

12/2/2011

Automatic ReadAhead

Scott Lashley, STSM, Informix Kernel Architect

An IBM White Paper

Informix Dynamic Server

12/2/2011

Contents

Introduction 2

What is ReadAhead? 2

What’s new with Automatic

ReadAhead? 3

How do I configure ReadAhead? 4

How do I monitor ReadAhead? 5

How can I use ReadAhead to help

tune my Informix server for optimal

query performance? 5

Introduction

The Informix server continues its dedication

to making it the industry standard for ease of

use. With the introduction of Automatic

ReadAhead in Informix 11.70.xC4, we’ve

eliminated another tuning knob while also

improving performance. In this white paper

we’ll discuss what ReadAhead is, when it

occurs and how you the DBA can monitor

ReadAhead to help better tune your system.

What is ReadAhead?

ReadAhead is a function of the Informix

server that anticipates the data needed to

satisfy a query and asynchronously issues

I/O read requests to bring the data into the

bufferpool. By issuing the I/O requests

asynchronously, the processing necessary

for reading the requests into the bufferpool

overlaps with the processing being done by

the query.

The Informix server supports several

different types of ReadAhead.

Data ReadAhead

Data ReadAhead is used when a query is

doing a sequential scan on a partition. The

query is going to scan all the data pages

starting at the beginning of the partition and

scanning to the end of the partition.

ReadAhead will submit an asynchronous

request for a whole bunch of pages, starting

with page 1. As the query is processing the

data and consuming the pages, the query

will continue to submit subsequent

asynchronous requests for more pages when

the pages left to process from the previous

request are sufficiently depleted.

Figure 1 is an example of data

ReadAhead using 128 page I/O

requests.

Index ReadAhead

Index ReadAhead is used when a

query is doing a key only range scan.

A key only range scan is a scan that

requires only the data columns

contained within the index and does

not require any additional columns

from the table. The Index

ReadAhead scan uses the TWIG

level of the btree to issue

asynchronous I/O requests for the

LEAF pages of the btree. ReadAhead

requests are bounded by the range of

the scan.

Figure 2 is a drawing of a typical Informix

btree. Consider the following key only scan:

select c1 where c1 < ‘Q’

We start the scan by traversing down the left

side of the btree. When we come to the

TWIG level
1
 we initiate ReadAhead. In

Node 4, we see that it points to Nodes 2 and

3 so we issue asynchronous I/O calls for

those 2 nodes. We then slide to the right

from Node 4 and read Node 7 and issue

more asynchronous I/O calls for LEAF

pages 5, 6 and 8. Asynchronous requests

will continue to be generated until we reach

TWIG node 11 and LEAF node 9 because

LEAF node 9 contains our stop key ‘Q’.

Index/Data ReadAhead

Index/Data ReadAhead is used when a query

is using an index to access a table and the

query requires data from the table that isn’t

contained within the index. This type of scan

uses Index ReadAhead to traverse through

the Index just like a key only range scan.

Whenever the range scan encounters a new

LEAF node, the scan will also submit

asynchronous I/O requests for all the data

pages represented by all the rowids that the

keys point to.

What’s new with Automatic
ReadAhead?

Automatic ReadAhead provides several new

features that make queries run faster without

requiring the DBA to tune any knobs.

Automatic ReadAhead

Prior to 11.70, the DBA could turn

ReadAhead on for all queries by setting the

ONCONFIG parameters RA_PAGES and

RA_THRESHOLD. All table and range

1
 The LEAF level is the bottom of the btree. The

TWIG level is the level just above the LEAF level.

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.adref.doc%2Fids_adr_1125.htm

This is a global setting impacting all

users and queries.
SET ENVIRONMENT

AUTO_READAHEAD

This is a session specific setting.

The simplest way to configure

ReadAhead is to set it in the

ONCONFIG file.

Ex) AUTO_READAHEAD 1

For those who are upgrading from a

previous version of Informix and are

using ONCONFIG parameters

RA_PAGES & RA_THRESHOLD,

RA_PAGES will be honored and

internally converted to using

Automatic ReadAhead.

We’ve decided to simplify the

configuration by no longer honoring

RA_THRESHOLD (it is

deprecated). In our testing we found

that in most cases, performance

remained the same when the

threshold for starting the next set of

asynchronous I/O requests is ½ of

the total number of pages to be read

(in other words, ½ of RA_PAGES).

For more information on all the

possible settings, click the links

above to take you to the Informix

11.70 documentation.

How do I monitor ReadAhead?

We’ve added a new onstat option to

monitor ReadAhead:

 onstat -g rah

What does it mean to have
effective read ahead?

In the onstat –g rah output, there is a

stat column called eff. The range of

values for this column is 0 to 100.

The higher the value, the more effective

ReadAhead is. A higher value means that

the asynchronous I/O requests are not

finding the pages in the bufferpool and

therefore ReadAhead is being effective in

helping improve performance.

My onstat –p statistics are different,
why?

Prior to Automatic ReadAhead, when the

Informix instance was configured with

ReadAhead on, every table and range scan

employed ReadAhead regardless if the data

was cached in the bufferpool or not. With

Automatic ReadAhead, ReadAhead won’t

be employed by a query until the query

encounters I/O from disk. That means that

some queries may never do ReadAhead

where as before, they always did

ReadAhead. Because of this, onstat –p

output can yield different results from prior

Informix versions when running a similar

workload.

How can I use ReadAhead to help
tune my Informix server for optimal
query performance?

Tuning ReadAhead falls into two areas:

1. Tuning specific queries

2. Tuning the overall system

Turning specific queries

In most cases, the default setting of 128

pages is sufficient. But, there can be

situations where an additional performance

gain could be achieved by increasing the

number of pages to be submitted. The most

likely situation where a larger request would

be beneficial is when the I/O subsystem is

somewhat slow or busy and the processing

of the data is very fast. Let’s use the

example of…

select count(*) from t1 where c1 !=

NULL

http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.sqls.doc%2Fids_sqs_2104.htm&resultof=%22AUTO_READAHEAD%22
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.sqls.doc%2Fids_sqs_2104.htm&resultof=%22AUTO_READAHEAD%22
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.adref.doc%2Fids_adr_1126.htm&resultof=%22onstat%22%20%22-g%22%20%22g%22%20%22rah%22

The predicate processing is a very

simple expression (!= NULL) and

the number of rows returned is 1

(count *). The overall amount of

processing of this query is very small

making the processing of the data

demanding. If t1 is a large table, this

query will be dominated by I/O. One

would expect the CPU to be able to

process the data much faster than the

data can be read from disk. In most

cases, requesting 128 pages per

ReadAhead request should drive the

query at disk speed. But, if the I/O

subsystem is slow or very busy,

sometimes it is more efficient to

submit more pages. To test this on

your system, use the SET

ENVIRONMENT statement to set

the ReadAhead settings for a specific

session to see if the performance of

the query improves.

When doing FIRST N queries, the

query won’t require all the possible

data. In order to save on unneeded

I/O, it may be beneficial to scale

down the number of pages to be read

ahead since they won’t be required to

satisfy the query.

Tuning the overall system

In the vast majority of cases, setting

AUTO_READAHEAD to 1 is

enough. For existing systems that

had ReadAhead turned off
2
, those

systems should now be able to have

ReadAhead turned on and utilize the

ReadAhead functionality without

paying any penalty to queries where

the data is already cached.

When it comes to tuning, changing

the ReadAhead configuration will

2
 ONCONFIG parameter RA_PAGES = 0

will turn off ReadAhead.

most likely have little or no impact to the

overall performance of most queries. But,

the ReadAhead statistics can be very useful

in determining what’s happening as queries

are executing. When the working set
3
 is

large and most of the queries access data

within the working set, then you should

expect a high cache hit rate and the

ReadAhead efficiency to be low because

very few pages will need to be read from

disk. In this case, having a low ReadAhead

efficiency isn’t a bad thing, it’s a good thing

because there is little to no disk I/O activity.

If this scenario describes your system, there

are 2 things you can do to further improve

performance:

1. Increase the bufferpool size to

increase the size of the working set

to make sure queries that are doing

disk I/O will find the data they need

in the bufferpool.

2. If queries are doing occasional disk

I/O, those individual sessions that are

executing those queries may change

the AUTO_READAHEAD setting

from Passive (1) to Aggressive (2) to

make sure the occasional disk I/O

has an asynchronous I/O request

submitted. Note that the Aggressive

setting causes queries to always issue

ReadAhead requests regardless if the

data is cached so that some queries

which are highly cached might

encounter more CPU overhead to

perform the ReadAhead requests.

Aggressive mode causes ReadAhead

to behave similar to previous

versions of Informix that used

ReadAhead.

If you have queries that don’t access data in

the working set, then you should see a high

efficiency value in onstat –g rah. To

improve performance for these types of

3
 Working Set Definition

http://en.wikipedia.org/wiki/Working_set

queries, the best solution is to change

the query to a light scan
4
. This will

make sure the working set remains

intact while providing good query

performance. If that’s not possible,

then ReadAhead is an excellent

alternative.

Further questions can be directed to

the author.

4
 Light Scan

mailto:slashley@us.ibm.com?subject=Questions%20about%20Auto%20ReadAhead
http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.perf.doc%2Fids_prf_237.htm&resultof=%22%6c%69%67%68%74%22%20%22%73%63%61%6e%22%20

