<td>1.768</td>
<td>62</td>
<td>0.004</td>
<td>1734</td>
<td>0.004</td>
<td>1734</td>
<td>0.004</td>
</tr>
<tr>
<td>datadb02</td>
<td>62</td>
<td>0.306</td>
<td>203</td>
<td>1.580</td>
<td>62</td>
<td>0.006</td>
<td>8136</td>
<td>0.008</td>
<td>8136</td>
<td>0.008</td>
</tr>
<tr>
<td>datadb03</td>
<td>62</td>
<td>0.304</td>
<td>204</td>
<td>1.574</td>
<td>62</td>
<td>0.007</td>
<td>8643</td>
<td>0.007</td>
<td>8643</td>
<td>0.007</td>
</tr>
<tr>
<td>datadb04</td>
<td>62</td>
<td>0.306</td>
<td>202</td>
<td>1.543</td>
<td>62</td>
<td>0.007</td>
<td>8664</td>
<td>0.007</td>
<td>8664</td>
<td>0.007</td>
</tr>
<tr>
<td>datadb05</td>
<td>62</td>
<td>0.315</td>
<td>197</td>
<td>1.586</td>
<td>62</td>
<td>0.007</td>
<td>8813</td>
<td>0.007</td>
<td>8813</td>
<td>0.007</td>
</tr>
<tr>
<td>datadb06</td>
<td>62</td>
<td>0.310</td>
<td>200</td>
<td>1.583</td>
<td>62</td>
<td>0.002</td>
<td>25348</td>
<td>0.002</td>
<td>25348</td>
<td>0.002</td>
</tr>
</tbody>
</table>

2007-06-03 15:38:19 8597 8595 PERFORMANCE INFORMATION

Figure 8-2. Sample transfer rate performance in the ON-Bar activity log.

When BAR_PERFORMANCE is set to 2 or 3, the activity report will have microsecond timestamps as shown in the following example:

2007-06-03 16:34:04 15272 15270 /usr/informix/bin/onbar_d complete, returning 0 (0x00)
2007-06-03 16:45:11.608424 17085 17083 /usr/informix/bin/onbar_d -r -w
2007-06-03 16:46:07.926097 17085 17083 Successfully connected to Storage Manager.
2007-06-03 17:06:00.836390 17085 17083 Successfully connected to Storage Manager.

Figure 8-3. Sample processing rates, in microseconds, in the ON-Bar activity log.
Chapter 9. ON-Bar configuration parameters

These topics describe the ON-Bar configuration parameters that you can set in the onconfig file and the archecker configuration parameters that you can set in the AC_CONFIG file.

Be sure to configure your storage manager. Depending on the storage manager that you choose, you might set different ON-Bar configuration parameters. If you are using a third-party storage manager, see "Configuring a third-party storage manager" on page 4-1, before you start ON-Bar.

The following table describes the following attributes (if relevant) for each parameter.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac_config.std value</td>
<td>For archecker configuration variables. The default value that appears in the ac_config.std file.</td>
</tr>
<tr>
<td>onconfig.std value</td>
<td>For onconfig configuration variables. The default value that appears in the onconfig.std file.</td>
</tr>
<tr>
<td>if value not present</td>
<td>The value that the database server supplies if the parameter is missing from your onconfig file.</td>
</tr>
<tr>
<td></td>
<td>If this value is present in onconfig.std, the database server uses the onconfig.std value.</td>
</tr>
<tr>
<td></td>
<td>If this value is not present in onconfig.std, the database server uses this value.</td>
</tr>
<tr>
<td>units</td>
<td>The units in which the parameter is expressed</td>
</tr>
<tr>
<td>range of values</td>
<td>The valid values for this parameter</td>
</tr>
<tr>
<td>takes effect</td>
<td>The time at which a change to the value of the parameter affects ON-Bar operation.</td>
</tr>
<tr>
<td></td>
<td>Except where indicated, you can change the parameter value between a backup and a restore.</td>
</tr>
<tr>
<td>refer to</td>
<td>Cross-reference to further discussion</td>
</tr>
</tbody>
</table>

Configuration parameters for archecker in AC_CONFIG

ON-Bar calls the archecker utility to verify backups and you must configure the archecker environment variable and parameters before you can use the onbar -v option. For more information about using archecker, see Chapter 16, "Verify backups," on page 16-1.
AC_CONFIG file environment variable

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default value</td>
<td>UNIX: $INFORMIXDIR/etc/ac_config.std Windows: %INFORMIXDIR%\etc\ac_config.std</td>
</tr>
</tbody>
</table>

takes effect When ON-Bar starts

Set the AC_CONFIG environment variable to the full path name for the archecker configuration file (either ac_config.std or user defined). You must specify the entire path, including the configuration file name in the AC_CONFIG file or else the archecker utility might not work correctly. The following are examples of valid AC_CONFIG path names:

- UNIX: /usr/informix/etc/ac_config.std and /usr/local/my_ac_config.std
- Windows: c:\Informix\etc\ac_config.std and c:\Informix\etc\my_ac_config.std

If AC_CONFIG is not set, the archecker utility sets the default location for the archecker configuration file to $INFORMIXDIR/etc/ac_config.std on UNIX or %INFORMIXDIR%\etc\ac_config.std on Windows.

The following table shows the archecker configuration parameters that you specify in the AC_CONFIG file.

<table>
<thead>
<tr>
<th>Configuration parameter</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_MSGPATH</td>
<td>Specifies the location of the archecker message log</td>
</tr>
<tr>
<td>AC_STORAGE</td>
<td>Specifies the location of the temporary files that archecker builds</td>
</tr>
<tr>
<td>AC_TIMEOUT</td>
<td>Specifies the timeout value for the ON-Bar and the archecker processes if one of them exits prematurely</td>
</tr>
<tr>
<td>AC_VERBOSE</td>
<td>Specifies either verbose or quiet mode for archecker messages</td>
</tr>
</tbody>
</table>

AC_MSGPATH parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac_config.std value</td>
<td>UNIX: /tmp/ac_msg.log Windows: c:\temp\ac_msg.log</td>
</tr>
</tbody>
</table>

takes effect When ON-Bar starts

The AC_MSGPATH parameter in the AC_CONFIG file specifies the location of the archecker message log (ac_msg.log). You must specify the entire path of the message log in the AC_CONFIG file or else the archecker utility might not work correctly.

When you verify backups with onbar -v, the archecker utility writes summary messages to the bar_act.log and indicates whether the verification succeeded or failed. It writes detailed messages to the ac_msg.log. If the backup fails
verification, discard the backup and retry another backup, or give the `ac msg.log` to Technical Support. For sample messages, see "Interpret verification messages" on page 16-4.

**AC_STORAGE parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ac_config.std value</code></td>
<td>UNIX: /tmp</td>
</tr>
<tr>
<td></td>
<td>Windows: c:\temp</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The AC_STORAGE parameter in the AC_CONFIG file specifies the location of the directory where archecker stores its temporary files. You must specify the entire path of the storage location in the AC_CONFIG file or else the archecker utility might not work correctly.

The following table lists the directories and files that archecker builds. If verification is successful, these files are deleted.

*Table 9-1. The archecker temporary files*

<table>
<thead>
<tr>
<th>Directory</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHUNK_BM</td>
<td>Bitmap information for every backed up storage space.</td>
</tr>
<tr>
<td>INFO</td>
<td>Statistical analysis and debugging information for the backup.</td>
</tr>
<tr>
<td>SAVE</td>
<td>Partition pages in the <code>PT.########</code> file.</td>
</tr>
<tr>
<td></td>
<td>Chunk-free pages in the <code>FL.########</code> file.</td>
</tr>
<tr>
<td></td>
<td>Reserved pages in the <code>RS.########</code> file.</td>
</tr>
<tr>
<td></td>
<td>Blob-free map pages in the <code>BF.########</code> file.</td>
</tr>
</tbody>
</table>

To calculate the amount of free space that you need, see "Estimate the amount of temporary space for archecker" on page 16-2. It is recommended that you set AC_STORAGE to a location with plenty of free space.

**AC_TIMEOUT parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ac_config.std value</code></td>
<td>UNIX: 300</td>
</tr>
<tr>
<td></td>
<td>Windows: 300</td>
</tr>
<tr>
<td>units</td>
<td>seconds</td>
</tr>
<tr>
<td>takes effect</td>
<td>When the <code>onbar-v</code> command starts</td>
</tr>
</tbody>
</table>

The AC_TIMEOUT parameter in the AC_CONFIG file specifies the timeout value for the onbar and the archecker processes if one of them exits prematurely. This parameter was introduced to avoid onbar and archecker processes waiting for each other indefinitely if one of them exits prematurely, thus avoiding the creation of an orphan and zombie process during data server initialization.
AC_VERBOSE parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac_config.std value</td>
<td>1</td>
</tr>
<tr>
<td>range of values</td>
<td>1 for verbose messages in ac_msg.log</td>
</tr>
<tr>
<td></td>
<td>0 for terse messages in ac_msg.log</td>
</tr>
<tr>
<td>takes effect</td>
<td>When the ON-Bar starts</td>
</tr>
</tbody>
</table>

The AC_VERBOSE parameter in the AC_CONFIG file specifies either verbose or terse output in the archeker message log.

ON-Bar parameters in ONCONFIG

The following section lists the ON-Bar configuration parameters and indicates the database servers to which they apply.

Important: ON-Bar does not use the TAPEDEV, TAPEBLK, TAPESIZE, LTAPEBLK, and LTAPESIZE configuration parameters. ON-Bar checks if LTAPEDEV is set to /dev/null on UNIX or NUL on Windows. For more information, see “LTAPEDEV parameter” on page 9-14.

ALARMPROGRAM parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| onconfig.std value      | UNIX: $INFORMIXDIR/etc/alarmprogram.sh
|                         | Windows: %INFORMIXDIR%/etc\alarmprogram.bat     |
| if value not present    | no_log.sh or no_log.bat                          |
| range of values         | Full path name                                   |
| takes effect            | When the database server is shutdown and restarted|
| refer to                | IBM Informix Administrator’s Reference            |

Use the ALARMPROGRAM configuration parameter to handle event alarms and start or end automatic log backups.

Use the shell script, log_full.sh or log_full.bat, for starting automatic log backups. Modify this script and set it to the full path of ALARMPROGRAM in the onconfig file.

To generate event alarms, set ALARMPROGRAM to $INFORMIXDIR/etc/alarmprogram.sh or %INFORMIXDIR%/etc/alarmprogram.bat and modify the file accordingly. For more information, see the IBM Informix Administrator’s Reference.

Important: When you choose automatic logical-log backups, backup media should always be available for the backup process.
Do not use the continuous log backup command (**onbar -b -l -C**) if you have automatic log backup set up through the **ALARMPROGRAM** parameter, and conversely.

### ALRM_ALL_EVENTS parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>0</td>
</tr>
<tr>
<td>if value not present</td>
<td>No effect</td>
</tr>
<tr>
<td>range of values</td>
<td>0 or 1</td>
</tr>
<tr>
<td>takes effect</td>
<td>When the database server is shutdown and restarted</td>
</tr>
<tr>
<td>refer to</td>
<td>IBM Informix Administrator’s Reference</td>
</tr>
</tbody>
</table>

The **ALRM_ALL_EVENTS** configuration parameter is used to alter the default behavior of the **ALARMPROGRAM** script. When this configuration parameter is set to 1, **ALARMPROGRAM** will run for all events that are logged in the **MSGPATH** and email is sent to the administrator including relevant information about the event.

### BACKUP_FILTER parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>none</td>
</tr>
<tr>
<td>if value not present</td>
<td>none</td>
</tr>
<tr>
<td>range of values</td>
<td>Full path name of command and any options.</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

Set the **BACKUP_FILTER** configuration parameter to specify the path name of a filter program, and any options. For example:

```bash
BACKUP_FILTER /bin/compress
```

With the above configuration, the backup filter will be called from ON-Bar as:

```bash
BACKUP_FILTER /bin/compress
```

Output produced by this filter will be saved as a single object in the Storage Manager.

The **BACKUP_FILTER** configuration parameter can include command line options as well as the filter name. If you include command line options, both the filter name and the options must be surrounded by single quotation marks. For example, specify:

```bash
BACKUP_FILTER 'my_encrypt -file /var/adm/encryption.pass'
```

In this example, the command in quotation marks is used as the filter.

For security purposes, filters should not have write permission to non-privileged users. Permission on the filters will be same as that of permission on other executable files that are called by the IBM Informix server or utilities.
For more information, see "Transforming with filters during backup and restore" on page 3-9.

BAR_ACT_LOG parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>takes effect</td>
<td>When onbar-driver starts</td>
</tr>
</tbody>
</table>

The BAR_ACT_LOG configuration parameter specifies the full path name of the ON-Bar activity log. You should specify a path to an existing directory with an appropriate amount of space available or use $INFORMIXDIR/bar_act.log.

Whenever a backup or restore activity or error occurs, ON-Bar writes a brief description to the activity log. The format of the file resembles the format of the database server message log. You can examine the activity log to determine the results of ON-Bar actions.

The file specified by the BAR_ACT_LOG configuration parameter is created if it does not already exist. If the ON-Bar command (or any ON-Bar related utility such as the onmsync utility) has never been run on the system, then the file will not exist.

The sysbaract_log table is a system monitoring interface pseudo table that reads data from the file specified by BAR_ACT_LOG. The following errors are returned if you attempt to query the sysbaract_log on a system where the BAR_ACT_LOG file does not exist:

244: Could not do a physical-order read to fetch next row.
101: ISAM error: file is not open.

Specify BAR_ACT_LOG with a file name only

If you specify a file name only in the BAR_ACT_LOG parameter, ON-Bar creates the ON-Bar activity log in the working directory in which you started ON-Bar. For example, if you started ON-Bar from /usr/mydata on UNIX, the activity log is written to that directory.

For UNIX, if the database server launches a continuous logical-log backup, ON-Bar writes to the ON-Bar activity log in the working directory for the database server.

For Windows, if the database server launches a continuous logical-log backup, ON-Bar writes to the activity log in the %INFORMIXDIR%\bin directory instead.

BAR_BSALIB_PATH parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| onconfig.std value | UNIX: none
                   | Windows: none |
| if value not present | Windows: none |
| takes effect | When onbar-driver starts |

ON-Bar and the storage manager rely on a shared library to integrate with each other. Configure the BAR_BSALIB_PATH configuration parameter for your
storage-manager library. Support for BAR_BSALIB_PATH is platform-specific. Check your machine notes to determine if you can use it with your operating system. You can change the value of BAR_BSALIB_PATH between a backup and restore.

To ensure that this integration takes place, specify the shared-library path name. Set one of the following options:

**UNIX**
- Place the storage-manager library in the default directory.
  For example, the suffix for Solaris is so, so you specify `$INFORMIXDIR/lib/ibsad001.so` on a Solaris system.
- Place the storage-manager library in any directory and create a symbolic link from `$INFORMIXDIR/lib/ibsad001.platform_extension` to it.
  If you use IBM Informix Storage Manager (ISM), create a symbolic link to `$INFORMIXDIR/lib/libbsa.platform_extension` or set BAR_BSALIB_PATH to this absolute path value.
  If you use IBM Tivoli Storage Manager (TSM), create a symbolic link to `$INFORMIXDIR/lib/libtxbsa.platform_extension` or set BAR_BSALIB_PATH to this absolute path value.
- Set the `LD_LIBRARY_PATH` environment variable. For example, to use ISM on Solaris, set `LD_LIBRARY_PATH` to `$INFORMIXDIR/lib`.

**Windows**
- Place the storage-manager library in the default directory.
- Set the path name for the ISM shared library to the installation directory for ISM: `%ISMDIR%\bin\libbsa.dll`.
  The `%ismdir%` variable includes a version or release number. For example: set `ISMDIR=C:\program files\informix\ism\2.20`. This directory is set when the database server is installed on Windows. This path name is different if you use a different storage manager.

**Tip:** Be sure that the shared library can access the backup data in the storage manager in a restore. You cannot back up using one storage manager and restore using a different storage manager.

### BAR_DEBUG parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>0 if value not present</td>
</tr>
<tr>
<td>units</td>
<td>Levels of debugging information</td>
</tr>
<tr>
<td>range of values</td>
<td>0 to 9</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

Set the BAR_DEBUG configuration parameter to a higher value to display more detailed debugging information in the ON-Bar activity log. The default value of 0 displays no debugging information. You can dynamically update the value of BAR_DEBUG in the onconfig file during a session. For more information, see “Specify the level of ON-Bar debugging” on page 3-8.
### BAR_DEBUG_LOG parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>/usr/informix/bar_dbug.log</td>
</tr>
<tr>
<td>if value not present</td>
<td>UNIX: /tmp/bar_dbug.log  Windows: \tmp\bar_dbug.log</td>
</tr>
</tbody>
</table>

when ON-Bar starts

The BAR_DEBUG_LOG parameter specifies the location and name of the ON-Bar debug log. For security reasons, you should set BAR_DEBUG_LOG to a directory with restricted permissions, such as the $INFORMIXDIR directory.

### BAR_HISTORY parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>Not in onconfig.std</td>
</tr>
<tr>
<td>if value not present</td>
<td>0</td>
</tr>
<tr>
<td>range of values</td>
<td>0 to remove records for expired backup objects from sysutils  1 to keep records for expired backup objects in sysutils</td>
</tr>
</tbody>
</table>

when onsmsync starts

The BAR_HISTORY parameter specifies whether the sysutils database maintains a backup history when you use onsmsync to expire old backups. For more information, see “The onsmsync utility” on page 8-4.

If you set the value to 0, onsmsync removes the bar_object, bar_action, and bar_instance rows for the expired backup objects from the sysutils database. If you set the value to 1, onsmsync sets the act_type value to 7 in the bar_action row and keeps the bar_action and bar_instance rows for expired backup objects in the sysutils database. If you do not set BAR_HISTORY to 1, the restore history is removed.

Regardless of the value of BAR_HISTORY, onsmsync removes the line that describes the backup object from the emergency boot file and removes the object from the storage manager when the storage manager expires the object.

### BAR_IXBAR_PATH parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>UNIX or Linux: $INFORMIXDIR/etc/ ixbar.servernum  Windows: %INFORMIXDIR%\etc\ ixbar.servernum</td>
</tr>
</tbody>
</table>

when ON-Bar or onsmsync starts
Use the BAR_IXBAR_PATH configuration parameter to change the path and name of the ON-Bar boot file.

By default, the ON-Bar boot file is created in the %INFORMIXDIR%\etc folder on Windows and in the $INFORMIXDIR/etc folder on UNIX or Linux. The default name for this file is ixbar.servernum, where servernum is the value of the SERVERNUM configuration parameter.

For example, in an instance with the SERVERNUM configuration parameter equal to 41, the ON-Bar boot file is created by default with this path and name in UNIX:
BAR_IXBAR_PATH $INFORMIXDIR/etc/ixbarboot.41

You can change the path to create the file in another location. For example, if you want to create the ON-Bar boot file in the directory /usr/informix with the name ixbar.new, specify:
BAR_IXBAR_PATH=/usr/informix/ixbar.new

### BAR_MAX_BACKUP parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>0</td>
</tr>
<tr>
<td>if value not present</td>
<td>4</td>
</tr>
<tr>
<td>units</td>
<td>ON-Bar processes</td>
</tr>
<tr>
<td>range of values</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Maximum number of processes allowed on system</td>
</tr>
<tr>
<td>1</td>
<td>Serial backup or restore</td>
</tr>
<tr>
<td>n</td>
<td>Specified number of processes spawned</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The BAR_MAX_BACKUP parameter specifies the maximum number of parallel processes that are allowed for each ON-Bar command. Both UNIX and Windows support parallel backups. Although the database server default value for BAR_MAX_BACKUP is 4, the onconfig.std value is 0.

**Specify serial backups and restores**

To perform a serial backup or restore, including a serial whole system backup or restore, set BAR_MAX_BACKUP to 1.

**Specify parallel backups and restores**

To specify parallel backups and restores, including parallel whole system backups and restores, set BAR_MAX_BACKUP to a value higher than 1. For example, if you set BAR_MAX_BACKUP to 5 and execute an ON-Bar command, the maximum number of processes that ON-Bar will spawn concurrently is 5. Configure BAR_MAX_BACKUP to any number up to the maximum number of storage devices or the maximum number of streams available for physical backups and restores. ON-Bar groups the dbspaces by size for efficient use of parallel resources.
If you set `BAR_MAX_BACKUP` to 0, the system creates as many ON-Bar processes as needed. The number of ON-Bar processes is limited only by the number of storage spaces or the amount of memory available to the database server, whichever is less.

The amount of memory available is based on `SHMTOTAL`. ON-Bar performs the following calculation where `N` is the maximum number of ON-Bar processes that are allowed:

\[
N = \frac{SHMTOTAL}{(# \text{ transport buffers} \times \text{ size of transport buffers} / 1024)}
\]

If `SHMTOTAL` is 0, `BAR_MAX_BACKUP` is reset to 1. If `N` is greater than `BAR_MAX_BACKUP`, ON-Bar uses the `BAR_MAX_BACKUP` value. Otherwise, ON-Bar starts `N` backup or restore processes.

### BAR_NB_XPORT_COUNT parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>onconfig.std value</code></td>
<td>20</td>
</tr>
<tr>
<td>if value not present</td>
<td>20</td>
</tr>
<tr>
<td><code>units</code></td>
<td>Buffers</td>
</tr>
<tr>
<td><code>range of values</code></td>
<td>3 to unlimited</td>
</tr>
<tr>
<td><code>takes effect</code></td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The `BAR_NB_XPORT_COUNT` configuration parameter specifies the number of data buffers that each `onbar_d` process can use to exchange data with the database server. The value of this parameter affects ON-Bar performance. For example, if you set `BAR_NB_XPORT_COUNT` to 5 and subsequently issue 5 ON-Bar commands, the resulting 25 ON-Bar processes will use a total of 125 buffers.

To calculate the amount of memory that each `onbar_d` process requires, use the following formula. For information on the page size for your system, see the release notes:

\[
\text{required_memory} = (\text{BAR_NB_XPORT_COUNT} \times \text{BAR_XFER_BUF_SIZE} \\
\times \text{page_size}) + 5 \text{ MB}
\]

### BAR_PERFORMANCE parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>onconfig.std value</code></td>
<td>0</td>
</tr>
<tr>
<td><code>units</code></td>
<td>Statistics levels</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>range of values</td>
<td>0    Does not collect performance statistics</td>
</tr>
<tr>
<td></td>
<td>1    Reports time spent transferring data between the IDS instance and the</td>
</tr>
<tr>
<td></td>
<td>storage manager.</td>
</tr>
<tr>
<td></td>
<td>2    Reports ON-Bar processing performance, in microseconds, in the</td>
</tr>
<tr>
<td></td>
<td>timestamps in the activity log and the error log.</td>
</tr>
<tr>
<td></td>
<td>3    Reports both microsecond timestamps and transfer statistics.</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The BAR_PERFORMANCE configuration parameter specifies the type of performance statistics to report to the ON-Bar activity log for backup and restore operations. For example, if you set BAR_PERFORMANCE to 3, ON-Bar reports the time spent transferring data between the IBM Informix instance and the storage manager, in the activity log. If you set BAR_PERFORMANCE to 0 or do not set it, ON-Bar does not report performance statistics.

- To turn performance monitoring off, set the value to 0. This is the default.
- To display the time spent transferring data between the Informix instance and the storage manager, set the parameter to 1.
- To display timestamps in microseconds, set the parameter to 2.
- To display both timestamps and transfer statistics, set the parameter to 3.

**BAR_PROGRESS_FREQ parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>0</td>
</tr>
<tr>
<td>if value not present</td>
<td>0</td>
</tr>
<tr>
<td>units</td>
<td>Minutes</td>
</tr>
<tr>
<td>range of values</td>
<td>0, then 5 to unlimited</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The BAR_PROGRESS_FREQ configuration parameter specifies, in minutes, the frequency of the progress messages in the ON-Bar activity log for backup and restore operations. For example, if you set BAR_PROGRESS_FREQ to 5, ON-Bar reports the percentage of the object backed up or restored every 5 minutes. If you set BAR_PROGRESS_FREQ to 0 or do not set it, ON-Bar does not write any progress messages to the activity log.

Specify a value 5 minutes or over. Do not set BAR_PROGRESS_FREQ to 1, 2, 3, or 4, ON-Bar automatically resets it to 5 to prevent overflow in the ON-Bar activity log.

If ON-Bar cannot determine the size of the backup or restore object, it reports the number of transfer buffers sent to the database server instead of the percentage of the object backed up or restored.
BAR_RETRY parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>1</td>
</tr>
<tr>
<td>if value not present</td>
<td>1</td>
</tr>
<tr>
<td>range of values</td>
<td>BAR_ABORT(0), BAR_CONT(1), or n</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The BAR_RETRY configuration parameter specifies how many times onbar should retry a data backup, logical-log backup, or restore operation if the first attempt fails.

The setting of the BAR_RETRY parameter determines ON-Bar behavior in the following ways:

- If set to BAR_ABORT, ON-Bar aborts the backup or restore session when an error occurs for a storage space or logical log, returns an error, and quits. If ON-Bar is running in parallel, the already running processes finish but no new ones are started.
- If set to BAR_CONT, ON-Bar aborts the backup or restore attempt for that particular storage space, returns an error, and attempts to back up or restore any storage spaces or logical logs that remain.
- If set to a specific number (n), ON-Bar attempts to back up or restore this storage space or logical log the specified number of times before it gives up and moves on to the next one.

BAR_SIZE_FACTOR parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>0</td>
</tr>
<tr>
<td>range of values</td>
<td>Positive integer</td>
</tr>
<tr>
<td>takes effect</td>
<td>When the database server starts</td>
</tr>
</tbody>
</table>

Use this parameter to augment the estimate for the size of a backup object, prior to the backup.

The estimate is handled prior to the backup and is calculated so that the storage manager can allocate the storage media appropriately. Because the backup is done online, the number of pages to backup can change during the backup. Some storage managers are very strict and if the backup estimate is too low, the backup will result in an error.

The value of BAR_SIZE_FACTOR is taken as percentage of the original backup object size, and then added to the estimate, before communicating it to the storage manager. BAR_SIZE_FACTOR is used only for dbspace backup objects, not for logical log backup objects.

The formula used for calculating the new estimated backup object size is:

\[
new\_estimate = original\_estimate \times (1 + (BAR\_SIZE\_FACTOR / 100))
\]
The value to which this parameter should be set in a specific server environment depends on the activity on the system during backup or archive. Therefore, determining the value needs to be based on the individual experience with that system.

**BAR_XFER_BUF_SIZE parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>31 if the PAGESIZE is 2 kilobytes</td>
</tr>
<tr>
<td></td>
<td>15 if the page size is 4 kilobytes</td>
</tr>
<tr>
<td>units</td>
<td>pages</td>
</tr>
<tr>
<td>range of values</td>
<td>1 to 15 pages when the PAGESIZE is 4 kilobytes</td>
</tr>
<tr>
<td></td>
<td>1 to 31 pages when the PAGESIZE is 2 kilobytes</td>
</tr>
<tr>
<td></td>
<td>The maximum buffer size is 64 kilobytes, so</td>
</tr>
<tr>
<td></td>
<td>BAR_XFER_BUF_SIZE * pagesize &lt;= 64 kilobytes</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The BAR_XFER_BUF_SIZE configuration parameter specifies the size of each transfer buffer. The database server passes the buffer to ON-Bar and the storage manager. To calculate the size of the transfer buffer in a storage space or logical-log backup, use the following formula:

\[
\text{transfer buffers} = \text{BAR_XFER_BUF_SIZE} \times \text{pagesize}
\]

Where \( \text{pagesize} \) is the largest page size used by any of the dbspaces that are backed up.

To calculate how much memory the database server needs, use the following formula:

\[
\text{memory} = (\text{BAR_XFER_BUF_SIZE} \times \text{PAGESIZE}) + 500
\]

The extra 500 bytes is for overhead. For example, if BAR_XFER_BUF_SIZE is 15, the transfer buffer should be 61,940 bytes.

**Restriction:** You cannot change the buffer size between a backup and restore. AC_TAPEBLOCK and AC_LTAPEBLOCK need to be same value as BAR_XFER_BUF_SIZE was at the time of archive.

**ISM_DATA_POOL parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>ISMData</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The ISM_DATA_POOL parameter, when listed in the onconfig file for the database server, specifies the volume pool that you use for backing up storage spaces. The value for this parameter can be any volume pool that IBM Informix Storage
Manager (ISM) recognizes. If this parameter is not present, ISM uses the ISMDATA volume pool. For details, see the *IBM Informix Storage Manager Administrator’s Guide*.

For more information, see “Files that ON-Bar, ISM, and TSM use” on page 9-16.

**ISM_LOG_POOL parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>ISMLogs</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

The ISM_LOG_POOL parameter, when listed in the onconfig file for the database server, specifies the volume pool that you use for backing up logical logs. The value for this parameter can be any volume pool that IBM Informix Storage Manager (ISM) recognizes. If this parameter is not present, ISM uses the ISMLogs volume pool. For details, see the *IBM Informix Storage Manager Administrator’s Guide*.

For more information, see “Files that ON-Bar, ISM, and TSM use” on page 9-16.

**LTAPEDEV parameter**

If you specify a tape device in the LTAPEDEV configuration parameter, ON-Bar ignores the value. ON-Bar also ignores the value of the LTAPEBLK, LTAPESIZE, TAPEDEV, TAPEBLK, and TAPESIZE parameters. Consider leaving these parameter values blank when you use ON-Bar because the storage manager sets these values.

**Important:** Set LTAPEDEV to /dev/null or leave it blank on UNIX or NUL on Windows only if you do not want to back up the logical logs. The ON-Bar activity log will display a warning and return code 152. Because the database server marks the logical logs as backed up when they are no longer current, ON-Bar cannot find logical logs to back up. All transactions in those logs are lost, and you will not be able to restore them.

If you performed a whole-system backup with LTAPEDEV set to null, you must use the onbar -r -w -p command during restore to notify ON-Bar that you do not want to restore the logs. For more information, see “Restoring the data from a whole-system backup when LTAPEDEV is null” on page 6-13.

**RESTARTABLE_RESTORE parameter**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>ON</td>
</tr>
<tr>
<td>if value not present</td>
<td>ON</td>
</tr>
</tbody>
</table>
Use the RESTARTABLE_RESTORE configuration parameter to enable or disable restartable restores.

Turning on RESTARTABLE_RESTORE slows down logical restore performance. For more information, see “Use restartable restore to recover data” on page 6-29. For information on the physical log, see the IBM Informix Administrator’s Guide.

## RESTORE_FILTER parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onconfig.std value</td>
<td>none</td>
</tr>
<tr>
<td>if value not present</td>
<td>none</td>
</tr>
<tr>
<td>range of values</td>
<td>Full path name of command and any options.</td>
</tr>
<tr>
<td>takes effect</td>
<td>When ON-Bar starts</td>
</tr>
</tbody>
</table>

Set the RESTORE_FILTER configuration parameter to specify the path name of a filter program, and any options. For example, specify:

```
RESTORE_FILTER /bin/uncompress
```

In this example:
- The filter will be called from ON-Bar as: /bin/uncompress
- The data passed to the filter was produced by backup filter.

The RESTORE_FILTER configuration parameter can include command line options as well as the filter name. If you include command line options, both the filter name and the options must be surrounded by single quotation marks. For example, specify:

```
RESTORE_FILTER 'my_decrypt –file /var/adm/encryption.pass'
```

In this example, the command in quotation marks is used as the filter.
For security purposes, filters should not have write permission to non-privileged users. Permission on the filters will be same as that of permission on other executable files that are called by the IBM Informix server or utilities.

For more information, see “Transforming with filters during backup and restore” on page 3-9.

Files that ON-Bar, ISM, and TSM use

The following table lists the files that ON-Bar, IBM Informix Storage Manager (ISM), and IBM Tivoli Storage Manager (TSM) use and the directories in which they reside. These names and locations change if you set up the onconfig file to values different than the defaults.

Table 9-2. List of files that ON-Bar, ISM, and TSM use

<table>
<thead>
<tr>
<th>File name</th>
<th>Directory</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac_config.std</td>
<td>$INFORMIXDIR/etc</td>
<td>Template for <code>archecker</code> parameter values.</td>
</tr>
<tr>
<td></td>
<td>%INFORMIXDIR\etc</td>
<td>The <code>ac_config.std</code> file contains the default <code>archecker</code> (archive checking) utility parameters. To use the template, copy it into another file and modify the values.</td>
</tr>
<tr>
<td>ac_msg.log</td>
<td>/tmp</td>
<td>The <code>archecker</code> message log.</td>
</tr>
<tr>
<td></td>
<td>%INFORMIXDIR\etc</td>
<td>When you use <code>archecker</code> with ON-Bar to verify a backup, it writes brief status and error messages to the ON-Bar activity log and writes detailed status and error messages to the <code>archecker</code> message log. Technical Support uses the <code>archecker</code> message log to diagnose problems with backups and restores. Specify the location of the <code>archecker</code> message log with the AC_MSGPATH configuration parameter.</td>
</tr>
<tr>
<td>bar_act.log</td>
<td>/tmp</td>
<td>ON-Bar activity log.</td>
</tr>
<tr>
<td></td>
<td>%INFORMIXDIR%</td>
<td>For more information, see “ON-Bar activity log” on page 3-8.</td>
</tr>
<tr>
<td>bldutil.process_id</td>
<td>/tmp</td>
<td>When the <code>sysutlis</code> database is created, error messages appear in this file.</td>
</tr>
<tr>
<td></td>
<td>\tmp</td>
<td></td>
</tr>
<tr>
<td>dsierror.log</td>
<td>$DSMI_LOG</td>
<td>TSM API error log.</td>
</tr>
<tr>
<td>dsm.opt</td>
<td>$DSMI_CONFIG</td>
<td>TSM client user option file.</td>
</tr>
<tr>
<td>dsm.sys</td>
<td>$DSMI_DIR</td>
<td>TSM client system option file.</td>
</tr>
<tr>
<td>Emergency boot files (ixbar* files)</td>
<td>$INFORMIXDIR/etc</td>
<td>Used in a cold restore. For more information, see “ON-Bar boot files” on page 3-7.</td>
</tr>
<tr>
<td></td>
<td>%INFORMIXDIR\etc</td>
<td></td>
</tr>
<tr>
<td>ISM catalog</td>
<td>$INFORMIXDIR/ism</td>
<td>Records information about backup and restore save sets and storage volumes that ISM uses.</td>
</tr>
<tr>
<td></td>
<td>%ISM\</td>
<td>ISM creates the ISM catalog during the <code>ism_startup</code> initialization. The ISM catalog records are stored in the <code>mm</code>, <code>index</code>, and <code>res</code> files. For more information, see the IBM Informix Storage Manager Administrator’s Guide.</td>
</tr>
<tr>
<td>ISM logs</td>
<td>$INFORMIXDIR/ism/logs</td>
<td>Operator alert messages, backend status, additional ISM information. The ISM log names are <code>daemon.log</code>, messages, and summary.</td>
</tr>
<tr>
<td></td>
<td>%ISM\logs</td>
<td></td>
</tr>
<tr>
<td>File name</td>
<td>Directory</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ISMversion</td>
<td>$INFORMIXDIR/ism</td>
<td>Identifies the ISM version. Do not edit this file.</td>
</tr>
<tr>
<td></td>
<td>DIR\bin</td>
<td></td>
</tr>
<tr>
<td>oncfg_servername.servernum</td>
<td>$INFORMIXDIR/etc</td>
<td>Configuration information for ON-Bar restores.</td>
</tr>
<tr>
<td></td>
<td>%INFORMIXDIR\etc</td>
<td>The database server creates the oncfg_servername.servernum file when you initialize disk space. The database server updates the file every time that you add or delete a dbspace, a logical-log file, or a chunk. The database server uses the oncfg* file when it salvages logical-log files during a cold restore. The database server uses the oncfg* files, so do not delete them.</td>
</tr>
<tr>
<td>save, savegrp, savefs</td>
<td>$INFORMIXDIR/bin</td>
<td>ISM commands use these executable files. Do not edit them.</td>
</tr>
<tr>
<td></td>
<td>%ISM\bin</td>
<td></td>
</tr>
<tr>
<td>sm_versions</td>
<td>$INFORMIXDIR/etc</td>
<td>Identifies storage manager in use.</td>
</tr>
<tr>
<td></td>
<td>%INFORMIXDIR\etc</td>
<td>To update the storage-manager version, edit the sm_versions file directly or run the ism_startup script. For more information, see &quot;Update the sm_versions file&quot; on page 4-4.</td>
</tr>
<tr>
<td>xbsa.messages</td>
<td>$INFORMIXDIR/ism/applogs</td>
<td>XBSA library call information.</td>
</tr>
<tr>
<td></td>
<td>%ISM\applogs</td>
<td>ON-Bar and ISM use XBSA to communicate with each other. Technical Support uses the xbsa.messages log to fix problems with ON-Bar and ISM communications.</td>
</tr>
</tbody>
</table>
Chapter 10. ON-Bar catalog tables

These topics describe the ON-Bar tables that are stored in the sysutils database. ON-Bar uses these tables for tracking backups and performing restores. You can query these tables for backup and restore data to evaluate performance or identify object instances for a restore.

The bar_action table

The bar_action table lists all backup and restore actions that are attempted against an object, except during certain types of cold restores. Use the information in this table to track backup and restore history.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>act_aid</td>
<td>SERIAL</td>
<td>Action identifier. A unique number within the table. Can be used with act_oid column to join with the bar_instance table.</td>
</tr>
<tr>
<td>act_oid</td>
<td>INTEGER</td>
<td>Object identifier. Identifies the backup object against which a backup or restore attempt is made. Can be used with act_aid to join with bar_instance. The act_oid column of the bar_action table equals the obj_oid column of the bar_object table.</td>
</tr>
<tr>
<td>act_type</td>
<td>SMALLINT</td>
<td>Identifies the attempted action: 1 for backup, 2 for restore, 3 for a foreign or imported restore, 4 for a fake backup, 5 for a whole-system backup, 6 for a whole-system restore, 7 for expired or deleted objects, 8 for an external restore.</td>
</tr>
<tr>
<td>act_status</td>
<td>INTEGER</td>
<td>Identifies the result of the action: 0 if successful, otherwise an ON-Bar-specific error code. For more information, see Chapter 11, “ON-Bar messages and return codes,” on page 11-1.</td>
</tr>
<tr>
<td>act_start</td>
<td>DATETIME YEAR TO SECONDS</td>
<td>The date and time when the action began.</td>
</tr>
<tr>
<td>act_end</td>
<td>DATETIME YEAR TO SECONDS</td>
<td>The date and time when the action finished.</td>
</tr>
</tbody>
</table>

The bar_instance table

ON-Bar writes a record to the bar_instance table for each successful backup. The table describes each object that is backed up. ON-Bar might later use the information for a restore operation. For example, if you specify a level-2 backup, ON-Bar uses this table to ensure that a level-1 backup was done previously.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ins_aid</td>
<td>INTEGER</td>
<td>Action identifier. Identifies the successful action that created this instance of the backup object. Combined with ins_oid, can be used to join with the bar_action table.</td>
</tr>
<tr>
<td>Column name</td>
<td>Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ins_oid</td>
<td>INTEGER</td>
<td>Object identifier. Identifies the affected object. Can be used to join with the bar_object table. Combined with ins_aid, can be used to join with the bar_action table.</td>
</tr>
<tr>
<td>ins_prevtime</td>
<td>INTEGER</td>
<td>Timestamp (real clock time). This value specifies the timestamp of the previous object. The value represents the number of seconds after midnight, January 1, 1970 Greenwich mean time.</td>
</tr>
<tr>
<td>ins_time</td>
<td>INTEGER</td>
<td>Time stamp (real clock time). The database server uses this value when it creates the next-level backup. Value represents the number of seconds since midnight, January 1, 1970, Greenwich mean time. The ins_time value is 0.</td>
</tr>
<tr>
<td>rsam_time</td>
<td>INTEGER</td>
<td>The backup checkpoint time stamp. Not a clock time. The database server uses this value when it creates the next level backup.</td>
</tr>
<tr>
<td>ins_level</td>
<td>SMALLINT</td>
<td>Level of the backup action: 0 for a complete backup, 1 for a backup of any changes to this object since its last level-0 backup, 2 for a backup of any changes since the last level-1 backup. This value is always 0 for logical-log backups.</td>
</tr>
<tr>
<td>ins_copyid_hi</td>
<td>INTEGER</td>
<td>The high bits of the instance copy identifier. Combined with ins_copyid_lo, it is a unique value that the storage manager assigns to link the ON-Bar object identifier with the storage-manager object identifier.</td>
</tr>
<tr>
<td>ins_copyid_lo</td>
<td>INTEGER</td>
<td>The low bits of the instance copy identifier. Combined with ins_copyid_hi, it is a unique value that the storage manager assigns to link the ON-Bar object identifier with the storage-manager object identifier.</td>
</tr>
<tr>
<td>ins_req_aid</td>
<td>INTEGER</td>
<td>Stores the required action ID for a backup object. Used in a restore to determine which level-0 backup goes with the level-1 backup, and which level-1 backup goes with the level-2 backup. For a level-0 backup, the value of ins_req_aid is the same as ins_aid in this table. For example, if this backup is level-1, ins_req_aid holds the action ID of the corresponding level-0 backup of this object.</td>
</tr>
<tr>
<td>ins_first_log</td>
<td>INTEGER</td>
<td>In a standard backup, identifies the first logical log required to restore from this backup.</td>
</tr>
<tr>
<td>ins_verify</td>
<td>INTEGER</td>
<td>Value is 1 if the backup is verified. Value is 0 if the backup is not verified.</td>
</tr>
<tr>
<td>ins_verify_date</td>
<td>DATETIME YEAR TO SECOND</td>
<td>The current date is inserted when a backup is verified. If this backup has not been not verified, a dash represents each date and time.</td>
</tr>
</tbody>
</table>
The bar_ixbar table

The bar_ixbar table is maintained and used by the onsmsync utility only. It keeps a history of all unexpired successful backups in all timelines. The schema of the bar_ixbar table is identical to the schema of the bar_syncdeltab table, with the exception of its primary key.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ixb_sm_id</td>
<td>INTEGER</td>
<td>Storage-manager instance ID. Created from BAR_SM in $ONCONFIG or %ONCONFIG%.</td>
</tr>
<tr>
<td>ixb_copyid_hi</td>
<td>INTEGER</td>
<td>The high bits of the instance copy identifier. Combined with ixb_copyid_lo, it is a unique value that the storage manager assigns to link the ON-Bar object identifier with the storage-manager object identifier.</td>
</tr>
<tr>
<td>ixb_copyid_lo</td>
<td>INTEGER</td>
<td>The low bits of the instance copy identifier. Combined with ixb_copyid_hi, it is a unique value that the storage manager assigns to link the ON-Bar object identifier with the storage-manager object identifier.</td>
</tr>
<tr>
<td>ixb_aid</td>
<td>INTEGER</td>
<td>Action identifier. Identifies the successful action that created this instance of the backup object.</td>
</tr>
<tr>
<td>ixb_old</td>
<td>INTEGER</td>
<td>Object identifier. Identifies the affected object.</td>
</tr>
<tr>
<td>ixb_time</td>
<td>INTEGER</td>
<td>Time stamp (real clock time). The database server uses this value when it creates the next-level backup. Value represents the number of seconds since midnight, January 1, 1970, Greenwich mean time.</td>
</tr>
<tr>
<td>ixb_prevtime</td>
<td>INTEGER</td>
<td>Time stamp (real clock time). This value specifies the time stamp of the previous object. Value represents the number of seconds since midnight, January 1, 1970 Greenwich mean time.</td>
</tr>
<tr>
<td>ixb_rsam_time</td>
<td>INTEGER</td>
<td>The backup checkpoint time stamp. Not a clock time. The database server uses this value when it creates the next level backup.</td>
</tr>
<tr>
<td>ixb_act_start</td>
<td>datetime</td>
<td>The date and time when the action began.</td>
</tr>
<tr>
<td></td>
<td>year to second</td>
<td></td>
</tr>
<tr>
<td>ixb_act_end</td>
<td>datetime</td>
<td>The date and time when the action finished.</td>
</tr>
<tr>
<td></td>
<td>year to second</td>
<td></td>
</tr>
<tr>
<td>ixb_level</td>
<td>SMALLINT</td>
<td>Level of the backup action: 0 for a complete backup, 1 for a backup of any changes to this object since its last level-0 backup, 2 for a backup of any changes since the last level-1 backup. This value is always 0 for logical-log backups.</td>
</tr>
<tr>
<td>ixb_req_aid</td>
<td>INTEGER</td>
<td>Stores the required action ID for a backup object. Used in a restore to determine which level-0 backup Goes with the level-1 backup, and which level-1 backup goes with the level-2 backup. For a level-0 backup, the value of ixb_req_aid is the same as ixb_aid in this table. For example, if this backup is level-1, ixb_req_aid holds the action ID of the corresponding level-0 backup of this object.</td>
</tr>
<tr>
<td>ixb_first_log</td>
<td>INTEGER</td>
<td>In a standard backup, identifies the first logical log. Required to restore from this backup.</td>
</tr>
<tr>
<td>Column name</td>
<td>Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ixb_chpt_log</td>
<td>INTEGER</td>
<td>The ID of the log that contains the rsam_time checkpoint. Used during backup to verify that logs needed for restore are backed up.</td>
</tr>
<tr>
<td>ixb_last_log</td>
<td>INTEGER</td>
<td>Log ID of the last log needed during logical restore for this storage space to restore it to the time of the backup.</td>
</tr>
<tr>
<td>ixb_lbuflags</td>
<td>INTEGER</td>
<td>Flags describing log backup.</td>
</tr>
<tr>
<td>ixb_verify</td>
<td>INTEGER</td>
<td>Value is 1 if the backup is verified. Value is 0 if the backup is not verified.</td>
</tr>
<tr>
<td>ixb_verify_date</td>
<td>datetime year to second</td>
<td>The current date is inserted when a backup is verified. If this backup has not been verified, a dash represents each date and time.</td>
</tr>
<tr>
<td>ixb_sm_name</td>
<td>VARCHAR(128)</td>
<td>Storage-manager instance name. Created from the BAR_SM_NAME parameter in the onconfig file.</td>
</tr>
<tr>
<td>ixb_srv_name</td>
<td>VARCHAR(128)</td>
<td>The database server name. Used to ensure that objects are restored to the correct database server. Used when multiple database servers are on the node to ensure that objects are restored in the database server instance to which the object belongs. The database server name can be up to 128 characters.</td>
</tr>
<tr>
<td>ixb_obj_name</td>
<td>VARCHAR(128)</td>
<td>The user name for the object. The name can be up to 128 characters.</td>
</tr>
<tr>
<td>ixb_obj_type</td>
<td>CHAR(2)</td>
<td>Backup object type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD    critical dbspace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L     logical log</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND    noncritical dbspace or sbspace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R     rootdbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B     blobspace</td>
</tr>
</tbody>
</table>

**The bar_object table**

The bar_object table describes each backup object. This table is a list of all storage spaces and logical logs from each database server for which at least one backup attempt was made.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj_srv_name</td>
<td>VARCHAR(128,0)</td>
<td>The database server name. Used to ensure that objects are restored to the correct database server. Used when multiple database servers are on the node to ensure that objects are restored in the database server instance to which the object belongs. The database server name can be up to 128 characters.</td>
</tr>
<tr>
<td></td>
<td>SERIAL</td>
<td>The object identifier. A unique number within the table. Can be used to join with the bar_action and bar_instance tables.</td>
</tr>
<tr>
<td>Column name</td>
<td>Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>obj_name</td>
<td>VARCHAR(128,0)</td>
<td>The user name for the object. The name can be up to 128 characters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obj_type</td>
<td>CHAR(2)</td>
<td>Backup object type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CD  critical dbspace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L   logical log</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND  noncritical dbspace or sbspace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R   rootdbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B   blobspace</td>
</tr>
</tbody>
</table>

### The bar_server table

The bar_server table lists the database servers in an installation. This table is used to ensure that backup objects are returned to their proper places during a restore.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>srv_name</td>
<td>VARCHAR(128,0)</td>
<td>DBSERVERNAME value specified in the onconfig file. Database server name can be up to 128 characters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srv_node</td>
<td>CHAR(256)</td>
<td>Host name of the computer where the database server resides. The host name can be up to 256 characters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>srv_synctime</td>
<td>INTEGER</td>
<td>The time onmsync was run.</td>
</tr>
</tbody>
</table>

### The bar_syncdeltab table

The bar_syncdeltab table is maintained and used by the onmsync utility only. It is normally empty except when onmsync is running. The schema of the bar_syncdeltab table is identical to the schema of the bar_ixbar table, with the exception of its primary key.

### ON-Bar catalog map

The following figure maps the ON-Bar tables on IBM Informix. The gray lines show the relations between tables. The arrows show that the ins_req_aid value must be a valid ins_aid value.
Figure 10-1. ON-Bar catalog map on Informix
Chapter 11. ON-Bar messages and return codes

The first half of these topics describe the ON-Bar activity log file and the ON-Bar usage messages.

The second half describes the ON-Bar return codes.

For information on ON-Bar informational, progress, warning, and error messages, use the finder or Error Messages utility or view IBM Informix Error Messages at http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp.

About ON-Bar messages

This section explains how to read and interpret messages in the ON-Bar activity log file. For more information, see "ON-Bar activity log" on page 3-8.

Message format

A message in the ON-Bar activity log file has the following format:

timestamp process_id parent_process_id message

The following table describes each field in the message. No error message numbers appear in the ON-Bar activity log.

Table 11-1. ON-Bar message format

<table>
<thead>
<tr>
<th>Message field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>Date and time when ON-Bar writes the message.</td>
</tr>
<tr>
<td>process_id</td>
<td>The number that the operating system uses to identify this instance of ON-Bar.</td>
</tr>
<tr>
<td>parent_process_id</td>
<td>The number that the operating system uses to identify the process that executed this instance of ON-Bar.</td>
</tr>
<tr>
<td>message</td>
<td>The ON-Bar message text.</td>
</tr>
</tbody>
</table>

The following example illustrates a typical entry in the ON-Bar activity log:

1999-08-18 10:09:59 773 772 Completed logical restore.

Important: If you receive an XBSA error message, consult the storage-manager logs for more details.

Message numbers

The ON-Bar message numbers range from -43000 to -43421. The following table lists the ON-Bar message groups. Because message numbers do not display in the activity log, the best way to find information about ON-Bar messages is to search for the message text in the error messages file, which is located in the subdirectory for your locale under the $INFORMIXDIR/msg directory. You can search for error messages in English in IBM Informix Error Messages at http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp.
ON-Bar usage messages

This section lists usage messages only. All informational, progress, warning, and error messages appear in finderr and IBM Informix Error Messages at http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp.

Important: You must specify the -b, -v, -r or -m option first in the command so that ON-Bar can determine whether it is performing a backup, verification, restore, or message display.

-43000

ON-Bar backup and verification usage.

For IBM Informix Dynamic Server

-  -b [-L level] [-w | -f filename | spaces] [-0]
-  -b [-l] [-c | -C | -s] [-0]
-  -v [-p] [-t time] [-f filename | spaces]

-  -b back up
-  -c back up current logical log
-  -C continuous logical-log backup
-  -f pathname of file containing list of storage spaces
-  -F fake backup
-  -l back up full logical logs (no spaces)
-  -L back up level: 0, 1, or 2; defaults to 0
-  -0 override internal error checks - enforce policy strictly
-  -w whole-system backup
-  -s salvage logs
-  -v verify consistency of most recent backups

spaces list of storage spaces

The backup or verification command was entered incorrectly. Revise the command and try again. The -b or -v parameter must come first in the command.

-43001

ON-Bar restore usage.
For IBM Informix Dynamic Server

-`r` [-e] [-O] [-f filename | spaces]
-`r` [-e] [-t time | -n log] [-O]
-`r` -p [-e] [-t time] [-O] [-f filename | spaces]
-`r` -l [-t time | -n log]
-`r` -w [-e] [-p] [-t time] [-n log] [-O]
-`RESTART`
-`r` { -rename -p old path -o old offset -n new path -o new offset ...}
    [-w] [-p] [-t time] [-n log] [-f filename | spaces]

The restore command was entered incorrectly. Revise the command and try again. You must specify the `-r` parameter first.

-43006

onsmsync usage.

onsmsync [-g gen | -t time | -i interval] [-O]
    [-f filename | spaces]

onsmsync -b

-`b` just regenerate the emergency boot file
-`f` path name of file containing list of storage spaces
-`g` number of generations/versions of level-0 backup to retain
-`i` time interval (age) before which objects should be expired
-`t` datetime before which objects should be expired
-`O` override internal error checks - enforce policy strictly
-`spaces` list of storage spaces to check for expiration

The onsmsync command was entered incorrectly. Revise the command and try again.

-43007

ON-Bar messaging usage.

For IBM Informix Dynamic Server

-`m` [lines] [-r[seconds]]

-`m` Displays last lines of onbar's activity log file (default: 20 lines)
-`r` Repeat display every seconds seconds (default: 5 seconds)

-43357

Logical log display

For IBM Informix Dynamic Server

{ -P} { -n log unique identifier | starting log unique identifier - ending log unique identifier} [-l] [-q] [-b] [-u username] [-t TBLspace number]
    [-x transaction number]

-`P` Print backed up logical-log(s) information
-`n` Display the specified log identifier(s)
-`l` Display the maximum information about each log record
-`q` Do not display program header
-`b` Display information about logged BLOB pages
-`u` Display the specified user(s)
-`t` Display the specified TBLspace(s)
-`x` Display the specified transaction(s)
### ON-Bar return codes

The following table shows the ON-Bar return codes for all IBM Informix database servers. These return codes are accompanied by messages in the ON-Bar activity log. For details about an ON-Bar or storage-manager error, review the activity log before you call Technical Support.

**Table 11-2. Common ON-Bar return codes**

<table>
<thead>
<tr>
<th>Decimal value</th>
<th>ON-Bar return code description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 through 34</td>
<td>These return codes are produced by XBSA. For more information, consult your storage-manager documentation and log files.</td>
</tr>
<tr>
<td>100</td>
<td>ON-Bar cannot find something in <code>sysutils</code>, the emergency boot file, or storage-manager catalogs that it needs for processing. Check the ON-Bar activity log for messages that say what could not be found and try to resolve that problem. If the problem recurs, contact Technical Support.</td>
</tr>
<tr>
<td>104</td>
<td>Adstar Distributed Storage Manager (ADSM) is in generate-password mode. ON-Bar does not support ADSM running in generate-password mode. For information on changing the ADSM security configuration, refer to your ADSM manual.</td>
</tr>
<tr>
<td>115</td>
<td>A critical dbspace is not in the set of dbspaces being cold-restored.</td>
</tr>
<tr>
<td>116</td>
<td>The <code>onmsync</code> utility is already running.</td>
</tr>
<tr>
<td>117</td>
<td>The information contained in the <code>sysutils</code> database and the emergency boot file are inconsistent.</td>
</tr>
<tr>
<td>118</td>
<td>An error trying to commit a backup object to the storage manager.</td>
</tr>
<tr>
<td>120</td>
<td>The transport buffer size has changed since this object was last backed up. This object cannot be restored. Set the transport-buffer size to its original value and retry the restore.</td>
</tr>
<tr>
<td>121</td>
<td>ON-Bar was unable to determine the list of dbspaces.</td>
</tr>
<tr>
<td>122</td>
<td>Deadlock detected. The ON-Bar command is contending with another process. Retry the ON-Bar command.</td>
</tr>
</tbody>
</table>
| 123           | The root dbspace was not in the cold restore. You cannot perform a cold restore without restoring the root dbspace. To resolve the problem, try one of the following procedures:  
• Bring the database server to quiescent or online mode and restore just the storage spaces that need to be restored.  
• If the database server is offline, issue the `onbar -r` command to restore all the storage spaces.  
• Make sure that the root dbspace and other critical dbspaces are listed on the command line or in the `-f filename`. |
| 124           | The buffer had an incomplete page during the backup. For assistance, contact Technical Support. |
| 126           | Error processing the emergency boot file. Check the ON-Bar activity log for descriptions of the problem and the emergency boot file for corruption such as non-ASCII characters or lines with varying numbers of columns. If the source of the problem is not obvious, contact Technical Support. |
| 127           | Could not write to the emergency boot file. Often, an operating-system error message accompanies this problem. Check the permissions on the following files and directories:  
• `$INFORMIXDIR/etc` on UNIX or `%INFORMIXDIR%\etc` on Windows  
• The emergency boot file.
**Table 11-2. Common ON-Bar return codes (continued)**

<table>
<thead>
<tr>
<th>Decimal value</th>
<th>ON-Bar return code description</th>
</tr>
</thead>
</table>
| 128           | Data is missing in the object description.  
For assistance, contact Technical Support. |
| 129           | ON-Bar received a different object for restore than it had expected. (The backup object did not match.) The requested backup object might have been deleted or expired from the storage manager.  
Run `onmsync` to synchronize the `sysutils` database, emergency boot file, and storage-manager catalogs. For assistance, contact Technical Support. |
| 130           | Database server is not responding.  
The database server probably failed during the backup or restore. Run the `onstat` command to check the database server status and then:  
• If the operation was a cold restore, restart it.  
• If the operation was a backup or warm restore, restart the database server and retry the backup or warm restore. |
| 131           | A failure occurred in the interface between ON-Bar and the database server.  
For assistance, contact Technical Support. |
| 132           | Function is not in the XBSA shared library.  
Verify that you are using the correct XBSA for the storage manager. For information, consult your storage-manager manual. |
| 133           | Failed to load the XBSA library functions.  
Verify that you are using the correct XBSA for the storage manager. Ensure that the `BAR_BSALIB_PATH` value in the `onconfig` file points to the correct location of the XBSA shared library. For information, consult your storage-manager manual. |
| 134           | User wants to restore a logical-log file that is too early.  
You probably tried a point-in-log restore (onbar -r -l -n) after performing a separate physical restore. The specified logical log is too old to match the backups used in the physical restore. Perform either of the following steps:  
• Rerun the physical restore from an older set of physical backups.  
• Specify a later logical log in the -n option when you rerun the point-in-log restore. To find the earliest logical log that you can use, look at the emergency boot file. For assistance, contact Technical Support. |
| 136           | ON-Bar cannot warm restore the critical dbspaces.  
Perform either of the following steps:  
• Reissue the warm-restore command without listing any critical dbspaces.  
• Shut down the database server and perform a cold restore. |
| 137           | The MAX_DBSPACE_COUNT was exceeded.  
For assistance, contact Technical Support. |
| 138           | An XBSA error occurred.  
Verify that you are using the correct XBSA for the storage manager. Also check the `bar_act.log` for XBSA error messages. For information, consult your storage-manager manual. |
<table>
<thead>
<tr>
<th>Decimal value</th>
<th>ON-Bar return code description</th>
</tr>
</thead>
</table>
| 139           | Either the XBSA version is missing from the `sm_versions` file or the incorrect XBSA version is in the `sm_versions` file.  
               | Insert the correct XBSA version into the `sm_versions` file. For more information, consult your storage-manager manual. |
| 140           | A fake backup failed.  
               | Retry the fake backup using the `onbar -b -F` command. Only IBM Informix supports fake backups.  
               | If the fake backup fails again, contact Technical Support. |
| 141           | ON-Bar received an operating-system signal. Most likely, the user entered the `Ctrl-C` command to stop an ON-Bar process.  
               | Fix the cause of the interruption and then retry the ON-Bar command. |
| 142           | ON-Bar was unable to open a file.  
               | Verify that the named file exists and that the permissions are correct. Check the ON-Bar activity log for an operating-system error message. |
| 143           | ON-Bar was unable to create a child process.  
               | If `BAR_MAX_BACKUP` is not 0, ON-Bar could not create child processes to perform the parallel backup or restore. The operating system probably ran out of resources. Either not enough memory is available to start a new process or no empty slot exists in the process table.  
               | Check the operating-system logs, the ON-Bar activity log, or the console. |
| 144           | The log backup was aborted because one or more blobspaces were down.  
               | Attempt to restore the blobspace. If the restore fails, retry the log backup using the `onbar -l -O` command. Executing this command might make the blobspace unrestorable. |
| 145           | ON-Bar was unable to acquire more memory space.  
               | Wait for system resources to free up and retry the ON-Bar command. |
| 146           | ON-Bar was unable to connect to the database server.  
               | The network or the database server might be down. For assistance, contact Technical Support. |
| 147           | ON-Bar was unable to discover any storage spaces or logical logs to back up or restore.  
               | For example, if you specify a point-in-time restore but use a `datetime` value from before the first standard backup, ON-Bar cannot build a list of storage spaces to restore. This return code also displays if you specify a whole-system restore without having performed a whole-system backup.  
               | Verify that the database server and the storage spaces are in the correct state for the backup or restore request. Contact Technical Support. |
| 148           | An internal SQL error occurred.  
               | Provide Technical Support with the information from the ON-Bar activity log. |
| 149           | Either you entered the wrong ON-Bar syntax on the command line or entered an invalid or incorrect `datetime` value for your GLS environment.  
               | Check the command that you tried against the usage message in the ON-Bar activity log. If that does not help, then retry the command with quotes around the `datetime` value. If your database locale is not English, use the `GL_DATE` or `GL_DATETIME` environment variables to set the date and time format. |
Table 11-2. Common ON-Bar return codes (continued)

<table>
<thead>
<tr>
<th>Decimal value</th>
<th>ON-Bar return code description</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Error collecting data from the onconfig file. Check the permissions, format, and values in the onconfig file. Check that the ONCONFIG environment variable is set correctly.</td>
</tr>
<tr>
<td>151</td>
<td>The database server is in an incorrect state for this backup or restore request, or an error occurred while determining the database server state. Either you attempted an operation that is not compatible with the database server mode or ON-Bar is unable to determine the database server state. For example, you cannot do a physical backup with the database server in recovery mode. Check the error message in the ON-Bar activity log. If an ASF error occurred, the following message displays in the ON-Bar activity log: Fatal error initializing ASF; asfcode = code To determine the cause of the ASF error, refer to the ASF error code in this message and repeat the backup or restore command. If an ASF error did not occur, change the database server state and repeat the backup or restore command.</td>
</tr>
<tr>
<td>152</td>
<td>ON-Bar cannot back up the logical logs. The logical logs are not backed up for either of the following reasons: • If another log backup is currently running. • If you perform a logical-log backup with the LTAPEDEV parameter set to /dev/nul1 (UNIX) or NUL (Windows). You receive this return code when no log backups can be done. To enable log backups, change the LTAPEDEV parameter to a valid value.</td>
</tr>
<tr>
<td>153</td>
<td>ON-Bar cannot set the process group id. If BAR_MAX_BACKUP is set to any value other than 1 and ON-Bar encounters an error setting the process group id, this value is returned. This message is a warning of a possible operating-system problem.</td>
</tr>
<tr>
<td>154</td>
<td>The ON-Bar user does not have the correct permissions. You must be user root or informix or a member of the bargroup group on UNIX or a member of the Informix-Admin group on Windows to execute ON-Bar commands.</td>
</tr>
<tr>
<td>155</td>
<td>The INFORMIXSERVER environment variable is not set. Set the INFORMIXSERVER environment variable to the correct database server name.</td>
</tr>
<tr>
<td>156</td>
<td>Backup or restore was not performed because the LTAPEDEV parameter value is not valid. If LTAPEDEV is not set or /dev/nul1 on UNIX, or if it is NUL on Windows, the logical logs are not backed up, and ON-Bar returns warning 152.</td>
</tr>
<tr>
<td>157</td>
<td>Error attempting to set the INFORMIXSHMBASE environment variable to -1. ON-Bar could not set INFORMIXSHMBASE to -1. For assistance, contact either the system administrator or Technical Support.</td>
</tr>
<tr>
<td>158</td>
<td>An internal ON-Bar error occurred. Contact Technical Support.</td>
</tr>
<tr>
<td>159</td>
<td>An unexpected error occurred. Contact Technical Support.</td>
</tr>
<tr>
<td>Decimal value</td>
<td>ON-Bar return code description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>160</td>
<td>External restore failed.</td>
</tr>
<tr>
<td></td>
<td>To determine what went wrong with the external restore, look at the bar_act.log and the online.log files. Ensure that you already performed the manual part of the external restore before you retry the onbar -e command to complete the external restore. If that does not work, try the external restore from a different external backup.</td>
</tr>
<tr>
<td>161</td>
<td>Restarted restore failed.</td>
</tr>
<tr>
<td></td>
<td>Verify that RESTARTABLE_RESTORE is set to ON and try the original restore again. For more information, check the ON-Bar activity log and database server message logs.</td>
</tr>
<tr>
<td>162</td>
<td>The ON-Bar log file cannot be a symbolic link.</td>
</tr>
<tr>
<td></td>
<td>Remove the symbolic link or change the onconfig file so that the ON-Bar parameters BAR_DEBUG_LOG or BAR_ACT_LOG point to non-symbolic linked files.</td>
</tr>
<tr>
<td>163</td>
<td>The ON-Bar log file must be owned by user informix.</td>
</tr>
<tr>
<td></td>
<td>Change the ownership of the log file to be owned by user informix or change the BAR_ACT_LOG or BAR_DEBUG_LOG values in the onconfig file to point to different log files.</td>
</tr>
<tr>
<td>164</td>
<td>Unable to open file.</td>
</tr>
<tr>
<td></td>
<td>The file or its directory permissions prevent it from being created or opened. Verify the permissions on the file and its directory.</td>
</tr>
<tr>
<td>177</td>
<td>An online dbspace was restored. This return code notifies the user that the -O option overrode the internal checks in ON-Bar.</td>
</tr>
<tr>
<td></td>
<td>You do not need to take any action.</td>
</tr>
<tr>
<td>178</td>
<td>The logical log was backed up while one or more blobspaces were down. This return code notifies the user that the -O option overrode the internal checks in ON-Bar.</td>
</tr>
<tr>
<td></td>
<td>Examine the data in the blobspaces to determine which simple large objects you need to recreate. These blobspaces might not be restorable. For assistance, contact Technical Support.</td>
</tr>
<tr>
<td>179</td>
<td>ON-Bar created the chunk needed to restore the dbspace. This return code notifies the user that the -O option overrode the internal checks in ON-Bar.</td>
</tr>
<tr>
<td></td>
<td>You do not need to take any action.</td>
</tr>
<tr>
<td>180</td>
<td>ON-Bar could not create the chunk needed to restore the dbspace.</td>
</tr>
<tr>
<td></td>
<td>Create the chunk file manually. Retry the restore without the -O option.</td>
</tr>
<tr>
<td>181</td>
<td>ON-Bar expired an object that was needed for a backup or restore.</td>
</tr>
<tr>
<td></td>
<td>The onsmssync utility expired an object that might be needed for a restore. You probably specified onsmssync with the -O option. If you used the -O option by mistake, contact Technical Support to recover the object from the storage manager.</td>
</tr>
<tr>
<td>183</td>
<td>ON-Bar could not obtain the logical-log unique ID from the storage manager.</td>
</tr>
<tr>
<td></td>
<td>The backup of the specified logical log is missing. Query your storage manager to determine if the backup of the specified logical-log file exists and if it is restorable.</td>
</tr>
<tr>
<td>247</td>
<td>On UNIX, look in /tmp/bar_act.log and the file that the BAR_ACT_LOG parameter points to for clues. (The onbar-merger writes to /tmp/bar_act.log until it has enough information to read the onconfig file.) Resolve the problems that the bar_act.log describes and retry the cold restore. If the cold restore still fails, contact Technical Support.</td>
</tr>
<tr>
<td>252</td>
<td>For assistance, contact Technical Support.</td>
</tr>
</tbody>
</table>
Part 3. Backup and restore system for ontape
Chapter 12. Configure ontape

These topics explain how to set the configuration parameters that the ontape utility uses for backups of storage spaces and logical logs. For a description of how ontape differs from ON-Bar, see “Comparing ON-Bar and ontape” on page 1-7.

This chapter describes the following tasks:
• Setting the configuration parameters for ontape
• Checking configuration parameters for ontape
• Changing configuration parameters for ontape

Chapter 13, “Back up with ontape,” on page 13-1 describes how to use the ontape utility to back up storage spaces and logical-log files.

You can also run ontape commands from SQL statements. For more information, see IBM Informix Administrator’s Guide and IBM Informix Guide to SQL: Syntax.

Configuration parameters for ontape

The ontape utility uses eight configuration parameters in the onconfig file.

The onconfig file is located in the $INFORMIXDIR/etc directory. You specify that file in the ONCONFIG environment variable. For a description of the ONCONFIG environment variable and instructions on how to set it, see the IBM Informix Guide to SQL: Reference.

Two of the configuration parameters are used to specify filter programs for transforming data during backup and restore; the other six are used to create storage-space and logical-log backups.

Data transformation filter parameters for ontape

The filter parameters specify the names of external programs that you can use to transform data prior to backup and following restore.

**BACKUP_FILTER**
Specifies the location and name of an external filter program used in data transformation. This filter transforms data prior to backing it up, such as compressing it. The transformed data is then backed up and stored as a single file. The filter path points to the $INFORMIXDIR/bin directory by default, or an absolute path of the program.

**RESTORE_FILTER**
Specifies the location and name of an external filter program used in data transformation. This filter transforms data back to its original state prior to the backup, such as decompressing it, before returning the data to the server. The filter path points to the $INFORMIXDIR/bin directory by default, or an absolute path of the program.

**Prerequisite:** The data must have previously been transformed with the BACKUP_FILTER parameter.
For more information and examples about using these filters, see “Transforming with filters during backup and restore” on page 3-9. See “BACKUP FILTER parameter” on page 9-5 and “RESTORE_FILTER parameter” on page 9-15 for syntax and usage information, which is the same for ON-Bar and ontape.

Tape and tape device parameters for ontape

The first set of configuration parameters specifies the characteristics of the tape device and tapes for storage-space backups; the second set specifies the characteristics of the tape device and tapes for logical-log backups.

The following list shows backup tape devices and their associated tape parameters.

**TAPEDEV**

The absolute path name of the tape device or directory file system that is used for storage-space backups. Specify the destination where ontape will write storage space data during an archive and the source from which ontape will read data during a restore.

To configure ontape to use stdio, set TAPEDEV to STDIO.

When backing up to or restoring from a cloud environment, use the following syntax for the TAPEDEV configuration parameter:

```
TAPEDEV 'local_path, keep=option, cloud=cloud_vendor, url=url'
```

- **local_path** is the complete path name of the directory where storage spaces backup objects are stored temporarily.
- **option** can be set to yes or no. If keep is set to yes, the ontape utility retains the backup objects in the local directory. If keep is set to no, the backup objects are deleted after they are transferred to or from the cloud storage location.
- **cloud_vendor** is the name of the cloud storage vendor.
- **url** is the cloud storage location where the storage space backup data is stored persistently.

**TAPEBLK**

The block size of the tapes used for storage-space backups, in kilobytes.

**TAPESIZE**

The size of the tapes used for storage-space backups, in kilobytes. The value can be 0 to 2,097,151.

The following list shows the logical-log tape devices and their associated tape parameters.

**LTAPEDEV**

The logical-log tape device or a directory of a file system.

When backing up to or restoring from a cloud environment, use the following syntax for the LTAPEDEV configuration parameter:

```
LTAPEDEV 'local_path, keep=option, cloud=cloud_vendor, url=url'
```

- **local_path** is the complete path name of the directory where log backup objects are stored temporarily.
- **option** can be set to yes or no. If keep is set to yes, the ontape utility retains the backup objects in the local directory. If keep is set to no, the backup objects are deleted after they are transferred to or from the cloud storage location.
- **cloud_vendor** is the name of the cloud storage vendor.
Set the tape-device parameters

Specify values for TAPEDEV and LTAPEDEV in the following ways:

- Use separate tape devices, when possible.
- Use symbolic links.
- Specify a directory of a file system.
- For tape devices, specify /dev/null.
- Rewind tape devices.
- Configure parameters to perform backup to a cloud.

The following sections explain each of these points.

Specify separate devices for storage-space and logical-log backups

When backing up to a tape device, specify different devices for the LTAPEDEV and TAPEDEV parameters in the onconfig file. You can schedule these backups independently of each other. You can create a backup on one device at the same time you continuously back up the logical-log files on the other.

If you specify the same device for the LTAPEDEV and TAPEDEV, the logical log can fill, which causes the database server to stop processing during a backup. When this happens, you have two options.

- Abort the backup to free the tape device and back up the logical-log files.
- Leave normal processing suspended until the backup completes.

Precautions to take when you use one tape device

When only one tape device exists and you want to create backups while the database server is online, take the following precautions:

- Configure the database server with a large amount of logical-log space through a combination of many or large logical-log files. (See your IBM Informix Administrator’s Guide.)
- Store all explicitly created temporary tables in a dedicated dbspace and then drop the dbspace before backing up.
• Create the backup when low database activity occurs.
• Free as many logical-log files as possible before you begin the backup.

The logical log can fill up before the backup completes. The backup synchronizes with a checkpoint. A backup might wait for a checkpoint to synchronize activity, but the checkpoint cannot occur until all virtual processors exit critical sections. When database server processing suspends because of a full logical-log file, the virtual processors cannot exit their critical sections and a deadlock results.

**Specify tape devices as symbolic links**

You can specify the values of LTAPEDEV and TAPEDEV as symbolic links. Using symbolic links enables you to switch to other tape or tape-compatible devices without changing the path name in the onconfig file. For example, you can specify the following symbolic link for tape device /dev/rst0:

```
ln -s /dev/rst0 /dbfiles/logtape
```

When you set the LTAPEDEV configuration parameter, as the following example shows, you can switch to a different device without changing the LTAPEDEV parameter:

```
LTAPEDEV /dbfiles/logtape
```

You only need to change the symbolic link, as the following example shows:

```
ln -s /usr/backups /dbfiles/logtape
```

A user with one tape device could redirect a logical-log backup to a disk file while using the tape device for a backup.

**Specify a file system directory**

You can perform a storage-space (level 0, 1, or 2) archive, or a logical-log backup to a directory in the file system by using the ontape utility. For each storage-space archive and logical-log backup, ontape creates a file in the specified directory.

To specify a file system directory, set the LTAPEDEV and TAPEDEV configuration parameters to the absolute path name for the directory.

When ontape repeats an archive operation, it renames the existing files so that old files are not rewritten. A timestamp is added to the file name, which provides a way for related storage space or logical log files to be organized together.

To learn about the file naming schema, see “Rename existing files” on page 13-6.

**Specify a remote device**

You can perform a storage-space or logical-log backup across your network to a remote device attached to another host computer. You should not do a continuous backup to a remote device. To specify a tape device on another host computer, use the following syntax:

```
host_machine_name:tape_device_pathname
```

The following example specifies a tape device on the host computer kyoto:

```
kyoto:/dev/rmt01
```

For information on the tape size for remote devices, see “Tape size for remote devices” on page 12-6.
Specify /dev/null for a tape device

It is recommended that you do not use /dev/null as the device when backing up. However, when you specify /dev/null as a backup tape device, you can avoid the overhead of a level-0 backup that is required after some operations, such as changing the logging status of a database. Obviously, you cannot restore storage spaces from a backup to /dev/null.

You can specify /dev/null as a tape device for logical-log backups when you decide that you do not need to recover transactions from the logical log. When you specify the tape device as /dev/null, block size and tape size are ignored. If you set LTAPEDEV either to or from /dev/null, you must use ON-Monitor or restart the database server for the new setting to take effect.

Important: When you set the configuration parameter LTAPEDEV to /dev/null, the database server marks the logical-log files as backed up as soon as they become full, effectively discarding logical-log information.

Set TAPEDEV to stdio

To configure the ontape utility to read from standard input or write to standard output, set the TAPEDEV configuration parameter to stdio.

Rewind tape devices before opening and on closing

With ontape, you must use rewindable tape devices. Before reading from or writing to a tape, the database server performs a series of checks that require the rewind.

Specify the tape-block-size parameters

Specify the block-size parameters TAPEDEV and LTAPEDEV as the largest block size, in kilobytes, that your tape device permits.

When you set the tape parameter to /dev/null, the corresponding block size is ignored.

The ontape utility does not check the tape device when you specify the block size. Verify that the tape device can read the block size that you specified. If not, you cannot restore the tape.

Specify the tape-size parameters

The number of blocks specify tape sizes. TAPESIZE and LTAPESIZE specify the maximum amount of data that you can write to a tape.

To write or read the tape to the end of the device, set TAPESIZE and LTAPESIZE to 0. You cannot use this option for remote devices.

When you specify the tape device as /dev/null, the corresponding tape size is ignored.

The range of values for these parameters is 0 to 2,097,151.
Tape size for remote devices

When you perform a continuous logical-log backup to a remote device, the amount of data written to the tape is the smaller of LTAPESIZE and the following formula:

\[
\text{sum of space occupied by all logical-log files on disk) - (largest logical-log file)}
\]

The I/O to the remote device completes and the database server frees the logical-log files before a log-full condition occurs.

**Restriction:** You cannot set tape size to 0 for remote devices.

Check and change ontape configuration parameters

To examine your configuration file (the file specified in $INFORMIXDIR/etc/$ONCONFIG), use one of the following:

- Execute `onstat -c` while the database server is running.
- Use IBM Informix Server Administrator (Configuration → ONCONFIG).

Who can change ontape parameters?

When you log in as either user informix or root, you can use a text editor, ON-Monitor, or IBM Informix Server Administrator to change the value of configuration parameters for ontape.

When can you change ontape parameters?

You can change the values of parameters for ontape while the database server is online. The change takes effect immediately.

If you want to set either the TAPEDEV parameter or the LTAPEDEV parameter to /dev/null, you must use the ON-Monitor utility to make this change while the database server is online. If you use any other method to alter the value of the configuration parameters to or from /dev/null, you must restart the database server to make the change effective.

This section provides information on how to change configuration parameters for the ontape utility.

Change TAPEDEV to /dev/null

The ontape utility reads the value of the TAPEDEV parameter at the start of processing. When you set TAPEDEV to /dev/null and request a backup, the database server bypasses the backup but still updates the dbspaces with the new backup time stamps. When you set TAPEDEV to /dev/null, you must do it before you start ontape to request the backup. No problems exist when you change TAPEDEV to /dev/null with ON-Monitor while the database server is online and ontape is not running.

Change LTAPEDEV to /dev/null

Take the database server offline before you change the value of LTAPEDEV to /dev/null. When you make the change while the database server is either quiescent or online, you can create a situation where you back up one or more
logical-log files but do not free them. This situation can interrupt processing because the database server stops when it finds that the next logical-log file (in sequence) is not free.

When you set LTAPEDEV to /dev/null, the database server frees the logical logs without requiring that you back up those logs. The logical logs do not get marked as free, but the database server can reuse them.

Verify that the tape device can read the specified block size

The ontape utility does not check the tape device when you specify the block size. Verify that the tape device specified in TAPEDEV and LTAPEDEV can read the block size you specify for their block-size parameters. If not, you cannot restore the tape.

Change ontape parameters

Before you change the parameters for ontape, perform a level-0 backup, as explained in “Perform a backup” on page 13-7.

Change backup-tape parameters

To change the value of TAPEDEV, TAPEBLK, and TAPESIZE from the command line, use a text editor to edit your onconfig file. Save the file. Most change takes effect immediately. However, if you set TAPEDEV to or from dev/null you must restart the database server for the setting to take effect. You also can change these parameters in IBM Informix Server Administrator.

Change logical-log backup tape parameters

To change the value of LTAPEDEV, LTAPEBLK, and LTAPESIZE from the command line, use a text editor to edit your onconfig file. Save the file. Most change takes effect immediately. However, if you set LTAPEDEV to or from dev/null, you must restart the database server for the setting to take effect.

You also can change these parameters in IBM Informix Server Administrator.
Chapter 13. Back up with ontape

These topics describe how to use the *ontape* utility to back up storage spaces and logical-log files, and how to change the database logging status. The *ontape* utility can back up and restore the largest chunk files that your database server supports. The *ontape* utility cannot back up temporary dbspaces and temporary sbspaces.

**Summary of ontape tasks**

The *ontape* utility lets you complete a wide variety of tasks:

- “Change database logging status”
- “Create a backup” on page 13-2
- “Starting a continuous logical-log file backup” on page 13-14
- “Perform a restore” on page 14-3
- “Use external restore commands” on page 15-4

**Start ontape**

When you need more than one tape during a backup, the *ontape* utility prompts for each additional tape.

If the database server is in maintenance mode, for example, during a conversion, then the *ontape* utility can only be started by one of the following users:

- *root*
- *informix*
- The user who started the database server (if not the user *root* or *informix*)

**Restriction:** Do not start the *ontape* utility in background mode (that is, using the UNIX & operator on the command line). You could also need to provide input from the terminal or window. When you execute *ontape* in background mode, you can miss prompts and delay an operation.

The *ontape* utility does not include default values for user interaction, nor does it support retries. When *ontape* expects a yes/no response, it assumes that any response not recognized as a “yes” is “no”.

**Exit codes for ontape**

The *ontape* utility has the following two exit codes:

0 Indicates a normal exit from *ontape*.

1 Indicates an exception condition.

**Change database logging status**

To change database logging status:
Change database logging status

When you add logging to a database, you must create a level-0 backup before the change takes effect.

- **A** Directs `ontape` to change the status of the specified database to ANSI-compliant logging.
- **B** Directs `ontape` to change the status of the specified database to buffered logging.

**database**
The name of the database. The database name cannot include a database server name.

- **N** Directs `ontape` to end logging for the specified database.
- **s** Initiates a backup.
- **U** Directs `ontape` to change the status of the specified database to unbuffered logging.

For considerations about changing the logging status of a database, see your *IBM Informix Administrator’s Guide*.

Create a backup

These topics explain how to plan for and create backups of your database server data.

Backup levels

The `ontape` utility supports level-0, level-1, and level-2 backups. For information on scheduling backups, see "Plan a recovery strategy" on page 2-1.

**Tip:** Establish a backup schedule that keeps level-1 and level-2 backups small. Schedule frequent level-0 backups to avoid restoring large level-1 and level-2 backups or many logical-log backups.

**Level-0 backup**
When a fire or flood, for example, completely destroys a computer, you need a level-0 backup to completely restore database server data on the replacement computer. For online backups, the data on the backup tape reflects the contents of the storage spaces at the time the level-0 backup began. (The time the backup started could reflect the last checkpoint before the backup started.)

A level-0 backup can consume lots of time because `ontape` must write all the pages to tape.

**Level-1 backup**
A level-1 backup usually takes less time than a level-0 backup because you copy only part of the database server data to the backup tape.
Level-2 backup
A level-2 backup after a level-1 backup usually takes less time than another level-1 backup because only the changes made after the last level-1 backup (instead of the last level-0) get copied to the backup tape.

Back up after changing the physical schema

You must perform a level-0 backup to ensure that you can restore the data after you make the following administrative changes. Consider waiting to make these changes until your next regularly scheduled level-0 backup.

- Changing TAPEDEV or LTAPEDEV from /dev/null
- Adding logging to a database
- Adding a dbspace, blobspace, or sbspace before you can restore it with anything less than a full-system restore
- Starting mirroring for a dbspace that contains logical-log files
- Dropping a logical-log file
- Moving one or more logical-log files
- Changing the size or location of the physical log and after you set up shared memory
- Dropping a chunk before you can reuse the dbspace that contains that chunk
- Renaming a chunk during a cold restore

Tip: Although you no longer need to backup immediately after adding a logical-log file, your next backup should be level-0 because the data structures have changed.

Prepare for a backup

When you create a backup, take the following precautions:

- Avoid using temp tables during heavy activity.
- Make sure enough logical-log space exists.
- Keep a copy of your configuration file.
- Verify consistency before a level-0 backup.
- Run the database server in the appropriate mode.
- Plan for operator availability.
- Synchronize with other administrative tasks.
- Do not use background mode.
- If necessary, label tapes appropriately.
- If necessary, prepare for writing to standard output.

Avoid using temp tables during heavy activity

When you create a temp table during a backup while using the ontape utility, that table is placed in DBSPACETEMP. When heavy activity occurs during the backup process, the temp table can keep growing and can eventually fill up DBSPACETEMP. When this situation occurs, the backup aborts and your monitor displays a NO FREE DISK error message.
Make sure enough logical-log space exists

When the total available space in the logical log amounts to less than half a single logical-log file, the database server does not create a backup. You must back up the logical-log files and attempt the backup again.

You cannot add mirroring during a backup.

**Important:** When you use only one available tape device, make sure you back up all your logical-log files before you start your backup to reduce the likelihood of filling the logical log during the backup.

**Keep a copy of your configuration file**

Keep a copy of the current onconfig file when you create a level-0 backup. You need this information to restore database server data from the backup tape.

**Verify consistency before a level-0 backup**

To ensure the integrity of your backups, periodically verify that all database server data and overhead information is consistent before you create a full-system level-0 backup. You need not check this information before every level-0 backup, but we recommend that you keep the necessary tapes from the most recent backup created immediately after the database server was verified as consistent. For information on consistency checking, see your *IBM Informix Administrator’s Guide*.

**Online and quiescent backups**

You can create a backup while the database server is *online* or in *quiescent* mode. The terminal you use to initiate the backup command is dedicated to the backup (displaying messages) until the backup completes. Once you start a backup, the database server must remain in the same mode until the backup finishes; changing the mode terminates the backup activity.

**Online backup**

You can use an online backup when you want your database server accessible while you create the backup.

Some minor inconveniences can occur during online backups. An online backup can slow checkpoint activity, and that can contribute to a loss in performance. However, this decline in performance is far less costly than the time that you lose when users were denied access to the database server during a backup.

During an online backup, allocation of some disk pages in storage spaces can temporarily freeze. Disk-page allocation is blocked for one chunk at a time until you back up the used pages in the chunk.

**Quiescent backup**

You create a quiescent backup while the database server is quiescent. Use quiescent backups when you want to eliminate partial transactions in a backup.

Do not use quiescent backups when users need continuous access to the databases.
Back up to tape

When you back up to tape, you must ensure that an operator is available and that you have sufficient media.

Keep an operator available during a backup to mount tapes as prompted. A backup could take several reels of tape. When an operator is not available to mount a new tape when one becomes full, the backup waits. During this wait, when the backup is an online backup, the physical log space could fill up, and that causes the database server to abort the backup. Thus, make sure an operator is available.

After a tape fills, the ontape utility rewinds the tape, displays the tape number for labelling, and prompts the operator to mount the next tape when you need another one. Follow the prompts for labelling and mounting new tapes. A message informs you when the backup is complete.

Label tapes created with ontape:

When you label tapes created with the ontape utility, the label must include the following information:

- Backup level
- Date and time
- Tape number that ontape provides

The following example shows what a label can look like:

```
Level 1: Wed Nov 27, 2001 20:45 Tape # 3 of 5
```

Each backup begins with its first tape reel numbered 1. You number each additional tape reel consecutively thereafter. You number a five-tape backup 1 through 5. (Of course, it is possible that you could not know that it is a five-tape backup until it is finished.)

Back up to standard output

If you choose to back up to standard output, you do not need to provide tapes or other storage media.

A backup to standard output creates an archive in the memory buffer provided by the operating system. Backing up to standard output has the following advantages:

- There are no expensive write and read operations to disk or tape.
- You can use operating system utilities to compress or otherwise process the data.
- You can use the archive to create a duplicate of the server by immediately restoring the data onto another database server.

If you back up to standard output, you must also restore from standard input.

When ontape performs a backup to standard output, the data is written to an output file. The output file's directory must have enough disk space to hold the backed-up data. You can use operating system utilities to compress the data. In addition, the user executing the backup command must have write permission to the file to which the backup is diverted or permission to create the file.
When you back up to standard output, `ontape` does not prompt for user interaction. Error and information messages are written to stderr instead of being directed to standard output.

The TAPESIZE configuration parameter is not used because the capacity of standard output is assumed to be unlimited. The TAPEBLK configuration parameter, however, is valid because it defines the size of the transport buffer between the backend server and the `ontape` client. You can optimize throughput by setting TAPEBLK to an appropriate value.

You can simultaneously back up and restore a database server to clone it or set up High-Availability Data Replication. For more information, see "Simultaneous backup and restore using standard I/O" on page 14-14.

**Back up to a directory**

If you choose to back up to a directory, you do not need to provide tapes. Instead, you back up the data to a directory of a local file system or a directory that has been mounted on the local system.

The person who runs the backup must have write permission to the directory. The directory must have enough disk space to hold the backed-up data. You can use operating system utilities to compress the data after it is backed up.

Backing up to a directory has the following advantages:

- Multiple instances can simultaneously back up to the same directory file system.
- You can use operating system utilities to compress or otherwise process the data.
- You can easily configure your system to automatically back up a log file when the file is full.

**Set the file directory path:**

Use the TAPEDEV configuration parameter to specify the absolute path name on a directory of a file system to use for the storage-space archive file. This is the destination where `ontape` writes storage space data during an archive and the source from which `ontape` reads data during a restore. You specify the directory where the logical log backup files are written with the LTAPEDEV configuration parameter.

**Tip:** When you back up to a directory file system, specify the -d option to turn off `ontape` interactive prompts.

**Rename existing files:**

When `ontape` repeats an archive operation, it renames the existing files so that old files are not rewritten. A timestamp is added to the file name, which provides a way for related storage space or logical log files to be organized together.

Renaming conventions:

- Storage-space archive files
  The archive checkpoint time is added, and has the format `filename_YYYYMMDD_hhmss_archive-level`.
- Logical log backup files
  The backup time is added, and has the format `filename_YYYYMMDD_hhmss`.

---

13-6 IBM Informix Backup and Restore Guide
For example, the file My_instance_L0 is renamed to
My_instance_20080913_091527_L0

When restoring from a file system directory, ontape requires that storage-space
archive and logical-log backup files be named as specified by the TAPEDEV and
LTAPEDEV parameters. If files have been renamed, including by ontape because of
repeated archives and backups, files must be manually renamed to their original
file names.

Override the default name of the archive files:

You can override the default name of the archive files. When TAPEDEV or
LTAPEDEV is a directory path, the default permanent file name consists of
hostname_servernum_Ln (for levels), and hostname_servernum_Lognnnnnnnnnn (for
log files). You can override the prefix part of the permanent file name,
hostname_servernum, by setting the environment variable
IFX_ONTAPE_FILE_PREFIX.

For example, if you set IFX_ONTAPE_FILE_PREFIX to “My_Instance”, then
during archive, the files are named My_Instance_L0, My_Instance_L1,
My_Instance_L2, and, My_Instance_Log0000000001, My_Instance_Log0000000002, and
so on. During restore, ontape searches for files in the TAPEDEV directory with file
names like My_Instance_L0, and searches for files in the LTAPEDEV directory with
file names like My_Instance_Log0000000001.

Perform a backup

Before you begin a backup, perform the following steps:
• If necessary, place a write-enabled tape on the tape-drive device that TAPEDEV
specifies.
  If you set TAPEDEV to STDIO, ensure that there is enough memory for the
backup data.
• Put the device online with the appropriate operating-system command.
• Place the database server in online or quiescent mode.

Do not store more than one backup on the same tape; begin every backup with a
different tape. (Often, a backup spans more than one tape.)

To create a backup, use the -s option of the ontape command.

Create a backup

```
ontape -v -s -L 0 -t -F -d tape_device
```
<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-F</td>
<td>Directs <code>ontape</code> to perform a fake backup.</td>
<td>A fake backup is only applicable during a backup to standard output. A fake backup is useful for cloning the data in a server. For example, to populate the secondary server in an High-Availability Data Replication pair. To avoid compromising the normal backup activities, do not keep a record of a fake backup. Alternatively, you can use the SQL administration API equivalent: ARCHIVE FAKE. See <em>IBM Informix Administrator’s Reference</em> for more information.</td>
</tr>
<tr>
<td>-L</td>
<td>Directs <code>ontape</code> to create a backup of the level specified.</td>
<td>If you are backing up to tape, use the -L option to specify the backup level as part of the command, you can avoid being prompted for it. If you are backing up to standard output, and do not specify a backup level, <code>ontape</code> performs a level-0 backup.</td>
</tr>
<tr>
<td>-s</td>
<td>Directs <code>ontape</code> to create a backup.</td>
<td><code>ontape</code> prompts you to supply the backup level (0, 1, or 2) that you want to create if you do not supply a value using the -L option.</td>
</tr>
<tr>
<td>-t</td>
<td>Directs <code>ontape</code> to use a different tape device for the current backup or restore.</td>
<td>The -t option overrides the value of the TAPEDEV configuration parameter for the current backup or restore. The -t STDIO option directs <code>ontape</code> to back up to standard output or restore from standard input.</td>
</tr>
<tr>
<td>-v</td>
<td>Directs <code>ontape</code> to write informational message to stderr during a backup to standard output.</td>
<td>Verbose mode is useful for monitoring the progress of a backup to standard output.</td>
</tr>
<tr>
<td>-d</td>
<td>Directs <code>ontape</code> to proceed without interactive prompts.</td>
<td>You can turn off the prompts if you are backing up to or restoring from a directory of a file system. This option does not apply to tape devices, which must pause the backup while you change tapes.</td>
</tr>
</tbody>
</table>

The `ontape` utility backs up the storage spaces in the following order: root dbspaces, blobspaces, sbspaces, and dbspaces.

**Backup examples**

Execute the following command to start a backup to tape without specifying a level: `ontape -s`

You can use the -L option to specify the level of the backup as part of the command, as the following example shows: `ontape -s -L 0`

Use the -d option to avoid interactive prompts when you are backing up to or restoring from a directory: `ontape -s -L 0 -d`

When you do not specify the backup level on the command line, `ontape` prompts you to enter it. The following figure illustrates a simple `ontape` backup session.
The following example shows how to create a level-0 archive of all storage spaces to standard output, which is diverted to a file named `level_0_archive` in the directory `/home`:

```
ontape -s -L 0 >/home/level_0_archive -t STDIO
```

The following example assumes TAPEDEV STDIO in `onconfig` and creates a level-1 archive to standard output, which is diverted to a pipe:

```
ontape -v -s -L 1|compress -c >/home/compressed/level_1_archive
```

The `compress` system utility reads from the pipe as input, compresses the data, and writes the data to the file `level_1_archive` in the `/home/compressed` directory. The `ontape` information messages are sent to stderr.

**Back up raw tables**

You can use `ontape` to back up a raw table, however, raw tables are not logged. Therefore, when you restore a raw table, any changes that occurred since the last backup cannot be restored. It is recommended that you use raw tables only for initial loading of data and subsequently alter raw tables to standard tables before performing transactions. For more information, see the *IBM Informix Administrator’s Guide*.

**Back up to Amazon Simple Storage Service**

You can use the `ontape` utility to back up and restore data to or from the Amazon Simple Storage Service (S3). You are responsible for terms and any charges associated with your use of the Amazon Simple Storage Service.

**Prerequisites:**

- You must have an Amazon account to perform cloud storage backups. See the Amazon web site for instructions about setting up an account.
- Java version 1.5 or later is required.
- Backup objects must be 5 GB or smaller.

The following steps show how to back up data to the Amazon Simple Storage Service (S3) System and restore from it by using `ontape` backup and restore utility. In this context, cloud storage refers to an online storage service over the Internet. If you choose to back up to cloud storage, you do not need to provide tapes. Instead, you back up the data to a virtual device, most likely located on the Internet.
1. Configure the online storage device.
   a. Using a web browser, navigate to the Amazon S3 website and log on.
   b. Obtain an access key ID and a secret access key.
   c. Store the access credentials in a file. Set the permissions on the file to allow access only to user executing the `ontape` utility.
      - On UNIX systems, store the values in the file: 
        ```
 $INFORMIXDIR/etc/ifxbkpcld.credentials
        ```
      - On Windows systems, store the values in: 
        ```
 %INFORMIXDIR%\etc\ifxbkpcld.credentials
        ```
   The file must have the following format:
   ```
 secretKey=secret_access_key
 accessKey=access_key_ID
   ```
   d. Use the `ifxbkpcld.jar` utility to create and name a storage device in the region where you intend to store Informix data. Amazon uses the term `bucket` to describe the container for backup data. The storage device name you choose has the same restrictions as those for the bucket name in Amazon S3 and must be unique.
      For example, the following command creates a storage device named `mytapedevice` at a US Standard region on Amazon S3. Run the command from the `$INFORMIXDIR/bin` directory on UNIX systems, or from `%INFORMIXDIR%\bin` on Windows systems.
      ```
 java -jar ifxbkpcld.jar CREATE_DEVICE amazon mytapedevice US_Standard
      ```

2. Set the TAPEDEV and LTAPEDEV configuration parameters in the onconfig file to point to the cloud storage location. For example:
   ```
 TAPEDEV '/opt/IBM/informix/tapedev_dir, keep = yes, cloud = amazon, url = https://mytapedevice.s3.amazonaws.com'
 LTAPEDEV '/opt/IBM/informix/ltapedev_dir, keep = yes, cloud = amazon, url = https://mylogdevice.s3.amazonaws.com'
   ```

3. Back up data to the online storage device by using the `ontape` utility.
   ```
 ontape -s -L 0
   ```
   You can restore data from the cloud storage by using the following command:
   ```
 ontape -r
   ```
   You should use https secure data transmission when transferring data to cloud storage. You should encrypt data before transferring data to a cloud image. To encrypt data, use the BACKUP_FILTER and RESTORE_FILTER configuration parameters to call an external encryption program. The archchecker utility does not support table-level restore of data from cloud storage.

Related reference
- “Tape and tape device parameters for ontape” on page 12-2
- “Set the tape-device parameters” on page 12-3
- “Cloud storage file naming conventions” on page 13-11
- “The ifxbkpcld.jar utility” on page 13-10

**The ifxbkpcld.jar utility**

Use the `ifxbkpcld.jar` utility to configure an online storage device for the Amazon Simple Storage Service.

The following options are supported by the `ifxbkpcld.jar` utility:
- `CREATE_DEVICE provider device [region]`
- `DELETEDEVICE provider device`
- `LIST_DEVICES provider`
The parameters for the `ifxbkpcloud.jar` commands are defined as follows:

- **provider** is `amazon`.
- **device** is the name of the storage device.
- **region** is one of the following: `US_Standard`, `US_West`, `EU_Ireland` or `AP_Singapore`.
- **file** is the name of backup object (key) stored on Amazon S3.

Error messages from `ifxbkpcloud.jar` are written to `$INFORMIXDIR/ifxbkpcloud.log` on UNIX machines and to `%INFORMIXDIR%\ifxbkpcloud.log` on Windows machines.

**Related tasks**

“Back up to Amazon Simple Storage Service” on page 13-9

**Cloud storage file naming conventions**

Files associated with cloud storage backups have unique file names.

Data space backup files are saved using the following format:

```
hostname_servernum_Larchive_level
```

Log backup file names are saved using the following format:

```
hostname_servernum_lognnnnnnnnnn
```

If the object already exists at the cloud storage location, the file is renamed to avoid overwriting old object. Renaming the file adds a timestamp to the object name.

Data space backup files are saved using the following format:

```
hostname_servernum_YYYYMMDD_hhmmss_Larchive_level
```

Log backup file names are saved using the following format:

```
hostname_servernum_lognnnnnnnnnn_YYYYMMDD_hhmmss
```

**Related tasks**

“Back up to Amazon Simple Storage Service” on page 13-9

**When the logical-log files fill during a backup**

When the logical log fills during a backup, the console displays a message and the backup suspends normal processing. How you handle the logical-log filling depends on whether you can use one or two tape devices.

**When you can use two tape devices**

When you can use two tape devices with the database server, log in as user `informix` at a free terminal.

Verify that `LTAPEDEV` and `TAPEDEV` specify different path names that correspond to separate tape devices. When they do, back up the logical-log files. See “Create a backup” on page 13-2.

When `LTAPEDEV` and `TAPEDEV` are identical, assign a different value to the logical-log tape device (LTapeDev) and initiate a logical-log-file backup.
Otherwise, your options are to either leave normal database server processing suspended until the backup completes or cancel the backup.

**When only one tape device is available**

When you create a backup with the only available tape device, you cannot back up any logical-log files until you complete the backup. When the logical-log files fill during the backup, normal database server processing halts. You can either abort the backup (using Ctrl-C only) to free the tape device and back up the logical logs to continue processing, or leave normal processing suspended until the backup completes.

You can take steps to prevent this situation. The section “Start an automatic logical-log backup” on page 13-14 describes these steps.

**When a backup terminates prematurely**

When you cancel or interrupt a backup, sometimes the backup progresses to the point where you can consider it complete. When listed in the monitoring information, as described in “Monitor backup history using oncheck,” you know the backup completed.

**Monitor backup history using oncheck**

You can monitor the history of your last full-system backup using oncheck.

Execute the oncheck -pr command to display reserved-page information for the root dbspace. The last pair of reserved pages contains the following information for the most recent backup:

- Backup level (0, 1, or 2)
- Effective date and time of the backup
- Time stamp describing when the backup began (expressed as a decimal)
- ID number of the logical log that was current when the backup began
- Physical location in the logical log of the checkpoint record (that was written when the backup began)

The effective date and time of the backup equals the date and time of the checkpoint that this backup took as its starting point. This date and time could differ markedly from the time when the backup process was started.

For example, when no one accessed the database server after Tuesday at 7 P.M., and you create a backup Wednesday morning, the effective date and time for that backup is Tuesday night, the time of the last checkpoint. In other words, when there has been no activity after the last checkpoint, the database server does not perform another checkpoint at the start of the backup.

**Back up logical-log files with ontape**

You must only use ontape to back up logical-log files when you use ontape to make your backup tapes.
In addition to backing up logical-log files, you can use `ontape` to switch to the next log file, move logical-log files to other dbspaces, or change the size of the logical log. Instructions for those tasks appear in your *IBM Informix Administrator’s Guide*.

**Before you back up the logical-log files**

Before you back up the logical-log files, you need to understand the following issues:

- Whether you need to back up the logical-log files
- When you need to back up the logical-log files
- Whether you want to perform an automatic or continuous backup

For more information on these issues, see “Logical-log backup” on page 1-2.

**Use blobspace TEXT and BYTE data types and logical-log files**

You must keep the following two points in mind when you use TEXT and BYTE data types in a database that uses transaction logging:

- To ensure timely reuse of blobpages, back up logical-log files. When users delete TEXT or BYTE values in blobspaces, the blobpages do not become freed for reuse until you free the log file that contains the delete records. To free the log file, you must back it up.
- When you must back up an unavailable blobspace, `ontape` skips it and makes it impossible to recover the TEXT or BYTE values when it becomes necessary. (However, blobpages from deleted TEXT or BYTE values do become free when the blobspace becomes available even though the TEXT or BYTE values were not backed up.)

In addition, regardless of whether the database uses transaction logging, when you create a blobspace or add a chunk to a blobspace, the blobspace or new chunk is not available for use until the logical-log file that records the event is not the current logical-log file. For information on switching logical-log files, see your *IBM Informix Administrator’s Guide*.

**Use /dev/null when you do not need to recover**

When you decide that you do not need to recover transactions or administrative database activities between backups, you can set the database server configuration parameter `LTAPEDEV` to `/dev/null`.

**Important:** When you set `LTAPEDEV` to `/dev/null`, it has the following implications:

- You can only restore the data that your database server manages up to the point of your most recent backup and any previously backed-up logical-log files.
- When you perform a recovery, you must always perform a full-system restore. (See “Full-system restore” on page 14-1.) You cannot perform partial restores or restore when the database server is online.

When you set `LTAPEDEV` to `/dev/null`, the database server marks a logical-log file as backed up (status B) as soon as it becomes full. The database server can then reuse that logical-log file without waiting for you to back it up. As a result, the database server does not preserve any logical-log records.
Fast recovery and rolling back transactions are not impaired when you use /dev/null as your log-file backup device. For a description of fast recovery, see your IBM Informix Administrator's Guide. For information about rolling back transactions, see the ROLLBACK WORK statement in the IBM Informix Guide to SQL: Syntax.

**When to back up logical-log files**

You must attempt to back up each logical-log file as soon as it fills. You can tell when you can back up a logical-log file because it has a used status. For more information on monitoring the status of logical-log files, see your IBM Informix Administrator’s Guide.

**Start an automatic logical-log backup**

The database server can operate online when you back up logical-log files. To back up all full logical-log files, use the -a option of the ontape command.

**Request a logical-log backup**

```bash
ontape -a
```

The -a option backs up all full logical-log files and prompts you with an option to switch the logical-log files and back up the formerly current log.

When the tape mounted on LTAPEDEV becomes full before the end of the logical-log file, ontape prompts you to mount a new tape.

When you press the Interrupt key while a backup occurs, the database server finishes the backup and then returns control to you. Any other full logical-log files receive a used status.

To back up all full logical-log files, execute the ontape -a command.

**Starting a continuous logical-log file backup**

When you do not want to monitor the logical-log files and start backups when the logical-log files become full, you can start a continuous backup.

When you start a continuous backup, the database server automatically backs up each logical-log file as it becomes full. When you perform continuous logical-log file backups, the database server protects you against ever losing more than a partial logical-log file, even in the worst case media failure when a chunk that contains logical-log files fails.

With continuous backups you also do not need to remember to back up the logical-log files, but someone must always make media available for the backup process. Also, you must dedicate the backup device to the backup process.

To start a continuous backup of the logical-log files, use the -c option of the ontape command.
Starting continuous backups

```bash
>>> ontape -c
```

The `-c` option initiates continuous backup of logical-log files. The database server backs up each logical-log file as it becomes full. Continuous backup does not back up the current logical-log file.

The database server can operate in online mode when you start continuous backups. To start continuous logging, execute the `ontape -c` command.

When the mounted tape specified by `LTAPEDEV` becomes full before the end of the logical-log file, the database server prompts the operator for a new tape.

You can also create a continuous logical-log file backup to a directory. The logical logs are automatically backed up as long as space is available. For more information, see the *IBM Informix Administrator’s Reference*.

1. Set the `TAPEDEV` parameter to an existing directory. Make sure this directory is owned by `informix` and group `informix`.
2. Edit the `ALARMPROGRAM` script (`$INFORMIXDIR/etc/alarmprogram.sh` on UNIX or Linux or `%INFORMIXDIR%/etc/alarmprogram.bat` on Windows), as follows:
   a. Set the `BACKUPLOGS` parameter within the file to `Y`.
   b. Change the backup program from `onbar -b -l` to `ontape -a -d`.
3. Restart the database server.

### End a continuous logical-log backup

To end continuous logical-log backup, press the Interrupt key (`CTRL-C`).

When you press the Interrupt key while the database server backs up a logical-log file to a local device, all logs that were completely backed up before the interrupt are captured on the tape and are marked as backed up by the database server.

When you press the Interrupt key while the database server waits for a logical-log file to fill (and thus is not backing up any logical-log files), all logs that were backed up before the interrupt reside on the tape and are marked as backed up by the database server.

When you press the Interrupt key while the database server performs a continuous backup to a remote device, any logical-log files that were backed up during this operation can or cannot reside on the tape, and are not marked as backed up by the database server (a good reason why you should not do continuous remote backups).

After you stop continuous logging, you must start a new tape for subsequent log backup operations.

You must explicitly request logical-log backups (using `ontape -a`) until you restart continuous logging.
Devices that logical-log backups must use

The `ontape` utility uses parameters defined in the `onconfig` file to define the tape device for logical-log backups. However, consider the following issues when you choose a logical-log backup device:

- When the logical-log device differs from the backup device, you can plan your backups without considering the competing needs of the backup schedule.
- When you specify `/dev/null` as the logical-log backup device in the configuration parameter `LTAPEDEV`, you avoid having to mount and maintain backup tapes. However, you can only recover data up to the point of your most recent backup tape. You cannot restore work done after the backup. See the warning about setting `LTAPEDEV` to `/dev/null` in “Use /dev/null when you do not need to recover” on page 13-13.

If the log backup device on any server node in a high-availability cluster is set to `/dev/null` (on Linux or UNIX) or NUL (on Windows), then the backup device for all of the other servers within the cluster (including the primary server and any HDR, RSS or SDS secondary servers) must also be set to `/dev/null` (or NUL).

- When your tape device runs slow, the logical log could fill up faster than you can copy it to tape. In this case, you could consider performing the backup to disk and then copying the disk backup to tape.
Chapter 14. Restore with ontape

These topics provide instructions for restoring data using the ontape utility for the following procedures:

- A whole-system restore
- A restore of selected dbspaces, blobspaces, and sbspaces

Before you start restoring data, you must understand the concepts in "Restore systems" on page 1-4. As explained in that section, a complete recovery of database server data generally consists of a physical restore and a logical restore.

Types of physical restore

If a failure causes the database server to go offline, you must restore all the database server data. This type of restore is a full-system restore. You can only restore data to the same version of IBM Informix. When the failure did not cause the database server to go offline, you can restore only the storage spaces that failed. For illustrations of the restore types, see "Warm, cold, and mixed restores" on page 1-4.

Full-system restore

When your database server goes offline because of a disk failure or corrupted data, it means that a critical dbspace was damaged. The following list shows critical dbspaces:

- The root dbspace
- The dbspace that contains the physical log
- A dbspace that contains logical-log files

When you need to restore any critical dbspace, you must perform a full system restore to restore all the data that your database server manages. You must start a full-system restore with a cold restore. See "Cold, warm, or mixed restores" on page 14-2.

Restores of dbspaces, blobspaces, and sbspaces

When your database server does not go offline because of a disk failure or corrupted data, the damage occurred to a noncritical dbspace, blobspace, or sbspace.

When you do not need to restore a critical dbspace, you can restore only those storage spaces that contain a damaged chunk or chunks. When a media failure occurs in one chunk of a storage space that spans multiple chunks, all active transactions for that storage space must terminate before the database server can restore it. You can start a restore operation before the database server finishes the transactions, but the restore becomes delayed until the database server verifies that you finished all transactions that were active at the time of the failure.
Cold, warm, or mixed restores

When you restore the database server data, you must decide whether you can do it while the database server is offline or online. This decision depends in part on the data that you intend to restore.

Cold restores

Perform a **cold restore** while the database server is offline. It consists of both a physical restore and a logical restore. You must perform a cold restore to restore any critical dbspaces.

The database server is offline when you begin a cold restore but it goes into recovery mode after it restores the reserved pages. From that point on it stays in recovery mode until either a logical restore finishes (after which it works in quiescent mode) or you use the **onmode** utility to shift it to another mode.

You can rename chunks by specifying new chunks paths and offsets during a cold restore. This option is useful if you need to restore storage spaces to a different disk from the one on which the backup was made. You can rename any type of chunk, including critical chunks and mirror chunks. For more information, see “Rename chunks during a restore” on page 14-10. You can also rename chunks for an external cold restore; see “Rename chunks” on page 15-5 for more information.

A cold restore can be performed after a dbspace has been renamed and a level-0 backup or a backup of the rootdbs and renamed dbspace is performed.

Warm restores

A **warm restore** restores noncritical storage spaces while the database server is in online or quiescent mode. It consists of one or more physical restore operations (when you restore multiple storage spaces concurrently), a logical-log backup, and a logical restore.

During a warm restore, the database server replays backed-up logical-log files for the storage spaces that you restore. To avoid overwriting the current logical log, the database server writes the logical-log files that you designate for replay to temporary space. Therefore, a warm restore requires enough temporary space to hold the logical log or the number of log files being replayed, whichever is smaller. For information on how the database server looks for temporary space, see the discussion of **DBSPACETEMP** in your **IBM Informix Administrator’s Guide**.

**Important:** Make sure enough temporary space exists for the logical-log portion of the warm restore; the maximum amount of temporary space that the database server needs equals the size of all the logical-log files.

A warm restore can be performed after a dbspace has been renamed and a level-0 archive of the rootdbs and renamed dbspace is taken.

Mixed restores

A **mixed restore** is a cold restore followed by a warm restore. A mixed restore restores some storage spaces during a cold restore (the database server is offline) and some storage spaces during a warm restore (the database server is online). You could do a mixed restore when you perform a full-system restore, but you need to
provide access to a particular table or set of tables as soon as possible. In this case, perform a cold restore to restore the critical dbspaces and the dbspaces that contain the important tables.

A cold restore takes less total time to restore all your data than a mixed restore, even though the database server is online during part of a mixed restore because a mixed restore requires two logical restores (one for the cold restore and one for the warm restore). A mixed restore, however, requires the database server to go offline for less time than a cold restore.

The dbspaces not restored during the cold restore do not become available until after the database server restores them during a warm restore, even though a critical dbspace possibly did not damage them.

**Perform a restore**

Use the `-r` option to perform a full physical and logical restore of the database server data with `ontape`. Use the `-D` option to restore selected storage spaces. Use the `-rename` option to rename chunks during the restore.

```
ontape -r
```

**Rename a chunk:**

```
rename -p old_path -o old_offset -n new_path -o new_offset -f filename
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-C</code></td>
<td>Restores logs from the current logical log tape without sending prompts to mount the tape.</td>
<td>The server is placed in suspend log restore state, and the command exits after the last applicable log is restored. The server sends a prompt if a log spans tapes.</td>
</tr>
<tr>
<td><code>-D</code></td>
<td>Directs <code>ontape</code> to restore only the storage spaces you specify.</td>
<td>The database server must go into online or quiescent mode to do a warm restore. When you use the <code>-D</code> option, you can restore selected storage spaces. When you do not specify the <code>-D</code> option, <code>ontape</code> performs a full-system restore. The database server must go offline to do a full-system restore. For more information, see <a href="#">Restore selected storage spaces</a> on page 14-8.</td>
</tr>
<tr>
<td><code>dbspace</code></td>
<td>Is the name of a storage space to restore.</td>
<td>You can specify multiple storage spaces, but you must include the root dbspace.</td>
</tr>
<tr>
<td>Element</td>
<td>Purpose</td>
<td>Key considerations</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>-e</td>
<td>Directs ontape to perform an external restore</td>
<td>For more information, see Chapter 15, “Perform an external backup and restore,” on page 15-1. This option is compatible with renaming chunks for external cold restores.</td>
</tr>
<tr>
<td>-f filename</td>
<td>Specifies a file containing the names and offsets of chunks to be renamed and their new locations. Use to rename a large number of chunks at one time.</td>
<td>The file name can be any valid UNIX or Windows file name, including simple (listfile_1), relative (..\backup_lists\listfile_2 or ..\backup_lists\listfile2), and absolute (/usr/informix/backup_lists/listfile3 or c:\informix\backup_lists\listfile3) file names. In the file, list the old chunk path name and offset and the new chunk path name and offset, with a blank space or a tab between each item. Put information for each chunk on a separate line. Blank lines are ignored. Begin comment lines with a # symbol.</td>
</tr>
<tr>
<td>-l</td>
<td>Directs ontape to perform a logical restore.</td>
<td>The -l option restores data from the logical-log backup tapes you created after (and including) your last level-0 backup.</td>
</tr>
<tr>
<td>-p</td>
<td>Directs ontape to perform a physical data restore.</td>
<td>The -p option restores data from the backup tape you created after (and including) your last level-0 backup. During the restore, the database server is in single-user mode. The variables for this element are:</td>
</tr>
<tr>
<td>-p old_path</td>
<td>Specifies the chunk to be renamed and its new location. Use to rename one or more chunks at one time.</td>
<td>The current path and file name of the chunk.</td>
</tr>
<tr>
<td>-o old_offset</td>
<td>The current offset of the chunk, in kilobytes.</td>
<td></td>
</tr>
<tr>
<td>-n new_path</td>
<td>The new path and file name of the chunk.</td>
<td></td>
</tr>
<tr>
<td>-o new_offset</td>
<td>The new offset of the chunk.</td>
<td></td>
</tr>
<tr>
<td>-r</td>
<td>Directs ontape to perform a data restore (both physical and logical).</td>
<td>The -r option restores data from the backup tape and the logical-log backup tapes you created after (and including) your last level-0 backup.</td>
</tr>
<tr>
<td>-rename</td>
<td>Directs ontape to rename the specified chunks.</td>
<td>For more information on renaming chunks during a restore, see “Rename chunks during a restore” on page 14-10.</td>
</tr>
<tr>
<td>-S</td>
<td>Directs ontape to perform a logical log salvage.</td>
<td>If you want to salvage logical logs, you must use the -S option prior to performing a restore from standard input. The LTAPEDEV configuration parameter must be set to the logical log tape device.</td>
</tr>
<tr>
<td>-t STDIO</td>
<td>Directs ontape to restore from standard input.</td>
<td>The -t option overrides the value of the TAPEDEV configuration parameter for the current restore.</td>
</tr>
<tr>
<td>-v</td>
<td>Directs ontape to write informational message to stderr during a restore from standard input.</td>
<td>Verbos mode is useful for monitoring the progress of a restore from standard input.</td>
</tr>
<tr>
<td>-X</td>
<td>Quiesces a server in logical restore suspend state without restoring additional logs.</td>
<td>Include this option with -r -l to end continuous log restore of logical logs.</td>
</tr>
</tbody>
</table>
Restore the whole system

This section outlines the steps you need to perform to restore your entire database server with ontape. The following list describes the main steps in a full-system restore:

1. Gather the appropriate tapes.
2. Decide on a complete cold or a mixed restore.
3. Verify your database server configuration.
4. Perform a cold restore.

Familiarize yourself with these instructions before you attempt a full-system restore.

Gather the appropriate tapes

Gather the appropriate backup and logical-log tapes.

Backup tapes

Before you start your restore, gather together all the tapes from your latest level-0 backup that contain the storage spaces you are restoring and any subsequent level-1 or level-2 backups.

Identify the tape that has the latest level-0 backup of the root dbspace on it; you must use this tape first.

Logical-log tapes

Gather together all the logical-log tapes from the backup after the latest level-0 backup of the storage spaces you are restoring.

File names when restoring from directory

When restoring from a file system directory, ontape requires that storage-space archive and logical-log backup files be named as specified by the TAPEDEV and LTAPEDEV parameters. If files have been renamed, including by ontape because of repeated archives and backups, files must be manually renamed to their original file names. To learn about the naming conventions for storage-space archive files and logical-log backup files, see "Back up to a directory" on page 13-6 for the naming conventions of these files.

Decide on a complete cold or a mixed restore

As mentioned in "Cold, warm, or mixed restores" on page 14-2, when you restore your entire database server, you can restore the critical dbspaces (and any other storage spaces you want to come online quickly) during a cold restore, and then restore the remaining storage spaces during a warm restore. Decide before you start the restore if you want a completely cold restore or a mixed restore.

Verify your database server configuration

During a cold restore, you cannot set up shared memory, add chunks, or change tape devices. Thus, when you begin the restore, the current database server
configuration must remain compatible with, and accommodate, all parameter values assigned after the time of the most recent backup.

For guidance, use the copies of the configuration file that you create at the time of each backup. However, do not set all current parameters to the same values as were recorded at the last backup. Pay attention to the following three groups of parameters:

- Shared-memory parameters
- Mirroring parameters
- Device parameters

Set shared-memory parameters to maximum assigned value

Make sure that you set your current shared-memory parameters to the maximum value assigned after the level-0 backup. For example, if you decrease the value of USERTHREADS from 45 to 30 sometime after the level-0 backup, you must begin the restore with USERTHREADS set at 45, and not at 30, even though the configuration file copy for the last backup could register the value of USERTHREADS set at 30. (When you do not possess a record of the maximum value of USERTHREADS after the level-0 backup, set the value as high as you think necessary. You could reassign values to BUFFERPOOL, LOCKS, and TBLSPACES as well because the minimum values for these three parameters are based on the value of USERTHREADS.)

Set mirroring configuration to level-0 backup state

Verify that your current mirroring configuration matches the configuration that was in effect at the time of the last level-0 backup. Because it is recommended that you create a level-0 backup after each change in your mirroring configuration, this creates no problems. The most critical parameters are the mirroring parameters that appear in the configuration file, MIRRORPATH and MIRROROFFSET.

Verify that the raw devices or files are available

Verify that the raw devices or files that you used for storage (of the storage spaces being restored) after the level-0 backup are available.

For example, if you drop a dbspace or mirroring for a dbspace after your level-0 backup, you must make the dbspace or mirror chunk device available to the database server when you begin the restore. When the database server attempts to write to the chunk and cannot find it, the restore does not complete. Similarly, if you add a chunk after your last backup, you must make the chunk device available to the database server when it begins to roll forward the logical logs.

Perform a cold restore

To perform a cold restore, the database server must be offline.

You must log in as user informix or root to use ontape. Execute the following ontape command to restore all the storage spaces: ontape -r

When you perform a mixed restore, you restore only some of the storage spaces during the cold restore. You must restore at least all the critical dbspaces, as the following example shows:

ontape -r -0 rootdbs llogdbs plogdbs
Salvage logical-log files

Before the cold restore starts, the console prompts you to salvage the logical-log files on disk. To salvage the logical-log files, use a new tape. It saves log records that you did not back up and enables you to recover your database server data up to the point of the failure.

The following example shows a log salvage:

```
... Continue restore? (y/n) y
Do you want to back up the logs? (y/n) y
Please mount tape 1 on /dev/ltapedev and press Return to continue.
Would you like to back up any of logs 31 - 32? (y/n) y
Logical logs 31 - 32 may be backed up.
Enter the id of the oldest log that you would like to backup? 31
Please label this tape as number 1 in the log tape sequence.
This tape contains the following logical logs:
 31-32
Log salvage is complete, continuing restore of archive.
Restore a level 1 archive (y/N) y
Ready for level 1 tape
...```

Mount tapes during the restore

During the cold restore, ontape prompts you to mount tapes with the appropriate backup files.

When restoring from a directory, the prompt specifies the absolute path name of the directory. Before responding to the prompt, you can copy or rename the file in the directory.

You can avoid the prompt by using the ontape -d option. When using this option, ensure that storage-space archive and logical-log backup files exist in the directory, as specified by the TAPEDEV and LTAPEDEV parameters. The ontape utility scans the directories for the files and uses them for the restore. After restoring the newest applicable logical-log backup file, ontape automatically commits the restore and brings the IBM Informix instance into quiescent mode.

Restore logical log files

When you perform a mixed restore, you must restore all the logical-log files backed up after the last level-0 backup.

When you perform a full restore, you can choose not to restore logical-log files. When you do not back up your logical-log files or choose not to restore them, you can restore your data only up to the state it was in at the time of your last backup. For more information, see “Back up logical-log files with ontape” on page 13-12.

To restore the logical logs, use the ontape -l command.

Bring the database server online when the restore is over

At the end of the cold restore, the database server is in quiescent mode. You can bring the database server online at this point and continue processing as usual.
When you restore only some of your storage spaces during the cold restore, you can start a warm restore of the remaining storage spaces after you bring the database server online.

Restore selected storage spaces

These topics outline the steps that you must perform during a restore of selected storage spaces with `ontape` while the database server is in online or quiescent mode (a warm restore). During a warm restore, you do not need to worry about shared-memory parameters as you do for cold restores.

Before you attempt a restore, familiarize yourself with these instructions.

The following list describes the main steps in a warm restore:

Gather the appropriate tapes

Gather the appropriate backup and logical-log tapes.

Backup tapes

Before you start your restore, gather together all the tapes from your latest level-0 backup that contain the storage spaces you are restoring and any subsequent level-1 or level-2 backups.

Logical-log tapes

Gather together all the logical-log tapes from the logical-log backup after the latest level-0 backup of the storage spaces you are restoring.

Ensure that needed device are available

Verify that storage devices and files are available before you begin a restore. For example, when you drop a dbspace or mirroring for a dbspace after your level-0 backup, you must ensure that the dbspace or mirror chunk device is available to the database server when you begin the restore. If the storage device is not available, the database server cannot write to the chunk and the restore fails.

When you add a chunk after your last backup, you must ensure that the chunk device is available to the database server when it rolls forward the logical logs.

Back up logical-log files

Before you start a warm restore (even when you perform the warm restore as part of a mixed restore), you must back up your logical-log files. See "Back up logical-log files with `ontape`" on page 13-12.

After the warm restore, you must roll forward your logical-log files to bring the dbspaces that you are restoring to a state of consistency with the other dbspaces in the system. Failure to roll forward the logical log after restoring a selected dbspace results in the following message from `ontape`:

```
Partial system restore is incomplete.
```
Perform a warm restore

To perform a warm restore, the database server must operate in online or quiescent mode.

You must log in as user informix or root to use ontape. To restore selected storage spaces, execute the ontape command, with the options that the following example shows:

```
tonape -r -D dbspace1 dbspace2
```

You cannot restore critical dbspaces during a warm restore; you must restore them as part of a cold restore, described in "Restore the whole system" on page 14-5.

During the restore, ontape prompts you to mount tapes with the appropriate backup files.

At the end of the warm restore, the storage spaces that were down go online.

Restore raw tables

When you use ontape to restore a raw table, it contains only data that existed on disk at the time of the backup. Because raw tables are not logged, any changes that occurred since the last backup cannot be restored. For more information, see "Backup raw tables" on page 13-9 and the IBM Informix Administrator’s Guide.

Configuring continuous log restore using ontape

Ensure that the version of IBM Informix is identical on both the primary and secondary systems.

Use continuous log restore to restart a log restore with newly available logs after all currently available logs have been restored. For more information, see "Continuous log restore" on page 6-4.

To configure continuous log restore using ontape:

1. On the primary system, perform a level-0 archive with the ontape -s -L 0 command.
2. On the secondary system, copy the files or mount the tape (as assigned by LTAPEDEV) and perform a physical restore with the ontape -p command.
3. Respond to the following prompts:

 Continue restore? Y
 Do you want to back up the logs? N
 Restore a level 1 archive? N

 After the physical restore completes, the database instance waits in fast recovery mode to restore logical logs.
4. On the primary system, back up logical logs with the ontape -a command.
5. On the secondary system, copy the files or mount the tape that contains the backed up logical logs from the primary system. Perform a logical log restore with the ontape -l -C command.
6. Repeat steps 4 and 5 for all logical logs that are available to back up and restore.
7. If you are doing continuous log restore on a secondary system as an emergency standby, run the following commands to complete restoring logical logs and quiesce the server:
 - If logical logs are available to restore use the `ontape -l` command.
 - After all available logical logs are restored, use the `ontape -l -X` command.

Rename chunks during a restore

You can rename chunks during a cold restore with `ontape`. This option is useful if you need to restore storage spaces to a different disk from the one on which the backup was made. You can rename any type of chunk, including critical chunks and mirror chunks.

The `ontape` rename chunk restore only works for cold restores.

The critical dbspaces (for example, the rootdbs) must be restored during a cold restore. If you do not specify the list of dbspaces to be restored, then the server will restore the critical dbspaces and all the other dbspaces. But if you specify the list of dbspaces to be restored, then the critical dbspaces must be included in the list.

For the syntax of renaming chunks with `ontape`, see “Perform a restore” on page 14-3.

Tip: If you use symbolic links to chunk names, you might not need to rename chunks; you need only edit the symbolic name definitions. For more information, see the `IBM Informix Administrator’s Guide`.

You can rename chunks during an external cold restore. See “Rename chunks” on page 15-5 for more information.

Validation sequence for renaming chunks

During a cold restore, `ontape` performs the following validations to rename chunks:
 - It validates that the old chunk path names and offsets exist in the archive reserved pages.
 - It validates that the new chunk path names and offsets do not overlap each other or existing chunks.
 - If renaming the primary root or mirror root chunk, it updates the `onconfig` file parameters `ROOTPATH` and `ROOTOFFSET`, or `MIRRORPATH`, and `MIRROROFFSET`. The old version of the `onconfig` file is saved as `$ONCONFIG localtime`.
 - It restores the data from the old chunks to the new chunks (if the new chunks exist).
 - It writes the rename information for each chunk to the online log.

If either of the validation steps fails, the renaming process stops and `ontape` writes an error message to the `ontape` activity log.

Important:
 - Perform a level-0 archive after you rename chunks; otherwise your next restore will fail.
If you add a chunk after performing a level-0 archive, that chunk cannot be renamed during a restore. Also, you cannot safely specify that chunk as a new path in the mapping list.

Renaming chunks for database servers participating in HDR involves a significant amount of offline time for both database servers. For more information, see the IBM Informix Administrator’s Guide.

New chunk requirements

To rename a chunk, follow these guidelines for new chunks:

- The new chunk does not need to exist

 You can install the new chunk later and perform a warm restore of a storage space containing it. If you specify a nonexistent chunk, `ontape` records the rename information in the chunk reserved pages, but does not restore the data. The renamed (but not restored) chunks have a status of offline, designated by D, in the `onstat -d` chunk status command output.

- New chunks must have the proper permissions.

 Rename operations fail unless the chunks have the proper permissions. For more information, see the IBM Informix Administrator’s Guide.

Rename chunks with command line options

To rename the chunks by supplying information on the command line, use this command:

```
ontape -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
   -rename -p /chunk2 -o 10000 -n /chunk2N -o 0
```

Perform a level-0 archive after the rename and restore operation is complete.

Rename chunks with a file

To rename the chunks by supplying a file named `listfile`, use the following command: `ontape -r -rename -f listfile`

The contents of the `listfile` file are:

```
/chunk1 0 /chunk1N 20000
/chunk2 10000 /chunk2N 0
```

Perform a level-0 archive after the rename and restore operation is complete.

Rename chunks while specifying other options

To rename the chunks using command-line options while performing a restore of `dbspace1` and `dbspace2` where the `rootdbs` is the rootdbs, use the following command:

```
ontape -r -rename -p /chunk1 -o 0 -n /chunk1N -o 20000
   -rename -p /chunk2 -o 10000 -n /chunk2N -o 0
   -D rootdbs dbspace1 dbspace2
```

Alternatively, to rename the chunks using file while performing a restore of `dbspace1` and `dbspace2`, use the following command:

```
ontape -r -rename -f listfile -D rootdbs dbspace1 dbspace2
```
Perform a level-0 archive after the rename and restore operation is complete.

Rename a chunk to a nonexistent device

To rename a chunk to a device that does not yet exist, you specify the new path name, but you do not restore its storage spaces until after you install the physical device. This option is useful if you need to rename a chunk and it is convenient to perform a cold restore before you install the new device. When the new chunk device is ready, you can perform a warm restore of a storage space onto it.

You can combine renaming chunks with existing devices and renaming chunks with nonexistent devices in the same rename operation. This example shows how to rename a single chunk to a nonexistent device name.

The following table lists example values for the chunks used in this example.

<table>
<thead>
<tr>
<th>Storage space</th>
<th>Old chunk path</th>
<th>Old offset</th>
<th>New chunk path</th>
<th>New offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>sbspace1</td>
<td>/chunk3</td>
<td>0</td>
<td>/chunk3N</td>
<td>0</td>
</tr>
</tbody>
</table>

Renaming a chunk to a nonexistent device

To rename a chunk to a nonexistent device:

1. Rename the chunk: using the following command: `ontape -r -rename -p /chunk3 -o 0 -n /chunk3N -o 0`
2. When the following prompt appears, enter y to continue:
 - The chunk /chunk3N does not exist. If you continue, the restore may fail later for the dbspace which contains this chunk.
 - Continue without creating this chunk? (y/n)
 - The chunk /chunk3 is renamed to /chunk3N, but the data has not yet been restored to /chunk3N.
3. Perform a level-0 archive.
4. Add the physical device for /chunk3N.
5. Perform a warm restore of sbspace1 using the `ontape -r -D sbspace1` command.
6. Perform a level-0 archive.

Restore from standard input

To perform a restore from standard input, you must first have performed a backup to standard output. For more information, see “Back up to standard output” on page 13-5.

When you perform a restore from standard input, `ontape` does not prompt you for options or information. If `ontape` cannot perform the operation with the information you provided in the restore command, `ontape` exits with an appropriate error. Restoring from standard input differs from restoring from tapes in the following ways:

- No logical restore or logical log salvage occurs.
- To perform a logical restore, use the `ontape -l` command after the physical restore.
- To salvage logical logs, use the `ontape -S` command prior to the physical restore.
You are not prompted to confirm the restore. Informational messages about the archive are sent to stderr.

If you detect a problem, you can interrupt the restore during the 10 second delay between the completion of the archive information and starting the database server.

In the following example, `ontape` performs a physical restore from the file `level_0_archive`, which contains the archive previously performed to standard output:

```
cat /home/level_0_archive | ontape -p
```

In the following example, `ontape` performs a restore of a level-0 archive, followed by a restore of a level-1 archive:

```
cat /home/level_0_archive /home/level_1_archive | ontape -r
```

In the following example, `ontape` performs a restore of `sbspace1`:

```
cat/home/level_0_archive | ontape -r -D sbspace1 -t STDIO
```

When these restores are completed, the database server is left in single-user mode.

Restore data to a remote server

You can restore data to a remote server with the following command:

```
toname -s -L 0 -F | rsh remote_server "ontape -p"
```

However, the process might hang after completing successfully. You have three primary options:

- **Terminate the remote shell process**
- **Execute the remote shell from the remote server with the following command:**

  ```rsh local_server "ontape -s -L 0 -F" | ontape -p```

- Redirect the standard output (stdout) and standard error (stderr) on the remote server with the following command from the sh or bash shell:
  
  ```ontape -p >/dev/null 2>&1```

- **You can simplify this redirection by placing it in a shell script, `ontape.sh`, on the remote server. You can issue the following command from the local server:**

  ```ontape -s -L 0 -F | rsh remote_server /my/path/ontape.sh```

- **The shell script `ontape.sh` contains the following text:**

  ```#!/bin/sh
 #define some IDS environment variables, such as
 INFORMIXDIR=/... ; export INFORMIXDIR
 INFORMIXSQLHOSTS=; export
 INFORMIXSQLHOSTS ONCONFIG=; export ONCONFIG
 INFORMIXSERVER=; export INFORMIXSERVER
 PATH=; export PATH
 # invite ontape with stdout/stderr redirection
 ontape -p >/dev/null 2>&1```
Simultaneous backup and restore using standard I/O

To clone a database server or quickly set up High-Availability Data Replication (HDR), you can perform a simultaneous backup to standard output and restore from standard input. If you perform the backup and restore solely to duplicate a database server, use the -F option to prevent the archive from being saved.

On HDR, the secondary server can restore only level-0 archives.

To use standard I/O to perform the backup and restore, set the TAPEDEV configuration parameter to STDIO, or you can specify -t STDIO from the command line.

For example, if the TAPEDEV configuration parameter is set to STDIO, the following command loads data into the secondary server on an HDR pair (named secondary_host):

```
ontape -s -L 0 -F | rsh secondary_host "ontape -p"
```

In the next example, assume that the TAPEDEV configuration parameter is not set. The following command loads data into the secondary server of an HDR pair (named secondary_host):

```
ontape -s -L 0 -F -t STDIO | rsh secondary_host "ontape -t STDIO -p"
```

The examples perform a fake level-0 archive of the database server on the local computer, pipe the data to the remote computer using the rsh system utility, and perform a physical restore on the remote computer by reading the data directly from the pipe.

Important: The previous examples require that the INFORMIXDIR, INFORMIXSERVER, INFORMIXSQLHOSTS, and ONCONFIG environment variables be set in the default environment for the user on the remote computer on which the command is executed. The user must be informix or root.
Chapter 15. Perform an external backup and restore

These topics discuss recovering data using external backup and restore using the ontape utility.

Recover data using an external backup and restore

An external backup and restore eliminates the downtime of systems because the backup and restore operations are performed external to the IBM Informix system. The ontape utility does not move the data during the backup or physical restore. An external backup allows you to copy disks that contain storage-space chunks without using ontape. When disks fail, replace them and use third-party software to restore the data, then use ontape for the logical restore. For more information, see “Data that is restored in an external restore” on page 15-3.

The following are typical scenarios for external backup and restore:
• Availability with disk mirroring
 If you use hardware disk mirroring, you can get your system online faster with external backup and restore than with conventional ontape commands.
• Cloning
 You can use external backup and restore to clone an existing production system for testing or migration without disturbing the production system.

Data that is backed up in an external backup

Before you begin an external backup, block the database server. Blocking forces a checkpoint, flushes buffers to disk, and blocks user transactions that involve temporary tables. During the blocking operation, users can access that database server in read-only mode. Then you can physically back up or copy the data to another set of disks or storage media using operating-system or third-party tools. When you complete the external backup, unblock the database server so that transactions can resume. You should include all the chunk files in each storage space and administrative files, such as onconfig, in an external backup.

Important: To make tracking backups easier, it is recommended that you back up all storage spaces in each external backup.

The ontape utility treats an external backup as equivalent to a level-0 backup. You cannot perform an external backup and then use ontape to perform a level-1 backup, or vice versa because ontape does not have any record of the external backup. For more information, see “Performing a cold external restore” on page 15-5.

Rules for an external backup

Before you begin an external backup, keep the following rules in mind:
• The database server must be online or quiescent during an external backup.
• Use ontape to back up all logical logs including the current log so that you can restore the logical logs at the end of the external restore.
• Suspend continuous logical-log backups before you block the database server for an external backup. After the external backup is complete, resume the continuous logical-log backup.

• Wait until all ontape backup sessions have completed before you block the database server. If any backup sessions are active, the block command displays an error message.

• Any OLTP work or queries are suspended while the database server is blocked. They resume after the database server is unblocked.

• All critical dbspaces of the database server instance must be backed up together simultaneously within the same command bracket of onmode -c block ...

 onmode -c unblock. Backups of different critical dbspaces done at different times cannot be restored to a consistent system.

Important: Because the external backup is outside the control of ontape, you must track these backups manually. For more information, see “Track an external backup” on page 7-3.

Performing an external backup

The database server must be online or in quiescent mode during an external backup.

To perform an external backup without disk mirroring:
1. To obtain an external backup, block the database server using the onmode -c block command. The system takes a checkpoint and suspends all update transactions. Users can access the database server in read-only mode.
2. To back up the storage spaces and administrative files, use a copy command, such as cp, dd, or tar on UNIX or copy on Windows, or a file-backup program. You must back up all chunks in the storage spaces.
3. To allow normal operations to resume, unblock the database server using the onmode -c unblock command.
4. Back up all the logical logs including the current log so that checkpoint information is available for the external restore.

Important: Because external backup is not done through ontape, you must ensure that you have a backup of the current logical log from the time when you execute the onmode -c block command. Without a backup of this logical-log file, the external backup is not restorable.
5. After you perform an external backup, back up the current log, using the ontape -a command.

If you lose a disk or the whole system, you are now ready to perform an external restore.

Prepare for an external backup

These topics describe the commands used to prepare for an external backup. For the procedure, see "Performing an external backup."
Block and unblock Informix

This section shows the syntax of the block and unblock commands.

```
>> onmode -c block
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Performs a checkpoint and blocks or unblocks the database server</td>
<td>None.</td>
</tr>
<tr>
<td>block</td>
<td>Blocks the database server from any transactions</td>
<td>Sets up the database server for an external backup. While the database server is blocked, users can access it in read-only mode. Sample command: <code>onmode -c block</code></td>
</tr>
<tr>
<td>unblock</td>
<td>Unblocks the database server, allowing data transactions and normal database server operations to resume</td>
<td>Do not unblock until the external backup is finished. Sample command: <code>onmode -c unblock</code></td>
</tr>
</tbody>
</table>

Track an external backup

The database server and `ontape` do not track external backups. To track the external backup data, use a third-party storage manager or track the data manually. The following table shows the items we recommend that you track in an external backup.

Table 15-1. Items to track when you use external backup and restore

<table>
<thead>
<tr>
<th>Items to track</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Full path names of each chunk file for each backed up storage space | UNIX: `/work/dbspaces/rootdbs`
Windows: `c:\work\dbspaces\rootdbs` |
| Object type | Critical dbspaces, noncritical storage spaces |
| `ins_copyid_hi` and `ins_copyid_lo` | Copy ID that the storage manager assigns to each backup object |
| Backup date and time | The times that the database server was blocked and unblocked |
| Backup media | Tape volume number or disk path name |
| Database server version | Version 11.70 |

Data that is restored in an external restore

If you lose a disk or the whole system, you can externally restore data only if it was externally backed up. You must use the same third-party utility for both the external backup and restore. To externally restore the storage spaces, copy the backed up data to disk. Use the `ontape -p -e` command to mark the storage spaces as physically restored, replay the logical logs with the `ontape -l` command, and
bring the storage spaces back online. If you do not specify an external restore command, the database server cannot update the status of these storage spaces to online.

You can only perform a cold external restore with **ontape**. A cold external restore marks storage spaces as physically restored, then performs a logical restore of all storage spaces.

When you perform a cold external restore, **ontape** does not first attempt to salvage logical-log files from the database server because the external backup has already copied over the logical-log data.

To salvage logical logs, perform **ontape -S** before you copy the external backup and perform the external restore (**ontape -p -e**).

Use external restore commands

Use the **ontape -p -e** command to perform a cold external restore. This command marks the storage spaces as physically restored. The following diagram shows the external physical restore syntax.

Perform an external physical restore

```
    -p -e
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Purpose</th>
<th>Key considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td>Specifies a physical restore</td>
<td>In a cold restore, if you do not specify storage space names, all of them are marked as restored. After the physical restore completes, you must perform a logical restore.</td>
</tr>
<tr>
<td>-e</td>
<td>Specifies an external restore</td>
<td>Must be used with the -p option.</td>
</tr>
</tbody>
</table>

Use the **ontape -l** command to perform a logical restore. For more information, see "Perform a restore" on page 14-3.

Rules for an external restore

Before you begin an external restore, know the following rules:

- You must externally restore from an external backup. Although the external backup is treated as a level-0 backup, it might actually be a non-Informix incremental backup.
- You cannot externally restore temporary dbspaces.
- You cannot externally restore from regular **ontape** backups.
- You cannot verify that you are restoring from the correct backup and that the storage media is readable using **ontape**.
- If the external backups are from different times, the external restore uses the beginning logical log from the oldest backup.
- Salvage the logical logs (**ontape -l**) before you switch the disks that contain the critical storage spaces.
- If you are restoring critical dbspaces, the database server must be offline.
- If you are restoring the rootdbs, disable mirroring during the restore.
• The external backups of all critical dbspaces of the database server instance must have been simultaneous. All critical dbspaces must have been backed up within the same `onmode -c block ... onmode -c unblock` command bracket.

Rename chunks

You can rename chunks in an external cold restore using the rename options syntax for other restores. Use the following commands to rename chunks during an external cold restore:

```plaintext
ontape -p -e -rename -f filename
```

or

```plaintext
ontape -p -e -rename -p old_path -o old_offset -n new_path -o new_offset
```

Performing a cold external restore

If you specify the `ontape -p -e` command in a cold restore, you must restore all storage spaces. Use the `ontape -p -e` command to restore all storage spaces.

To perform a cold external restore:

1. Shut down the database server using the `onmode -ky` command.
2. To restore the storage spaces from an external backup, use a copy command, such as `cp`, `dd`, or `tar` on UNIX or a file-backup program.
 You must restore the storage spaces to the same path as the original data.
3. To perform an external restore of all storage spaces followed by a logical restore, use the following commands:
   ```
   • ontape -p -e
   • ontape -l
   ```

Examples of external restore commands

The following table contains an example of external restore commands.

<table>
<thead>
<tr>
<th>External restore command</th>
<th>Action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ontape -p -e</code></td>
<td>Physical external restore and logical restore</td>
<td>The system restores the logical logs from the oldest external backup.</td>
</tr>
<tr>
<td><code>ontape -l</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ontape -p -e -rename -f</code></td>
<td>External cold restore with renamed chunks</td>
<td></td>
</tr>
</tbody>
</table>

Initializing HDR with an external backup and restore

You can use external backups to initialize High-Availability Data Replication (HDR).

To initialize HDR with an external backup and restore:

1. Block the source database server with the `onmode -c block` command.
2. Externally back up all chunks on the source database server.
3. When the backup completes, unblock the source database server using the `onmode -c unblock` command.
4. Make the source database server the primary server using the following command: `onmode -d primary secondary_servername`

5. On the target database server, restore the data from the external backup with a copy or file-backup program.

6. On the target database server, restore the external backup of all chunks using the `ontape -p -e` command.

7. Make the target database server the secondary server using the following command: `onmode -d secondary primary_servername`

8. If the logical-log records written to the primary database server since step 1 still reside on the primary database server disk, the secondary database server reads these records to perform the logical recovery. Otherwise, perform the logical recovery using the `ontape -l` command.

 The database server operational messages appear in the message log on the primary and secondary servers.
Part 4. Verify and restore backups with archecker
Chapter 16. Verify backups

This chapter describes the archecker utility for checking the validity and completeness of backups. You use the archecker utility to ensure that you can restore backups created by ON-Bar or ontape.

The archecker utility is used in one of two modes:

Integrated mode
In this mode, the ON-Bar utility reads data from the backup media and automatically sends it to archecker, allowing the entire restore process to be tested.

Standalone mode
This mode verifies backups created by ontape or ON-Bar. In this mode, archecker is run from the command line. The archecker utility verifies standard and whole-system backups, but cannot be used to verify logical-log backups.

The archecker configuration file

Whether you use the archecker utility in stand-alone or integrated mode, you must first create a configuration file. See Chapter 18, “The archecker configuration parameter reference,” on page 18-1 for additional information.

The archecker utility uses a configuration file to set certain parameters. Set the AC_CONFIG environment variable to the full path name of the archecker configuration file. By default, the AC_CONFIG environment variable is set to $INFORMIXDIR/etc/ac_config.std. If you set AC_CONFIG to a user-defined file, you must specify the entire path including the file name.

For more information on the configuration parameters used in this file, see "Configuration parameters” on page 18-1.

Verify backups using archecker in integrated mode

You access the archecker utility when you use the onbar -v command. You can use archecker with the database server in any mode. The archecker utility verifies that all pages required to restore a backup exist on the media in the correct form. After you successfully verify a backup, you can restore it safely. If archecker shows problems with the backup, contact Technical Support.

The archecker utility verifies standard and whole-system backups. The archecker utility cannot verify logical-log backups.

Syntax for archecker using integrated mode

This diagram shows the onbar -v syntax.

Verify backups with archecker
onbar -v

Verifies a backup
If verification is successful, you can restore the storage spaces safely.

Specify onbar -v to verify the backup. You can perform a point-in-time verification. You cannot verify the logical logs. You must specify the -v parameter first. You can verify a whole-system or physical-only backup.

dbspace_list
Names a list of storage spaces to be backed up or verified
If you enter more than one storage-space name, use a space to separate the names.

-f filename
Verifies the storage spaces that are listed in the text file whose path name filename provides
You can use any valid UNIX or Windows path name and file name. For the format of this file, see Figure 5-1 on page 5-11.
Use this option to avoid entering a long list of storage spaces every time that you verify them.

-t time
Specifies the date and time to which dbspaces are verified
How you enter the time depends on your current GLS locale convention. If the GL_DATETIME environment variable is set, you must specify the date and time according to that variable. If the GLS locale is not set, use ANSI-style date format: YYYY-MM-DD HH:MM:SS.

-w
Verifies a whole-system backup
For IBM Informix only.

Estimate the amount of temporary space for archecker

The archecker utility requires about 15 megabytes of temporary space for a medium-size system (40-50 gigabytes) and 25 megabytes for a large system. This temporary space is stored on the file system in the directory that the AC_STORAGE parameter specifies, not in the dbspaces. The temporary files contain bitmap information about the backup and copies of partition pages, free pages in a chunk, reserved pages, and optionally, free pages in a blobspace and debugging information. The archecker utility must have permissions to the temporary directory.

If the backup is verified successfully, these files are deleted. If the backup fails verification, these files remain. Copy them to another location so that Technical Support can review them.

If your database server contains only dbspaces, use the following formula to estimate the amount of temporary space in kilobytes for the archecker temporary files:

\[
\text{space} = (130 \text{ KB} \times \text{number_of_chunks}) + (\text{pagesize} \times \text{number_of_tables}) + (0.05 \text{ KB} \times \text{number_of_logs})
\]

For IBM Informix, if your database server contains blobspaces or sbspaces, use the following formula to estimate the amount of temporary space for the archecker temporary files:
space = (130 KB * number_of_chunks) + (pagesize * number_of_tables) + (.05 KB * number_of_logs) + (pagesize * (num_of_blobpages/252))

number_of_chunks
The maximum number of chunks that you estimate for the database server.

pagesize
The system page size in kilobytes.

number_of_tables
The maximum number of tables that you estimate for the database server.

number_of_logs
The number of logical logs on the database server.

num_of_blobpages
The number of blobpages in the blobspaces or the number of sbspaces. (If your database server contains sbspaces, substitute num_of_blobpages with the number of sbspaces.)

For example, you would need 12.9 megabytes of temporary disk space on a 50-gigabyte system with a page size of 2 kilobytes. This system does not contain any blobspaces, as the following statement shows:

13,252 KB = (130 KB * 25 chunks) + (2 KB * 5000 tables) + (.05 KB * 50 logs) + (2 KB * 0)

To convert kilobytes to megabytes, divide the result by 1024:

12.9 MB = 13,252/1024

Verify backups

The following examples show how to verify an existing backup and how to verify immediately after backing up.

Verify only
To verify a backup of all storage spaces, use the onbar -v command. The logical logs are not verified.

To verify the backed-up storage spaces listed in the file bkup1, use the following command: onbar -v -f /usr/backups/bkup1

Verify a point-in-time
To perform a point-in-time verification of a backup, use the following command with the datetime value in quotes:

onbar -v -t "2001-12-10 10:20:50"

Verify a whole-system backup
To verify a whole-system backup, use the onbar -v -w command:

During a verification with archecker, -w specifies to verify a whole system backup

Verify blobspaces
The onbar -v command cannot verify the links between data rows and simple large objects in a blobspace. Use the oncheck -cD command instead to verify the
links in a blobspace. For information on oncheck, see the IBM Informix Administrator’s Reference.

Verify sbspaces

The onbar -v command verifies only the smart-large-object extents in an sbspace. For a complete check, use the oncheck -cS command. For information on oncheck, see the IBM Informix Administrator’s Reference.

Interpret verification messages

When you verify a backup, ON-Bar writes summary messages to the bar_act.log that report which storage spaces were verified and whether the verification succeeded or failed. The archecker utility writes detailed messages to the ac_msg.log. Technical Support uses the ac_msg.log to diagnose problems with backups and restores.

Sample verification message in the ON-Bar activity log

The level-0 backup of dbspace dbs2.2 passed verification, as follows:

Begin backup verification of level0 for dbs2.2 (Storage Manager Copy ID:##)
Completed level-0 backup verification successfully.

The level-0 backup of rootdbs failed verification, as follows:

Begin backup verification of level0 for rootdbs (Storage Manager Copy ID:##).
ERROR: Unable to close the physical check: error_message.

Sample verification message in the archecker message log

More detailed information is available in the archecker message log, as follows:

STATUS: Scan PASSED
STATUS: Control page checks PASSED
STATUS: Starting checks of dbspace dbs2.2.
STATUS: Checking dbs2.2:TBLSpace
...
STATUS: Tables/Fragments Validated: 1
Archive Validation Passed

Verification failures

If a backup fails verification, do not attempt to restore it. The results are unpredictable and range from corruption of the database server to a failed restore because ON-Bar cannot find the backup object on the storage manager. In fact, the restore might appear to be successful but it hides the real problem with the data or media.

The different types of corrupt backups are as follows:

Backups with corrupt pages

If the pages are corrupt, the problem is with the databases rather than with the backup or the media.

Run oncheck -cd on any tables that produce errors and then redo the backup and verification. To check extents and reserved pages, run oncheck -ce and oncheck -cr.
Backups with corrupt control information

In this case, all the data is correct, but some of the backup control information is incorrect, which could cause problems with the restore. Ask Technical Support for assistance.

Backups with missing data

When a backup is missing data, it might not be recoverable. After a data loss, try to restore from an older backup. Then restore the current logical logs.

Backups of inconsistent database server data

There are cases where archecker returns “success” to ON-Bar but shows “failure” in the archecker message logs. This situation occurs when archecker verifies that ON-Bar backed up the data correctly, but the database server data was invalid or inconsistent when it was backed up.

Fixing backup verification problems

Follow these steps when a backup fails verification. The first procedure diagnoses why a backup failed verification; the second procedure verifies an expired backup; and the third procedure verifies a backup with missing data.

Diagnosing why a backup failed verification

To diagnose why a backup failed verification:

1. Verify that the AC_CONFIG environment variable and the contents of the archecker configuration file are set correctly. If these variables are set incorrectly, the ON-Bar activity log displays a message.
2. Immediately redo the backup onto different media.
 Do not reuse the original backup media because it might be bad.
 Do not use any backups based on this backup. If the level-0 backup is bad, do not use the corresponding level-1 and level-2 backups.
3. Verify this new backup. If verification succeeds, you will be able to restore the storage spaces with confidence.
4. Use your storage manager to expire the backup that failed verification and then run the onsmsync utility without arguments to remove the bad backup from the sysutils and emergency boot files.
 For more information on expiring data from the storage manager, see your storage-manager documentation or the IBM Informix Storage Manager Administrator’s Guide. For more information, see “The onsmsync utility” on page 8-4.
5. If verification fails again, call Technical Support and provide them with the following information:
 - Your backup tool name (ON-Bar)
 - The database server online.log
 - The archecker message log
 - The AC_STORAGE directory that contains the bitmap of the backup and copies of important backed-up pages
 If only part of the backup is corrupt, Technical Support can help you determine which portion of the backup can be restored in an emergency.
Technical Support might advise you to run `oncheck` options against a set of tables. (See “Backups with corrupt pages” on page 16-4.)

Verifying an expired backup

To verify an expired backup:
1. Check the status of the backup save set on the storage manager. If the storage manager has expired the backup save set, the `archecker` utility cannot verify it.
2. Use the storage-manager commands for activating the expired backup save set. See your storage-manager documentation or the *IBM Informix Storage Manager Administrator’s Guide*.
3. Retry the backup verification: `onbar -v`.

Restoring when a backup is missing data

To restore when a backup is missing data:
1. Choose the date and time of an older backup than the one that just failed. To perform a point-in-time verification, use the `onbar -v -t datetime dbspace1` command.
2. If the older backup passes verification, perform a point-in-time physical restore using the same `datetime` value, then perform a log restore, as follows:
   ```
   onbar -r -p -t datetime dbspace1
   onbar -r -l
   ```
3. To prevent ON-Bar from using a backup that failed verification as part of a restore, expire the bad backup at your storage manager and then run the `onsmsync` utility without arguments. The `onsmsync` utility removes backups that are no longer held by the storage manager from the emergency boot file and the `sysutils` database, thereby preventing ON-Bar from attempting to use such backups.

Verification process with archecker

The following figure shows how ON-Bar and `archecker` verify a backup. The `archecker` utility verifies level-0 backups on all database servers. The following steps correspond to the circled numbers in the following figure.
When the user issues an `onbar -v` command, the following sequence of actions occurs:

1. ON-Bar uses the emergency boot file if the database server is offline or the `sysutils` database if the database server is online or quiescent to determine which backup to verify.
2. ON-Bar requests and retrieves the backup data from the storage manager.
3. ON-Bar forwards the backup data to `archecker`.
4. The `archecker` utility scans the backup data and creates a bitmap of the pages. During the scan phase, `archecker` verifies the following types of problems:
 • Backups with corrupt pages
 • Backups with corrupt control information
 • Backups with missing pages that have been added since the last level-0 backup
 • Retrieval of the wrong backup objects
 An example of retrieving the wrong backup object is if ON-Bar requests the `rootdbs` backup from last Wednesday but the storage manager retrieves the `rootdbs` backup from last Tuesday.
5. After it completes the scan, `archecker` uses this bitmap to verify the backup and records the status in the `archecker` message log. ON-Bar also records this status in the ON-Bar activity log.
6. When a backup is verified, ON-Bar inserts a row into the emergency boot file with the backup copy ID and the verification date, and updates the `ins_verify` and `ins_verify_date` rows of the `bar_instance` table in the `sysutils` database. For more information, see "The bar_instance table" on page 10-1.

During the verification phase, `archecker` verifies that all the pages for each table are present and checks the partition pages, the reserved pages, the chunk-free list, blobspaces, sbspaces, and extents. The `archecker` utility also checks the free and used counts, verifies that the page stamps match and that no overlap exists in the extents.

The `archecker` utility writes temporary files in the directory that the `AC_STORAGE` parameter specifies. For information, see "AC_STORAGE parameter" on page 9-3.

Verifying backups using archecker in stand-alone mode

You verify backups to make sure they can be restored.

Use the `archecker` utility in stand-alone mode to verify backups made with either `ontape` or ON-Bar. See "Syntax for archecker" on page 16-8 for a complete list of `archecker` options.

To verify a backup:
1. Configure the parameters in the `ac_config` file.
2. Set the `AC_CONFIG` environment variable.
3. Run the appropriate command:
 • To verify a backup created using `ontape`, run the `archecker -tvs` command.
 • To verify a backup created using ON-Bar, run the `archecker -bvs` command.
Syntax for archecker

```
  archecker
```

(1)

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b</td>
<td>Provides direct XBSA access for backups created with ON-Bar.</td>
</tr>
<tr>
<td>-d</td>
<td>Deletes previous <code>archecker</code> restore files, except the <code>archecker</code> message log. For more information, see "When to delete restore files" on page 17-7.</td>
</tr>
<tr>
<td>-D</td>
<td>Deletes previous <code>archecker</code> restore files, except the <code>archecker</code> message log, and then exits. The <code>-D</code> option can be used with the <code>-X</code> option to delete previous restore files plus any table-level-restore working tables in the <code>sysutils</code> database. For more information, see "When to delete restore files" on page 17-7.</td>
</tr>
<tr>
<td>-i</td>
<td>Manually initializes the system.</td>
</tr>
<tr>
<td>-s</td>
<td>Prints a status message to the screen.</td>
</tr>
<tr>
<td>-t</td>
<td>Specifies <code>ontape</code> as the backup utility.</td>
</tr>
<tr>
<td>-v</td>
<td>Specifies verbose mode.</td>
</tr>
<tr>
<td>-V</td>
<td>Displays IBM Informix version information.</td>
</tr>
<tr>
<td>-version</td>
<td>Displays additional version information on the build operation system, build number, and build date for IBM Informix.</td>
</tr>
</tbody>
</table>

Notes:

1. See “Syntax for archecker table-level restores” on page 17-4

 "See "Syntax for archecker table-level restores" on page 17-4"
Chapter 17. Perform table-level restores using the archecker utility

This chapter describes how to use the archecker utility to perform point-in-time table-level restores that extract tables or portion of tables from archives and logical logs. For information on using the archecker utility to verify backups, see Chapter 16, “Verify backups,” on page 16-1.

The archecker utility restores tables by specifying the source table to be extracted, the destination table where the data is placed, and an INSERT statement that links the two tables.

Overview of archecker

IBM Informix servers provide several utilities for recovering data from an archive. Which utility you should use depends on the situation.

The archecker utility is useful where portions of a database, a table, a portion of a table, or a set of tables need to be recovered. It is also useful in situations where tables need to be moved across server versions or platforms.

Use archecker in the following situations:

- **Restore data**

 You can use the archecker utility to restore a specific table or set of tables that have previously been backed up with ON-Bar or ontape. These tables can be restored to a specific point in time. This is useful, for example, to restore a table that has accidentally been dropped.

- **Copy data**

 The archecker utility can also be used as a method of copying data. For example, you can move a table from the production system to another system. The archecker utility is more efficient than other mechanisms for copying data. Because archecker extracts data as text, it can copy data between platforms or server versions.

- **Migrate data**

 You can also use the archecker utility as a migration tool to move a table to other IBM Informix servers.

The archecker utility is designed to recover specific tables or sets of tables; therefore, use ON-Bar or ontape in the following data recovery scenarios:

- **Full system restore**
- **Recovery from disk failure**

To configure the behavior of the archecker utility, use the archecker configuration file. To define the schema of the data that archecker recovers, use the archecker schema command file. These files are described in the following sections.

Restriction: You cannot use a shared memory connection when performing a table-level restore.
Configuration file

The archecker utility uses a configuration file to set certain parameters. Set the AC_CONFIG environment variable to the full path name of the archecker configuration file. By default, the AC_CONFIG environment variable is set to $INFORMIXDIR/etc/ac_config.std. If you set AC_CONFIG to a user-defined file, you must specify the entire path including the file name.

For information on the configuration parameters used in this file, see “Configuration parameters” on page 18-1.

Schema command file

The archecker utility uses a schema command file to specify the following:

- Source tables
- Destination tables
- Table schemas
- Databases
- External tables
- Point in time the table is restored to
- Other options

This file uses an SQL-like language to provide information archecker uses to perform data recovery. For complete information on the supported statements and syntax, see “The archecker schema reference” on page 17-8.

There are two methods to set the schema command file:

- Set the AC_SCHEMA configuration parameter in the archecker configuration file. For more information, see “AC_SCHEMA parameter” on page 18-3.
- Use the -f cmdname command line option. For more information, see “Syntax for archecker table-level restores” on page 17-4.

If both methods are specified, the -f command line option takes precedence.

Table-level restore and locales

For table-level restore, if the table being restored (table on the archive) has a locale code set different from the default locale (en_US.8859-1) the DB_LOCALE environment variable must be set to have the same code set as the locale of the archived table being restored.

No code set conversion is performed during a table-level restore; the locale code set of the database or table being restored must match the locale code set of the database or table that the data is being restored to. In addition, the same DB_LOCALE information will be used for all of the tables being restored using the same table-level restore command schema file.

Data restore with archecker

There are two types of restores that archecker performs:

- A physical restore that is based on a level-0 archive.
- A physical restore followed by a logical restore, which uses both a level-0 archive and logical logs to restore data to a specific point in time.
When reading the command file, `archecker` determines whether to perform a physical restore only or a physical restore followed by a logical restore. By default, `archecker` performs a physical and logical restore. If you use the WITH NO LOG clause, `archecker` does not perform a logical restore.

The procedures and resources that `archecker` uses differ between a physical-only restore and a physical and logical restore. These procedures are outlined in the following sections.

Physical restore

In a physical restore, data is extracted from a level-0 archive. When performing a physical restore, `archecker` performs the following tasks:

- Disables all constraints (including foreign constraints that reference the target table), indexes, and triggers until the data is restored. Restore performance is better if the table has no constraints, indexes, or triggers.
- Reads the schema command file to determine the following:
 - The source tables
 - The destination tables
 - The schema of all tables
 - The dbspace names of where tables are located
 - The specific archive to extract data from
- Scans the archive for pages belonging to the tables being restored
- Processes each row from the data page and determines if the row is complete or partial.

 If the row is a partial row, then `archecker` determines if the remaining portion of the row has been staged, and if not, it stages the row for later processing.
- For a physical-only restore, applies filters to the row and rejects rows that are not required.
- Inserts the row into the destination table.

To restore a table with the original schema, the source schema must be specified. To restore a table with a different schema, the table name in the target schema must be different from the table name in the source schema. After restoring using a different schema, the table can be renamed using the `rename table` statement.

Logical restore

Following the physical restore, logical recovery can further restore tables to a user-specified point in time. To do this, the `archecker` utility reads backed-up logical logs, converts them to SQL statements, and then replays these statements to restore data. Before performing a logical recovery, ensure that all transactions you want to restore are contained in backed-up logical logs. The `archecker` utility cannot replay transactions from the current log. You cannot perform a logical restore on an external table.

If a table is altered, dropped, or truncated during a logical restore, the restore terminates for that table. Termination occurs at the point that the alter was performed. A message in the `archecker` message log file records that an alter operation occurred.

When performing a logical restore, `archecker` uses two processes that run simultaneously:
Stager Assembles the logical logs and saves them in tables.

Applier Converts the log records to SQL statements and executes the statements.

The stager
To collect the pertinent logical log records, the stager performs the following steps:
1. Scans only the backed-up logical logs
 The stager reads the backed-up logical log files and assembles complete log records.
2. Tests the logical log records
 Any log record that is not applicable to the tables being restored is rejected.
3. Inserts the logical log information into a table
 If the logical log record is not rejected, it is inserted into a stage table.

The applier
The applier reads data from the control table created by the stager. It begins processing the required transaction and updates the control table to show that this transaction is in process. Next, it operates on each successive log record, row by row, until the transaction commits.

All updates to the control table occur in the same transaction as the log record modification. This allows all work to be completed or undone as a single unit, maintaining integrity at all times. If an error occurs, the transaction is rolled back and the error is recorded in the control table entry for this transaction.

When data is being restored and the DBA has elected to include a logical restore, two additional work columns and an index are added to the destination table. These columns contain the original rowid and original part number. These columns provide a unique key which identifies the location of the row on the original source archive. To control the storage of the index, use the SET WORKSPACE command (see "The SET statement" on page 17-12). Otherwise, the index is stored in the same space as the table.

After the applier has finished and the restore is complete, these columns, and any indexes created on them, are dropped from the destination table.

Syntax for archecker table-level restores

The archecker utility provides a command line interface for restoring data from an archive. To use archecker, you must specify both a configuration file and a schema command file.

```plaintext
archecker -b Table-level restore -d -v -s
```
Table-level restore:

-b Provides direct XBSA access for backups created with ON-Bar.
-d Deletes previous archecker restore files, except the archecker message log. For more information, see "When to delete restore files" on page 17-7.
-D Deletes previous archecker restore files, except the archecker message log, and then exits. The -D option can be used with the -X option to delete previous restore files plus any table-level-restore working tables in the syutils database. For more information, see "When to delete restore files" on page 17-7.
-f cmdfile Specifies that archecker use the command file specified by cmdfile. This option overrides the value of the AC_SCHEMA configuration parameter. For more information, see "Schema command file" on page 17-2.
-lphys,stage,apply Specifies the level of logical restore:
 phys Starts a logical restore of the system, but stops after physical recovery is complete. The backed up logical logs must be available.
 stage After physical recovery is complete, extracts the logical logs from the storage manager and stages them in their corresponding tables, and starts the stager.
 apply Starts the applier. The applier takes the transactions stored in the stage tables and converts them to SQL and replays the operations.

The default level of logical restore if -l is not listed is -lphys,stage,apply. You can specify any combination of the logical restore levels, separated with commas. Spaces are not allowed between -l and levels.

For more information, see "Manually control a logical restore."
-s Prints a status message to the screen.
-t Specifies ontape as the backup utility.
-v Specifies verbose mode.
-X Specifies a table-level restore.

Manually control a logical restore

You can manually control the stager and applier using the -l command line option. For Extended Parallel Server, manual control is required when you have multiple storage managers that contain logical logs.
The following examples show how to perform a logical restore. In all examples, the name of the schema command file is `cmdfile`.

The following example is a typical usage:
```
archecker -b vs -f cmdfile
```
This command is equivalent to the following command:
```
archecker -b vs -f cmdfile -lphys,stage,apply
```
After the physical restore is complete, the `archecker` utility starts the stager. After the stager has started, the applier is automatically started.

In the following example, the `-lphys` option performs a physical-only restore:
```
archecker -b vs -f cmdfile -lphys
```
In the following example, the `-lstage` option starts the `archecker` stager. The stager extracts the logical log records from the storage manager and saves the applicable records to a table.
```
archecker -b vs -f cmdfile -lstage
```
The stager should only be started after physical recovery has completed.

In the following example, the `-laply` option starts the `archecker` applier. It looks in the `acu_control` table for the transaction to recover. The applier should only be started after the stager has been started.
```
archecker -b vs -f cmdfile -laply
```

Performing a restore with multiple storage managers

If you use multiple storage managers, you can perform a table-level restore with `archecker` by configuring `archecker` on every node.

To perform a table-level restore that involves multiple storage managers:
1. Create an `archecker` configuration file on every node.
2. Create a schema command file on every node.
3. Remove old restores by executing the `archecker -DX` command on a single node.
4. Start the physical restore by executing the `archecker -bX -lphys` command on each node.

 Restriction: Do not use the `-d` option.
5. After the physical restore completes, start the logical restore by executing the `archecker -bX -lstage` command on each node that contains logical log records.

 Restriction: Do not use the `-d` option.
6. After starting all stagers, complete the restore by executing the `archecker -bX -laply` command on a single node.

Perform a parallel restore

If you have a fragmented table that resides in separate dbspaces, you can perform a physical table-level restore in parallel by executing multiple `archecker` commands with different schema command files for each dbspace.
During a level-0 archive, there cannot be any open transactions that would change the schema of the table. The table or table fragments being recovered must exist in the level-0 archive. The table or fragment cannot be created or added during the logical recovery. Tables created or fragments added during the logical recovery are ignored.

Because a detached fragment is no longer part of the original table, the applier does not process the detached fragment log record or any other log records for this fragment from this point forward. A message in the archecker message log file indicates a detach occurred.

In this example, the table is fragmented across three dbspaces. The corresponding schema command files are named cmdfile1, cmdfile2, cmdfile3. The following commands delete previous restores and then perform physical restores on each dbspace in parallel:

- archecker -DX
- archecker -bvs -f cmdfile1 -lphys
- archecker -bvs -f cmdfile2 -lphys
- archecker -bvs -f cmdfile3 -lphys

You cannot perform a logical restore in parallel.

Restore transformed data

If you are restoring data that was transformed using the BACKUP_FILTER, you must restore the data with the AC_RESTORE_FILTER specified in the onconfig file. This parameter is similar to the RESTORE_FILTER parameter specified in onconfig file for ontape and ON-Bar restore.

In the onconfig file, you would specify:

```
AC_RESTORE_FILTER    path_name options
```

where path_name is the path for the filter program and options are the program options for the filter. See "AC_RESTORE_FILTER parameter" on page 18-3 for more information.

To learn more about BACKUP_FILTER, see "BACKUP_FILTER parameter" on page 9-5.

When to delete restore files

If you repeatedly run the same archecker table-level restore, you must clean up the archecker table-level restore working files and tables from the previous runs. These working tables refer to acu_tables in the sysutils database that are created during an archecker table-level restore. The archecker table-level restore working files and tables are kept after an archecker table-level restore completes in case these files and tables are needed for diagnosing problems.

You can remove the working files and tables by explicitly running the command archecker -DX or by using the -d option when you run the next archecker table-level restore command. The -d option indicates that all files and tables from the previous run of archecker table-level restore are removed before the new restore begins.

- ontape example: archecker -tdvs -f schema_command_file
onbar example: archecker -bdvs -fschema_command_file

The archecker schema reference

This section provides a complete description of the command statements supported by the archecker schema command file. Use this file to specify the source and destination tables and to define the table schema.

For more information on specifying which command file archecker uses, see “Schema command file” on page 17-2.

The following are statements supported by archecker:

- CREATE TABLE
- DATABASE
- INSERT INTO
- RESTORE
- SET

Important: Standard SQL comments are allowed in the archecker utility file and are ignored during processing.

The syntax of these statements is described in the following sections.

The CREATE TABLE statement

The CREATE TABLE statement describes the schema of the source and target tables. If the target table is external, use the CREATE EXTERNAL TABLE statement described in the section “The CREATE EXTERNAL TABLE statement” on page 17-9.

Syntax

The syntax of the CREATE TABLE used in the archecker schema command file is identical to the corresponding IBM Informix SQL statement. For a description of this syntax, see the IBM Informix Guide to SQL: Syntax.

Usage

You must include the schema for the source table in the archecker schema command file. This schema must be identical to the schema of the source table at the time the archive was created.

The source table’s schema is not validated by archecker. Failing to provide an accurate schema will lead to unpredictable results.

The source table cannot be a synonym or view. The schema of the source table only needs the column list and storage options. Other attributes such as extent sizes, lock modes, and so on are ignored. For an ON-Bar archive, archecker uses the list of storage spaces for the source table to create its list of objects to retrieve from the storage manager. If the source table is fragmented, you must list all dbspaces that contain data for the source table. The archecker utility only extracts data from the dbspaces listed in the schema command file.
If the source table contains constraints, indexes, or triggers, they are automatically disabled during the restore. Foreign constraints that reference the target table are also disabled. After the restore is complete, the constraints, indexes, and triggers are enabled. For better performance, remove constraints, indexes, and triggers prior to performing a restore.

You must also include the schema of the target table in the command file. If the target table does not exist at the time the restore is performed, it is created using the schema provided.

If the target table already exists, its schema must match the schema specified in the command file. Data is then appended to the existing table.

Examples

The schema of the source and target tables do not have to be identical. The following example shows how you can repartition the source data after performing the data extraction:

```
CREATE TABLE source (col1 integer, ... ) IN dbspace1;
CREATE TABLE target (col1 integer, ... )
  FRAGMENT BY EXPRESSION
    MOD(col1, 3) = 0 in dbspace3,
    MOD(col1, 3) = 1 in dbspace4,
    MOD(col1, 3) = 2 in dbspace5;
INSERT INTO target SELECT * FROM source;
```

The CREATE EXTERNAL TABLE statement

The CREATE EXTERNAL TABLE statement describes the schema of an external target table.

Syntax

The syntax of the CREATE EXTERNAL TABLE statement for the `archecker` schema file is not identical to the SQL CREATE EXTERNAL TABLE statement.

```
CREATE EXTERNAL TABLE name (column data_type)
USING ("filename")
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>The name of the column. Must conform to SQL identifier syntax rules.</td>
</tr>
<tr>
<td></td>
<td>For more information, see the IBM Informix Guide to SQL: Syntax.</td>
</tr>
<tr>
<td>data_type</td>
<td>The built-in data type of the column. For more information about data types,</td>
</tr>
<tr>
<td></td>
<td>see the IBM Informix Guide to SQL: Reference.</td>
</tr>
<tr>
<td>filename</td>
<td>Either the name of the file in which to place the data or a pipe device.</td>
</tr>
<tr>
<td></td>
<td>The pipe device must exist prior to starting the <code>archecker</code> utility.</td>
</tr>
</tbody>
</table>
Usage

When you use the `CREATE EXTERNAL TABLE` statement to send data to an external table, the data is only extracted from a level-0 archive. Logical logs are not rolled forward on an external table.

You can specify either of the following formats for external files:

- **DELIMITED**: ASCII delimited file. This is the default format.
- **INFORMIX**: internal binary representation. To optimize performance, filters are not applied to external tables. If filters exist, a warning indicates that they will be ignored.

For an example of using the `CREATE EXTERNAL TABLE` statement, see “Restore to an external table” on page 17-15.

The DATABASE statement

The `DATABASE` statement sets the current database.

Syntax

```sql
DATABASE dbname [ LOG MODE ANSI ] ;
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dbname</code></td>
<td>The name of the current database.</td>
</tr>
</tbody>
</table>

Usage

Multiple `DATABASE` statements can be used. All table names referenced following this statement are associated with the current database.

If the logging mode of the source database is ANSI and default decimal columns are used in the table schemas, then the logging mode of the database must be declared.

If the logging mode of the source database is not declared no error will be returned, but unexpected results and data can occur.

Examples

In the following example, both the source and target tables reside in the same database `dbs`.
The INSERT statement

The INSERT statement tells the archcker utility what tables to extract and where to place the extracted data.

Syntax

```
INSERT INTO target_table
    (target_column)
SELECT src_column
FROM src_table
WHERE filter
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter</td>
<td>The following filters are supported by the INSERT statement:</td>
</tr>
<tr>
<td></td>
<td>- =, !=, <></td>
</tr>
<tr>
<td></td>
<td>- >, >=, <, <=</td>
</tr>
<tr>
<td></td>
<td>- [NOT] MATCHES, [NOT] LIKE</td>
</tr>
<tr>
<td></td>
<td>- IS [NOT] NULL</td>
</tr>
<tr>
<td></td>
<td>- AND, OR</td>
</tr>
<tr>
<td></td>
<td>- TODAY, CURRENT</td>
</tr>
<tr>
<td>src_column</td>
<td>A list of columns to be extracted.</td>
</tr>
<tr>
<td>src_table</td>
<td>The source table on the archive where the data is restored from.</td>
</tr>
<tr>
<td>target_column</td>
<td>The destination column or columns where the data will be restored.</td>
</tr>
</tbody>
</table>
target_table
The destination table where the data will be restored.

Examples
The following example demonstrates the simplest form of the INSERT statement. This statement extracts all rows and columns from the source to the target table.

```
INSERT INTO target SELECT * FROM source;
```

You can also extract a subset of columns. In the following example, only two columns from the source table are inserted into the destination table.

```
CREATE TABLE source (col1 integer, col2 integer, col3 integer, col4 integer);
CREATE TABLE target (col1 integer, col2 integer);
INSERT INTO target (col1, col2) SELECT (col3, col4) FROM source;
```

The RESTORE statement

This is an optional command used to specify a single point in time the tables specified in the command file should be restored to.

Syntax

```
RESTORE TO "time" CURRENT WITH NO LOG
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"time"</td>
<td>The date and time the table is to be restored to.</td>
</tr>
</tbody>
</table>

Usage
The TO clause is used to restore the table to a specific point in time, which is specified by a date and time or the reserved word CURRENT.

Only one RESTORE statement can be specified in a command file. If this statement is not present in the command file, then the system will be restored to the most current time using logical logs.

If the WITH NO LOG clause is present, only a physical restore is performed. In addition, the two extra columns and the index are not added to the destination table. Physical-only restores are based on level-0 archives only.

Tip: Use this option when you do not have logical logs. You will not receive any messages about logical recovery.

Example
```
RESTORE TO CURRENT WITH NO LOG;
```

The SET statement
The SET statement controls the different features in the table-level unload library.
Syntax

```
SET COMMIT TO number,
WORKSPACE TO dbspace
```

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>Sets the number of records to insert before committing during a physical restore. The default is 1000.</td>
</tr>
<tr>
<td>dbspace</td>
<td>The dbspaces to use for the working storage space. The default is the root dbspace. You cannot use temporary dbspaces for the working storage space.</td>
</tr>
</tbody>
</table>

The `archecker` utility creates several tables for the staging of logical log records during a logical restore. These tables are created in the `sysutils` database and stored in the working storage space.

Examples

```
SET COMMIT TO 20000;
SET WORKSPACE to dbspace1;
```

Schema command file examples

The following examples show different command file syntax for different data recovery scenarios.

Simple schema command file

The schema command file in this example extracts a table from the most recent level-0 backup of `dbspace1`. The data is placed in the table `test1:tlr` and the logs are applied to bring the table `tlr` to the current point in time.

```
database test1;
create table tlr (a_serial serial, b_integer integer, c_char char, d_decimal decimal ) in dbspace1;
insert into tlr select * from tlr;
```

Restore a table from a previous backup

The schema command file in this example extracts a table from the level-0 backup of `dbspace1`. The logical logs are used to bring the table to the time of "2003-01-01 01:01:01". The data is placed in the table `test1:tlr`.

```
database test1;
create table tlr (a_serial serial, b_integer integer, c_char char, d_decimal decimal ) in dbspace1;
insert into tlr select * from tlr;
restore to '2003-01-01 01:01:01';
```
Restore to a different table

The schema command file in this example extracts a table called test1:tlr from the most recent backup of dbspace1 and places the data in the table test1:tlr_dest.

```sql
database test1;
create table tlr (  
a_serial serial,
b_integer integer,
c_char char(20),
d_decimal decimal,  
) in dbspace1;
create table tlr_dest (  
a_serial serial,
b_integer integer,
c_char char(20),
d_decimal decimal  
) in dbspace2;
insert into tlr_dest select * from tlr;
```

Extract a subset of columns

The schema command file in this example extracts a table test1:tlr from the most recent backup of dbspace1 and places a subset of the data into the table test1:new_dest

```sql
database test1;
create table tlr (  
a_serial serial,
b_integer integer,
c_char char(20),
d_decimal decimal  
) in dbspace1;
create table new_dest (  
X_char char(20),
Y_decimal decimal,
Z_name char(40)  
) in dbspace2;
insert into new_dest (X_char, Y_decimal) select c_char,d_decimal from tlr;
```

Use data filtering

The schema command file in this example extracts a table test1:tlr from the most recent backup of dbspace1 and places the data in the table test1:tlr only where the list conditions are true.

Important: Filters can only be applied to a physical restore.

```sql
database test1;
create table tlr (  
a_serial serial,
b_integer integer,
c_char char(20),
d_decimal decimal,  
) in dbspace1;
insert into tlr  
select * from tlr  
where c_char matches 'john*'  
and d_decimal is NOT NULL  
and b_integer > 100;
restore to current with no log;
```
Restore to an external table

The schema command file in this example extracts a table called test1:tlr from the most recent backup of dbspace1 and places the data in a file called /tmp/tlr.unl.

database test1;
create table tlr
(a_serial serial,
 b_integer integer
) in dbspace1;
create external table tlr_dest
(a_serial serial,
 b_integer integer
) using ("/tmp/tlr.unl", delimited);
insert into tlr_dest select * from tlr;
restore to current with no log;

Restore multiple tables

The schema command file in this example extracts a table test1:tlr_1 and test1:tlr_2 from the most recent backup of dbspace1 and places the data in test1:tlr_1_dest and test1:tlr_2_dest. This is an efficient way of restoring multiple tables because it requires only one scan of the archive and logical log files.

database test1;
create table tlr_1
(columns) in dbspace1;
create table tlr_1_dest (columns);
create table tlr_2
(columns) in dbspace1;
create table tlr_2_dest (columns);
insert into tlr_1_dest select * from tlr_1;
insert into tlr_2_dest select * from tlr_2;

Perform a distributed restore

The schema command file in this example extracts a table test:tlr_1 from the most recent backup of dbspace1 and places the data on the database server rem_srv in the table rem_dbs:tlr_1.

database rem_dbs
create table tlr_1
(columns);
database test1;
create table tlr_1
(columns) in dbspace1;
insert into rem_dbs@rem_srv.tlr_1
select * from tlr_1;
Chapter 18. The archecker configuration parameter reference

These topics describe how to use the archecker configuration parameters. For information on using the archecker utility to verify backups, see Chapter 16, “Verify backups,” on page 16-1.

For information on table-level restores, see Chapter 17, “Perform table-level restores using the archecker utility,” on page 17-1.

Configuration parameters

The following configuration parameters are valid in the archecker configuration file.

<table>
<thead>
<tr>
<th>Configuration parameter</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_DEBUG</td>
<td>Prints debugging messages in the archecker message log.</td>
</tr>
<tr>
<td>AC_IXBAR</td>
<td>Specifies the path name to the IXBAR file.</td>
</tr>
<tr>
<td></td>
<td>If not set in the ac_config file, the value of the BAR_IXBAR_PATH configuration parameter is used.</td>
</tr>
<tr>
<td>AC_LTAPEBLOCK</td>
<td>Specifies the ontape block size for reading logical logs.</td>
</tr>
<tr>
<td></td>
<td>If not set in the ac_config file, the value of the LTAPEBLOCK configuration parameter is used.</td>
</tr>
<tr>
<td>AC_LTAPEDEV</td>
<td>Specifies the local device name used by ontape for reading logical logs.</td>
</tr>
<tr>
<td></td>
<td>If not set in the ac_config file, the value of the LTAPEDEV configuration parameter is used.</td>
</tr>
<tr>
<td>AC_MSGPATH</td>
<td>Specifies the location of the archecker message log.</td>
</tr>
<tr>
<td>AC_SCHEMA</td>
<td>Specifies the path name to the archecker schema command file.</td>
</tr>
<tr>
<td>AC_STORAGE</td>
<td>Specifies the location of the temporary files that archecker builds.</td>
</tr>
<tr>
<td>AC_TAPEBLOCK</td>
<td>Specifies the tape block size in kilobytes.</td>
</tr>
<tr>
<td></td>
<td>If not set in the ac_config file, the value of the TAPEBLOCK configuration parameter is used.</td>
</tr>
<tr>
<td>AC_TAPEDEV</td>
<td>Specifies the local device name used by the ontape utility.</td>
</tr>
<tr>
<td></td>
<td>If not set in the ac_config file, the value of the TAPEDEV configuration parameter is used.</td>
</tr>
<tr>
<td>AC_VERBOSE</td>
<td>Specifies either verbose or terse mode for archecker messages.</td>
</tr>
<tr>
<td>BAR_BSALIB_PATH</td>
<td>Identical to the BAR_BSALIB_PATH server configuration parameter.</td>
</tr>
<tr>
<td></td>
<td>For more information, see “BAR_BSALIB_PATH parameter” on page 9-6.</td>
</tr>
</tbody>
</table>

If the ONCONFIG environment variable is not set, then the default values listed in this section are used.
AC_DEBUG parameter

Default value

Off

Range 1-16

The AC_DEBUG configuration parameter causes debugging messages to be printed in the archecker message file. Use this parameter only as directed by technical support. The use of this configuration parameter can cause the archecker message log file to grow very large and substantially slow down archecker processing.

AC_IXBAR parameter

Default value

None

Range Any valid path name

The AC_IXBAR configuration parameter specifies the location of the IXBAR file.

AC_LTAPEBLOCK parameter

Default value

32 kilobytes

Range 0 - 2,000,000,000

The AC_LTAPEBLOCK configuration parameter specifies the size of the tape block in kilobytes when an archive is performed using the following commands:

- **onbar -b**
 When you use ON-Bar, the value of AC_TAPEBLOCK should be the value the BAR_XFER_BUF_SIZE configuration parameter multiplied by the current page size. For more information, see “BAR_XFER_BUF_SIZE parameter” on page 9-13.

- **ontape -t**
 When you use ontape, the value of AC_LTAPEBLOCK should be the value that the TAPEBLK ONCONFIG configuration parameter was set to at the time of the archive. For more information, see “Specify the tape-block-size parameters” on page 12-5.

AC_LTAPEDEV parameter

Default value

None

Range Any valid path name or STDIO

The AC_LTAPEDEV configuration parameter specifies the device name used by the ontape utility. If the tape device is set to STDIO, archecker receives input from standard input.

AC_MSGPATH parameter

Default value

/tmp/ac_msg.log

Range Any valid path name
The AC_MSGPATH configuration parameter specifies the location of the archecker message log (ac_msg.log). You must specify the entire path of the message log in the AC_CONFIG file.

AC_RESTORE_FILTER parameter

Default value

none

Range Full path name and options for the filter program.

The AC_RESTORE_FILTER configuration parameter specifies a path and options for a filter program that restores transformed data to its original state prior to backup. It is required when the data to be restored was transformed, such as compressed or encrypted, with the BACKUP_FILTER parameter in onconfig.

AC_SCHEMA parameter

Default value

None

Range Any valid path name

The AC_SCHEMA configuration parameter specifies the path name to the archecker schema command file. This configuration parameter is overridden by the -f cmdfile command line option.

AC_STORAGE parameter

Default value

/tmp

Range Any valid directory path name

The AC_STORAGE parameter specifies the location of the directory where archecker stores its temporary files. You must specify the entire path of the storage directory in the AC_CONFIG file.

AC_TAPEBLOCK parameter

Default value

32 kilobytes

Range 0 - 2,000,000,000

The AC_TAPEBLOCK configuration parameter specifies the size of the tape block in kilobytes when an archive is performed using the following commands:

- **onbar -b**
 When you use ON-Bar, the value of AC_TAPEBLOCK should be the value the BAR_XFER_BUF_SIZE configuration parameter multiplied by the current page size. For more information, see “BAR_XFER_BUF_SIZE parameter” on page 9-13.

- **ontape -t**
 When you use ontape, the value of AC_TAPEBLOCK should be the value that the TAPEBLK ONCONFIG configuration parameter was set to at the time of the archive. For more information, see “Specify the tape-block-size parameters” on page 12-5.
AC_TAPEDEV parameter

Default value
None

Range Any valid path name or STDIO

The AC_TAPEDEV configuration parameter specifies the device name used by the ontape utility. If the tape device is set to STDIO, archecker receives input from standard input.

AC_VERBOSE parameter

Default value
1

Range

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>verbose messages</td>
</tr>
<tr>
<td>0</td>
<td>terse messages</td>
</tr>
</tbody>
</table>

The AC_VERBOSE configuration parameter specifies either verbose or terse output in the archecker message log and to the screen.
Part 5. Appendixes
Appendix A. Troubleshooting

This appendix lists some error messages you can receive during a backup or restore, describes under what circumstances the errors might occur, and provides possible solutions or workarounds.

Corrupt page during an archive

The message Archive detects that page is corrupt indicates that page validation failed.

During an archive, the database server validates every page before writing it to the archive device. This validation checks that the elements on the page are consistent with the expected values. When a page fails this validation, a message similar to the following is written to the online.log file:

```
16:27:49 Assert Warning: Archive detects that page 1:10164 is corrupt.
16:27:49 IBM Informix Dynamic Server Version 11.50.FC7
16:27:49 Who: Session(5, informix@cronus, 23467, 10a921048)
Thread(40, archbackup1, 10a8e8ae8, 1)
File: rsarcbu.c Line: 2915
16:27:49 stack trace for pid 23358 written to /tmp/af.41043f4
16:27:49 See Also: /tmp/af.41043f4
16:27:49 Archive detects that page 1:10164 is corrupt.
16:27:50 Archive on rootdbs Completed with 1 corrupted pages detected.
```

The archive aborts after detecting 10 corrupt pages. The online.log file displays the full error message, including the page address, for the first 10 errors. Subsequently, only the count of the number of corrupt pages is put in to the online.log.

After you receive this message, identify which table the corrupt page belongs to by examining the output of the oncheck -pe command. To determine the extent of the corruption, execute the oncheck -cID command for that table.

A corrupt page is saved onto the backup media. During a restore, the corrupt page is returned in its corrupt form. No errors messages are written to the online.log when corrupt pages are restored, only when they are archived.

Log backup already running

When using ON-Bar to create a backup, the message log backup is already running in the bar_act.log file, or the message Process exited with return code 152 in the online.log file do not indicate a problem. They can appear under the following circumstances:

- The ALARMPROGRAM configuration parameter is set to log_full.sh. Periodically, events cause log_full.sh to trigger the onbar -b -I command. If a log fills while the onbar -b -I command is running, then ON-Bar backs up that log as well. If the backup has not completed by the time of the next event trigger, it generates a warning in the bar_act.log file. At the time of the next event trigger, the log backup can continue.

- A level-0 archive (especially when started with the -w option) first archives the database and then automatically start the onbar -b -I command to back up any
logical logs that are currently full and not yet backed up. There might not be a log_full.sh message in online.log, because the onbar -b -l command is started directly.

- When you mount a new tape after filling a previous tape, a log_full.sh event is scheduled but not triggered. As soon as the next log fills and generates an event trigger in the log_full.sh file, all available logs are archived. You can force the archive by running onbar -b -l or force log_full.sh to be triggered by running onmode -l.

No server connection during a restore

During a whole system restore with ON-Bar, the error archive api error: no server connection might appear in the bar_act.log file. ON-Bar then connects to the storage manager successfully, but eventually fails with the error archive api error: not yet open.

The bar_act.log file contains information similar to the following messages:

```
2000-03-09 10:51:06 19304 19303 /usr/informix/bin/onbar_d -r -w
2000-03-09 10:51:09 19304 19303 ERROR: Unable to start the physical restore: Archive API error: no server connection.
2000-03-09 10:51:09 19304 19303 Successfully connected to Storage Manager.
2000-03-09 10:59:13 19811 19810 /usr/informix/bin/onbar_d -r -w
2000-03-09 10:59:16 19811 19810 ERROR: Unable to start the physical restore: Archive API error: no server connection.
2000-03-09 10:59:16 19811 19810 Successfully connected to Storage Manager.
2000-03-09 11:01:12 19811 19810 Begin cold level 0 restore llog1.
2000-03-09 11:01:12 19811 19810 ERROR: Unable to write restore data to the database server: Archive API error: not yet open.
```

To solve this problem, check if the database server is still running. If it is, shut down the database server and run the command again.

Drop a database before a restore

If you perform a level-0 archive using ON-Bar and a storage manager, then drop a database, and then perform a restore with the onbar -r command, the database remains dropped. The restore salvages the logs and the logs contains the DROP DATABASE statement. When the logs are salvaged, or replayed, the database is dropped.

To prevent this situation, perform a physical restore using the onbar -r -p command, and then a logical restore using the onbar -r -l command. This sequence does not salvage the logs and does restore the database.

No dbspaces or blobspaces during a backup or restore

If the emergency boot file, ixbar.servernum, does not have the correct entries for objects in the backup, the message There are no DB/BLOBSpaces to backup/restore appears in bar_act.log file during a restore started with the onbar -r or onbar -r -w command.

This error can appear under the following circumstances:
• During an external restore, if the emergency boot file was not copied from the source system.
• If the emergency boot file was recreated after the archive backup was made. The previous file is saved in the form: ixbar.xx.xxxx.
• An attempt to execute the onbar -r -w command with a backup that is not a full system backup.

Restore blobspace BLOBs

You can use table-level restore to restore a BLOB that is stored in a table. However, restoring a BLOB that is stored in a blobspace is not supported. If you attempt to restore a blobspace BLOB, the column is set to NULL.

Changing the system time on the backup system

Time lines use the UNIX time as the archive checkpoint time for dbspaces and the closing time for logical logs. If logs are not automatically backed up and the system clock is changed, the time line can get corrupted.

For example, if you have logical logs that were closed before the archive checkpoint time, they have a timestamp that is higher than the archive checkpoint time. The dbspace does not need the logs and ON-Bar will try to restore the backup immediately. If a log cannot be found, ON-Bar fails with the following message: **There are no storage spaces or logical logs to backup or restore.**

To restore the storage space and logical logs:
1. Change the clock back to its original value.
2. Recover the system from backup.
3. Change the clock back to the new time.
Appendix B. The onstat command reference

This appendix describes forms of the onstat command that are relevant to ON-Bar and ontape. The onstat utility reads shared-memory structures and provides statistics about the database server that are accurate at the instant that the command executes. For general information about onstat, refer to the IBM Informix Administrator’s Reference.

The onstat -d command

Use the -d option to display information for chunks in each storage space. You can interpret output from this option as follows. The first section of the display describes the storage spaces:

address Is the address of the storage space in the shared-memory space table
number Is the unique ID number of the storage space assigned at creation
flags Uses hexadecimal values to describe each storage space. The following table describes each hexadecimal value:

Table B-1. Descriptions for each hexadecimal value

<table>
<thead>
<tr>
<th>Flag Value</th>
<th>Description</th>
<th>Flag Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000000</td>
<td>Mirror not allowed and dbspace is unmirrored</td>
<td>0x00000100</td>
<td>Table in dbspace is dropped</td>
</tr>
<tr>
<td>0x00000001</td>
<td>Mirror is allowed and dbspace is unmirrored</td>
<td>0x00002000</td>
<td>Temporary dbspace</td>
</tr>
<tr>
<td>0x00000002</td>
<td>Mirror is allowed and dbspace is mirrored</td>
<td>0x00004000</td>
<td>Blobspace is being backed up</td>
</tr>
<tr>
<td>0x00000004</td>
<td>Down</td>
<td>0x00008000</td>
<td>Sbspace</td>
</tr>
<tr>
<td>0x00000008</td>
<td>Newly mirrored</td>
<td>0x0000a001</td>
<td>Temporary sbspace</td>
</tr>
<tr>
<td>0x00000010</td>
<td>Blobspace</td>
<td>0x00010000</td>
<td>Physical or logical log changed</td>
</tr>
<tr>
<td>0x00000020</td>
<td>Blobspace on removable media</td>
<td>0x00020000</td>
<td>Dbspace or chunk tables have changed</td>
</tr>
<tr>
<td>0x00000040</td>
<td>Blobspace is on optical media</td>
<td>0x00040000</td>
<td>Dbspace or blobspace contains large chunk</td>
</tr>
<tr>
<td>0x00000080</td>
<td>Blobspace is dropped</td>
<td>0x080000</td>
<td>Chunk in this dbspace has been renamed</td>
</tr>
<tr>
<td>0x00000100</td>
<td>Blobspace is the optical STAGEBLOB</td>
<td>0x00100000</td>
<td>Temporary dbspace used by only by shared disk secondary server. It is one of the dbspaces listed in the SDS_TEMPDBS onconfig parameter on the SD server.</td>
</tr>
</tbody>
</table>
Table B-1. Descriptions for each hexadecimal value (continued)

<table>
<thead>
<tr>
<th>Flag Value</th>
<th>Description</th>
<th>Flag Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00000200</td>
<td>Space is being recovered</td>
<td>0x00200000</td>
<td>Temporary dbspace for the shared disk Secondary server. This is listed in the DBSPACETEMP onconfig variable on the shared disk secondary server.</td>
</tr>
<tr>
<td>0x00000400</td>
<td>Space is fully recovered</td>
<td>0x20002</td>
<td>Dbspace or chunk tables have changed and dbspace is mirrored</td>
</tr>
<tr>
<td>0x00000800</td>
<td>Logical log is being recovered</td>
<td>0x60001</td>
<td>Dbspace has large chunks and is unmirrored. Any changes result in changes on roottable.</td>
</tr>
</tbody>
</table>

fchunk The ID number of the first chunk

nchunks The number of chunks in the storage space

pgsize The size of the dbspace pages in bytes

flags Uses the following letter codes to describe each storage space:

Position 1:

- **M** Mirrored
- **N** Not mirrored

Position 2:

- **X** Newly mirrored
- **P** Physically recovered, waiting for logical recovery
- **L** Being logically recovered
- **R** Being recovered
- **D** Down

Position 3:

- **B** Blobspace
- **S** Sbspace
- **T** Temporary Dbspace
- **U** Temporary Sbspace
- **W** Temporary Dbspace on Primary (this flag is shown on SD secondary servers only)

Position 4:

- **B** Dbspace has large chunks greater than 2 GB

owner The owner of the storage space

name The name of the storage space
In the line immediately following the storage-space list, **active** refers to the current number of storage spaces in the database server instance including the rootdbs and **maximum** refers to total allowable spaces for this database server instance.

The second section of the **onstat -d** output describes the chunks:

address
- The address of the chunk

chk/dbs
- The chunk number and the associated space number

offset
- The offset into the file or raw device in base page size

size
- Is the size of the chunk in terms of the page size of the dbspace to which it belongs.

free
- The number of free pages in the chunk in terms of the page size of the dbspace to which it belongs.
 - For a blobspace, a tilde indicates an approximate number of free blobpages.
 - For an sbspace, indicates the number of free pages of user data space and total user data space.

bpages
- The size of the chunk in blobpages
 - Blobpages can be larger than disk pages; therefore, the **bpages** value can be less than the **size** value.
 - For an sbspace, is the size of the chunk in sbpages

flags
- Provides the chunk status information as follows:
 - **Position 1:**
 - P Primary
 - M Mirror
 - **Position 2:**
 - N Renamed and either Down or Inconsistent
 - O Online
 - D Down
 - X Newly mirrored
 - I Inconsistent
 - **Position 3:**
 - - Dbspace
 - B Blobspace
 - S Sbspace
 - **Position 4:**
 - B Has large chunks greater than 2 GB
 - **Position 5:**
<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Identifies the chunk as extendable</td>
</tr>
</tbody>
</table>

Position 6:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Not using the direct I/O or concurrent I/O option for this cooked file chunk</td>
</tr>
<tr>
<td>C</td>
<td>On AIX, using the concurrent I/O option for this cooked file chunk</td>
</tr>
<tr>
<td>D</td>
<td>Using the direct I/O option for this cooked file chunk</td>
</tr>
</tbody>
</table>

pathname

The path name of the physical device

In the line immediately following the chunk list, **active** displays the number of active chunks (including the root chunk) and **maximum** displays the total number of chunks.

For information on how to solve problems indicated by flags in position 2 of both the storage space and chunk sections, see "Monitor restores" on page 6-5.

The onstat -l command

Use the -l option to display information about physical and logical logs. You can interpret output from this option as follows. The first section of the display describes the physical-log configuration:

- **buffer** The number of the physical-log buffer
- **bufused** The number of pages of the physical-log buffer that are used
- **bufsize** The size of each physical-log buffer in pages
- **numpages** The number of pages written to the physical log
- **numwrits** The number of writes to disk
- **pages/io** Calculated as numpages/numwrits
 This value indicates how effectively physical-log writes are being buffered.
- **phybegin** The physical page number of the beginning of the log
- **physize** The size of the physical log in pages
- **phypos** The current position in the log where the next log-record write is to occur
- **phyused** The number of pages used in the log
The second section of the `onstat -l` display describes the logical-log configuration:

- **buffer** The number of the logical-log buffer
- **bufused** The number of pages used in the logical-log buffer
- **bufsize** The size of each logical-log buffer in pages
- **numrecs** The number of records written
- **numpages** The number of pages written
- **numwrits** The number of writes to the logical log
- **recs/pages** Calculated as `numrecs/numpages`
 You cannot affect this value. Different types of operations generate different types (and sizes) of records.
- **pages/io** Calculated as `numpages/numwrits`
 You can affect this value by changing the size of the logical-log buffer (specified as `LOGBUFF` in the configuration file) or by changing the logging mode of the database (from buffered to unbuffered, or vice versa).

The following fields are repeated for each logical-log file:
- **address** The address of the logical-file descriptor
- **number** The logid number for the logical-log file
 The logid numbers might be out of sequence because either the database server or administrator can insert a log file in-line.
- **flags** Provides the status of each log as follows:
 - **A** Newly added (and ready to use)
 - **B** Backed up
 - **C** Current logical-log file
 - **D** Marked for deletion
 To drop the log file and free its space for reuse, you must perform a level-0 backup of all storage spaces
 - **F** Free, available for use
 - **L** The most recent checkpoint record
 - **U** Used
- **uniqid** The unique ID number of the log
- **begin** The beginning page of the log file
size The size of the log in pages
used The number of pages used
%used The percent of pages used
active The number of active logical logs
total The total number of logical logs

The database server uses temporary logical logs during a warm restore because the
permanent logs are not available then. The following fields are repeated for each
temporary logical-log file:
address The address of the log-file descriptor
number Is logid number for the logical-log file
flags Provides the status of each log as follows:
 B Backed up
 C Current logical-log file
 F Free, available for use
 U Used
uniqid The unique ID number of the log
begin The beginning page of the log file
size The size of the log in pages
used The number of pages used
%used The percent of pages used
active The number of active temporary logical logs
Appendix C. Migrate data, servers, and tools

Use data-migration tools for recovery

If ON-Bar and ontape are not working, you can use data-migration utilities, such as onunload, the High-Performance Loader (HPL), onpladm, or dbexport, as a substitute for a backup.

Important: None of the data-migration utilities are coordinated with the information stored in the logical-log files and, unlike backups, they do not save a copy of system-overhead information important to the database server.

Preparing for a database server or storage-manager upgrade

Important: The database server conversion software automatically recreates the sysutils database when you upgrade to the latest version of the database server. All backup and restore information from the old database server version is lost. Backups that you make under the older version of the database server are not compatible with the newer version of the database server.

To prepare for an upgrade:
1. Use ON-Bar to perform a level-0 backup of all your data before you upgrade your database server, ISM, or change storage-manager vendors.
2. Save these backups so that you can restore the data in case you need to revert to the old database server version.
3. Before you upgrade, back up the administrative files.
4. After you upgrade the database server, back up all storage spaces and logical logs.

For more information on database server migration, see the IBM Informix Migration Guide.

Upgrade your storage manager

If you install a new version of a third-party storage manager, install it before you bring up the database server. Update the sm_versions file with the new storage-manager definition. If you have continuous logical-log backup set up on the database server, ON-Bar can start backing up the logical logs soon after the database server comes online. Also make sure that the new storage-manager version is able to read media written with your old version.

Make sure that the storage manager can find the backup objects that ON-Bar requests. Use the onsmsync utility to expire old backup history in the sysutils database and emergency boot files.

Change storage-manager vendors

When you switch storage-manager vendors, the transition can be difficult. Ensure that the new data formats are identical, that a reversion utility is provided, or that you do not use new features that change the data formats. Differences usually occur in the following areas:
• The new storage manager might support different storage devices. If you also upgrade a storage device, make sure the old storage device is available until you successfully back up and restore on the new storage device.

• If you change physical connectivity, such as moving a storage device from a local connection to a network server, make sure the storage manager can still move the data across the network.

• If you use software compression or encryption, make sure all versions of the compression or encryption algorithms are available for restores.

• Ensure that the storage manager can send multiple data streams to storage devices. It also might use a different version of XBSA.

You can switch between certain storage managers more easily than others. For details, contact Technical Support or your vendor.

Migrating from ontape to ON-Bar

You cannot back up data with ontape and restore it using ON-Bar, or conversely because the data storage formats and backup capabilities are different. You can use ontape with the database server in online or quiescent mode.

To migrate to ON-Bar:

1. Use ontape to perform a full backup.
 For details, see Chapter 13, "Back up with ontape," on page 13-1.

2. Take the backup media offline to prevent possible reuse or erasure.

3. Configure the storage manager to be used with ON-Bar.
 For details, see Chapter 4, "Configure the storage manager and ON-Bar," on page 4-1.

4. Configure your environment:
 a. Set configuration parameters.
 b. Create the sm_versions file with the storage-manager definition.
 For details, see Chapter 9, "ON-Bar configuration parameters," on page 9-1, and "Update the sm_versions file" on page 4-4.

5. Use ON-Bar (onbar -b or onbar -b -w) to perform a full backup.

6. Verify the backup with the onbar -v command.
 For details, see Chapter 16, "Verify backups," on page 16-1.

Migrate private ON-Bar scripts

This section describes the procedures for migrating private ON-Bar scripts after you upgrade the database server version.
Appendix D. GLS support

Use GLS with ON-Bar

ON-Bar supports Global Language Support (GLS), which allows users to work in their native language. The language that the client application uses is called the client locale. The language that the database uses for its server-specific files is called the server locale.

ON-Bar must run on the same computer as the database server. However, you can run ON-Bar in any locale for which you have the supporting message and localization files. For example, if the server locale is English and the client locale is French, you can issue ON-Bar commands in French.

The following command performs a level-0 backup of the dbspaces specified in the file, tomb: onbar -b -L 0 -f tomb

On Windows, you cannot use multibyte file names in backup or restore commands because they are not supported.

The sysutils database, the emergency boot files, and the storage-manager boot file are created with the en_us.8859-1 (default English) locale. The ON-Bar catalog tables in the sysutils database are in English. Change the client and database locales to en_us.8859-1 before you attempt to connect to the sysutils database with DB-Access or third-party utilities.

Identifiers that support non-ASCII characters

The IBM Informix GLS User’s Guide describes the SQL identifiers that support non-ASCII characters. Non-ASCII characters include both 8-bit and multibyte characters. You can use non-ASCII characters in the database names and filenames with the ON-Bar and ondblog commands, and for file names in the onconfig file.

For example, you can specify a non-ASCII file name for the ON-Bar activity log in BAR_ACT_LOG and a non-ASCII path name for the storage-manager library in BAR_BSALIB_PATH.

Identifiers that require 7-bit ASCII characters

You must use 7-bit ASCII characters for the following identifiers:

- Storage-space names
- Database server names

Locale of ON-Bar messages

All ON-Bar messages appear in the activity log in the client locale except the messages that the database server issues. For example, the part of the message that tells you that a database server error occurred appears in the client locale, and the server-generated part appears in the server locale.
Use the GL_DATETIME environment variable with ON-Bar

The database server must know how to interpret and convert the end-user formats when they appear in date or time data that the client application sends. You can use the GL_DATE and GL_DATETIME environment variables to specify alternative date and time formats. If you do not set these environment variables, ON-Bar uses the date and time format of the client locale.

If you perform a point-in-time restore, enter the date and time in the format specified in the GL_DATETIME environment variable if it is set.

Point-in-time restore example

For example, the default date and time format for the French locale, fr_fr.8859-1, uses the format "%A %d %B %Y %H:%M:%S." The ON-Bar command for a point-in-time restore is as follows:

```
onbar -r -t "Lundi 9 Juin 1997 11:20:14"
```

You can set GL_DATETIME to a different date and time format that uses the date, month, two-digit year, hours, minutes, and seconds.

```
%1d %B %iy %H:%M:%S
```

The ON-Bar command for a point-in-time restore is as follows:

```
onbar -r -t "9 Juin 97 11:20:14"
```

Tip: For more information on how to use GLS and the GL_DATE and GL_DATETIME environment variables, refer to the IBM Informix GLS User’s Guide.

Use GLS with ontape

The ontape utility supports GLS in the same way as ON-Bar does. You can specify the database name in the national locale.
Appendix E. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age or ability.

Accessibility features for IBM Informix products

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Informix products. These features support:

- Keyboard-only operation.
- Interfaces that are commonly used by screen readers.
- The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled for the IBM Home Page Reader. You can operate all features by using the keyboard instead of the mouse.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

Related accessibility information

IBM is committed to making our documentation accessible to persons with disabilities. Our publications are available in HTML format so that they can be accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using the Adobe Acrobat Reader.

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information about the IBM commitment to accessibility.

Dotted decimal syntax diagrams

The syntax diagrams in our publications are available in dotted decimal format, which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), the elements can appear on the same line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that your screen reader is set to read punctuation. All syntax elements that have the same dotted decimal number (for example, all syntax elements that have the number 3.1) are mutually exclusive.
alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, the word or symbol is preceded by the backslash (\) character. The * symbol can be used next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol that provides information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere. The string following the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed by the ? symbol indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element (for example, 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5?, 5 NOTIFY, and 5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional; that is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicates that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the same dotted decimal number can specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In this example, if you include the FILE keyword but do not specify an option, default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In
this example, if the FILE keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data-area, you know that you can include more than one data area or you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:
1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.
3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.

+ Specifies a syntax element that must be included one or more times. A dotted decimal number followed by the + symbol indicates that this syntax element must be included one or more times. For example, if you hear the line 6.1+ data-area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. As for the * symbol, you can only repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loop-back line in a railroad syntax diagram.
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.
Index

Special characters
/dev/null, ontape
as a tape device 12-5
for logical-log backup 13-16

A
AC_CONFIG
file 9-2
setting archecker parameters 9-1
AC_CONFIG environment variable 9-2, 9-4, 16-5
AC_CONFIG file environment variable 9-2
ac_config.std file 9-2, 9-4
AC_DEBUG configuration parameter 18-2
AC_IXBAR configuration parameter 18-2
AC_MSCPATH configuration parameter 9-2, 9-16, 18-2
AC_RESTORE_FILTER configuration parameter 17-7, 18-3
AC_SCHEMA configuration parameter 18-3
AC_STORAGE configuration parameter 9-2, 9-3, 16-5, 18-3
AC_TAPEBLOCK configuration parameter 18-3
AC_TAPEDEV configuration parameter 18-4
AC_TIMEOUT configuration parameter 9-2, 9-3
AC_VERBOSE configuration parameter 9-2, 9-4, 18-4
Accessibility E-1
dotted decimal format of syntax diagrams E-1
keyboard E-1
shortcut keys E-1
syntax diagrams, reading in a screen reader E-1
Activity log, ON-Bar
checking restore status 6-27
defined 3-8
diagnosing failed verification 16-5
error messages 11-2, 11-3
finding backup time 6-17
message format 11-1
message numbers 11-1
monitoring backups 5-7
overview 3-8
return codes 11-4
skipped dbspace message 6-10
specifying location 9-6
specifying performance monitoring 9-10
specifying performance statistics 4-8
specifying progress messages 4-8, 9-11
status of archecker 9-16, 16-6
verification message 16-4
warning about /dev/null 9-14
Administrative files
backing up 5-3
copying before cold restore 6-12, 6-19
external backup 7-2, 7-4, 15-1, 15-2
Administrative tasks
backing up after changing schema 5-8, 13-3
using ISA 5-10
ALARM_ALL_EVENTS configuration parameter 4-8
ALARMPROGRAM configuration parameter
alarmprogram.sh or alarmprogram.bat 9-4
BAR_RETRY 4-8
BAR_XFER_BUF_SIZE 4-8

ALARMPROGRAM configuration parameter (continued)
defined 4-8, 9-4
ISM_DATA_POOL 4-8
ISM_LOG_POOL 4-8
LTAPEDEV 4-8
RESTARTABLE_RESTORE 4-8
RESTORE_FILTER 4-8
setting
log_full.sh or log_full.bat 5-15
no_log.sh or no_log.bat 5-15
alarmprogram.sh script 5-15, 9-4
ALRM_ALL_EVENTS configuration parameter 9-5
Altering table type
light append 6-28
point-in-time verification 16-3
restoring transformed data 17-7, 18-3
syntax diagram 16-1, 17-4
elements 16-8, 17-4
table-level restore 17-6
temporary files 9-3, 16-2
uses 17-1
using 17-4

Applier, manually controlling logical restore using 17-3, 17-4
archecker utility
AC_CONFIG parameters 9-2
AC_RESTORE_FILTER configuration parameter 17-7, 18-3
blobspaces 16-3
collision file, valid parameters 18-1
defined 17-1
described 17-1
estimating temporary space 16-2
fixing verification problems 16-5, 16-6
interpreting verification messages 16-4
message log 9-2
messages 9-2, 16-4
onsmsync 16-5, 16-6
point-in-time verification 16-3
restoring transformed data 17-7, 18-3
sbspaces 16-3
sbspaces and blobspaces 16-2
syntax

Autochanger 4-10
Automatic backups xi

B
Backing up compressed data 2-4
Backup Scheduler
physical 5-5
BACKUP_FILTER
about 2-4
collision parameter 4-8, 9-5, 12-1
defining in onconfig 3-9
ON-Bar utility 9-5
ontape utility 12-1
transforming data with 3-9
unique server names 3-9
Backups
advantages 13-5

© Copyright IBM Corp. 2006, 2010
Backups (continued)
catalogs
 expiring and synchronizing 8-3
 sysutils 8-3
directory 13-6
examples 13-8
expiry, on ISM 8-5
filled logical-log files 13-11
oncheck, monitoring history 13-12
ontape utility
 creating 13-5
 IFX_ONTAPE_FILE_PREFIX environment variable 13-6
 logical log filled 13-11
 LTAPEDEV configuration parameter 13-6
 TAPEBLK configuration parameter 13-5
 TAPEDEV configuration parameter 13-6
 TAPESIZE configuration parameter 13-5
overview
 levels 1-1
 planning 2-2, 2-3
 schedule 2-3, 3-6
Raw tables 13-9
removing expired 8-5
setting TAPEDEV to STDIO 13-5
standard output
 defined 13-5
 syntax 13-7
tapes 13-5
Backups, ON-Bar xi, 3-1
-0 option 3-1, 5-7, 5-13
automatic log backups 9-4
changing database logging 5-9
checking data consistency 5-6
complete, example of 5-10
current log 3-1, 7-4, 15-2
defined 5-7, 5-13
external 3-1, 7-2, 15-1
fake backups 3-1, 5-12
imported restore 6-24, 6-25
incremental, example of 5-11
ISM catalog 5-9
large chunk files 5-3
list of storage spaces 5-11
logical log 1-2, 3-1, 5-14
monitoring progress 3-8
operational tables 5-13
physical-only 3-1, 5-7
raw tables 5-13
salvaging logs 1-3, 5-14, 5-18
sbspaces, example of 5-12
scratch tables 5-13
sequence
 Dynamic Server 5-18
 standard backup 3-1
 standard tables 5-13
 static tables 5-13
storage-manager installation 5-4
syntax 5-7
table types 5-9, 5-13
temp tables 5-13
verification 3-1, 16-1, 16-6
whole system 3-1
Backups, ontape (continued)
 levels 13-2
 monitoring 13-12
 one device 12-3
 premature termination 13-12
 BAR_ACT_LOG configuration parameter 3-8, 4-8, 9-6
 bar_action table 10-1
 BAR_BSA LIB_PATH configuration parameter 4-7, 4-8, 9-6
 BAR_DEBUG configuration parameter 3-8, 4-8, 9-7
 BAR_DEBUG_LOG configuration parameter 3-8, 4-8, 9-8
 BAR_HISTORY configuration parameter 4-8, 9-8
 bar_instance table 10-1
 bar_iobar table 10-3
 BAR_IXB AR_PATH configuration parameter 4-8, 9-8
 BAR_MAX_BACKUP configuration parameter 4-8, 5-4, 5-18, 6-2, 9-9
 BAR_NB_XPORT_COUNT configuration parameter 4-8, 9-10
 bar_object table 10-4
 BAR_PERFORMANCE configuration parameter 4-8, 9-10
 BAR_PROGRESS_FREQ configuration parameter 4-8, 9-11
 BAR_RETRY configuration parameter 4-8, 9-12
 bar_server table 10-5
 BAR_SIZE_FACTOR configuration parameter 9-12
 BAR_XFER_BUF_SIZE configuration parameter 4-8, 9-13
 page size 9-13
bargroup group 4-5
BIXBAR file, specifying location of 18-2
bldutil.process_id file 9-16
Blobs
availability for backing up 5-12, 13-13
backing up 1-1
backing up offline 5-13
optical platters 5-3
temp space for archecker 16-2
Block size, ontape
 parameter 12-5
tape device 12-7
Blobspaces, example of 5-12, 13-13
files
 recreating during restore 6-18
 renaming during restore 6-20
 renaming 14-11
command line options 6-23
during a restore 6-20
examples using ON-Bar 6-22
listfile 14-11
nonexistent device 6-23, 14-12
nonexistent device, procedure 14-12
ON-Bar syntax 6-21
overview with ON-Bar 6-20
overview with ontape 14-10
specifying other options 6-23, 14-11
with a file 6-23, 14-11
Client locale D-1
cloning 7-1, 15-1
Cold restore xi
automatic log salvage 6-12
defined 1-4, 6-1
Device, ontape
/dev/null 13-16
logical-log backup 13-16
LTAPEDEV parameter 13-16
Disabilities, visual
reading syntax diagrams E-1
Disability E-1
Disaster recovery
imported restore 6-24
TSM administration services 3-5
Distributed restore
performing 17-15
Documentation, types of
backup and restore tasks 3-1
Dotted decimal format of syntax diagrams E-1
Dropped storage space
onlog utility 6-19

E
Element, syntax 16-8, 17-4
Emergency boot file xi
backing up 5-3
isbar 3-7
regenerating 8-6
IDS 8-6
en_us.8859-1 locale xii, D-1
Environment variables
AC_CONFIG 9-2, 9-4, 16-5
GL_DATE D-2
GL_DATETIME D-2
IFX_ONTAPE_FILE_PREFIX 13-6
INFORMIXSQLHOSTS 10-5
ISM_DATA_POOL 4-6
ISM_LOG_POOL 4-6
TSM
setting the interface 4-6
setting the interface, example of 4-6
Evaluating
backup and restore time 2-3
hardware and memory usage 2-3
logging and transaction activity 2-4
Event alarm
alarmprogram.sh 5-15, 9-4
setting ALARMPROGRAM 5-15, 9-4
ex_alarm.sh script 9-4
Examples, CREATE TABLE statement 17-8
Expiration policy 8-4
retention date 8-4
retention generation 8-4
Expiring backups
all 8-7
generation of 8-6
multiple Point-in-Time restores 8-7
on ISM 8-5
retention date 8-6
retention interval 8-6
using onsmsync 8-7
External backup
blocking database server 3-1, 7-3, 15-3
defined 7-2, 15-1
procedure 7-4, 15-2
RS secondary server 7-4
rules for 7-2
tracking backup objects 7-3, 15-3
unblocking database server 7-3, 15-3
External backup and restore
cloning 7-1, 15-1
defined 7-1
disk mirroring 7-1, 15-1
initializing HDR 7-9
ON-Bar 7-1
ontape 15-1
recovering data 7-1, 15-1
recovering data, procedure 7-1
External programs
filters 2-4
transforming data with 2-4, 3-9
External restore
cold restore 15-3
cold restore procedure 7-8, 15-5
examples 3-1, 7-9, 15-5
initializing HDR during 7-9, 15-5
ON-Bar, renaming chunks 7-9
ontape utility
-e command 15-3
-l command 15-3
-p command 15-3
performing 15-5
restored components 15-3
rules 15-4
salvaging logical logs 7-8
syntax diagram 7-6, 15-4
warm restore procedure 7-8
External tables
CREATE EXTERNAL TABLE statement 17-9
restoring
schema command file example 17-15

F
Fake backups 3-1, 5-12
File directory, ontape
syntax to specify 12-4
Files
logical log 1-2
ON-Bar boot 3-7
temporary, built by archecker 18-3
Filters
for compression 2-4
for data transformation, defined 3-9
restore, with archecker 17-7, 18-3
transforming data 2-4, 3-9
finderr utility 3-8, 11-1

G
GL_DATE environment variable D-2
GL_DATETIME environment variable D-2
Global Language Support (GLS) xii, D-1
GLS xii

H
Hardware resources, evaluating 2-3
HDR xi
HDR
external backup and restore 7-9
High-Availability Data Replication
imported restore 6-24
initializing 6-24, 6-27
initializing with external restore 7-9, 15-5
I/O
 simultaneous backup and restore 14-14
 environment variables 14-14
 example 14-14
 secondary host 14-14
IBM Informix Server Administrator
 backing up data 5-10
 restoring data 6-9
IBM Informix Storage Manager
 backup requests 5-9
 configuring 4-1
 devices supported 4-10
 ISM catalog 5-3, 5-9
 overview 3-5
 requirements 4-9
 sm_versions file 4-4
 upgrading C-1
 Version 2.2 support xi
 volume pool names 4-6
IFX_ONTAPE_FILE_PREFIX environment variable 13-6
ifxbkpcloud.jar utility 13-10
Imported restore
 defined 6-3
 ixbar.51 6-25
 ixbar.52 6-25
 performing 6-25
 set up 6-24
Importing a restore 6-24
Importing restore
 initializing HDR 6-27
Incremental backup
 defined 2-2
 example 5-11
 level 1 5-5
 level 2 5-5
industry standards xiv
Informix-Admin group 5-1
INFORMIXDIR/bin directory xii
INFORMIXSQLHOSTS environment variable 10-5
Initializing
 HDR with imported restore 6-27
High-availability Data Replication with ON-Bar 6-27
INSERT statements
 physical-only restores 17-11
 syntax, examples 17-11
ISA xi
ISM xi
ISM catalog
 backing up 5-9
 directory path 5-3
 ism_catalog command 5-9, 6-6
 ism_chk.pl command 6-4
 ISM_DATA_POOL configuration parameter 4-6, 4-8, 9-13
 ISM_LOG_POOL configuration parameter 4-6, 4-8, 9-14
 ism_startup command 4-5
 ism_watch command 5-9, 6-6
ISMData volume pool 4-6
ISMLogs volume pool 4-6
ISO 8859-1 code set xii
ixbar.servernum file xi

J
Jukebox 4-10

L
Large files, backup
 ON-Bar utility 5-3
Level-0 archive, open transactions during 17-6
Level-0 backup 1-1
Level-1 backup 1-1, 5-5
Level-2 backup 1-1, 5-5
Light appends 6-28
Locales
 defined xi
 using GLS with ON-Bar D-1
log_full.sh script 5-15
Logging activity, evaluating 2-4
Logging mode, declaring in DATABASE Statement 17-10
Logical log
 -b option 5-16
 -l option 5-16
 -n option 5-16
 -P option 5-16
 -q option 5-16
 -t option 5-16
 -u option 5-16
 -x option 5-16
 backing up files 14-8
 backup
 -O option 5-13
 current log 7-4, 15-2
 defined 1-2, 5-14
 stopping 5-14
 syntax, IDS 5-14
 files
 restoring 14-7
 restoring, examples of 14-7
ON-Bar utility
 automatic backup 5-15, 9-4
 blobspace issues 5-12
 checking available space 5-6
 completion messages 5-17
 continuous backup 1-3, 5-14
 current log backup 3-1
 manual backup 5-14, 5-15
 replaying records in parallel 6-10
 salvaging 3-1, 6-11
 status of backup 5-14
 when to back up 5-14
 onbar -P 5-16
ontape utility
 automatic backup, starting 13-14
 backed-up status 13-14
 backup, changing parameters 12-7
 backup, device to use 13-16
 backup, if tape fills 13-11
 backup, on another computer 12-4
 backup, procedure 13-12, 13-13
 backup, separate devices 12-3
 backup, to /dev/null 13-16
 backup, when 13-14
 blobspace blobs 13-13
 continuous backup 13-14
 importance of backing up 1-2
 used status 13-14
overview
 defined 1-2
 manual backup 1-3
 salvaging 1-3
 salvage, example of 14-7
 viewing backed-up logs 5-16

Index X-5
Logical restore xi, 17-3
altering or adding tables during 17-3
defined 1-6, 3-1
ontape utility
cold restore 14-2
warm restore 14-2
procedure 6-10
tables and fragments not processed by applier during 17-6
logs_full.sh script 5-15, 9-4
LTAPDEV configuration parameter
ontape utility
continuous backup to a directory 13-14
LTAPEBLK configuration parameter
ontape utility 12-5
LTAPEDEV configuration parameter
considerations 6-13
ON-Bar 9-14
ON–Bar 4-8
ontape utility 12-2
changing to /dev/null 12-6
if two tape devices 13-11
purpose 13-16
LTAPESIZE configuration parameter 12-2, 12-5, 12-6

M
Manual log backup
example 5-15
specifying 1-3, 5-14
Memory resources, evaluating 2-3, 9-6
Message file 5-3, 11-3
usage messages xi, 11-2
Message log
archecker 17-6
output 18-4
path 18-2
Migrating
data with archecker 17-1
storage-manager objects 6-25
Migration
database server C-1
ontape to ON-Bar C-2
storage managers C-1
Mirroring configuration
backup state 14-6
setting 14-6
Mixed restore
defined 1-4
ON-Bar utility 6-2
ontape utility 14-2
point-in-time 6-16
restoring data 6-13
strategies for using 6-14
Moving data 17-1
Multiple tables, restoring 17-15

O
Offline storage spaces, restoring 6-10
ON_RECVRY_THREADS configuration parameter 6-12
ON-Bar
boot files 3-7
ON-Bar activity log 6-20
ON-Bar return codes 11-4
ON-Bar tables xi
ON-Bar tables (continued)
bar_action 10-1
bar_instance 10-3
bar_idbar 10-4
bar_object 10-5
bar_server 3-7
map xi, 10-5
ON-Bar utility
-O option
backup 5-7, C-2
restore 5-13, 6-7, 6-17
whole-system restore 6-6
activity log xi, 11-4
archecker
setting configuration parameters 9-1
backup and restore time 2-3
backup sequence
IBM Informix 5-18
cold restore sequence 6-10
compared to ontape 1-7, 6-35
components on
IBM Informix 3-3
collection parameters 4-8, 9-4, 9-14
database servers supported 3-1
debugging
specifying the level of 3-8
deleting bad backups 8-6
external backup and restore 7-1
migrating from ontape C-2
mixed restore 6-2
monitoring restores
onstat -d 6-5
operations supported 1-7
parallel restore 6-2
planning recovery strategy
creating backup plan 1-7
data loss 2-2
data usage 2-1
failure severity 2-1
pre-recovery checklist 6-4
progress feedback 3-8
renaming chunks 6-3
restore
-e option 6-6
-f option 6-6
-i option 6-6
-l option 6-6
-n option 6-6
-O option 6-6
-q option 6-6
-r option 6-6
-t option 6-6
-w option 6-6
examples 6-9
processes 6-33
types of restores 6-1
usage messages 11-2, 11-3
warm restore sequence 6-34
where to find information 3-1
XBSA interface 3-6
onbar script
defined 8-1
usage and examples 10-1
onbar_d utility
purpose xi
onbar_m utility
defined 3-4
onbar_w utility
 defined 3-1, 3-4
onbar-driver
 child process 5-18
 defined 3-3, 3-4
oncfg file 5-3
onconfig file xi
oninit -m command 6-12
Online storage spaces, restoring 6-17
onmode -c
 block command 7-3, 15-3
 unblock command 7-3, 15-3
onmode -d command 6-22
onmode -ky command 6-12
onmode -l command 5-12
onmode -m command 6-12, 6-29
onmode -sy command 6-13
onsmsync utility
 archecker 16-5, 16-6
 defined 3-1
 procedure 8-4
 using 8-3
onsmsync, expiring old backups 8-7
onstat -d command 6-5, B-1
onstat -l command 5-12, 5-17, B-4
onstat command B-1, B-4
ontape utility
 -C option 14-3
 -d option 13-7
 -D option 1-7, 14-3
 -F option 13-7
 -L option 13-7
 -s option 13-5
 -t option 13-7
 -v option 13-7
 -X option 14-3
 backing up logical log 13-12
 backup levels 13-2
 backups and modes 13-4
 changing
 database logging status 13-1
 LTAPEDEV to /dev/null 12-6
 parameters 12-7
 TAPEDEV to /dev/null 12-6
 checking configuration parameters 12-6
 compared to ON-Bar 1-7
 configuration parameters 12-1
 creating an archive 13-2
 device name 17-1
 ensuring adequate memory 13-5
 example 18-4
 exit codes 13-8
 external backup and restore 15-1
 fake backup 13-7
 labelling backup tapes 13-4
 migrating to ON-Bar 13-4
 operations supported C-2
 option
 -L 14-3
 -r 13-7
 -s 14-3
 overview 15-3
 parameters
 changing 13-7
 overriding 13-7
 parameters, changing 12-6
 performing a restore 14-3
ontape utility (continued)
 physical restore, choosing type 14-1
 precautions, one tape device 14-1
 premature backup termination 13-1
 read to end of tape 13-14
 restore, choosing mode 12-3, 14-2
 restoring data 14-2
 standard output 13-7
 starting continuous backup 13-13
 syntax
 full backup 13-14
 logical-log backup 13-1
 writing to end of tape 13-14
Operational table
 backing up 5-13
 restoring 6-28
Output, message log 18-4
Overriding internal checks
 backup 3-1, 5-7, 5-13
 restore 3-1, 6-6, 6-7, 6-17
 whole-system restore 6-13

P
Parallel backup
 backup sequence 5-18
 BAR_MAX_BACKUP 5-18
 BAR_MAX_BACKUP configuration parameter 5-4
 defined 5-4
 imported restore 6-3
 specifying 9-9
Parallel restore
 defined 6-2
 example 3-1
 ON-Bar utility 6-2
 performing 17-6
Parallel whole-system backup 5-4
Parameter, configuration 18-1
Performing backup 13-5
Performing imported restore 6-25
Physical backup 5-5
 defined 5-7
 example 3-1
Physical restore 1-6
 defined 3-1
 ON-Bar utility
 example 6-11
 ON-Bar utility, procedure 14-1
 ontape utility, cold restore 1-6
 types xi
Physical schema, backing up 5-8
Planning a backup system 2-3
pload utility 5-13
Point-in-log restore 3-1, 6-17
Point-in-time restore
 -r option 6-16
 -t option 6-16
 cold 6-15, 6-16
 creating timelines 6-16
 defined 6-2
 example 3-1, 6-15, D-2
 expiring bad backup 6-17
 mixed 6-16
 restore from older backup 6-17
 specifying timelines 6-16
 warm restore 6-16
Processes, ON-Bar 5-18
Progress monitoring, backup or restore 3-8

R

Raw chunks
backing up 5-7
restoring 6-18

Raw table
backing up
ON-Bar utility 5-13
ontape utility 13-9
restoring 6-28, 14-9

Recovering data 17-2

Recovery strategy planning
creating backup plan 2-2
data loss 2-1
data usage 2-1
failure severity 2-1

Recovery system
comparing ON-Bar and ontape 1-1, 1-7
defined 1-1
invalid tools 6-11

Recovery, tables or fragments added or created during 17-6

Recreating chunk files 6-18
Remote device, ontape
interrupt key 13-15
syntax to specify 12-4
tape size 12-6

Rename chunks restore
defined 6-3, 14-2
ON-Bar
external 6-21
restartable 3-1
ON-Bar, external 7-9
ontape syntax 14-10
overview with ontape 14-10

Replaying log records 1-3, 6-10

Restorable restore
eample 3-1, 6-29
overview 6-3
using 6-29

RESTORE configuration parameter 4-8, 6-29, 9-14

Restore
Bringing the database back online 14-7
considerations 14-10
dropped storage space 6-18
failed restore 6-32
resolving 6-32
scenarios 6-32
from an older backup 6-17
logical 17-3
logical, manually controlling 17-5
mounting tapes 14-7
multiple storage managers 17-6
new-chunk requirements 6-21
nonlogging databases and tables 6-28
physical 17-3
point-in-time, cold 6-15
rename chunk restore with cold restore 6-3
restarting 6-30
standard input 14-12
example 14-12

RESTORE, syntax 17-12
RESTORE_FILTER
about 2-4
configuration parameter 4-8, 9-15

RESTORE_FILTER (continued)
defining on onconfig 3-9
ON-Bar utility 9-15
transforming data with 3-9
unique server names 3-9

Restore, logical 17-12

Restoring 1-6
ON-Bar utility
-O option 3-1, 6-7, 6-13, 6-17
cold, example 6-15
cold, setting mode 6-12
cooked chunks 6-18
external 3-1, 7-6, 7-9
imported 6-3
logical, example 6-10
mixed 6-13
monitoring progress 3-8
offline storage spaces 6-6
online storage spaces 6-12
operational tables 6-17
parallel 6-28
physical, example 3-1
point-in-log 3-1
point-in-time example 6-15, 6-17
raw chunks D-2
raw tables 6-18
renaming chunks 6-20, 6-28
restartable 3-1, 6-29
scratch tables 6-28
selected spaces, example 6-30
standard tables 5-13
static tables 6-28
syntax 6-7, 6-21
table types 6-28, 16-1
temp tables 6-28
using ISA 6-9, 6-28
warm 6-9
whole system 6-10

ontape utility
-C option 14-3
-D option 14-3
-e option 14-3
-f option 14-3
-I option 14-3
-p option 14-3
-v option 14-3
-X option 14-3
full-system 3-1
selected storage spaces 14-1, 14-8
whole system, steps 14-5
overview
defined 1-4, 14-5
logical phase 1-4, 1-6
physical phase 1-6

Restoring compressed data 2-4

Restoring data 6-20, 17-1
archecker 17-2
mixed restore 6-13
point-in-time 17-2

Return codes 11-4
Rewindable tape device 2-3, 12-5
Root dbspace
onbar -r command 11-4
when to back up 5-8

RS secondary server
backup 7-4
T
Table types
backing up 5-9, 5-13
operational 5-9, 6-28
raw 5-13, 6-28
restoring 6-28
scratch 5-13, 6-28
standard 5-13, 6-28
static 5-13, 6-28
temp 5-13, 6-28
Tables
altering
or adding during logical restore 17-6
raw 6-28
standard 9-16
restoring to user-specified point in time 17-6
Tables and fragments
added or created during logical recovery 17-6
not processed by applier during logical restore 17-6
Tape autochangers 4-10
Tape block size
ON-Bar utility 17-3
ontape utility 18-2
Tape device
ontape utility
before opening and on closing 12-5
block-size parameters 12-5, 18-2
gathering for cold restore 12-5
gathering for warm restore 12-5
parameters, setting 12-1
precautions with only one 12-3
reading to end 12-3
rewindable device 12-3
specifying symbolic links 12-5
using /dev/null 12-5
setting TAPEDEV to stdin 12-5
writing to end 12-4
Tape libraries 12-5
TAPEBLK configuration parameter
ontape utility 4-10, 12-5
defined 12-2
setting 12-2
TAPEDEV configuration parameter
ontape utility 12-1
changing to /dev/null 12-5
if two tape devices 13-11
TAPESIZE configuration parameter
ontape utility 12-7
Task-documentation matrix 3-1
Temp table
backing up 13-3
restoring 5-13
Temporary spaces 6-28
Text editor, changing ontape parameters 12-6
Third-party storage manager
configuring 4-1
functions 4-1
onbar script 4-1
Tivoli Storage Manager 3-5
Transaction activity
evaluating 2-4, 4-10, 17-6
Transactions
open during level-0 archive 3-6, 17-6
projecting with logical log backups 1-3
transforming data with filters 2-4, 3-9, 17-7, 18-3
TSM
Administration services 3-5

U
Unblocking database server 7-3
UNIX operating system
bargroup 4-5
copying files 4-5, 4-7
Upgrading database server 7-4
Using CREATE EXTERNAL TABLE statement 17-9
Using CREATE TABLE statement 17-8
Using DATABASE statement 17-10
Using mixed restore, strategies 6-13
Utilities
archecker 6-14, 16-1, 16-6, C-1
onsmsync 16-5, 16-6
Utility
ifxbkpcloud.jar 13-10

V
Variables, in syntax diagrams 8-7
Verification, backup 16-1
Verifying raw devices 14-6
Virtual processors, ON-Bar utility 2-3
Visual disabilities
reading syntax diagrams E-1
Volume pools
backup locations 4-8
default names 4-6

W
Warm restore
defined 1-4, 6-1
ON-Bar utility
examples 6-11
sequence 6-10, 6-34
ontape utility
critical databases 14-9
defined 14-2, 14-9
mixed restore 14-2
part of a mixed restore 14-2
Warm restore (continued)
ontape utility (continued)
performing 14-5
steps to perform 14-2
overview 14-9
Whole-system backup
defined 5-4
eample 5-7
specifying 5-7, 5-18
Whole-system restore
-O option 6-7, 6-13
eample 6-12
restartable restore 6-12
syntax 6-3, 6-13
Windows
Informix-Admin group 5-1

X
XBSA interface, described 3-6
XBSA shared library
default location 4-7, 5-1
specifying location 3-6, 4-7
xcfg file 4-7