
��������	
���
����

��������

��������	
�
�
����������
�������
���������

ii Informix DataStage Tutorial

Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; C-ISAM ; Client SDKTM; DataBlade ; Data DirectorTM; Decision FrontierTM;
Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM, Developer EditionTM;
Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with Extended
Parallel OptionTM; Dynamic ServerTM with MetaCube ; Dynamic ServerTM with Universal Data OptionTM;
Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup EditionTM;
Dynamic Virtual MachineTM; Enterprise Decision ServerTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Frameworks for Business IntelligenceTM; Frameworks TechnologyTM; Gold Mine
Data Access ; i.ReachTM; i.SellTM; Illustra ; Informix ; Informix 4GL; Informix COM AdapterTM;
Informix Informed DecisionsTM; Informix InquireSM; Informix Internet Foundation.2000TM; InformixLink ;
Informix Red Brick Decision ServerTM; Informix Session ProxyTM; Informix VistaTM; InfoShelfTM;
InterforumTM; I-SpyTM; MediazationTM; MetaCube ; NewEraTM; Office ConnectTM; ON-BarTM;
OnLine Dynamic ServerTM; OnLine/Secure Dynamic ServerTM; OpenCase ; OrcaTM; PaVERTM;
Red Brick and Design; Red Brick Data MineTM; Red Brick Mine BuilderTM; Red Brick DecisionscapeTM;
Red Brick ReadyTM; Red Brick Systems ; Regency Support ; Rely on Red BrickSM; RISQL ; Solution DesignSM;
STARindexTM; STARjoinTM; SuperView ; TARGETindexTM; TARGETjoinTM; The Data Warehouse Company ;
Universal Data Warehouse BlueprintTM; Universal Database ComponentsTM; Universal Web ConnectTM;
ViewPoint ; VisionaryTM; Web Integration SuiteTM. The Informix logo is registered with the United States
Patent and Trademark Office. The DataBlade logo is registered with the United States Patent and
Trademark Office.

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.

Table of Contents iii

Table of Contents

Preface
Welcome to the DataStage Tutorial ... vii
Before You Begin ...viii
Organization of This Manual ..viii
Documentation Conventions .. ix
DataStage Documentation ... xi

Chapter 1. Introduction to DataStage
Projects .. 1-1
Jobs .. 1-1
Stages .. 1-3
National Language Support .. 1-3

Character Set Maps and Locales .. 1-4
Server Components .. 1-4
Client Components ... 1-5

The DataStage Manager .. 1-5
The DataStage Designer .. 1-5
The DataStage Director ... 1-6
The DataStage Administrator .. 1-6

DataStage Terms and Concepts ... 1-7

Chapter 2. Getting Started
The Data Model ... 2-1

The Star Schema ... 2-5
The Fact Table ... 2-5
Dimension Tables ... 2-6
The Time Dimension Table ... 2-7

Types of Data Sources and Targets ... 2-9
ODBC Data ... 2-9

iv DataStage Tutorial

Sequential File Data ...2-9
Direct Access Data ..2-9
Accessing Data from a DataStage Job ...2-10

Installing Sample Data ..2-10
Text Files .. 2-11
SQL Script Files ...2-12
Creating Sample Database Tables ..2-13
Running an SQL Script ..2-13
DataStage Export File ..2-16

Road Map to the Exercises ...2-18

Chapter 3. Sample Job
Exercise 1: View and Run a Sample Job ...3-2

Starting the DataStage Designer ..3-3
The DataStage Designer Window ..3-4
Opening the Sample Job ..3-6
Viewing the Configuration of the Job Stages ...3-7
Compiling the Job .. 3-11
Opening the DataStage Director ..3-12
Validating and Running the Job ...3-14

Summary ...3-15

Chapter 4. Transforming Data
Exercise 2: Load Data into a Sequential File ..4-2

Designing the Job ...4-3
Configuring the Job Stages ...4-6
Compiling the Job ..4-9
Validating and Running the Job ...4-9

Exercise 3: Load Data into a Relational Database Table 4-11
Exercise 4: Create Your Own Job ...4-17
Exercise 5: Load the Time Dimension ...4-17
Summary ...4-22

Chapter 5. Handling Multiple Sources
Exercise 6: Use Multiple Sources and Targets ...5-1
Exercise 7: Aggregate Data ...5-9
Summary ...5-12

Table of Contents v

Chapter 6. Using Your Own Meta Data
The DataStage Manager ... 6-2

Starting the DataStage Manager .. 6-2
The DataStage Manager Window .. 6-3

Exercise 8: Create Meta Data from a Relational Database Table 6-5
Exercise 9: Create a Table Definition Manually .. 6-7

Entering Column Definitions ... 6-8
Setting the File Format .. 6-10

Exercise 10: Use Your Meta Data in a Job .. 6-10
Summary .. 6-11

Chapter 7. Debugging Your Jobs
Exercise 11: Use the Job Design Debugger .. 7-1

Creating a Job ... 7-1
Running the Debugger .. 7-3

Summary .. 7-8

Chapter 8. Working with Multivalued Files
Exercise 12: Import the Multivalued File Definition .. 8-1

Creating the Sample Multivalued Source File ... 8-2
Creating the Meta Data ... 8-3

Exercise 13: Extract Data from a Multivalued File ... 8-4
Summary .. 8-8

Chapter 9. National Language Support
National Language Support in DataStage ... 9-1
Exercise 14: Convert from One Character Set to Another 9-2
Exercise 15: Use Per-Column Mapping ... 9-7
Exercise 16: Sorting Under Different Locales .. 9-11
Summary .. 9-15

Chapter 10. Additional Features
Plug-In Stages .. 10-1

BCPLoad Stages ... 10-1
Orabulk Stages ... 10-2

vi DataStage Tutorial

Transforms ..10-2
Built-In Transforms ..10-2
Custom Transforms ..10-3

The Packager Wizard ..10-4
Job Control Routines ...10-5
Reports ..10-6

Chapter 11. Summary
Main Features in DataStage ... 11-1
Recap of the Exercises ... 11-1

Appendix A. Sample Data Definitions

Index

Preface vii

Preface

This manual describes some of the features of the Informix DataStage tool set, and
provides sample demonstrations of simple data extractions and transformations in
a data warehousing setting. It is written for system administrators and application
developers who want to evaluate the DataStage tools and examine some typical
usage examples.

If you are unfamiliar with data warehousing concepts, please read Chapter 1 and
Chapter 2 of DataStage Developer’s Guide for an overview.

This manual is organized by task. It begins with introductory information and
simple examples and progresses through more complex tasks. It is not intended to
replace formal DataStage training, but rather to introduce you to the product and
show you some of what it can do. The CD on the inside back cover contains the
sample used in this manual and a PDF version of the manual, which you can view
using the Adobe Acrobat Reader supplied with DataStage.

Welcome to the DataStage Tutorial
We are pleased that you selected our product, and to make things easier for you,
we created this tutorial to take you through some simple examples of typical data
mart extractions and transformations. Our demonstration introduces you to the
functionality of DataStage, and shows you how easy common data warehousing
tasks can be, with the right tools.

As you begin, you may find it helpful to start an Adobe Acrobat Reader session in
another window, so you can refer to the DataStage documentation to see more
complete coverage of some of the topics we cover. For your convenience, we refer-
ence specific sections in the DataStage documentation as we progress.

This document takes you through a demonstration of some of the features of our
tool. We cover the basics of:

• Setting up and performing extractions from various data sources
• Creating field- and row-level transformations
• Creating and compiling jobs to load data into selected targets

Our goal is to help you understand our product and its capabilities, and help you
make an informed choice when evaluating data mart tool sets.

viii DataStage Tutorial

We assume that you are familiar with fundamental database concepts and termi-
nology because you are working with our product. We cover a lot of material
throughout the demonstration process, and therefore will not waste your time
with rudimentary explanations of things like the difference between primary and
foreign keys. If your database skills are advanced, some of what is covered may
seem like review. However, if you are new to databases, you may want to consult
an experienced database user for assistance with some of the exercises.

Before You Begin
Once you have installed the DataStage server and client programs, you need to
verify that certain other components are installed, configured, and functioning
correctly before proceeding. Check the following list:

• 32-bit Open Database Connectivity (ODBC) drivers for database connec-
tions are needed.

• If your database is accessible only via a network, you need a network inter-
face card and drivers.

• The database you intend to use for the examples (Microsoft SQL Server,
Oracle, Sybase, Informix, UniVerse, and so on) needs to be running and
available.

• You need access to an account in this database. If you do not currently have
an account, then contact your database administrator.

• You need to verify the installation of any required client access tools or
transport layers, such as SQLNet.

• You should have a data source name (DSN) configured to your target
database.

• You need to verify which National Language Support (NLS) map and
locales are configured as defaults.

Some of the items on this list may not apply to you. If you are unsure of the status
of any of these things, please contact your system administrator for assistance.

Organization of This Manual
This manual contains the following:

Chapter 1 introduces the components of the DataStage tool set, and provides
an overview of usage concepts and terminology.

Preface ix

Chapter 2 covers the data model and sample data, and describes the exercises
in the manual.

Chapter 3 describes a sample job and introduces the DataStage Designer and
Director.

Chapter 4 covers simple data extractions and transformations. It describes the
use of sequential files and relational tables as data sources and targets.

Chapter 5 covers the use of multiple sources and targets, and demonstrates the
use of constraints to direct output. It also introduces the Aggregator stage.

Chapter 6 describes how to create meta data using the DataStage Manager.

Chapter 7 describes how to step through a job with the job design debugger.

Chapter 8 is specifically for UniData and UniVerse users. It describes how to
create meta data from a multivalued file, then how to extract data from the file
and load it into a relational database table.

Chapter 9 describes National Language Support (NLS) functionalty. It only
applies where you have DataStage installed with NLS support.

Chapter 10 discusses additional DataStage features, including plug-in stages,
built-in and custom transforms, packaging, job control routines, and report
generation.

Chapter 11 summarizes the features covered and recaps the exercises.

Appendix A contains table and column definitions for sequential files, a
hashed file, and the ODBC tables.

Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names,
keywords, and options that must be input exactly as shown.
In text, bold indicates keys to press, function names, and
menu selections.

x DataStage Tutorial

The following are also used:

• Syntax definitions and examples are indented for ease in reading.

• All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.

• Syntax lines that do not fit on one line in this manual are continued on
subsequent lines. The continuation lines are indented. When entering
syntax, type the entire syntax entry, including the continuation lines, on the
same input line.

UPPERCASE In syntax, uppercase indicates UniVerse commands,
keywords, and options; BASIC statements and functions;
SQL statements and keywords; and ProVerb commands. In
text, uppercase also indicates UniVerse identifiers such as file
names, account names, schema names, and record IDs.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates operating system commands and options,
file names, and pathnames.

Courier Courier indicates examples of source code and system
output.

Courier Bold In examples, courier bold indicates characters that the user
types or keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets
unless indicated.

{ } Braces enclose nonoptional items from which you must
select at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

➤ A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose
File ➤ Exit” means you should choose File from the menu
bar, then choose Exit from the File pull-down menu.

Convention Usage

Preface xi

DataStage Documentation
DataStage documentation includes the following:

DataStage Developer’s Guide: This guide describes the DataStage Manager
and Designer, and how to create, design, and develop a DataStage application.

DataStage Operator’s Guide: This guide describes the DataStage Director and
how to validate, schedule, run, and monitor DataStage applications.

DataStage Administrator’s Guide: This guide describes DataStage setup,
routine housekeeping, and administration.

These guides are also available online in PDF format. You can read them with the
Adobe Acrobat Reader supplied with DataStage. See DataStage Installation Instruc-
tions in the DataStage CD jewel case for details on installing the manuals and the
Adobe Acrobat Reader.

xii DataStage Tutorial

Introduction to DataStage 1-1

1
Introduction

to DataStage

Informix DataStage provides a means of quickly creating usable data warehouses
or data marts. It is an integrated set of tools for designing, developing, compiling,
running, and administering applications that extract data from one or more data
sources, perform complex transformations of the data, and load one or more target
files or databases with the resulting data.

Solutions developed with DataStage are open and scalable; you can, for example,
readily add data sources and targets, or handle increased volumes of data.

Projects
Whenever you start a DataStage client, you are prompted to attach to a DataStage
project. Each complete project may contain:

• DataStage jobs. A set of jobs for loading and maintaining a data
warehouse.

• Built-in components. Predefined components used in a job.

• User-defined components. Customized components created using the
DataStage Manager. Each user-defined component performs a specific task
in a job.

Jobs
A DataStage job consists of a series of individual stages, linked together to describe
the flow of data from a data source to a final data warehouse or data mart. Each
stage describes a particular database or process. For example, one stage may

1-2 DataStage Tutorial

extract data from a data source, while another transforms it. Stages are added to a
job and linked together using the DataStage Designer.

The following diagram represents the simplest job you could have: a data source,
a Transformer (conversion) stage, and the final database. The links between the
stages represent the flow of data into or out of a stage.

You must specify the data you want at each stage, and how it is handled. For
example, do you want all the columns in the source data, or only a select few?
Should the data be aggregated or converted before being passed on to the next
stage?

Data properties are defined by:

• Table definitions. These specify the data you want. Each table definition
contains:

– Information about the table or file that holds the data records.

– A description of the individual columns.

• Data elements. Each data element describes one type of data that can be
stored in a column. The data element associated with a column defines the
operations that can be carried out on that column. DataStage has numerous
predefined data elements representing commonly required data types
(such as date, time, number, and string). You can also define your own
special data elements.

• Transforms. These convert and cleanse your data by transforming it into a
format you want to save and use in your final warehouse. DataStage
provides a large library of built-in transforms.

Together, these properties determine what occurs at each stage of a DataStage job.
The properties are set up project-wide and are shared by all the jobs in a project.

Compilation of a job creates an executable that is scheduled by the DataStage
Director and run by the DataStage Server. When the job is run, the processing
stages described in the job design are performed using the data properties you
defined. Executable jobs can be packaged for use on other DataStage systems.

Data
Source

Transformer
Stage

Data
Warehouse

Introduction to DataStage 1-3

Stages
A stage can be passive or active. A passive stage handles access to databases for the
extraction or writing of data. Active stages model the flow of data and provide
mechanisms for combining data streams, aggregating data, and converting data
from one data type to another.

There are two types of stage:

• Built-in stages. Supplied with DataStage and used for extracting, aggre-
gating, transforming, or writing data. These stages can be either passive or
active.

• Plug-in stages. Additional stages defined in the DataStage Manager to
perform tasks that the built-in stages do not support.

A stage usually has at least one data input and one data output. However, some
stages can accept more than one data input, and output to more than one stage.

Stages and links can be grouped together to form a container. A container is repre-
sented by a Container stage. The links to and from a container are represented by
Container Input and Container Output stages.

National Language Support
DataStage can be installed with built-in National Language Support (NLS). NLS
enables DataStage to:

• Process data in a wide range of languages

• Accept data in almost any character set into most DataStage fields

• Use local formats for dates, times, and money

• Sort data according to local rules

• Convert data between different encodings of the same language (for
example, for Japanese it can convert JIS to EUC)

This remarkable capability is made possible by DataStage using an internal char-
acter set based on the international standard UNICODE format. It invisibly
translates data to and from this character set, as required.

1-4 DataStage Tutorial

Character Set Maps and Locales
Each DataStage project has a language assigned to it during installation. This
equates to one or more character set maps and locales which support that
language.

• Maps. Define the character sets that the project can use.

• Locales. Define the local formats for dates, times, sorting order, and so on
that the project can use.

The map and locale which are assigned on installation become the project defaults,
and are automatically assigned to any jobs created in DataStage, but you can
specify different default maps and locales for individual projects if required.

When you design a DataStage job, you can override the project default map at
several levels:

• For a job
• For a stage within a job
• For individual columns within a table
• For transforms and routines used to manipulate data within a stage
• For imported meta data and table definitions

The locale and character set information is an integral part of the job. When you
package and release a job, the NLS support can be used on another system,
provided that the correct maps and locales are installed and loaded on that system.

Server Components
DataStage has three server components:

• Repository. A central store that contains all the information required to
build a data mart or data warehouse.

• DataStage Server. Runs executable jobs, under the control of the DataStage
Director, that extract, transform, and load data into a data warehouse.

• DataStage Package Installer. A user interface used to install packaged
DataStage jobs and plug-ins.

Introduction to DataStage 1-5

Client Components
DataStage has four client components, which are installed on any PC running
Windows 98 or Windows NT 4.0 or later:

• DataStage Manager. A user interface used to view and edit the contents of
the Repository.

• DataStage Designer. A graphical tool used to create DataStage jobs.

• DataStage Director. A user interface used to validate, schedule, run, and
monitor DataStage jobs.

• DataStage Administrator. A user interface used to set up DataStage users,
control purging criteria, and install NLS maps and locales.

The exercises in this tutorial center on the clients. The server components require
little interaction, although the exercises in which you use the DataStage Manager
also give you the opportunity to examine the Repository.

The following sections briefly introduce the DataStage Manager, Designer,
Director, and Administrator. We return to these tools during the exercises, when
you learn how to use them to accomplish specific tasks. In doing so you gain some
familiarity with each tool.

The DataStage Manager
The DataStage Manager is a graphical tool that enables you to view and manage
the contents of the DataStage Repository.

You use it to browse, import, and edit meta data about data sources, targets, and
transformations. It also allows you to define or install DataStage components such
as data elements, custom plug-in stages, custom transforms, and routines.

In “Exercise 8: Create Meta Data from a Relational Database Table” and “Exercise
9: Create a Table Definition Manually” you see how easy it is to create meta data
from relational database tables and from sequential files. In these exercises you the
DataStage Manager and view the Repository.

For a detailed description of all the features offered by the DataStage Manager,
refer to DataStage Developer’s Guide.

The DataStage Designer
You use the DataStage Designer to build jobs by creating a visual design that
models the flow and transformation of data from the data source through to the
target warehouse. The DataStage Designer graphical interface lets you select stage

1-6 DataStage Tutorial

icons, drop them onto the Designer work area, and add links. Then, still working
in the DataStage Designer, you define the required actions and processes for each
stage and link. You compile your jobs from the Designer, which also provides a job
debugger.

A job created with the DataStage Designer is easily scalable. This means that you
can easily create a simple job, get it working, then insert further processing, addi-
tional data sources, and so on.

As you work through the exercises in this tutorial, you use the DataStage Designer
to create a variety of jobs. These jobs introduce you to the input and output stages,
and demonstrate some of the ways in which you can use the Transformer stage.
You also do an exercise that demonstrates how to run the debugger. By the time
you complete the exercises you will be able to appreciate both the power and ease
of use of the DataStage Designer.

Chapter 3 describes the DataStage Designer interface, telling you enough to be
able to work through the exercises. For a detailed description of all the features
offered by the DataStage Designer, refer to DataStage Developer’s Guide.

The DataStage Director
The DataStage Director enables you to run, monitor, and control jobs built in the
DataStage Designer. When you run a job, the Director prompts for any run-time
parameters. It lets you monitor run-time performance and events such as error
conditions. You can run jobs on an ad hoc basis or schedule them.

You are introduced to the DataStage Director interface in Chapter 3, when you run
a sample job installed from the tutorial CD. Each tutorial exercise in which you
create a job also requires you to run that job and giving you plenty of opportunity
to learn how to use the Director.

For a detailed description of all the features offered by the DataStage Director, refer
to DataStage Operator’s Guide.

The DataStage Administrator
The DataStage Administrator enables you to set up DataStage users, control the
purging of the Repository, and, if NLS is installed, install and manage maps and
locales. In Chapter 9 you use the DataStage Administrator to install various maps
and locales which are used in the exercises to demonstrate the power of NLS.

Introduction to DataStage 1-7

DataStage Terms and Concepts
The following terms are used in DataStage:

Term Description

1NF See first normal form.

Aggregator stage A stage type that computes totals or other func-
tions of sets of data.

BCPLoad stage A plug-in stage supplied with DataStage that bulk
loads data into a Microsoft SQL Server or Sybase
table.

column definition Defines the columns contained in a data table.
Includes the column name and the type of data
contained in the column.

Container stage A built-in stage type that represents a group of
stages and links in a job design.

Data Browser A tool used from within the DataStage Manager or
DataStage Designer to view the content of a table
or file.

data element A specification that describes one item of data that
can be stored in a column and the operations that
can be carried out on that column.

DataStage Administrator A tool used to configure DataStage projects and
users.

DataStage Designer A graphical design tool used by the developer to
design and develop a DataStage job.

DataStage Director A tool used by the operator to run and monitor
DataStage jobs.

DataStage Manager A tool used to view and edit definitions in the
Repository.

developer The person designing and developing DataStage
jobs.

first normal form The name of a kind of relational database that can
have only one value for each row and column posi-
tion (or cell). Its abbreviation is 1NF.

hashed file A file that uses a hashing algorithm for distributing
records in one or more groups on disk.

1-8 DataStage Tutorial

Hashed File stage A stage that extracts data from or loads data into a
database that contains hashed files.

job A collection of linked stages, data elements, and
transforms that define how to extract, cleanse,
transform, integrate, and load data into a target
database. A job can be compiled to produce an
executable.

job batches A group of jobs or separate instances of the same
job (with different job parameters) that is sched-
uled to run.

job parameter A variable included in the job design. A suitable
value must be entered for the variable when the job
is validated, scheduled, or run.

locale Definition of local format for numbers, dates, time,
currency, and other national conventions.

map Table used internally by DataStage to enable
conversion between code pages and other char-
acter set representations, and UNICODE.

meta data Data about data. A table definition which describes
the structure of the table is an example of meta
data.

NF2 See nonfirst-normal form.

NLS National Language Support. DataStage can
support the handling of data in a number of char-
acter sets.

nonfirst-normal form The name of a kind of relational database that can
have more than one value for a row and column
position (or cell). Its abbreviation is NF2.

normalization The conversion of records in NF2 (nonfirst-normal
form) format, containing multivalued data, into
one or more 1NF (first normal form) rows.

ODBC stage A stage that extracts data from or loads data into a
database that implements the industry standard
Open Database Connectivity API. Used to repre-
sent a data source, an aggregation step, or a target
data table.

Term Description

Introduction to DataStage 1-9

operator The person scheduling and monitoring DataStage
jobs.

Orabulk stage A plug-in stage supplied with DataStage that bulk
loads data into an Oracle database table.

plug-in stage A stage that performs specific processing that is
not supported by the Aggregator, Hashed File,
ODBC, UniVerse, UniData, Sequential File, and
Transformer stages.

Repository A DataStage area where projects and jobs are
stored as well as definitions for all standard and
user-defined data elements, transforms, and
stages.

Sequential File stage A stage that extracts data from, or writes data to, a
text file.

source A source in DataStage terms means any database,
whether you are extracting data from it or writing
data to it.

stage A component that represents a data source, a
processing step, or a data mart in a DataStage job.

table definition A definition describing the data you want
including information about the data table and the
columns associated with it. Also referred to as
meta data.

transform function A function that takes one value and computes
another value from it.

Transformer Editor A graphical interface for editing Transformer
stages.

Transformer stage A stage where data is transformed (converted)
using transform functions.

UNICODE A 16-bit character set that provides unique code
points for all characters in every standard char-
acter set (with room for some nonstandard
characters too). UNICODE forms part of ISO
10646

UniData stage A stage that extracts data from or loads data into a
UniData database. Used to represent a data source
or a target data table.

Term Description

1-10 DataStage Tutorial

UniVerse stage A stage that extracts data from or loads data into a
UniVerse database using SQL. Used to represent a
data source, an aggregation step, or a target data
table.

Term Description

Getting Started 2-1

2
Getting Started

As you work through the exercises in this tutorial, you create jobs that extract data,
transform it, then load it into target files or tables. This chapter describes the
sample data you use, and provides a road map showing where you are going and
how to get there. It covers the following:

• Data model. An explanation of how the data fits together, starting with text
files and traditional relational tables, and progressing to the target data
mart environment.

• Types of data sources and targets. An outline of the types of data sources
and targets that DataStage supports.

• Sample data. An overview of the sample data and instructions on how to
install it.

• Exercises. A summary of the tasks you do.

The Data Model
The sample data is based on a very simple, extremely common business situation:
a fictitious company, whose business is selling products to customers. It does not
get much simpler than that!

Six tables form the basis of all the examples you work with. Each table has a simple
design and contains a minimal number of rows. The focus is on the DataStage tool
set and how it works, not on loading thousands of rows of data. Table 2-1 describes
the first six sample tables you work with. The composite primary keys in each table
are shown in bold type.

2-2 DataStage Tutorial

Table 2-1. Six Sample Tables

Table Column Description

ITEMS ORDID Order identifier

ITEMID Item number on this order

PRODID Product identifier

ACTUALPRICE Actual selling price

QTY Quantity ordered

ITEMTOT Item total for this order

ORDERS ORDID Order identifier

ORDERDATE Date order was placed

COMMPLAN Commission plan

CUSTID Customer identifier

SHIPDATE Date order shipped

TOTAL Total for this order

CUSTOMERS CUSTID Customer ID number

NAME Customer name

ADDRESS Customer address

CITY Customer city

STATE Customer state

ZIP Customer postal code

AREA Telephone area code

PHONE Telephone number

REPID Sales representative ID

CREDITLIMIT Customer credit limit

COMMENTS Any notes about customer

Getting Started 2-3

As you can see, the data is relatively straightforward, and consists of a small subset
of what you expect to find in a company database.

PRICES PRODID Product identifier

STDPRICE Standard selling price

MINPRICE Minimum selling price

STARTDATE Starting date for this price

ENDDATE Ending date for this price

PRODUCTS PRODID Product identifier

DESCRIP Product description

EMPLOYEES EMPNO Employee number

ENAME Employee name

JOB Job title

MGR Employee supervisor

HIREDATE Date of hire

SAL Employee salary

COMM Employee sales commission

Table 2-1. Six Sample Tables (Continued)

Table Column Description

2-4 DataStage Tutorial

In a relational database environment, the data model might be expressed like this:

For those unfamiliar with this sort of diagram, the connecting lines indicate the
nature of the relationship between the tables.

For example, the line between PRODUCTS and PRICES denotes that for each
product, there may be one or more prices and each price record must pertain to one
and only one product. The bar through the line means that the uniqueness of
PRICES is determined in part by the related record in the PRODUCTS table.

So that’s what the model looks like from a traditional relational perspective. In the
exercises, you migrate data from a simulated operational environment—the tradi-
tional relational model you have just seen—into a data mart environment.

ITEMS

ORDID
ITEMID
PRODID
ACTUALPRICE
QTY
ITEMTOT

PRICES

PRODID
STDPRICE
MINPRICE
STARTDATE
ENDDATE

PRODUCTS

PRODID
DESCRIP

EMPLOYEES

EMPNO
ENAME
JOB
MGR
HIREDATE
SAL
COMM

ORDERS

ORDID
ORDERDATE
COMMPLAN
CUSTID
SHIPDATE
TOTAL

CUSTOMERS

CUSTID
NAME
ADDRESS
CITY
STATE
ZIP
AREA
PHONE
REPID
CREDITLIMIT
COMMENTS

Getting Started 2-5

The Star Schema
In data warehousing environments, the relational model is usually transformed or
coalesced into a star schema.

The star schema model is named for its appearance. It resembles a star, with rays
emanating from the center. A star schema is used to simplify report production,
and increase performance of ad hoc queries against the data mart. The perfor-
mance advantage created by a correctly designed star schema is tremendous.

There are two significant differences between a typical relational model and a star
schema model. They are known as the fact table and the dimension tables.

The Fact Table
The chief feature of a star schema is the table at the center, called the fact table.

The fact table does not follow any of the conventional rules pertaining to data
normalization. It is denormalized on purpose, to enhance query response times.

The table typically contains the records you most want to explore, usually with ad
hoc queries. The records in the fact table are often referred to as events, due to the
time-variant nature of a data mart.

You track which products customers order over time. You do not store the total of
each order in the fact table (you add a summary table for this later), but instead the
quantity of each product ordered, and the actual selling price for the product at
that time.

In order to establish uniqueness, the primary key for the fact table is a composite
of all the columns except QTY, TOTALSALE, and SHIPDATE.

The fact table used in the tutorial is named FACTS. It looks like this:

FACTS

ORDERDATE
EMPNO
CUSTID
ORDID
PRODID
QTY
TOTALSALE
SHIPDATE

2-6 DataStage Tutorial

In addition to the fact table, you create a table to hold rejects, or rows which you do
not want to include in the fact table. It is created only for the purpose of demon-
strating multiple targets in one of the exercises.

The name of this table is REJECTS, and its structure matches that of the fact table.

Dimension Tables
You can think of dimension tables as “spokes” on a wheel, with the fact table
forming the hub, or center. Nearly all of the information in a typical fact table is
also present in one or more dimension tables.

Dimension tables allow for quick browsing of specific categories of information.
This is particularly useful when you want to narrow the selection criteria of your
query.

The primary keys of each of the dimension tables are chained together to form the
composite primary key of the fact table.

Note: In our example, ORDERDATE references records in the time dimension. It
is viewed as belonging to the time dimension, and is one of the components
of the primary key of the fact table.

The following table lists the columns and the dimensions they belong to:

There is a special dimension table, which must be created manually. It does not
already exist in this operational data, but it is crucial, because it allows control over
the date ranges of the data you want your query to return. This table is called the
time dimension table.

Composite Key
Column Dimension

ORDERDATE Time dimension

EMPNO Employee dimension

CUSTID Customer dimension

ORDID Order dimension

PRODID Product dimension

Getting Started 2-7

The Time Dimension Table
The time dimension table, TIME, contains many rows of dates, and almost always
has additional columns to allow grouping of events by broader date ranges.

In these examples, you use a very simple time dimension table that looks like this:

The time dimension table must be built manually, and must contain every possible
date you could encounter in your data. For each date, you must supply the month,
the quarter, and the year.

Once this is accomplished, the time dimension allows you to quickly group data
by month, quarter or year, which is useful for reporting, and much more efficient
than selecting every date individually, or using an expression of “greater than” one
date and “less than” another.

Note: For UniVerse users, the TIME table is called TIME_ because TIME is a
reserved word in UniVerse.

Table Column Description

TIME DAY A date including day, month, and year

MONTH The month to which the date belongs

QUARTER The fiscal quarter to which the date belongs

YEAR The year to which the date belongs

2-8 DataStage Tutorial

This is the star schema you use for the exercises. Columns shown in bold type are
primary keys.

Note: The data mart model is oversimplified for demonstration purposes. We do
not recommend you follow our example when modelling your data,
although it is perfectly adequate for the exercises in this tutorial.

ORDERS

ORDID
ITEMID
PRODID
ACTUALPRICE
QTY
ITEMTOT
ORDERDATE
COMMPLAN
CUSTID
SHIPDATE
TOTAL

PRODUCTS

PRODID
STDPRICE
MINPRICE
STARTDATE
ENDDATE
DESCRIP

CUSTOMERS

CUSTID
NAME
ADDRESS
CITY
STATE
ZIP
AREA
PHONE
REPID
CREDITLIMIT
COMMENTS

EMPLOYEES

EMPNO
ENAME
JOB
MGR
HIREDATE
SAL
COMM

TIME

DAY
MONTH
QUARTER
YEAR

REJECTS

ORDERDATE
EMPNO
CUSTID
ORDID
PRODID
QTY
TOTALSALE
SHIPDATE

FACTS

ORDERDATE
EMPNO
CUSTID
ORDID
PRODID
QTY
TOTALSALE
SHIPDATE

Getting Started 2-9

Types of Data Sources and Targets
Throughout the exercises in this manual, you extract data from one or more data
sources, and load it into one or more targets. Let’s look at the types of data sources
and targets that DataStage supports.

DataStage considers data to belong to one of the following categories:

• ODBC data
• Sequential file data
• Direct access data

During the exercises you use Sequential File stages and, depending on your data-
base, UniVerse, UniData, Hashed File, or ODBC stages.

ODBC Data
ODBC data is defined as any data source that can be accessed through the Open
Database Connectivity API. This is accomplished by means of a database-specific
ODBC driver.

The list of databases for which ODBC drivers are available is quite large, giving
DataStage the ability to handle data from a wide variety of databases.

Note: DataStage requires that you use 32-bit ODBC drivers. It does not work with
older 16-bit ODBC drivers. If you are unsure about which drivers you are
using, contact your system administrator.

Sequential File Data
Sequential file data is also known as text files or flat files. These can be of fixed-
length or delimited format. As long as you tell DataStage what you are using for a
delimiter, it can be whatever you choose.

Sequential files can exist on any drive, either local or mapped to the Windows NT
server.

Direct Access Data
Direct access data is accessed directly without using SQL. UniVerse hashed files
and UniData databases are examples of direct access data. In this tutorial, you are
shown how to access UniVerse data in table form using SQL scripts and data in a
UniVerse hashed file. The tutorial also shows how to extract data from a UniData
file.

2-10 DataStage Tutorial

Accessing Data from a DataStage Job
The following figure shows the relationship between data types, the type of stage
you use to access that data in a DataStage job, and the type of file/table definition
you use with that stage. UniVerse data, for example, can be in the form of a table
or a hashed file; for each form you use a different type of stage and import a
different type of definition.

Installing Sample Data
Before you install the sample data for the tutorial, you must have installed the
DataStage Developer’s Edition. You should also have verified that certain other
components are installed, configured, and functioning correctly before you
proceed. These are listed in “Before You Begin” on page viii.

The sequence of steps for installing and configuring the sample data is as follows:

1. Install sample data from the tutorial CD.

2. Check the database account for existing tables.

3. Run SQL scripts to create database tables.

4. Import the DataStage export file containing meta data for tables.

To install sample data for the tutorial:

1. Run install.exe from the DataStage 3.6 tutorial CD.

The DataStage Tutorial setup program is launched.

2. Follow the on-screen instructions in the installation wizard.

ODBC
Data

Sequential
File Data

Hashed
File

Sequential

UniVerse

UniVerse UniVerse

Data

ODBC

ODBC Sequential

UniVerse

Data
Type

DataStage
Stage

UniData

UniData

Data

UniDataDefinition
to Import

File

Table File File Table File

Getting Started 2-11

Note: During the installation, you are prompted to choose a DSN. This infor-
mation should have been supplied by your database administrator.
However, if you do not recognize any of the DSNs in the Current DSNs
list box, then select the Use UniVerse environment check box.
Remember to follow the specific “for UniVerse users” instructions
during the exercises.

When you have entered the information required by the setup program, it auto-
matically copies the following files into the specified destination directory (by
default c:\Ardent\DataStage\Tutorial):

• Text files (also known as sequential files or flat files)
• SQL Data Definition Language (DDL) script files
• A DataStage export file, tutorial.dsx

Text Files
Each of the text files is named according to the data it contains. The installation
includes the following text files:

• ITEMS.TXT
• PRICES.TXT
• MVPRICES.TXT
• TIME.TXT
• EBCDPROD.TXT
• PERCOL.TXT
• COLLATE.TXT

You can view these files by opening them with any text editor such as Notepad or
WordPad. If you do so, notice that the ITEMS.TXT file contains rows of a fixed
length, while the PRICES.TXT file is delimited with commas. The exercises demon-
strate the ease with which DataStage handles either type. The EBCDPROD.TXT
and PERCOL.TXT files might look rather strange if viewed in this way. They are
used for the NLS-specific exercises. EBCDPROD.TXT uses the EBCDIC character
set, and part of PERCOL.TXT is in Japanese.

2-12 DataStage Tutorial

SQL Script Files
The SQL scripts create the database tables that you use in the tutorial exercises. The
following table lists the SQL script files and summarizes the purpose of each:

The script you need depends on the database you are using. “Running an SQL
Script” on page 2-13 has guidelines for running the appropriate script on all the
databases listed above.

You can view the content of any of the script files by using a word processor or a
text editor such as Notepad. The script files are held in the destination directory
you specify when you run the tutorial setup program. By default this is
c:\Ardent\DataStage\Tutorial.

Database Script Name Description

Informix INF_BLD.SQL Creates example data in an Informix
database.

INF_CLN.SQL Removes the example data from the Informix
database after you have completed the tuto-
rial exercises.

Microsoft SQL
Server

MSS_BLD.SQL Creates example data in a Microsoft SQL
Server database.

MSS_CLN.SQL Removes the example data from the
Microsoft SQL Server database after you have
completed the tutorial exercises.

Oracle 8 ORA_BLD.SQL Creates example data in an Oracle database.

ORA_CLN.SQL Removes example data from the Oracle data-
base after you have completed the tutorial
exercises.

Sybase SYB_BLD.SQL Creates example data in a Sybase database.

SYB_CLN.SQL Removes the example data from the Sybase
database after you have completed the tuto-
rial exercises.

UniVerse UNI_BLD.SQL Creates example data in a UniVerse database.

UNI_CLN.SQL Removes the example data from the UniVerse
database after you have completed the tuto-
rial exercises.

Getting Started 2-13

Creating Sample Database Tables
Now that you have installed the SQL scripts from the tutorial CD into the
Ardent\DataStage\Tutorial directory, you can start up an SQL environment and
execute the scripts to create sample data mart tables.

For the purposes of the exercises, it is convenient if you can use a “clean” database
account, that is, one that does not contain any other tables in its catalog. If this is
not possible, you must check the following list of table names, and ensure that the
account you are using does not already contain tables with these names:

CUSTOMERS
EMPLOYEES
FACTS
ITEMS
MYPRICES
ORDERS
PRICES
PRODUCTS
Q_SALES
REJECTS
TIME (or TIME_ if you are a UniVerse user)

CAUTION: If you find even one table in your catalog that has the same name as
a table in the list, you cannot proceed with the exercises. Doing so
destroys your existing tables. You need to contact your database
administrator to arrange the use of a clean database.

After you have created the sample tables, you import a DataStage export file that
contains meta data for the tables.

Running an SQL Script
The SQL script files are intended to be run from within your SQL database envi-
ronment. Depending on what relational database you are running, the way you get
to your SQL environment may be different. This section has guidelines for starting
up SQL environments on these databases and running the appropriate script to
create sample tables. Note though that it may be necessary for you to adjust the
syntax slightly to meet the needs of your database and SQL environment. If you
are not sure how to do this, contact your database administrator for assistance.

2-14 DataStage Tutorial

The following lists some common relational database SQL environments, with a
reference to the page that has guidance on running the tutorial script in that
environment:

If you do not recognize any of the above databases, and do not have them on your
system, you should use the UniVerse environment. DataStage comes with a
UniVerse database, so you automatically have support for it on your system.
DataStage views UniVerse data as a special type of ODBC data, and some of the
tutorial details are slightly different when you use UniVerse, but you are told
whenever this is the case.

For Informix. At the command line (DOS prompt), enter the following:

Dbaccess databasename inf_bld.sql > build.log

This directs the output of the script to a file, which you can then view to verify the
successful completion of the script.

For Microsoft SQL Server. On Windows NT 4.0 or Windows 98, choose the
following:

Start ➤ Programs ➤ Microsoft SQL Server 6.5 ➤ ISQL_w

1. Enter your server name, login ID, and, if applicable, your password. The
ISQL/W screen appears.

2. Select the applicable database from the DB drop-down list box.

3. Click Load SQL Script on the toolbar.

4. Select the MSS_BLD.SQL file from the Ardent\DataStage\Tutorial folder and
click Open.

5. Click the Execute Query icon on the toolbar.

You may see error messages on the ISQL/w Results page such as: Cannot
drop the table ’xxx’, because it doesn’t exist in the

Relational Database SQL environment provided by… Described on…

Informix DbAccess or ISQL Page 2-14

Microsoft SQL Server ISQL/w Page 2-14

Oracle 8 SQL*Plus Page 2-15

Sybase ISQL Page 2-15

UniVerse Universe/SQL Page 2-15

Getting Started 2-15

system catalogs. These messages are harmless and are a result of the
script trying to remove nonexistent tables.

Close the session to end the SQL environment.

For Oracle 8. Do one of the following:

• On Windows NT 4.0, choose Start ➤ Programs ➤ Oracle for Windows NT
➤ SQL Plus n.n.

• On Windows 98, choose Start ➤ Programs ➤ Oracle for Windows 98 ➤
SQL Plus n.n.

1. Enter your user name, password, and your remote connect string, if
applicable.

2. Enter the following in the Oracle 8 SQL*Plus window at the SQL prompt:

SQL> @ora_bld.sql

Note: If your Ardent installation is not on drive C, substitute the correct drive
letter.

When the script completes, Finished! appears and the SQL prompt returns.

3. End the SQL environment session. In SQL*Plus, enter EXIT, or simply close
the window.

For Sybase. There are two ways to execute the creation script:

• On Windows NT 4.0 or Windows 98, choose Start ➤ Programs ➤ Sybase for
Windows NT ➤ WISQL32.

• At the command line (DOS prompt), enter the following:

ISQL –e –I syb_bld.sql –o build.log –Uusername -Ppassword
-Sservername

1. If you use the first method, enter your user name, password, database name,
and server name in the WISQL32 window.

2. In the command window, issue the following statement:

@syb_bld.sql

For UniVerse. You should be familiar with UniVerse and SQL. You need sufficient
access rights and SQL DBA privilege. Configure your DataStage project for use
with the tutorial as follows:

2-16 DataStage Tutorial

1. Using Explorer, File Manager, or NT Command Prompt (DOS box), copy (do
not move) the UNI_BLD.SQL file from the DataStage tutorial installation
directory to your DataStage project directory. UNI_BLD.SQL is a script that
you can execute any number of times, though once should suffice.

2. Start a Telnet session, connect to localhost and log in. At the Account name
or path prompt, enter the fully qualified pathname to your DataStage
project, then press Return.

3. At the UniVerse prompt, copy UNI_BLD.SQL into the UniVerse VOC file:

>COPY FROM &UFD& TO VOC UNI_BLD.SQL OVERWRITING

UNI_BLD.SQL is a script that when executed, creates and populates all neces-
sary SQL sample tables and views used by the tutorial.

4. Enter the following to execute UNI_BLD.SQL:

>UNI_BLD.SQL

5. Enter QUIT to exit UniVerse.

6. Return to the DataStage Manager.

DataStage Export File
The tutorial setup program installs a DataStage export file that contains a complete
sample DataStage job and meta data for use in the tutorial exercises. In the first
tutorial exercise you go direct to this sample job. You can immediately look at how
the job has been configured, run it, and compare the input and output files. The
provision of meta data for you to use in subsequent tutorial exercises saves you
having to create your own meta data and lets you begin the exercises with minimal
delay.

Importing the Sample Job and Meta Data

To import the job and meta data from the export file, you need to use the DataStage
Manager. It is not necessary now to understand the function of the Manager. In
Chapter 6 we describe the DataStage Manager and explain how you can use it to
create your own meta data. While you are setting up the tutorial, simply follow the
instructions below.

Getting Started 2-17

To open the DataStage Manager and attach to the tutorial project:

1. Choose Start ➤ Programs ➤ Ardent DataStage ➤ DataStage Manager. The
Attach to Project dialog box appears:

2. Enter the name of your host in the Host system field. This is the name of the
system where the DataStage server components are installed.

3. Enter your user name in the User name field. This is your user name on the
server system.

4. Enter your password in the Password field.

Note: If you are connecting to the server via LAN Manager, you can select the
Omit check box. The User name and Password fields gray out and you
log on to the server using your Windows NT Domain account details.

5. Choose the project to connect to from the Project drop-down list box. This
should be the project you selected during the tutorial setup procedure.

6. Select the Save settings check box to save your logon settings.

2-18 DataStage Tutorial

7. Click OK. The DataStage Manager window appears:

You can now use the DataStage Manager to import the sample job and meta data
into your tutorial project:

1. Choose Tools ➤ Import ➤ DataStage Components… . The DataStage Repos-
itory Import dialog box appears.

2. In the Import from file field, use the … (browse) button to view the destina-
tion directory you specified when you ran the tutorial setup program (by
default c:\Ardent\DataStage\Tutorial).

3. Select the tutorial.dsx file.

4. Click the Import all option button if it is not already selected.

5. Click OK. The sample job, called Exercise1, its associated components, and
meta data for the sample tables are loaded into the DataStage Repository.

Road Map to the Exercises
The following list describes the exercises in this manual, in the order in which you
do them. Exercises 12 and 13 concern multivalued files and are specific to UniData
and UniVerse users. Exercises 14 to 16 demonstrate the features of National
Language Support and are specific to systems that have NLS installed. For other
users, your final exercise is Exercise 11.

Getting Started 2-19

1. View the design and configuration of a sample DataStage job, and run the job.
This exercise introduces you to the look and feel of the DataStage Designer
and Director.

2. Create a job like the one you viewed in Exercise 1. It consists of Sequential File
input and output stages and a Transformer stage. The source file is
ITEMS.TXT. You create and populate the target file ITEMS_2.TXT, which
serves as a data source in the next exercise.

3. Create a job using a Sequential File stage as the source and an ODBC or
UniVerse stage as the target. You use a Transformer stage to “map” the source
to the target; in this job it does not manipulate data, but simply ties the other
two stages together. The exercise loads the ITEMS table in the data mart with
data from the sequential file ITEMS_2.TXT, created in Exercise 2.

4. Practice what you learned in earlier exercises by creating a job on your own,
using a Sequential File stage, a Transformer stage, and an ODBC (or
UniVerse) stage. This exercise loads the PRICES table in the data mart with
data from the PRICES.TXT sequential file.

5. Using transformations, you create the month, quarter, and year columns for
the time dimension. Your only input is a sequential file, TIME.TXT, with a
single date column. The exercise loads the time dimension table, TIME, in the
data mart. The table consists of four columns: a date, and the corresponding
month, quarter, and year. You use the QUARTER data from this file in Exer-
cise 7.

6. This exercise demonstrates the simultaneous use of multiple sources and
targets. You load the FACTS table in the data mart with the combined input of
three other ODBC (or UniVerse) data sources: the ITEMS, ORDERS, and
CUSTOMERS tables. You also create transformation logic to redirect output to
an alternate target, the REJECTS table, using a row constraint.

7. This exercise introduces the Aggregator stage. You populate the Q_SALES
summary table in the data mart using an Aggregator stage to group data from
the TIME and FACTS tables. You previously populated these two tables in
Exercises 5 and 6 respectively.

This completes our data mart examples. The remaining exercises demonstrate
various aspects of DataStage outside the tutorial’s data mart schema described
earlier in this chapter.

8. Create meta data by importing the definition of a sample database table into
the Repository. This and the next exercise introduce you to the look and feel of
the DataStage Manager.

2-20 DataStage Tutorial

9. Create table and column definitions for a comma-delimited sequential file.

This exercise takes you through the process of manually creating a definition
in the Repository for the text file MYPRICES.TXT. You have the opportunity to
examine the Repository and see how meta data is stored there.

10. Create a simple job that uses the meta data you created in Exercises 8 and 9.

11. In this exercise you create a job that you then step through with the job design
debugger. The job populates a new sequential file, ITEMS_11.TXT, with data
from the ITEMS table, which you populated in Exercise 3. You then set a
breakpoint on a link in the job, and learn how to view changes in data as you
step through the job.

12. This exercise and Exercise 13 are specific to users working in a UniData or
UniVerse environment. In this exercise you create a multivalued hashed file,
MVPRICES, from a file installed when you ran the tutorial install program.
You then create table and column definitions from MVPRICES.

13. Create a job using a UniData or Hashed File stage as the source, and an ODBC
or UniVerse stage as the target. The source file, MVPRICES, contains multi-
valued data records, which the exercise loads in normalized form into the
PRICES table in the data mart. Do this exercise only if you are a UniData or
UniVerse user and you have completed Exercise 12.

14. Create a job using a Sequential File stage as the source and an ODBC, or
UniVerse, stage as the target. Incoming data uses the EBCDIC character set,
the job outputs the data using the ASCII character set. This demonstrates how
NLS could be used, for example, to move data between mainframes using
incompatible character sets.

15. This exercise demonstrates per-column mapping. Create a job using a
Sequential File stage as the source and a Sequential File stage as the target.
The source table has four columns which each use a different character set.
The job outputs a table where all four columns use the same character set.

16. This exercise demonstrates how different locales can affect data. Create a job
which you run once to sort data under the US-English locale, and again under
the FR-French locale. Compare the two versions to see the different sort
conventions that each locale imposes.

You may find it difficult to remember the sequence of exercises, and the way in
which files and tables populated in one exercise are used as a data source in subse-
quent exercises. Table 2-2 provides a summary of the exercises.

Getting Started 2-21

Table 2-2. Summary of Tutorial Exercises

Exercise Source Target Summary

Exercise1 ITEMS.TXT ITEMS_1.TXT Sample job. Fixed-length file
to comma-delimited file.

Exercise2 ITEMS.TXT ITEMS_2.TXT Fixed-length file to comma-
delimited file. Simple data
transform of two columns.

Exercise3 ITEMS_2.TXT ITEMS Comma-delimited file to
table. Order of input/output
columns differs.

Exercise4 PRICES.TXT PRICES Same as Exercise3.

Exercise5 TIME.TXT TIME Create source meta data
manually. Create three trans-
form expressions to derive
month, quarter, and year.

Exercise6 ITEMS
ORDERS
CUSTOMERS

FACTS
REJECTS

Select source columns from
three tables. Use constraints
to direct output.

Exercise7 TIME
FACTS

Q_SALES Select source columns from
two tables. Configure an
Aggregator stage. Create a
quarterly summary.

Exercise8 N/A N/A Import meta data from the
relational database table
MYPRICES.

Exercise9 N/A N/A Create meta data for the
sequential file
MYPRICES.TXT.

2-22 DataStage Tutorial

Exercise10 MYPRICES.TXT MYPRICES A job to demonstrate the use
of meta data you created in
Exercise8 and Exercise9.

Exercise11 ITEMS ITEMS_11.TXT Simple job for debug exer-
cise.

Exercise12 N/A N/A Import meta data from the
multivalued hashed file
MVPRICES.

Exercise13 MVPRICES PRICES Multivalued file normalized
and output to table. Uses
meta data created in
Exercise12.

Exercise14 EBCDPROD.TXT PRODUCTS A job to demonstrate basic
character set conversion
features of NLS.

Exercise15 PERCOL.TXT COLOUT.TXT A job to demonstrate the use
of per-column mapping
under NLS.

Exercise16 COLLATE.TXT COLLATE.OUT A job to demonstrate the use
of locales under NLS.

Table 2-2. Summary of Tutorial Exercises (Continued)

Exercise Source Target Summary

Sample Job 3-1

3
Sample Job

This chapter introduces you to a sample DataStage job that has already been
created for you. The job, called Exercise1, was installed when you ran the tutorial
install program as described in Chapter 2. It extracts data from a fixed-length
sequential file and writes that data to a comma-delimited sequential file.

The job consists of the following stages:

• A Sequential File stage to handle the extraction of data from the source file
• A Sequential File stage to handle the writing of data to the target file
• A Transformer stage to link the input and output columns

You look at each stage in the job and see how they are configured. You see how easy
it is to build the structure of a job in the DataStage Designer and then bind specific
files to that job. Finally, you compile and run the job, and then compare the source
file with the target file.

This is, of course, a very basic job, but it offers a good introduction to DataStage.
Using what you learn in this chapter, you will soon be creating more advanced
jobs.

The source file is the fixed-length sequential file ITEMS.TXT, which was one of the
sample files you installed in Chapter 2. Now is a good time to look at the file,
which is located in c:\Ardent\Datastage\Tutorial. Open it with a text editor such as
WordPad or Notepad.

3-2 DataStage Tutorial

It looks similar to this:

The target file is created when you run the job, and this data is written in comma-
delimited format to the file.

Exercise 1: View and Run a Sample Job
DataStage jobs are opened from the DataStage Designer. You frequently use the
Designer in this tutorial to create and configure new jobs and then compile them.
Before you begin most of the exercises, you need to run the DataStage Designer
and become acquainted with the DataStage Designer window. The tutorial
describes its main features and tells you enough about the DataStage Designer to
enable you to complete the exercises. For detailed information, refer to DataStage
Developer’s Guide.

Sample Job 3-3

Starting the DataStage Designer
Choose Start ➤ Programs ➤ Ardent DataStage ➤ DataStage Designer to run
DataStage Designer. The Attach to Project dialog box appears:

Note: This dialog box appears when you start the DataStage Manager, Designer,
Administrator, or Director client components from the DataStage program
folder. In all cases, you must attach to a project by entering your logon
details.

To attach to a project:

1. Enter the name of your host in the Host system field. This is the name of the
system where the DataStage server components are installed.

2. Enter your user name in the User name field. This is your user name on the
server system.

3. Enter your password in the Password field.

Note: If you are connecting to the server via LAN Manager, you can select the
Omit check box. The User name and Password fields gray out and you
log on to the server using your Windows NT Domain account details.

4. Choose the project to connect to from the Project drop-down list box. This list
box displays all the projects installed on your DataStage server. At this point,
you may only have one project installed on your system and this is displayed
by default.

5. Select the Save settings check box to save your logon settings.

3-4 DataStage Tutorial

6. Click OK. The DataStage Designer window appears:

The DataStage Designer Window
The DataStage Designer window contains a Job window, in which you design jobs,
and a tool palette, from which you select job components. A status bar at the
bottom of the DataStage Designer window displays one-line help for the window
components and information on the current state of job operations, for example,
compilation.

When you start the Designer, the Job window is empty by default. Grid lines in the
window allow you to position stages precisely.

For full information about the DataStage Designer window, including the func-
tions of the pull-down and shortcut menus, refer to DataStage Developer’s Guide.

Toolbars

The Designer toolbar contains the following buttons:

New Job

Open Job

Save Job

Compile

Grid Lines

Snap to Grid Print

Help

Zoom In

Zoom Out
Insert Plug-in

Stage

Sample Job 3-5

You can display ToolTips for the toolbar by letting the cursor rest on a button in the
toolbar.

By default, there is also a debugger toolbar, which contains buttons representing
debugger functions. Exercise 11 in Chapter 7 shows how to use the debugger and
describes the toolbar. As with the Designer toolbar, you can display ToolTips by
letting the cursor rest on a button in the debugger toolbar.

Tool Palette

The tool palette contains buttons that represent the components you can add to
your job designs:

By default, the tool palette appears in the DataStage Designer window, but you can
move it anywhere on the screen. To display ToolTips, let the cursor rest on a button
in the tool palette.

Container Stage

Container Output Stage

Aggregator Stage

Sequential File Stage

UniVerse Stage

Link

Transformer Stage

Hashed File Stage

ODBC Stage

Container Input Stage

UniData Stage

3-6 DataStage Tutorial

Opening the Sample Job
To open the sample job that we have provided for you:

1. In the DataStage Designer, choose File ➤ Open Job. The Open Job dialog box
appears:

2. Double-click Exercise1.

The job Exercise1 appears in the DataStage Designer Job window and looks similar
to this:

Sample Job 3-7

On the left side of the window is a Sequential File stage labelled ITEMS_TXT, and
on the right side of the window is another Sequential File stage, labelled
ITEMS_1_TXT.

In the center of the window is a Transformer stage, labelled SEQTOSEQ.

The stages are linked together to define the flow of data through the job. In this
case, it flows from ITEMS_TXT, through the Transformer stage, to ITEMS_1_TXT.

Viewing the Configuration of the Job Stages
You can see the basic structure of the job in the Job window. The next step is to view
the configuration of each stage. The configuration information identifies the
specific files that are bound to each Sequential File stage, specifies the appropriate
meta data, and defines what data processing is required.

Source Sequential File Stage

Let’s begin by looking at the leftmost stage, ITEMS_TXT, which handles the extrac-
tion of data from a sequential file. This stage specifies:

• The location of the file from which data is extracted
• The name of the file
• The format of the file
• The definition of the data columns in the file

1. Double-click the ITEMS_TXT Sequential File stage. The Sequential File Stage
dialog box appears, displaying the stage General page. This specifies the
location of the file from which data is extracted. We are using the Tutorial
directory, into which you loaded the sample data (see “Installing Sample
Data” on page 2-10), so the Directory where files are held field contains:

c:\Ardent\DataStage\Tutorial

The Description box is for the job designer to type a brief description of the
stage.

2. If you are using DataStage with NLS installed, click the NLS tab. The NLS
page shows the map used for this stage. It also allows you to define a different
character set map for the Sequential File stage, which overrides the default
character set map set for the project or the job. However, we use the default
map for this exercise.

3. Click the Outputs tab. The Output name field at the top of the page specifies
the name of the link from this stage to the Transformer stage. On the General
page, the File name field contains the name of the file associated with this
stage. ITEMS.TXT is the file from which data is extracted.

3-8 DataStage Tutorial

Note: The names given to the Sequential File stages differ slightly from the
names of the associated files because stage names can contain only
alphanumeric characters and underscores.

4. Click View Data… on the Outputs page. This runs the Data Browser, which
displays the data in ITEMS.TXT. The names of the columns in ITEMS.TXT are
displayed across the top of the Data Browser. The Data Browser is a very
useful tool with which to monitor your source and target data during the
tutorial exercises.

Click Close to close the Data Browser.

5. Click the Format tab. This page defines the format of ITEMS.TXT. It is a fixed-
length sequential file, so the Fixed-width columns check box is enabled.

6. Click the Columns tab to display the Columns page. Here you see the defini-
tion of the columns in ITEMS.TXT, that is, the meta data. There is a row of
meta data for each column in ITEMS_TXT. You see how to load the definitions
from the DataStage Repository by using the Load… button later in the
tutorial.

7. Click OK to close the Sequential File Stage dialog box. The input stage for the
job is now complete.

Target Sequential File Stage

Next, let’s look at the output stage for the job. It is also a Sequential File stage, and
the dialog box is almost identical to that for the input stage.

1. Double-click the ITEMS_1_TXT Sequential File stage. The Sequential File
Stage dialog box appears.

Notice that the dialog box for this stage shows an Inputs tab instead of an
Outputs tab. This is the last stage in the job, and therefore has no outputs to
other stages. It only accepts input from the previous stage.

2. The procedure for defining the target file is very similar to that for the source
file.

Again, there is a field called Directory where files are held. It does not use the
information in the input Sequential File stage, because you may want to direct
the output to a different directory.

For the sake of simplicity, however, this job keeps all your files together by
using the same directory as before. The Directory where files are held field
contains:

c:\Ardent\DataStage\Tutorial

Sample Job 3-9

3. If you are using DataStage with NLS installed, click the NLS tab. The NLS
map used for the stage is highlighted. We are using the default map.

4. Click the Inputs tab. The Input name field specifies the name of the link,
Output. This is because the stage takes input from the link between it and the
Transformer stage, rather than from the Transformer stage. On the General
page, the File name field specifies that the output file is named ITEMS_1.TXT.

Notice that this page also has the Overwrite existing file radio button selected
in the Update action group. It specifies how the output file is updated if it
already exists. The first time you run the job it creates ITEMS_1.TXT, because
the file does not exist; then on subsequent runs it overwrites the file.

Note: The absence of the file until you have first run the job means that an
error message is displayed if you click View Data… now.

5. Click the Format tab. This page defines the format of ITEMS_1.TXT. The
output data is written to a comma-delimited file, so the comma delimiter is
specified and the Fixed-width columns check box is not selected.

6. Click the Columns tab and view the column definitions for the data in
ITEMS_1.TXT. Exercise1 is a simple job that does not change the field formats,
so the output stage uses the same column definitions as in the input stage.

7. Click OK to close the Sequential Stage dialog box.

Transformer Stage

The next step is to look at the Transformer stage. It connects the input and output
links and specifies what transformations are to be applied to the data before it is
output to the target file. In Exercise1 there are no transformations, to keep the job
simple. You learn how to define transformations later in the tutorial.

3-10 DataStage Tutorial

1. Double-click the SEQTOSEQ Transformer stage. The Transformer Editor
appears:

The upper part of the Transformer Editor is called the Links area. It is split into
two panes, the left pane showing the columns on the input link, the right pane
showing the columns on the output link. The Links area also shows the rela-
tionships (indicated by lines) between the input and output columns. In the job
Exercise1, each column on the output link is derived from the equivalent
column on the input link, as indicated by relationship lines between input and
output columns. The Derivation cells on the output link are where you would
specify what transformations you want to perform on the data.

Beneath the Links area is the Meta Data area. It is also split into two panes, with
meta data for the input link in the left pane, that for the output link in the right
pane. These panes display the column definitions you viewed earlier in the
exercise on the Columns pages in the source and target Sequential File Stage
dialog boxes.

Sample Job 3-11

Note: A great feature of the DataStage Designer is that you only have to
define or edit something on one end of a link. The link causes the infor-
mation to automatically “flow” between the stages it connects. In the
job Exercise1 the developer had only to load the column definitions
into the source and target stages. These definitions then appeared auto-
matically in the Transformer Stage dialog box.

The Transformer Editor toolbar contains the following buttons:

You can view ToolTips for the toolbar by letting the cursor rest on a button in
the toolbar.

For a detailed description of the Transformer Editor, refer to DataStage Devel-
oper’s Guide. However, the steps in the tutorial exercises tell you everything
you need to know about the Transformer Editor to enable you to run the
exercises.

2. Click OK to close the Transformer Editor.

Compiling the Job
When you have designed a job and configured the individual stages, the next task
is to compile the job, which you can then run. So far you have just looked at the
sample job. Now you begin to use DataStage, starting by compiling the job
Exercise1.

To compile the job:

1. With the job still displayed in the DataStage Designer, choose File ➤ Compile
from the Designer menu or click the Compile button on the toolbar.

Stage
Properties

Show All or

SaveConstraints Cut

Copy

Paste

Selected
Relations

Load
Column
Definition

Column
Definition

3-12 DataStage Tutorial

The Compile Job window appears and reports on the progress of the
compilation:

Note: If you have changed anything in the job, DataStage tells you the job is
modified and asks whether you want to save it. If you have made the
changes accidentally, click Cancel, then reopen the job by choosing
File ➤ Open Job from the DataStage Designer menu. When DataStage
prompts you first to save job Exercise1, click No again.

2. Close the Compile Job window when the job has been compiled.

Opening the DataStage Director
You are now ready to validate and run the compiled job, but to do so you need to
start the DataStage Director. This section provides a brief introduction to the
Director, then takes you through the steps to validate and run the sample job.

Choose Tools ➤ Run Director from the Designer to open the DataStage Director.
You are automatically attached to the same project and you do not see the Attach
to Project dialog box.

Sample Job 3-13

The DataStage Director window appears, by default displaying the Job Status
view. You see the job Exercise1 listed with the status shown as Compiled.

The Job Status view shows the status of all jobs in the current project. You can use
the View menu to switch the view to the log file for a chosen job when you run a
job.

Information is taken from the server at regular intervals, or you can choose View
➤ Refresh to update the screen immediately.

The Director toolbar contains the following buttons:

You can display ToolTips by letting the cursor rest on an icon in the toolbar.

For a detailed description of the DataStage Director, refer to DataStage Operator’s
Guide.

Job

Job

Sort - Stop a

Run a

Print

Job

Find

Sort -

DescendingScheduleView Job

Reset a

Help

Reschedule
a Job

Open
JobJobAscendingLogStatusProject

Schedule
a Job

3-14 DataStage Tutorial

Validating and Running the Job
Now that you have opened the DataStage Director, continue by validating and
running the sample job you have just compiled. In validating the job, you ask
DataStage to give it one more look before finalizing it.

1. Click Exercise1 to select it.

2. Choose Job ➤ Validate. The Job Run Options dialog box appears and lets you
specify any required parameters. There are no parameters defined for this job,
so click Validate to continue.

The status changes to Validated OK.

3. Choose Job ➤ Run Now… . The Job Run Options dialog box appears and
collects any job run limits that are required. Click Run to run the job.

Sample Job 3-15

At this point, you can choose View ➤ Log and watch the process as it is
recorded in the log file, although the job runs so quickly that it may already
have finished.

The status in the job status view changes to Finished. That completes your first
data transformation.

4. Open the new file, ITEMS_1.TXT in a text editor such as Notepad or
WordPad. The ITEMS_1.TXT file is located in c:\Ardent\DataStage\Tutorial
(remember, this location was specified in the configuration of the stage
ITEMS_1_TXT). The file should look like this:

Notice that the file is comma-delimited, whereas the source file was fixed-
length.

This exercise has laid a good foundation. In the coming exercises, you build on
what you have learned and create some complex transformations. It is easy with
the right tools.

Summary
In this chapter you learned what a DataStage job looks like. Using the DataStage
Designer, you viewed the Sequential File Stage dialog box and the Transformer
Editor, and compiled the job. Then you used the DataStage Director to validate and
run the job.

In the next chapter you find out how to create your own job with the DataStage
Designer. You begin by creating a job similar to the job Exercise1, except that you
also transform some of the data before it is loaded into the target file.

3-16 DataStage Tutorial

Transforming Data 4-1

4
Transforming Data

The four exercises in this chapter focus on extracting data from sequential files,
transforming it, and loading it to a sequential file or a relational database table. You
do the following:

• Create new jobs in the DataStage Designer

• Define Sequential File stages to handle your input

• Define Transformer stages to process the data

• Define the stages required for output to a sequential file or a relational
database

• Save and compile the jobs

• Validate and run the jobs in the DataStage Director

• Use the Data Browser to check the results

In Exercise 2 you create a job consisting of Sequential File input and output stages
and a simple Transformer stage. The job is identical to the job Exercise1, except that
you also transform the data in two of the columns before it is loaded into the target
file.

In Exercise 3 you populate an ODBC or UniVerse table with data from a sequential
file. You are introduced to ODBC or UniVerse stages and the stage dialog box. You
also use the Data Browser to view the data written to the target table.

Note: If you created sample tables in a UniVerse database in Chapter 2, you
should use a UniVerse stage in Exercise 3. If you created tables in one of the
other databases listed in Chapter 2, use an ODBC stage. All the exercises
use ODBC rather than UniVerse stages, but the two types are very similar
and both access data using SQL. You are told when there are any differ-
ences for UniVerse users.

4-2 DataStage Tutorial

Exercise 4 is very similar to Exercise 3, populating a table with data from a sequen-
tial file but there are no individual steps. This gives you the opportunity to find out
how much you have remembered and understood from the previous exercises.

In Exercise 5 you create your data mart time dimension by extracting and trans-
forming dates from a sequential file and loading the results into the TIME table.
This exercise demonstrates the flexibility that DataStage has to transform a given
source field any number of times within a single stage. It also shows how you can
direct the transformed output from a single source field to several target fields.

Note: For UniVerse users, the TIME table is called TIME_ because TIME is a
reserved word in UniVerse.

Exercise 2: Load Data into a Sequential File
In this exercise you find out how to create a job like the sample job described in
Chapter 3. You do the following:

• Create a new job in the DataStage Designer

• Configure a Sequential File stage to handle the input

• Configure a second Sequential File stage for output to a comma-delimited
file

• Configure a simple Transformer stage to process the data

• Compile the job

• Validate and run the job in the DataStage Director, and check the results

You start with the fixed-length text file, ITEMS.TXT, as used in Exercise 1. It is one
of the sample files you installed in Chapter 2. The file looks like this:

Transforming Data 4-3

As with the job Exercise1, you are going to create a DataStage job that sends the
output to a comma-delimited file. However, before the data is written, the job
divides the data from two of the input columns, ITEMTOT and ACTUALPRICE,
by 100. The effect of this is to add decimal points to the data in the ITEMTOT and
ACTUALPRICE columns in the target file. At the end of the exercise you can view
the new file and can contrast it with ITEMS.TXT. If this seems basic, it is. The intent
is to familiarize you with creating and editing stages before you attempt more
complex examples.

Designing the Job
Create a new job in the DataStage Designer:

1. If the DataStage Designer is still open from Exercise 1, choose File ➤ New Job
to clear the Job window. An empty job is displayed.

If the DataStage Designer is not running, start it as described in “Starting the
DataStage Designer” on page 3-3. An empty job is automatically displayed.

2. Save the empty job:

a. Choose File ➤ Save Job. The Create New Job dialog box appears:

b. Enter Exercise2 in the Job Name field.

c. Click OK. The job is created and saved in the Repository.

4-4 DataStage Tutorial

3. Select the components for the new job from the tool palette and place them in
the Job window:

a. Click the Sequential File button on the tool palette. Click in the left side of
the Job window to place a Sequential File stage.

b. Click the Transformer button on the tool palette and place a Transformer
stage to the right of the Sequential File stage.

c. Click the Sequential File button on the tool palette and place a Sequential
File stage to the right of the Transformer stage.

4. Now link the job components together to define the flow of data in the job:

a. Click the Link button on the tool palette. Click and drag between the
Sequential File stage on the left side of the Job window and the Trans-
former stage. Release the mouse to link the two stages.

b. In the same way, link the Transformer stage to the Sequential File stage on
the right side of the Job window.

Your Job window should now look similar to this:

Changing Stage Names

The names of the stages and links can be altered to make it easier to identify the
flow of a job, helping to make complex jobs easier to understand.

Transforming Data 4-5

As part of this exercise, you change the names of the diagram objects, but the
remaining exercises use the default object names.

Changing the name of a stage or a link is as simple as clicking it, and typing a new
name or editing the old. After you edit the text, click somewhere else in the
diagram, for your change to take effect.

1. Click the leftmost Sequential File stage (CSeqFileStage0) and type:

ITEMS_TXT

Notice that ITEMS.TXT is not used for the name. Only alphanumeric charac-
ters and underscores are allowed. Click an empty area of the Job window to
effect the change.

2. Change the name of the link between the input stage and the Transformer
stage to Input.

3. Change the name of the Transformer stage to DIVBY100.

4. Change the name of the link between the Transformer stage and the output
stage to Output.

5. Change the name of the output stage to ITEMS_2_TXT.

Your job window should now look like this:

4-6 DataStage Tutorial

Configuring the Job Stages
You have now designed the basic structure of the job. The next task is to configure
each of the stages by binding them to specific files, loading the appropriate meta
data, and defining what data processing you require.

Source Sequential File Stage

Let’s begin with the leftmost stage, which handles the extraction of data from
ITEMS.TXT.

1. Double-click the ITEMS_TXT Sequential File stage. The Sequential File Stage
dialog box appears.

2. Specify the location of the file from which data is extracted. We are using the
Tutorial directory, into which you loaded the sample data (see “Installing
Sample Data” on page 2-10).

Click the Directory where files are held browse button (...). The Browse direc-
tories dialog box appears. Browse to the Tutorial directory (by default
c:\Ardent\DataStage\Tutorial) and click OK. The Tutorial directory path is
entered into the Directory where files are held field.

3. Specify the name of the source file (ITEMS.TXT) and its format (fixed width):

a. Click the Outputs tab. The General page is active by default.

b. In the File name field, type:

ITEMS.TXT

c. Click the Format tab to display the Format page.

d. Select the Fixed-width columns check box.

4. Now load the table definition for ITEMS.TXT from the DataStage Repository:

a. Click the Columns tab to display the Columns page.

b. Click the Load… button. The Table Definitions window appears.

c. Under the Sequential branch, there should be a folder with the same name
as your project. Expand the folder and select the ITEMS table definition.
Click OK. The table definitions appear on the Columns page in the grid.

5. Click OK to close the Sequential File Stage dialog box.

You have finished defining the input stage for the job. See how easy it is to build
the structure of a job in DataStage Designer then bind specific files to that job.

Transforming Data 4-7

Target Sequential File Stage

Next you define the output stage for the job.

1. Double-click the ITEMS_2_TXT Sequential File stage. The Sequential File
Stage dialog box appears.

Notice that the dialog box for this stage does not show an Outputs tab, but an
Inputs tab instead. Since this is the last stage in the job, it has no outputs to
other stages. It only accepts input from the previous stage.

2. The procedure for defining the target file is very similar to that for the source
file.

Again, there is a field called Directory where files are held. It does not use the
information you put into the first Sequential File stage, because you may want
to direct the output to a different directory, perhaps a mapped volume on
another computer.

For the sake of simplicity, however, use the same directory as before, and keep
all your files together.

Click the Directory where files are held browse button (...) and browse to the
Tutorial directory in the Browse directories dialog box. Click OK.

3. Specify the name of the target file and its format:

a. Click the Inputs tab. The General page is displayed by default.

b. The output file is ITEMS_2.TXT. In the File name field, type:

ITEMS_2.TXT

c. Note that the default setting for the Update action is Overwrite existing
file. Keep this setting.

d. Click the Format tab. You write your output to a comma-delimited file, so
keep the default settings.

4. As for the input stage, you define the data in ITEMS_2.TXT by loading a table
definition from the Repository. You are not going to make any radical changes
to the field formats in this simple transformation example, so you load the
same column definitions as were used in the input stage.

a. Click the Columns tab.

b. Click Load…, then select ITEMS from the Sequential branch in the Table
Definitions window.

c. Click OK. The definitions load into the Columns grid.

4-8 DataStage Tutorial

5. Click OK to close the Sequential Stage dialog box. You have finished creating
the output stage for the job.

Transformer Stage

With the input and output stages of the job defined, the next step is to define the
Transformer stage. This is the stage in which you specify what transformations you
want to apply to the data before it is output to the target file.

1. Double-click the DIVBY100 Transformer stage. The Transformer Editor
appears.

2. You now need to link the input and output columns and specify what trans-
formations you want to perform on the data. You are going to map each
column on the input link to the equivalent column on the output link. You
also divide the data in two of the columns by 100 before it is loaded into
ITEMS_2.TXT.

Ctrl-click to select the six columns on the Input link, then drag them to the
blank Derivation cells on the Output link. Release the mouse to add the
columns to the Derivation cells. The derivation of the data on each output link
column is the equivalent input link column, as indicated by relationship lines
between input and output columns.

The top pane should now look similar to this:

3. Use the Expression Editor to specify that the data in the ITEMTOT and
ACTUALPRICE columns is to be divided by 100.

Double-click the Derivation cell of the ITEMTOT output link column (it
contains the expression Input.ITEMTOT). The Expression Editor opens and
displays the derivation in a small window.

4. Type /100 at the end of the derivation so that it becomes:

Input.ITEMTOT/100

Transforming Data 4-9

This specifies that data extracted from the ITEMTOT column on the input link
is divided by 100 before it is sent to the ITEMTOT column on the output link.

5. Click outside the Editor window or press Return to close the Expression
Editor.

6. Repeat steps 3 through 5 for the ACTUALPRICE derivation.

7. Click OK to save the Transformer stage settings and to close the Transformer
Editor.

The Transformer stage is now complete and you can compile the job.

Compiling the Job
To compile the job:

1. Choose File ➤ Compile from the menu or click the Compile button on the
toolbar. DataStage tells you that the job is modified and asks if you want to
save the job.

2. Click OK. The Compile Job window appears and reports on the progress of
the compilation.

3. When the job has compiled, close the Compile Job window.

Validating and Running the Job
To validate and run the job:

1. Choose Tools ➤ Run Director in Designer to open DataStage Director. You
are automatically attached to the same project and you do not see the Attach
to Project dialog box.

2. Click Exercise2 in the Job Status view, then choose Job ➤ Validate. The Job
Run Options dialog box appears and lets you specify any required parame-
ters. There are no parameters defined for this job, so click Validate to
continue.

The status changes to Validated OK.

3. Choose Job ➤ Run Now… to run the job. The Job Run Options dialog box
appears and collects any job run limits that are required. Click Run to run the
job.

At this point, choose View ➤ Log to watch the process as it is recorded in the
log file.

4-10 DataStage Tutorial

Choose View ➤ Status to return to the Job Status view.

The status in the Job Status view changes to Finished. That completes your first
data transformation.

4. Now let’s open the ITEMS_2.TXT file in a text editor such as Notepad or
WordPad to look at the new data. The file looks like this:

Some of the data in the fourth and sixth columns now contains decimal points,
thanks to the simple Transformer stage. ITEMS_2.TXT is also comma-delim-
ited, while the source file (ITEMS.TXT) was fixed-length.

This exercise has laid a good foundation. In the coming exercises, you build on
what you learned and you create some complex transformations.

We have taken you through this exercise fairly slowly because it has been the first
exercise in which you created a job. In future exercises we assume that you now
know enough about the DataStage Designer and Director to be able to follow
briefer instructions.

Next, ODBC or UniVerse stages are introduced and you load data into a table
rather than a sequential file.

Transforming Data 4-11

Exercise 3: Load Data into a Relational
Database Table
In this exercise you extract data from the sequential file you created Exercise 2,
transform it, then load it to an ODBC or UniVerse target. This is a much more
common scenario than the one in Exercise 2. The focus is on introducing the ODBC
or UniVerse stage, so in this exercise the Transformer stage simply serves to link
input and output stages, without any material transformation of the data.

Note: If you created sample UniVerse tables rather than ODBC tables when you
installed the tutorial sample data (see Chapter 2), use a UniVerse stage
rather than an ODBC stage.

Beginning with this exercise, the directions for steps that you performed in
previous exercises are shortened. Rather than direct you to “double-click the item
to display its properties” or “click OK”, it is assumed you are now familiar with
the interface of the DataStage Designer and the Director. However, more verbose
instructions are provided for new tasks.

1. Open the DataStage Designer and create a new job. Save it as Exercise3.

From left to right, add a Sequential File stage, a Transformer stage, and an
ODBC (or UniVerse) stage. Link the stages together to form the job chain, as
shown:

4-12 DataStage Tutorial

2. Edit the Sequential File stage using the Sequential File Stage dialog box. To
identify the source file and load the meta data:

a. Click the Directory where files are held browse button (...) and browse to
the directory for your text file (default is c:\Ardent\DataStage\Tutorial).

b. You use the output file you created in Exercise 2 as an input file for this
exercise. On the General page on the Outputs page, type the file name:

ITEMS_2.TXT

c. Keep the default settings on the Format page, since the file is comma-
delimited.

3. On the Columns page, click Load… to load the definition for the sequential
file ITEMS.TXT. This meta data is close to what you need for ITEMS_2.TXT.
Remember, however, that the transformation in Exercise 2 added decimal
points to two of the columns in ITEMS_2.TXT, so you need to edit the column
definitions to make them correct for the data in ITEMS_2.TXT.

a. Click the SQL type cell for the ITEMTOT column and choose Decimal
from the drop-down list.

b. Click the Length cell for the ITEMTOT column and type 8.

c. Click the Scale cell for the ITEMTOT column and type 2.

d. Repeat steps a–c for the ACTUALPRICE column.

The Sequential File stage is now complete.

Transforming Data 4-13

4. Now you set up the ODBC stage. You identify the target table, specify the
table update action, and then load the meta data. Double-click the ODBC
stage to display the ODBC Stage dialog box:

On UniVerse: If you are using a UniVerse stage, the dialog box is very similar.
The only difference on this page is there is no Parameter array size field.

5. Select the data source name, then type your user name and password.

Note: Your user name and password are not required for a UniVerse stage
using localuv as the source.

6. As in the previous exercise, you identify the data target and specify the
update action. In this example the ITEMS table is the target.

a. Click the Inputs tab. The General page appears by default.

b. Select the ITEMS table from the Table name drop-down list box.

On UniVerse: If you are using a UniVerse stage, the tables in the Table
name drop-down list box have your account name as a prefix, for example,
EXAMPLE.ITEMS.

4-14 DataStage Tutorial

c. Select Update existing or insert new rows from the choices in the Update
action drop-down list box. Notice that the choices include calling a stored
procedure or writing custom SQL code on the fly. (UniVerse stages do not
offer the stored procedure option.) Notice that this page also has a check
box Create table in target database, which lets you specify that the job
should create a new table before writing to it.

7. Load a table definition for the table ITEMS from the DataStage Repository.

On the Columns page, click Load… to load the ODBC definition for the ITEMS
table (or the UniVerse definition if using UniVerse data).

8. To see the SQL statements that DataStage uses for this job, click the View SQL
tab.

Click OK. The ODBC (or UniVerse) stage is now complete.

9. Double-click the Transformer stage. The Transformer Editor appears.

Notice that as in the previous exercise the columns on the input and output
links and the associated meta data cells are already filled in. You provided this
information when you defined the Sequential File and ODBC stages earlier in
this exercise. The only information you need to provide is for the Derivation
column.

You are not doing any material data transformations in this exercise, and your
Transformer stage serves only to join the two links. However, the order of the
columns on the input and output links differs. Your Transformer stage medi-
ates the differences by “mapping” the columns in one link to their intended
counterparts in the other link.

a. Click the QTY column on the input link, DSLink3, and drag it to the blank
QTY derivation cell on the output link, DSLink4. The expression
DSLink3.QTY is added to the Derivation cell and a relationship line
connects it to the originating input column.

Transforming Data 4-15

b. Repeat the process for each column on the input link, dragging it to the
equivalent column on the output link. The Transformer Editor should look
like this:

c. Click OK to save the settings and exit the Transformer Editor.

The Transformer stage is now complete.

10. Save the job, then compile it.

11. Open the DataStage Director and validate the new job.

12. Run the job. The ITEMS table is loaded with data from the sequential file.

13. Now let’s use the Data Browser to look at the records you have just loaded
into the ITEMS table:

a. Return to the DataStage Designer, open the job Exercise3, then double-
click the ODBC (or UniVerse) stage.

b. Click the Inputs tab, then click View Data… .

4-16 DataStage Tutorial

The Data Browser displays the contents of the table:

If, during the exercises, you want to view the data you are extracting or the
data you have loaded into a target, simply open the appropriate stage dialog
box and click View Data… . For further information about the Data Browser,
refer to DataStage Developer’s Guide.

14. If you want to verify that all the records loaded from the sequential file, start
your SQL environment, and issue the following statement:

SELECT COUNT(*) FROM ITEMS;

This query should yield a result of 64 rows. (If you are unsure how to start your
SQL environment, see “Running an SQL Script” on page 2-13.)

Microsoft SQL Server 6.5 users: You may receive a syntax error message when
issuing the above query. If you receive a syntax error message, edit the state-
ment to remove the final semi-colon, and execute the query again.

You have successfully created a job to load data from a text file into a relational
database. It is easy with the right tools.

Transforming Data 4-17

Exercise 4: Create Your Own Job
By now you have seen how easy it is to use the tools. Everything has a logical place,
and you had a chance to become acquainted with the DataStage interface.

It is easy to create a job by yourself, and you do not do anything you have not
already done. Of the steps you did in Exercise 3, how many do you remember?

1. Create a job to extract data from the PRICES.TXT file, and load it into the
PRICES table in the database.

2. The Transformer stage functions exactly like that in Exercise 3, that is, it
serves only to map the source columns to the target columns, without any
material data transformation.

3. If you run into trouble, refer to Exercise 3. The procedure for this job is virtu-
ally identical, except you don’t have to edit any column definitions.

Exercise 5: Load the Time Dimension
In this exercise, you load the time dimension for the data mart. Once again, you
work with a sequential file for input, and your relational database is the target. If
you have been using UniVerse data up until now, continue to do so and substitute
a UniVerse stage where the exercise specifies an ODBC stage.

The sequential file, TIME.TXT, contains very little raw material—just one column
of dates, in the format yyyy-mm-dd. You build a Sequential File stage to bring in the
dates, a Transformer stage to create new derivatives of the dates (month, quarter,
and year), and an ODBC (or UniVerse) stage to accept the results. The results are
stored in the table TIME, which has four columns containing each date and its
corresponding month, quarter, and year.

Note: If you are using UniVerse, the table is called TIME_, because TIME is a
reserved word in UniVerse.

You use the time dimension in Exercise 7, where it is joined with the FACTS table
created in Exercise 6, to provide the source data for a quarterly sales summary.

To load the time dimension:

1. Open the DataStage Designer and create a new job. Save the job as Exercise5.

From left to right, add a Sequential File stage, a Transformer stage, and an
ODBC (or UniVerse) stage. Link the stages together.

4-18 DataStage Tutorial

2. Edit the Sequential File stage. Click the Directory where files are held browse
button (...) and browse to the directory for the text file (the default is
c:\Ardent\DataStage\Tutorial).

On the General page on the Outputs page, type the file name:

TIME.TXT

Accept the default settings on the Format page.

3. Next you need to load a table definition for TIME.TXT. However, this meta
data was not installed in the Repository when you ran the tutorial install
program. The TIME.TXT file does not simulate data from an operational
system like the other sequential files. Whereas we would expect to periodi-
cally load data like ITEMS and PRICES from our operational system, we only
create the time dimension once. Think of it as a “disposable” data source for
the purpose of this exercise.

a. Click the Columns tab on the Outputs page. You create a definition for the
one column that TIME.TXT contains.

b. Click the empty row (indicated by a star) to enter column edit mode.

c. Type or set the column settings as follows:

Column Setting

Column Name DAY

Key No

SQL type Char

Length 10

Nullable No

Display 10

Data element DATE.TAG

Transforming Data 4-19

The settings for the Key, SQL type, Nullable, and Data element cells are
selected from drop-down list boxes. The SQL type Char matches the data
element type DATE.TAG, since it is a string representation of a date. Leave
the Scale column blank. The cells on the Columns page should now look
like this:

4. Accept the settings. The Sequential File stage is now complete.

5. Double-click the ODBC (or UniVerse) stage to define the target table, which is
TIME. The ODBC Stage dialog box appears. (Remember that if you are a
UniVerse user, the table is called TIME_.)

6. Select the data source name, then type your user name and password (the
name and password are not required for a UniVerse stage using localuv as a
source).

7. Specify the target table and the update action:

a. Click the Inputs tab, then select the TIME table from the Table name drop-
down list box.

b. Select Insert rows without clearing from the Update action drop-down
list box, since the table is empty when you begin, and is only loaded once.

8. Load the ODBC definition for the TIME table in the database.

Click the Columns tab, then click Load… . If you are using UniVerse data, load
the UniVerse definition of the TIME_ table.

Note: If you are working in an Informix or Oracle environment, you need to
edit the meta data supplied with the tutorial. Change the following
settings for the DAY column:

On Informix: Length 13, Scale 0, Display 13
On Oracle: Length 19, Scale 0, Display 19

9. Accept the settings.

The ODBC (or UniVerse) stage is now complete.

10. Edit the Transformer stage using the Transformer Editor.

Once again, all the information is supplied except the Derivation field.

4-20 DataStage Tutorial

11. We want the DAY column on the output link to contain the date in the iden-
tical format as it is held in the source file, so drag the column DAY from the
input link to the Derivation cell of the DAY column on the output link. A rela-
tionship line is drawn linking the two columns.

12. Next, you define the MONTH column on the output link. This is also derived
from the DAY column on the input link, so drag DAY to the Derivation cell of
the MONTH column on the output link.

13. To obtain the month from the date, you need to create an expression in the
MONTH Derivation cell:

a. Double-click the MONTH Derivation cell to open the Expression Editor.

b. Click the Browse button (…) in the Expression Editor window. The Expres-
sion Editor drop-down list appears.

c. Select Function… . A list of functions appears. Select Right from the list of
functions. It appears in the Expression Editor as shown below, with
%Arg1% highlighted:

Rig ht(%Arg1%,%Arg2%)DSLink3.DAY

Note: The function list provides an incremental search, so if you want a func-
tion that begins with the letter R, type R to scroll the function list down
to all the functions beginning with R. As you type additional letters, the
list continues to refine the search.

d. Type TAG.TO.MONTH. It automatically replaces %Arg1%.

Transforming Data 4-21

TAG.TO.MONTH is one of an extensive set of DataStage built-in trans-
forms (you use two others, TAG.TO.QUARTER and TAG.TO.YEAR later
in the exercise). It converts a date string in the format yyyy-mm-dd (the
format of the dates in TIME.TXT) to yyyy-mm format.

e. You now extend the expression such that it results in the month being
represented in the output file as a two-character string. Edit the expression
so that it looks like this:

Right(TAG.TO.MONTH(DSLink3.DAY),2)

Note: In this manual, we do not give detailed explanations of every func-
tion’s arguments and syntax, because the topic is too lengthy. The
exercises simply provide you with the expression examples. For
further information about the functions, refer to DataStage Devel-
oper’s Help.

f. Click outside the Expression Editor window to accept the expression and
close the window. The expression is added to the Derivation cell. Note
that the cell is displayed in red if the expression contains a syntax error.

14. Using the Expression Editor, create expressions for the QUARTER and YEAR
column derivations, as follows:

When you finish, click OK to accept the settings for this stage and to exit the
Transformer Editor.

15. Save the job, then compile it.

16. Open the DataStage Director. Your new job appears in the Job Status window
with a status of Compiled.

17. Validate the job, then run it.

Column Name Derivation

QUARTER TAG.TO.QUARTER(DSLink3.DAY)

YEAR TAG.TO.YEAR(DSLink3.DAY)

4-22 DataStage Tutorial

The time dimension is now loaded, and another step in building your data mart is
complete. If you want to look at the content of the time dimension and see the effect
of the built-in transforms, return to the DataStage Designer and invoke the Data
Browser from the ODBC (or UniVerse) Stage dialog box in job Exercise5.

Summary
In this chapter, you learned how to create simple transformations to move data
from sequential files into sequential files or database tables, using Sequential File
stages, Transformer stages, and ODBC or UniVerse stages.

You used the DataStage Designer and Director to go through the process of
building, saving, compiling, validating, and running jobs. In the process, you
loaded three of the sample data mart tables: ITEMS, PRICES, and TIME.

You saw the differences between the various stage dialog boxes, and learned how
DataStage can map a single input column to multiple output columns, all in one
stage.

Next, you try some more advanced techniques. You work simultaneously with
multiple sources and targets, and see how to direct output to these targets. In Exer-
cise 7 you use the Aggregator stage to group data and create a sales summary.

Handling Multiple Sources 5-1

5
Handling

Multiple Sources

In this chapter you learn how to do the following:

• Handle multiple data sources and targets within a single job
• Use Aggregator stages to aggregate data without using SQL

In Exercise 6 you perform the crucial task of loading the fact table. Since the rows
in the fact table require the primary keys of your dimension tables, you have a
perfect situation to use multiple sources.

The use of multiple targets is demonstrated by constraining the loading of the fact
table such that only certain rows are acceptable, while the rest are sent to an alter-
nate table.

In Exercise 7 you use an Aggregator stage in conjunction with multiple sources.

Exercise 6: Use Multiple Sources and Targets
In this exercise you create a single input stage consisting of multiple ODBC data
sources, and two output stages, each consisting of a single ODBC target. Again, if
you have been using UniVerse data, you continue to use UniVerse stages instead
of ODBC ones.

You also create a Transformer stage, which contains some simple logic to direct the
data stream to one target or the other. Most data is sent to the FACTS table, which
is used as a data source in Exercise 7. The logic in the Transformer stage defines the
criteria that data must meet before it is loaded into the FACTS table. Data that fails
to meet those criteria is sent to the REJECTS table.

5-2 DataStage Tutorial

To use multiple sources and targets:

1. Open the DataStage Designer, and place four stages and three links in the Job
window as shown below. If you are using UniVerse data, remember that you
must use UniVerse stages rather than ODBC ones.

2. Edit the input ODBC stage, supplying your data source name, your user
name, and password.

3. Specify that you want to extract data from the ITEMS, ORDERS, and
CUSTOMERS tables.

On the Outputs page, select the ITEMS table from the Available tables drop-
down list box. Click Add to add the table name to the list in the Table names
field.

Add the ORDERS and CUSTOMERS tables in the same way.

4. Load the column definitions for each table, beginning with the ITEMS table.
You are going to extract data from only some of the columns in each table, so
you delete those rows in the definitions that are not required.

Click the Columns tab, then click Load… to load column definitions for the
ITEMS table.

Handling Multiple Sources 5-3

To delete the following rows from the definition, select the row then choose
Delete row from the shortcut menu:

• ITEMID
• ACTUALPRICE

5. Now load column definitions for the ORDERS table.

When you attempt to load the ORDERS column definitions, the following
message appears, because both the ITEMS and ORDERS tables contain a
column named ORDID.

Click Yes to replace the ORDID definition from ITEMS with the one from
ORDERS.

If you were to create a separate stage for each source, the message would not
appear. But, when using multiple sources in a single stage, DataStage insists
that the column names be unique.

You need to remove the following from the list of column definitions:

• COMMPLAN
• TOTAL

Note: If you are working in an Informix or Oracle environment, you need to
edit the meta data supplied with the tutorial. Change the settings for
the ORDERDATE and SHIPDATE columns as follows:

On Informix: Length 13, Scale 0, Display 13
On Oracle: Length 19, Scale 0, Display 19

6. Add the definitions from the third table, CUSTOMERS.

The same warning message appears regarding the CUSTID column as for the
ORDID column. Click No to keep the CUSTID definition from the ORDERS
table.

The only column in the CUSTOMERS table that you need to keep is REPID.
This column tracks which of the employees represents the customer, and is
equivalent to EMPNO in the EMPLOYEES table.

5-4 DataStage Tutorial

Remove the following definitions:

• NAME
• ADDRESS
• CITY
• STATE
• ZIP
• AREA
• PHONE
• CREDITLIMIT
• COMMENTS

When you configure the Transformer stage, you see that the columns you have
just defined as your data source match the columns in the FACTS and
REJECTS tables to which the data is to be output.

7. Now that all of the column definitions are in place, put them in the order
shown below, and tell DataStage which values are keys for your source data.
The new order matches the order of the columns on the target tables, which
makes it easier to map the source and target columns when you edit the
Transformer stage.

Edit your definitions to look like this:

Handling Multiple Sources 5-5

Note: With UniVerse and some other RDMS products, the derivations are
qualified with the name of the database account, for example, in
previous examples that would be EXAMPLE. Also, Timestamp might
be replaced by Date or Datetime as the SQL type in your environment.

You can change the order of the definitions by clicking the Column name cell
and then dragging it up or down. The following illustration shows an example
of the REPID column being reordered between ORDERDATE and CUSTID.
Notice that the cursor has changed to a broad horizontal arrow.

When the mouse is released, the dragged column is placed above the row in
which the cursor currently lies. In this example, releasing the mouse with the
cursor in the position shown places the REPID column correctly, between the
ORDERDATE and CUSTID columns. However, releasing the mouse with the
cursor on the ORDERDATE/CUSTID cell border places the REPID column
above the ORDERDATE column.

8. Now that you have defined the three data sources, you need to join the source
tables together to represent a single data stream.You use a WHERE clause to
perform the table joins.

Click the Selection tab.

In the WHERE clause field, type the following:

ORDERS.ORDID = ITEMS.ORDID AND CUSTOMERS.CUSTID = ORDERS.CUSTID

Note: As previously noted, UniVerse and some other RDMS products require
you to qualify these names with the account name. For example,
EXAMPLE.ORDERS.ORDID = EXAMPLE.ITEMS.ORDID. The
WHERE clause is case-sensitive. All parts of the clause other than the
qualifying account name must always be uppercase. The case of the
account name should match the name in the DataStage Designer title
bar.

5-6 DataStage Tutorial

9. Now click the View SQL tab, and look at the SQL statement DataStage built
from your input. Notice that the statement now includes references to all of
the key values.

Accept the settings. The input stage is now complete.

10. Edit the upper-right ODBC stage to provide output to the REJECTS table.

Set the Update action field to Insert rows without clearing. In a data mart, the
only time you clear rows is during a purge, when older data gets migrated to
an archive.

Load the column definitions and accept the settings.

Note: If you are working in an Informix or Oracle environment, you need to
edit the meta data supplied with the tutorial. Change the settings for
the ORDERDATE and SHIPDATE columns as follows:

On Informix: Length 13, Scale 0, Display 13
On Oracle: Length 19, Scale 0, Display 19

11. Edit the lower-right ODBC stage to provide output to the FACTS table, using
the same settings you used in step 10.

The output stages are now complete.

12. Add some logic to the Transformer stage to determine which records go to the
REJECTS table and which to the FACTS table.

Double-click the Transformer stage to open the Transformer Editor. Notice that
the Output Links area displays a separate set of columns for each output link,
DSLink5 and DSLink6.

Once again, all the column information is there, except the derivations, which
you define now. With two exceptions, all the derivations are direct mappings.
The exceptions are as follows:

• REPID maps to EMPNO.
• ITEMTOT maps to TOTALSALE.

Handling Multiple Sources 5-7

See the following example screen:

13. Now you define a constraint expression for the FACTS link. If you have
followed the exercise exactly as described, this link is DSLink6. The constraint
causes the FACTS link to accept only records for which the total sale of the
item is greater than or equal to $10. Any records containing a sale for less than
$10 are rejected. (In step 14 you define the REJECTS table as the target for
these rejected rows.)

Click the Constraints button on the toolbar of the Transformer Editor. The
Transformer Stage Constraints dialog box is displayed.

5-8 DataStage Tutorial

In the Constraints area, build a simple expression by double-clicking the row
DSLink6 (the link associated with output to the table FACTS) in the Constraint
field. The Expression Editor window opens.

Click the Browse button (…), then choose Input column… from the menu.

Select the ITEMTOT column name from the drop-down list. It appears in the
Expression Editor window.

Add a “greater than or equal to 10” condition to the expression, as shown:

Click outside the Expression Editor window to close it. You have now speci-
fied that only data with a value of 10 or higher is to be written to the table
FACTS.

14. Next you want to tell DataStage to use DSLink5 as the output link for any
rows that do not meet the criteria defined for DSLink6.

In the Transformer Stage Constraints dialog box, set the Reject Row field in the
row DSLink5 to Yes. This link is associated with output to the REJECTS table,
so rows rejected by DSLink6 because they are for sales of less than $10 are sent
down DSLink5 to the REJECTS table.

15. Accept the settings, save the job, then compile it.

16. Open the DataStage Director, validate the job, then run it.

Handling Multiple Sources 5-9

17. View the Job Log window in the Director. The log contains an entry indicating
that four rows were rejected during the run.

These are the rows sent to the REJECTS table. Any time you designate a link to
receive rejected rows, an entry is made in the log indicating how many records
went through that link.

Use the Data Browser to view the data in the REJECTS and FACTS tables if you
want to verify the correct operation of the job. In the Designer, double-click an
output stage, select the Inputs page, then click View Data… . There should be 4
records in the REJECTS table, and all the other records (a total of 60) in the FACTS
table. For further information about the Data Browser, refer to DataStage Devel-
oper’s Guide.

Exercise 7: Aggregate Data
Suppose that senior management always wants a quarterly summary of the
company’s total sales volume by customer. You could get that information directly
from the FACTS table, but it would be easier to have a table already built that
contains the presummarized information.

Such a summary table is included in the design of the sample data mart: the
Q_SALES table.

In Exercise 7, you create a job to perform the necessary data aggregation, and load
the results into the Q_SALES table. The exercise introduces the Aggregator stage.
It is a special kind of stage that facilitates data grouping and summarization
without the need to write SQL code with lots of group functions.

You obtain data from the FACTS and TIME tables. (If you are using UniVerse the
table is named TIME_.) The FACTS table provides the customer ID (CUSTID) and
the value of each sale to that customer (TOTALSALE). Remember that you loaded
FACTS with data from the ITEMS, ORDERS, and CUSTOMERS tables in Exercise
6. The TIME table, which you loaded in Exercise 5, supplies the quarter in which
each sale occurred (QUARTER column). In a quarter there could be several sales to
each customer. This exercise loads Q_SALES with the total value of the sales to
each customer in each quarter.

To aggregate data:

1. In the DataStage Designer, create a new job and save it as Exercise7.

5-10 DataStage Tutorial

2. Add stages and links as shown:

3. Configure the input ODBC stage to use the FACTS and TIME tables as input,
using only the following columns:

• QUARTER (from TIME)
• CUSTID and TOTALSALE (from FACTS)

Change the Key column for QUARTER to Yes.

Add the following WHERE clause to join the tables:

TIME.DAY = FACTS.ORDERDATE

Note: As previously noted, these names may require the account name, for
example, EXAMPLE.TIME.DAY = EXAMPLE.FACTS.ORDERDATE.
Remember that all components of the WHERE clause are upper case,
except for the account name, which must match the name in the
DataStage Designer title bar. Remember also to specify the table TIME_
if you are working in a UniVerse environment.

4. Configure the output ODBC stage to use the Q_SALES table.

Select Insert rows without clearing from the Update action drop-down list
box.

Load all the column definitions and accept the settings.

5. Open the Aggregator stage. The Aggregator Stage dialog box displays the
Aggregator stage properties. The Stage page is selected by default.

Handling Multiple Sources 5-11

Notice at the bottom of the Stage page that you can define before- and after-
stage subroutines. Such subroutines can perform many useful functions. For
example, a before-stage subroutine might check for the existence of a partic-
ular file before it allows processing to continue. An after-stage subroutine
might be useful for sending an e-mail when the job finishes running.

View the Inputs page. It looks very much like its counterpart in other stage
dialog boxes, except it contains two additional columns in the Columns tab:
Sort and Sort Order. These columns can be used to indicate that the input data
should be sorted, either in ascending or descending order. Leave them blank.

Click the Outputs tab. Again, the Outputs page appears very similar to what
you have seen in other kinds of stages. Now click the Columns tab. The differ-
ence becomes apparent when you double-click the Derivation column for a
given row. The Derivation dialog box appears:

The Derivation dialog box contains an Aggregate function drop-down list
box, from which you can select various functions to aggregate data. Click
Cancel to close the Derivation dialog box for now.

6. You want to add the value of individual sales.

Double-click the Derivation cell for the TOTALSALE row, select
DSLink3.TOTALSALE from the Source column drop-down list, and accept the
default of Sum for the Aggregate function. Click OK to close the Derivation
dialog box.

7. However, the sums of the sale values are to be grouped for each customer, in
each quarter.

For the QUARTER and CUSTID rows, double-click the Derivation cell, set the
Source column field to the corresponding input column, and select the Group
by this column check box. Note that selecting the Group by this column check
box grays out the Aggregate function drop-down list box.

Accept the settings.

8. Save the job, then compile it.

5-12 DataStage Tutorial

9. Validate the job in the DataStage Director, then run it.

You should now have 13 quarterly summary rows in the Q_SALES table. For
example, in the source data there were two sales to customer 102 in 1986, quarter
2, valued at $56 and $224. Q_SALES now records that in this quarter the sales to
customer 102 totalled $280.

Summary
In this chapter, you learned how to create a complex transformation using multiple
data sources and targets. You saw how a row of data can be “redirected” using row
constraints, and accomplished the loading of the fact table in the process.

You also learned how to use an Aggregator stage to summarize and group data.
Aggregator stages are extremely useful in a data warehouse setting, making the
process of creating summary tables easier and more efficient.

Next, you look at how to create meta data, rather than using the table definitions
installed from the tutorial CD.

Using Your Own Meta Data 6-1

6
Using Your Own Meta Data

So far in this tutorial, you have loaded predefined meta data when configuring
source and target stages in your DataStage jobs. This meta data was installed when
you ran the tutorial install program. We now show you how to create your own
meta data for a sequential file and a relational database table.

DataStage provides two methods for creating meta data:

• The assisted approach
• The manual approach

Exercise 8 demonstrates the assisted approach. You create meta data from the table
MYPRICES, importing the meta data directly into the DataStage Repository. When
working with ODBC or UniVerse data sources and targets, table definitions can be
quickly and easily imported into the DataStage Repository. You connect to the
database and specify that you want to add MYPRICES to the Repository.
DataStage simply “reads” the database definition of the table and inserts it into the
Repository.

Unlike ODBC data, a sequential file contains no descriptors for the data it contains.
For this reason, DataStage must rely on a “best guess” when attempting to deter-
mine what data type to use when representing each column in a file. Subtle
differences between your intended data type and the data type chosen by
DataStage are easily resolved with a mouse click.

In Exercise 9, you manually create the meta data for the comma-delimited sequen-
tial file MYPRICES.TXT by typing all the information into the DataStage Manager.

You use the DataStage Manager to import file and table definitions, and to create
these definitions manually. Therefore, before you do Exercises 8 and 9 you need to
start up the DataStage Manager, and become acquainted with the DataStage
Manager window.

6-2 DataStage Tutorial

Note: Neither MYPRICES.TXT nor MYPRICES are part of the data mart schema
outlined in Chapter 2. Although they are identical to PRICES.TXT and
PRICES, which you used in Exercise 4, they are provided solely to allow
you to work through the procedure for creating meta data.

The DataStage Manager
The DataStage Manager is used to:

• View and edit the contents of the Repository
• Import table definitions
• Create table definitions manually
• Create and assign data elements
• Create custom transforms and stages

For detailed information about the features of the DataStage Manager, refer to
DataStage Developer’s Guide.

Starting the DataStage Manager
Start the DataStage Manager by choosing Start ➤ Programs ➤ Ardent DataStage
➤ DataStage Manager. The Attach to Project dialog box appears:

This dialog box also appears when you start the DataStage Designer or Director
client components from the DataStage program folder. In all cases, you must attach
to a project by entering your logon details. If you need to remind yourself of the
procedure for attaching to the project, see page 3-3.

Using Your Own Meta Data 6-3

When you have attached to a project, the DataStage Manager window appears:

The DataStage Manager Window
The DataStage Manager window contains two panes: the left pane contains the
project tree and the right pane is the display area. For full information about this
window, including the functions of the pull-down menus and shortcut menus,
refer to DataStage Developer’s Guide.

Toolbar

The Manager toolbar contains the following buttons:

You can display ToolTips for the toolbar by letting the cursor rest on a button in the
toolbar.

Copy Properties

Large
Icons

Reporting

Help

Delete

Small Details

List

New Data Element
New Routine
New Table Definition
New Transform

Icons

Assistant

Topics

6-4 DataStage Tutorial

Project Tree

The project tree is in the left pane of the DataStage Manager window and contains
a summary of the project contents. The tree is divided into six main branches:

• Data Elements. A branch exists for the built-in data elements and the
additional ones you define.

• Jobs. A leaf exists under this branch for each job in the project.

• Routines. This branch exists for the built-in routines and any additional
custom routines you may define.

• Stage Types. Each plug-in you create or import is stored under this branch.

• Table Definitions. Table definitions are stored according to the data
source. If you import a table or file definition, a branch is created under the
data source type (ODBC, UniVerse, UniData, Hashed, Sequential, or Stored
Procedure). You see this demonstrated by the exercises in this chapter. If
you manually enter a table or file definition, you can create a new branch
anywhere under the main Table Definitions branch.

• Transforms. A branch exists for the built-in transforms and for each group
of custom transforms created.

Display Area

The display area is in the right pane of the DataStage Manager window and
displays the contents of the branch chosen in the project tree. You can display items
in the display area in one of four ways:

• Large icons. Items are displayed as large icons arranged across the display
area.

• Small icons. Items are displayed as small icons arranged across the display
area.

• List. Items are displayed in a list going down the display area.

• Details. Items are displayed in a table with Name, Description, and
Date/Time Modified columns.

Using Your Own Meta Data 6-5

Exercise 8: Create Meta Data from a Relational
Database Table
In this exercise you import a table definition (meta data) into the Repository from
the sample table MYPRICES. It was created when you installed the tutorial files
and ran an SQL script as described in “Creating Sample Database Tables” on
page 2-13.

To import the table definition from MYPRICES:

1. From the DataStage Manager, choose Tools ➤ Import ➤ ODBC Table Defini-
tions… . The Import Meta Data (ODBC) dialog box appears:

On UniVerse: Choose Tools ➤ Import ➤ UniVerse Table Definitions… . The
Import Meta Data (UniVerse Tables) dialog box appears.

2. From the DSN drop-down list box, select the ODBC data source name (DSN)
that corresponds to the database you used to create the tables (see Chapter 2).

On UniVerse: From the DSN drop-down list box, select the localuv data source
name (DSN) that corresponds to the database you used to create the tables. The
other fields are disabled.

3. Enter the database user account name in the User name field. Enter the
account password in the Password field. Click OK. DataStage retrieves a list
of all tables in the database account.

On UniVerse: Click OK.

4. Select the table MYPRICES, then click OK. DataStage retrieves the meta data
from the database, and automatically creates a table definition in the
Repository.

5. Now let’s have a look at the MYPRICES definition that you have just created
in the Repository.

6-6 DataStage Tutorial

Expand the Table Definitions ➤ ODBC branch of the project tree. Your tree
should resemble the following screen:

In this example, the ODBC connection used is called datamart, and therefore
DataStage inserted a branch with that name under ODBC. This provides a
handy way of keeping track of where the table definitions originated.

On UniVerse: The connection we used is called localuv, and therefore
DataStage inserted a branch with that name under UniVerse. This provides a
handy way of keeping track of where the table definitions originated. The
database account name we used is called EXAMPLE, and DataStage prefixes
all the definitions with that name.

Your table names are preceded by the database account name you used. Again,
this helps to keep track of where the meta data originated.

6. Double-click the MYPRICES table to display the property sheet. It has up to
four pages: General, Columns, Format, and, if NLS is installed, NLS.

7. Click the Columns tab. The column definitions appear.

Notice that the Data element column is blank. The data elements have to be
entered by you. The type of data element you assign to a given column deter-
mines what transformations you can perform on that column later on. Add the
data elements using the definition of PRICES in Appendix A as a guide
(remember it is identical to MYPRICES).

You have now defined the meta data for the table MYPRICES.

Using Your Own Meta Data 6-7

Exercise 9: Create a Table Definition Manually
To create a table definition for the MYPRICES.TXT sequential file:

1. From the DataStage Manager window, select the Table Definitions branch
and do one of the following:

• Choose File ➤ New Table Definition… .
• Choose New Table Definition… from the shortcut menu.
• Click the New button on the toolbar.

The Table Definition dialog box appears:

This dialog box has up to four pages:

• General. Displayed by default. Contains parameters that describe the type
and name of data source and optional descriptions.

• Columns. Contains the column definitions for the table definition.

• Format. Contains file format parameters for sequential files. These fields
are automatically set when you import a table definition from a sequential
file.

• NLS. Shows the current character set map for the table definitions (this
page is only visible if you are using DataStage with NLS installed).

6-8 DataStage Tutorial

2. On the General page, enter Sequential in the Data source type field. The
name entered here determines how the definition is stored under the Table
Definitions branch.

3. Enter Tutorial in the Data source name field. This forms the second part of
the table definition identifier and provides the name of the branch created
under the data source type branch. It gives you a means to keep track of
where the data definition originated.

4. Enter MYPRICES.TXT in the Table/file name field. This is the last part of the
table definition identifier and provides the name of the leaf created under the
data source branch.

5. Optionally, enter a brief description of the data in the Short description field.
The text entered here is displayed in the DataStage Manager window.

6. You could enter a more detailed description of the data in the Long descrip-
tion field, which is also optional. In a real project, this information might be
helpful to subsequent DataStage developers.

Entering Column Definitions
As you enter the column definitions, use the definition of MYPRICES.TXT in
Appendix A as a guide, or refer to the example screen on the next page. Enter the
column properties exactly as shown.

To enter the column definitions:

1. Click the Columns tab. The Columns page appears at the front of the Table
Definition dialog box.

2. Click the Column name cell in the empty row (indicated by a star), and type
STDPRICE, which is the name of the first column you want to add.

3. Click the Key cell, and choose No from the drop-down list to specify that this
column is not a key column.

4. Click the SQL type cell, and choose the Decimal SQL data type from the
drop-down list.

5. Click the Length cell, and type 4 to specify the data precision value.

6. Click the Scale cell, and type 2 to specify the data scale factor.

7. Click the Nullable cell, and choose Yes from the drop-down list to specify
that the column can contain null values.

Using Your Own Meta Data 6-9

8. Click the Display cell, and type 4 to specify the maximum number of charac-
ters required to display the column data.

9. Click the Data element cell, and choose Number from the drop-down list to
specify the type of data the column contains. This list contains all the built-in
data elements supplied with DataStage and any additional data elements you
have defined.

10. If you wish you can enter text to describe the column in the Description cell,
although Appendix A does not provide sample text. This cell expands to a
drop-down text entry box if you enter more characters than the display width
of the column. You can increase the display width of the column if you want
to see the full text description. If you want to divide the text into paragraphs,
press Ctrl-Enter at the point where you want to end each paragraph.

11. Continue to add more column definitions by editing the last row in the grid.
New column definitions are always added to the bottom of the grid, but you
can click and drag the row to a new position in the grid.

When you have finished, the table definition should look like this:

12. After you have entered the column definitions, you need to specify whether
the file is fixed length or delimited, as described in the following section, so
do not close the Table Definition dialog box yet.

6-10 DataStage Tutorial

Setting the File Format
To define the file format, click the Format tab in the Table Definition dialog box.
The left side of the Format page contains three check boxes, two of which are
cleared by default and the third grayed out. Since this is not a fixed-width file, and
the first row does not contain column names, leave them cleared.

On the right is an area for specifying a file delimiter. The default delimiter settings
are those used most commonly. This file also uses the default delimiter, so do not
change the setting.

Click OK. The DataStage Manager adds the new definitions to the Repository.
MYPRICES.TXT should now be visible in the DataStage Manager display area. If
it is not, expand the Table Definitions branch in the project tree until the
MYPRICES.TXT definition is visible.

If you subsequently need to edit the definition, select MYPRICES.TXT in the
DataStage Manager display area, then click the Properties button on the toolbar.
The Table Definition dialog box reappears.

Note: You can display and edit the properties of most items in the Repository in
this way.

Exercise 10: Use Your Meta Data in a Job
If you want to demonstrate to yourself that the meta data you have just created
really does work, create and run a job that is like the job you created in Exercise 4.
That is:

• Extract the data from MYPRICES.TXT, using a Sequential File stage.

• Pass the data through a Transformer stage with no material transforma-
tions, just a direct mapping of input to output columns.

• Load the data into MYPRICES, using an ODBC or UniVerse stage.

Since you already have the basic job design in the form of the job Exercise4, you
can use that job as your starting point.

1. Open the job Exercise4 in the DataStage Designer, then choose File ➤ Save
Job As… and save the job as Exercise10.

2. Edit the Sequential File stage. Change the output file name to
MYPRICES.TXT. On the Columns page, load meta data for MYPRICES.TXT.
When prompted, overwrite the meta data for PRICES.TXT.

Using Your Own Meta Data 6-11

3. Edit the ODBC or UniVerse stage. Change the input table name to
MYPRICES. On the Columns page, load meta data for MYPRICES. When
prompted, overwrite the meta data for PRICES.

4. Edit the Transformer stage. Link the input and output columns. Notice that
they are not in the same order.

It is not necessary to make any other changes to the Transformer stage. Save,
compile, and run the job to populate MYPRICES.

Summary
In this chapter, you learned the basics of creating meta data—your table and
column definitions—in the Repository. You created meta data manually for a
comma-delimited sequential file, and used the assisted approach to import meta
data from an ODBC or UniVerse source.

Next you look at how to use the job design debugger to step through a job and
watch changes in column data.

6-12 DataStage Tutorial

Debugging Your Jobs 7-1

7
Debugging Your Jobs

The DataStage debugger enables you to test and debug your jobs. Using the
debugger, you set breakpoints on the links in a job. When you run the job in debug
mode, it stops whenever a breakpoint is reached, and you can then step to the next
action on that link, or step to the processing of the next row of data.

Exercise 11: Use the Job Design Debugger
In Exercise 11 you do the following:

• Create a simple job on which you can run the debugger
• Run the debugger and use it to step through the design of the new job
• Compare the status of variables before and after a transformation

Creating a Job
In Exercise 3 you populated the ITEMS table with data from a sequential file,
ITEMS_2.TXT. You now create a job in which data from the ITEMS table populates
a new sequential file, ITEMS_11.TXT.

To create the job:

1. Open the DataStage Designer and create a new job. Save the job as Exercise11.

7-2 DataStage Tutorial

2. From left to right, add an ODBC (or UniVerse) stage, a Transformer stage, and
a Sequential File stage. Link the stages together.

3. Edit the ODBC stage using the ODBC Stage dialog box. Begin by selecting the
data source in the Data source name drop-down list box. On the General tab
of the Outputs page, select the ITEMS table from the Available tables drop-
down list box and click Add to add it to the Table names field. On the
Columns page, load the definition for the ITEMS table.

4. Edit the Sequential File stage using the Sequential File Stage dialog box.

Click the Directory where files are held browse button (...). Browse to the
directory for your text file (by default c:\Ardent\DataStage\Tutorial).

On the General page on the Inputs page, type the file name:

ITEMS_11.TXT

Leave the Format page unchanged, since the file is comma-delimited.

On the Columns page, click Load… to load the definition for the ITEMS.TXT
sequential file. Remember that you added decimal points during the transfor-
mation in Exercise 2, so change the SQL type for the ITEMTOT and
ACTUALPRICE columns to Decimal, with a length of 8 and a scale of 2.

5. Edit the Transformer stage using the Transformer Editor. The columns on the
input and output links have the same names, but are in a different order. Map
each input column to the output column with the same name, then click OK
to save the stage settings and exit the Transformer Editor.

6. This completes the setting up of the job you use to demonstrate the features of
the debugger. Save the job and compile it.

Note: You must compile a job before you can debug it.

Debugging Your Jobs 7-3

Running the Debugger
These steps describe how to run the debugger on the job that you have just created.
It gives you an easy means of testing and debugging your job designs. For detailed
information about the debugger, refer to DataStage Developer’s Guide.

1. If the debugger toolbar is not already visible, choose View ➤ Debug Bar to
display it. To display ToolTips, let the cursor rest on an button in the toolbar.

Note that you can also access these functions by choosing File ➤ Debug.

2. Set a breakpoint on DSLink3 by selecting the link, then clicking the Toggle
Breakpoint button on the toolbar. A large black dot appears on the link where
it connects to the ODBC stage; this indicates a breakpoint is set on the link.

Stop Job Edit Clear All Step to

Step to
Next Link

Show/Hide
Debug Window

Job Toggle
Parameters

Start/Continue
Debugging

Breakpoints

Breakpoint

Breakpoints Next Row

7-4 DataStage Tutorial

3. With the link still selected, click the Edit Breakpoints button on the debugger
toolbar. The Edit Breakpoints dialog box appears:

You use this dialog box to specify the point at which a break occurs.

4. Click Cancel to accept the default setting of 1 for Every N Rows. This causes
the job to stop after each row is processed on the link. (If you were to select an
expression, a break would occur if the expression evaluated to TRUE for the
specified link.)

Debugging Your Jobs 7-5

5. Click the Show/Hide Debug Window button on the debugger toolbar to
display the Debug Window. This window shows the current status of the job
and the debugger.

Keep the Debug Window open while you continue with the next steps.

6. Click the Start/Continue Debugging button on the debugger toolbar.

7. The Job Run Options dialog box appears. Click OK in the dialog box to run
the job.

While the job is running, notice the status changes in the Debug Window.
When a breakpoint is reached, the job status remains as “Running” and the
debugger status changes from “Running Job” to “Stopped at BreakPoint”. The
current break is shown as “DSLink3”.

7-6 DataStage Tutorial

The top pane of the Debug Window displays the names and values of variables
on the link (DSLink3) and the Transformer stage (DSTransformer1). The
bottom pane, which displays the watch list, is empty because you have not yet
defined what you want to watch.

8. To add DSLink3.DSLinkRowCount to the watch list, select DSLink3.DSLink-
RowCount from the list of variables in the upper pane, then click Add Watch.

9. Select each input column from the upper pane of the Debug Window
(ORDID, ITEMID, and so on), then click Add Watch to add them to the watch
list.

10. This and the following steps show you how to step through the job as it
processes data.

Click the Step to Next Row button on the debugger toolbar to step the
debugger forward to the next row processed on link DSLink3.

In the Debug Window, the status of the debugger changes to “Running” when
you first click Step to Next Row, then becomes “Stopped at Next Row”. The
watch list displays the data values for the next row of input data from the
ODBC stage. For example, the DSLinkRowCount is now 2.

Debugging Your Jobs 7-7

11. Click the Step to Next Link button on the debugger toolbar to step to the next
link in the job design. The debugger stops at the next link, DSLink4, and the
status information in the Debug Window changes accordingly. The upper
pane now lists the variables on both DSLink3 and DSLink4.

12. Select DSLink4.DSLinkRowCount and each of the DSLink4 input columns,
and add them to the watch list.

Notice that in this exercise the values on the DSLink3 and DSLink4 columns
are the same, because you have not transformed the data. (You have only
changed the order of the variables.) This procedure is very useful for watching
column data before and after a Transformer stage to see the effects of the
applied transform.

13. Click the Step to Next Row button. You return to the break at DSLink3.
Notice that in the watch list all the DSLink4 variables are listed as being out of
context. This is because in the context of DSLink3 there is no information for
the DSLink4 variables.

14. Close the Debug Window.

7-8 DataStage Tutorial

15. Remove the breakpoint on DSLink3 by selecting the link, then clicking the
Toggle Breakpoint button on the debugger toolbar. You can now run the job
to completion by clicking the Start/Continue Debugging button.

16. The Debug Window appears. When the job finishes running, the Debug
Window shows the current break as None, and in the watch list all link vari-
ables are out of context. Close the window.

17. As in the last part of Exercise 11, you can use the Data Browser to view the
data in the file ITEMS_11.TXT.

In the Designer, double-click the Sequential File stage, select the Inputs page,
then click View Data… .

The Data Browser displays the data you have just written to ITEMS_11.TXT. For
further information about the Data Browser, refer to DataStage Developer’s Guide.

Summary
In this chapter, you created a simple job to move data from a database table into a
sequential file. You then learned how to run the job design debugger on this job.
You set a breakpoint and saw how to view changes in data as you stepped forward
to the next row or link. After you ran the job to completion, you used the Data
Browser to view the data in the sequential file.

Working with Multivalued Files 8-1

8
Working with

Multivalued Files

The exercises in this chapter demonstrate the ability of DataStage to handle
UniData or UniVerse databases containing nonfirst-normal-form (NF2) data. You do
the following:

• Create a sample multivalued file (that is, a file in NF2 format) and import
the definition of that file into the DataStage Repository (Exercise 12)

• Extract data from the multivalued file and load it into the PRICES table in
your data mart (Exercise 13)

The exercises are targeted specifically at UniData and UniVerse users. If you are a
UniData user, note also that you have to use a relational database with ODBC as
the target. If you do not fall into these categories of user, leave this chapter and go
to Chapter 9.

Exercise 12: Import the Multivalued File
Definition
In this exercise you create meta data from a multivalued UniData hashed file or a
multivalued UniVerse hashed file. The focus is on using the UniData stage, but the
procedure when using a UniVerse hashed file is very similar, and any differences
are explained in the example.

Remember that you must be a UniData or UniVerse user to do Exercises 12 and 13.

8-2 DataStage Tutorial

Creating the Sample Multivalued Source File
The following procedure describes how to create and populate the multivalued
source file, from which you then derive the meta data:

1. If you are working in a UniVerse environment, check whether your DataStage
project directory includes a directory named BP. (In a UniData environment,
this directory is already in the correct location.) If BP does not exist, create it
as follows:

a. Start a Telnet session, connect to localhost, and log in. At the Account
name or path prompt, enter the fully qualified pathname to your
DataStage project, then press Return.

b. At the UniVerse prompt, type:

>CREATE.FILE BP 1

Keep the Telnet session open; you need it for later steps.

2. In Chapter 2, you copied sample tutorial files by running install.exe from the
tutorial CD. Two of the files copied to the Ardent\DataStage\Tutorial directory
were LOADFILE.B and MVPRICES.TXT. Using Explorer, File Manager, or NT
Command Prompt (DOS box), copy these two files from the tutorial directory
to the BP directory of the account where you wish to create the file. (On
UniVerse, this is the BP directory that you have just created.)

3. If you have not already done so, start a Telnet session and log in.

4. At the UniData prompt (:) or UniVerse prompt (>), compile LOADFILE.B:

:BASIC BP LOADFILE.B

5. Run LOADFILE.B. to create and populate the source file:

:RUN BP LOADFILE.B

6. You are prompted for a file name, which is the name of the text file that
contains the source data. Type BP/MVPRICES.TXT.

A hashed file named MVPRICES is created in the account.

7. Enter the following command to see the content of MVPRICES:

:LIST MVPRICES

8. Quit the Telnet session.

Working with Multivalued Files 8-3

Creating the Meta Data
Follow these steps to create meta data from the hashed file MVPRICES, which you
created in the previous section. You use the meta data when you do Exercise 13.

1. From the DataStage Manager, choose Tools ➤ Import ➤ UniData File Defi-
nitions… . The Import Meta Data (Unidata Files) dialog box appears.

On UniVerse: Choose Tools ➤ Import ➤ UniVerse File Definitions… . The
Import Meta Data (UniVerse Files) dialog box appears.

2. Enter the node name of the server, and the user account name and password
used to connect to the server.

Click the Database drop-down list box. DataStage populates it with a list of the
databases available on the server. Select the database on which the file
MVPRICES is held, then click OK.

On UniVerse: From the Account drop-down list box, select the account that
contains the hashed file MVPRICES.

3. The DataStage Manager searches the specified UniData database or UniVerse
account, and lists the available files in the Import Meta Data dialog box. Select
the file MVPRICES.

4. Click Details… in the Import Meta Data dialog box to view the column head-
ings, and confirm that this is a multivalued file. The Details of message box
appears. “(M)” indicates that a field contains multivalued data.

5. Close the Details of message box, then with MVPRICES still selected, click
OK.

DataStage retrieves the meta data from the database, automatically creates a
file definition in the Repository, and adds a UniData entry (if one does not
already exist) to the table definitions in the DataStage Manager window.

On UniVerse: Hashed, rather than UniData, is added to the list of table defini-
tions in the DataStage Manager window.

8-4 DataStage Tutorial

You have now created meta data in the DataStage Repository for the multivalued
file. In the next exercise you extract the data from this file and load it into your data
mart.

Exercise 13: Extract Data from a Multivalued
File
This exercise introduces you to the UniData stage or, for UniVerse users, the
Hashed File stage. You extract data from the sample file created in Exercise 12, pass
the data through a simple Transformer stage, then load it in 1NF form into an
ODBC or UniVerse target (in this case the PRICES table). You see the UniData Stage
or Hashed File Stage dialog box, and find out how to view the data in normalized
and unnormalized form.

1. Open the DataStage Designer and create a new job. Save it as Exercise13.

From left to right, add a UniData or Hashed File stage, a Transformer stage,
and an ODBC or UniVerse stage. Link the stages together to form the job chain,
as shown below:

2. Edit the UniData stage, using the UniData Stage dialog box. Identify the loca-
tion of the UniData file by selecting the server node name from the Server
drop-down list box, and the database from the Database drop-down list box,
then enter your user name and password.

On UniVerse: Edit the Hashed File stage, using the Hashed File Stage dialog
box. From the Account name drop-down list box, select the account in which
you created the hashed file.

3. Click the Outputs tab, and on the General page select the MVPRICES file
from the File name drop-down list box.

Working with Multivalued Files 8-5

On the Columns page, click Load… to load the UniData or Hashed File defi-
nition for the MVPRICES file.

In this example screen, the Columns page is scrolled to the right to show the
field types and associations.

4. Have a look at the data in unnormalized form by clicking View Data… . The
Data Browser appears:

8-6 DataStage Tutorial

Alternatively, you might like to see a formatted unnormalized view.

a. Click Display… . The Column Display dialog box appears:

b. Select Un-Normalized (Formatted) from the Normalize on drop-down
list box, then click OK. The Data Browser displays the multivalued rows
split over several lines.

5. You now need to select the association on which to normalize the data.

Close the Data Browser and select PRICES from the Normalize on drop-down
list box. To view the format of the data normalized on PRICES, click View
Data… .

Working with Multivalued Files 8-7

Close the Data Browser, then click OK to exit the UniData Stage or Hashed File
Stage dialog box.

6. Edit the ODBC or UniVerse stage using the ODBC Stage or UniVerse Stage
dialog box.

Select the data source name and enter your user name and password.

On UniVerse: User name and password are not required for a UniVerse stage
using localuv as the source.

7. Click the Inputs tab.

On the General page, select the PRICES table from the Table name drop-down
list box.

On UniVerse: The table has your account name as a prefix, for example,
EXAMPLE.PRICES.

Choose Clear the table, then insert rows from the choices in the Update action
drop-down list box. This lets you reuse the PRICES table, which was popu-
lated if you completed Exercise 4.

8-8 DataStage Tutorial

8. On the Columns page, click Load… to load the ODBC definition for the
PRICES table (or the UniVerse definition if using UniVerse data). The data-
base provided this information during the meta data import that you did in
Exercise 12.

9. To see the SQL statements that DataStage uses for this job, click the View SQL
tab.

Click OK. The ODBC or UniVerse stage is now complete.

10. Edit the Transformer stage using the Transformer Editor.

You have only to define the column derivations on the output link. As in Exer-
cise 4, there is no material data transformation in this exercise, and you should
make each derivation a straight mapping of source to target.

Notice though that the order of the input and output columns is different;
ensure that you map the correct columns. The derivation for column PRODID
is DSLink3.PRODID, for column STARTDATE it is DSLink3.STARTDATE, and
so on.

When you have set the column derivations, click OK to accept the transformer
settings and to exit the Transformer Editor.

The Transformer stage is now complete.

11. Save the job, then compile it.

12. Open the DataStage Director and validate the new job.

13. Run the job. The PRICES table is loaded with data from the multivalued file.

To examine the table, return to the job Exercise13 in the DataStage Designer,
open the ODBC (or UniVerse) Stage dialog box, then click View Data… on the
Inputs page. The Data Browser displays the data in the same layout as shown
in step 5, except that the order of the columns is different.

You have successfully created a job to take records with multivalued data from a
UniData or UniVerse file, and loaded that data in 1NF form into your data mart.

Summary
In this chapter you created a sample multivalued hashed file that contained data
in nonfirst-normal form (NF2), then you created meta data from this file. You used
the meta data in a job that extracted the data from the hashed file and loaded it into
a relational database table in first normal form (1NF). The job included a UniData
stage or Hashed File stage, which you used for the first time in this tutorial.

National Language Support 9-1

9
National Language

Support

The exercises in this chapter demonstrate some of the National Language Support
(NLS) features of DataStage. You do the following:

• Convert data from the EBCDIC character set to the ASCII character set.

• Use per-column mapping to handle a table that has columns using different
character sets.

• Sort data according to the conventions of two different locales and examine
the difference between the two resulting outputs.

To do the exercises, you need DataStage installed with NLS.

National Language Support in DataStage
DataStage can handle data in many different character sets through built-in
National Language Support (NLS). DataStage achieves this data handling capa-
bility by using an internal character set based on UNICODE for all data handling
and internal functions. UNICODE is a 16-bit character set capable of encoding
characters from most major languages and it is used as a worldwide character-
encoding standard. DataStage maps incoming data from whatever character set it
is in to this internal representation. Similarly, outgoing data can be mapped from
the internal representation to whatever character set is required.

A default external character set is defined for each project. In DataStage, character
sets are called maps. Within each job, the default map may be overridden for the
job as a whole, for individual stage instances, and for individual columns within
tables.

9-2 DataStage Tutorial

Jobs are neither restricted to the same character set for all of the source and target
stages, nor to the character set of the underlying operating system. Multiple char-
acter sets may be in use at one time.

This means, for example, that a job could read data from a Korean (KSC) ODBC
source and write Japanese (JIS) sequential files. It also means that DataStage can be
used for moving data between mainframe database character sets, without
changing the meaning of the data at all. Imported meta data, such as table and
column definitions, can be in any supported character set. It is easy with the right
tools.

In DataStage, national conventions for numbers, dates, times, and currency are
known as locales. A default locale is set for each project during installation. By
setting locales for a project or job, you can ensure that DataStage uses the appro-
priate conventions for the territory the application is used in. The conventions
define:

• The language and character set for the territory
• How numbers, dates, times, and currency data are formatted
• Which characters are alphabetic, and how they should be sorted

Exercise 14: Convert from One Character Set to
Another
This exercise shows NLS support at its simplest: how to convert data from one
character set to another. In this case you will be converting from an EBCDIC char-
acter set to an ASCII character set. You will be adding some extra items to the
PRODUCTS table, using data from an EBCDIC text file.

As the exercise uses a character map that is not normally loaded with DataStage,
the first step is to install the map using the DataStage Administrator. You have not
used the DataStage Administrator in previous exercises, but everything you need
to know to use it in this exercise is described here.

National Language Support 9-3

To install the map for the EBCDIC character set:

1. Choose Start ➤ Programs ➤ Ardent DataStage ➤ DataStage Administrator
to start the DataStage Administrator. After you have filled in the Attach to
DataStage dialog box, the DataStage Project Administration dialog box
appears:

2. Click the NLS… button. The Project NLS Settings dialog box appears with the
Maps page displayed. This is where you load the EBCDIC map.

9-4 DataStage Tutorial

3. Click the Install>> button. The dialog box expands to show a list of maps.

4. Select EBCDIC from the list of Available maps on the left, then click the Add>
button. The EBCDIC map is added to the Installed list on the right, but before
you can use it you need to to stop and restart the DataStage server engine.
This is because character set maps are only actually loaded by the server
engine when it starts up. The easiest way to stop and restart the server is to
close any DataStage clients and reboot the computer.

5. When you have restarted, open the DataStage Administrator again, and click
NLS… to go to the Maps page of the Project NLS Settings dialog box. Check
that EBCDIC now appears in the list of maps.

6. Click OK, and once you have returned to the DataStage Project Administra-
tion dialog box, click Close to exit the DataStage Administrator.

National Language Support 9-5

The EBCDIC map is now available for use from DataStage. Next, you go to the
DataStage Designer and set up a new job:

1. Open the DataStage Designer and create a new job. Save the job as Exercise14.

2. From left to right, add a Sequential File stage, a Transformer stage, and an
ODBC or UniVerse stage.

3. Edit the Sequential File stage:

a. Enter c:\Ardent\DataStage\Tutorial in the Directory where files
are held field on the General page.

b. Click the NLS tab to view the NLS page. You will see that the stage is set
to use the default project character set map, e.g., MS1252, which handles
ASCII characters. Don’t change anything yet.

c. Click the Outputs tab. Enter ebcdprod.txt in the File name field. This
file contains updates to the PRODUCTS table, but in the EBCDIC character
set.

d. Click the Columns tab. There is no sequential meta data for the PROD-
UCTS table, but you can load the meta data from the existing PRODUCTS
table definition under the ODBC or UniVerse branch of the Repository.

9-6 DataStage Tutorial

e. Once you have loaded the table definition, click the View Data… button
in the Columns page. The data shown is nonsense, because DataStage is
viewing EBCDIC data using an ASCII character set map. Close the Data
Browser and return to the NLS page of the Sequential File Stage page.

f. Select the EBCDIC map from the Map name to use with stage list. This
tells DataStage that this stage uses the EBCDIC map rather than the
default project map.

g. Go back to the Outputs page and click the View Data… button. This time
you should see six new products that will be added to the PRODUCTS
table.

National Language Support 9-7

4. Edit the ODBC stage:

a. From the General page, select the DSN you are using for the exercises as
the Data source name from the drop-down list. Fill in the User name and
Password fields. This time you will be using the project default character
set map, so there is no need to visit the NLS page.

b. Click the Inputs tab and on the General page, select PRODUCTS from the
Table name drop-down list and Insert new or update existing from the
Update action drop-down list. This ensures you will add to the existing
PRODUCTS table rather than overwrite it.

c. On the Columns page, load the table definitions for the PRODUCTS table
from the ODBC (or UniVerse) branch.

5. Now you need to edit the Transformer stage. In this exercise the Transformer
stage acts as a simple link between the Sequential File stage and the ODBC or
UniVerse stage. Open the Transformer Editor and link the columns together
from left pane to right pane.

If you save, compile and run the job, you will add the extra six products to the
PRODUCTS table.

Exercise 15: Use Per-Column Mapping
This exercise demonstrates the use of per-column mapping. Per-column mapping
allows different columns in the same table to use different character sets. Main-
frame databases in Japan and other countries sometimes contain records where the
data consists of single- and double-byte characters, and a mixture of single- and
double-byte characters with control codes to switch between them. Data of all
three types can exist in a single table. DataStage allows each column in a table to
be encoded using a different character set.

Per-column mapping is normally used on an input stage to convert all the source
data into the same character set, but it may also be used on an output stage.

In this exercise you read in a sequential file with four columns, each in a different
character set. You then produce a sequential file with all four columns in the same
character set. The exercise uses the following character sets:

• MS1252 – Latin character set, ASCII.

• EBCDIC – IBM character set.

• MS932 – Japanese character set, based on ASCII.

9-8 DataStage Tutorial

• JPN-EBCDIC-IBM83 – Japanese character set which uses shift characters to
change beween single-byte EBCDIC characters and double-byte Japanese
characters.

The first thing you need to do is to open the DataStage Administrator and ensure
all these character sets are loaded and available in DataStage. Exercise 14 guides
you through the process of using the Administrator to add new character set maps.
Don’t forget to stop and restart your DataStage server engine to enable it to load
the new maps.

Once all the required maps are available for use within DataStage, go to the
DataStage Designer and set up a new job:

1. Create a new job. Save the job as Exercise15.

2. From left to right, add a Sequential File stage, a Transformer stage, and
another Sequential File stage.

3. Edit the source Sequential File stage:

a. Enter c:\Ardent\DataStage\Tutorial in the Directory where files
are held field on the General page.

b. Click the NLS tab to view the NLS page and select the Allow per-column
mapping check box. The project default character set map, e.g., MS1252, is
currently selected for the stage and is used for any delimiters in the
Sequential File data source.

c. Click the Outputs tab. Enter percol.txt in the File name field on the
General page.

National Language Support 9-9

d. Go to the Columns page. You are going to enter the table definitions
manually on this page. You’ll notice that an extra attribute, NLS Map, has
appeared for each column (you need to scroll across to the right to see
this). You will set NLS Map to the character set map for each column. If no
character set map is specified, the project default map is used. Define four
columns as follows:

– Field001, Key = No, SQL type = Varchar, Length = 255, display = 20, NLS
Map = ASCII

– Field002, Key = No, SQL type = Varchar, Length = 255, display = 20, NLS
Map = EBCDIC

– Field003, Key = No, SQL type = Varchar, Length = 255, display = 20, NLS
Map = MS932

– Field004, Key = No, SQL type = Varchar, Length = 255, display = 20, NLS
Map = JPN-EBCDIC-IBM83

e. Click View Data… to look at the input sequential file. You will be able to
read the first two columns, but on non-Japanese machines the third and
fourth columns contain question marks. This is because your machine
cannot display Japanese characters. Don’t worry, the DataStage job can
still read the file.

4. Edit the destination Sequential File stage:

a. Enter c:\Ardent\DataStage\Tutorial in the Directory where files
are held field on the General page.

9-10 DataStage Tutorial

b. Click the NLS tab to view the NLS page. Select MS932 as the character set
map for this stage. Do not select per-column mapping this time; all
columns will be converted into the Japanese MS932 map before being
written to the output file.

c. Go to the Outputs page. Enter colout.txt in the File name field on the
General page. On the Columns page enter the table definition manually
as follows:

– Field001, Key = No, SQL type = Varchar, Length = 255, display = 20

– Field002, Key = No, SQL type = Varchar, Length = 255, display = 20

– Field003, Key = No, SQL type = Varchar, Length = 255, display = 20

– Field004, Key = No, SQL type = Varchar, Length = 255, display = 20

There is no NLS Map field in this column definition because you did not
select Allow per-column mapping on the NLS page.

5. Now you need to edit the Transformer stage. In this exercise the Transformer
stage acts as a simple link between the input Sequential File stage and the
output Sequential File stage. Open the Transformer Editor and link the
columns together from left pane to right pane.

If you save, compile and run the job, you produce a single file called colout.txt
which contains all the data in a single character set, MS932.

If you are not working on a Japanese machine, you can try using Internet Explorer
to view colout.txt. Open the file in the browser, right-click in the text window and
choose Language ➤ Japanese (Auto Select) from the shortcut menu. If the Japa-
nese option is not available in this menu, it is easy to download Japanese Language
Support from the Microsoft product updates Web site.

National Language Support 9-11

Exercise 16: Sorting Under Different Locales
This exercise demonstrates the use of locales within DataStage. Locales provide the
means by which language-specific and country-specific conventions can be set.
This can affect things as diverse as the format of dates and the order that data is
sorted in. You can apply different locales to different conventions on a per-job
basis.

In this exercise you explore the difference between the sorting conventions used in
the US-English locale, and those used in the French locale. You create a job that
compares the values in two columns and states what order they sort in. You run
the job once using US English conventions, and once using French conventions.

The exercise requires that the MS1252 character set map and the US-English and
FR-French locales are loaded. You can expect the MS1252 character set to be loaded
by default on most systems, but you will have to use the DataStage Administrator
to ensure that the correct locales are loaded.

1. Open the DataStage Administrator. The DataStage Project Administration
dialog box appears.

2. Click the NLS… button. The Project NLS Settings dialog box appears with the
Maps page displayed. Click the Locales tab to go to the Locales page. You can

9-12 DataStage Tutorial

use any of the drop-down lists to see which locales are currently loaded into
DataStage.

3. If either US-English or FR-French are not loaded, click the Install>> button.
The dialog box expands to show a list of locales. Loading extra locales is very
similar to loading extra maps as described on page 9-3. You select the missing
locales from the Available list on the left and and click Add>, then you need
to stop and start the DataStage server engine so that it can load the new
locales.

Once you have made sure that the required map and locales are loaded, go to the
DataStage Designer and set up a new job.

1. Create a new job. Save the job as Exercise16.

National Language Support 9-13

2. Open the DataStage Designer and choose Edit ➤ Job Properties. The Job
Properties dialog box appears. Go to the NLS page and ensure that the
Collate locale is set to US-English.

3. From left to right, add a Sequential File stage, a Transformer stage, and
another Sequential File stage.

4. Edit the source Sequential File stage:

a. Enter c:\Ardent\DataStage\Tutorial in the Directory where files
are held field on the General page.

b. Click the Outputs tab. Enter collate.txt in the File name field on the
General page.

c. Go to the Columns page. Load the table definitions from COLLATE in the
Sequential branch of the Repository table definitions.

5. Edit the destination Sequential File stage:

a. Enter c:\Ardent\DataStage\Tutorial in the Directory where files
are held field on the General page.

b. Click the Outputs tab. Enter collate.out in the File name field on the
General page.

9-14 DataStage Tutorial

c. Go to the Columns page. Load the table definitions from COLLATE and
add an extra column to the table definitions as follows:

– Result, Key = No, SQL Type = Varchar, Length = 10, nullable = No,
Display = 10

6. Next you need to edit the Transformer stage. Link the Field001 and Field002
columns together from left pane to right pane. Define the derivation of the
Results field by double-clicking its derivation field. Enter the following deri-
vation into the Expression Editor:

if DSLinkx.Field001 < DSLinkx.Field002
then ‘Field001 is earlier’
else if DSLinkx.Field001 > DSLinkx.Field002
then ‘Field002 is earlier’
else ‘Fields are same’

DSLinkx is the name of the link from your source sequential file.

If you save, compile and run the job, you produce a single file called collate.out. Use
an editor such as Notepad to look at the file. You should see something like:

Save the file under a different name. Next you are going to recreate this file using
the French collate conventions.

1. In the DataStage Designer, choose Edit ➤ Job Properties again. The Job Prop-
erties dialog box appears. Go to the NLS page and set the Collate locale to FR-
French.

2. Save, compile, and run the job.

National Language Support 9-15

Open the new collate.out file. This file should look something like:

Compare the two files to see the differences between them. These demonstrate the
differences between the US-English and French collation. Firstly, the accent
ordering is different, as shown by the côte and coté tests. Secondly, when two
words differ only in case, the French convention puts the lowercase word first,
whereas the US-English convention puts the uppercase word first.

Summary
In this chapter you converted data from the EBCDIC character set to the ASCII
character set. You explored the use of per-column mapping by taking data from a
table whose columns each used a different character set and outputting it to a table
where all columns used the same character set. Finally, you compared the effects
of setting different locales on the sort order of data.

9-16 DataStage Tutorial

Additional Features 10-1

10
Additional Features

This chapter briefly describes some of the additional features of the DataStage tool
set because we want you to know more about what the DataStage tools can do.

Plug-In Stages
Plug-ins are written to perform specific tasks that the built-in stages do not
support. A plug-in consists of a set of routines that access external databases
and/or perform complex programming. Passive plug-in stages can be written that
support meta data import, enabling the DataStage Manager to browse and retrieve
meta data definitions from external sources.

You must have a thorough knowledge of C to design and develop a plug-in.

Two plug-ins are supplied with DataStage:

• BCPLoad
• Orabulk

BCPLoad Stages
The BCPLoad stage is a passive plug-in stage supplied by Ardent. It bulk loads
data into a single table in a Microsoft SQL Server (Release 6.5 or 7.0) or Sybase
(System 11.5) database. The files are loaded into the target database using the bulk
copy API.

By default, the BCPLoad stage is configured to bulk load data into a Microsoft SQL
Server. You can configure the BCPLoad stage properties to bulk load data into a
Sybase SQL Server table using the Sybase DBLIB or CTLIB client libraries.

10-2 DataStage Tutorial

Note: The client libraries used by the BCPLoad stage are not supplied as part of
DataStage. You must obtain these libraries from your DBMS vendor and
ensure they are installed and configured on your system before attempting
to use the BCPLoad stage.

There is one input link to this stage, which provides a sequence of rows to load into
the SQL Server or Sybase database table. The meta data for each input column
determines how it is loaded. There are no output links from this stage type.

Orabulk Stages
The Orabulk stage is a plug-in stage provided with Informix DataStage. It gener-
ates control and data files for bulk loading into a single table on an Oracle target
database. The files are suitable for loading into the target database using the Oracle
command sqlldr.

One input link provides a sequence of rows to load into an Oracle table. The meta
data for each input column determines how it is loaded. One optional output link
provides a copy of all input rows to allow easy combination of this stage with other
stages.

Transforms
DataStage has a comprehensive set of built-in transforms that handle many of your
basic data-manipulation requirements. It also provides an easy-to-use tool that lets
you create your own transforms.

Built-In Transforms
You can view the built-in transforms using the DataStage Manager. They are
grouped in two categories in the project tree, according to the type of data they
return:

• Dates – The Dates transforms mostly convert input data in xx.TAG format
to a numeric internal data, or convert numeric internal dates to strings in
xx.TAG format. This category also includes transforms that convert data
between TIMESTAMP format and the internal date format.

• String – The primary function of these transforms is to manipulate input
strings in a variety of ways, but they also include transforms that return a
string from a number.

Additional Features 10-3

Double-click a transform in the DataStage Manager project tree to view a descrip-
tion of the function of a transform, and its source and target data elements.

Refer to DataStage Developer’s Guide for a description of each built-in transform.

Custom Transforms
If the built-in transforms are not suitable or you want a transform to act on a
specific data element, you can create custom transforms. Custom transforms are
created in the DataStage Manager.

You can easily organize your transforms in branches under the main Transforms
branch in the DataStage Manager project tree. The Transform dialog box lets you
specify the branch and the transform name, select the target data element, and
specify the source arguments and data types. You then define the behavior of the
transform using the DataStage Expression Editor, which is invoked automatically
from the Transform dialog box. The following example shows the Transform
dialog box and the menu presented by the Expression Editor.

When you have created the transform, it becomes available for use from within the
Transformer Editor. Refer to DataStage Developer’s Guide for details of how to create
a custom transform.

10-4 DataStage Tutorial

The Packager Wizard
If you have developed a job or plug-in, you can distribute it to other DataStage
systems using the Packager Wizard. This utility is run from the DataStage
Manager.

When you run the Packager Wizard, you must select the type of package to create:

• Job Deployment. This package contains executable job definitions (for
each job in the package). The package contains information about the job
itself and other dependencies such as transforms, data elements, and plug-
ins.

• Design Component. This package contains plug-in definitions and associ-
ated DLLs.

The Packager Wizard then prompts for the package name and the directory in
which it should be created. It then automatically displays a list from which you
select the jobs or plug-ins that you want to include in the package. For a Job
Deployment package, this list box displays all the released jobs. For a Design
Component package, it displays all the plug-ins under the Stage Types branch in
the Repository (except the built-in ones supplied with DataStage).

Additional Features 10-5

Job Control Routines
A job control routine enables you to control other jobs from within a single job.
There are two possible approaches:

• Set up a routine within the job that validates, runs, stops, and schedules a
set of other jobs.

• Set up a job whose only function is to control other jobs.

Job control routines are defined from the DataStage Designer. You open the job in
which you want to create the routine, then display the job properties. The Job Prop-
erties dialog box has a Job control page that enables you to cut, copy, paste, search,
and format the code for the job control routine. The main part of the page consists
of a multiline text box with scroll bars. This box displays the code for the routine.

You can add a job to the job control routine by selecting it from a list of all the jobs
in the current project. When you select a compiled job, the Job Run Options dialog
box lets you specify any parameters or run-time limits that you want to apply
when the job runs. DataStage automatically adds job control code for the job to the
text box, as shown above. This code sets any job parameters and limits, runs the
job, waits for it to finish, then tests for success.

Note: In this example the job called in the job control routine runs before anything
else in the current job. If the called job aborts, the current job also aborts,
without running any further steps.

10-6 DataStage Tutorial

Each job control routine is built from a set of BASIC functions that DataStage
provides specifically for this purpose. For more information about these functions,
see the DataStage Developer’s Help.

The Job control page provides a basic editor that you can use to construct a routine
by typing the jobs, parameters, run-time limits, and so on directly into the code in
the text box.

For an example of a job control routine, refer to DataStage Developer’s Guide.

Reports
DataStage provides a flexible reporting tool that allows you to generate reports at
various levels within a job design, for example, an entire job, a single stage, or a set
of stages. Developers can thus build hard-copy records of their job designs, share
these designs with other developers, or use them to work offline from the
DataStage Designer.

The reports reflect the structure of components in a job and thus help the developer
associate the information in the report with that presented by the DataStage user
interface. A job listing, for example, details the job stages, then the links and, for
each link, the definitions of the columns on that link.

This section summarizes the features provided by the Reporting Tool. For a
detailed description of the Reporting Tool and the procedures for using it, refer to
DataStage Developer’s Guide.

The report information generated by DataStage is stored in a relational database
on the DataStage client. You can use this information to print a report, or write a
report to a file, or you can use a third-party tool to interrogate the information.

The DataStage client contains a Microsoft Access database in which the report
information can be stored. This database offers predefined report formats, and you
can extend or customize it. However, you can also target one of a number of other
popular SQL databases. Support scripts to create the reporting schema in these
databases are installed on the client machine. Refer to DataStage Developer’s Guide
for further information.

You use the Reporting Tool dialog box to update the reporting database. It lets you
update the entire project or select the objects that you want to update. There are
also options to make adjustments to factors that affect the updates. For example,
you can insert carriage returns into potentially long properties such as the Descrip-
tion property.

Additional Features 10-7

The Documentation Tool, which is invoked from the Reporting Tool dialog box,
lets you obtain a predefined report from the Microsoft Access database. In the
Documentation Tool dialog box you choose the project on which you want to
report and then define your report requirements. The Report Configuration form
lists the different types of object in the reporting database, and lets you list these
by category or individually. Developers can filter the report to focus on aspects of
the design in which they are interested, or to limit the level of detail.

When you have defined you report requirements, you can preview the finished
report, and print it if the preview is satisfactory.

This dialog box also provides a Custom Reports function, which enables you to
choose from reports that are additional to those supplied with DataStage.

10-8 DataStage Tutorial

Summary 11-1

11
Summary

This chapter summarizes the main features of DataStage and recaps what you
learned during the course of this tutorial.

Main Features in DataStage
DataStage has the following features to aid the design and processing required to
build a data warehouse:

• Uses graphical design tools. With simple point-and-click techniques you
can draw a scheme to represent your processing requirements.

• Extracts data from any number or types of database.

• Handles all the meta data definitions required to define your data ware-
house. You can view and modify the table definitions at any point during
the design of your application.

• Aggregates data. You can modify SQL SELECT statements used to extract
data.

• Transforms data. DataStage has a set of predefined transforms and func-
tions you can use to convert your data. You can easily extend the func-
tionality by defining your own transforms to use.

• Loads the data warehouse.

Recap of the Exercises
Right from the start, you learned how to use the DataStage tool set.

Although DataStage can support much more advanced scenarios than appeared in
this tutorial, a lot of material was covered in a short time.

11-2 DataStage Tutorial

The following list shows what was covered in the exercises:

1. Creating and editing jobs.

2. Saving and compiling jobs.

3. Validating and running jobs.

4. Creating and editing Sequential File stages.

5. Creating and editing Transformer stages.

6. Creating and editing ODBC or UniVerse stages.

7. Using the Data Browser to view the data in files and tables.

8. Creating a time dimension.

9. Working with multiple data sources and targets:

• Combined in a single stage
• Separated into multiple stages

10. Using row constraints to redirect data output.

11. Loading a fact table.

12. Creating and editing Aggregator stages.

13. Creating and loading summary tables.

14. Creating and editing meta data from:

• Comma-delimited sequential files
• ODBC tables

15. Importing meta data into the Repository.

16. Running the job design debugger.

Specifically for UniData or UniVerse users:

17. Creating data from UniData or UniVerse hashed files.

18. Creating and editing UniData or Hashed File stages.

Specifically for DataStage NLS users:

19. Converting data from one character set to another.

20. Dealing with tables where different columns are in different character sets.

21. Sorting data according to the conventions of two different locales.

Summary 11-3

During the tutorial you also learned how to navigate the DataStage user interface
in:

• The DataStage Manager and Repository
• The DataStage Designer
• The DataStage Director
• The DataStage Administrator

And you found out something about:

• Plug-in stages
• Built-in and custom transforms
• The Packager Wizard
• Job control routines
• The Reporting Tool
• The Documentation Tool
• National Language Support

You worked on some fairly complex examples, but somehow it did not seem that
difficult. It is easy with the right tools.

11-4 DataStage Tutorial

Sample Data Definitions A-1

A
Sample Data Definitions

This appendix contains table and column definitions for the data used in the
exercises.

The following tables contain the complete table and column definitions for the
sample data. They illustrate how the properties for each table should appear when
viewed in the Repository.

For UniVerse, ORACLE and Sybase users, the data types may differ slightly from
those specified for ODBC tables. If you use UniVerse, for example, you see Date
rather than Timestamp as the SQL types in the table definitions. Do not change the
table definitions generated during the tutorial setup process (see “Installing
Sample Data” on page 2-10) unless you are instructed to do so as part of a tutorial
exercise. For example, if you are working in an Informix or ORACLE environment,
you are instructed to change the following elements of column definitions that
have an SQL type of Timestamp:

This adjustment to the meta data is specific to the tutorial.

ITEMS and PRICES each have two definitions. One applies to the sequential file,
while the other applies to the ODBC table. They are not the same, which allows you
to do exercises that extract data from the sequential files, transform that data, then
load it into the corresponding tables.

MVPRICES is a multivalued hashed file used with UniData and Hashed File
stages. It is used to demonstrate the way in which DataStage handles multivalued
data.

Length Scale Display

On Informix: 13 0 13

On ORACLE: 19 0 19

A-2 DataStage Tutorial

The sequential file definitions are listed first, in alphabetical order, followed by the
hashed file definition:

Sequential File: COLLATE.TXT (NLS exercises only)

Sequential File: EBCDPROD.TXT (NLS exercises only)

Sequential File: ITEMS.TXT

Sequential File: PERCOL.TXT (NLS exercises only)

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

Field002 No VarChar 255 No 8

Field002 No VarChar 255 No 8

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

PRODID Yes Decimal 6 No 8 Number

DESCRIP No Char 30 Yes 30 DATE.TAG

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

QTY No Integer 4 Yes 4 Number

PRODID No Integer 6 Yes 6 Number

ORDID Yes Integer 4 No 4 Number

ITEMTOT No Integer 10 Yes 10 Number

ITEMID Yes Integer 4 No 4 Number

ACTUALPRICE No Integer 10 Yes 10 Number

Column Name Key
SQL
Type Length Scale Nullable Display NLS Map

Field002 No VarChar 255 No 20 ASCII

Field002 No VarChar 255 No 20 EBCDIC

Field002 No VarChar 255 No 20 MS932

Field002 No VarChar 255 No 20 JPN-
EBCDIC-
IBM83

Sample Data Definitions A-3

Sequential File: PRICES.TXT and MYPRICES.TXT

Hashed File: MVPRICES

Next the ODBC table definitions are listed in alphabetical order:

ODBC Table: CUSTOMERS

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

STDPRICE No Decimal 4 2 Yes 4 Number

STARTDATE Yes Char 10 No 10 DATE.TAG

PRODID Yes Decimal 6 No 6 Number

MINPRICE No Decimal 4 2 Yes 4 Number

ENDDATE No Char 10 Yes 10 DATE.TAG

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

PRODID Yes VarChar 10 No

STDPRICE No Integer 10 Yes 11

MINPRICE No Integer 10 Yes 11

STARTDATE No VarChar 10 Yes

ENDDATE No VarChar 10 Yes

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

CUSTID Yes Decimal 6 No 8 Number

NAME No Char 45 Yes 45 String

ADDRESS No Char 40 Yes 40 String

CITY No Char 30 Yes 30 String

STATE No Char 2 Yes 2 String

ZIP No Char 9 Yes 9 String

AREA No Decimal 3 Yes 5 Number

PHONE No Char 9 Yes 9 String

REPID No Decimal 4 No 6 Number

CREDITLIMIT No Decimal 9 2 Yes 11 Number

COMMENTS No Char 255 Yes 255 String

A-4 DataStage Tutorial

ODBC Table: EMPLOYEES

ODBC Table: FACTS

ODBC Table: ITEMS

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

EMPNO Yes Decimal 4 No 6 Number

ENAME No Char 10 Yes 10 String

JOB No Char 9 Yes 9 String

MGR No Decimal 4 Yes 6 Number

HIREDATE No Timestamp 23 3 Yes 23 Timestamp

SAL No Decimal 7 2 Yes 9 Number

COMM No Decimal 7 2 Yes 9 Number

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

ORDERDATE Yes Timestamp 23 3 No 23 Timestamp

EMPNO Yes Decimal 4 No 6 Number

CUSTID Yes Decimal 6 No 8 Number

ORDID Yes Decimal 4 No 6 Number

PRODID Yes Decimal 6 No 8 Number

QTY No Decimal 8 Yes 10 Number

TOTALSALE No Decimal 8 2 Yes 10 Number

SHIPDATE No Timestamp 23 3 Yes 23 Timestamp

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

ORDID Yes Decimal 4 No 6 Number

ITEMID Yes Decimal 4 No 6 Number

PRODID No Decimal 6 Yes 8 Number

ACTUALPRICE No Decimal 8 2 Yes 10 Number

QTY No Decimal 8 Yes 10 Number

ITEMTOT No Decimal 8 2 Yes 10 Number

Sample Data Definitions A-5

ODBC Table: ORDERS

ODBC Table: PRICES (and MYPRICES)

ODBC Table: PRODUCTS

ODBC Table: Q_SALES

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

ORDID Yes Decimal 4 No 6 Number

ORDERDATE No Timestamp 23 3 Yes 23 Timestamp

COMMPLAN No Char 1 Yes 1 String

CUSTID No Decimal 6 No 8 Number

SHIPDATE No Timestamp 23 3 Yes 23 Timestamp

TOTAL No Decimal 8 2 No 10 Number

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

PRODID Yes Decimal 6 No 8 Number

STARTDATE Yes Char 10 No 10 DATE.TAG

STDPRICE No Decimal 8 2 Yes 10 Number

MINPRICE No Decimal 8 2 Yes 10 Number

ENDDATE No Char 10 Yes 10 DATE.TAG

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

PRODID Yes Decimal 6 No 8 Number

DESCRIP No Char 30 Yes 30 DATE.TAG

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

QUARTER Yes Char 6 No 6 QUARTER.-
TAG

CUSTID Yes Decimal 6 No 8 Number

TOTALSALE No Decimal 8 2 Yes 10 Number

A-6 DataStage Tutorial

ODBC Table: REJECTS

ODBC Table: TIME

Note: For UniVerse users, the TIME table is called TIME_ because TIME is a
reserved word in UniVerse.

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

ORDERDATE Yes Timestamp 23 3 No 23 Timestamp

EMPNO Yes Decimal 4 No 6 Number

CUSTID Yes Decimal 6 No 8 Number

ORDID Yes Decimal 4 No 6 Number

PRODID Yes Decimal 6 No 8 Number

QTY No Decimal 8 Yes 10 Number

TOTALSALE No Decimal 8 2 Yes 10 Number

SHIPDATE No Timestamp 23 3 Yes 23 Timestamp

Column Name Key
SQL
Type Length Scale Nullable Display

Data
Element

DAY Yes Timestamp 23 No 23 Timestamp

MONTH No Char 2 Yes 2 MONTH.-
TAG

QUARTER No Char 6 Yes 6 QUARTER.-
TAG

YEAR No Char 4 Yes 4 YEAR.TAG

Index-1

A

active stage 1-3
Adobe Acrobat Reader vii, xi
aggregating data 5-9
Aggregator stage 2-19, 5-9

definition 1-7
properties 5-10

Attach to Project dialog box 2-17, 3-3,
6-2

B

BCPLoad stage 10-1
definition 1-7

before- and after-stage
subroutines 5-11

branches 6-4
breakpoints, setting 7-3
built-in routines 6-4
built-in stages 1-3

BCPLoad 10-1
Orabulk 10-2

built-in transforms 6-4, 10-2
bulk loading data 10-1
buttons

tool palette 3-5
toolbar 3-4, 3-11, 3-13

C

changing
link names 4-4
object names 4-5

character set locales 1-4
character set maps 1-4

converting from one to another 9-2
definition 1-8

cleanup script files
INF_CLN.SQL 2-12
MSS_CLN.SQL 2-12
ORA_CLN.SQL 2-12
SYB_CLN.SQL 2-12
UNI_CLN.SQL 2-12

client components 1-5
column definitions A-1

definition 1-7
entering manually 6-8

Column Display dialog box 8-6
Compile Job window 3-12, 4-9
compiling jobs 3-11, 4-9
connecting to projects 2-17, 3-3
constraints on rows 5-7
Container Input stage 1-3
Container Output stage 1-3
Container stage 1-3

definition 1-7
containers 1-3
converting from one character set map

to another 9-2
Create New Job dialog box 4-3
creating

custom transforms 10-3
expressions 4-21
jobs 4-3

Index

Index-2 DataStage Tutorial

meta data 6-1, 6-5, 6-7, 8-3
sample multivalued file 8-2
sample tables 2-13
table definitions 6-1, 6-7

custom SQL code, writing 4-14
custom transforms, creating 10-3

D

data
aggregating 5-9
bulk loading 10-1
definitions A-1
direct access 2-9
extracting, see extracting data
hashed file 2-9
multivalued 8-1
ODBC 2-9
sample 2-1, 2-10, A-1
sequential file 2-9
sources 2-9
targets 2-9
transforming 4-1, 4-11, 5-1
types 2-9
viewing 7-8, 8-5
writing, see loading data

Data Browser 3-8, 4-16, 7-8, 8-5, 9-6
definition 1-7

data elements, definition 1-7
data marts 2-5
data model 2-1
data properties 1-2
data transformations 2-18
data warehouses 2-5
DataStage

features, summary 11-1
overview 1-1
terms 1-7

DataStage Administrator 1-5, 1-6
definition 1-7

DataStage Designer 1-5
definition 1-7

starting from Director 4-9
DataStage Designer window 3-4
DataStage Director 1-6, 3-13

definition 1-7
starting 3-12

DataStage Director window 3-13
DataStage export file 2-11, 2-16
DataStage Manager 1-5, 6-2

definition 1-7
starting 6-2

DataStage Manager window 2-18, 6-3
toolbar 6-3

DataStage Project Administration
dialog box 9-3

DataStage Repository, see Repository
DataStage Server 1-4
DataStage tools 1-1

client components 1-5
Documentation Tool 10-7
jobs 1-1
projects 1-1
Reporting Tool 10-6
server components 1-4
stages 1-3, 2-10
terms 1-7

Debug Window 7-5
debugger toolbar 7-3
debugging a job design 7-1
defining

file formats 6-10
table definitions

assisted 6-1, 6-5
manually 6-1, 6-7

delimited files,writing data to 4-3
Derivation dialog box 5-11
Designer, see DataStage Designer
developer, definition 1-7
dialog boxes

Attach to Project 3-3, 6-2
Column Display 8-6
Create New Job 4-3
Derivation 5-11

Index-3

Edit Breakpoints 7-4
Hashed File Stage 8-4
Import Meta Data (ODBC) 6-5
Import Meta Data (UniData

Files) 8-3
Import Meta Data (UniVerse

Files) 8-3
Import Meta Data (UniVerse

Tables) 6-5
Job Run Options 3-14, 4-9
ODBC Stage 4-13, 4-19, 8-7
Open Job 3-6
Sequential File Stage 4-12, 7-2
Table Definition 6-7
UniData Stage 8-4
UniVerse Stage 4-13, 8-7

dimension tables 2-6
direct access data 2-9
Director, see DataStage Director
display area 6-4

updating 3-13
displaying

project items 6-4
ToolTips 3-5, 3-11, 3-13, 7-3

documentation conventions ix
Documentation Tool 10-7

E

Edit Breakpoints dialog box 7-4
editing

Hashed File stage 8-4
ODBC stage 4-13, 4-19, 5-2, 8-7
Sequential File stage 3-7, 4-4, 4-12,

4-18, 7-2
Transformer stage 3-9, 4-8, 4-14,

4-19, 5-6, 8-8
UniData stage 8-4
UniVerse stage 4-13, 4-19, 5-2, 8-7

entering
column definitions 6-8
logon settings 3-3, 6-2

environments, see SQL environments
executable jobs 1-2
exercises

aggregating data 5-9
converting from one character set

map to another 9-2
creating meta data

multivalued files 8-1
relational database tables 6-5
sequential file 6-7

debugging a job design 7-1
extracting data from a multivalued

file 8-4
loading data into a relational data-

base table 4-17, 6-10
loading data into a sequential

file 4-2
loading the time dimension

table 4-17
overview 2-18
sample job 3-1
sorting under different locales 9-11
summary 11-2
using multiple sources and

targets 5-1
using per-column mapping 9-7

export file 2-11, 2-16
Expression Editor 4-20, 5-8
expressions, creating 4-21
extracting data

delimited files 4-11
hashed file 8-4
multiple data sources 5-1
multivalued file 8-4
relational database tables 5-1
sequential file 3-1, 4-2, 4-11
UniData file 8-4

Index-4 DataStage Tutorial

F

fact tables 2-5
FACTS table 2-19, 5-6, 5-10, A-4
files

export 2-11, 2-16
formats, defining 6-10
hashed 1-7, 2-9, 8-1, 8-4
log 5-9
multivalued 8-1, 8-2, 8-4
sequential 2-9, 3-1, 4-2, 7-2
SQL script 2-12

first normal form 8-8
definition 1-7

fixed-length sequential files, extracting
data from 4-3

flat files, see sequential files
functions, syntax 4-21

H

Hashed File stage 8-4
definition 1-8

Hashed File Stage dialog box 8-4
hashed files 2-9

column definition A-2
definition 1-7
extracting data from 8-4
importing meta data from 8-1

Help system, one-line help 3-4

I

icons 6-4
Import Meta Data (ODBC) dialog

box 6-5
Import Meta Data (UniData Files)

dialog box 8-3
Import Meta Data (UniVerse Files)

dialog box 8-3
Import Meta Data (UniVerse Tables)

dialog box 6-5

importing meta data 6-1
hashed file 8-1
ODBC tables 6-5
sample meta data 2-16
sequential file 6-1
UniData file 8-1
UniVerse tables 6-5

Informix SQL script files 2-12
INF_BLD.SQL 2-12
INF_CLN.SQL 2-12
starting up environment 2-14

installing tutorial
prerequisites viii
sample data 2-10

introduction, see overview

J

job batches, definition 1-8
job control routines 10-5
job design debugger 7-1

running 7-3
job parameters, definition 1-8
Job Run Options dialog box 3-14, 4-9
Job Status view 3-13
Job window 3-4, 3-6, 4-4
jobs 1-1

compiling 3-11, 4-9
control routines 10-5
creating 4-3
debugging 7-1
definition 1-8
example 3-1

importing 2-16
executable 1-2
packaging 10-4
sample 3-1, 3-6
saving 4-3
validating 3-14

Index-5

L

links 1-2, 3-7
changing names 4-4
input 3-10
output 3-10

loading data
into ODBC tables 4-17, 5-1, 5-9
into sequential files 3-1, 4-2
into time dimension tables 4-17
into UniVerse tables 4-17, 5-1, 5-9

locales 1-4
definition 1-8
sorting under different 9-11

log files 5-9
logon settings

entering 3-3, 6-2
saving 2-17, 3-3

M

Manager, see DataStage Manager
maps 1-4

definition 1-8
per-column mapping 9-7
project default 1-4

meta data 6-1
creating manually 6-7
creating with assistance 6-5
definition 1-8
importing 2-16, 6-5
multivalued files 8-1
ODBC tables 2-16, 6-5
UniVerse tables 2-16, 6-5

Microsoft SQL Server SQL script
files 2-12

MSS_BLD.SQL 2-12
MSS_CLN.SQL 2-12

Microsoft SQL Server, see Microsoft
SQL Server SQL script files

moving tool palette 3-5
MS SQL Server SQL script files

starting up environment 2-14
multiple data sources and targets 2-19,

5-1
multivalued data 8-1, A-1
multivalued files

creating meta data 8-1
extracting data 8-4
sample 8-2

N

National Language Support 1-3
NLS 9-1

converting from one character set
map to another 9-2

definition 1-8
overview 1-3
per-column mapping 9-7
sorting under different locales 9-11

nonfirst-normal form 8-1
definition 1-8

normalization 8-5
definition 1-8

O

object names, changing 4-5
ODBC

data 2-9
drivers viii, 2-9

ODBC stage
definition 1-8
editing 4-13, 4-19, 5-2, 8-7

ODBC Stage dialog box 4-13, 4-19, 8-7
ODBC tables

definitions A-1
extracting data 5-1, 5-9
loading data 4-11, 4-17, 5-1, 5-9
meta data, importing 2-16, 6-5

Open Job dialog box 3-6
operator, definition 1-9

Index-6 DataStage Tutorial

Orabulk stage 10-2
definition 1-9

Oracle SQL script files 2-12
ORA_BLD.SQL 2-12
ORA_CLN.SQL 2-12
starting up environment 2-15

overview
of DataStage 1-1
of exercises 2-18, 11-2
of NLS 1-3, 9-1
of Reporting Tool 10-6

P

Packager Wizard 10-4
packaging

jobs 10-4
plug-ins 10-4

passive stage 1-3
per-column mapping 1-4
plug-in stages 1-3, 10-1

definition 1-9
plug-ins

BCPLoad 10-1
definitions 10-4
distributing to other systems 10-4
Orabulk 10-2
packaging 10-4

prerequisites viii
project default map

overriding 1-4
project items, displaying 6-4
Project NLS Settings dialog box 9-3
project tree 6-4
projects 1-1, 6-4

connecting to 2-17, 3-3
properties

Aggregator stage 5-10
data 1-2

Q

Q_SALES table 2-19, 5-9, A-5

R

rejected rows 5-9
REJECTS table 2-19, 5-6, A-6
Report Configuration form 10-7
Reporting Tool, overview 10-6
Repository 1-4

definition 1-9
editing items in 6-10

routines 6-4
rows

constraints on 5-7
rejected 5-9

running
database 2-13
job design debugger 7-3
SQL scripts 2-13

S

sample data 2-1
creating 2-10
definitions A-1

sample job 3-1
configuration 3-7
importing 2-16
opening 3-6

sample multivalued file, creating 8-2
sample tables, creating 2-13
saving

jobs 4-3
logon settings 2-17, 3-3

script files, see SQL script files
Sequential File stage 2-19

definition 1-9
editing 3-7, 4-4, 4-12, 4-18, 7-2

Sequential File Stage dialog box 4-12,
7-2

Index-7

sequential files 2-9
data 2-9
definitions A-2
extracting data from 3-1, 4-2
loading data into 3-1, 4-2
meta data

entering manually 6-7
importing 6-1

opening 2-11
server components 1-4
Server, see DataStage Server
setting breakpoints 7-3
sorting under different locales 9-11
sources, definition 1-9
SQL environments 2-14

starting up 2-13
syntax 2-13

SQL script files 2-12
running 2-13
viewing 2-12

SQL*Plus window 2-14
sqlldr command 10-2
stages 1-3, 2-10

see also built-in stages
active 1-3
Aggregator 1-7, 2-19, 5-9
BCPLoad 1-7, 10-1
built-in 1-3
Container 1-3, 1-7
Container Input 1-3
Container Output 1-3
definition 1-9
Hashed File 1-8, 2-20, 8-4
in exercises, overview 2-18
ODBC 1-8, 2-19, 4-13, 4-19, 5-2, 8-7
Orabulk 1-9, 10-2
passive 1-3
plug-in 1-3, 1-9
Sequential File 1-9, 2-19, 3-7, 4-4,

4-12, 4-18, 7-2
Transformer 1-9, 2-19, 3-1, 4-1, 4-2,

4-11, 4-19, 5-1, 7-2

UniData 1-9, 2-20, 8-4
UniVerse 1-10, 2-19, 4-13, 4-19, 5-2,

8-7
star schema 2-5

diagram 2-8
fact table 2-5

starting
DataStage Director 3-12
DataStage Manager 6-2
SQL environments 2-13

status bar 3-4
Sybase SQL script files 2-12

starting up environment 2-15
SYB_BLD.SQL 2-12
SYB_CLN.SQL 2-12

syntax
functions 4-21
SQL environments 2-13

T

Table Definition dialog box 6-7
table definitions 6-4, A-1

creating 6-1, 6-7
definition 1-9

tables
dimension 2-6
exercise samples A-1
fact 2-5
FACTS 2-19, 5-6, 5-10, A-4
meta data, importing 2-16, 6-5
names 6-6
ODBC, see ODBC tables
Q_SALES 2-19, 5-9, A-5
REJECTS 2-19, 5-6, A-6
sample, creating 2-13
TIME 2-7, 4-19, 5-10, A-6
time dimension 2-7
TIME_, see TIME
UniVerse, see UniVerse tables

terminology 1-7

Index-8 DataStage Tutorial

text files 2-11
see also sequential files

time dimension tables 2-7
loading 4-17

TIME table 2-7, 4-19, 5-10, A-6
TIME_ table, see TIME table
tool palette 3-5

buttons 3-5
moving 3-5

toolbars
debugger 7-3
Designer 3-4
Director 3-13
Manager 6-3
Transformer Editor 3-11

ToolTips 3-5, 3-11, 3-13, 7-3
transform functions, definition 1-9
Transformer Editor 3-10, 4-8, 4-14,

4-19, 5-6, 8-8
definition 1-9
Links area 3-10
Meta Data area 3-10
toolbar 3-11

Transformer stage 2-19
definition 1-9
editing 3-9, 4-8, 4-14, 4-19, 5-6, 8-8

Transformer Stage Constraints dialog
box 5-7

transforming data 4-1
in hashed files 8-4
in relational database tables 5-1,

5-9
in sequential files 3-1, 4-2, 4-11
in UniData files 8-4

transforms
built-in 10-2
custom 10-3
dates 10-2
string 10-2

tutorial
installing sample data 2-10
prerequisites viii

U

UNICODE 1-3, 9-1
definition 1-9

UniData files
extracting data 8-4
hashed file definition A-2
meta data, importing 8-1

UniData stage
definition 1-9
editing 8-4

UniData Stage dialog box 8-4
UniVerse

reserved word 2-7
starting up environment 2-15

UniVerse files
extracting data 8-4
meta data, importing 8-1

UniVerse SQL script files 2-12
UNI_BLD.SQL 2-12
UNI_CLN.SQL 2-12

UniVerse stage
definition 1-10
editing 4-13, 4-19, 5-2, 8-7

UniVerse Stage dialog box 4-13, 8-7
UniVerse tables

definitions A-1
extracting data 5-1, 5-9
loading data 4-11, 4-17, 5-1, 5-9
meta data, importing 2-16, 6-5

updating display area 3-13

V

validating jobs 3-14
viewing

data 7-8, 8-5, 9-6
ToolTips 3-5, 3-11, 3-13, 7-3
tutorial SQL script files 2-12

views
Job Status 3-13
unnormalized 8-5

Index-9

W

windows
Compile Job 3-12, 4-9
Data Browser 4-16, 7-8, 8-5, 9-6
DataStage Designer 3-4, 9-5
DataStage Director 3-13
DataStage Manager 2-18, 6-3
Debug 7-5
Job 3-4, 3-6, 4-4
SQL*Plus 2-14
Transformer Editor 3-10
WISQL32 2-15

WISQL32 window 2-15
writing

custom SQL code 4-14
data, see loading data

Index-10 DataStage Tutorial

