)]:¥H8 |BM Informix

Version 10.0

IBM Informix DataBlade APl Programmer’s Guide

G251-2273-01

Note:
FBefore using this information and the product it supports, read the information in|[“Notices” on page C-1]

Second Edition (July 2005)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction. L L L L . e s e e e e e e e e e e e e aXxi
In This Introduction.o
About This Manualo
Typesof Users ..o Lxdd
Software Dependenciesxi
Assumptions About Your Locale .xi
Demonstration Databases. . . D o
New Features in Dynamic Server, Versmn 10 D q 1
Features from Previous Versions .xii
Function Syntax Conventions . . . e i
DataBlade API Module Code Conventlons. S ¢ A 4
Documentation Conventions XV
Typographical Conventions . . . Ce s Xy
Feature, Product, and Platform Markup N 4%
Syntax Diagrams . . D 4 %
Example Code Convent1ons e i
Additional Documentation uxix
IBM Informix Information Center. .xix
Installation Guides. L ..o Lxix
Online Notes s s s s Lxix
Informix Error Messages.o
Manuals Loy X
Online Help. L e e s axxdd
Accessibility. Loxxid
IBM Informix Dynamic Server Versmn 10 O and CSDK Versron 2 90 Documentatlon Set B o 1
Compliance with Industry Standards .xxiv
IBM Welcomes Your Comments ... L. xxiv

Part 1. DataBlade APl Overview

Chapter 1. Usmgthe DataBlade API.0 .11
In This Chapter. . . . P £
DataBlade API Module
User-Defined Routine (Server) 12
Client LIBMI Application . . T)
Compatibility of Client and Server DataBlade API Modules e)
DataBlade API Components .. .14
Header Files. s 14
Public Data Typesy
Regular Public Functions .113
Advanced Features (Server) . . T £ V4
Internationalization of DataBlade API Modules (GLS) o S k<

Chapter 2. Accessmg SQL Data Types e e e e e e e e e e e e e e e e e e e 24
In This Chapter. . . . 22
Type Identifiers. L L L L. 22
Type Descriptors23
Type-Structure Conversion . . s 24
Data Type Descriptors and Column Type Descrlptors)
Character Data Types. . . Ce e e 27
The mi_charl and mi un51gned charl Data Types Ce 2T
The mi_char and mi_string Data Types .28
The mi_lvarchar Data Type . . .)
Character Data in a Smart Large Ob]ect C o210

© Copyright IBM Corp. 1996, 2005 iii

Character Processing. . . 2-10
Varying-Length Data Type Structures . . 2-13
Using a Varying-Length Structure . 2-13
Managing Memory for a Varying-Length Structure . 2-14
Accessing a Varying-Length Structure . . 2-17
Byte Data Types . . . 2-28
The mi_bitvarying Data Type . 2-28
Byte Data in a Smart Large Ob]ect . . 2-29
Byte Processing . . 2-29
Boolean Data Types . . . 2-30
Boolean Text Representation . . 2-30
Boolean Binary Representation . 2-30
Pointer Data Types (Server) . 2-31
Simple Large Objects . 2-32
The MI_DATUM Data Type . . . 2-32
Contents of an MI_DATUM Structure . . 2-33
Address Calculations with MI_DATUM Values . 2-35
Uses of MI_DATUM Structures . . 2-35
The NULL Constant . . 2-36
SQL NULL Value . . 2-36
NULL-Valued Pointer . 2-37
Part 2. Data Manipulation
Chapter 3. Using Numeric Data Types . 3-1
In This Chapter. . 3-1
Integer Data31
Integer Text Representatlon .32
Integer Binary Representations. .32
Fixed-Point Data . . 3-8
Fixed-Point Text Representatrons . . .38
Fixed-Point Binary Representations . . 3-10
Transferring Fixed-Point Data (Server) . . 3-14
Converting Decimal Data . . . 3-14
Performing Operations on Decimal Data . . 3-16
Obtaining Fixed-Point Type Information . . 3-16
Floating-Point Data . . . 3-16
Floating-Point Text Representatron . . 3-17
Floating-Point Binary Representations . . 3-17
Transferring Floating-Point Data (Server) . . 3-19
Converting Floating-Point Decimal Data . . 3-20
Obtaining Floating-Point Type Information . 320
Formatting Numeric Strings . . . 3-20
Chapter 4. Using Date and Time Data Types . 441
In This Chapter. . 4-1
Date Data. . .41
Date Text Representatron .41
Date Binary Representation . .42
Transfers of Date Data (Server) . 4-3
Conversion of Date Representations . . 4-3
Operations on Date Data. . 4-5
Date-Time or Interval Data . . . 4-5
Date-Time or Interval Text Representatlon . 4-6
Date-Time or Interval Binary Representation . . 47
The datetime.h Header File49
Retrieval and Insertion of DATETIME and INTERVAL Values . . 4-11
Transfers of Date-Time or Interval Data (Server) . 4-12
Conversion of Date-Time or Interval Representations . . 4-13
Operations on Date and Time Data . . 4-15

iV IBM Informix DataBlade API Programmer’s Guide

Functions to Obtain Information on Date and Time Data415

Chapter 5. UsmgCompIexDataTypes. C e e e e e e e e e e e e e e e e e ... B

In This Chapter. . . . N |
Collections . . . e A
Collection Text Representatlon o 1
Collection Binary Representation .52
Creating a Collection .. .53
Opening a Collection . . . S oo s b
Accessing Elements of a Collectlon N Y
Releasing Collection Resources .bl5
The listpos() UDR .. .bl6
Row Types . . . e A
Row-Type Text Representatlon e 2
Row-Type Binary Representation .52
Creating a Row Type .53
Accessing a Row Type .b36
Copying a Row Structure .b36
Releasing Row Resources .53

Chapter 6. UsmgSmartLargeObjects. e 2

In This Chapter. . . . e
Understanding Smart Large Ob]ects e
Parts of a Smart Large Object .63
Information About a Smart Large Object .64
Storing a Smart Large Object in a Database .613
Valid Data Types . . . e 5 K
Access to a Smart Large Ob]ect e
Using the Smart-Large-Object Interface .615
Smart-Large-Object Data Type Structures .o616
Smart-Large-Object Functions. .619
Creating a Smart Large Object . . . e
Obtaining the LO-Specification Structure A 2]
Choosing Storage Characteristics . . N 4]
Initializing an LO Handle and an LO Flle Descrlptor e ()
Writing Data to a Smart Large Object .0642
Storingan LOHandle ... 0642
Freeing Resources . . N
Sample Code to Create a New Smart Large Ob]ect A e
Accessing a Smart Large Object e
Selecting the LOHandle .0647
Opening a Smart Large Object . . . B
Reading Data from a Smart Large Ob]ect Lo 6-48
Freeing a Smart Large Object. . . . e s 6
Sample Code to Select an Existing Smart Large Ob]ect =
Modifying a Smart Large Object. .650
Updating a Smart Large Object .6580
Altering Storage Characteristics . . . e e
Obtaining Status Information for a Smart Large Ob]ect A
Obtaining a Valid LO File Descriptor .652
Initializing an LO-Status Structure .653
Obtaining Status Information. .6b54
Freeing an LO-Status Structure .0655
Deleting a Smart Large Object .0656
Managing the Reference Count .656
Freeing LO File Descriptors . . . e ¢ Se e
Converting a Smart Large Object to a Flle or Buffer B H
Using Operating-System Files. .65
Using User-Defined Buffers . . . A e
Converting an LO Handle Between Bmary and Text e S ()

Contents V

Binary and Text Representations of an LO Handle . . 6-60
DataBlade API Functions for LO-Handle Conversion . . 6-60
Transferring an LO Handle Between Computers (Server) . 6-61
Using Byte-Range Locking. . 6-61
Passing a NULL Connection (Server) . 6-62
Part 3. Database Access
Chapter 7. Handling Connections . . 71
In This Chapter. . 7-1
Understanding Session Management . 7-1
Client Connection . 7-2
UDR Connection (Server) 7-2
Connection Descriptor 7-3
Initializing a Client Connection 7-4
Using Connection Parameters . 7-4
Using Database Parameters . 7-6
Using Session Parameters . . .78
Setting Connection Parameters for a Chent Connectron . . 7-10
Establishing a Connection . . 7-11
Establishing a UDR Connection (Server) . 7-11
Establishing a Client Connection. . 7-14
Associating User Data with a Connection. . 7-16
Initializing the DataBlade API . 7-17
Closing a Connection . 7-18
Chapter 8. Executlng SQL Statements . . 8-1
In This Chapter. . 82
Executing SQL Statements . . . 82
Choosing a DataBlade API Functlon . 83
Executing Basic SQL Statements . .86
Executing Prepared SQL Statements . 8-11
Executing Multiple SQL Statements. . 8-32
Processing Statement Results . . 8-33
Executing the mi_get_result() Loop . 8-34
Example: The get_results() Function . . 8-38
Retrieving Query Data . . 8-39
Obtaining Row Information . 8-40
Obtaining Column Information . . 841
Retrieving Rows . . . 8-41
Obtaining Column Values . . 842
Completing Execution . . 8-57
Finishing Execution . . 8-57
Interrupting Execution . . 8-58
Inserting Data into the Database. . 8-59
Assembling an Insert String . 8-59
Sending the Insert Statement . . 859
Processing Insert Results . 8-59
Using Save Sets . 859
Creating a Save Set . . 8-60
Inserting Rows into a Save Set . 8-60
Building a Save Set . . 8-61
Freeing a Save Set . 8-64
Chapter 9. Executing User-Defined Routines . . 9-1
In This Chapter. . .91
Accessing MI_FPARAM Routlne State Informatlon . .92
Checking Routine Arguments . . . 93
Accessing Return-Value Information . . 9-6
Saving a User State 9-8

Vi IBM Informix DataBlade API Programmer’s Guide

3 Chapter 11. Working with XA-Compliant External Data Sources

3

L LY LY LY L 1LY LY LW L LY L W L L W W LW W W W WW

Obtaining Other Routine Information . .
Calling UDRs Within a DataBlade API Module .
Invoking a UDR Through an SQL Statement.
Calling a UDR Directly (Server) . .
Named Parameters and UDRs
Calling UDRs with the Fastpath Interface.
Obtaining a Function Descriptor .
Obtaining Information from a Function Descrlptor
Executing the Routine . .
Using a User-Allocated MI FPARAM Structure
Releasing Routine Resources .
Obtaining Trigger Execution Information and HDR Database Server Status
Trigger Information .
HDR Status Information

Chapter 10. Handling Exceptlons and Events

In This Chapter .

DataBlade API Event Types

Event-Handling Mechanisms .

Invoking a Callback .
Using Default Behavior

Callback Functions . .
Declaring a Callback Functlon .
Writing a Callback Function .

Database Server Exceptions . .
Understanding Database Server Exceptlons
Providing Exception Handling .

Returning Error Information to the Caller
Handling Multiple Exceptions .
Raising an Exception .

State-Transition Events .
Understanding State-Transition Events
Providing State-Transition Handling .

Client LIBMI Errors

Overview of Integrating XA-Compliant Data Sources in Transactions
Support for the Two-Phase Commit Protocol. .
XA-Compliant Data Sources and Data Source Types . .
Infrastructure for Creating Support Routines for XA Routines .
Global Transaction IDs .

System Catalog Tables . . .
Files Containing Necessary Components .

Creating User-Defined XA-Support Routines.
The xa_open() function. o
The xa_close() function.

The xa_start() function .

The xa_end() function .

The xa_prepare() function.

The xa_rollback() function.

The xa_commit() function .

The xa_recover() function .

The xa_forget() function

The xa_complete() function

Dropping an XA Support User- Defmed Routme

Managing XA Data Sources and Data Source Types
Creating an XA Data Source Type .

Dropping an XA Data Source Type.
Creating an XA Data Source .
Dropping an XA Data Source

. 9-12
. 9-12
. 9-13
. 9-13
. 9-14
. 9-14
. 917
. 9-23
. 9-27
. 9-36
. 9-38
. 9-39
. 9-39
. 9-39

. 101
. 10-1

. 10-2

. 10-3

. . 10-3
. 10-11
. 10-12
. 10-13
. 10-16
. 10-20
. 10-20
. 10-25
. 10-32
. 10-38
. 10-40
. 10-49
. 10-49
. 10-51
. 10-55

. 111
. 11-1
. 11-2
. 11-2
. 11-3
. 11-3
. 11-3
. 11-3
. 11-3
. 114
. 114
. 11-5
. 11-5
. 11-6
. 11-7
. 11-7
. 11-8
. 11-8
. 119
. 119
. 11-9

. 119

. 11-11

. 11-11
. 11-11

Contents Vil

3
3
3
3
3
3
3
3

Registering and Unregistering XA-Compliant Data Sources . 11-12
Using ax_reg() . Lo . 11-12
Using ax_unreg() . 11-13
Using mi_xa_register_ xadatasource() . 11-14
Using mi_xa_unregister_. xadatasource(). . 11-15
Getting the XID Structure. . 11-16
Getting the Resource Manager ID . . 11-16

Monitoring Integrated Transactions . 11-17

Part 4. Creating User-Defined Routines

Chapter 12. Developlng a User-Defined Routine . 1241

In This Chapter L1222

Designing a UDR. . 122
Development Tools . L1222
Uses of a C UDR . . 12-4
Portability . . 12-4
Insert and Update Operatlons . 12-5

Creating UDR Code . . 12-6
Variable Declaration . . 12-6
Session Management .o 126
SQL Statement Execution . . 12-10
Routine-State Information. . 12-11
Event Handling . . 12-11
Well-Behaved Routines . 12-12

Compiling a C UDR . 12-12
Compiling Options . . 12-12
Creating a Shared-Object Flle . 12-13

Registering a C UDR 12-14
EXTEND Role Required to Reglster a C UDR . . 12-15
The External Name. . o . 12-15
The UDR Language . 12-16
Routine Modifiers . . . 12-17
Parameters and Return Values . . 12-17
Privileges for the UDR. . 12-18

Executing a UDR . 12-18
Routine Resolution . . 12-20
The Routine Manager . . 12-20

Debugging a UDR . . 12-25
Using a Debugger . . . 12-25
Running a Debugging Session . . 12-27
Using Tracing . 12-29

Changing a UDR . 12-36
Altering a Routine . . 12-36
Unloading a Shared-Object Flle . 12-36

Chapter 13. Wr|t|ng a User-Defined Routine . . 13-1

In This Chapter . 13-2

Coding a C UDR . . . 132
Defining Routine Parameters . 132
Obtaining Argument Values . . 135
Defining a Return Value . . 13-11
Coding the Routine Body. . 13-16

Using Virtual Processors 13-16
Creating a Well-Behaved Routme . . 13-17
Managing Virtual Processors. . 13-37

Controlling the VP Environment . . 13-38
Obtaining VP-Environment Informatlon . 13-39
Changing the VP Environment . . 13-40
Locking a UDR . . 1341

viii IBM Informix DataBlade API Programmer’s Guide

Performing Input and Output . L s 1342

Access to a Stream (Server)o 1342
Access to Operating-System Files .1352
Sample File-Access UDR e [2STS
Accessing the UDR Execution Env1r0nment. e c 6t
Accessing the Session Environment .1358
Accessing the Server Environment. .1358

Chapter14Manag|ngMemory e Y

In This Chapter . . . e 55 |
Understanding Shared Memory P 25
Accessing Shared Memory. L L. 142
Choosing the Memory Duration. .l44
Managing Shared Memory . 141
Managing User Memory ... 142
Managing Named Memory .. 1424
Monitoring Shared Memory .1433
Managing Stack Space. .1435
Managing Stack Usage .1435
Increasing Stack Space. ... 1436

Chapter 15. Creating Spe0|al Purpose UDRs. « .+ o«1541

In This Chapter . . . e o
Writing an End-User Routme e
Writing a Cast Function .152
Writing an Iterator Function .153
Initializing the Iterations .156
Returning One Active-Set Item .158
Releasing Iteration Resources. . . e 1o
Calling an Iterator Function from an SQL Statement e 8
Writing an Aggregate Function. .11
Extending a Built-In Aggregate. 1512
Creating a User-Defined Aggregate .1516
Providing UDR-Optimization Functions .1553
Writing Selectivity and Cost Functions .1554
Creating Negator Functions .1560
Creating Commutator Functions .1560
Creating Parallelizable UDRs .1561
Chapter 16. Extendlng Data Types 16-1

In This ChapterED39>>BDCBT / EF81T£8 9802008 9802204216 296272 051Tm(5L17()T]/ F811F8.9802008.980222

Component represented in PDF

Component represented in HTML

Meaning

Table Reference

Table Reference

|) | [View-------- +-
| view | ACEEEEE table------ +
table '----synonym------ '
synonym ——

Syntax segment.

How to Read a Command-Line

The following command-line syntax diagram uses some of the elements listed in

the table in the previous section.

Creating a No-Conversion Job

»»>—onpladm create job—job

Syntax Diagram

»—t—table

|—- p—pr'ojectJ

n—-d—device—-D—database—— >

Yy

l——S—server—l l——T—target—l

Notes:
1 See page Z-1

The second line in this diagram has a segment named “Setting the Run Mode,”
which according to the diagram footnote, is on page Z-1. If this was an actual
cross-reference, you would find this segment in on the first page of Appendix Z.
Instead, this segment is shown in the following segment diagram. Notice that the

| Setting the Run Mode |7

(1)

diagram uses segment start and end components.

Setting the Run Mode:

[
—-f B

—d—| u

Lo Ly

To see how to construct a command correctly, start at the top left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case sensitive because the illustrates utility

syntax. Other types of syntax, such as SQL, are not case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

Introduction

xvii

1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:

e -n

* -d and the name of the device

¢ -D and the name of the database

¢ -t and the name of the table

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:

¢ -S and the server name
e -T and the target server name

* The run mode. To set the run mode, follow the Setting the Run Mode
segment diagram to type -f, optionally type d, p, or a, and then optionally
type 1 or u.

5. Follow the diagram to the terminator.

Your diagram is complete.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except
system-level commands. When a keyword appears in a syntax diagram, it is
shown in uppercase letters. When you use a keyword in a command, you can
write it in uppercase or lowercase letters, but you must spell the keyword exactly
as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples. You can replace a variable with an arbitrary name, identifier, or
literal, depending on the context. Variables are also used to represent complex
syntax elements that are expanded in additional syntax diagrams. When a variable
appears in a syntax diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

»>—SELECT—column_name—FROM—table_name

v
A

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the code is
not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo

XViii IBM Informix DataBlade API Programmer’s Guide

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using DB-Access, you must delimit multiple
statements with semicolons. If you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept
being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation

For additional information, refer to the following types of documentation:
¢ Installation guides

* Online notes

* Informix error messages

* Manuals

* Online help

IBM Informix Information Center

The Informix Dynamic Server Information Center integrates the entire IBM
Informix Dynamic Server 10.0 and IBM Informix Client SDK (CSDK) 2.90
documentation sets in both HTML and PDF formats. The Information Center
provides full text search, a master index, logical categories, easy navigation, and
links to troubleshooting and support files.

The IBM Informix Information Center site is located at
http:/ /publib.boulder.ibm.com /infocenter /idsOhelp /index.jsp}

Installation Guides

Installation guides are located in the /doc directory of the product CD or in the
/doc directory of the product’s compressed file if you downloaded it from the IBM
Web site. Alternatively, you can obtain installation guides from the IBM Informix
Online Documentation site at

|http: / /www.ibm.com/software/data/informix/pubs/library/ | or the IBM Informix
Information Center at

lhttp:/ /publib.boulder.ibm.com /infocenter/idsOhelp /index.jsp}

Online Notes

The following sections describe the online files that supplement the information in
this manual. Please examine these files before you begin using your IBM Informix
product. They contain vital information about application and performance issues.

Introduction ~ XiX

http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp

Online File Description Format

TOC Notes The TOC (Table of Contents) notes file provides | HTML
a comprehensive directory of hyperlinks to the
release notes, the fixed and known defects file,
and all the documentation notes files for
individual manual titles.

Documentation Notes The documentation notes file for each manual HTML, text
contains important information and corrections
that supplement the information in the manual
or information that was modified since
publication.

Release Notes The release notes file describes feature HTML, text
differences from earlier versions of IBM
Informix products and how these differences
might affect current products. For some
products, this file also contains information
about any known problems and their
workarounds.

Machine Notes (Non-Windows platforms only) The machine text
notes file describes any platform-specific actions
that you must take to configure and use

IBM Informix products on your computer.

Fixed and Known This text file lists issues that have been text
Defects File identified with the current version. It also lists
customer-reported defects that have been fixed
in both the current version and in previous
versions.

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site at
Ihttp: / /www.ibm.com/software/data/informix/pubs/library/ | and in the IBM
Informix Information Center at
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp} Additionally you
can locate these files before or after installation as described below.

Before Installation

All online notes are located in the /doc directory of the product CD. The easiest
way to access the documentation notes, the release notes, and the fixed and known
defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided in
text format.

After Installation
On UNIX platforms in the default locale, the documentation notes, release notes,

and machine notes files appear under the SINFORMIXDIR/release/en_us/0333
directory.

| Dynamic Server
On Windows the documentation and release notes files appear in the Informix
folder. To display this folder, choose Start > Programs > IBM product name

version > Documentation Notes or Release Notes from the taskbar.

XX IBM Informix DataBlade API Programmer’s Guide

http://www.ibm.com/software/data/informix/pubs/library/
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp

Machine notes do not apply to Windows platforms.

| End of Dynamic Server

Online Notes Filenames
Online notes have the following file formats:

Online File File Format Examples

TOC Notes prod_os_toc_version.html ids_win_toc_10.0.html

Documentation Notes prod_bookname_docnotes_version.html/txt ids_hpl_docnotes_10.0.html

Release Notes prod_os_relnotes_version.html/txt ids_unix_relnotes_10.0.txt

Machine Notes prod_machine_notes_version.txt ids_machine_notes_10.0.txt

Fixed and Known prod_defects_version.txt ids_defects_10.0.txt

Defects File client_defects_2.90.txt
ids_win_fixed_and_known ids_win_fixed_and_known
_defects_version.txt _defects_10.0.txt

Informix Error Messages

This file is a comprehensive index of error messages and their corrective actions for
the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and their
corrective actions.

| Dynamic Server |

On Windows, use the Informix Error Messages utility to read error messages and
their corrective actions. To display this utility, choose Start > Programs > IBM
product name version > Informix Error Messages from the taskbar.

| End of Dynamic Server |

You can also access these files from the IBM Informix Online Documentation site at
http:/ /www.ibm.com /software/data/informix/pubs/library /| or in the IBM
Informix Information Center at

lhttp:/ /publib.boulder.ibm.com /infocenter /ids9help /index.jsp}

Manuals

Online Manuals

A CD that contains your manuals in electronic format is provided with your IBM
Informix products. You can install the documentation or access it directly from the
CD. For information about how to install, read, and print online manuals, see the
installation insert that accompanies your CD. You can also obtain the same online
manuals from the IBM Informix Online Documentation site at

lhttp:/ /www.ibm.com /software/data/informix/pubs/library /| or in the IBM
Informix Information Center at

lhttp:/ /publib.boulder.ibm.com /infocenter/idsOhelp /index.jsp}

Introduction XXi

http://www.ibm.com/software/data/informix/pubs/library/
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www.ibm.com/software/data/informix/pubs/library/
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp

Printed Manuals

To order hardcopy manuals, contact your sales representative or visit the IBM
Publications Center Web site at

http:/ /www.ibm.com /software/howtobuy /data.html]

Online Help

IBM Informix online help, provided with each graphical user interface (GUI),
displays information about those interfaces and the functions that they perform.
Use the help facilities that each GUI provides to display the online help.

Accessibility

IBM is committed to making our documentation accessible to persons with
disabilities. Our books are available in HTML format so that they can be accessed
with assistive technology such as screen reader software. The syntax diagrams in
our manuals are available in dotted decimal format, which is an accessible format
that is available only if you are using a screen reader. For more information about
the dotted decimal format, see the Accessibility appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90
Documentation Set

The following tables list the manuals that are part of the IBM Informix Dynamic
Server, Version 10.0 and the CSDK Version 2.90, documentation set. PDF and
HTML versions of these manuals are available at

http:/ /www.ibm.com /software /data/informix/pubs /library /| or in the IBM
Informix Information Center at

http:/ /publib.boulder.ibm.com /infocenter /ids9help /index.jsp} You can order
hardcopy versions of these manuals from the IBM Publications Center at

lhttp:/ /www.ibm.com /software /howtobuy /data.html]

Table 1. Database Server Manuals

Manual

Subject

Administrator’s Guide

Understanding, configuring, and administering your database server.

Administrator’s Reference Reference material for Informix Dynamic Server, such as the syntax of database

server utilities onmode and onstat, and descriptions of configuration parameters,
the sysmasters tables, and logical-log records.

Backup and Restore Guide The concepts and methods you need to understand when you use the ON-Bar

and ontape utilities to back up and restore data.

User’s Guide

Built-In DataBlade Modules Using the following DataBlade modules that are included with Dynamic Server:

* MQ DataBlade module, to allow IBM Informix database applications to
communicate with other MQSeries applications.

* Large Object Locator, a foundation DataBlade module that can be used by other
modules that create or store large-object data.

DB-Access User’s Guide Using the DB-Access utility to access, modify, and retrieve data from Informix

databases.

DataBlade API
Function Reference

The DataBlade API functions and the subset of ESQL/C functions that the
DataBlade API supports. You can use the DataBlade API to develop client LIBMI
applications and C user-defined routines that access data in Informix databases.

DataBlade API

Programmer’s Guide

The DataBlade API, which is the C-language application-programming interface
provided with Dynamic Server. You use the DataBlade API to develop client and
server applications that access data stored in Informix databases.

XXii IBM Informix DataBlade API Programmer’s Guide

http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www.ibm.com/software/howtobuy/data.html

Table 1. Database Server Manuals (continued)

Manual

Subject

Database Design and
Implementation Guide

Designing, implementing, and managing your Informix databases.

Enterprise Replication Guide

How to design, implement, and manage an Enterprise Replication system to
replicate data between multiple database servers.

Error Messages file

Causes and solutions for numbered error messages you might receive when you
work with IBM Informix products.

Getting Started Guide

Describes the products bundled with IBM Informix Dynamic Server and
interoperability with other IBM products. Summarizes important features of
Dynamic Server and the new features for each version.

Guide to SQL: Reference

Information about Informix databases, data types, system catalog tables,
environment variables, and the stores_demo demonstration database.

Guide to SQL: Syntax

Detailed descriptions of the syntax for all Informix SQL and SPL statements.

Guide to SQL: Tutorial

A tutorial on SQL, as implemented by Informix products, that describes the basic
ideas and terms that are used when you work with a relational database.

High-Performance Loader
User’s Guide

Accessing and using the High-Performance Loader (HPL), to load and unload
large quantities of data to and from Informix databases.

Installation Guide for
Microsoft Windows

Instructions for installing IBM Informix Dynamic Server on Windows.

Installation Guide for
UNIX and Linux

Instructions for installing IBM Informix Dynamic Server on UNIX and Linux.

J/Foundation Developer’s
Guide

Writing user-defined routines (UDRs) in the Java programming language for
Informix Dynamic Server with J/Foundation.

Migration Guide

Conversion to and reversion from the latest versions of Informix database servers.
Migration between different Informix database servers.

Optical Subsystem Guide

The Optical Subsystem, a utility that supports the storage of BYTE and TEXT data
on optical disk.

Performance Guide

Configuring and operating IBM Informix Dynamic Server to achieve optimum
performance.

R-Tree Index User’s Guide

Creating R-tree indexes on appropriate data types, creating new operator classes
that use the R-tree access method, and managing databases that use the R-tree
secondary access method.

SNMP Subagent Guide

The IBM Informix subagent that allows a Simple Network Management Protocol
(SNMP) network manager to monitor the status of Informix servers.

Storage Manager
Administrator’s Guide

Informix Storage Manager (ISM), which manages storage devices and media for
your Informix database server.

Trusted Facility Guide

The secure-auditing capabilities of Dynamic Server, including the creation and
maintenance of audit logs.

User-Defined Routines and
Data Types Developer’s Guide

How to define new data types and enable user-defined routines (UDRs) to extend
IBM Informix Dynamic Server.

Virtual-Index Interface
Programmer’s Guide

Creating a secondary access method (index) with the Virtual-Index Interface (VII)
to extend the built-in indexing schemes of IBM Informix Dynamic Server.
Typically used with a DataBlade module.

Virtual-Table Interface
Programmer’s Guide

Creating a primary access method with the Virtual-Table Interface (VTI) so that
users have a single SQL interface to Informix tables and to data that does not
conform to the storage scheme of Informix Dynamic Server.

Introduction XXxiii

Table 2. Client/Connectivity Manuals

Manual

Subject

Client Products Installation
Guide

Installing IBM Informix Client Software Developer’s Kit (Client SDK) and IBM
Informix Connect on computers that use UNIX, Linux, and Windows.

Embedded SQL]J User’s Guide

Using IBM Informix Embedded SQLJ to embed SQL statements in Java programs.

ESQL/C Programmer’s Manual

The IBM Informix implementation of embedded SQL for C.

GLS User’s Guide

The Global Language Support (GLS) feature, which allows IBM Informix APIs and
database servers to handle different languages, cultural conventions, and code
sets.

JDBC Driver Programmer’s
Guide

Installing and using Informix JDBC Driver to connect to an Informix database
from within a Java application or applet.

NET Provider Reference Guide

Using Informix .NET Provider to enable .NET client applications to access and
manipulate data in Informix databases.

ODBC Driver Programmer’s
Manual

Using the Informix ODBC Driver API to access an Informix database and interact
with the Informix database server.

OLE DB Provider
Programmer’s Guide

Installing and configuring Informix OLE DB Provider to enable client applications,
such as ActiveX Data Object (ADO) applications and Web pages, to access data on
an Informix server.

Object Interface for C++
Programmer’s Guide

The architecture of the C++ object interface and a complete class reference.

Table 3. DataBlade Developer’s Kit Manuals

Manual

Subject

DataBlade Developer’s Kit
User’s Guide

Developing and packaging DataBlade modules using BladeSmith and BladePack.

DataBlade Module
Development Overview

Basic orientation for developing DataBlade modules. Includes an example
illustrating the development of a DataBlade module.

DataBlade Module Installation
and Registration Guide

Installing DataBlade modules and using BladeManager to manage DataBlade
modules in Informix databases.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International
Organization of Standardization (ISO) have jointly established a set of industry
standards for the Structured Query Language (SQL). IBM Informix SQL-based
products are fully compliant with SQL-92 Entry Level (published as ANSI
X3.135-1992), which is identical to ISO 9075:1992. In addition, many features of
IBM Informix database servers comply with the SQL-92 Intermediate and Full
Level and X/Open SQL Common Applications Environment (CAE) standards.

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find
useful in our manuals, which will help us improve future versions. Include the
following information:

* The name and version of the manual that you are using

* Section and page number

* Your suggestions about the manual

Send your comments to us at the following email address:

xxiv

IBM Informix DataBlade API Programmer’s Guide

[docinf@us.ibm.com|

This email address is reserved for reporting errors and omissions in our
documentation. For immediate help with a technical problem, contact IBM

Technical Support. For instructions, see the IBM Informix Technical Support
website at |http:/ / www:l

B06.ibm.com /software/data/informix/support/contact.html}

We appreciate your suggestions.

Introduction XXV

mailto:docinf@us.ibm.com
http://www-306.ibm.com/software/data/informix/support/contact.html
http://www-306.ibm.com/software/data/informix/support/contact.html

XXVi IBM Informix DataBlade API Programmer’s Guide

Part 1. DataBlade API Overview

© Copyright IBM Corp. 1996, 2005

IBM Informix DataBlade API Programmer’s Guide

Chapter 1. Using the DataBlade API

In This Chapter. .11
DataBlade API Module00l
User-Defined Routine (Server) .. .0 0012
Typesof UDRs2
Benefits of UDRso s s a2
UsingUDRs.13
Client LIBMI Application . . e)
Compatibility of Client and Server DataBlade API Modules O)
DataBlade API Components .. .14
Header Files. . . PO £
DataBlade API Header Flles O R
ESQL/C Header Files. . . P £}

IBM Informix GLS Header F11e e £
Private Header Files ... 1T
Public Data Types . . . e €4
DataBlade API Data Types .o O £V
DataBlade API Support Data Types e S 1)
DataBlade API Data Type Structures .11
Regular Public Functions .1l13
DataBlade API Functions . . e Y S

IBM Informix ESQL/C Functlons e Y 1)

IBM Informix GLS Functions .1l16
Advanced Features (Server) . . T V4
Internationalization of DataBlade API Modules (GLS) B L k)

In This Chapter

The IBM Informix DataBlade API is the application programming interface (API)
for IBM Informix Dynamic Server. You can use DataBlade API functions in
DataBlade modules to access data stored in a Dynamic Server database.

This chapter provides the following information:

* A description of the different kinds of DataBlade API modules you can write
with the DataBlade API

* A summary of the basic parts of the DataBlade API

For information about how to develop DataBlade modules, see the IBM Informix:
DataBlade Developer’s Kit User's Guide.

DataBlade APl Module

A DataBlade API module is a C-language module that uses the functions of the
DataBlade API to communicate with Dynamic Server. You can use the DataBlade
APl in either of the following kinds of DataBlade API modules:

¢ A C UDR: a user-defined routine that is written in C
* A client LIBMI application: a client application written in C

Tip: This manual uses the term “DataBlade API module” generically to refer to
either a client LIBMI application or a user-defined routine (UDR).

To provide portability for applications, most of the DataBlade API functions behave
identically in a UDR and a client LIBMI application. In cases where syntax or

© Copyright IBM Corp. 1996, 2005 1-1

1-2

semantics differ, this manual uses qualifying paragraphs to distinguish between
server-side and client-side behavior of the DataBlade APL

If neither the server-specific or client-specific qualifying paragraphs appear, you
can assume that the functionality is the same in both the server-side and client-side
implementations of the DataBlade API. For more information, see
IProduct, and Platform Markup” on page xv| of the introduction.

You can dynamically determine the kind of DataBlade API module with the
mi_client() function.

User-Defined Routine (Server)

A user-defined routine (UDR) is a routine that you can invoke within an SQL
statement or another UDR. UDRs are building blocks for the development of
DataBlade modules. Possible uses for a UDR follow:

* Support function for an opaque data type
* Cast function to cast data from one data type to another
* End-user routine for use in SQL statements

¢ Operator function to implement an operation on a particular data type

For a more complete list, see [“Uses of a C UDR” on page 12-4]

When you write a UDR in an external language (a language other than SPL), the
UDR is called an external routine. An external routine that is written in the C
language is called a C UDR. A C UDR uses the server-side implementation of the
DataBlade API to communicate with the database server.

This section provides the following information about C UDRs. For general
information about UDRs, see the IBM Informix: User-Defined Routines and Data
Types Developer’s Guide.

Types of UDRs
You can write the following types of C UDRs.

Type of UDR Description C Implementation
User-defined Returns one or more values and therefore can be A C function that
function used in SQL expressions returns some data

type other than
For example, the following query returns the results void (usually a

of a UDR named area() as part of the query DataBlade API data
results: type)
SELECT diameter, area(diameter)

FROM shapes
WHERE diameter > 6;

User-defined Does not return any values and cannot be used in A C function that
procedure SQL expressions because it does not return a value returns void

You can call a user-defined procedure directly,
however, as the following example shows:

EXECUTE PROCEDURE myproc(l, 5);

Benefits of UDRs
C UDRs provide the following benefits over UDRs written in SPL:

¢ Performance

IBM Informix DataBlade API Programmer’s Guide

UDRs process data on the server computer and send just the results to the client
application. This division of processing often reduces the amount of data that
needs to be sent to the client application.

* Optimization
UDRs process just the data that needs to be processed depending on what the
optimizer determines is most efficient.

* Configuration management

C UDRs centralize shared code, which allows many users to access a single copy
of the routine.

Using UDRs

You can write a UDR in C by using the DataBlade API functions to communicate
with the database server. You can also write subroutines in C that a UDR calls as it
executes. These subroutines must follow the same rules as the UDR with respect to
the use of DataBlade API functions.

Tip: Because of the subject matter of this manual, the manual uses the terms “C
UDR” and “UDR” interchangeably.

You compile UDRs into shared-object files. You then register the UDR in the
system catalog tables so that the database server can locate the code at runtime.
The database server dynamically loads the shared-object files into memory when
the UDR executes.

For more information on how to create C UDRs, see the following chapters of this
manual:

* |Chapter 12, “Developing a User-Defined Routine,” on page 12-1, provides an
overview to the development process, including information on compilation,
registration, execution, and debugging.

* [Chapter 13, “Writing a User-Defined Routine,” on page 13-1| describes specific
features and tasks of a C UDR.

* [Chapter 14, “Managing Memory,” on page 14-1} describes how to manage
memory allocation within a C UDR.

* |Chapter 15, “Creating Special-Purpose UDRs,” on page 15-1} describes how to
create special kinds of UDRs, such as iterator functions, user-defined aggregates,
and optimization functions.

Client LIBMI Application

A client LIBMI application is a stand-alone client application that uses the client-side
implementation of the DataBlade API to communicate with the database server.
The application might be written in C, C++, or Visual Basic.

Important: Support is provided for client LIBMI applications for backward
compatibility with existing applications. For the development of new C
client applications, use another IBM Informix C-language product such
as IBM Informix ODBC.

Compatibility of Client and Server DataBlade APl Modules

You can execute a UDR from an SQL statement as well as from a client application
with little or no modification to the code. Any function that does not require
interactive input from the client application can be written as a UDR. However, not
all application code should be in a C UDR. You must balance the load between the
client and the database server to achieve optimal performance.

Chapter 1. Using the DataBlade API 1-3

To avoid interfering with the operation of the database server, you can develop
functions on the client side even if they are intended to run from the server
process eventually. When you develop a C UDR on a client computer, you can use
the same DataBlade API functions on the client and the server computers, in most
cases, without changing the code. Almost all of the DataBlade API functions
behave identically in a client LIBMI application and a C UDR to provide
portability for DataBlade API modules. If you are writing code that might execute
in either a C UDR or a client LIBMI application, you can use the mi_client()
function to determine at runtime where the code is running.

DataBlade APl Components

1-4

The DataBlade API contains the following components for the development of
DataBlade API modules:

* Header files
* Public data type structures
* Public functions

Header Files

The following categories of header files are provided for use in a DataBlade API
module:

* DataBlade API header files define DataBlade API data types and functions.

e IBM Informix ESQL/C header files define the IBM Informix ESQL/C library
functions and data types.

* The IBM Informix GLS header file provides the ability to internationalize your
DataBlade API module.

* Private header files, which you create, can support the DataBlade API module.

DataBlade APl Header Files
The DataBlade API header files begin with the mi prefix. The DataBlade API
provides the following public header files for use in DataBlade API modules.

Header File Description

mi.h Is the main DataBlade API header file

It includes other DataBlade API public header files: milib.h, milo.h,
and mitrace.h.

The mi.h header file does not automatically include mistrmtype.h. To
use the stream I/O functions of the DataBlade API, you must explicitly
include mistrmtype.h.

milib.h Defines function prototypes for the public entry points and public
declarations of required data type structures and related macros

The mi.h header file automatically includes milib.h.

mitypes.h Defines all DataBlade API simple data types, accessor macros for these
data types, and directly related value macros

The mitypes.h header file automatically includes the ESQL/C header
files: datetime.h, decimal.h, and int8.h.

The milib.h header file automatically includes mitypes.h.

IBM Informix DataBlade API Programmer’s Guide

Header File

Description

milo.h

Defines the data type structures, values, and function prototypes for the
smart-large-object interface (functions that have names starting with
mi_lo_)

The mi.h header file automatically includes milo.h.

mistream.h

Contains definitions for stream data structures, error constants, and
generic stream I/O functions

The mistrmtype.h and mistrmutil.h header files automatically include
mistream.h.

mistrmtype.h

Contains definitions for the type-specific stream-open functions that the
DataBlade API provides

The mistrmtype.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmtype.h. You must
explicitly include mistrmtype.h to use the stream I/O functions of the
DataBlade APL

mistrmutil.h

Contains definitions for the stream-conversion functions that the
DataBlade API provides for use in streamwrite() and streamread()
opaque-type support functions

The mistrmutil.h header file automatically includes mistream.h;
however, the mi.h header file does not include mistrmutil.h. You must
explicitly include mistrmutil.h to use the stream-conversion functions
of the DataBlade API.

mitrace.h

Defines the data type structures, values, and function prototypes for the
DataBlade API trace facility

The mi.h header file automatically includes mitrace.h.

miconv.h

Contains convention definitions, including on/off switches based on
architecture, compiler type, and so on

Other parts of the code use these switches to define data types
correctly.

The mitypes.h header file automatically includes miconv.h.

memdur.h

Contains the definition of the MI_MEMORY_DURATION data type,
which enumerates valid public memory durations

The milib.h header file automatically includes memdur.h.

The mi.h header file provides access to most of the DataBlade API header files in
the preceding table. Include this header file in your DataBlade API module to
obtain declarations of most DataBlade API functions and data types.

The DataBlade API provides the following advanced header files for the use of
advanced features in C UDRs.

Header File

Description

minmmem.h

Includes the minmdur.h and minmprot.h header files, which are
necessary for access to advanced memory durations and
memory-management functions

Neither the mi.h nor milib.h header file automatically includes
minmmem.h. You must explicitly include minmmem.h to use advanced
memory durations or memory-management functions.

Chapter 1. Using the DataBlade API 1-5

1-6

Header File

Description

minmdur.h

Contains definitions for the advanced memory durations

The minmmem.h header file automatically includes minmdur.h. You
must explicitly include minmmem.h to use advanced memory durations.

minmprot.h

Contains definitions for the advanced DataBlade API functions

The minmmem.h header file automatically includes minmdur.h. You
must explicitly include minmmem.h to use advanced functions.

Neither mi.h nor milib.h provides access to the advanced header files. To use the
advanced features, include the minmmem.h header file in your DataBlade API
module to obtain declarations of DataBlade API functions and data types.

Tip: For a complete list of header files, check the incl/public subdirectory of the
INFORMIXDIR directory.

ESQL/C Header Files
The following header files are provided to support some of the functions and data
types of the IBM Informix ESQL/C library.

Header File

Contents

datetime.h

Structure and macro definitions for DATETIME and INTERVAL data
types

decimal.h

Structure and macro definitions for DECIMAL and MONEY data types

int8.h

Declarations for structure and ESQL/C library functions for the INT8
data type

sqlca.h

Structure definition that ESQL/C uses to store error-status codes

This structure enables you to check for the success or failure of SQL
statements.

sqlda.h

Structure definition for value pointers and descriptions of dynamically
defined variables

sqlhdrh

Function prototypes of all ESQL/C library functions

sqlstype.h

Definitions of strings that correspond to SQL statements

ESQL/C uses these strings when your program contains a DESCRIBE
statement.

sqltypes.h

Integer constants that correspond to ESQL/C language and SQL data
types

ESQL/C uses these constants when your program contains a
DESCRIBE statement.

sqlxtype.h

Integer constants that correspond to C language and SQL data types
that ESQL/C uses in X/Open mode, when your program contains a
DESCRIBE statement

varchar.h

Macros that you can use with the VARCHAR data type

Important: The mitypes.h header file automatically includes the datetime.h,

decimal.h, and int8.h header files. In turn, the milib.h header file
automatically includes mitypes.h, and mi.h automatically includes

IBM Informix DataBlade API Programmer’s Guide

milib.h. Therefore, you automatically have access to the information in
these ESQL/C header files when you include mi.h in your DataBlade
API module.

For additional information about the use of these ESQL/C header files, see the
following sections of this manual.

Header File More Information

datetime.h [“The datetime.h Header File” on page 4-9|
decimal.h [“The decimal.h Header File” on page 3-11|
int8.h |“The int8.h Header File” on page 3-6

IBM Informix GLS Header File

A header file is provided to support the IBM Informix GLS library. If you use the
IBM Informix GLS library in your DataBlade API module, include its header file,
ifxgls.h, in your source code. For more information on the IBM Informix GLS
library and how to use it in a DataBlade API module, see [“Internationalization of]
[DataBlade API Modules (GLS)” on page 1-18

Private Header Files

If you define any opaque data types, you must include their header file in your
DataBlade API source code. An opaque-type header file usually contains the
declaration of the internal format for the opaque data type. For more information,
see [“Creating an Opaque Data Type” on page 16-1|

Public Data Types

The DataBlade API provides support for the following public data types:

* DataBlade API data types, which provide support for standard C, IBM Informix
ESQL/C, and SQL data types

 DataBlade API support data types, which provide support for functions of the
DataBlade API

* DataBlade API data type structures, which provide access to information that
functions of the DataBlade API use

DataBlade API Data Types

To ensure portability across dissimilar computer architectures, the DataBlade API
provides a set of data types, which [Table 1-1 on page 1-7|shows. These data types
begin with the mi_ prefix. Most of these data types correspond to common SQL or
C-language data types.

Table 1-1. DataBlade API, C, and SQL Data Types

Standard C or ESQL/C

DataBlade API Data Type Data Type SQL Data Type
Character Data Types:
mi_char C: char CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR
mi_charl C: char CHAR(1)
mi_unsigned_charl C: unsigned char None
mi_wchar (deprecated) C: unsigned two-byte integer None

Chapter 1. Using the DataBlade API 1-7

Table 1-1. DataBlade API, C, and SQL Data Types (continued)

DataBlade API Data Type

Standard C or ESQL/C
Data Type

SQL Data Type

mi_string

C: char *

CHAR, VARCHAR,

GLS: NCHAR, NVARCHAR

mi_lvarchar

ESQL/C: lvarchar (though lvarchar is
null-terminated and mi_lvarchar is not)

LVARCHAR

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

Integer Numeric Data Types:

mi_sintl C: signed one-byte integer None

mi_intl C: unsigned one-byte integer, char None

mi_smallint C: signed two-byte integer (short integer ~SMALLINT
on many systems)

mi_unsigned_smallint C: unsigned two-byte integer None

mi_integer

C: signed four-byte integer

(long integer on many systems)

INTEGER, SERIAL

mi_unsigned_integer

C: unsigned four-byte integer

None

mi_int8

C: signed eight-byte integer; ESQL/C:
int8, ifx_int8_t

INTS8, SERTAL8

mi_unsigned_int8 C: unsigned eight-byte integer; ESQL/C: None
int8, ifx_int8_t

Fixed-Point Numeric Data Types:

mi_decimal, mi_numeric ESQL/C: decimal, dec_t DECIMAL(p,s)
(fixed-point)

mi_money ESQL/C: decimal, dec_t MONEY

Floating-Point Numeric Data Types:

mi_decimal ESQL/C: decimal, dec_t DECIMAL(p)

(floating-point)

mi_real

C: float

SMALLFLOAT, REAL

mi_double_precision

C: double

FLOAT, DOUBLE PRECISION

Date and Time Data Types:

mi_date C: four-byte integerESQL/C: date DATE
mi_datetime ESQL/C: datetime, dtime_t DATETIME
mi_interval ESQL/C: interval, intrvl_t INTERVAL
Varying-Length Data Types:

mi_lvarchar C: void * LVARCHAR,

ESQL/C: lvarchar (though lvarchar is
null-terminated and mi_lvarchar is not)

Opaque types

Within C UDRs: for CHAR, NCHAR,
TEXT, VARCHAR, and NVARCHAR
arguments and return value

mi_sendrecv C: void * SENDRECYV, opaque-type support
functions: send, receive
mi_impexp C: void * IMPEXP, opaque-type support

functions: import, export

1-8

IBM Informix DataBlade API Programmer’s Guide

Table 1-1. DataBlade API, C, and SQL Data Types (continued)

DataBlade API Data Type

Standard C or ESQL/C
Data Type

SQL Data Type

mi_impexpbin C: void * IMPEXPBIN, opaque-type support
functions: importbin, exportbin

mi_bitvarying C: void * BITVARYING

Complex Data Types:

MI_COLLECTION C: void * SET, LIST, MULTISET

MI_ROW C: void * ROW (unnamed row type), Named

row type

Other Data Types:

mi_boolean C: charESQL/C: boolean BOOLEAN
mi_pointer C: void * POINTER
MI_LO_HANDLE None CLOB, BLOB

Smart large objects

Important: To make your DataBlade API module portable, it is recommended that
you use the DataBlade API platform-independent data types (such as
mi_integer, mi_smallint, mi_real, mi_boolean, and
mi_double_precision) instead of their C-language counterparts. These
data types handle the different sizes of numeric values across computer
architectures.

| Server Only |

[Table 1-1 on page 1-7|lists the DataBlade API data types and SQL data types.
However, when you pass some of these data types to and from C UDRs, you must
pass them as pointers rather than as actual values. For more information, see
[“Passing Mechanism for MI_ DATUM Values” on page 12-23,

| End of Server Only |

able 1-2| shows where you can find information about how DataBlade API data
types correspond to SQL data types.

Table 1-2. Correspondence of SQL Data Types to DataBlade API Data Types
SQL Data Type

Information on Corresponding DataBlade API Data Types

BITVARYING [“The mi_bitvarying Data Type” on page 2-28|

BLOB [Chapter 6, “Using Smart Large Obijects,” on page 6-1|
BOOLEAN [“Boolean Data Types” on page 2-30|

BYTE [‘Simple Large Objects” on page 2-32|

CHAR [“Character Data Types” on page 2-7|

CLOB [Chapter 6, “Using Smart Large Objects,” on page 6-1|
DATE [Chapter 4, “Using Date and Time Data Types,” on page 4-1|
DATETIME [Chapter 4, “Using Date and Time Data Types,” on page 4-1|
DECIMAL [Chapter 3, “Using Numeric Data Types,” on page 3-1]
Distinct [Chapter 16, “Extending Data Types,” on page 16-1]

Chapter 1. Using the DataBlade API 1-9

Table 1-3. DataBlade API Support Data Types

Table 1-2. Correspondence of SQL Data Types to DataBlade API Data Types (continued)

SQL Data Type

Information on Corresponding DataBlade API Data Types

FLOAT [Chapter 3, “Using Numeric Data Types,” on page 3-1]
INTS [Chapter 3, “Using Numeric Data Types,” on page 3-1|
INTEGER [Chapter 3, “Using Numeric Data Types,” on page 3-1|
INTERVAL [Chapter 4, “Using Date and Time Data Types,” on page 4-1|
LIST [Chapter 5, “Using Complex Data Types,” on page 5-1
LVARCHAR |"Varying-Length Data Type Structures” on page 2-13|
MONEY [Chapter 3, “Using Numeric Data Types,” on page 3-1]|
MULTISET [Chapter 5, “Using Complex Data Types,” on page 5-1|
NCHAR [“Character Data Types” on page 2-7|

NVARCHAR |”Character Data Types” on page 2—7|

Opaque [Chapter 16, “Extending Data Types,” on page 16-1f
POINTER [“Pointer Data Types (Server)” on page 2-31|

ROW [Chapter 5, “Using Complex Data Types,” on page 5-1
SERIAL [Chapter 3, “Using Numeric Data Types,” on page 3-1|
SERIALS [Chapter 3, “Using Numeric Data Types,” on page 3-1
SET [Chapter 3, “Using Numeric Data Types,” on page 3-1|
SMALLFLOAT [Chapter 3, “Using Numeric Data Types,” on page 3-1
SMALLINT [Chapter 3, “Using Numeric Data Types,” on page 3-1|
TEXT [Simple Large Objects” on page 2-32|

VARCHAR [“Character Data Types” on page 2-7|

DataBlade APl Support Data Types

The DataBlade API provides additional data types that DataBlade API functions
use. These data types are usually enumerated data types that restrict valid values
for an argument or return value of a DataBlade API function. Most of these data

types, which [Table 1-3|lists, start with the MI_ prefix.

Support Data Type

Purpose

Location of Description

MI_CALLBACK_STATUS

Enumerates valid return values of a “Return Value of a Callback Function” on|

callback function [page 10—1§|

MI_CURSOR_ACTION Enumerates movements through a |“Positioning the Cursor” on page 5-6|
cursor
“Fetching Rows Into a Cursor” on page|
8-23
MI_EVENT_TYPE Classifies an event “DataBlade API Event Types” on pagel
10-2

MI_FUNCARG

Enumerates kinds of arguments thata [“MI_FUNCARG Data Type” on page 15-5¢
companion UDR might receive

mi_funcid

Holds a routine identifier [“Routine Resolution” on page 12-20|

MI_ID

Enumerates the kinds of identifiers that Description of mi_get_id() in the
the mi_get_id() function can obtain IBM Informix: DataBlade API Function

Reference

1-10 IBM Informix DataBlade API Programmer’s Guide

Table 1-3. DataBlade API Support Data Types (continued)

Support Data Type

Purpose

Location of Description

MI_SETREQUEST

Enumerates values of the iterator-status
constant, which the database server can
return to a UDR through the
mi_fp_request() function

“Writing an Iterator Function” on page|

15-3]

MI_TRANSITION_TYPE

Enumerates types of state transitions in
a transition descriptor

“Understanding State-Transition Events”|

on page 10-49

MI_UDR_TYPE

Enumerates the kind of UDR for which
the mi_routine_get_by_typeid()
function obtains a function descriptor

Description of
mi_routine_get_by_typeid() in the
IBM Informix: DataBlade API Function

Reference

DataBlade API Data Type Structures
Many DataBlade API functions provide information for DataBlade API modules in

special data type structures. The names of these data type structures begin with the
able 1-4

MI_ prefix.

can find detailed descriptions of them.

Table 1-4. DataBlade API Data Type Structures

lists these data type structures, their purposes, and where you

DataBlade API Data Type
Structure

Purpose

More Information

MI_COLL_DESC

Collection descriptor, which describes the
structure of a collection

“Using a Collection Descriptor” on|

page 5-§|

MI_COLLECTION

Collection structure, which contains the
elements of a collection

“Using a Collection Structure” on page|
5-

MI_CONNECTION

Connection descriptor, which contains the
execution context for a connection

“Establishing a Connection” on page
7-11]

MI_CONNECTION_INFO

Connection-information descriptor, which
contains connection parameters for an
open connection

“Using Connection Parameters” on|
[page 7—4_1!

MI_DATABASE_INFO

Database-information descriptor, which
contains database parameters for an open
connection

“Using Database Parameters” on pagel
7-

MI_DATUM

Datum, which provides a transport
mechanism to pass data of an SQL data
type by value or by reference

“The MI_DATUM Data Type” on page|
2-32

MI_ERROR_DESC

Error descriptor, which describes an
exception

|“Event Information” on page 10-17

MI_FPARAM Function-parameter structure, which holds |“Accessing Ml FPARAM Routine-State|
information about a UDR that the routine |Information” on page 9-2|
can access during its execution

MI_FUNCARG Function-argument structure, which holds “MI_FUNCARG Data Type” on pagd

information about the argument of a
companion UDR

15-56)

MI_FUNC_DESC

Function descriptor, which describes a UDR
that is to be invoked with the Fastpath
interface

“Obtaining a Function Descriptor” on|

[page 9-12|

MI_LO_FD

LO file descriptor, which describes an open
smart large object

“Obtaining an LO File Descriptor” on|

[page 6-41|

MI_LO_HANDLE

LO handle, which identifies the location of
a smart large object in its sbspace

“Obtaining an LO Handle” on pagd
6-40

Chapter 1. Using the DataBlade API 1-11

Table 1-4. DataBlade API Data Type Structures (continued)

DataBlade API Data Type

Structure Purpose More Information

MI_LO_SPEC LO-specification structure, which contains “Obtaining the LO-Specification|
storage characteristics for a smart large Structure” on page 6-25|
object

MI_LO_STAT LO-status structure, which contains status [“Obtaining Status Information for al

information for a smart large object

Smart Large Object” on page 6-52|

MI_PARAMETER_INFO

Parameter-information descriptor, which
specifies whether callbacks are enabled or
disabled and whether pointers are
checked in client LIBMI applications

|“Using Session Parameters” on page 7-8§

MI_ROW

Row (or row structure), which contains
either the column values of a table row or
field values of a row type

“Retrieving Rows” on page 8—41|
“Using a Row Structure” on page 5-32|

MI_ROW_DESC

Row descriptor, which describes the
structure of a row

“Obtaining Row Information” on page|
8-40|
“Using a Row Descriptor” on page 5-29)

MI_SAVE_SET

Save-set descriptor, which describes a save
set

|“Creating a Save Set” on page 8-6(|

MI_STATEMENT

Statement descriptor, which describes a
prepared SQL statement

“Executing Prepared SQL Statements”|

on page 8-11]

mi_statret Statistics-return structure (C language “SET_END in statcollect()” on pag¢
structure), which holds the collected 16-4§|
statistics for a user-defined data type

MI_STREAM Stream descriptor, which describes an open

stream

A stream is an object that can be written to
or read from. The DataBlade API has
functions for the following predefined
stream classes:

* File stream
* String stream

* Varying-length-data stream

MI_TRANSITION_DESC

Transition descriptor, which describes a
state transition

“Understanding State-Transition|
Events” on page 10-49)|

MI_TYPEID

Type identifier, which uniquely identifies a
data type within a database

[“Type Identifiers” on page 2-2|

MI_TYPE_DESC

Type descriptor, which provides
information about a data type

|“Type Descriptors” on page 2-3)

The DataBlade API provides constructor and destructor functions for most of these
public data type structures. These functions handle memory allocation of these
data type structures, as follows:

* The constructor function for a DataBlade API data type structure creates a new

1-12

instance of the data type structure.

IBM Informix DataBlade API Programmer’s Guide

A constructor function usually returns a pointer to the DataBlade API data type
structure and allocates memory for the structure.

| Server Only |

The memory allocation is in the current memory duration, which is
PER_ROUTINE by default. For more information, see [‘Choosing the Memory]|
[Duration” on page 14-4]

| End of Server Only |

¢ The destructor function for a DataBlade API data type structure frees the
instance of the data type structure.
You specify a pointer to the DataBlade API data type structure to the destructor

function. The destructor function deallocates memory for the specified data type
structure. Call destructor functions only for DataBlade API data type structures

that you explicitly allocated with the corresponding constructor function.

Regular Public Functions

The DataBlade API provides support for the following kinds of functions in a

DataBlade API module.

Kind of Functions Purpose

DataBlade API functions Provide access to the database server
IBM Informix ESQL/C Provide operations on certain data types
functions

IBM Informix GLS functions Provide the ability to internationalize your DataBlade API

module

DataBlade API Functions

The DataBlade API functions begin with the mi_ prefix. The milib.h header file
declares most of these DataBlade API functions. The mi.h header file automatically
includes milib.h. You must include mi.h in any DataBlade API module that uses a

DataBlade API function.

The functions of the DataBlade API function library can be divided into the

following categories.

Category of DataBlade API Functions

More Information

Data handling;:

Obtaining type information

[“Type Identifiers” on page 2-2|

[“Type Descriptors” on page 2-3|

Transferring data types between computers
(database server only)

“Conversion of Opaque-Type Data withl
Computer-Specific Data Types” on page]

16-2 1|

Chapter 1. Using the DataBlade API 1-13

Category of DataBlade API Functions

More Information

Converting data to a different data type

“DataBlade API Functions for Date]
Conversion” on page 4-3|

“DataBlade API Functions for Date-Time o
Interval Conversion” on page 4-13|

“DataBlade API Functions for Decimal
Conversion” on page 3-14]

“DataBlade API Functions for String|
Conversion” on page 2-11]

Handling collections: sets, multisets, and lists

|“Collections” on page 5-2|

Converting between code sets (database
server only)

“Internationalization of DataBlade API]
Modules (GLS)” on page 1-1§

Handling collections

[“Collections” on page 5-2|

Managing varying-length structures

“Varying-Length Data Type Structures” on|

[page 2—13|

Obtaining SERIAL values

[“Processing Insert Results” on page 8-59|

Handling NULL values

[“SQL NULL Value” on page 2-36]

Session, thread, and transaction management:

Obtaining connection information

|“Using Connection Parameters” on page 7-4

|“Using Database Parameters” on page 7-6|

|“Using Session Parameters” on page 7-§|

Establishing a connection

|“Establishing a Connection” on page 7-11|

Initializing the DataBlade API

|“Initializing the DataBlade API” on page 7-17]

Managing Informix threads (database server
only)

["Yielding the CPU VP” on page 13-19]

|"Managing Stack Usage” on page 14—35|

Obtaining transaction and server-processing
state changes

“Using a Transition Descriptor” on page|
10-19

SQL statement processing;:

Sending SQL statements

“Executing Basic SQL Statements” on page|
3-

“Executing Prepared SQL Statements” on|

[page 8-11|

Obtaining statement information

“Returning a Statement Descriptor” on pagel
8-14

“Obtaining Input-Parameter Information” on|

[page 8—15|

Obtaining result information

|“Processing Statement Results” on page 8-33)|

Retrieving rows and row data (also row
types and row-type data)

|“Obtaining Row Information” on page 8-40|

|“Retrieving Rows” on page 8-41]

Retrieving columns

“Obtaining Column Information” on page]
8-41

[“Obtaining Column Values” on page 8-42|

Using save sets

|“Using Save Sets” on page 8-59)|

IBM Informix DataBlade API Programmer’s Guide

Category of DataBlade API Functions

More Information

Executing user-defined-routines:

Accessing an MI_FPARAM structure

“ Accessing MI_FPARAM Routine-State]
Information” on page 9-2|

Allocating an MI_FPARAM structure

“Using a User-Allocated MI_FPARAM]
Structure” on page 9-36|

Using the Fastpath interface

“Calling UDRs with the Fastpath Interface”]

on page 9-14]

Accessing a function descriptor

“Obtaining Information from a Function|
Descriptor” on page 9-23]

Executing selectivity and cost functions:

“Writing Selectivity and Cost Functions” on]

[page 15-54_L|

Memory management:

Managing user memory

[“Managing User Memory” on page 14-20|

Managing named memory (database server

only)

[“Managing Named Memory” on page 14-24]

Exception handling:

Raising a database exception

[“Raising an Exception” on page 10-40|

Accessing an error descriptor

|“Using an Error Descriptor” on page 10-17}

“Handling Multiple Exceptions” on page|

10-3|

Using callback functions

[“Invoking a Callback” on page 10-3]

Smart-large-object interface:

Creating a smart large object

“Functions That Create a Smart Large|
Object” on page 6-19)

Performing I/O on a smart large object

“Functions That Perform Input and Output]
on a Smart Large Object” on page 6-20)

Moving smart large objects to and from
operating-system files

“Functions That Move Smart Large Objects|
to and from Operating-System Files” on page]
6-24

Manipulating LO handles

“Functions That Manipulate an LO Handle”|

on page 6-21]

Handling LO-specification structures

“Functions That Access an LO-Specification|
Structure” on page 6-22|

Handling smart-large-object status

“Functions That Access an LO-Status]|
Structure” on page 6-23|

Operating-system file interface:

“Access to Operating-System Files” on pagel

13-52]

Tracing (database server):

[“Using Tracing” on page 12-29|

For a complete list of DataBlade API functions in each of these categories, see the
IBM Informix: DataBlade API Function Reference, which provides descriptions of the
regular public and advanced functions, in alphabetical order. For more information
on advanced functions of the DataBlade API, see [‘Advanced Features (Server)” on|

If an error occurs while a DataBlade API function executes, the function usually
indicates the error with one of the following return values.

Chapter 1. Using the DataBlade API 1-15

Way to Indicate an Error More Information

Functions that return a pointer return the [“NULL-Valued Pointer” on page 2-37
NULL-valued pointer

Functions that return an mi_integer value (or other |“Handling Errors from DataBlade API|
integer) return the MI_ERROR status code Functions” on page 10-26|

Functions that raise an exception “Handling Errors from DataBlade AP]|
Functions” on page 10-26|

IBM Informix ESQL/C Functions

In a DataBlade API module, you can use some of the functions in the
IBM Informix ESQL/C library functions to perform conversions and operations on

different data types. The ESQL/C functions do not begin with the mi_ prefix.
Various header files declare these functions. For more information, see [“ESQL/C

[Header Files” on page 1-6|

The functions of the ESQL/C function library that are valid in a DataBlade API
module can be divided into the following categories.

Category of DataBlade API

Function More Information

Byte handling [“Manipulating Byte Data” on page 2-29|

Character processing “ESQL/C Functions for String Conversion” on page|
2-12)

[“Operations on Character Values” on page 2-12|

DECIMAL-type and MONEY-type |“ESQL/C Functions for Decimal Conversion” on page

processing 3-15
“Performing Operations on Decimal Data” on page|
3-16)

DATE-type processing [“ESQL/C Functions for Date Conversion” on page 4-4|

[“Operations on Date Data” on page 4-§

DATETIME-type processing and “ESQL/C Functions for Date, Time, and Intervall
INTERVAL-type processing Conversion” on page 4-13|

[“Operations on Date and Time Data” on page 4-15|

INT8-byte processing [“Converting INT8 Values” on page 3-7|
“Performing Operations on Eight-Byte Values” on page
3-

Processing for other C-language [“Formatting Numeric Strings” on page 3-20|

data types

For a complete list of ESQL/C functions in each of these categories, see the
IBM Informix: DataBlade API Function Reference, which provides descriptions of
these public functions, in alphabetical order.

IBM Informix GLS Functions

The IBM Informix GLS library is an API that lets developers of DataBlade API
modules create internationalized applications. This library is a threadsafe library.
The macros and functions of IBM Informix GLS provide access to the GLS locales,
which contain culture-specific information.

1-16 IBM Informix DataBlade API Programmer’s Guide

The IBM Informix GLS library contains functions that provide the following

capabilities:

* Process single-byte and multibyte characters

These functions are useful for processing character data in the NCHAR and
NVARCHAR data types, which can contain locale-specific information.

¢ Format date, time, and numeric data to locale-specific formats

These functions provide the ability to handle end-user formats for the DATE,
DATETIME, DECIMAL, and MONEY data types.

The mi.h header file does not automatically include the IBM Informix GLS library.
For more information on the IBM Informix GLS library and how to use it in a
DataBlade API module, see |”Internationalization of DataBlade API Modules (GLS)”l

Advanced Features (Server)

The DataBlade API provides a set of advanced features to handle specialized needs
of a UDR or DataBlade module that the regular public features cannot handle.
able 1-5|lists the advanced DataBlade API features.

Table 1-5. Advanced Features of the DataBlade API

Advanced Feature

Description

More Information

Named memory

Enables a UDR to obtain a memory
address through a name assigned
to the memory block

“Managing Named Memory”]

on page 14-24]

Memory durations

Provides a UDR with memory
durations that exceed its lifetime

“Advanced Memory|

Durations” on page 14-13|

Session-duration
connection descriptor

Enables a UDR to cache connection
information for the length of a
session

“Obtaining a Session-Duration|

Connection Descriptor” on|

page 7—13|

Session-duration
function descriptor

Enables a UDR to cache function
descriptors in named memory so
that many UDRs can execute the
same UDR through Fastpath

“Reusing a Function|

Descriptor” on page 9-30|

Controlling the VP
environment

Enables a UDR to obtain
dynamically information about the
VP and VP class in which it
executes and to make some
changes to this environment

"“Controlling the VP

Environment” on page 13-3§|

Setting the row and
column identifier in
the MI_FPARAM

structure of a UDR

Enables a UDR to change the row
associated with a UDR

Descriptions of
mi_fp_setcolid() and
mi_fp_setrow() in the

IBM Informix: DataBlade API
Function Reference

Obtaining the current
MI_FPARAM address

Enables a UDR to obtain
dynamically the address of its own
MI_FPARAM structure

Description of
mi_fparam_get_current() in
the IBM Informix: DataBlade
API Function Reference

Microseconds
component of
last-modification time
for a smart large
object

Enables UDRs to maintain the
microseconds component of
last-modification time, which the
database server does not maintain

Description of mi_lo_utimes()
in the IBM Informix: DataBlade
API Function Reference

Chapter 1. Using the DataBlade API

1-17

Warning: These DataBlade API features can adversely affect your UDR if you use
them incorrectly. Use them only when the public DataBlade API features
cannot perform the tasks you need done.

Internationalization of DataBlade APl Modules (GLS)

For your DataBlade API module to work in any IBM Informix locale, you must
implement your DataBlade API module so that it is internationalized. That is, the
module must not make any assumptions about the locale in which it will execute.

| Server Only |

A C UDR inherits the server-processing locale as its current processing locale. The
database server dynamically creates a server-processing locale for a particular
session when a client application establishes a connection. The database server uses
the client locale, database locale, the server locale, and information from the client
application to determine the server-processing locale. For more information on
how the database server determines the server-processing locale, see the

IBM Informix: GLS User’s Guide.

| End of Server Only |

| Client Only |

A client LIBMI application performs its I/O tasks in the client locale. Any database
requests that the application makes execute on the database server in the
server-processing locale.

| End of Client Only |

This section provides the following information about how to internationalize a C
UDR and the support that the DataBlade API provides for internationalized UDRs.

An internationalized C UDR must handle the following GLS considerations.

GLS Consideration for an Internationalized UDR

DataBlade API Function

What considerations must the C UDR take
when copying character data?

None

How can the C UDR access GLS locales?

IBM Informix GLS function library

How does the UDR handle code-set conversion?

mi_get_string()
mi_put_string()

IBM Informix GLS function library

How does the UDR handle locale-specific end-user
formats?

mi_date_to_string(),
mi_decimal_to_string(),
mi_interval_to_string(),
mi_money_to_string(),
mi_string_to_date(),
mi_string_to_decimal(),
mi_string_to_interval(),
mi_string to_money()

How can the C UDR access internationalized
exception messages?

mi_db_error_raise()

How can the C UDR access internationalized tracing
messages?

GL_DPRINTE, gl_tprintf()

IBM Informix DataBlade API Programmer’s Guide

GLS Consideration for an Internationalized UDR DataBlade API Function

How do opaque-type support functions handle mi_get_string(), mi_put_string()
locale-sensitive data?

How to you obtain names of the different locales mi_client_locale(),

from within a C UDR? mi_get_connection_info()

For more information on how to handle these GLS considerations within a C UDR,
see the chapter on database servers in the IBM Informix: GLS User’s Guide.

Chapter 1. Using the DataBlade API 1-19

1-20 IBM Informix DataBlade API Programmer’s Guide

Chapter 2. Accessing SQL Data Types

In This Chapter.
Type Identifiers .
Type Descriptors .o
Type-Structure Conversion . .
Data Type Descriptors and Column Type Descrrptors .
Character Data Types . .

The mi_charl and mi un51gned charl Data Types .

The mi_char and mi_string Data Types .

The mi_lvarchar Data Type . .

The SQL LVARCHAR Data Type .

Character Data in Binary Mode of a Query

Character Data in C UDRs (Server) .

External Representation of an Opaque Data Type (Server)

Character Data in a Smart Large Object

Character Processing. .

Transferring Character Data (Server)
Converting Character Data.
Operations on Character Values .
Character Type Information
Varying-Length Data Type Structures .

Using a Varying-Length Structure

Managing Memory for a Varying-Length Structure
Creating a Varying-Length Structure .o
Deallocating a Varying-Length Structure .

Accessing a Varying-Length Structure . .
Varying-Length Data and Null Termination .
Storage of Varying-Length Data . .
Information About Varymg—Length Data .

Byte Data Types . . .o

The mi_bitvarying Data Type

Byte Data in a Smart Large Object .

Byte Processing .

Manipulating Byte Data
Transferring Byte Data (Server) .
Boolean Data Types . .

Boolean Text Representation .

Boolean Binary Representation

Pointer Data Types (Server)

Simple Large Objects
The MI_DATUM Data Type . .

Contents of an MI_DATUM Structure .
MI_DATUM in a C UDR (Server) .
MI_DATUM in a Client LIBMI Apphcat1on .

Address Calculations with MI_DATUM Values .

Uses of MI_DATUM Structures .

The NULL Constant .

SQL NULL Value .

© Copyright IBM Corp. 1996, 2005

.22
.22
. 23

. 2-5
. 2-7

. 2-8
. 2-8
. 29
. .29
. 2-10
. 2-10
. 2-10
. 2-10
. 2-10
. 2-11
. 2-12
. 2-12
. 2-13
. 2-13
. 2-14
. 2-14
. 2-16
. 2-17
. 2-17
. 2-18
. 2-24
. 2-28
. 2-28
. 2-29
. 2-29
. 2-29
. 2-30
. 2-30
. 2-30
. 2-30
. 2-31
. 2-32
. 2-32
. 2-33
. 2-33
. 2-35
. 2-35
. 2-35
. 2-36
. 2-36

2-1

NULL-Valued Pointero 237

In This Chapter

This chapter provides an overview of the data types that the DataBlade API
supports. It also describes DataBlade API support for the following types of data:

¢ Text and strings

* Varying-length structures

* Byte data

* Miscellaneous SQL data types: POINTER, BOOLEAN, and simple large objects
¢ The MI_DATUM structure

* The NULL constant

For references to discussions of different SQL data types in this manual, see
[Table 1-2 on page 1-9|

[Table 1-1 on page 1-7|lists the correspondences between SQL and DataBlade API
data types. To declare a variable for an SQL data type, use the appropriate
DataBlade API predefined data type or structure for the variable. The mi.h header
file includes the header files for the definitions of all DataBlade API data types.
Include mi.h in all DataBlade API modules that use DataBlade API data types.

The DataBlade API represents the SQL data type of a column value with the
following data type structures:

* A short name, called the type identifier, which identifies only the data type

* A long name, called the type descriptor, which provides the data type and
information about this type

| Server Only

Type descriptors and type identifiers do not have an associated memory duration.
The DataBlade API allocates them from a special data type cache.

| End of Server Only |

Type ldentifiers

A type identifier, MI_TYPEID, is a DataBlade API data type structure that identifies
a data type uniquely. For extended data types, the type identifier is
database-dependent; that is, the same type identifier might identify different data
types for different databases. You can determine the data type that a type identifier
represents with the following DataBlade API functions.

Type-Identifier Check DataBlade API Function
Are two type identifiers equal? mi_typeid_equals()

Does the type identifier represent a built-in data type? mi_typeid_is_builtin()
Does the type identifier represent a collection (SET, mi_typeid_is_collection()

MULTISET, LIST) data type?

Does the type identifier represent a complex data type (row mi_typeid_is_complex()
type or collection)?

Does the type identifier represent a distinct data type? mi_typeid_is_distinct()

Does the type identifier represent a LIST data type? mi_typeid_is_list()

2-2 IBM Informix DataBlade API Programmer’s Guide

DataBlade API
Function Description

mi_get_string() Copies a character string, converting any difference in alignment
on the client computer to that of the server computer

mi_put_string() Copies a character string, converting any difference in alignment
on the server computer to that of the client computer

The mi_get_string() and mi_put_string() functions are useful in the send and
receive support function of an opaque data type that contains character data (such
as mi_string or mi_char). They ensure that character data remains aligned when
transferred to and from client applications. For more information, see i”Conversionl
lof Opaque-Type Data with Computer-Specific Data Types” on page 16-21]

Converting Character Data
Both the DataBlade API library and the ESQL/C library provide functions that
convert between the binary and text representation of values.

DataBlade API Functions for String Conversion: Many DataBlade API functions
expect to manipulate character data as an mi_lvarchar value. In addition, all SQL
character data types are passed into a C UDR as an mi_lvarchar value. The
DataBlade API provides the following functions to allow for conversion between a
text (null-terminated string) representation of character data and its binary
(internal) equivalent. The binary representation of character data is a
varying-length structure (mi_lvarchar) equivalent.

DataBlade API Function Description

mi_lvarchar_to_string() Creates a null-terminated string from the data in a
varying-length structure

mi_string_to_lvarchar() Creates a varying-length structure to hold a string

The mi_lvarchar_to_string() and mi_string_to_lvarchar() functions are useful for
converting between null-terminated strings and varying-length structures (whose
data is not null-terminated).

| Server Only |

The mi_lvarchar_to_string() and mi_string to_lvarchar() functions are also
useful in the input and output support functions of an opaque data type that
contains mi_lvarchar values. They allow you to convert a string between its
external format (text) and its internal format (mi_lvarchar) when transferred to and
from client applications. For more information, see [“Conversion of Opaque-Type|
IData Between Text and Binary Representations” on page 16-16]

| End of Server Only |

For more information on the structure of an mi_lvarchar value, see
[“Varying-Length Data Type Structures” on page 2-13,

In addition, the DataBlade API library provides the following functions to convert
text representation of values to their binary representations.

Chapter 2. Accessing SQL Data Types 2-11

Type of String More Information

Decimal strings “DataBlade API Functions for Decimal Conversion” on page|
3-1

Date strings |“DataBlade API Functions for Date Conversion” on page 4-3|

Date and time strings, “DataBlade API Functions for Date-Time or Interval

Interval strings Conversion” on page 4-13]

ESQL/C Functions for String Conversion: The ESQL/C function library provides
the following functions that facilitate conversion of values in character data types
(such as mi_string or mi_char) to and from some C-language data types.

Function

Name Description

rstod() Converts a string to a double type

rstoi() Converts a null-terminated string to a two-byte integer (int2)
rstol() Converts a string to a four-byte integer (int4)

In addition, the ESQL/C library provides the following functions to convert text
representation of values to their binary representation.

Type of String More Information

INTS strings [’Converting INT8 Values” on page 3-7|

Decimal strings ["ESQL/C Functions for Decimal Conversion” on page 3-15
Date strings ["ESQL/C Functions for Date Conversion” on page 4-4|

Date and time strings |“ESQL/C Functions for Date, Time, and Interval Conversion” on|

page 4—1§|

Operations on Character Values
The ESQL/C function library provides the following functions to perform
operations on null-terminated strings.

Function

Name Description

Idchar() Copies a fixed-length string to a null-terminated string
rdownshift() Converts all letters to lowercase

rupshift() Converts all letters to uppercase

stcat() Concatenates one null-terminated string to another
stchar() Copies a null-terminated string to a fixed-length string
stempr() Compares two null-terminated strings

stcopy() Copies one null-terminated string to another string
stleng() Counts the number of bytes in a null-terminated string

Character Type Information
The DataBlade API provides functions to obtain the following information about a
character (CHAR and VARCHAR) data type:

* The data type: its type name (string), type descriptor, or type identifier
* The precision: the maximum number of characters in the data type

2-12 IBM Informix DataBlade API Programmer’s Guide

The DataBlade API provides the following functions to obtain the type and
precision of a character data type.

DataBlade API Functions
Type Name, Type Identifier,

Source or Type Descriptor Precision

For a basic data type mi_type_typedesc(), mi_type_precision()
mi_type_typename()

For a UDR argument mi_fp_argtype(), mi_fp_argprec(),
mi_fp_setargtype() mi_fp_setargprec()

For a UDR return value mi_fp_rettype(), mi_fp_retprec(),
mi_fp_setrettype() mi_fp_setretprec()

For a column mi_column_type_id(), mi_column_precision()

mi_column_typedesc()

For an input parameter =~ mi_parameter_type_id(), mi_parameter_precision()
in a prepared statement mi_parameter_type_name()

Varying-Length Data Type Structures

A varying-length data type structure can hold data whose length varies from one
instance to the next. The database server uses varying-length structures extensively
to manage data transfer for DataBlade API modules.

This section provides the following information about varying-length data type
structures:

* How to use a varying-length structure
* How to manage memory for a varying-length structure

* How to access data in a varying-length structure

Using a Varying-Length Structure

The DataBlade API provides the following data types to support varying-length
data.

DataBlade API SQL Varying-Length
Data Type Data Type More Information

mi_lvarchar LVARCHAR [“The mi_lvarchar Data Type” on page 2-§

“Input and Output Support Functions” on page|

16—11|

mi_bitvarying BITVARYING [“The mi_bitvarying Data Type” on page 2-28
mi_sendrecv SENDRECV “Send and Receive Support Functions” on page|
617
mi_impexp IMPEXP [“External Unload Representation” on page 16-22]
mi_impexpbin IMPEXPBIN [“Internal Unload Representation” on page 16-29)

All these DataBlade API data types have the same underlying structure. For more
information about the structure of a varying-length data type, see “Creating a

Chapter 2. Accessing SQL Data Types 2-13

[Varying-Length Structure” on page 2-14}

| Informix SE

These varying-length data types (mi_lvarchar, mi_bitvarying, mi_sendrecv,
mi_impexp, mi_impexpbin, and varying-length opaque types) cannot fit into an
MI_DATUM structure. Therefore, they must be passed by reference to and from C
UDRs.

| End of Informix SE

| Client Only

All data types, including mi_lvarchar, must be passed by reference within client
LIBMI applications.

| End of Client Only

Managing Memory for a Varying-Length Structure

The following table summarizes the memory operations for a varying-length

structure.

Memory Duration Memory Operation Function Name

Current Constructor mi_new_var(),

memory mi_streamread_lvarchar(),
duration mi_string_to_lvarchar(),

mi_var_copy()

Destructor mi_var_free()

This section describes the DataBlade API functions that allocate and deallocate a
varying-length structure.

Important: Do not use either the DataBlade API memory-management functions
(such as mi_alloc() and mi_free()) or the operating-system
memory-management functions (such as malloc() and free()) to
handle allocation of varying-length structures.

Creating a Varying-Length Structure
able 2-2|lists the DataBlade API functions that create a varying-length structure.
These functions are constructor functions for a varying-length structure.

Table 2-2. DataBlade API Allocation Functions for Varying-Length Structures

Accessor Function Name Description

mi_new_var() Creates a new varying-length structure with a data portion
of the specified size

mi_streamread_lvarchar() Reads a varying-length structure (mi_lvarchar) value from
a stream and copies the value to a buffer

mi_string_to_lvarchar() Creates a new varying-length structure and puts the
specified null-terminated string into the data portion

The data does not contain a null terminator once it is
copied to the data portion.

2-14 IBM Informix DataBlade API Programmer’s Guide

Table 2-2. DataBlade API Allocation Functions for Varying-Length Structures (continued)

Accessor Function Name Description
mi_var_copy() Allocates and creates a copy of an existing varying-length
structure

The copy contains its own data portion with the same
varying-length data as the original varying-length
structure.

The varying-length structure is not contiguous. The allocation functions in
i

ble 2-2]allocate this structure in two parts:

* The varying-length descriptor is a fixed-length structure that stores the metadata
for the varying-length data.

The allocation functions allocate the varying-length descriptor and set the data
length and the data pointer in this descriptor.

* The data portion contains the actual varying-length data.

The allocation functions allocate the data portion with the length that is
specified in the varying-length descriptor. They then set the data pointer in the
varying-length descriptor to point to this data portion.

Important: The varying-length data itself resides in a separate structure; it does
not actually reside in the varying-length descriptor.

For example, suppose you call the mi_new_var() function that shows.

mi_Tlvarchar #new_Tlvarch;

new_lvarch = mi_new_var(200);

Figure 2-4. A Sample mi_new_var() Call

shows the varying-length structure that this mi_new_var() call
allocates. This structure consists of both a descriptor and a data portion of 200

bytes. The mi_new_var() function returns a pointer to this structure, which the
code in assigns to the new_lvarch variable.

Descriptor
new_lvarch T W
length ‘ 200

: Data portion
data pointer : P

200 bytes
of
memory

Figure 2-5. Memory Allocated for a Varying-Length Structure

Chapter 2. Accessing SQL Data Types 2-15

2-16

| Server Only

The allocation functions in [[able 2-2 on page 2-14]allocate the varying-length
structure with the current memory duration. By default, the current memory
duration is PER_ROUTINE. For PER_ROUTINE memory, the database server
automatically deallocates a varying-length structure at the end of the UDR in
which it was allocated. If your varying-length structure requires a longer memory
duration, call the mi_switch_mem_duration() function before the call to one of the
allocation functions in

| End of Server Only

The allocation functions in return the newly allocated varying-length
structure as a pointer to an mi_lvarchar data type. For example, the call to
mi_new_var() in allocates a new mi_lvarchar structure with a data
portion of 200 bytes.

To allocate other varying-length data types, cast the mi_lvarchar pointer that the
allocation function returns to the appropriate varying-length data type. For
example, the following call to mi_new_var() allocates a new mi_sendrecv
varying-length structure with a data portion of 30 bytes:

mi_sendrecv *new_sndrcv;

new_sndrcv = (mi_sendrecv *)mi_new_var(30);

This cast is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Deallocating a Varying-Length Structure

A varying-length structure has a default memory duration of the current memory
duration. To conserve resources, use the mi_var_free() function to explicitly
deallocate the varying-length structure once your DataBlade API module no longer
needs it. The mi_var_free() function is the destructor function for a
varying-length structure. It frees both parts of a varying-length structure: the
varying-length descriptor and the data portion.

Important: Do not use the DataBlade API memory-management function
mi_free() to deallocate a varying-length structure. The mi_free()
function does not deallocate both parts of a varying-length structure.

Use mi_var_free() to deallocate varying-length structures that you have allocated
with mi_new_var() or mi_var_copy(). Do not use it to deallocate any
varying-length structure that the DataBlade API has allocated.

The mi_var_free() function accepts as an argument a pointer to an mi_lvarchar
value. The following call to mi_var_free() deallocates the mi_lvarchar
varying-length structure that [Figure 2-4 on page 2-15 allocates:

mi_var_free(new_lvarch);

To deallocate other varying-length data types, cast the mi_lvarchar argument of
mi_var_free() to the appropriate varying-length type, as the following code
fragment shows:

mi_sendrecv *new_sndrcv;
new_sndrcv = (mi_sendrecv *)mi_new_var(30);

mi_var_free((mi_Tvarchar *)new_sndrcv);

IBM Informix DataBlade API Programmer’s Guide

This cast is not strictly required, but many compilers recommend it and it does
improve clarity of purpose.

Accessing a Varying-Length Structure
A varying-length structure contains the following information:
* Private members, which are not revealed to the DataBlade API programmer
¢ Public members, which you can access with DataBlade API functions

After you allocate a varying-length structure, you can access the public members of
this structure with the DataBlade API accessor functions in [Table 2-3

Table 2-3. Varying-Length Accessor Functions

Accessor Function Name Description

mi_get_varlen() Obtains from the varying-length descriptor the length of
the varying-length data

mi_get_vardata() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion

mi_get_vardata_align() Obtains from the varying-length descriptor the data
pointer to the data contained in the data portion,
adjusting for any initial padding required to align the
data on a specified byte boundary

mi_set_varlen() Sets the length of the varying-length data in the
varying-length descriptor

mi_set_vardata() Sets the data in the data portion of the varying-length
structure

mi_set_vardata_align() Sets the data in the data portion of the varying-length

structure, adding any initial padding required to align the
data on a specified byte boundary

mi_set_varptr() Sets the data pointer in the varying-length descriptor to
the location of a data portion that you allocate

Important: To a DataBlade API module, the varying-length structure is an opaque
C data structure. Do not access its internal fields directly. The internal
structure of the varying-length structure may change in future releases.
Therefore, to create portable code, always use the accessor functions for
this structure to obtain and store values.

Varying-Length Data and Null Termination
When you work with varying-length data, keep the following restrictions in mind:

* Do not assume that the data in a varying-length structure is null-terminated.

* Do not assume that you can use any DataBlade API functions or system calls
that operate on a null-terminated string to operate on varying-length data.

Instead, always use the data length (which you can obtain with the
mi_get_varlen() function) for all operations on varying-length data.

The varying-length accessor functions in [Table 2-3 on page 2-17|do not
automatically interpret a null-terminator character. Instead, they transfer the
number of bytes that the data length in the varying-length descriptor specifies, as
follows:

Chapter 2. Accessing SQL Data Types 2-17

* The mi_set_vardata() and mi_set_vardata_align() functions copy the number
of bytes that the data length specifies from their string argument to a
varying-length structure.

For more information, see|”Storing a Null-Terminated String” on page 2-20}

* The mi_get vardata() and mi_get_vardata_align() functions obtain the data
pointer from the varying-length descriptor. Use the data length to move through
the varying-length data.

For more information, see [“Obtaining the Data Pointer” on page 2-26|

To convert between null-terminated strings and an mi_lvarchar structure, use the
mi_string to_lvarchar() and mi_lvarchar_to_string() functions. For more
information, see [‘DataBlade API Functions for String Conversion” on page 2-11}

Storage of Varying-Length Data

This section provides the following information about how to store varying-length
data:

* How to store data in a varying-length structure

* How to store a null-terminated string in a varying-length structure

* How to set the data pointer of a varying-length structure

Storing Data in a Varying-Length Structure: The mi_set_vardata() and
mi_set_vardata_align() functions copy data into an existing data portion of a
varying-length structure. These functions assume that the data portion is large
enough to hold the data being copied. The code fragment in uses
mi_set_vardata() to store data in the existing data portion of the varying-length
structure that new_lvarch references.

#define TEXT_LENGTH 200

mi_lvarchar *new_lvarch;
mi_char *Tocal_var;

/* Allocate a new varying-length structure with a 200-byte
* data portion

*/

new_lvarch = mi_new var(TEXT_LENGTH);

/* Allocate memory for null-terminated string */
Tocal_var = (char *)mi_alloc(TEXT_LENGTH + 1);

/* Create the varying-length data to store =/

sprintf(local_var, "%s %s %s", "A varying-length structure ",
"stores data in a data portion, which is separate from ",
"the varying-length structure.");

/* Update the data length to reflect the string length =/
mi_set_varlen(new_lvarch, stleng(local var));

/* Store the varying-length data in the varying-length
* structure that new_lvarch references
*/

mi_set_vardata(new_lvarch, local_var);

Figure 2-6. Storing Data in Existing Data Portion of a Varying-Length Structure

2-18 IBM Informix DataBlade API Programmer’s Guide

In the call to mi_new_var() creates a new varying-length structure and
sets the length field to 200. This call also allocates the 200-byte data portion (see
[Figure 2-5 on page 2-15).

shows the format of the varying-length structure that new_lvarch
references after the call to mi_set_vardata() successfully completes.

Descriptor

new_lIvarch

length \ 110

Data portion

data pointer‘ »

A varying-length structure stores
data in a data portion, which is
separate from the varying length
structure.

90 bytes of
memory remain

Figure 2-7. Format of a Varying-Length Structure

The mi_set_vardata() function copies from the local_var buffer the number of
bytes that the data length specifies. Your code must ensure that the data-length
field contains the number of bytes you want to copy. In the code fragment in
[Figure 2-6 on page 2-18} the data-length field was last set by the call to
mi_set_varlen() to 110 bytes. However, if the mi_set_varlen() function executed
after the mi_set_vardata() call, the data length would still have been 200 bytes (set
by mi_new_var()). In this case, mi_set_vardata() would try to copy 200 bytes
starting at the location of the local_var variable. Because the actual local_var data
only occupies 110 bytes of memory, 90 unused bytes remain in the data portion.

The mi_set_vardata() function aligns the data that it copies on four-byte
boundaries. If this alignment is not appropriate for your varying-length data, use
the mi_set_vardata_align() function to store data on a byte boundary that you
specify. For example, the following call to mi_set_vardata_align() copies data into
the var_struc varying-length structure and aligns this data on eight-byte
boundaries:

char *buff;
mi_Tvarchar *var_struc;

mi_set_vardata_align(var_struc, buff, 8);

You can determine the alignment of a data type from its type descriptor with the
mi_type_align() function.

Tip: You can also store data in a varying-length structure through the data pointer
that you obtain with the mi_get _vardata() or mi_get_vardata_align()
function. For more information, see [“Obtaining the Data Pointer” on page]

The mi_set_vardata_align() function copies the number of bytes that the
data-length field specifies.

Chapter 2. Accessing SQL Data Types 2-19

Storing a Null-Terminated String: The mi_string to_lvarchar() function copies a
null-terminated string into a varying-length structure that it creates. This function
performs the following steps:

1. Allocates a new varying-length structure

The mi_string to_lvarchar() function allocates the varying-length descriptor,
setting the data length and data pointer appropriately. Both the data length and
the size of the data portion are the length of the null-terminated string without
its null terminator.

| Server Only

The mi_string_to_lvarchar() function allocates the varying-length structure
that it creates with the current memory duration.

| End of Server Only

2. Copies the data of the null-terminated string into the newly allocated data
portion
The mi_string_to_lvarchar() function does not copy the null terminator of the
string.

3. Returns a pointer to the newly allocated varying-length structure

The following code fragment uses mi_string_to_lvarchar() to store a
null-terminated string in the data portion of a new varying-length structure:

char *Tocal_var;
mi_Tlvarchar *Tvarch;

/* Allocate memory for null-terminated string */
Tocal_var = (char *)mi_alloc(200);

/* Create the varying-length data to store */
sprintf(local_var, "%s %s %s", "A varying-length structure ",
"stores data in a data portion, which is separate from ",

"the varying-length structure.");

/* Store the null-terminated string as varying-length data */
Tvarch = mi_string_to_lvarchar(local_var);

shows the format of the varying-length structure that lvarch references
after the preceding call to mi_string_to_lvarchar() successfully completes.

Descriptor
lvarch >
length ‘ 110
— Data portion
data pointer ’ >

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(no null terminator)

Figure 2-8. Copying a Null-Terminated String into a Varying-Length Structure

2-20 IBM Informix DataBlade API Programmer’s Guide

The lvarch varying-length structure in has a data length of 110. The null
terminator is nof included in the data length because the mi_string to_lvarchar()
function does not copy the null terminator into the data portion.

If your DataBlade API module needs to store a null terminator as part of the
varying-length data, you can take the following steps:

1. Increment the data length accordingly and save it in the varying-length
descriptor with the mi_set_varlen() function.

2. Copy the data, including the null terminator, into the varying-length structure
with the mi_set_vardata() or mi_set_vardata_align() function.

These functions copy in the null terminator because the data length includes
the null-terminator byte in its count. These functions assume that the data
portion is large enough to hold the string and any null terminator.

After you perform these steps, you can obtain the null terminator as part of the
varying-length data.

Important: If you choose to store null terminators as part of your varying-length
data, your code must keep track that this data is null-terminated. The
DataBlade API functions that handle varying-length structures do not
track the presence of a null terminator.

The following code fragment stores a string plus a null terminator in the
varying-length structure that lvarch references:

#define TEXT_LENGTH 200

mi_Tvarchar *Tvarch;
char xvar_text;
mi_integer var_len;

/* Allocate memory for null-terminated string */
var_text = (char *)mi_alloc(TEXT_LENGTH);

/* Create the varying-length data to store =/

sprintf(var_text, "%s %s %s", "A varying-length structure ",
"stores data in a data portion, which is separate from ",
"the varying-length structure.");

var_len = stleng(var_text) + 1

/* Allocate a varying-length structure to hold the
* null-terminated string (with its null terminator)
*/

Tvarch = mi_new_var(var_len);

/* Copy the number of bytes that the data length specifies
% (which includes the null terminator) into the

* varying-length structure

*/

mi_set_vardata(lvarch, var_text);

shows the format of this varying-length structure after the preceding call
to mi_set_vardata() successfully completes.

Chapter 2. Accessing SQL Data Types 2-21

2-22

Descriptor

Ivarch

length \ 111

: Data portion
data pointer ‘ >

A varying-length structure
stores data in a data
portion, which is separate
from the varying length
structure.

(null terminated)

Figure 2-9. Copying a Null-Terminated String into a Varying-Length Structure

Setting the Data Pointer: The mi_set_varptr() function enables you to set the
data pointer in a varying-length structure to memory that you allocate. The
following code fragment creates an empty varying-length structure, which is a
varying-length structure that has no data portion allocated:

#define VAR_MEM_SIZE 20

mi_lvarchar *new_lvarch;
char *var_text;
mi_integer var_len;

/* Allocate PER_COMMAND memory for varying-length data */
var_text = (char *)mi_dalloc(VAR_MEM_SIZE, PER_COMMAND);

/* Allocate an empty varying-length structure */
(void)mi_switch_mem_duration(PER_COMMAND) ;
new_lvarch = mi_new var(0);

/* Store the varying-length data in the var_text buffer

* with the fill_buffer() function (which you have coded).
* This function returns the actual Tength of the nonnull-
* terminated string. It does NOT put a null terminator at
* the end of the data.

*/

var_len = fill_buffer(var_text);

shows the format of the varying-length structure that new_lvarch
references after the fill_buffer() function successfully completes.

IBM Informix DataBlade API Programmer’s Guide

Descriptor

new_lIvarch

length | ‘0

data pointer ‘ NULL

var_text

v

20 bytes of
PER_COMMAND memory
(no null terminator at end of data)

Figure 2-10. Empty Varying-Length Structure

The varying-length structure in is empty because it has the following
characteristics:

* Data length of zero (0)
* NULL-valued pointer as its data pointer

After you have an empty varying-length structure, you can use the
mi_set_varptr() function to set the data pointer to the PER_COMMAND memory
duration, as the following code fragment shows:

/* Set the Tength of the new varying-length data */
mi_set_varlen(new_lvarch, VAR MEM_SIZE);

/* Set the pointer to the data portion of the

* varying-Tength structure to the PER_COMMAND memory
* that 'var_text' references.

*/

mi_set_varptr(new_lvarch, var_ text);

The preceding call to mi_set_varlen() updates the length in the varying-length
structure to the length of 20 bytes. shows the format of the

varying-length structure that new_lvarch references after the preceding call to
mi_set_varptr() successfully completes.

Descriptor

new_|varch

length \ 20

i Data portion
oata pointer ’ >
20 bytes of
PER_COMMAND memory
(no null terminator at

var_text end of data)

Figure 2-11. Setting the Data-Portion Pointer in a Varying-Length Structure

Chapter 2. Accessing SQL Data Types ~ 2-23

| Server Only

Make sure that you allocate the data-portion buffer with a memory duration
appropriate to the use of the data portion.

| End of Server Only |

For more information in memory allocation, see (Chapter 14, “Managing Memory,”|

Information About Varying-Length Data

Use the following DataBlade API accessor functions to obtain information about
varying-length data from a varying-length structure.

Varying-Length Information DataBlade API Accessor Function
Length of varying-length data mi_get_varlen()
Data portion mi_lvarchar_to_string(), mi_var_to_buffer(),

mi_var_copy()

Data pointer mi_get_vardata(), mi_get_vardata_align()

Obtaining the Data Length: The mi_get_varlen() function returns the data
length from a varying-length descriptor. Keep in mind the following restrictions
about data length:

* Do not assume that the data in a varying-length structure is null-terminated.

Always use the data length to determine the end of the varying-length data
when you perform operations on this data.

* When you increase the length of the data with mi_set_varlen(), this function
does not automatically increase the amount of memory allocated to the data
portion.

You must ensure that there is sufficient space in the data portion to hold the
varying-length data. If there is insufficient space, allocate a new data portion
with a DataBlade API memory-management function (such as mi_dalloc()) and
assign a pointer to this new memory to the data pointer of your varying-length
structure.

For the varying-length structure in |[Figure 2-5 on page 2-15| a call to

mi_get_varlen() returns 200. For the varying-length structure that

age 2-19shows, a call to mi_get_varlen() returns 110.

Obtaining Data as a Null-Terminated String: The mi_lvarchar_to_string()
function obtains the data from a varying-length structure and converts it to a
null-terminated string. This function performs the following steps:

1. Allocates a new buffer to hold the null-terminated string

Server Only

The mi_lvarchar_to_string() function allocates the string that it creates with
the current memory duration.

| End of Server Only |

2. Copies the data in the data portion of the varying-length structure to the newly
allocated buffer

2-24 IBM Informix DataBlade API Programmer’s Guide

The mi_lvarchar_to_string() function automatically copies the number of bytes
that the data length in the varying-length descriptor specifies. It then appends a
null terminator to the string.

3. Returns a pointer to the newly allocated null-terminated string

Suppose you have the varying-length structure that[Figure 2-8 on page 2-2(shows.
The following code fragment uses the mi_lvarchar_to_string() function to obtain
this varying-length data as a null-terminated string:

mi_Tvarchar *Tvarch;
char xvar_str;

var_str = mi_lvarchar_to_string(lvarch);

The code fragment does not need to allocate memory for the var_str string because
the mi_lvarchar_to_string() function allocates memory for the new string. After
the call to mi_lvarchar_to_string() completes successfully, the var_str variable
contains the following null-terminated string:

A varying-Tength structure stores data in a data portion, which is separate
from the varying-length structure.

Copying Data into a User-Allocated Buffer: The mi_var_to_buffer() function
copies the data of an existing varying-length structure into a user-allocated buffer.
The function copies data up to the data length specified in the varying-length
descriptor. You can obtain the current data length with the mi_get_varlen()
function.

The following code fragment copies the contents of the varying-length structure in
[Figure 2-8 on page 2-20|into the my_buffer user-allocated buffer:

mi_lvarchar *1lvarch;
char *my_buffer;

my_buffer = (char *)mi_alloc(mi_get _varlen(lvarch));
mi_var_to_buffer(lvarch, my buffer);

After the successful completion of mi_var_to_buffer(), the my_buffer variable
points to the following string, which is not null terminated:

A varying-length structure stores data in a data portion, which is separate
from the varying-length structure.

Important: Do not assume that the data in the user-allocated buffer is null
terminated. The mi_var_to_buffer() function does not append a null
terminator to the data in the character buffer.

Copying Data into a New Varying-Length Structure: The mi_var_copy()
function copies data from an existing varying-length structure into a new
varying-length structure. This function performs the following steps:

1. Allocates a new varying-length structure

For the new varying-length structure, the mi_var_copy() function allocates a
data portion whose size is that of the data in the existing varying-length
structure.

| Server Only |

The mi_var_copy() function allocates the varying-length structure that it
creates with the current memory duration.

| End of Server Only |

Chapter 2. Accessing SQL Data Types ~ 2-25

2-26

2. Copies the data in the data portion of the existing varying-length structure to
the data portion of the newly allocated varying-length structure

The mi_var_copy() function automatically copies the number of bytes that the
data length in the existing varying-length descriptor specifies.

3. Returns a pointer to the newly allocated varying-length structure as a pointer
to an mi_lvarchar value

Suppose you have the varying-length structure that [Figure 2-8 on page 2-20| shows.
The following code fragment uses the mi_var_copy() function to create a copy of
this varying-length structure:

mi_lvarchar *1varch, *1varch_copy;

Tvarch_copy = mi_var_copy(Tvarch);

After the call to mi_var_copy() completes successfully, the lvarch_copy variable
points to a new varying-length structure, as shows. The varying-length
structure that lvarch_copy references is a completely separate structure from the
structure that lvarch references.

Descriptor
Ivarch_copy >

length \110

: Data portion
data pointer ‘ >

A varying-length structure
stores data in a data
portion, which is separate
from the varying-length
structure.

(no null terminator)

Figure 2-12. Copying a Varying-Length Structure

Obtaining the Data Pointer: The mi_get_vardata() and mi_get_vardata_align()
functions obtain the actual data pointer from the varying-length descriptor.
Through this data pointer, you can directly access the varying-length data.

The following code fragment uses the mi_get_vardata() function to obtain the
data pointer from the varying-length structure in [Figure 2-7 on page 2-19

mi_lvarchar *new_lvarch;
char *var_ptr;

/* Get the data pointer of the varying-length structure */
var_ptr = mi_get_vardata(new_Tvarch);

shows the format of the varying-length structure that new_lvarch

references after the preceding call to mi_get_vardata() successfully completes.

IBM Informix DataBlade API Programmer’s Guide

Descriptor

new_lIvarch

length \1 10

Data portion

data pointer ‘

LA 4

A varying-length structure stores
data in a data portion, which is
separate from the varying-length
structure.

90 bytes of
memoty remain

var_ptr

Figure 2-13. Getting the Data Pointer from a Varying-Length Structure

You can then access the data through the var_ptr data pointer, as the following
code fragment shows:

mi_lvarchar *new_lvarch;
mi_integer var_len, i;
mi_char one_char;
mi_char =*var_ptr;

var_ptr = mi_get_vardata(new_lvarch);
var_len = mi_get varlen(new_lvarch);
for (i=0; i<var_len; i++)

{

one_char = var_ptr[i];

/* process the character as needed */

| Server Only

The database server passes text data to a UDR as an mi_lvarchar structure.
[Figure 13-3 on page 13-8|shows the implementation of a user-defined function
named initial_cap(), which ensures that the first letter of a character string is
uppercase and that subsequent letters are lowercase.

The initial_cap() function uses mi_get_vardata() to obtain each character from
the data portion of the varying-length structure. This data portion contains the
character value that the function receives as an argument. The function checks each
letter to ensure that it has the correct case. If the case is incorrect, initial_cap()
uses the data pointer to update the appropriate letter. The function then returns a
new mi_lvarchar structure that holds the result. For more information, see
[“Handling Character Arguments” on page 13-6|

| End of Server Only |

The varying-length structure aligns data on four-byte boundaries. If this alignment
is not appropriate for your varying-length data, use the mi_get_vardata_align()
function to obtain the data aligned on a byte boundary that you specify. You can
determine the alignment of a data type from its type descriptor with the
mi_type_align() function.

Chapter 2. Accessing SQL Data Types 2-27

Tip: When you obtain aligned data from a varying-length structure that is
associated with an extended data type, specify an alignment value to
mi_get_vardata_align() that is appropriate for the extended data type. For
more information, see|’Specifying the Memory Alignment of an Opaque]

[Type” on page 16-6|

The mi_get_vardata_align() function obtains the number of bytes that the
data-length field specifies.

Byte Data Types

2-28

The DataBlade API supports the following data types that can hold byte data in a
DataBlade API module.

DataBlade API Character SQL Character

Data Type Description Data Type

mi_bitvarying Varying-length structure to hold None
varying-length byte data

MI_LO_HANDLE LO handle to identify a smart large BLOB

object that holds byte data

Tip: The database server also supports the BYTE data type for byte data. It stores
BYTE data as a simple large object. However, the DataBlade API does not
directly support simple large objects. For more information, see
[Objects” on page 2-32|

The mi_bitvarying Data Type

The SQL BITVARYING data type stores variable-length byte data that is potentially
larger than 255 bytes. The BITVARYING data type is a predefined opaque type (an
opaque data type that Informix defines). The DataBlade API supports the
BITVARYING data type with the mi_bitvarying data type, which the DataBlade
API implements as a varying-length structure.

Tip: The SQL data type BITVARYING and the DataBlade API data type
mi_bitvarying are not exactly the same. Although you use the mi_bitvarying
varying-length structure to hold BITVARYING data, you can also use a
varying-length structure for other varying-length data.

For a BITVARYING column, the maximum size of the data is two kilobytes. This
limitation is not inherent to the BITVARYING data type; however, the maximum
row size in a database table is 32 kilobytes. If a BITVARYING column were to use
the full supported size of 32 kilobytes, the table could contain only one column: a
single BITVARYING column.

Tip: If you need to store more than two kilobytes of byte data, use the BLOB data
type. The BLOB data type enables you to store the byte data outside the
database table in an sbspace. For more information, see [Chapter 6, “Using|
Smart Large Objects,” on page 6-1)

You can use an mi_bitvarying varying-length structure to store large amounts of
bite data. For more information, see|“Varying-Length Data Type Structures” on|
page 2-13

IBM Informix DataBlade API Programmer’s Guide

The routine manager uses an mi_bitvarying structure to hold data for an argument
or return value of a C UDR when this data is a varying-length opaque type. For
more information, see|“Determining the Passing Mechanism for an Opaque Type”|

| Server Only |

You must use the mi_bitvarying data type if your UDR expects any varying-length
data type as an argument or a return value. Within an MI_DATUM structure, the
routine manager passes varying-length opaque-type data to and from a C UDR as
a pointer to an mi_bitvarying varying-length structure. Therefore, a C UDR must
handle this data as mi_bitvarying values when it receives arguments or returns
data of a varying-length opaque data type, as the following table describes.

Handling Character Data More Information
If the C UDR receives an argument of a “Handling Varying-Length Opaque-Type|
varying-length opaque data type, it must Arguments” on page 13-10|

declare its corresponding parameter as a pointer
to an mi_bitvarying data type.

If a C UDR returns a value of a varying-length [“Returning Opaque-Type Values” on page]
opaque data type, it must return a pointer to an [13-14]
mi_bitvarying data type.

| End of Server Only

Byte Data in a Smart Large Object

You can use a smart large object to store very large amounts of byte data. The
MI_LO_HANDLE data type holds a structure, called an LO handle, that identifies
the location of smart-large-object data in a separate database partition, called an
sbspace. For smart-large-object data that is byte data, use the SQL BLOB data type.
The BLOB data type allows you to store varying-length byte data of up to four
terabytes. The BLOB data type is a predefined opaque type (an opaque data type
that Informix defines). For more information, see |Chapter 6, “Using Smart Large]
[Objects,” on page 6-1

Byte Processing
The DataBlade API provides the following support for byte data:
* ESQL/C functions that operate on byte data
¢ DataBlade API functions that transfer byte data

Manipulating Byte Data
The DataBlade API supports the following byte functions from the ESQL/C library
to perform operations on byte data.

Function Name Description

bycmpr() Compares two groups of contiguous bytes
bycopy() Copies bytes from one area to another
byfill() Fills the specified area with a character
byleng() Counts the number of bytes in a string

Chapter 2. Accessing SQL Data Types ~ 2-29

Transferring Byte Data (Server)
To transfer byte data between different computer architectures, the DataBlade API
provides the following functions that handle type alignment and byte order.

DataBlade API
Function Description

mi_get_bytes() Copies an aligned number of bytes, converting any difference in
alignment or byte order on the client computer to that of the server
computer

mi_put_bytes() Copies an aligned number of bytes, converting any difference in
alignment or byte order on the server computer to that of the client
computer

The mi_get_bytes() and mi_put_bytes() functions are useful in the send and
receive support function of an opaque data type that contains uninterpreted bytes.
They ensure that byte data remain aligned when transferred to and from client
applications. For more information, see [“Conversion of Opaque-Type Data Between|
[Text and Binary Representations” on page 16-16|

Boolean Data Types

2-30

Boolean data holds values to indicate two states: true and false. The DataBlade API
provides support for boolean values in both their text and binary representations.

Boolean Text Representation

The DataBlade API supports a Boolean value in text representation as a character
enclosed in single quotation marks, with the format that [Table 2-4 shows.

Table 2-4. Text Representation of Boolean Data

Boolean Value Text Representation
True t" or T
False 't or 'F’

A Boolean value in its text representation is often called a Boolean string.

Boolean Binary Representation

The SQL BOOLEAN data type holds the internal (binary) format of a Boolean
value. This value is a single-byte representation of Boolean data, as the following
table shows.

Boolean Value Binary Representation
True \1
False \0

The BOOLEAN data type is a predefined opaque type (an opaque data type that
Informix defines). Its external format is the Boolean text representation that
shows. Its internal format consists of the values that the preceding table
shows. For a complete description of the SQL BOOLEAN data type, see the

IBM Informix: Guide to SQL Reference.

Tip: The internal format of the BOOLEAN data type is often referred to as its
binary representation.

IBM Informix DataBlade API Programmer’s Guide

The DataBlade API supports the SQL BOOLEAN data type with the mi_boolean
data type. Therefore, the mi_boolean data type also holds the binary
representation of a Boolean value.

| Server Only |

An mi_boolean value is one byte on all computer architectures; therefore, it can fit
into an MI_DATUM structure. You can pass mi_boolean data by value in C UDRs.

| End of Server Only |

| Client Only |

In client LIBMI applications, you must pass all data by reference, including
mi_boolean values.

| End of Client Only |

| Windows Only |

Because an mi_boolean value is smaller than the size of an MI_DATUM structure,
the DataBlade API cast promotes the value to the size of MI_DATUM when you
copy the value into an MI_DATUM structure. When you obtain the mi_boolean
value from an MI_DATUM structure, you need to reverse the cast promotion to
ensure that your value is correct.

MI_DATUM datum;
mi_boolean bool_val;

bool_val = (char) datum;

Alternatively, you can declare an mi_integer value to hold the Boolean value.

| End of Windows Only

Pointer Data Types (Server)

The SQL POINTER data type is the SQL equivalent of a generic pointer. This data
type is used in the routine registration of a UDR to indicate that some data type
has no equivalent SQL data type. The DataBlade API represents the POINTER data
type with the mi_pointer data type.

Use the mi_pointer data type only for communications between UDRs. The
POINTER data type is a predefined opaque type (an opaque data type that
Informix defines). However, no opaque-type support functions for this data type
are included.

Important: Because the POINTER data type does not include opaque-type support
functions, you cannot pass this type between the database server and a

client application. Also, do not define columns to be of type POINTER.

The mi_pointer data type is guaranteed to be the size of the C type void * on all
computer architectures. The C type void * is usually equivalent to a long type,

Chapter 2. Accessing SQL Data Types ~ 2-31

which is usually four bytes in length.

| 64-bit |

On 64-bit platforms, void * is eight bytes in length, so mi_pointer is also eight
bytes.

| End of 64-bit |

An mi_pointer value can fit into an MI_DATUM structure and can be passed by
value to and from C UDRs. Keep in mind that because mi_pointer actually
contains an address to a value, passing an mi_pointer by value is actually the
same as passing the value to which mi_pointer points by reference.

Important: When you use mi_pointer, make sure that the value that the
mi_pointer references is allocated with a memory duration appropriate
to the use of the value. For more information, see |“Choosing the

[Memory Duration” on page 14-4

Simple Large Objects

The DataBlade API does not provide direct support for simple large objects.
Therefore, it cannot directly access TEXT and BYTE columns. However, the
database server provides the following cast functions between simple and smart
large objects.

Type Conversion SQL Cast Function
From the TEXT data type to the CLOB data type TextToClob()
From the BYTE data type to the BLOB data type ByteToBlob()

For more information on these SQL cast functions, see the description of the
Expression segment in the IBM Informix: Guide to SQL Syntax.

| Server Only |

C UDRs can accept TEXT data as arguments because the database server passes all
character data in the mi_lvarchar data type. For more information, see
[Data in C UDRs (Server)” on page 2-10}

C UDRs can also accept BYTE data as long as they declare and handle this data as
a smart large object. The database server converts the BYTE data to BLOB data
when it passes this data to the UDR.

| End of Server Only |

The MI_DATUM Data Type

The DataBlade API handles a generic data value as an MI_DATUM value, also
called a datum. A datum is stored in a chunk of memory that can fit into a
computer register.

In the C language, the void * type is a typeless way to point to any object and

should hold any integer value. This type is usually equivalent to the long int type
and is usually four bytes in length, depending on the computer architecture.

2-32 IBM Informix DataBlade API Programmer’s Guide

MI_DATUM is defined as a void * type. The MI_DATUM data type is guaranteed
to be the size of the C type void * on all computer architectures.

| 64-bit

On 64-bit platforms, void * is eight bytes in length, so an MI_DATUM value is
stored in eight bytes.

| End of 64-bit

This section provides the following information about the MI_DATUM data type:
* Contents of an MI_DATUM structure

* Address calculations with MI_DATUM values

¢ Uses of MI_DATUM structures

Contents of an MI_DATUM Structure

A datum in an MI_DATUM structure can describe a value of any SQL data type.
You can use an MI_DATUM structure to transport a value of an SQL data type
between the database server and the DataBlade API module.

MI_DATUM in a C UDR (Server)
In a C UDR, the contents of

Integer Text Representation

The DataBlade API supports an integer value in text representation as a quoted
string that contains the following characters.

Contents of Integer String Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)

An integer value in its text representation is often called an integer string. For
example, the following integer string contains the value for 1,345:

"1,345"

In an integer string, the thousands separator is optional.

| Global Language Support

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding integer string is the end-user format for
the default locale, U.S. English. A nondefault locale can define an end-user format
that is particular to a country or culture outside the U.S. For more information, see
the IBM Informix: GLS User’s Guide.

| End of Global Language Support

Integer Binary Representations

The DataBlade API provides the following data types to support the binary
representations of integer values.

SQL Integer Data

Integer Data DataBlade API Data Type Type

One-byte integers mi_sintl, mi_intl None

Two-byte integers mi_smallint, mi_unsigned_smallint SMALLINT
Four-byte integers mi_integer, mi_unsigned_integer INTEGER, SERIAL
Eight-byte integers mi_int8, mi_unsigned_int8 INTS8, SERIALS

Tip: The internal format of integer data types is often referred to as their binary
representation.

One-Byte Integers
The DataBlade API supports the following data types for one-byte integer values.

DataBlade API One-Byte Integer Description
mi_sintl Signed one-byte (eight bits) value
mi_intl Unsigned one-byte (eight bits) value

To hold unsigned one-byte integers, you can also use the mi_unsigned_charl data

type.

3-2 IBM Informix DataBlade API Programmer’s Guide

Tip: The one-byte integer data types have names that are not consistent with those
of other integer data types. The mi_intl data type is for an unsigned one-byte
integer while the mi_smallint, mi_integer, and mi_int8 data types are for the
signed version of the two-, four-, and eight-byte integers, respectively. Use the
mi_sintl data type to hold a signed one-byte integer value.

The DataBlade API ensures that these integer data types are one byte on all
computer architectures. There is no corresponding SQL data type for one-byte
integers.

| Server Only |

Values of the mi_intl and mi_sint1 data types can fit into an MI_DATUM
structure. They can be passed by value within C user-defined routines (UDRs).

| End of Server Only |

| Client Only |

All data types, including mi_intl and mi_sintl, must be passed by reference
within client LIBMI applications.

| End of Client Only |

Two-Byte Integers
The DataBlade API supports the following data types for two-byte integer values.

DataBlade API Two-Byte Integers Description
mi_smallint Signed two-byte integer value
mi_unsigned_smallint Unsigned two-byte integer value

Use these integer data types to hold values for the SQL SMALLINT data type,
which stores two-byte integer numbers that range from -32,767 to 32,767. For a
description of the SQL SMALLINT data type, see the IBM Informix: Guide to SQL
Reference.

The mi_smallint and mi_unsigned_smallint data types hold the internal (binary)
format of a SMALLINT value. The DataBlade API ensures that the mi_smallint
and mi_unsigned_smallint data types are two bytes on all computer architectures.
Use these integer data types instead of the native C types (such as short int). If
you access two-byte values stored in a SMALLINT in the database, but use the C
short int type, conversion errors might arise if the two types are not the same size.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data
type mi_smallint for two-byte integer values instead of the native
C-language counterpart. The mi_smallint data type handles the
different sizes of integer values across computer architectures.

| Server Only

Values of the mi_smallint and mi_unsigned_smallint data types can fit into an
MI_DATUM structure. They can be passed by value within C UDRs.

Chapter 3. Using Numeric Data Types 3-3

3-4

| Client Only

All data types, including mi_smallint and mi_unsigned_smallint, must be passed
by reference within client LIBMI applications.

| End of Client Only

To transfer two-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_smallint() Copies an aligned two-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_smallint() Copies an aligned two-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_fix_smallint() Converts the specified two-byte integer to or from
the type alignment and byte order of the client
computer

These DataBlade API functions are useful in the send and receive support
functions of an opaque data type that contains mi_smallint values. They ensure
that two-byte integer (SMALLINT) values remain consistent when transferred to
and from client applications. For more information, see[”Conversion of]
Opaque-Type Data with Computer-Specific Data Types” on page 16-21|

Four-Byte Integers
The DataBlade API supports the following data types for four-byte integer values.

DataBlade API Four-Byte Integers Description
mi_integer Signed four-byte integer value
mi_unsigned_integer Unsigned four-byte integer value

Use these integer data types to hold values for the following SQL four-byte integer
data types:

* The SQL INTEGER data type can hold integer values in the range from
-2,147,483,647 to 2,147,483,647.

* The SQL SERIAL data type holds four-byte integer values that the database
server automatically assigns when a value is inserted in the column.

For a description of the SQL INTEGER and SERIAL data types, see the
IBM Informix: Guide to SQL Reference.

The mi_integer and mi_unsigned_integer data types hold the internal (binary)
format of an INTEGER or SERIAL value. The DataBlade API ensures that the
mi_integer and mi_unsigned_integer data types are four bytes on all computer
architectures. Use these integer data types instead of the native C types (such as

IBM Informix DataBlade API Programmer’s Guide

int or long int). If you access four-byte values stored in a INTEGER in the
database, but use the C int type, conversion errors might arise if the two types are
not the same size.

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use of the DataBlade API
data type mi_integer for four-byte integer values instead of the native
C-language counterpart. The mi_integer data type handles the different
sizes of integer values across computer architectures.

| Server Only |

Values of the mi_integer and mi_unsigned_integer data types can fit into an
MI_DATUM structure. They can be passed by value within a C UDR.

| End of Server Only |

| Client Only |

All data types, including mi_integer and mi_unsigned_integer, must be passed by
reference within client LIBMI applications.

To transfer four-byte integers between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_integer() Copies an aligned four-byte integer, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_integer() Copies an aligned four-byte integer, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_fix_integer() Converts the specified four-byte integer to or from
the alignment and byte order of the client
computer

The mi_get_integer() and mi_put_integer() functions are useful in the send and
receive support functions of an opaque data type that contains mi_integer values.
They ensure that four-byte integer (INTEGER) values remain consistent when
transferred to and from client applications. For more information, see ["Conversion|
fof Opaque-Type Data with Computer-Specific Data Types” on page 16-21]

| End of Client Only |

Eight-Byte Integers
The DataBlade API supports the following data types for eight-byte integer values.

DataBlade API Eight-Byte Integers Description
mi_int8 Signed eight-byte integer value
mi_unsigned_int8 Unsigned eight-byte integer value

Chapter 3. Using Numeric Data Types 3-5

3-6

The DataBlade API ensures that these integer data types are eight bytes on all
computer architectures. Use these integer data types to hold values for the
following SQL eight-byte integer data types:

» The SQL INTS8 data type can hold integer values in the range from
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807
[or -(2%%-1) to 2%3-1].

* The SQL SERIALS data type holds eight-byte integer values that the database
server automatically assigns when a value is inserted in the column.

For a description of the SQL INT8 and SERIALS data types, see the IBM Informix:
Guide to SQL Reference.

The mi_int8 and mi_unsigned_int8 data types hold the internal (binary) format of
an INT8 or SERIALS value.

| Server Only

Values of the mi_int8 and mi_unsigned_int8 data types cannot fit into an
MI_DATUM structure. They must be passed by reference within C UDRs.

| End of Server Only

| Client Only

All data types, including mi_int8 and mi_unsigned_int8, must be passed by
reference within client LIBMI applications.

| End of Client Only

The int8.h Header File: The int8.h header file contains the following declarations
for use with the INTS8 data type:

¢ The ifx_int8_t structure
* The INT8-type functions of the ESQL/C library

The mitypes.h header file automatically includes int8.h. In turn, the milib.h
header file automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the ifx_int8_t structure, the
mi_int8 data type, or any of the ESQL/C INT8-type functions when you include
mi.h in your DataBlade API module.

Internal INT8 Format: The INTS8 data type stores eight-byte integers in an
Informix-proprietary internal format: the ifx_int8_t structure. This structure allows
the database to store eight-byte integers in a computer-independent format.

Tip: The internal format of the INTS8 data type is often referred to as its binary
representation.

The mi_int8 data type uses the ifx_int8_t structure to hold the binary
representation of an INTS8 value.

Important: The ifx_int8_t structure is an opaque C data structure to DataBlade
API modules. Do not access its internal fields directly. The internal
structure of ifx_int8_t may change in future releases.

IBM Informix DataBlade API Programmer’s Guide

ESQL/C INT8-Type Functions: Because the binary representation of an INT8 (and
mi_int8) value is an Informix-proprietary format, you cannot use standard system
functions to perform integer calculations on mi_int8 values. Instead, the DataBlade
API provides support for the following categories of ESQL/C functions on the
INTS data type.

Type of INT8 Function More Information

Conversion functions [“Converting INT8 Values” on page 3-7

Arithmetic-operation functions “Performing Operations on Eight-Byte Values” on page]
3-

Any other operations, modifications, or analyses can produce unpredictable results.

Transferring Eight-Byte Integers (Server): To transfer eight-byte integers between
different computer architectures, the DataBlade API provides the following
functions that handle type alignment and byte order.

DataBlade API Function Description

mi_get_int8() Copies an aligned eight-byte integer, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_put_int8() Copies an aligned eight-byte integer, converting
any difference in alignment or byte order on the
server computer to that of the client computer

The mi_get_int8() and mi_put_int8() functions are useful in the send and receive
support function of an opaque data type that contains mi_int8 values. They ensure
that eight-byte integer (INT8) values remain aligned when transferred to and from
client applications. For more information, see [“Conversion of Opaque-Type Data|
fwith Computer-Specific Data Types” on page 16-21}

Converting INT8 Values: The ESQL/C library provides the following functions
that facilitate conversion of the binary representation of INT8 (mi_int8) values to
and from some C-language data types.

Function Name Description

ifx_int8cvasc() Converts a C char type value to an mi_int8 type
value

ifx_int8cvdbl() Converts a C double (mi_double_precision) type
value to an mi_int8 type value

ifx_int8cvdec() Converts a C mi_decimal type value to an mi_int8
type value

ifx_int8cvflt() Converts a C float (mi_real) type value to an
mi_int8 type value

ifx_int8cvint() Converts a C two-byte integer value to an mi_int8
type value

ifx_int8cvlong() Converts a C four-byte integer value to an mi_int8
type value

ifx_int8toasc() Converts an mi_int8 type value to a text string

ifx_int8todbl() Converts an mi_int8 type value to a C double

(mi_double_precision) type value

Chapter 3. Using Numeric Data Types ~ 3-7

ifx_int8todec() Converts an mi_int8 type value to a mi_decimal
type value

ifx_int8toflt() Converts an mi_int8 type value to a C float
(mi_real) type value

ifx_int8toint() Converts an mi_int8 type value to a C two-byte
integer value

ifx_int8tolong() Converts an mi_int8 type value to a C four-byte
integer value

Performing Operations on Eight-Byte Values: Use the following ESQL/C library
functions to perform arithmetic operations on INT8 (mi_int8) type values.

Function Name Description

ifx_int8add() Adds two mi_int8 numbers
ifx_int8cmp() Compares two mi_int8 numbers
ifx_int8copy() Copies an mi_int8 number
ifx_int8div() Divides two mi_int8 numbers
ifx_int8mul() Multiplies two mi_int8 numbers
ifx_int8sub() Subtracts two mi_int8 numbers

Any other operations, modifications, or analyses can produce unpredictable results.

Fixed-Point Data

3-8

Fixed-point data is a decimal value with a fixed number of digits to the right and
left of the decimal point. The fixed number of digits to the right of the decimal
point is called the scale of the value. The total number of digits in the fixed-point
value is called the precision of the value.

The DataBlade API provides support for the following kinds of fixed-point data
(which correspond to existing SQL data types).

Type of Fixed-Point Value SQL Data Type
Decimal DECIMAL(p,s)
Monetary MONEY(p)

Each of these kinds of fixed-point values has a text and a binary representation.

Fixed-Point Text Representations

The text representation of a fixed-point value is a quoted string that contains a
series of digits. The DataBlade API supports a text representation for both decimal
and monetary values.

Decimal Text Representation
The DataBlade API supports a decimal value in text representation as a quoted
string that contains the characters that the following table shows.

Contents of Fixed-Point String Character

Digits 0-9

IBM Informix DataBlade API Programmer’s Guide

Contents of Fixed-Point String Character

Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of the . (period)
number

A decimal value in its text representation is often called a decimal string. For
example, the following decimal string contains the value for 1,345.77:

"1,345.77"

In a decimal string, the thousands separator is optional.

| Global Language Support |

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding decimal string is the end-user format
for the default locale, U.S. English. A nondefault locale can define an end-user
format that is particular to a country or culture outside the U.S. For more
information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

Monetary Text Representation
The DataBlade API supports a monetary value in text representation as a quoted
string that contains the characters that the following table shows.

Contents of Fixed-Point String Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of . (period)
the number

Currency symbol: symbol that identifies the units of currency $ (dollar sign)
(can appear in front of or at the end of the monetary value)

A monetary value in its text representation is often called a monetary string. For
example, the following money string contains the value for $1,345.77:

"$1,345.77"

In a monetary string, the thousands separator and the currency symbol are
optional. You can change the format of the monetary string with the DBMONEY
environment variable.

| Global Language Support |

A locale defines the end-user format for monetary values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding monetary string is the end-user format
for the default locale, U.S. English. A nondefault locale can define monetary
end-user formats that are particular to a country or culture outside the U.S. For
more information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

Chapter 3. Using Numeric Data Types 3-9

3-10

Fixed-Point Binary Representations

The DataBlade API provides the following data types to support the binary
representations of SQL fixed-point data types.

DataBlade API Data Type SQL Fixed-Point Data Type
mi_decimal, mi_numeric DECIMAL
mi_money MONEY

Both the DECIMAL and MONEY data types use the same internal format to store
a fixed-point value. For more information on this format, see [“Internal Fixed-Point|
[Decimal Format” on page 3-12|

DECIMAL Data Type: Fixed-Point Data

When you define a column with the DECIMAL(p,s) data type, the syntax of this
definition specifies a fixed-point value for the column. This value has a total of p
(<= 32) significant digits (the precision) and s (<= p) digits to the right of the
decimal point (the scale).

Tip: The DECIMAL data type can also declare a floating-point value with the
syntax DECIMAL(p). For more information, see ['DECIMAL Data Type:|
[Floating-Point Data” on page 3-17} For a complete description of the
DECIMAL data type, see the IBM Informix: Guide to SQL Reference.

The SQL DECIMAL data type holds the internal (binary) format of a decimal
value. This value is a computer-independent method that represents numbers of
up to 32 significant digits, with valid values in the range 10"*° to 10"'*. For more
information, see [“Internal Fixed-Point Decimal Format” on page 3-12}

Tip: The internal format of the DECIMAL data type is often referred to as its
binary representation.

The DataBlade API supports the SQL DECIMAL data type with the mi_decimal
data type. Therefore, the mi_decimal data type also holds the binary representation
of a decimal value. The mi_numeric data type is a synonym for mi_decimal.

| Server Only |

Values of the mi_decimal data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_decimal, must be passed by reference within client
LIBMI applications.

| End of Client Only |

IBM Informix DataBlade API Programmer’s Guide

MONEY Data Type
When you define a column with the MONEY(p) data type, it has a total of p (<=
32) significant digits (the precision) and a scale of 2 digits.

Global Language Support
| guag PP |

The default value that the database server uses for scale is locale-dependent. The
default locale specifies a default scale of two. For nondefault locales, if the scale is
omitted from the declaration, the database server creates MONEY values with a
locale-specific scale. For more information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

You can also specify a scale with the MONEY(p,s) syntax, where s represents the
scale. For a complete description of the MONEY data type, see the IBM Informix:
Guide to SQL Reference.

Tip: The internal format of the MONEY data type is often referred to as its binary
representation.

The DataBlade API supports the SQL MONEY data type with the mi_money data
type. The mi_money data type holds the internal (binary) format of a MONEY
value. This binary representation of the MONEY data type has the same structure
as the fixed-point DECIMAL data type. For more information, see
[Fixed-Point Decimal Format” on page 3-12|

| Server Only |

Values of the mi_money data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_money, must be passed by reference within client
LIBMI applications.

| End of Client Only |

The decimal.h Header File

The decimal.h header file contains definitions for use with the DECIMAL and
MONEY data types. This header file defines the following items:

e The dec_t typedef

* The decimal macros

¢ The DECIMAL-type functions of the ESQL/C library

The mitypes.h header file automatically includes decimal.h. In turn, the milib.h
header file automatically includes mitypes.h, and mi.h automatically includes
milib.h. Therefore, you automatically have access to the dec_t structure, the
mi_decimal and mi_money data types, any of the decimal macros, or any of the
ESQL/C DECIMAL-type functions when you include mi.h in your DataBlade API
module.

Chapter 3. Using Numeric Data Types ~ 3-11

3-12

Internal Fixed-Point Decimal Format: The DECIMAL and MONEY data types
store fixed-point values in an Informix-proprietary internal format: the dec_t
structure. This structure holds the internal (binary) format of a DECIMAL or
MONEY value, as follows:

#define DECSIZE 16

struct decimal

{

short dec_exp;

short dec_pos;

short dec_ndgts;

char dec_dgts[DECSIZE];

}s
typedef struct decimal dec_t;

This dec_t structure stores the number in pairs of digits. Each pair is a number in
the range 00 to 99. (Therefore, you can think of a pair as a base-100 digit.) [Table 3-1
shows the four parts of the dec_t structure.

Table 3-1. Fields in the dec_t Structure

Field Description

dec_exp The exponent of the normalized dec_t type number

The normalized form of this number has the decimal point at the left of
the left-most digit. This exponent represents the number of digit pairs to
count from the left to position the decimal point (or as a power of 100 for
the number of base-100 numbers).

dec_pos The sign of the dec_t type number

The dec_pos can assume any one of the following three values:
1 when the number is zero or greater

0 when the number is less than zero

-1 when the value is null

dec_ndgts The number of digit pairs (number of base-100 significant digits) in the
dec_t type number

This value is also the number of entries in the dec_dgts array.

dec_dgtsl] A character array that holds the significant digits of the normalized dec_t
type number, assuming dec_dgts[0] != 0

Each byte in the array contains the next significant base-100 digit in the
dec_t type number, proceeding from dec_dgts[0] to dec_dgts[dec_ndgts].

able 3-2| shows some sample dec_t values.

Table 3-2. Sample Decimal Values

dec_t Structure Field Values
Value dec_exp dec_pos dec_ndgts dec_dgtsl]
-12345.6789 3 0 5 dec_dgts[0] = 01

dec_dgts[1] = 23
dec_dgts[2] = 45
dec_dgts[3] = 67

dec_dgts[4] = 89

IBM Informix DataBlade API Programmer’s Guide

Table 3-2. Sample Decimal Values (continued)

dec_t Structure Field Values
Value dec_exp dec_pos dec_ndgts dec_dgts[]
1234.567 2 1 4 dec_dgts[0] = 12

dec_dgts[1] = 34
dec_dgts[2] = 56

dec_dgts[3] =70
-123.456 2 0 4 dec_dgts[0] = 01

dec_dgts[1] = 23
dec_dgts[2] = 45

dec_dgts[3] = 60
480 2 1 2 dec_dgts[0] = 04

dec_dgts[1] = 80
152 0 1 2 dec_dgts[0] = 15

dec_dgts[1] = 20
-6 1 0 1 dec_dgts[0] = 06

The mi_decimal and mi_money data types use the dec_t structure to hold the
binary representation of a DECIMAL and MONEY value, respectively.

The Decimal Macros: The decimal.h header file also includes the following
macros that might be useful in a DataBlade API module.

Decimal Macro Description

DECLEN(p, s) Calculates the minimum number of bytes required
to hold the DECIMAL(p,s) value

DECPREC size) Calculates a default precision given the number of
bytes (size) used to store the number

PRECTOT((dec) Returns the total precision of the dec value

PRECDEC(dec) Returns the scale of the dec value

PRECMAKE(p, s) Creates a precision value from the specified total

precision (p) and scale (s)

Tip: For a complete list of decimal macros, consult
the decimal.h header file that is installed with
your database server. This header file resides
in the incl/public subdirectory of the
INFORMIXDIR directory.

ESQL/C DECIMAL-Type Functions: Because the binary representation of
DECIMAL (mi_decimal) and MONEY (mi_money) values is an
Informix-proprietary format, you cannot use standard system functions to perform
decimal operations on mi_decimal and mi_money values. Instead, the DataBlade
API provides support for the following ESQL/C functions on the DECIMAL and
MONEY data types.

Chapter 3. Using Numeric Data Types ~ 3-13

3-14

Type of DECIMAL Function More Information

Conversion functions “ESQL /C Functions for Decimal Conversion” or|
page 3—15|

Arithmetic-operation functions ‘Performing Operations on Decimal Data” on pag¢|
3-16]

Any other operations, modifications, or analyses can produce unpredictable results.

Transferring Fixed-Point Data (Server)

To transfer fixed-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and
byte order.

DataBlade API Function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_get_money() Copies an aligned mi_money value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting
any difference in alignment or byte order on the
server computer to that of the client computer

mi_put_money() Copies an aligned mi_money value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_decimal(), mi_get_money(), mi_put_decimal(), and
mi_put_money() functions are useful in the send and receive support function of
an opaque data type that contains mi_decimal or mi_money values. They ensure
that fixed-point (DECIMAL or MONEY) values remain aligned when transferred to
and from client applications. For more information, seel”Conversion ofl
Opaque-Type Data with Computer-Specific Data Types” on page 16-21}

Converting Decimal Data

Both the DataBlade API library and the ESQL/C library provide functions that
convert the binary representation for DECIMAL (mi_decimal) or MONEY
(mi_money) values.

DataBlade API Functions for Decimal Conversion

The DataBlade API library provides the following functions that convert between a
text (string) representation of a decimal or monetary value and its binary (internal)
equivalent.

DataBlade API Function Converts from Converts to
mi_decimal_to_string() DECIMAL (mi_decimal) Decimal string
mi_money_to_string() MONEY (mi_money) Interval string
mi_string to_decimal() Decimal string DECIMAL (mi_decimal)
mi_string_to_money() Monetary string MONEY (mi_money)

IBM Informix DataBlade API Programmer’s Guide

| Server Only |

The mi_decimal_to_string(), mi_money_to_string(), mi_string_to_decimal(),
and mi_string to_money() functions are useful in the input and output support
function of an opaque data type that contains mi_decimal or mi_money values.
They allow you to convert fixed-point (DECIMAL or MONEY) values between
their external format (text) and their internal format (dec_t) when transferred to
and from client applications. For more information, see|“Conversion of
Opaque-Type Data Between Text and Binary Representations” on page 16-16,

| End of Server Only |

| Global Language Support |

The mi_decimal_to_string(), mi_money_to_string(), mi_string to_decimal(),
and mi_string to_money() functions use the current processing locale to handle
locale-specific formats in the decimal or monetary string. For more information, see
the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

ESQL/C Functions for Decimal Conversion
The ESQL/C function library provides the following functions to convert a
DECIMAL (or MONEY) value to and from some C-language data types.

Function Name Description

deccvasc() Converts a C char type to an mi_decimal type
value

deccvdbl() Converts a C double (mi_double_precision) type
to an mi_decimal type value

deccvint() Converts a C two-byte integer value to an
mi_decimal type value

deccvlong() Converts a C four-byte integer value to an
mi_decimal type value

dececvt() and decfevt() Converts an mi_decimal type value to text

dectoasc() Converts an mi_decimal type value to text

dectodbl() Converts an mi_decimal type value to a C double

(mi_double_precision) type value

dectoint() Converts an mi_decimal type value to a C
two-byte integer value

dectolong() Converts an mi_decimal type value to a C
four-byte integer value

Tip: The ESQL/C library also provides functions
to convert some numeric data types to
formatted strings. For more information, see
[“Formatting Numeric Strings” on page 3-20}

Chapter 3. Using Numeric Data Types ~ 3-15

Performing Operations on Decimal Data

The ESQL/C function library provides the following functions to perform
arithmetic operations on DECIMAL (mi_decimal) and MONEY (mi_money)
values.

Function Name Description

decadd() Adds two mi_decimal numbers
dececmp() Compares two mi_decimal numbers
deccopy() Copies a mi_decimal number
decdiv() Divides two mi_decimal numbers
decmul() Multiplies two mi_decimal numbers
decround() Rounds an mi_decimal number
decsub() Subtracts two mi_decimal numbers
dectrunc() Truncates an mi_decimal number

Any other operations, modifications, or analyses can produce unpredictable results.

Obtaining Fixed-Point Type Information

The DataBlade API provides the following functions to obtain the scale and
precision of a fixed-point (DECIMAL and MONEY) data type.

Source DataBlade API Functions
For a data type mi_type_precision(), mi_type_scale()
For a UDR argument mi_fp_argprec(), mi_fp_setargprec(),

mi_fp_argscale(), mi_fp_setargscale()

For a UDR return value mi_fp_retprec(), mi_fp_setretprec(), mi_fp_retscale(),
mi_fp_setretscale()

For a column in a row mi_column_precision(), mi_column_scale()
(or field in a row type)

For an input parameter in a mi_parameter_precision(), mi_parameter_scale()
prepared statement

Floating-Point Data

3-16

A floating-point value is a large decimal value that is stored in a fixed field width.
Because the field width is fixed, a floating-point number that is larger than the
field width only retains its most significant digits. That is, digits that do not fit into
the fixed width are dropped (rounded or truncated).

The DataBlade API provides support for the following kinds of floating-point data
(which correspond to existing SQL data types).

Type of Floating-Point Value SQL Data Type
Decimal DECIMAL(p)
True floating-point SMALLFLOAT, FLOAT

These floating-point values have both text and binary representations.

IBM Informix DataBlade API Programmer’s Guide

Floating-Point Text Representation

The DataBlade API supports a floating-point value in text representation as a
quoted string that contains the following characters.

Contents of Integer String Character
Digits 0-9
Thousands separator: symbol between every three digits , (comma)

Decimal separator: symbol between the integer and fraction portions of the . (period)
number

For example, the following integer string contains the value for 1,345.77431:
"1,345.77431"

In a floating-point string, the thousands separator is optional.
Important: Because floating-point numbers retain only their most significant digits,

the number that you enter in this type of column and the number the
database server displays can differ slightly.

| Global Language Support |

A locale defines the end-user format for numeric values. The end-user format is the
format in which data appears in a client application when the data is a literal
string or character variable. The preceding floating-point string is the end-user
format for the default locale, U.S. English. A nondefault locale can define an
end-user format that is particular to a country or culture outside the U.S. For more
information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support

Floating-Point Binary Representations

The DataBlade API provides the following data types to support the binary
representations of floating-point values.

SQL Floating-Point Data Type DataBlade API Data Type
DECIMAL mi_decimal
SMALLFLOAT mi_real

FLOAT mi_double_precision

DECIMAL Data Type: Floating-Point Data

When you define a column with the DECIMAL(p) data type, the syntax of this
definition specifies a floating-point value for the column. This value has a total of p
(<= 32) significant digits (its precision). DECIMAL(p) has an absolute value range
between 10'%° and 10",

Tip: The DECIMAL data type can also declare a fixed-point value with the syntax
DECIMAL(p,s). For more information, see["DECIMAL Data Type: Fixed-Point|
[Data” on page 3-10| For a complete description of the DECIMAL data type,
see the IBM Informix: Guide to SQL Reference.

The mi_decimal data type stores floating-point DECIMAL values as well as
fixed-point values. Therefore, information about mi_decimal in “Fixed-Point Data”

Chapter 3. Using Numeric Data Types ~ 3-17

also applies to mi_decimal when it contains a floating-point value. In

particular, the following statements are true.

Decimal Information More Information

The mi_decimal data type stores values in an internal |“Internal Fixed-Point Decimal|

(binary) format. Format” on page 3-12|

All the ESQL/C library functions that handle “ESQL/C DECIMAL-Type|
fixed-point values in mi_decimal can also handle Functions” on page 3-1
mi_decimal when it contains floating-point values.

All DataBlade API functions that accept fixed-point “Transferring Fixed-Point Datal
values in mi_decimal also accept mi_decimal when it |(Server)” on page 3-14|and
contains a floating-point value. “Converting Decimal Data” on|

[page 3—14|

| Server Only

Values of the mi_decimal data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

| End of Server Only

| Client Only

All data types, including mi_decimal, must be passed by reference within client
LIBMI applications.

| End of Client Only

SMALLFLOAT Data Type

The SQL SMALLFLOAT data type can hold single-precision floating-point values.
The DataBlade API supports the SMALLFLOAT data type with the mi_real data
type. The mi_real data type stores internal SMALLFLOAT values, as 32-bit
floating-point values.

| Server Only

Although an mi_real value can fit into an MI_DATUM structure, values of this
data type are always passed by reference. Unlike other four-byte values, mi_real
values cannot be passed by value. All values greater than four bytes are passed by
reference.

Therefore, if a UDR is called from an SQL statement, the database server passed a
pointer to any mi_real arguments; it does not pass the actual value. Similarly, if a
user-defined function returns an mi_real value to an SQL statement, you must
allocate space for the value, fill this space, and return a pointer to this space.

DataBlade API modules that are not invoked from SQL statements might pass

mi_real values by value. However, for consistency, you might want to pass them
by reference.

3-18 IBM Informix DataBlade API Programmer’s Guide

| Client Only |

All data types, including mi_real, must be passed by reference within client LIBMI
applications.

| End of Client Only |

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data
type, mi_real, instead of the native C-language counterpart, float. The
mi_real data type handles the different sizes of small floating-point
values across computer architectures.

The FLOAT Data Type

The SQL FLOAT data type can hold double-precision floating-point values. The
DataBlade API supports the FLOAT data type with the mi_double_precision data
type. The mi_double_precision data type stores internal FLOAT values, as 64-bit
floating-point values.

| Server Only |

Values of the mi_double_precision data type cannot fit into an MI_DATUM
structure. They must be passed by reference within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_double_precision, must be passed by reference within
client LIBMI applications.

| End of Client Only |

Important: To make your DataBlade API module portable across different
architectures, it is recommended that you use the DataBlade API data
type, mi_double_precision, instead of the native C-language
counterpart, double. The mi_double_precision data type handles the
different sizes of large floating-point values across computer
architectures.

Transferring Floating-Point Data (Server)

To transfer floating-point data between different computer architectures, the
DataBlade API provides the following functions that handle type alignment and

byte order.

DataBlade API Function Description

mi_get_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_get_double_precision() Copies an aligned mi_double_precision value,

converting any difference in alignment or byte order on
the client computer to that of the server computer

Chapter 3. Using Numeric Data Types ~ 3-19

DataBlade API Function Description

mi_get_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_decimal() Copies an aligned mi_decimal value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

mi_put_double_precision() Copies an aligned mi_double_precision value,
converting any difference in alignment or byte order on
the server computer to that of the client computer

mi_put_real() Copies an aligned mi_real value, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_decimal(), mi_get_double_precision(), mi_get_real(),
mi_put_decimal(), mi_put_double_precision(), and mi_put_real() functions are
useful in the send and receive support function of an opaque data type that
contains mi_decimal, mi_double_precision, or mi_real values. They ensure that
floating-point (DECIMAL, FLOAT, or SMALLFLOAT) values remain aligned when
transferred to and from client applications. For more information, see |“C0nversion|
fof Opaque-Type Data with Computer-Specific Data Types” on page 16-21}

Converting Floating-Point Decimal Data

Both the DataBlade API library and the ESQL/C library provide functions that
convert between floating-point decimal strings and internal DECIMAL formats. For
more information, see[“Converting Decimal Data” on page 3-14}

Obtaining Floating-Point Type Information

The DataBlade API provides the following functions to obtain the precision of a
floating-point DECIMAL (DECIMAL(p)).

Source DataBlade API Functions

For a data type mi_type_precision()

For a UDR argument mi_fp_argprec(), mi_fp_setargprec()
For a UDR return value mi_fp_retprec(), mi_fp_setretprec()
For a column mi_column_precision()

For an input parameter in a prepared statement mi_parameter_precision()

Tip: The FLOAT and SMALLFLOAT data types do not have precision and scale
values.

Formatting Numeric Strings

3-20

The ESQL/C library provides special functions that enable you to format numeric
expressions as strings. These numeric-formatting functions apply a given
formatting mask to a numeric value to allow you to line up decimal points, right-
or leftjustify the number, enclose a negative number in parentheses, and so on.
The ESQL/C library includes the following functions that support
numeric-formatting masks for numeric values.

Function Name Description

IBM Informix DataBlade API Programmer’s Guide

rfmtdec()
rfmtdouble()
rfmtlong()

Converts an mi_decimal value to a string
Converts a C-language double value to a string

Converts a C-language long integer value to a
string

Tip: Both the ESQL/C library and the DataBlade
API library provide functions to convert
between mi_decimal values and other
C-language data types. For more information,
see|“Converting Decimal Data” on page 3-14

This section describes the characters that you can use to create a numeric-
formatting mask. It also provides extensive examples that show the results of
applying these masks to numeric values. A numeric-formatting mask specifies a
format to apply to some numeric value. This mask is a combination of the
following formatting characters:

*

&

This character fills with asterisks any positions in the display field
that would otherwise be blank.

This character fills with zeros any positions in the display field that
would otherwise be blank.

This character changes leading zeros to blanks. Use this character
to specify the maximum leftward extent of a field.

This character left-justifies the numbers in the display field. It
changes leading zeros to a null string.

This character indicates the symbol that separates groups of three
digits (counting leftward from the units position) in the
whole-number part of the value. By default, this symbol is a
comma. You can set the symbol with the DBMONEY environment
variable. In a formatted number, this symbol appears only if the
whole-number part of the value has four or more digits.

This character indicates the symbol that separates the
whole-number part of a money value from the fractional part. By
default, this symbol is a period. You can set the symbol with the
DBMONEY environment variable. You can have only one period
in a format string.

This character is a literal. It appears as a minus sign when expr1 is
less than zero. When you group several minus signs in a row, a
single minus sign floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency
symbol.

This character is a literal. It appears as a plus sign when expr1 is
greater than or equal to zero and as a minus sign when expr1 is
less than zero. When you group several plus signs in a row, a
single plus or minus sign floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency
symbol.

This character is a literal. It appears as a left parenthesis to the left
of a negative number. It is one of the pair of accounting
parentheses that replace a minus sign for a negative number. When

Chapter 3. Using Numeric Data Types ~ 3-21

you group several in a row, a single left parenthesis floats to the
rightmost position that it can occupy; it does not interfere with the
number and its currency symbol.

) This is one of the pair of accounting parentheses that replace a
minus sign for a negative value.

$ This character displays the currency symbol that appears at the
front of the numeric value. By default, the currency symbol is the
dollar ($) sign. You can set the currency symbol with the
DBMONEY environment variable. When you group several dollar
signs in a row, a single currency symbol floats to the rightmost
position that it can occupy; it does not interfere with the number.

Any other characters in the formatting mask are reproduced literally in the result.

When you use the following characters within a formatting mask, the characters
float; that is, multiple occurrences of the character at the left of the pattern in the
mask appear as a single character as far to the right as possible in the formatted
number (without removing significant digits):

A~ ~ + 1

For example, if you apply the mask $$$,$$$.## to the number 1234.56, the result is
$1,234.56.

Global Language Support
| guag PP |

When you use rfmtdec(), rfmtdouble(), or rfmtlong() to format MONEY values,
the function uses the currency symbols that the DBMONEY environment variable
specifies. If you do not set this environment variable, the numeric-formatting
functions use the currency symbols that the client locale defines. The default locale,
U.S. English, defines currency symbols as if you set DBMONEY to “$,.”. (For a
discussion of DBMONEY, see the IBM Informix: Guide to SQL Reference). For more
information on locales, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

able 3-3| shows sample format strings for numeric expressions. The character b
represents a blank or space.

Table 3-3. Sample Format Patterns and Their Results

Formatting Mask Numeric Value Formatted Result
"HHHE 0 bbbbb

"& & & &&” 0 00000

"$$555" 0 bbbb$

e 0 *kkkk

"< 0 (null string)

3-22 IBM Informix DataBlade API Programmer’s Guide

Table 3-3. Sample Format Patterns and Their Results (continued)

Formatting Mask

Numeric Value

Formatted Result

“HHE 12345 12,345
U 1234 b1,234
A 123 bbb123
"HHE 12 bbbb12
Tl 1 bbbbb1

" HHE -1 bbbbb1
"HHE 0 bbbbbb

"& &, &&&" 12345 12,345
"&&,&&&" 1234 01,234
"&&,&&&" 123 000123

"& &, &&&" 12 000012

"& &, &&&" 1 000001
"&&,&&&" -1 000001

"& &, &&&" 0 000000
"$$,5" 12345 ok (overflow)
"$$,$$3" 1234 $1,234
"$$,$%%" 123 bb$123
"$$,$5%" 12 bbb$12
"$$,$$$" 1 bbbb$1
"$$,$$%" -1 bbbb$1
"$$,$$$" 0 bbbbb$
"$$,$%%" 1234 DM1,234
(DBMONEY set to DM)

e AR 12345 12,345

1 Rl 1234 *1,234

R AR 123 *%x123
”**’***” 12 ****12

A AN 1 -
//>(->(-,>(->{-=(-// 0 *kkkkk
"HHE A 12345.67 12,345.67
" A 1234.56 b1,234.56
"HHE A 123.45 bbb123.45
"HHE A 12.34 bbbb12.34
"HHE A 1.23 bbbbb1.23
" A 0.12 bbbbbb.12
"HHE A 0.01 bbbbbb.01
"HHE A -0.01 bbbbbb.01
" A -1 bbbbb1.00
"&&, & & & &&" .67 000000.67
"& &, & & & &&" 1234.56 01,234.56
"& &, & & & &&" 123.45 000123.45
"& &, &&&.&&" 0.01 000000.01
"$$,$$5.$%" 12345.67 *okkkk kK Kk (overflow)
"$$,$%5.$%" 1234.56 $1,234.56
"$$5,555.##" 0.00 bbbbb$.00
"$$,5 H#" 1234.00 $1,234.00
"$$,$$%$.&&” 0.00 bbbbb$.00
"$$,$%%.&&" 1234.00 $1,234.00

Chapter 3. Using Numeric Data Types ~ 3-23

Table 3-3. Sample Format Patterns and Their Results (continued)

Formatting Mask Numeric Value Formatted Result
T -12345.67 -12,345.67
e -123.45 -bbb123.45
e -12.34 -bbbb12.34

" A -12.34 b-bbb12.34
Yo A -12.34 bb-bb12.34
e -12.34 bbbb-12.34
—— -12.34 bbbb-12.34

" A -1.00 b-bbbb1.00
L -1.00 bbbbb-1.00
A A 12345.67 b12,345.67
T 1234.56 bb1,234.56
T 123.45 bbbb123.45
e 12.34 bbbbb12.34

" A 12.34 bbbbb12.34
Yo A 12.34 bbbbb12.34
e 12.34 bbbbb12.34
—— 1.00 bbbbbb1.00
-01 bbbbbb-.01
L -.01 bbbbbb-.01
"-$$$,$$%.&&” -12345.67 -$12,345.67
"-$$%,$$$.&&" -1234.56 -b$1,234.56
"-$$$,$$%.&&" -123.45 -bbb$123.45
"$$,$$$.&&" -12345.67 -$12,345.67
"--$$,$$%.&&" -1234.56 b-$1,234.56
"--$$,$%%.&&" -123.45 b-bb$123.45
"$$,$$$.&&" -12.34 b-bbb$12.34
"--$$,$$$.&&" -1.23 b-bbbb$1.23
M. & & -12345.67 -$12,345.67
5. & & -1234.56 b-$1,234.56
N 8. & & -123.45 bbb-$123.45
M. & & -12.34 bbbb-$12.34
e 5. & & -1.23 bbbbb-$1.23
5. & & -12 bbbbbb-$.12
TGk Q& 12345.67 $%12,345.67
T o & & 1234.56 $%%1,234.56
T R & 123.45 $xxx%123.45
R 12.34 $rwnrxx12,34
T Ak & R 1.23 $rrxrrx],23
T ok & Rl 12 $rrrnrnr, 12
"($$$,$$$.&&)" -12345.67 ($12,345.67)
"($$%,$$9.&&)" -1234.56 (b$1,234.56)
"($$$,$$%.&&)" -123.45 (bbb$123.45)
"(($$,5.&&)” -12345.67 ($12,345.67)
"(($%,$$%.&&)" -1234.56 b($1,234.56)
"(($%,$%%.&&)" -123.45 b(bb$123.45)
"(($$,9%%.&&)" -12.34 b(bbb$12.34)
"(($$,$$$.&&)" -1.23 b(bbbb$1.23)
"G(($.&&)" -12345.67 ($12,345.67)
"(($.&&)" -1234.56 b($1,234.56)
"(C(($.&&)" -123.45 bbb ($123.45)
"(C(($-&&)" -12.34 bbbb ($12.34)
"G(($.&&)" -1.23 bbbbb ($1.23)
"(($.&&)" -12 bbbbbb ($.12)

3-24 IBM Informix DataBlade API Programmer’s Guide

Table 3-3. Sample Format Patterns and Their Results (continued)

Formatting Mask

Numeric Value

Formatted Result

"($$$,$$$.&&)" 12345.67 b$12,345.67
"($$$,$$$.&&)" 1234.56 bb$1,234.56
"($$$,$$$.&8&)" 123.45 bbbb$123.45
"(($%,$$%.&&)" 12345.67 b$12,345.67
"(($$,9$$.&&)" 1234.56 bb$1,234.56
"(($$,$$%.&&)" 123.45 bbbb$123.45
"(($$,9$$$.&&)" 12.34 bbbbb$12.34
"(($%,$$%.&&)" 1.23 bbbbbb$1.23
"(($.&&)" 12345.67 b$12,345.67
"(((G((8.&&)" 1234.56 bb$1,234.56
"((G(($.&&)" 123.45 bbbb$123.45
"((C(($.&&)" 12.34 bbbbb$12.34
"(((G(($.&&)" 1.23 bbbbbb$1.23
"(((C($-&&)" 12 bbbbbbb$.12
<<, << 12345 12,345
e, <<<" 1234 1,234

"<, << 123 123

g, << 12 12

Chapter 3. Using Numeric Data Types

3-25

3-26 IBM Informix DataBlade API Programmer’s Guide

Chapter 4. Using Date and Time Data Types

In This Chapter. s
Date Data. . . . O 2 §
Date Text Representatlon |
Date Binary Representation. L 42
Transfers of Date Data (Server) .43
Conversion of Date Representations . . . e)
DataBlade API Functions for Date Conversmn O
ESQL/C Functions for Date Conversion .44
Operations on Date Data. .45
Date-Time or Interval Data . . . P o)
Date-Time or Interval Text Representatlon R)
Date-Time or Interval Binary Representation .47
The DATETIME Data Type .47

The INTERVAL Data Type .48

The datetime.h Header File. . . . "
Retrieval and Insertion of DATETIME and INTERVAL Values Ay S |
Fetch or Insert into an mi_datetime Variable. .41
Fetch or Insert into an mi_interval Variable .411
Implicit Data Conversion . . . O S A
Transfers of Date-Time or Interval Data (Server) e VA
Conversion of Date-Time or Interval Representations . . . e
DataBlade API Functions for Date-Time or Interval Conversmn P S 1
ESQL/C Functions for Date, Time, and Interval Conversion413
Operations on Date and Time Data. . . . O ¥ 1)
Functions to Obtain Information on Date and T1me Data - £ 1)
Qualifier of a Date-Time or Interval Data Type .41l6
Precision of a Date-Time or Interval Data Type .417

Scale of a Date-Time or Interval Data Type .417

In This Chapter
The DataBlade API provides support for the following date and time data types.

SQL Date and Standard C or ESQL/C DataBlade API Date and
Time Data Type Date and Time Data Type Time Data Type

DATE C: four-byte integerESQL/C: date mi_date

DATETIME ESQL/C: datetime, dtime_t mi_datetime

INTERVAL ESQL/C: interval, intrvl_t mi_interval

This chapter describes these date and time data types as well as the functions that
the DataBlade API supports to process date and time data.

Date Data

Date data is a calendar date. The DataBlade API provides support for date values in
both their text and binary representations.

Date Text Representation

The DataBlade API supports a date value in text representation as a quoted string
with the following format:

"mm/dd/yyyy"

© Copyright IBM Corp. 1996, 2005 4-1

mm is the 2-digit month.
dd is the 2-digit day of the month.
yyyy is the 4-digit year.

A date value in its text representation is often called a date string. For example, the
following date string contains the value for July 12, 1999 (for the default locale):

"7/12/1999"

You can change the format of the date string with the DBDATE environment
variable.

| Global Language Support |

A locale defines the end-user format of a date. The end-user format is the format in
which data appears in a client application when the data is a literal string or
character variable. The preceding date string is the end-user format for the default
locale, U.S. English. A nondefault locale can define an end-user format that is
particular to a country or culture outside the U.S. You can also customize the
end-user format of a date with the GL_DATE environment variable. For more
information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

Date Binary Representation

The SQL DATE data type holds the internal (binary) format of a decimal value.
This value is an integer value that represents the number of days since December
31, 1899. Dates before December 31, 1899, are negative numbers, while dates after
December 31, 1899, are positive numbers. For a detailed description of the SQL
DATE data type, see the IBM Informix: Guide to SQL Reference.

Tip: The internal format of the DATE data type is often referred to as its binary
representation.

The DataBlade API supports the SQL DATE data type with the mi_date data type.
Therefore, the mi_date data type also holds the binary representation of a date
value.

| Server Only |

The mi_date data type is guaranteed to be four bytes on all computer architectures.
All mi_date values can fit into an MI_DATUM structure and can be passed by
value within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_date, must be passed by reference within client LIBMI
applications.

| End of Client Only |

Because the binary representation of a DATE (and mi_date) value is an
Informix-proprietary format, you cannot use standard system functions to obtain

4-2 IBM Informix DataBlade API Programmer’s Guide

date information from mi_date values. Instead, the DataBlade API provides the
following support for the DATE data type.

Category of DATE Function = More Information

Conversion functions [‘Conversion of Date Representations” on page 4-3|

Operation functions [‘Operations on Date Data” on page 4-5

Transfers of Date Data (Server)

For date data to be portable when transferred across different computer
architectures, the DataBlade API provides the following functions to handle type
alignment and byte order.

DataBlade API
Function Description

mi_get_date() Copies an aligned mi_date value, converting any difference in
alignment or byte order on the client computer to that of the server
computer

mi_put_date() Copies an aligned mi_date value, converting any difference in
alignment or byte order on the server computer to that of the client
computer

The mi_get_date() and mi_put_date() functions are useful in the send and
receive support function of an opaque data type that contains mi_date values.
They enable you to ensure that DATE values remain aligned when transferred to
and from client applications, which possibly have unaligned data buffers. For more
information, see [“Conversion of Opaque-Type Data with Computer-Specific Datal
[Types” on page 16-21]

Conversion of Date Representations

Both the DataBlade API library and the ESQL/C library provide functions that
convert from the text (string) representation of a date value to the binary (internal)
representation for DATE.

DataBlade API Functions for Date Conversion
The DataBlade API provides the following functions for conversion between text
and binary representations of date data.

DataBlade API Function Convert from Convert to
mi_date_to_string() DATE (mi_date) Date string
mi_string_to_date() Date string DATE (mi_date)

| Server Only |

The mi_date_to_string() and mi_string to_date() functions are useful in the
input and output support functions of an opaque data type that contains mi_date
values. They allow you to convert DATE values between their external format
(text) and their internal (binary) format when transferred to and from client
applications. For more information, see [“Conversion of Opaque-Type Data Between|
[Text and Binary Representations” on page 16-16]

Chapter 4. Using Date and Time Data Types 4-3

4-4

| Global Language Support |

The mi_date_to_string() and mi_string to_date() functions use the current
processing locale to handle locale-specific formats in the date string. For more
information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

ESQL/C Functions for Date Conversion
The ESQL/C function library provides the following functions to convert a DATE
(mi_date) value to and from char strings.

Function Name Description
rdatestr() Converts an internal format to string
rdefmtdate() Converts a string to an internal format using a

formatting mask

rfmtdate() Converts an internal format to a string using a
formatting mask

rstrdate() Converts a string to an internal format

The rdatestr() and rstrdate() functions convert mi_date values to and from a
date string that is formatted with the DBDATE environment variable.

Global Language Support
| guag PP |

These functions also examine the GL_DATE environment variable for the format of
the date string. When you use a nondefault locale and do not set the DBDATE or

GL_DATE environment variable, rdatestr() uses the date end-user format that the
client locale defines. For more information, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support |

The rdefmtdate() and rfmtdate() functions convert mi_datetime values to and
from a date-time string using a date-formatting mask. A date-formatting mask
specifies a format to apply to some date value. This mask is a combination of the
following formats.

Format Meaning

dd Day of the month as a two-digit number (01 through 31)

ddd Day of the week as a three-letter abbreviation (Sun through Sat)
mm Month as a two-digit number (01 through 12)

mmm Month as a three-letter abbreviation (Jan through Dec)

yy Year as a two-digit number in the 1900s (00 through 99)

yyyy Year as a four-digit number (0001 through 9999)

IBM Informix DataBlade API Programmer’s Guide

Any other characters in the formatting mask are reproduced literally in the result.

| Global Language Support

When you use a nondefault locale whose dates contain eras, you can use
extended-format strings in a numeric-formatting mask. For more information, see
the IBM Informix: GLS User’s Guide.

When you use rfmtdate() or rdefmtdate() to format DATE values, the function
uses the date end-user formats that the GL_DATE or DBDATE environment
variable specifies. If neither of these environment variables is set, these
date-formatting functions use the date end-user formats for the locale. The default
locale, U.S. English, uses the format mm/dd/yyyy. For a discussion of GL_DATE
and DBDATE, see the IBM Informix: GLS User’s Guide.

| End of Global Language Support

Operations on Date Data

Use the following ESQL/C library functions to perform operations on DATE
(mi_date) values.

Function Name Description

rdayofweek() Returns the day of the week

rjulmdy() Returns month, day, and year from an internal
format

rleapyear() Determines whether a specified year is a leap year

rmdyjul() Returns an internal format from month, day, and
year

rtoday() Returns a system date in internal format

Any other operations, modifications, or comparisons can produce unpredictable
results.

Date-Time or Interval Data

The DataBlade API provides support for the following kinds of fixed-point data,
which correspond to existing SQL data types.

Type of Fixed-Point Value SQL Data Type
Date and time, date, or time DATETIME
Year and month interval or day and time interval INTERVAL

Date-time data is an instant in time that is expressed as a calendar date and time of
day, just a calendar date, or just a time of day. A date-time value can also have a
precision and a scale. The precision is the number of digits required to store the
value. The scale is the end qualifier of the date-time value, such as YEAR TO
HOUR.

Interval data is a span of time that is expressed as the number of units in either of

the following interval classes:
* Year-month intervals

Chapter 4. Using Date and Time Data Types 4-5

4-6

A year-month interval value specifies the number of years and months, years, or
months that have passed.

* Day-time intervals

A day-time interval value specifies the number of days and hours, days, or
hours that have passed.

The DataBlade API provides support for date-time or interval data in both text and
binary representations.

Date-Time or Interval Text Representation

The text representation of a date-time or interval value is a quoted string that
contains a series of digits and symbols. The DataBlade API supports a text
representation for date-time or interval values as quoted strings with the formats
that the following table shows.

SQL Data Type Text Representation
DATETIME Date-time string;:

The date-time string must match the qualifier of
the DATETIME column. The default format of the
date-time string for the largest DATETIME column
is:

"yyyy-mm-dd HH:MM:SS.FFFF"
INTERVAL Interval string:

The interval string must match the qualifiers of the
INTERVAL column. INTERVAL columns have two
classes. The default format of an interval string for
the largest year-month interval follows:

Hyyyy_mmu

The default format of an interval string for the
largest day-time interval follows:

"dd HH:SS.FFFF"

The text representations in the preceding table use the following abbreviations:

yyyy is the 4-digit year (for a DATETIME) or the number of years (for
an INTERVAL).

mm is the 2-digit month (for a DATETIME) or the number of months
(for an INTERVAL).

dad is the 2-digit day of the month (for a DATETIME) or the number of
days (for an INTERVAL).

HH is the 2-digit hour (for a DATETIME) or the number of hours (for
an INTERVAL).

MM is the 2-digit minute (for a DATETIME) or the number of minutes
(for an INTERVAL).

SS is the 2-digit second (for a DATETIME) or the number of seconds
(for an INTERVAL).

FFFF is a fraction of a second (for a DATETIME) or the number of years

(for an INTERVAL). Fractions can be from 1 to 5 digits.

IBM Informix DataBlade API Programmer’s Guide

A date-time value in its text representation is often called a date-time string. For
example, the following date-time string contains the value for 2 p.m. on July 12,
1999, with a qualifier of year to minute:

"1999-07-12 14:00:00"

Usually, a date-time string must match the qualifier of the date-time binary
representation with which the string is associated.

The following interval string indicates a passage of three years and three months:
II03_06II

| Global Language Support |

A locale defines the end-user format of a date or time or interval value. The
end-user format is the format in which data appears in a client application when the
data is a literal string or character variable. The preceding strings are the end-user
formats for the default locale, U.S. English. A nondefault locale can define date or
time end-user formats that are particular to a country or culture outside the U.S.
You can also customize the end-user format of a date with the GL_DATETIME
environment variable. For more information, see the IBM Informix: GLS User’s
Guide.

| End of Global Language Support |

Date-Time or Interval Binary Representation

The DataBlade API supports the following SQL data types that can hold
information about date-time or interval values.

DataBlade API Date and Time Data Type SQL Date and Time Data Type
mi_datetime DATETIME
mi_interval INTERVAL

The DATETIME Data Type

The SQL DATETIME data type provides the internal (binary) format of a date-time
value. This data type stores an instant in time expressed as a calendar date and
time of day, just a calendar date, or just a time of day. You choose how precisely a
DATETIME value is stored with a qualifier. The precision can range from a year to
a fraction of a second. For a detailed description of the SQL DATETIME data type,
see the IBM Informix: Guide to SQL Reference.

The DATETIME data type uses a computer-independent method to encode the
date or time qualifiers. It stores the information in the dtime_t structure, as
follows:
typedef struct dtime {

short dt_qual;

dec_t dt_dec;
} dtime_t;

The dtime structure and dtime_t typedef have two parts, which the following table

shows.

Field Description

dt_qual The qualifier of the datetime value

dt_dec The digits of the fields of the datetime value

Chapter 4. Using Date and Time Data Types 4-7

4-8

This field is a decimal value.

Tip: The internal format of the DATETIME data type is often
referred to as its binary representation.

The DataBlade API supports the SQL DATETIME data type with the mi_datetime
data type. Therefore, the mi_datetime data type holds the binary representation of
a date and/or time value.

| Server Only |

Values of the mi_datetime data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_datetime, must be passed by reference within client
LIBMI applications.

| End of Client Only |

Because the binary representation of a DATETIME (mi_datetime) value is an
Informix-proprietary format, you cannot use standard system functions to perform
operations on mi_datetime values. Instead, the DataBlade API provides the
following support for the DATETIME data type.

Category of DATETIME Function More Information

Conversion functions “Conversion of Date-Time or Interval Representations”|
on page 4-13]
Arithmetic-operation functions [“Operations on Date and Time Data” on page 4-15|

The INTERVAL Data Type

The SQL INTERVAL data type holds the internal (binary) format of an interval
value. It encodes a value that represents a span of time. INTERVAL types are
divided into two classes: year-month intervals and day-time intervals. A year-month
interval can represent a span of years and months, and a day-time interval can
represent a span of days, hours, minutes, seconds, and fractions of a second. For a
detailed description of the SQL INTERVAL data type, see the IBM Informix: Guide
to SQL Reference.

The INTERVAL data type uses a computer-independent method to encode the
interval qualifiers. It stores the information in the intrvl_t structure, as follows:

typedef struct intrvl {
short in_qual;
dec_t in_dec;

}ointrvl_t;

The intrvl structure and intrvl_t typedef have the two parts that|Table 4-1| shows.
Table 4-1. Fields in the intrvi_t Structure

Field Description

in_qual The qualifier of the interval value

IBM Informix DataBlade API Programmer’s Guide

Table 4-1. Fields in the intrvl_t Structure (continued)

Field Description

in_dec The digits of the fields of the interval value

This field is a decimal value.

Tip: The internal format of the INTERVAL data type is often referred to as its
binary representation.

The DataBlade API supports the SQL INTERVAL data type with the mi_interval
data type. Therefore, an mi_interval data type holds the binary representation of
an interval value.

| Server Only

Values of the mi_interval data type cannot fit into an MI_DATUM structure. They
must be passed by reference within C UDRs.

| End of Server Only |

| Client Only |

All data types, including mi_interval, must be passed by reference within client
LIBMI applications.

| End of Client Only |

Because the binary representation of an INTERVAL (mi_interval) value is an
Informix-proprietary format, you cannot use standard system functions to perform
operations on mi_interval values. Instead, the DataBlade API provides the
following support for the INTERVAL data type.

Category of INTERVAL Function More Information

Conversion functions “Conversion of Date-Time or Interval Representations”|
on page 4-13
Arithmetic-operation functions [“Operations on Date and Time Data” on page 4-15|

The datetime.h Header File

The datetime.h header file contains definitions for use with the DATETIME and
INTERVAL data types. The header file datetime.h contains the declarations for the
date, time, and interval data types, as follows:

* The internal format represents DATETIME and mi_datetime values with the
dtime_t structure.

¢ The internal format represents INTERVAL and mi_interval values with the
intrvl_t structure.

In addition to these data structures, the datetime.h file defines the constants and
macros for date and time qualifiers that shows.

Table 4-2. Qualifier Macros and Constants for mi_datetime and mi_interval Data Types

Name of Macro Description

TU_YEAR The time unit for the YEAR qualifier field

Chapter 4. Using Date and Time Data Types 4-9

Table 4-2. Qualifier Macros and Constants for mi_datetime and mi_interval Data
Types (continued)

Name of Macro Description

TU_MONTH The time unit for the MONTH qualifier field

TU_DAY The time unit for the DAY qualifier field

TU_HOUR The time unit for the HOUR qualifier field

TU_MINUTE The time unit for the MINUTE qualifier field

TU_SECOND The time unit for the SECOND qualifier field

TU_FRAC The time unit for the leading qualifier field of FRACTION
TU_Fn The names for mi_datetime ending fields of FRACTION(n), for n

from1to 5

TU_START(q)

Returns the leading field number from qualifier g

TU_END(g) Returns the trailing field number from qualifier g
TU_LEN(q) Returns the length in digits of the qualifier g
TU_FLEN(f) Returns the length in digits of the first field, f, of an interval

qualifier

TU_ENCODE(p f,t) Creates a qualifier from the first field number f with precision p

and trailing field number ¢

TU_DTENCODE(f,t) Creates an mi_datetime qualifier from the first field number f and
trailing field number ¢

TU_IENCODE(p,f) Creates an mi_interval qualifier from the first field number f with

precision p and trailing field number ¢

Tip: For a complete list of date and time macros, consult the datetime.h header
file that is installed with your database server. This header file resides in the
incl/public subdirectory of the INFORMIXDIR directory.

[Table 4-2 on page 4-9|shows the macro definitions that you can use to compose
qualifier values. You need these macros only when you work directly with
qualifiers in binary form. For example, if your program does not provide an
mi_interval qualifier in the variable declaration, you need to use the mi_interval
qualifier macros to initialize and set the mi_interval variable, as the following
example shows:

/* Use the variable that was declared intvil. */
mi_interval intvll;

/* Set the interval qualifier for the variable */
intvl1l.in_qual = TU_IENCODE(2, TU_DAY, TU_SECOND);

/* Assign a value to the variable */
incvasc ("5 2:10:02", &intvll);

In the previous example, the mi_interval variable gets a day to second qualifier.
The precision of the largest field in the qualifier, day, is set to 2.

In addition to the declaration of the dtime_t typedef and the preceding date and
time macros, the datetime.h header file declares the DATETIME-type functions of
the ESQL/C library. The mitypes.h header file automatically includes datetime.h.
In turn, the milib.h header file automatically includes mitypes.h and mi.h
automatically includes milib.h. Therefore, you automatically have access to the
dtime_t and intrvl_t structures, the mi_datetime and mi_interval data types, any

4-10 IBM Informix DataBlade API Programmer’s Guide

of the date or time macros, or any of the ESQL/C DATETIME-type functions when
you include mi.h in your DataBlade API module.

Retrieval and Insertion of DATETIME and INTERVAL Values

When an application retrieves or inserts a DATETIME or INTERVAL value, the
DataBlade API module must ensure that the qualifier field of the variable is valid:

* When an application fetches a DATETIME value into an mi_datetime variable or
inserts a DATETIME value from an mi_datetime variable, the application must
ensure that the dt_qual field of the dtime_t structure is valid.

* When an application fetches an INTERVAL value into an mi_interval variable or
inserts an INTERVAL value from an mi_interval variable, the application must
ensure that the in_qual field of the intrvl_t structure is valid.

Fetch or Insert into an mi_datetime Variable

When a DataBlade API module uses an mi_datetime variable to fetch or insert a
DATETIME value, the module must find a valid qualifier in the mi_datetime
variable. The DataBlade API takes one the following actions, based on the value of
the dt_qual field in the dtime_t structure that is associated with the variable:

* When the dt_qual field contains a valid qualifier, the DataBlade API extends the
column value to match the dt_qual qualifier.
Extending is the operation of adding or dropping fields of a DATETIME value to
make it match a given qualifier. You can explicitly extend DATETIME values
with the SQL EXTEND function and the dtextend() function.

* When the dt_qual field does not contain a valid qualifier, the DataBlade API
takes different actions for a fetch and an insert:

— For a fetch, the DataBlade API uses the DATETIME column value and its
qualifier to initialize the mi_datetime variable.

Zero is an invalid qualifier. Therefore, if you set the dt_qual field to zero, you
can ensure that the DataBlade API uses the qualifier of the DATETIME
column.

— For an insert, the DataBlade API cannot perform the insert or update
operation.

The DataBlade API sets the SQLSTATE status variable to an error-class code
(and SQLCODE to a negative value) and the update or insert operation on
the DATETIME column fails.

Fetch or Insert into an mi_interval Variable

When a DataBlade API module uses an mi_interval variable to fetch or insert an
INTERVAL value, the DataBlade API must find a valid qualifier in the mi_interval
variable. The DataBlade API takes one of the following actions, based on the value
of the in_qual field the intrvl_t structure that is associated with the variable:

* When the in_qual field contains a valid qualifier, the DataBlade API checks it for
compatibility with the qualifier from the INTERVAL column value.

The two qualifiers are compatible if they belong to the same interval class: either
year to month or day to fraction. If the qualifiers are incompatible, the
DataBlade API sets the SQLSTATE status variable to an error-class code (and
SQLCODE is set to a negative value) and the select, update, or insert operation
fails.

If the qualifiers are compatible but not the same, the DataBlade API extends the
column value to match the in_qual qualifier. Extending is the operation of
adding or dropping fields within one of the interval classes of an INTERVAL
value to make it match a given qualifier. You can explicitly extend INTERVAL
values with the invextend() function.

Chapter 4. Using Date and Time Data Types 4-11

* When the in_qual field does not contain a valid qualifier, the DataBlade API
takes different actions for a fetch and an insert:

— For a fetch, if the in_qual field contains zero or is not a valid qualifier, the
DataBlade API uses the INTERVAL column value and its qualifier to initialize
the mi_interval variable.

— For an insert, if the in_qual field is not compatible with the INTERVAL
column or if it does not contain a valid value, the DataBlade API cannot
perform the insert or update operation.

The DataBlade API sets the SQLSTATE status variable to an error-class code
(and SQLCODE is set to a negative value) and the update or insert operation
on the INTERVAL column fails.

Implicit Data Conversion
You can select a DATETIME or INTERVAL column value into a character variable.
The DataBlade API converts the DATETIME or INTERVAL column value to a

character string before it stores it in the character variable. This character string
conforms to the ANSI SQL standards for DATETIME and INTERVAL values.

Important: IBM Informix products do not support automatic data conversion from
DATETIME and INTERVAL column values to numeric
(mi_double_precision, mi_integer, and so on) variables.

You can also insert a DATETIME or INTERVAL column value from a character
variable. The DataBlade API uses the data type and qualifiers of the column value
to convert the character value to a DATETIME or INTERVAL value. It expects the
character string to contain a DATETIME or INTERVAL value that conforms to
ANSI SQL standards.

If the conversion fails, the DataBlade API sets the SQLSTATE status variable to an
error-class code (and SQLCODE status variable to a negative value) and the
update or insert operation fails.

Important: IBM Informix products do not support automatic data conversion from
numeric and mi_date variables to DATETIME and INTERVAL column
values.

Transfers of Date-Time or Interval Data (Server)

For date-time or interval values to be portable when transferred across different
computer architectures, the DataBlade API provides the following functions to
handle type alignment and byte order.

DataBlade API Function Description

mi_get_datetime() Copies an aligned mi_datetime value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_get_interval() Copies an aligned mi_interval value, converting
any difference in alignment or byte order on the
client computer to that of the server computer

mi_put_datetime() Copies an aligned mi_datetime value, converting
any difference in alignment or byte order on the
server computer to that of the client computer

mi_put_interval() Copies an aligned mi_interval value, converting

4-12 IBM Informix DataBlade API Programmer’s Guide

any difference in alignment or byte order on the
server computer to that of the client computer

The mi_get_datetime(), mi_get_interval(), mi_put_datetime(), and
mi_put_interval() functions are useful in the send and receive support function of
an opaque data type that contains mi_datetime or mi_interval values. They allow
you to ensure that DATETIME or INTERVAL values remained aligned when
transferred to and from client applications. For more information, see |“Conversion|
lof Opaque-Type Data with Computer-Specific Data Types” on page 16-21]

Conversion of Date-Time or Interval Representations

Both the DataBlade API library and the ESQL/C library provide functions that
convert from the text (string) representation of a date, time, or interval value to the
binary (internal) representation for DATETIME or INTERVAL, respectively.

DataBlade API Functions for Date-Time or Interval Conversion
The DataBlade API provides the following functions for conversion between text
and binary representations of date-time or interval data.

DataBlade API Function Convert from Convert to

mi_datetime_to_string() DATETIME Date-time string
(mi_datetime)

mi_interval_to_string() INTERVAL Interval string
(mi_interval)

mi_string_to_datetime() Date-time string DATETIME (mi_datetime)

mi_string_to_interval() Interval string INTERVAL (mi_interval)

The mi_datetime_to_string(), mi_interval_to_string(), mi_string_to_datetime(),
and mi_string to_interval() functions convert DATETIME and INTERVAL values
to and from the ANSI SQL standards formats for these data types.

| Server Only |

The mi_datetime_to_string(), mi_interval_to_string(), mi_string to_datetime(),
and mi_string_to_interval() functions are useful in the input and output support
functions of an opaque data type that contains mi_datetime and mi_interval
values, as long as these values use the ANSI SQL formats. They enable you to
convert DATETIME and INTERVAL values between their external format (text) and
their internal (binary) format when transferred to and from client applications. For
more information, see|’Conversion of Opaque-Type Data Between Text and Binary]|
[Representations” on page 16-16|

| End of Server Only |

ESQL/C Functions for Date, Time, and Interval Conversion
The ESQL/C function library provides functions for conversion between text and
binary representations of date, time, and interval data.

Data Conversion for DATETIME Values: The ESQL/C library provides the
following functions that convert internal DATETIME (mi_datetime) values to and
from char strings.

Function Name Description

Chapter 4. Using Date and Time Data Types 4-13

dtcvasc() Converts an ANSI-compliant character string to an
mi_datetime value

dtcvifmtasc() Converts a character string to an mi_datetime
value

dtextend() Changes the qualifier of an mi_datetime value

dttoasc() Converts an mi_datetime value to an

ANSI-compliant character string

dttofmtasc() Converts an mi_datetime value to a character
string

The dttoasc() and dtcvasc() functions convert mi_datetime values to and from
the ANSI SQL standard values for DATETIME strings. The ANSI SQL standards
specify qualifiers and formats for character representations of DATETIME and
INTERVAL values. The standard qualifier for a DATETIME value is YEAR TO
SECOND, and the standard format is as follows:

YYYY-MM-DD HH:MM:SS

The dttofmtasc() and dtcvfmtasc() functions convert mi_datetime values to and
from a date-time string using a time-formatting mask. This time-formatting mask
contains the same formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of DBTIME in the
IBM Informix: Guide to SQL Reference.)

The dtextend() function extends an mi_datetime value to a different qualifier. You
can use it to convert between DATETIME and DATE values.

To convert a DATETIME value to a DATE value:
1. Use dtextend() to adjust the DATETIME qualifier to year to day.
2. Apply dttoasc() to create a character string in the form yyyy-mm-dd.

3. Use rdefmtdate() with a pattern argument of yyyy-mm-dd to convert the string
to a DATE value.

To convert a DATE value into a DATETIME value:

1. Declare a variable with a qualifier of year to day (or initialize the qualifier with
the value that the TU_DTENCODE (TU_YEAR,TU_DAY) macro returns).

Use rfmtdate() with a pattern of yyyy-mm-dd to convert the DATE value to a
character string.

A

3. Use dtcvasc() to convert the character string to a value in the prepared
DATETIME variable.

4. If necessary, use dtextend() to adjust the DATETIME qualifier.

Data Conversion for INTERVAL Values: The ESQL/C library provides the
following functions that convert internal INTERVAL (mi_interval) values to and
from char text.

Function Name Description

incvasc() Converts an ANSI-compliant character string to an
interval value

incvfmtasc() Converts a character string to an interval value

intoasc() Converts an interval value to an ANSI-compliant

character string

4-14 1BM Informix DataBlade API Programmer’s Guide

intofmtasc() Converts an interval value to a string

invextend() Copies an interval value under a different qualifier

The intoasc() and incvasc() functions convert mi_interval values to and from the
ANSI SQL standards for INTERVAL strings. The ANSI SQL standards specify
qualifiers and formats for character representations of DATETIME and INTERVAL
values. The standards for an INTERVAL value specify the following two classes of
intervals:
* The YEAR TO MONTH class has the following format:

YYYY-MM

A subset of this format is also valid: for example, just a month interval.
* The DAY TO FRACTION class has the following format:
DD HH:MM:SS.F

Any subset of contiguous fields is also valid: for example, MINUTE TO
FRACTION.

The intofmtasc() and incvfmtasc() functions convert mi_interval values to and
from an interval string using a time-formatting mask. This time-formatting mask
contains the same formatting directives that the DBTIME environment variable
supports. (For a list of these directives, see the description of DBTIME in the
IBM Informix: Guide to SQL Reference.)

Operations on Date and Time Data

The ESQL/C library provides the following functions to perform operations on
DATETIME (mi_datetime) and INTERVAL (mi_interval) values.

Function Name Description

dtaddinv() Adds an mi_interval value to a mi_datetime value

dtcurrent() Gets current date and time

dtsub() Subtracts one mi_datetime value from another

dtsubinv() Subtracts an mi_interval value from a mi_datetime
value

invdivdbl() Divides an mi_interval value by a numeric value

invdivinv() Divides an mi_interval value by an mi_interval
value

invmuldbl() Multiplies an mi_interval value by a numeric value

Any other operations, modifications, or analyses can produce unpredictable results.

Functions to Obtain Information on Date and Time Data

able 4-3| shows the DataBlade API functions that obtain qualifier information for a
DATETIME (mi_datetime) or INTERVAL (mi_interval) value.

Table 4-3. DataBlade API Functions That Obtain DATETIME or INTERVAL Information
Source DataBlade API Functions

For a data type mi_type_qualifier(),
mi_type_precision(),
mi_type_scale()

Chapter 4. Using Date and Time Data Types 4-15

4-16

Table 4-3. DataBlade API Functions That Obtain DATETIME or INTERVAL
Information (continued)

Source DataBlade API Functions

For a UDR argument mi_fp_argprec(),
mi_fp_setargprec()
mi_fp_argscale(),
mi_fp_setargscale()

For a UDR return value mi_fp_retprec(),
mi_fp_setretprec()
mi_fp_retscale(),
mi_fp_setretscale()

For a column in a row (or field in a row type) mi_column_precision(),
mi_column_scale()

For an input parameter in a prepared statement mi_parameter_precision(),
mi_parameter_scale()

Suppose you have a table with a single column, dt_col, of type DATETIME YEAR
TO SECOND. If row_desc is a row descriptor for a row in this table, the code
fragment in obtains the name, qualifier, precision, and scale for this
column value.

MI_TYPE_DESC *col_type_desc;
MI_ROW_DESC =row_desc;
mi_string *type_name;
mi_integer type qual;

col_type_desc = mi_column_typedesc(row_desc, 0);
type name = mi_type typename(col_type desc);
type_qual = mi_type_qualifier(col_type_desc);
type_prec = mi_type_precision(col_type_desc);
type_scale = mi_type_scale(col_type_desc);
sprintf(type_buf,
"column=%d: type name=%s, qualifier=%d precision=%d \
scale=%d\n",
i, type_name, type_qual, type_prec, type_sca]e);

Figure 4-1. Obtaining Type Information for a DATETIME Value

In the value in the type_buf buffer would be as follows:

column=0, type name=datetime year to second, qualifier=3594 precision=14 scale=10

Qualifier of a Date-Time or Interval Data Type

The mi_type_qualifier() function returns the encoded qualifier of a DATETIME or
INTERVAL data type from a type descriptor. This qualifier is the internal value
that the database server uses to track the complete qualifier range, from the
starting field to the end field. It is the value stored in the collength column of the
syscolumns table for DATETIME and INTERVAL columns. You can use the
qualifier macros and constants (see [Table 4-2 on page 4-9) to interpret this encoded
value.

In the value in type_qual contains the encoded integer qualifier (3594)
for the dt_col column. You can obtain the starting qualifier for the DATETIME

value from the encoded qualifier with the TU_START macro, as follows:
TU_START(type_qual)

IBM Informix DataBlade API Programmer’s Guide

This TU_START call yields 0, which is the value of the TU_YEAR constant in the
datetime.h header file. You can obtain also the ending qualifier for the DATETIME
value from the encoded qualifier with the TU_END macro, as follows:

TU_END(type_qual)

This TU_END call yields 10, which is the value of the TU_SECOND constant in the
datetime.h header file. Therefore, the encoded qualifier 3594 represents the
qualifier year to second.

Precision of a Date-Time or Interval Data Type

For the DATETIME and INTERVAL data types, the precision is the number of digits
required to store a value with the specified qualifier. In the call to the
mi_type_precision() function saves in type_prec the precision for the dt_col

column from its type descriptor. This precision has a value of 14 because a
DATETIME YEAR TO SECOND value requires 14 digits:

YYYYMMDDHHMMSS

YYYY is the 4-digit year.

MM is the 2-digit month.

DD is the 2-digit day of the month.
HH is the 2-digit hour.

MM is the 2-digit minute.

SS is the 2-digit second.

The DataBlade API also provides functions that obtain DATETIME or INTERVAL
precision of a column associated with an input parameter, a UDR argument, UDR
return value, or a row column. For a list of these functions, see [Table 4-3 on page]

Scale of a Date-Time or Interval Data Type

For the DATETIME and INTERVAL data types, the scale is the encoded integer
value for the end qualifier. In the call to the mi_type_scale() function
stores in type_scale the scale for the dt_col column. This precision has a value of
10 because the end qualifier for the DATETIME YEAR TO SECOND data type is
SECOND, whose encoded value (TU_SECOND) is 10.

The DataBlade API also provides functions that obtain DATETIME or INTERVAL
scale of an input parameter, a UDR argument, UDR return value, or column. For a
list of these functions, see [Table 4-3 on page 4-15|

Chapter 4. Using Date and Time Data Types 4-17

4-18 IBM Informix DataBlade API Programmer’s Guide

Table 5-2. Valid Cursor-Action Constants (continued)

Cursor Movement Cursor-Action Constant

Move the cursor forward or back a MI_CURSOR_RELATIVE
specified number of elements from the
current position.

Valid Cursor Types

Sequential Scroll

Only if relative Yes

position is a

positive value Relative position

can be a negative or
positive value

As long as collection is a LIST because
only LISTs have ordered elements

Leave the cursor position at its current ~ MI_CURSOR_CURRENT
location.

Yes Yes

The following code fragment uses the mi_collection_fetch() function to fetch a

VARCHAR element from a collection:
/*

% Fetch next VARCHAR() element from a collection.

*/

MI_CONNECTION =*conn;
MI_COLL_DESC =*colldesc;
MI_ROW_DESC =*rowdesc;
MI_COLLECTION *nest_collp;
MI_DATUM value;

mi_integer ret_code, ret_len;
char xbuf;

/* Fetch a VARCHAR() type */

ret_code = mi_collection_fetch(conn, colldesc,

MI_CURSOR_NEXT, 0, &value, &ret_len);

switch (ret_code)

{
case MI_NORMAL_VALUE:

buf = mi_get_vardata((mi_lvarchar *)value);
DPRINTF("trace_class", 15, ("Value: %s", buf));

break;

case MI_NULL_VALUE:

DPRINTF("trace class", 15, ("NULL"));

break;

case MI_ROW_VALUE:
rowdesc = (MI_ROW_DESC =*)value;
break;

case MI_COLLECTION VALUE:

nested_collp = (MI_COLLECTION *)value;

break;

case MI_END_OF_DATA:
DPRINTF("trace class", 15,

("End of collection reached"));

return (100);
1

Inserting an Element

You insert an element into an open collection with the mi_collection_insert()
function. You can perform an insert operation only on a read/write cursor. An

insert is not valid on a read-only cursor.

Chapter 5. Using Complex Data Types ~ 5-7

The mi_collection_insert() function uses an MI_DATUM value to represent an
element that it inserts into a collection. The contents of the MI_DATUM structure
depend on the passing mechanism that the function used, as follows:

| Server Only

* In a C user-defined routine (UDR), when mi_collection_insert() inserts an
element value, it can pass the value by reference or by value, depending on the
data type of the column value. If the function passes the element value by value,
the MI_DATUM structure contains the value. If the function passes the element
value by reference, the MI_DATUM structure contains a pointer to the value.

| End of Server Only

| Client Only

* In a client LIBMI application, when mi_collection_insert() inserts an element
value, it always passes the value in an MI_DATUM structure by reference. Even
for values that you can pass by value in a C UDR (such as an INTEGER values),
this function passes the element value by reference. The MI_DATUM structure
contains a pointer to the value.

| End of Client Only

The mi_collection_insert() function inserts the new element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see [Table 5-2 on page 5-6|

| Server Only

The following call to mi_collection_insert() can pass in an actual value because it
inserts an INTEGER element into a LIST collection and integer values are passed
by value in a C UDR:

MI_CONNECTION *conn;
MI_DATUM datum;
MI_COLL_DESC =*colldesc;

datum=6;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 1);

datum=3;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 2);

datum=15;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 3);

datum=1;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR ABSOLUTE, 4);

datum=4;
mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 5);

datum=8;

mi_collection_insert(conn, colldesc, datum,
MI_CURSOR_ABSOLUTE, 6);

5-8 IBM Informix DataBlade API Programmer’s Guide

| End of Server Only

shows the cursor position after the preceding calls to

mi_collection_insert() complete.

Collection cursor

Cursor position ————|

Figure 5-3. Collection Cursor After Inserts Complete

These mi_collection_insert() calls specify absolute addressing
(MI_CURSOR_ABSOLUTE) for the collection because the collection is defined as a
LIST. Only LIST collections have ordered position assigned to their elements. SET
and MULTISET collections do not have ordered position of elements.

Fetching an Element

You fetch an element from an open collection with the mi_collection_fetch()
function. You can perform a fetch operation on a read/write or a read-only cursor.
To fetch a collection element, you must specify:

¢ The connection with which the collection is associated

* The collection descriptor for the collection from which you want to fetch
elements

* The location of the cursor position at which to begin the fetch

* A variable that holds a single fetched element and one that holds its length

Moving Through a Cursor: The mi_collection_fetch() function obtains the
element specified by its action argument from the collection cursor. For a list of
valid cursor-action flags, see [Table 5-2 on page 5-6] You can move the cursor
position back to the beginning of the cursor with the mi_collection_fetch()
function, as the following example shows:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_FIRST, 0,
coll _element, element Ten);

if (((mi_integer)coll element != 1) ||
(element_len != sizeof(mi_integer)))
/* raise an error */

This function moves the cursor position backward with respect to its position after
a call to mi_collection_insert() (Figure 5-3 on page 5-9). The
mi_collection_fetch() function is valid only for the following kinds of cursors:

* Sequential collection cursors, if the cursor position does not move backward
e Scroll collection cursors

Only scroll cursors provide the ability to move the cursor position forward and
backward.

shows the cursor position and coll_element value after the preceding
call to mi_collection_fetch().

Chapter 5. Using Complex Data Types 5-9

Collection cursor coll_element
Cursor position ———| 6 E

Figure 5-4. Collection Cursor After Fetch First

shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:

mi_collection_fetch(conn, coll _desc, MI_CURSOR NEXT, 0O,
coll_element, element_len);

Collection cursor coll_element
6
Cursor position ———»| 3
15
1
4
8

Figure 5-5. Collection Cursor After Fetch Next

shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR RELATIVE, 3,
coll_element, element_len);

Collection cursor coll_element
6
3
15
1
Cursor position ———-| 4
8

Figure 5-6. Collection Cursor After Fetch Relative 3

The preceding mi_collection_fetch() call is valid only if the collection is a LIST.
Only LIST collections are ordered. Therefore relative fetches, which specify the
number of elements to move forward or backward, can only be used on LIST
collections. If you try to perform a relative fetch on a SET or MULTISET,
mi_collection_fetch() generates an error.

shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_RELATIVE, -2,
coll_element, element_len);

5-10 IBM Informix DataBlade API Programmer’s Guide

Collection cursor coll_element

6
3
Cursor position ———»| 15
1
4
8

Figure 5-7. Collection Cursor After Fetch Relative -2

Because the preceding mi_collection_fetch() call moves the cursor position
backward, the call is valid only if the collection cursor is a scroll cursor. When you
open a collection with mi_collection_open(), you get a read/write scroll collection
cursor. However, if you open the collection with
mi_collection_open_with_options() and the MI_COLL_NOSCROLL option,
mi_collection_fetch() generates an error.

shows the cursor position and value of coll_element after the following
mi_collection_fetch() call:

mi_collection_fetch(conn, coll_desc, MI_CURSOR_ABSOLUTE, 6,
coll _element, element Ten);

Collection cursor coll_element
6
3
15
1
4
Cursor position ——p| 8

Figure 5-8. Collection Cursor After Fetch Absolute 6

The preceding mi_collection_fetch() call is valid only if the collection is a LIST.
Because absolute fetches specify a position within the collection by number, they
can only be used on an ordered collection (a LIST). If you try to perform an

absolute fetch on a SET or MULTISET, mi_collection_fetch() generates an error.

Because only six elements are in this collection, the absolute fetch of 6 positions the
cursor on the last element in the collection. This result is the same as if you had
issued the following mi_collection_fetch():

mi_collection_fetch(conn, coll_desc, MI_CURSOR _LAST, 0,
coll_element, element_len);

The fetch last is useful when you do not know the number of elements in a
collection and want to obtain the last one.

Obtaining the Element Value: The mi_collection_fetch() function uses an
MI_DATUM value to represent an element that it fetches from a collection. You
must pass in a pointer to the value buffer in which mi_collection_fetch() puts the
element value. However, you do not have to allocate memory for this buffer. The
mi_collection_fetch() function handles memory allocation for the MI_DATUM
value that it passes back.

Chapter 5. Using Complex Data Types 5-11

The contents of the MI_DATUM structure that holds the retrieved element
depends on the passing mechanism that the function used, as follows:

| Server Only

* In a C UDR, when mi_collection_fetch() passes back an element value, it
passes back the value by reference or by value, depending on the data type of
the column value. If the function passes back the element value by value, the
MI_DATUM structure contains the value. If the function passes back the
element value by reference, the MI_DATUM structure contains a pointer to the
value.

| End of Server Only

| Client Only

* In a client LIBMI application, when mi_collection_fetch() passes back an
element value, it always passes back the value by reference. Even for values that
you can pass by value in a C UDR (such as an INTEGER value), this function
passes back the element value by reference. The MI_DATUM structure contains
a pointer to the value.

| End of Client Only

Important: The difference in behavior of mi_collection_fetch() between C UDRs
and client LIBMI applications means that collection-retrieval code is
not completely portable between these two types of DataBlade API
modules. When you move your DataBlade API code from one of these
uses to another, you must change the collection-retrieval code to use
the appropriate passing mechanism for element values that
mi_collection_fetch() returns.

You declare a value buffer for the fetched element and pass in the address of this

buffer to mi_collection_fetch(). You can declare the buffer in either of the

following ways:

* If you know the data type of the field value, declare the value buffer of this data
type.
Declare the value buffer as a pointer to the field data type, regardless of whether
the data type is passed by reference or by value.

* If you do not know the data type of the field value, declare the value buffer to
have the MI_DATUM data type.
Your code can dynamically determine the field type with the
mi_column_type_id() or mi_column_typedesc() function. You can then
convert (or cast) the MI_DATUM value to a data type that you need.

Figures through fetch elements from a LIST collection of INTEGER values.
To fetch elements from this LIST, you can declare the value buffer as follows:

mi_integer *coll_element;

| Server Only |

Because you can pass INTEGER values by value in a C UDR, you access the
MI_DATUM structure that these calls to mi_collection_fetch() pass back as the
actual value, as follows:

int_element = (mi_integer)coll_element;

5-12 IBM Informix DataBlade API Programmer’s Guide

If the element type is a data type that must be passed by reference, the contents of
the MI_DATUM structure that mi_collection_fetch() passes back is a pointer to
the actual value. The following call to mi_collection_fetch() also passes in the
value buffer as a pointer. However, it passes back an MI_DATUM value that
contains a pointer to a FLOAT (mi_double_precision) value:

mi_double_precision *coll_element, f1t_element;
/* Fetch a FLOAT value in a C UDR =*/
mi_collection_fetch(conn, coll_desc, action, jump,

&coll_element, &retlen);
f1t_element = *coll_element;

| End of Server Only |

| Client Only |

For the fetches in Figures through a client LIBMI application declares the
value buffer in the same way as a C UDR. However, because all data types are
passed back by reference, the MI_DATUM structure that mi_collection_fetch()
passes back contains a pointer to the INTEGER value, not the actual value itself:

mi_integer *coll_element, int_element;

/* Fetch an INTEGER value in a client LIBMI application */

mi_collection_fetch(conn, coll_desc, action, jump,
&coll_element, &retlen);

int_element = xcoll_element;

| End of Client Only |

Updating a Collection

You update an element in an open collection with the mi_collection_update()
function. You can perform an update operation only on a read/write cursor. An
update is not valid on a read-only cursor.

The mi_collection_update() function uses an MI_DATUM value to represent the
new value for the element it updates in a collection. The contents of this
MI_DATUM structure depend on the passing mechanism that the function used,
as follows:

| Server Only |

e In a C UDR, when mi_collection_update() updates an element value, it can
pass the value by reference or by value, depending on the data type of the
column value. If the function passes back the element value by value, the
MI_DATUM structure contains the value. If the function passes back the
element value by reference, the MI_DATUM structure contains a pointer to the
value.

| End of Server Only |

| Client Only |
* In a client LIBMI application, when mi_collection_update() updates an element

value, it always passes the value by reference. Even for values that you can pass
by value in a C UDR (such as an INTEGER value), these functions return the

Chapter 5. Using Complex Data Types 5-13

column value by reference. The MI_DATUM structure contains a pointer to the
value.

| End of Client Only

The mi_collection_update() function updates the element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see [Table 5-2 on page 5-6|

| Server Only

The following code shows an example of using the mi_collection_update()
function to update the first element in a collection:

/*
* Update position 1 in the collection to contain 3.0
* Note that single-precision value is passed by REFERENCE.
*
/
MI_CONNECTION =*conn;
MI_COLL_DESC *colldesc;
MI_DATUM val;
mi_integer ret, jump;
mi_real value;

/* Update 1st element to 3.0 */
value = 3.0;
val = (MI_DATUM)&value;
jump = 1;
DPRINTF("trc_class", 11,
("Update set value %d @%d", value, jump));

/* Pass single-precision values by reference */
ret = mi_collection_update(conn, colldesc, val,
MI_CURSOR_ABSOLUTE, jump);

if (ret != MI_OK)
DPRINTF("trc_class", 11,

("Update @%d value %d MI_CURSOR_ABSOLUTE\
failed", jump, value));

| End of Server Only

Deleting an Element

You delete an element from an open collection with the mi_collection_delete()
function. You can perform a delete operation only on a read/write cursor. A delete
is not valid on a read-only cursor.

The mi_collection_delete() function deletes the element at the location in the
collection cursor that its action argument specifies. For a list of valid cursor-action
flags, see [Table 5-2 on page 5-6|

The following code shows an example of using the mi_collection_delete()
function to delete the last element of a collection:
/*
* Delete Tast element in the collection
*/
MI_CONNECTION =conn;
MI_COLL_DESC #col1_desc;

5-14 IBM Informix DataBlade API Programmer’s Guide

mi_integer ret;

ret = mi_collection_delete(conn, coll_desc,
MI_CURSOR_LAST, 0);

Determining the Cardinality of a Collection

The DataBlade API provides the mi_collection_card() function for obtaining the
number of elements in a collection (its cardinality). The following code fragment
uses the mi_collection_card() function to perform separate actions based on
whether a collection is NULL or has elements (possibly 0 elements):

MI_COLLECTION *collp;

mi_integer cardinality;
mi_boolean isnull;

/* Attach collp to a collection */

cardinality = mi_collection_card(collp, &isnull);
if (isnull == MI_TRUE)
{

mi_db_error_raise(conn, MI_MESSAGE, "Warning: Collection is NULL.");

}

else
{
if (cardinality > 0)
{

/* Open collection and perform action on individual elements =*/
}
}

Releasing Collection Resources

When your DataBlade API module no longer needs a collection, you can release
the resources that it uses with the following DataBlade API functions.

DataBlade API Function Purpose

mi_collection_close() Closes the collection cursor and frees the collection
descriptor.

mi_collection_free() Frees the collection structure

Closing a Collection

A collection descriptor contains a collection cursor. The scope of the collection
descriptor and its associated collection cursor is from the time they are created, by
mi_collection_open_with_options() or mi_collection_open(), until one of the
following events occurs:

¢ The mi_collection_close() function frees the collection descriptor, thereby
closing and freeing the associated collection cursor.

| Server Only |

* The current memory duration expires.

| End of Server Only |
e The mi_close() function closes the connection.
To conserve resources, use the mi_collection_close() function to free the collection

descriptor as soon as your DataBlade API module no longer needs it. This function
also explicitly closes and frees the associated collection cursor. The

Chapter 5. Using Complex Data Types 5-15

mi_collection_close() function is the destructor function for the collection
descriptor as well as for its associated cursor.

Freeing the Collection Structure

The collection structure holds the collection elements. The scope of this structure is
from the time it is created, by mi_collection_create() or mi_collection_copy(),
until one of the following events occurs:

¢ The mi_collection_free() function frees the collection structure.

| Server Only

* The current memory duration expires.

| End of Server Only

e The mi_close() function closes the connection.

To conserve resources, use the mi_collection_free() function to free the collection
structure once your DataBlade API module no longer needs it. The
mi_collection_close() function is the destructor function for the collection
structure.

The listpos() UDR

The sample listpos() UDR consists of the following parts:

* The SQL statements that register the function, create a table, and run the
listpos() user-defined function

* The C code to implement the listpos() UDR

* Sample output from the listpos.trc trace file that the listpos() UDR generates

SQL Statements

The SQL statements for the following tasks handle the database objects that the
listpos() function requires:

1. Register the user-defined function named listpos():

CREATE FUNCTION Tistpos()

RETURNS INTEGER

EXTERNAL NAME '$USERFUNCDIR/sqgl_listpos.udr'
LANGUAGE C;

2. Create a table named tab2:

CREATE TABLE tab2 (a INT);
INSERT INTO tab2 VALUES (1);

3. Add the trace class that the DPRINTF statements in listpos() use:

INSERT INTO informix.systraceclasses(name)
VALUES ('trace _class');

4. Run the listpos() UDR:
SELECT listpos() FROM tab2;
5. Clean up the resources:

DROP FUNCTION Tlistpos;
DROP TABLE tab2;

C-Language Implementation
The following C file contains the functions that implement the listpos()
user-defined function:

/* C file (Tistpos.c) contents:
* Examples of mi_collection_*() functions

*/

5-16 IBM Informix DataBlade API Programmer’s Guide

#include <stdio.h>
#include <mi.h>
#include <sqltypes.h>

void do_fetch(
MI_CONNECTION =conn,
MI_COLL_DESC =*colldesc,
MI_CURSOR_ACTION action,
mi_integer type,
mi_integer jump,
MI_DATUM expected);

mi_integer create_collection(
MI_CONNECTION =*conn,
char *typestring,
MI_COLLECTION =**ret coll_struc,
MI_COLL_DESC **ret_coll_desc);

mi_integer list_int_ins(MI_CONNECTION *conn);
mi_integer 1ist_char_ins(MI_CONNECTION *conn);
mi_integer list_float_ins(MI_CONNECTION *conn);

/***
* Function: The listpos() user-defined routine
* Purpose: Run inserts on three types of LIST collections:
* LIST of INTEGER: list_int_ins()
LIST of CHAR: Tist_char_ins()
LIST of FLOAT: Tlist_float_ins()
Results are printed to a trace file named 'listpos.trc',
which is the file that the mi_tracefile set() function
specifies.
Return Values:
0 Success
-1 No valid connection descriptor
-50 Unable to convert data type to type identifer
-51 Unable to create specified collection
-52 Unable to open new collection

L R R

*/

mi_integer listpos()

MI_CONNECTION =*conn;
mi_integer ret_code, error;

/* Obtain a UDR connection descriptor and verify that it
* is valid
*/
conn = mi_open(NULL, NULL, NULL);
if (conn == NULL)
return (-1);

/* Turn on tracing of trace class "trace_class" and set the
* trace file to listpos.trc.
*/
mi_tracelevel set("trace class 20");
mi_tracefile_set("/usr/local/udrs/colls/Tistpos.trc");

/* Run 1ist_int_ins() to insert INTEGER values into the LIST %/
error = 0;
ret_code = list_int_ins(conn);
if (ret_code)
error = ret_code;

/* Run 1ist char_ins() to insert CHAR values into the LIST x/
Tist_char_ins(conn);
if (ret_code)
error = ret_code;

Chapter 5. Using Complex Data Types

5-17

/* Run list_float_ins() to insert FLOAT values into the LIST
1ist_float_ins(conn);
if (ret_code)
error = ret_code;

return (ret_code);
} /* end Tistpos() */

/***
* Function: Tist_int_ins()

* Purpose:

1. insert 3 INTEGER values into a LIST

* 2. verify each inserted value
* 3. update first element
* Return Values:
* 0 Success
* -50 Unable to convert data type to type identifer
* =51 Unable to create specified collection
* =52 Unable to open new collection
* (status of steps in trace file)
*
/
mi_integer Tist_int_ins(MI_CONNECTION *conn)
{

MI_COLLECTION *1ist;
MI_COLL_DESC =*colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;

/* Create the LIST of INTEGERs =*/
ret_code = create_collection(conn, "list(int not null)",
&list, &colldesc);
if (ret_code !=0)
return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three INTEGER values

position 1: 1

position 2: 2

position 3: 3
INTEGER datums are passed by value. Normally one would use
an action of MI_CURSOR_NEXT (jump is ignored), but this
function inserts at positions.

value = jump = 1;
DPRINTF("trace_class", 15,
("Insert %d into LIST of INTEGER @%d", value,
jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);
if (ret_code != MI_OK)

DPRINTF("trace_class", 15,
("1ist_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));

value = jump = 2;
DPRINTF("trace_class", 15,
("Insert %d into LIST of INTEGER @%d", value,
jump)) s
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);
if (ret_code != MI_OK)

5-18 IBM Informix DataBlade API Programmer’s Guide

/*

/*

{
DPRINTF("trace_class", 15,

("1ist_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));

value = jump = 3;

DPRINTF("trace class", 15,
("Insert %d into LIST of INTEGER @%d", value,

jump)) s

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace class", 15,

("Tist_int_ins: insert MI_CURSOR_ABSOLUTE %d @%d failed",
value, jump));

}

Fetch each inserted INTEGER value from the collection,
comparing it against the value actually inserted.

Use a jump equal to the data value to simplify the
validation.

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,
(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 3,
(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 2,
(MI_DATUM) 2);

dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLINT, 1,
(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR _LAST, SQLINT, 3,
(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR FIRST, SQLINT, 1,
(MI_DATUM) 1);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, 2,
(MI_DATUM) 3);

dofetch(conn, colldesc, MI_CURSOR_RELATIVE, SQLINT, -2,
(MI_DATUM) 1);

Update 1st element to 3. */

Jump=1;

value=3;

DPRINTF("trace_class", 15,
("Update %d into LIST of INTEGER @%d", value,
jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM) value, action, jump);

if (ret_code != MI OK)
{
DPRINTF("trace_class", 15,

("1ist_int_ins: update MI_CURSOR_ABSOLUTE @%d failed",

jump));
}

Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLINT, 1,
(MI_DATUM) 3);

Free collection resources */
mi_collection_close(conn, colldesc);
mi_collection_free(conn, Tlist);

return 0;

} /* end Tist_int_ins() =/

Chapter 5. Using Complex Data Types

5-19

5-20

/***
* Function: list float ins()
* Purpose:
* 1. insert 3 FLOAT values into a LIST
2. verify each inserted value
3. update first element
Return Values:
0 Success
-50 Unable to convert data type to type identifer
-51 Unable to create specified collection
-52 Unable to open new collection
(status of steps in trace file)

EE I T R

*/
mi_integer list_float_ins(MI_CONNECTION xconn)
{
MI_COLLECTION =*1ist;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;
mi_integer jump, value, ret_code;
mi_double_precision vall, val2, val3, val4;

/* Create the LIST of FLOATs =/
ret_code = create_collection(conn,
"Tist(float not null)", &list, &colldesc);
if (ret_code !=0)
return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three FLOAT values
* position 1: 1.1
position 2: -2.2
position 3: 3.3
FLOAT datums are passed by reference.

* * *

*/
vall = 1.1;
val2 = -2.2;
val3 = 3.3;
jump = 1;

DPRINTF("trace class", 15,
("Insert %f into LIST of FLOAT @%d", vall, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) &vall, action, jump);
if (ret_code != MI_OK)

DPRINTF("trace_class", 15,

("1ist_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
vall, jump));
}

jump = 23

DPRINTF("trace class", 15,
("Insert %f into LIST of FLOAT @%d", val2, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) &val2, action, jump);

if (ret_code != MI_OK)
{
DPRINTF("trace _class", 15,

("1ist_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",

val2, jump));
}

jump = 3;
DPRINTF("trace_class", 15,

IBM Informix DataBlade API Programmer’s Guide

("Insert %f into LIST of FLOAT @%d", val3, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM) &val3, action, jump);
if (ret_code != MI_OK)

DPRINTF("trace_class", 15,

("Tist_float_ins: insert MI_CURSOR_ABSOLUTE %f @%d failed",
val3, jump));
}

/* Fetch each inserted FLOAT value from the collection,
* comparing it against the value actually inserted.
*
/
dofetch(conn, colldesc, MI_CURSOR ABSOLUTE, SQLFLOAT, 1,
(MI_DATUM) &vall);
dofetch(conn, colldesc, MI_CURSOR ABSOLUTE, SQLFLOAT, 3,
(MI_DATUM) &val3);
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 2,
(MI_DATUM) &val2);
dofetch(conn, colldesc, MI_CURSOR_PRIOR, SQLFLOAT, 1,
(MI_DATUM) &vall);
dofetch(conn, colldesc, MI_CURSOR_LAST, SQLFLOAT, 3,
(MI_DATUM) &val3);
dofetch(conn, colldesc, MI_CURSOR_FIRST, SQLFLOAT, 1,
(MI_DATUM) &vall);
dofetch(conn, colldesc, MI_CURSOR RELATIVE, SQLFLOAT, 2,
(MI_DATUM) &val3);
dofetch(conn, colldesc, MI_CURSOR RELATIVE, SQLFLOAT, -2,
(MI_DATUM) &vall);

/* Update 1st element to 44E-4. x/

Jump=1;

val4=44e-4;

DPRINTF("trace_class", 15,
("Update %f into LIST of FLOAT @%d", val4, jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM) &val4, action, jump);

if (ret_code != MI OK)
{
DPRINTF("trace_class", 15,

("1ist_float_ins: update MI_CURSOR_ABSOLUTE @%d failed",
;ump));

/* Fetch the updated element back and validate it */
dofetch(conn, colldesc, MI_CURSOR_ABSOLUTE, SQLFLOAT, 1,
(MI_DATUM) &vald);

/* Free collection resources =/
mi_collection_close(conn, colldesc);
mi_collection_free(conn, Tlist);

return 0;
} /* end list_float_ins() */

/***
* Function: Tist_char_ins()
* Purpose:
* 1, insert 3 CHAR values into a LIST
2. verify each inserted value
3. update first element
Return Values:
0 Success
-50 Unable to convert data type to type identifer
-51 Unable to create specified collection
-52 Unable to open new collection

EE I

Chapter 5. Using Complex Data Types

5-21

* (status of steps in trace file)
*/
mi_integer list_char_ins(MI_CONNECTION *conn)
{
MI_COLLECTION *1ist;
MI_COLL_DESC *colldesc;

MI_CURSOR_ACTION action;

MI_DATUM val;

mi_integer retlen, jump, ret code;
mi_Tvarchar =*lvc;

char xbuf;

char *vall, *val2, *val3;

/* Create the LIST of CHAR(10)s x/
ret_code = create_collection(conn,
"Tist(char(10) not null)", &list, &colldesc);
if (ret_code !=0)
return (ret_code);

action = MI_CURSOR_ABSOLUTE;

/* Insert three CHAR(10) values:

* position 1: "1234567689"
* position 2: "abcdefghij"
* position 3: "three"
* CHAR datums are passed by reference in an mi_lvarchar
* structure.
*/
vall = "1234567689";

val2 = "abcdefghij";
val3 = "three";

Tvc = mi_new_var(10);
buf = mi_get_vardata(lvc);

jump = 1;
strcpy(buf, vall);
DPRINTF("trace_class", 15,
("Insert '%s' into LIST of CHAR @%d",
buf, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)1vc, action, jump);
if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,
("Tist_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
?ump));

jump = 2;
strcpy (buf, val2);
DPRINTF("trace_class", 15,
("Insert '%s' into LIST of CHAR @%d",
buf, jump));
ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)1vc, action, jump);
if (ret_code != MI_OK)
{
DPRINTF("trace_class", 15,
("Tist_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
;ump));

jump = 3;
strcpy (buf, val3);
DPRINTF("trace_class", 15,

5-22 IBM Informix DataBlade API Programmer’s Guide

("Insert '%s' into LIST of CHAR @%d",
buf, jump));

ret_code = mi_collection_insert(conn, colldesc,
(MI_DATUM)1vc, action, jump);

if (ret_code != MI_OK)

DPRINTF("trace_class", 15,
("1ist_char_ins: insert MI_CURSOR_ABSOLUTE @%d failed",
?ump));

/* Fetch each inserted CHAR value from the collection,
* comparing it against the value actually inserted.

*/dofetch(conn, colldesc, MI_CURSOR ABSOLUTE, SQLCHAR, 1,
donilﬁ%éonn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 3,
don:lﬁ%éonn, colldesc, MI_CURSOR_ABSOLUTE, SQLCHAR, 2,
dof;ilﬁ%éonn, colldesc, MI_CURSOR_PRIOR, SQLCHAR, 1,
dof;ili%éonn, colldesc, MI_CURSOR_LAST, SQLCHAR, 3,
dofzglﬁ%éonn, colldesc, MI_CURSOR_FIRST, SQLCHAR, 1,
dOfZilfll)((;:Onn, colldesc, MI_CURSOR RELATIVE, SQLCHAR, 2,
doni]cﬁ;(éonn, colldesc, MI_CURSOR RELATIVE, SQLCHAR, -2,

vall);

/* Update 1st element to "mnopgrstuv". */

jump=1;

strcpy (buf, "mnopgrstuv");

DPRINTF("trace_class", 15,
("Update '%s' into LIST of CHAR @ %d", buf, jump));

ret_code = mi_collection_update(conn, colldesc,
(MI_DATUM)1vc, action, jump);

if (ret_code != MI_OK)

{
DPRINTF("trace_class", 15,

("Tist_char_ins: update MI_CURSOR_ABSOLUTE @%d failed",
;ump));

/* Fetch the updated element back and validate it =/
dofetch(conn, colldesc, MI_CURSOR FIRST, SQLCHAR, 1,
buf);

/* Free collection resources =*/
mi_collection_close(conn, colldesc);
mi_collection_free(conn, Tlist);

return 0;
} /* end Tist_char_ins() */

/********************************* """"""""" *kkkk

* Function: do_fetch()
* Purpose: Fetch specified element from a collection and

* compare it with the specified expected value
* Return Values: NONE
*/

void do_fetch(
MI_CONNECTION =conn,
MI_COLL_DESC =*colldesc,
MI_CURSOR_ACTION action,

Chapter 5. Using Complex Data Types

5-23

mi_integer type,
mi_integer jump,
MI_DATUM expected)

MI_DATUM val;
mi_integer retlen, ret_code;
char *actionstr, *buf;

switch (action)
{
case MI_CURSOR_NEXT:
actionstr="MI_CURSOR_NEXT";
break;

case MI_CURSOR_PRIOR:
actionstr="MI_CURSOR_PRIOR";
break;

case MI_CURSOR_FIRST:
actionstr="MI_CURSOR_FIRST";
break;

case MI_CURSOR_LAST:
actionstr="MI_CURSOR_LAST";
break;

case MI_CURSOR_ABSOLUTE:
actionstr="MI_CURSOR_ABSOLUTE";
break;

case MI_CURSOR RELATIVE:
actionstr="MI_CURSOR_RELATIVE";
break;

default:
actionstr="UNKNOWN";
1

DPRINTF("trace_class", 15,
("Fetch %s @ jump=%d:", actionstr, jump));

/* Print what is the expected value */
switch (type)
{

case SQLINT:
DPRINTF("trace_class", 15,
(" should get %d: ", expected));
break;

case SQLCHAR:
DPRINTF("trace_class", 15,
(" should get '%s': ", expected));
break;

case SQLFLOAT:
DPRINTF("trace_class", 15,
(" should get %f: ", x(double x)expected));
break;

default:
DPRINTF("trace_class", 15,
(" type not handled: %d", type));
1

/* Fetch collection element at position 'jump' into 'val'
ret_code = mi_collection_fetch(conn, colldesc, action,
jump, &val, &retlen);

5-24 IBM Informix DataBlade API Programmer’s Guide

if (ret_code != MI_NORMAL_VALUE)

{
DPRINTF("trace class", 15,

("do_fetch: %s @%d failed", actionstr, jump));
return;

}

/* Compare fetched value with expected value */
switch (type)
{

case SQLINT:
if (expected != val)

DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %d",
val));
}

else

DPRINTF("trace_class", 15,
(" got %d, fetch succeeded", val));

break;

case SQLCHAR:
buf = mi_get_vardata((mi_lvarchar *)val);
if (strcmp(buf, (char x)expected) != 0)

DPRINTF("trace_class", 15,

("do_fetch: fetch value not expected; got %s",
buf));
}

else

DPRINTF("trace_class", 15,
(" got '%s', fetch succeeded", buf));

break;

case SQLFLOAT:
if (*(double *)expected != *(double *)val)

{
DPRINTF("trace class", 15,
("do_fetch: fetch value not expected; got %f",
*(double *)val));
}

else

DPRINTF("trace_class", 15,
(" got %f, fetch succeeded",
*(double *)val));

}

break;

default:
DPRINTF("trace_class", 15,
("do_fetch: %d type not handled", type));

1
} /* end do_fetch() */

/****‘k*'k****************"k****‘k*'k************************
* Function: create_collection()
Purpose: create a collection of the specified type
Return Values:
thru parameters:
ret_coll_desc: address of collection descriptor

EE

Chapter 5. Using Complex Data Types

5-25

* ret_coll_struc: address of collection structure
* thru return value:
* 0 Success
* -50 Unable to convert data type to type identifer
* -51 Unable to create specified collection
* -52 UnabTle to open new collection
*
/

mi_integer create_collection(
MI_CONNECTION =*conn,
char *typestring,
MI_COLLECTION =**ret_coll_struc,
MI_COLL_DESC **ret _coll_desc)

MI_TYPEID *typeid;
MI_COLLECTION *collstruc;
MI_COLL_DESC *colldesc;

/* Convert data type string to type identifier =/
typeid = mi_typestring_to_id(conn, typestring);
if (typeid == NULL)

{

DPRINTF("trace_class", 15,

("create_collection: mi_typestring_to_id() failed"));
return (-50);
}

/* Create collection whose elements have the data type
* indicated by the specified type identifer
*/
if ((collstruc =
mi_collection_create(conn, typeid)) == NULL)
{

DPRINTF("trace_class", 15,

("create_collection: mi_collection_create() failed"));
return (-51);
}

/* Open the collection */
if ((colldesc =
mi_collection_open(conn, collstruc)) == NULL)

DPRINTF("trace_class", 15,
("mi_collection_open() failed"));
return -52;

}

/* Return through the parameters the addresses of:
* the collection descriptor: ret_coll_desc
* the collection structure: ret_coll_struc
*/
xret_coll_desc = colldesc;
*ret_coll_struc = collstruc;

/* Return a status of zero to indicate success =*/
return 0;
/* end create_collection() */

Sample listpos() Trace Output
When the listpos() user-defined function executes successfully, it produces the
following output in the listpos.trc file:

Tracing session: 18 on 03/16/2000

13:12:24 Insert 1 into LIST of INTEGER @1
13:12:24 Insert 2 into LIST of INTEGER @2

5-26 IBM Informix DataBlade API Programmer’s Guide

Insert 3 into LIST of INTEGER @3
Fetch MI_CURSOR_ABSOLUTE @ jump=1:
should get 1
got 1, fetch succeeded
Fetch MI_CURSOR_ABSOLUTE @ jump=3:
should get 3
got 3, fetch succeeded
Fetch MI_CURSOR_ABSOLUTE @ jump=2:
should get 2
got 2, fetch succeeded
Fetch MI_CURSOR_PRIOR @ jump=1:
should get 1
got 1, fetch succeeded
Fetch MI_CURSOR_LAST @ jump=3:
should get 3
got 3, fetch succeeded
Fetch MI_CURSOR_FIRST @ jump=1:
should get 1
got 1, fetch succeeded
Fetch MI_CURSOR_RELATIVE @ jump=2:
should get 3
got 3, fetch succeeded
Fetch MI_CURSOR_RELATIVE @ jump=-2:
should get 1
got 1, fetch succeeded
Update 3 into LIST of INTEGER @1
Fetch MI_CURSOR_ABSOLUTE @ jump=1:
should get 3
got 3, fetch succeeded
Insert '1234567689' into LIST of CHAR @1
Insert 'abcdefghij' into LIST of CHAR @2
Insert 'three' into LIST of CHAR @3
Fetch MI_CURSOR_ABSOLUTE @ jump=1:
should get '1234567689'
got '1234567689', fetch succeeded
Fetch MI_CURSOR_ABSOLUTE @ jump=3:
should get 'three'
got 'three', fetch succeeded
Fetch MI_CURSOR_ABSOLUTE @ jump=2:
should get 'abcdefghij'
got 'abcdefghij', fetch succeeded
Fetch MI_CURSOR_PRIOR @ jump=1:
should get '1234567689'
got '1234567689', fetch succeeded
Fetch MI_CURSOR_LAST @ jump=3:
should get 'three'
got 'three', fetch succeeded
Fetch MI_CURSOR_FIRST @ jump=1:
should get '1234567689'
got '1234567689', fetch succeeded
Fetch MI_CURSOR_RELATIVE @ jump=2:
should get 'three'
got 'three', fetch succeeded
Fetch MI_CURSOR_RELATIVE @ jump=-2:
should get '1234567689'
got '1234567689', fetch succeeded
Update 'mnopgrstuv' into LIST of CHAR @1
Fetch MI_CURSOR_FIRST @ jump=1:
should get 'mnopqrstuv'
got 'mnopgrstuv', fetch succeeded
Insert 1.100000 into LIST of FLOAT @1
Insert -2.200000 into LIST of FLOAT @2
Insert 3.300000 into LIST of FLOAT @3
Fetch MI_CURSOR_ABSOLUTE @ jump=1:
should get 1.100000
got 1.100000, fetch succeeded
Fetch MI_CURSOR_ABSOLUTE @ jump=3:

Chapter 5. Using Complex Data Types

5-27

13:12:24 should get 3.300000

13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=2:
13:12:24 should get -2.200000

13:12:24 got -2.200000, fetch succeeded
13:12:24 Fetch MI_CURSOR_PRIOR @ jump=1:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_LAST @ jump=3:
13:12:24 should get 3.300000

13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_FIRST @ jump=1:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=2:
13:12:24 should get 3.300000

13:12:24 got 3.300000, fetch succeeded
13:12:24 Fetch MI_CURSOR_RELATIVE @ jump=-2:
13:12:24 should get 1.100000

13:12:24 got 1.100000, fetch succeeded
13:12:24 Update 0.004400 into LIST of FLOAT @1
13:12:24 Fetch MI_CURSOR_ABSOLUTE @ jump=1:
13:12:24 should get 0.004400

13:12:24 got 0.004400, fetch succeeded

Row Types

A row type is a complex data type that is made up of a sequence of one or more
elements called fields. Each field has a name and a data type. A row type is similar
to a C struct data type. The DataBlade API provides support for row types in both
their text and binary representations.

Row-Type Text Representation

The DataBlade API supports a text representation for row types as a quoted string
with the formats that the following table shows.

Row Type Text Representation
Unnamed "ROW(fld_valuel, fld_value2, ...)"
Named "row_type(fld_valuel, fld_value2, ...)"

The text representations in the preceding table use the following abbreviations:

fld_valuel, fld_value2
are the text representations of the field values.

row_type is the name of the named row type.

A row type in its text representation is often called a row-type string. For example,
suppose you have the following unnamed row type defined:

ROW(f1d1l INTEGER, f1d2 CHAR(20))

The following row-type string provides the text representation for this unnamed

row type:

"ROW(7, 'Dexter')"

For a detailed description of the text representation of a row type, see the
description of the Literal Row segment in the IBM Informix: Guide to SQL Syntax.

5-28 IBM Informix DataBlade API Programmer’s Guide

Row-Type Binary Representation

The database server supports the following kinds of row types.
Row Type Description

Named row type
A named row type is identified by its name. With the CREATE
ROW TYPE statement, you create a template of a row type. You
can then use this template to take the following actions:

* Use type inheritance
* Define columns that all have the same row type

* Assign a named row type to a table with the OF TYPE clause of
the CREATE TABLE statement

Unnamed row type
An unnamed row type is identified by its structure. With the ROW
keyword, you create a row type. This row type contains fields but
has no user-defined name. Therefore, if you want a second column
to have the same row type, you must specify all fields.

All row types use the same internal format to store their values. For more
information, see the IBM Informix: Guide to SQL Reference.

Tip: The internal format of a row type is often referred to as its binary
representation.

The DataBlade API supports the SQL row types with the following data type
structures:

* A row descriptor (MI_ROW_DESC) provides information about the row type.

* A row structure (MI_ROW) holds the binary representation of the field values in
the row type.

Important: The fields of a row type are comparable to the columns in the row of a
table. This similarity means that you use the same DataBlade API data
type structures to access row types that you do to access columns in a
TOW.

Using a Row Descriptor

A row descriptor, MI_ROW_DESC, is a DataBlade API structure that describes the
type of data in each field of a row type. The following table summarizes the
memory operations for a row descriptor.

Memory Duration Memory Operation Function Name
Current memory duration Constructor mi_row_desc_create()
Destructor mi_row_desc_free()

Tip: A row descriptor can describe a row type or a row in a table. Therefore, you
use the same DataBlade API functions to handle memory operations for a row
descriptor when it describes a row type or a table row.

| Server Only |

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The row structure is just a data buffer in the row descriptor that holds

Chapter 5. Using Complex Data Types ~ 5-29

the column values of a row. A one-to-one correspondence exists between the row
descriptor (which mi_row_desc_create() allocates) and its row structure (which
mi_row_create() allocates). Therefore:

* When the mi_row_desc_create() function creates a new row descriptor, it
assigns a NULL-valued pointer to the data buffer.

* The mi_row_desc_free() function frees both the row descriptor and its
associated row structure.

| End of Server Only |

| Client Only |

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. A one-to-many correspondence can exist between a row
descriptor and its associated row structures. When you call mi_row_desc_free(),
you free only the specified row descriptor.

| End of Client Only |

able 5-3|lists the DataBlade API accessor functions that obtain information about
fields of a row type (or columns of a row) from the row descriptor.

Table 5-3. Field and Column Information in the Row Descriptor

DataBlade API
Column Information Accessor Functions

The number of columns and/or fields in the row descriptor mi_column_count()

The name of the column or field, given its position in the row mi_column_name()

The column identifier, which is the position of the column or mi_column_id()
field within the row, given its name

The precision (total number of digits) of a column or field data mi_column_precision()
type

The scale of a column or field data type mi_column_scale()

Whether a column or field in the row descriptor has the NOT ~ mi_column_nullable()
NULL constraint

The type identifier of the column or field data type mi_column_type_id()

The type descriptor of the column or field data type mi_column_typedesc()

Important: To DataBlade API modules, the row descriptor (MI_row_DESC) is an
opaque C data structure. Do not access its internal fields directly. The
internal structure of MI_ROW_DESC may change in future releases.
Therefore, to create portable code, always use the accessor functions for
this structure to obtain column information.

The row descriptor stores column information in several parallel arrays.

Column Array Contents

Column-type ID array Each element is a pointer to a type identifier
(MI_TYPEID) that indicates the data type of the column.

Column-type-descriptor array Each element is a pointer to a type descriptor
(MI_TYPE_DESC) that describes the data type of the
column.

5-30 IBM Informix DataBlade API Programmer’s Guide

Column Array Contents

Column-scale array Each element is the scale of the column data type.
Column-precision array Each element is the precision of the column data type.
Column-nullable array Each element has either of the following values:

¢ MI_TRUE: The column can contain SQL NULL values.

¢ MI_FALSE: The column cannot contain SQL NULL
values.

All of the column arrays in the row descriptor have zero-based indexes. Within the
row descriptor, each column has a column identifier, which is a zero-based position
of the column (or field) in the column arrays. When you need information about a
column (or field), specify its column identifier to one of the row-descriptor accessor
functions in [Table 5-3 on page 5-30}

Tip: The system catalog tables refer to the unique number that identifies a column
definition as its “column identifier.” However, the DataBlade API refers to
this number as a “column number” and the position of a column within the
row structure as a “column identifier.” These two terms do not refer to the
same value.

shows how the information at index position 1 of these arrays holds the
column information for the second column in a row descriptor.

Type identifiers Type descriptors Scales Precisions NULL values
0 0 0 0 0
[1 = 1 1 & 1 1| o |
2 N2 2 2 27
n n n n

All information for the second column
(at index position 1)

Figure 5-9. Column Arrays in the Row Descriptor

To access information for the nth column, provide an index value of n-1 to the
appropriate accessor function in [Table 5-3 on page 5-30] The following calls to the
mi_column_type_id() and mi_column_nullable() functions obtain from a row
descriptor that row_desc identifies the type identifier (col_type) and whether the
column is nullable (col_nullable) for the second column:

MI_ROW_DESC =*row_desc;

MI_TYPEID =col_type;

mi_integer col _nullable;

col_type = mi_column_type id(row_desc, 1);
col_nullable = mi_column_nullable(row_desc, 1);

To obtain the number of columns in the row descriptor (which is also the number
of elements in the column arrays), use the mi_column_count() function.

Chapter 5. Using Complex Data Types 5-31

Using a Row Structure

The DataBlade API always holds fields of a row type in a row structure (MI_ROW
structure). Each row structure stores the data from a single row-type column in a
table. The following table summarizes the memory operations for a row structure.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_row_create(),
mi_streamread_row()

Destructor mi_row_free()

Tip: A row structure can hold values for the fields of a row type or the columns of
a row in a table. Use the same DataBlade API functions to handle memory
operations for a row structure when it holds values for a row type or a table
rOwW.

| Server Only

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. A one-to-one correspondence exists
between the row descriptor (which mi_row_desc_create() allocates) and its row
structure (which mi_row_create() allocates).

If you call mi_row_create() twice with the same row descriptor, the second call
overwrites the row values of the first call.

The mi_row_free() function frees the memory associated with the data buffer and
assigns a NULL-valued pointer to this buffer in the row descriptor.

| End of Server Only

| Client Only

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. A one-to-many correspondence exists between a row
descriptor and its associated row structures. When you call mi_row_create() a
second time with the same row descriptor, you obtain a second row structure. The
mi_row_free() function frees a row structure.

| End of Client Only

The following DataBlade API functions obtain field values from an existing row
structure.

DataBlade API Function Description

mi_value(), Returns a row structure as a column value when the function
mi_value_by_name() returns an MI_ROW_VALUE value status

The row structure holds the fields of the row type.

Tip: A row structure can hold the fields of a row type or the columns of a
database row. You use the same DataBlade API functions to handle memory
operations for a row structure when it holds row-type fields as when it

5-32 IBM Informix DataBlade API Programmer’s Guide

describes columns of a row. For more information on how to obtain column
values from a row, see [“Obtaining Column Values” on page 8-42|

Creating a Row Type

To create a row type, you create a row structure (MI_ROW) that holds the row
type. The mi_row_create() function is the constructor function for the row
structure (MI_ROW). To create a row type with mi_row_create(), you must
provide the following information to the function:

* A row descriptor that describes the fields of the row type (or columns of a row)

* The values of the row-type fields (or row columns)

Creating the Row Descriptor

You create a new row descriptor for a row type with the mi_row_desc_create()
function. The mi_row_desc_create() is the constructor function for a row
descriptor. You provide this function with the type identifier of the row type for
which you want the row descriptor. If you do not know the type identifier for
your row type, use the mi_type_typename() function or mi_typestring to_id() to
create a type identifier based on the type name. The type name for a row type is
its text representation. For more information, see|[“Row-Type Text Representation”|
‘ pag 8

Assigning the Field Values

To provide values for the columns (or fields) of a row structure, you pass
information for the columns in several parallel arrays:

* Column-value array

¢ Column-value null array

These column-value arrays are similar to the column arrays in the row descriptor
(see [Figure 5-9 on page 5-31). They have an element for each column in the row
descriptor. The column-value arrays are different from the column arrays in the
row descriptor, in the following ways:

* The column-value arrays describe the actual value for a column.
Column arrays describe the column data type.
* You must allocate and manage the column-value arrays.

The DataBlade API does not provide accessor functions for these column-value
arrays. For each column, your DataBlade API module must declare, allocate, and
assign values to these arrays.

All of the column-value arrays have zero-based indexes. |Figure 5-10|shows how
the information at index position 1 of these arrays holds the column-value
information for the second column of a row.

Chapter 5. Using Complex Data Types 5-33

Values Nulls

2_‘ 2 ./

All information for the second column
(at index position 1)

Figure 5-10. Arrays for Initialization of Column

The following sections provide additional information about each of the
column-value arrays.

Column-Value Array: The column-value array, col_values, is the third argument of
the mi_row_create() function. Each element of the column-value array is a pointer
to an MI_DATUM structure that holds the value for each column. The format of
this value depends on whether the MI_DATUM value is passed by reference or by
value:

| Server Only

* For C UDRs, the data type of the value determines the passing mechanism. If
the function passes the value by value, the MI_DATUM structure contains the
value. If the function passes value by reference, the MI_DATUM structure
contains a pointer to the value.

| End of Server Only

| Client Only

* For client LIBMI applications, pass all values (regardless of data type) by
reference. The MI_DATUM structure contains a pointer to the value.

| End of Client Only

Important: The difference in behavior of mi_row_create() between C UDRs and
client LIBMI applications means that row-creation code is not
completely portable between these two types of DataBlade API
module. When you move your DataBlade API code from one of these
uses to another, you must change the row-creation code to use the
appropriate passing mechanism for column values that
mi_row_create() accepts.

For more information on the passing mechanism for an MI_DATUM value, see
[“Contents of an MI_DATUM Structure” on page 2-33

Column-Value Null Array: The column-value null array, col_nulls, is the fourth
argument of the mi_row_create() function. Each element of the column-value null
array is either:

* MI_FALSE
The column value is not an SQL NULL value.
* MI_TRUE

5-34 IBM Informix DataBlade API Programmer’s Guide

The column value is an SQL NULL value.

Example: Creating a Row Type
Suppose you have the row type that the following SQL statement creates:

CREATE ROW TYPE rowtype t
id INTEGER,

name CHAR(20)
)s

| Server Only

The following code shows how to use the mi_row_create() function to create a
new row type of type rowtype_t:
/*

* Create a row structure for the 'rowtype_t' row type

*/

MI_CONNECTION =*conn;
MI_ROW_DESC =*rowdesc;
MI_ROW *row;

MI_DATUM =values;
mi_boolean *nulls;
mi_integer num_cols;

/* Allocate a row descriptor for the 'rowtype t' row type */
rowdesc = mi_row_desc_create(
mi_typestring_to_id(conn, "rowtype t"));

/* Assume number of columns is known */
num_cols = 2;

/* Allocate the 'col values' and 'col nulls' arrays */
values = mi_alloc(num_cols *sizeof(MI_DATUM));
nulls = mi_alloc(num_cols *sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays =/

/* Initialize value for field 1: 'id' =/
values[0] = 1;
null1s[0] = MI_FALSE;

/* Initialize value for field 2: 'name' x/
values[1] = mi_string_to_lvarchar("Dexter");
nulls[1] = MI_FALSE;

/* Create row structure for 'name t' =*/
row = mi_row_create(conn, rowdesc, values, nulls);

When this code completes, the row variable points to a row structure that contains
the following field values.

Field Name Field Value

fname "Dexter”
middle "M"
Iname "Haven”

Chapter 5. Using Complex Data Types 5-35

| End of Server Only |

| Client Only |

If the preceding code fragment were part of a client LIBMI application, it would
require changes to the way the values are addressed in the values array. For
example, the INTEGER value would require the following cast to create a copy of
the column value:

mi_integer col_val;

/* Initialize value for field 1: 'id' =/
col_val = 1;

values[0] = &col_val;

nulls[0] = MI_FALSE;

This different kind of addressing is required because in client LIBMI applications,
mi_row_create() passes values for all data types by reference. Therefore, the
contents of the MI_DATUM structure is always a pointer to the actual value, never
the value itself.

| End of Client Only |

Accessing a Row Type

When a row type (named or unnamed) is used as a column of a table, its fields can
be accessed in exactly the same ways that the columns of a row are accessed. That
is, you create a series of nested loops that use the following functions:

* The mi_next_row() function controls a loop that iterates through each retrieved
row type.

* The mi_value() or mi_value_by_name() function controls a loop that iterates
through each field value.

For more information on how to use these functions, see |’Obtaining Row Values”|

Copying a Row Structure

To create a copy of a row structure, you must:

* Create a new row descriptor that describes the row type.

For more information, see|”Creating the Row Descriptor” on page 5-33|

* Copy the row values from the old row structure into the col_values and col_nulls
arrays to be used for the new row structure.

¢ Create the new row structure with the values in the col_values and col_nulls
arrays.

The following code fragment copies a row structure:

MI_CONNECTION =*conn;

MI_ROW_DESC *rowdesc, *new_rowdesc;
mi_integer num_cols, i, len;
MI_DATUM =values;

mi_boolean *nulls;

MI_ROW *new_row;

/* Allocate a new row descriptor for the 'name_t' row type */
new_rowdesc = mi_row_desc_create(
mi_typestring_to_id(conn, "name_t"));

5-36 IBM Informix DataBlade API Programmer’s Guide

/* Determine number of columns needed */
num_cols = mi_column_count(new_rowdesc);

/* Allocate the 'col_values' and 'col_nulls' arrays =/
values = mi_alloc(num_cols * sizeof(MI_DATUM));
nulls = mi_alloc(num_cols * sizeof(mi_boolean));

/* Populate the 'col_values' and 'col_nulls' arrays */
for (i=0; i < num_cols; i++)

{
nulls[i] = MI_FALSE; /* assume non-NULL value */

/* Put field value from original row type ('rowdesc')
* into 'values' array for new row type ('new_rowdesc'
*/

switch (mi_value(rowdesc, i, &values[i], &len))

{

case MI_ERROR:
/* Unable to get field value. Raise an error */
break;

case MI_NULL_VALUE:
/* Field value is an SQL NULL value. Set 'nulls'
* array for new row type ('new_rowdesc')
*/
nulls[i] = MI_TRUE;
break;

case MI_NORMAL_VALUE:
/* No action needed: mi_value() call has already
* copied field value into 'values' array
*/
break;

case MI_COLLECTION_VALUE:
/* Need to add code to handle collection */
break;

case MI_ROW_VALUE:
/* Need to add code to handle nested rows =*/
break;

default:
/* Handle error */
break;
} /* end switch */
} /* end for x/

/* Create new row type with values copied from old row type */
new_row = mi_row_create(conn, new_rowdesc, values, nulls);

/* Deallocate memory for 'values' and 'nulls' arrays */
mi_free(values);
mi_free(nulls);

After this code fragment executes, the new_row row structure contains a copy of
the values in the row row structure.

Releasing Row Resources

After your DataBlade API module no longer needs the row type (or row) that you
allocated, you need to assess whether you can release resources that the row is
using, specifically the row descriptor and the row structure.

Chapter 5. Using Complex Data Types ~ 5-37

Freeing a Row Structure
A row structure has the current memory duration. A row remains valid until one
of the following events occurs:

¢ The mi_row_free() function frees the row.

| Server Only |

* The current memory duration expires.

| End of Server Only |

¢ The mi_close() function closes the current connection.

To conserve resources, use the mi_row_free() function to explicitly deallocate the
row once your DataBlade API module no longer needs it. The mi_row_free()
function is the destructor function for a row structure. It frees the row and any
resources that are associated with it.

| Server Only |

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. The mi_row_free() function drops
the row structure from the row descriptor. It is useful for big rows where the data
you want has already been examined.

However, the mi_row_desc_free() function frees a row descriptor and the
associated row structure. Once mi_row_desc_free() frees the row descriptor, you
no longer have access to the row structure. Examine the contents of a row structure
before you deallocate the row descriptor with mi_row_desc_free().

| End of Server Only |

| Client Only |

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. When you free a row descriptor with mi_row_desc_free(),
the associated row structure is not freed. You must explicitly free the row structure
with mi_row_free().

| End of Client Only |

Important: Use mi_row_free() only for row structures that you have explicitly
allocated with mi_row_create(). Do not use this function to free row
structures that other DataBlade API functions (such as mi_next_row())
allocate.

Freeing a Row Descriptor
A row descriptor has the current memory duration. A row descriptor remains valid
until one of the following events occurs:

¢ The mi_row_desc_free() function frees the row.

| Server Only

5-38 IBM Informix DataBlade API Programmer’s Guide

¢ The current memory duration expires.

| End of Server Only

e The mi_close() function closes the current connection.

To conserve resources, use the mi_row_desc_free() function to explicitly
deallocate the row descriptor once your DataBlade API module no longer needs it.
The mi_row_desc_free() function is the destructor function for a row descriptor. It
frees the row descriptor and any resources that are associated with it.

| Server Only |

In a C UDR, the row structure and row descriptor are part of the same data type
structure. The mi_row_create() function just adds a data buffer, which holds the
column values of a row, to the row descriptor. The mi_row_desc_free() function
frees a row descriptor and the associated row structure. Once mi_row_desc_free()
frees the row descriptor, you no longer have access to the row structure.

| End of Server Only |

| Client Only |

In a client LIBMI application, a row structure and a row descriptor are separate
data type structures. When you free a row descriptor with mi_row_desc_free(),
the associated row structure is not freed. You must explicitly free the row structure
with mi_row_free().

| End of Client Only |

Important: Use mi_row_desc_free() only for row descriptors that you have
explicitly allocated with mi_row_desc_create(). Do not use this
function to free row structures that other DataBlade API functions
(such as mi_get_row_desc_without_row()) allocate.

Chapter 5. Using Complex Data Types 5-39

5-40 1BM Informix DataBlade API Programmer’s Guide

Chapter 6. Using Smart Large Objects

In This Chapter. .
Understanding Smart Large Ob]ects .
Parts of a Smart Large Object .
The Sbspace . .
The LO Handle .
Information About a Smart Large Ob)ect
Storage Characteristics
Status Information .
Storing a Smart Large Object in a Database .
Valid Data Types .
CLOB and BLOB Data Types
Opaque Data Type .
Access to a Smart Large Object .
Selecting a Smart Large Object
Storing a Smart Large Object .
Using the Smart-Large-Object Interface
Smart-Large-Object Data Type Structures .
LO-Specification Structure . .
LO Handle .
LO File Descriptor
LO-Status Structure .
Smart-Large-Object Functions.
Functions That Create a Smart Large Ob]ect
Functions That Perform Input and Output on a Smart Large Ob]ect
Functions That Manipulate an LO Handle o
Functions That Access an LO-Specification Structure .
Functions That Access an LO-Status Structure

Functions That Move Smart Large Objects to and from Operatmg System Flles .

Creating a Smart Large Object .
Obtaining the LO-Specification Structure .
Specifying New Storage Characteristics

Copying Storage Characteristics from an Existing Smart Large Ob]ect

Choosing Storage Characteristics
Obtaining Storage Characteristics
Using the Storage-Characteristics Hlerarchy .
Initializing an LO Handle and an LO File Descriptor .
Obtaining an LO Handle Lo
Obtaining an LO File Descriptor .
Writing Data to a Smart Large Object .
Storing an LO Handle . .
Freeing Resources .
Freeing an LO- Spec1f1cat10n Structure .
Freeing an LO Handle .
Sample Code to Create a New Smart Large Ob]ect
Accessing a Smart Large Object . Co
Selecting the LO Handle
Validating an LO Handle .
Opening a Smart Large Object
Reading Data from a Smart Large Ob]ect
Freeing a Smart Large Object .
Sample Code to Select an Existing Smart Large Ob]ect
Modifying a Smart Large Object . Ce
Updating a Smart Large Object .
Altering Storage Characteristics .
Obtaining Status Information for a Smart Large Ob]ect

© Copyright IBM Corp. 1996, 2005

. 6-2
. 6-2
. 63

. 6-4
. 6-4

. 6-12
. 6-13
. 6-13
. 6-13
. 6-14
. 6-14
. 6-14
. 6-15
. 6-15
. 6-16
. 6-16
. 6-17
. 6-18
. 6-19
. 6-19
. 6-19
. 6-20
. 6-21
. 6-22
. 6-23
. 6-24
. 6-24
. 6-25
. 6-25
. 6-27
. 6-28
. 6-28
. 6-29
. 6-40
. 6-40
. 6-41
. 6-42
. 6-42
. 6-43
. 6-43
. 6-43
. 6-44
. 6-46
. 6-47
. 6-47
. 6-48
. 6-48
. 6-49
. 6-49
. 6-50
. 6-50
. 6-51
. 6-52

6-1

Obtaining a Valid LO File Descriptor .

Initializing an LO-Status Structure .
Obtaining a Valid LO-Status Structure .
Filling the LO-Status Structure

Obtaining Status Information .

Freeing an LO-Status Structure

Deleting a Smart Large Object

Managing the Reference Count . o

Reference Counts for CLOB and BLOB Columns

. 6-52
. 6-53
. 6-53
. 6-54
. 6-54
. 6-55
. 6-56
. 6-56

6-8

Important: Consider carefully whether to use moderate integrity for sbpages of a
smart large object. Although moderate integrity takes less disk space
per page, it also reduces the ability of the database server to recover
information if disk errors occur.

For information on the structure of sbspace pages, see your IBM Informix:
Administrator’s Guide.

Open-Mode Information: When you open a smart large object, you can specify

the open mode for the data. The open mode describes the context in which the I/O

operations on the smart large object are performed. It includes the following

information:

* The access mode for the smart large object: read-only, dirty-read, read /write,
write-only, or write-append

* The access method for the smart large object: random or sequential

* The buffering mode for the data to and from the smart large object: buffered or
unbuffered

* The locking mode for the smart large object: lock-all or byte-range mode

The database server uses the following system default open mode when it opens a
smart large object.

Open-Mode Information Default Open Mode
Access mode Read-only

Access method Random

Buffering Buffered access
Locking Whole-object locks

If your smart large object usually requires certain access capabilities when it is
opened, you can associate a default open mode with the smart large object. The
database server stores this default open mode with other storage characteristics of
the smart large object. For more information, see ["Choosing Storage|
[Characteristics” on page 6-28] To override the default open mode, you can specify
an open mode for a particular smart large object when you open it. For more
information, see [“Opening a Smart Large Object” on page 6-48.

Access Modes: The smart-large-object open mode includes an access mode, which
determines which read and write operations are valid on the open smart large
object. [Table 6-1f shows the access modes for a smart large object.

Table 6-1. Access Modes for Smart Large Objects

Access Mode Purpose
Read-only mode Only read operations are valid on the data.
Dirty-read mode You can read uncommitted data pages for the smart large object.

No locks are requested on the data. You cannot write to a smart
large object after you set the mode to MI_LO_DIRTY_READ.
When you set this flag, you reset the current transaction isolation
mode to dirty read for this smart large object.

Write-only mode Only write operations are valid on the data.

IBM Informix DataBlade API Programmer’s Guide

Table 6-1. Access Modes for Smart Large Objects (continued)

Access Mode

Purpose

Write/append mode

Any data you write is appended to the end of the smart large
object. By itself, it is equivalent to write-only mode followed by a
seek to the end of the smart large object. Read operations fail.

When you open a smart large object in write/append mode only,
the smart large object is opened in write-only mode. Seek
operations move the seek position, but read operations to the
smart large object fail, and the LO seek position remains
unchanged from its position just before the write. Write operations
occur at the LO seek position, and then the seek position is
moved.

Read /write mode

Both read and write operations are valid on the data.

Truncate

Delete any existing data in the smart large object and move the
LO seek position to the start of the smart large object (byte 0). If
the smart large object does not contain data, this access mode has
no effect.

Access Methods: The smart-large-object open mode includes the access method,
which determines whether to access the smart-large-object data sequentially or
with random access. [Table 6-2| shows the access methods for a smart large object.

Table 6-2. Access Methods for a Smart Large Object

Method of Access

Purpose

Random access

Indicates that I/O is random

When you plan to read in nonsequential locations in the smart large
object, the smart-large-object optimizer should not read ahead a few

pages.

Sequential access

Indicates that reads are sequential in either forward or reverse
direction

When you read a smart large object sequentially, the
smart-large-object optimizer can read ahead a few pages.

Forward Indicates that the direction of sequential access is
forward

If you do not specify a direction, the default is
forward.

Reverse Indicates that the direction of sequential access is
reverse

The default access method is random, although the smart-large-object optimizer
might change this default based on a particular read pattern.

Buffering Modes: The smart-large-object open mode includes a buffering mode,
which determines how read and write operations on the open smart large object
are buffered. [Table 6-3| shows the buffering modes for a smart large object.

Chapter 6. Using Smart Large Objects 6-9

6-10

Table 6-3. Buffering Modes for a Smart Large Object

Buffering Mode Purpose

Buffered access Indicates that I/O of the smart-large-object data goes through the
buffer pool of the database server

This method of access is called buffered 1/O. Buffered I/0O tells the
optimizer that someone might be planning to reread the same LO

page.
Unbuffered access Indicates that I/O of the smart-large-object data does not use the
buffer pool

This method of access is called lightweight I/O. lightweight 1/0O tells
the smart-large-object optimizer to use private buffers instead of the
buffer pool for these I/O operations. These private buffers are
allocated out of the session pool of the database server. With
lightweight 1/O, you bypass the overhead of the buffer pool
management when the database server performs a sequential scan.

Keep the following issues in mind when you use lightweight 1/0O:
* Be sure that you close smart large objects that use lightweight 1/0O.

Otherwise, the memory that has been allocated to the private buffers remains
allocated. This private-buffer memory is only deallocated when you close the
smart large object.

* Be careful about using lightweight I/O when you open the same smart large
object many times and concurrently access this object in the same transaction.

All opens of the same smart large object share the same lightweight I/O buffers.
Potentially, an operation can cause the pages in the buffer to be flushed while
other operations might still expect these pages to exist.

Important: In general, if read and write operations to the smart large objects are
less than 8080 bytes, do not use lightweight I/O. In other words, if you
are reading or writing short blocks of data, such as two kilobytes or
four kilobytes, the default buffered I/O operations provide better
performance.

The smart-large-object optimizer imposes the following restrictions when you
switch from lightweight I/O to buffered 1/0O for a given smart large object:

* You can alter the buffering mode of a smart large object that was created with
lightweight I/0 to buffered I/O as long as no open instances exist for that smart
large object.

However, you cannot alter the buffering mode from buffered I/O to one with
lightweight 1/0.

* You must specify lightweight I/O when you open a smart large object that was
created with lightweight 1/0.

If an open smart large object specifies buffered 1/0, the smart-large-object
optimizer ignores any attempt to open it with lightweight I/O. However, if you
first change the buffering mode from lightweight I/O to buffered 1/0O, you can
then specify buffered I/O when you open the smart large object.

* You can specify lightweight I/O when you open a smart large object that was
created with buffered 1/0 only if you open the smart large object in read-only
mode.

IBM Informix DataBlade API Programmer’s Guide

In this case, the smart-large-object optimizer does not allow write operations on
the smart large object. Attempts to do so generate an error. To write to the smart
large object, you must close it then reopen it with buffered I/O and an access
mode that enables write operations.

These limitations ensure consistency of the smart-large-object buffers without
imposing processing overhead for I/O operations.

If you do not specify a buffering mode, the default is buffered 1/O. The
smart-large-object optimizer determines the default buffering mode for a smart
large object.

Locking Modes: To prevent simultaneous access to smart-large-object data, the

smart-large-object optimizer obtains a lock on this data when you open the smart

large object. This smart-large-object lock is distinct from the following kinds of

locks:

* Row locks
A lock on a smart large object does not lock the row in which the smart large
object resides. However, if you retrieve a smart large object from a row and the
row is still current, the database server might hold a row lock as well as a
smart-large-object lock. Locks are held on the smart large object instead of on
the row because many columns could be accessing the same smart-large-object
data.

* Locks of different smart large objects in the same row of a table

A lock on one smart large object does not affect other smart large objects in the
row.

The smart-large-object open mode includes a lock mode, which determines the kind
of the lock requests made on a smart large object. [[able 6-4 shows the lock modes
that a smart large object can support.

Table 6-4. Lock Modes for a Smart Large Object

Lock Mode Purpose Description

Lock-all Lock the entire smart large Indicates that lock requests apply to all data
object for the smart large object

Byte-range Lock only specified Indicates that lock requests apply only to the
portions of the smart large specified number of bytes of
object smart-large-object data

When the smart-large-object optimizer opens a smart large object, it uses the
following information to determine the lock mode of the smart large object:

¢ The access mode of the smart large object
The database server obtains a lock as follows:

— In share mode, when you open a smart large object for reading (read-only or
dirty read)

— In update mode, when you open a smart large object for writing (write-only,
read-write, write/append, truncate)

When a write operation (or some other update) is actually performed on the
smart large object, the database server upgrades this lock to an exclusive lock.

e The isolation level of the current transaction

Chapter 6. Using Smart Large Objects 6-11

6-12

If you have selected an isolation mode of repeatable read, the smart-large-object
optimizer does not release any locks that it obtains on a smart large object until
the end of the transaction.

By default, the smart-large-object optimizer chooses the lock-all lock mode. You
can request locks on the data of a smart large object at the byte level with a
bite-mn e lock. For more information, see [“Accessing the Default Open Flag” on|

The smart-large-object optimizer retains the lock as follows:

* It holds share-mode locks and update locks (which have not yet been upgraded
to exclusive locks) until one of the following events occurs:

— The closing of the smart large object
— The end of the transaction
— An explicit request to release the lock (for a byte-range lock only)

* It holds exclusive locks until the end of the transaction even if you close the
smart large object.

When one of the preceding conditions occurs, the smart-large-object optimizer
releases the lock on the smart large object.

Important: You lose the lock at the end of a transaction even if the smart large
object remains open. When the smart-large-object optimizer detects that
a smart large object has no active lock, it automatically obtains a new
lock when the first access occurs to the smart large object. The lock that
it obtains is based on the original access mode of the smart large
object.

The smart-large-object optimizer releases the lock when the current transaction
terminates. However, the optimizer obtains the lock again when the next function
that needs a lock executes. If this behavior is undesirable, use BEGIN WORK
transaction blocks and place a COMMIT WORK or ROLLBACK WORK statement
after the last statement that needs to use the lock.

Status Information
able 6-5|shows the status information that the database server maintains for a
smart large object.

Table 6-5. Status Information for a Smart Large Object

Status Information Description
Last-access time The time, in seconds, that the smart large object was last
accessed

This value is available only if the last-access time attribute is
enabled for the smart large object.

Storage characteristics The storage characteristics for the smart large object

Last-change time The time, in seconds, of the last change in status for the smart
large object

A change in status includes changes to metadata and user data
(data updates and changes to the number of references). This
system time is stored as number of seconds since January 1,
1970.

IBM Informix DataBlade API Programmer’s Guide

Table 6-5. Status Information for a Smart Large Object (continued)

Status Information Description
Last-modification time The time, in seconds, that the smart large object was last
modified

A modification includes only changes to user data (data
updates). This system time is stored as number of seconds since
January 1, 1970.

On some platforms, the last-modification time might also have
a microseconds component, which can be obtained separately
from the seconds component.

Reference count The number of references (LO handles) to the smart large object

Size The size, in bytes, of the smart large object

The database server stores the status information in the metadata area of the
sbspace.

Tip: The time values (such as last-access time and last-change time) might differ
slightly from the system time. This difference is due to the algorithm that the
database server uses to obtain the time from the operating system.

For more information on how to obtain status information in a DataBlade API
module, see [“Obtaining Status Information for a Smart Large Object” on page 6-52

Storing a Smart Large Object in a Database

To store a smart large object in a database, you must save its LO handle in a
column. This section describes the valid data types to hold an LO handle and how
to access a smart large object.

Valid Data Types

In the database, you can use either of the following ways to store a smart large
object in a column:

* For direct access to the smart large object, create a column of the CLOB or BLOB
data type.

* To hide the smart large object within an atomic data type, create an opaque type
that holds a smart large object.

CLOB and BLOB Data Types

You can store a smart large object directly in a column that has one of the
following data types:

e The CLOB data type holds text data.

* The BLOB data type can store any kind of binary data in an undifferentiated
byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object.
Therefore, when you select a CLOB or BLOB column, you do not obtain the actual
data of the smart large object, but the LO handle that identifies this data. The
BLOB and CLOB data types have identical internal representation. Externally, an
LO handle is represented as a flat array of bytes with a length of MI_LO_SIZE.

Chapter 6. Using Smart Large Objects 6-13

Suppose an employee table has a BLOB column named emp_picture to hold the
picture of an employee. shows that in a row of the employee table, the
emp_picture column contains an LO handle. This LO handle contains information
about the location of the actual employee picture in the sbspacel_100 sbspace.

BLOB column: Picture for
emp_picture employee
employee sbspace1_100

empno emp_picture LO handle

1234

1235

Disk 100
Database A

Figure 6-2. A Smart Large Object in a Database Column

The CLOB and BLOB data types are often referred to collectively as
smart-large-object data types. For more information on these data types, see the
IBM Informix: Guide to SQL Reference.

Opaque Data Type
An opaque data type is a user-defined atomic data type. You can define a field of
an opaque data type to be a smart large object. The support functions of the
opaque type must perform the conversion between the LO handle in the opaque
type and the smart-large-object data in the sbspace. For more information, see
[‘Managing the Reference Count” on page 6-56

In the emp_picture column could be an opaque data type named
picture instead of a BLOB data type. The picture data type could hold the image

in a smart large object in one field of its internal structure and other information
about the picture in other fields.

For more information on opaque data types, see the IBM Informix: Guide to SQL
Reference and the IBM Informix: User-Defined Routines and Data Types Developer’s
Guide.

Access to a Smart Large Object
The DataBlade API provides the smart-large-object interface for access to smart

large objects. This interface contains a set of functions and data types to provide
access to smart large objects. (For more information, see
Smart-Large-Object Interface” on page 6-15|) The smart-large-object interface
provides access to the smart large object through its LO handle, as follows:

* Once you select a column that contains an LO handle, you can use this handle to
access the smart-large-object data in an sbspace.

* To store a new smart large object, you create a new LO handle, write the data to
the sbspace, and store the LO handle in the column.

Selecting a Smart Large Object

A SELECT statement on a CLOB, BLOB, or opaque-type column retrieves an LO
handle for a smart large object. It does not retrieve the actual data for the smart
large object because this data resides in an sbspace.

To select a smart large object:

6-14 IBM Informix DataBlade API Programmer’s Guide

1. Use a SELECT statement to retrieve the LO handle from the CLOB, BLOB, or
opaque-type column.

The LO handle identifies the location of the smart large object on disk.
2. Read the smart-large-object data from the sbspace of the smart large object.

The LO handle identifies the smart large object to open. Once you open the
smart large object, you obtain an LO file descriptor, which you can use to read
data from the sbspace of the smart large object.

Storing a Smart Large Object

Because a smart large object can be quite large, it is not practical to store it directly
in the database table. Instead, the INSERT and UPDATE statements store the LO
handle of the smart large object in the CLOB, BLOB, or opaque-type column. The
data of the smart large object resides in an sbspace.

To save a smart large object in a CLOB, BLOB, or opaque-type column:

1. For a new smart large object, ensure that the smart large object has an sbspace
specified for its data.

For most smart large objects, the sbspace name is the only storage characteristic
that you need to specify. The smart-large-object optimizer can calculate values
for all other storage characteristics. You can set particular storage characteristics
to override these calculated values. However, most applications do not need to
set storage characteristics at this level of detail. For more information, see
[“Obtaining Storage Characteristics” on page 6-28|

2. Create a new LO handle for the smart large object and open the smart large
object.

When you create a smart large object, you obtain an LO handle and an LO file
descriptor for the new smart large object.

3. Write the smart-large-object data to the sbspace of the smart large object.

Use the LO file descriptor to identify the smart large object whose data you
want to write to the sbspace.

4. Use the INSERT or UPDATE statement to store the LO handle into the CLOB,
BLOB, or opaque-type column.

The LO handle for the smart large object identifies the location of the smart
large object on disk. Once you have written the data to the smart large object,
provide its LO handle to the INSERT or UPDATE statement to save it in the
database. The smart-large-object data remains in the sbspace.

Important: The sbspace for the smart large object must exist before the INSERT
statement executes.

When you store an LO handle in the database, the database server can ensure that
the smart large objects are only freed when no more database columns reference
them. For more information, see |”Deleting a Smart Large Object” on page 6—56[For
information on how to insert a smart large object from within a DataBlade API
module, see [‘Creating a Smart Large Object” on page 6-24,

Using the Smart-Large-Object Interface

The smart-large-object interface contains a set of functions and data types to
provide access to smart large objects. It enables you to access the data of a smart
large object in much the same way as you would access an operating-system file
on UNIX, Linux, or Windows. The interface provides the following:

¢ Smart-large-object functions

Chapter 6. Using Smart Large Objects 6-15

6-16

* Smart-large-object data type structures

The milo.h header file defines the functions and data type structures of the
smart-large-object interface. The mi.h header file automatically includes the milo.h
header file. You must include either mi.h or milo.h in any DataBlade API routine
that calls a smart-large-object function or declares one of the smart-large-object
data type structures.

Sections of this chapter describe how to use the smart-large-object interface to
perform the following operations on a smart large object.

Smart-Large-Object Operation More Information
Create a new smart large object page
Access data in an existing smart large object page
Modify an existing smart large object page
Obtain status information about an existing smart large object page
Delete a smart large object page

Smart-Large-Object Data Type Structures

The smart-large-object interface provides data type structures that store
i

information about a smart large object. [Table 6-6| summarizes the data type
structures of the smart-large-object interface.

Table 6-6. Data Types of the Smart-Large-Object Interface

Smart-Large-Object Data

Type Structure Data Type Description

The LO-specification structure MI_LO_SPEC Holds storage characteristics for
a smart large object

The LO handle MI_LO_HANDLE Identifies the location of the

smart large object; analogous to
the filename of an
operating-system file

The LO file descriptor MI_LO_FD Identifies an open smart large
object; analogous to the file
descriptor of an
operating-system file

The LO-status structure MI_LO_STAT Holds status information about a
smart large object

These structures are all opaque to a DataBlade API module; that is, you do not
access their fields directly but instead use accessor functions that the
smart-large-object interface provides.

LO-Specification Structure

The LO-specification structure, MI_LO_SPEC, defines the storage characteristics for
an existing or a new smart large object. The storage characteristics provide
information about features of the smart large object and how to store it on disk.
For a description of the storage characteristics available, see
[Characteristics” on page 6-4|

The following table summarizes the memory operations for an LO-specification
structure.

IBM Informix DataBlade API Programmer’s Guide

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_lo_spec_init()

Destructor mi_lo_spec_free()

To access an LO-specification structure in a DataBlade API module, declare a
pointer to an MI_LO_SPEC structure. For example, the following line shows the
valid syntax of a variable that accesses an LO-specification structure:

MI_LO SPEC *myspec; /* valid syntax */

Declaration of a flat LO-specification structure generates a compile error. The
following line shows invalid syntax for an LO-specification structure:

MI_LO_SPEC myspec; /* INVALID syntax =*/

The milo.h header file defines the MI_LO_SPEC data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this
structure. For information on how to use an LO-specification structure, see
[“Obtaining the LO-Specification Structure” on page 6-25|

LO Handle

An LO handle, MI_LO_HANDLE, serves as a reference to a smart large object. It is
analogous to the filename of an operating-system file in that it is a unique
identifier of a smart large object. The LO handle contains encoded information
about the smart large object, such as its physical disk location and other
security-related information. After a smart large object is created, an associated LO
handle is a valid reference for the life of that smart large object.

The following table summarizes the memory operations for an LO handle.

Memory Duration Memory Operation Function Name

Current memory duration Constructor mi_get_lo_handle(),
mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_buffer(),
mi_lo_from_string(),
mi_streamread_lo()

Destructor mi_lo_delete_immediate(),
mi_lo_release()

To access an LO handle in a user-defined routine (UDR), declare it in one of the
following ways:

¢ As a pointer to the MI_LO_HANDLE data type:
MI_LO_HANDLE *my_LOhndl; /* an LO-handle pointer =/
When you declare an LO handle in this way, you must allocate memory for it
before you use it. For more information, see [“Obtaining an LO Handle” on page|
[o-40

e As a flat MI_LO_HANDLE structure:
MI_LO_HANDLE my_flat_LOhnld; /* a flat LO handle */
When you declare a flat MI_LO_HANDLE structure, you do not need to allocate

memory for it. This flat structure is useful when you need to embed an LO
handle within an opaque data type.

Chapter 6. Using Smart Large Objects 6-17

6-18

The milo.h header file defines the MI_LO_HANDLE data type. Therefore, you
must include the milo.h (or mi.h) file in DataBlade API modules that access this
handle. For information on how to use an LO handle, see ['Initializing an|
LO-Specification Structure” on page 6-27and [’Selecting the LO Handle” on page]
6-4

LO File Descriptor

The LO file descriptor, MI_LO_FD, is a reference to an open smart large object. An
LO file descriptor is similar to a file descriptor for an operating-system file. It is an
integer number that serves as a transient descriptor for performing I/O on the data
of the smart large object. It provides the following information about an open
smart large object:

* The LO seek position, the current position at which read and write operations
occur.

When you first open a smart large object, the seek position is at byte zero (0).

* The open mode of the smart large object, which determines which operations can
be performed on the data and how to buffer the data for I/O operations.

You specify the open mode when you open a smart large object. For more
information, see [“Open-Mode Information” on page 6-8

The following table summarizes the memory operations for an LO file descriptor.

Memory Duration Memory Operation Function Name

Not allocated from memory-duration pools Constructor mi_lo_copy(),
mi_lo_create(),
mi_lo_expand(),
mi_lo_from_file(),
mi_lo_open()

Destructor mi_lo_close()

To access an LO file descriptor in a DataBlade API module, declare a variable with
the MI_LO_FD data type. For example, the following line declares the variable
my_lofd that is an LO file descriptor:

MI_LO_FD my_Tofd;

The milo.h header file defines the MI_LO_FD data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this handle.

Tip: Other smart-large-object data type structures require that you declare a
pointer to them because the DataBlade API handles memory allocation for
these structures. However, you can declare an LO file descriptor directly.

| Server Only |

Because you declare an LO file descriptor directly, its scope is that of the variable
you declare to hold it. When you assign an LO file descriptor to a local variable,
the LO file descriptor is deallocated when the function that declares it ends. If you
want to keep the LO file descriptor longer, you can allocate user memory with the
memory duration you want (up to the advanced duration of PER_SESSION) and
copy the LO file descriptor into this memory. For example, you could assign the
LO file descriptor to PER_COMMAND memory and copy it into the user state of
the MI_FPARAM structure. For more information, see [“Managing the Memoryl
[Duration” on page 14-21|and [“Saving a User State” on page 9-8

IBM Informix DataBlade API Programmer’s Guide

Important: Although the scope of an LO file descriptor is determined by its
declaration, the scope of the open smart large object (which the LO file
descriptor identifies) is the entire session. Make sure you explicitly
close a smart large object before the scope of its LO file descriptor

expires. For more information, see[“Freeing a Smart Large Object” on|
| End of Server Only |

For information on how to use an LO file descriptor, see|”Initializing an|

[LO-Specification Structure” on page 6-27}
LO-Status Structure

The LO-status structure, MI_LO_STAT, contains the status information for an
existing smart large object. The following table summarizes the memory operations
for an LO-status structure.

Memory Duration Memory Operation Function Name
Current memory duration Constructor mi_lo_stat()
Destructor mi_lo_stat_free()

To access an LO-status structure in a DataBlade API module, declare a pointer to
an MI_LO_STAT structure. For example, the following line declares the variable
mystat that points to an LO-specification structure:

MI_LO _STAT =*mystat; /+ valid syntax */

Declaration of a flat LO-status structure generates a compile error. The following
line shows invalid syntax for an LO-status structure:

MI_LO_STAT mystat; /* INVALID syntax =*/

The milo.h header file defines the MI_LO_STAT data type. Therefore, you must
include the milo.h (or mi.h) file in DataBlade API modules that access this
structure. For information on how to allocate and use an LO-status structure, see
[“Obtaining Status Information” on page 6-54

Smart-Large-Object Functions

The smart-large-object interface includes functions that provide the following
operations on a smart large object:

* Creating a smart large object

* Performing input and output (I/O) on smart-large-object data
* Manipulating LO handles

* Accessing storage characteristics

* Obtaining status information

* Moving smart large objects to and from operating-system files

Most of the smart-large-object function names begin with the string ‘mi_lo_". The
IBM Informix: DataBlade API Function Reference contains an alphabetical list of all
DataBlade API functions, including the smart-large-object functions.

Functions That Create a Smart Large Object

The smart-large-object creation functions create a new smart large object, open it,
and return a new LO handle and LO file descriptor for it.[Table 6-7 lists the

Chapter 6. Using Smart Large Objects 6-19

smart-large-object creation functions.

Table 6-7. Smart-Large-Object Creation Functions

Smart-Large-Object
Creation Function

Description

mi_lo_create()

Creates a new, empty smart large object

mi_lo_copy()

smart large object

Creates a new smart large object that is a copy of an existing

mi_lo_expand()
(deprecated)

Creates a new smart large object from existing
multirepresentational data

mi_lo_from_file()
file

Creates a new smart large object from data in an operating-system

For more information on how to use the smart-large-object creation functions, see

[‘Creating a Smart Large Object” on page 6-24|

Functions That Perform Input and Output on a Smart Large

Object

The smart-large-object interface for Dynamic Server includes functions that provide
basic file operations such as create, open, seek, read, write, alter, and truncate.
These routines bypass the query processor, executor, and optimizer, and give the
application direct access to a smart large object. These functions use an LO file
descriptor to identify the open smart large object.

able 6-8| shows the basic file-like operations on a smart large object with the
smart-large-object function that performs them and the analogous operating-system

calls for file operations.

Table 6-8. Main DataBlade API Functions of the Smart-Large-Object Interface

Smart-Large-Object Operation

Smart-Large-Object
Function

Operating-System Call

Open the smart large object that the ~ mi_lo_open() open()
LO handle identifies: the open

operation generates an LO file

descriptor for the smart large object.

Seek to the desired LO seek position mi_lo_seek() seek()
to begin a read or write operation.

Obtain the current LO seek position. ~ mi_lo_tell() tell()
Lock the specified number of bytes of mi_lo_lock() lock()

data.

Perform the read or write operation
for the specified number of bytes.

mi_lo_read(),
mi_lo_readwithseek(),
mi_lo_write(),
mi_lo_writewithseek()

read(), write()

Unlock the specified number of bytes mi_lo_unlock() unlock()
of data.
Obtain status information about a mi_lo_stat() stat()

particular smart large object.

Truncate smart-large-object data at a
specified location.

mi_lo_truncate()

truncate()

Close the smart large object and free
the LO file descriptor.

mi_lo_close()

close()

IBM Informix DataBlade API Programmer’s Guide

For more information, see [Opening a Smart Large Object” on page 6-48]

Functions That Manipulate an LO Handle
The following table shows the smart-large-object functions that act on an LO
handle, not on the smart large object that it identifies.

DataBlade API Function

mi_get_lo_handle()

mi_lo_alter()

mi_lo_copy()

mi_lo_create()

mi_lo_decrefcount()

mi_lo_expand()
(deprecated)

mi_lo_filename()

mi_lo_from_buffer()

mi_lo_from_file()

mi_lo_from_string()

mi_lo_increfcount()

mi_lo_invalidate()

mi_lo_lolist_create()

mi_lo_open()

mi_lo_ptr_cmp()

mi_lo_release()

mi_lo_to_buffer()

mi_lo_to_file()

Purpose
Obtains an LO handle from a user-defined buffer

Alters the storage characteristics of the smart large
object that the LO handle identifies

Copies the contents of a smart large object (that an
LO handle identifies) into a new smart large object
and initializes the LO handle of the new smart
large object

Creates a new smart large object and initializes its
LO handle

Decrements the reference count of the smart large
object that the LO handle identifies

Copies multirepresentational data into a new smart
large object and initializes the LO handle

Returns the name of the file where the
mi_lo_to_file() function would store the smart
large object that the LO handle identifies

Copies a specified number of bytes from a
user-defined buffer into a smart large object that
the LO handle identifies

Copies the contents of an operating-system file to a
smart large object that the LO handle identifies

Converts an LO handle from its text representation
to its binary representation

Increments the reference count of the smart large
object that the LO handle identifies

Marks an LO handle as invalid

Converts an array of LO handles into an
MI_LO_LIST structure

Opens the smart large object that the LO handle
identifies

Compares two LO handles to see if they identify
the same smart large object

Releases resources held by a transient smart large
object, including its LO handle

Copies a specified number of bytes from a smart
large object that the LO handle identifies into a
user-defined buffer

Copies the smart large object that the LO handle
identifies to an operating-system file

Chapter 6. Using Smart Large Objects 6-21

6-22

mi_lo_to_string()

mi_lo_validate()

mi_put_lo_handle()

Converts an LO handle from its binary
representation to its text representation

Checks whether an LO handle is valid

Puts an LO handle into a user-defined buffer

Important: The LO handle, MI_LO_HANDLE, is

an opaque structure to DataBlade API
modules. Do not access its internal
structure directly. There is no guarantee
that the internal structure of
MI_LO_HANDLE will not change. To
create portable code, use the
appropriate DataBlade API function to
access this structure.

or more information on how to use these functions, see aining an
F f t h t th f t “Obt L

[Handle” on page 6-40

Functions That Access an LO-Specification Structure
The following table shows the smart-large-object functions that access the

LO-specification structure.

DataBlade API Function

Purpose

mi_lo_alter()

Alters the storage characteristics of an existing smart
large object

mi_lo_colinfo_by_ids()

Updates the LO-specification structure with the
column-level storage characteristics for a column
identified by a row descriptor

mi_lo_colinfo_by_name()

Updates the LO-specification structure with the
column-level storage characteristics for a column
identified by name

mi_lo_copy()

Copies the contents of the smart large object into a
new smart large object, whose storage characteristics
the LO-specification structure contains

mi_lo_create()

Creates a new smart large object that has the storage
characteristics in the LO-specification structure

mi_lo_expand()
(deprecated)

Copies multirepresentational data into a new smart
large object, whose storage characteristics the
LO-specification structure contains

mi_lo_from_file()

Copies the contents of an operating-system file to a
smart large object, whose storage characteristics the
LO-specification structure contains

mi_lo_spec_free()

Frees the resources of the LO-specification structure

mi_lo_spec_init()

Allocates and initializes an LO-specification
structure

mi_lo_specget_def_open_flags()

Retrieves the default open mode from the
LO-specification structure

mi_lo_specget_estbytes()

Retrieves the estimated number of bytes from the
LO-specification structure

mi_lo_specget_extsz()

Accessor function to get the allocation extent size
from the LO-specification structure

IBM Informix DataBlade API Programmer’s Guide

DataBlade API Function

Purpose

mi_lo_specget_flags()

Accessor function to get the attributes flag from the
LO-specification structure

mi_lo_specget_maxbytes()

Accessor function to get the maximum number of
bytes from the LO-specification structure

mi_lo_specget_sbspace()

Accessor function to get the name of the sbspace
from the LO-specification structure

mi_lo_specset_def_open_flags()

Accessor function to set the default open mode in
the LO-specification structure

mi_lo_specset_estbytes()

Accessor function to set the estimated number of
bytes in the LO-specification structure

mi_lo_specset_extsz()

Accessor function to set the allocation extent size in
the LO-specification structure

mi_lo_specset_flags()

Accessor function to set the attribute flags in the
LO-specification structure

mi_lo_specset_maxbytes()

Accessor function to set the maximum number of
bytes in the LO-specification structure

mi_lo_specset_sbspace()

Accessor function to set the name of the sbspace in
the LO-specification structure

mi_lo_stat_cspec()

Returns a pointer to the LO-specification structure
that contains the storage characteristics obtained
from the LO-status structure of an existing smart
large object

Important: The LO-specification structure, MI_LO_SPEC, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_SPEC may change in future releases.
Therefore, to create portable code, always use the LO-specification
accessor functions to obtain and store values in this structure.

For more information on how to use these functions, see [“Obtaining the]

[LO-Specification Structure” on page 6-25/and [‘Choosing Storage Characteristics’

on page 6-2§l

Functions That Access an LO-Status Structure
The following table shows the smart-large-object functions that access the

LO-status structure.

DataBlade API Function

Purpose

mi_lo_stat()

Allocates and initializes an LO-status structure with status
information of an open smart large object

mi_lo_stat_atime()

Accessor function to get the last-access time

mi_lo_stat_cspec()

Accessor function to get the storage characteristics

mi_lo_stat_ctime()

Accessor function to get the last-change time

mi_lo_stat_free()

Frees the resources of the LO-status structure

mi_lo_stat_mtime_sec()

Accessor function to get the seconds component of the
last-modification time

mi_lo_stat_mtime_usec()

Accessor function to get the microseconds component of the
last-modification time

mi_lo_stat_refcnt()

Accessor function to get the reference count

Chapter 6. Using Smart Large Objects ~ 6-23

DataBlade API Function Purpose

mi_lo_stat_size() Accessor function to get the size of smart large object

Important: The LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_STAT may change in future releases.
Therefore, to create portable code, always use the LO-status accessor
functions to obtain and store values from this structure.

For more information on how to use these functions, see [“Obtaining Status|
[[Information” on page 6-54

Functions That Move Smart Large Objects to and from
Operating-System Files

The following table shows the smart-large-object functions that move smart large
objects to and from operating-system files.

DataBlade API Function Purpose
mi_file_to_file() Copies the contents of one operating-system file to another
mi_lo_from_file() Copies the contents of an operating-system file to a new

smart large object

mi_lo_from_file_by_lofd() Copies the contents of an operating-system file to an
existing smart large object

mi_lo_to_file() Copies the contents of a smart large object to a new
operating-system file

For more information on how to use these functions, see|“Using Operating-System|
[Files” on page 6-59|

Creating a Smart Large Object

To create a smart large object and save its LO handle in the database, you need to
take the following steps. For details on a step, see the page listed under “More
Information.”

Step Task Smart-Large-Object Function More Information
1. Obtain an LO-specification structure to mi_lo_spec_init(), mi_lo_stat_cspec() page

hold the storage characteristics for the
new smart large object.

2. Ensure that the LO-specification structure System-specified storage characteristics: page
contains the desired storage mi_lo_spec_init()
characteristics for the new smart large
object. Column-level storage characteristics:

mi_lo_colinfo_by_name(),
mi_lo_colinfo_by_ids()

User-specified storage characteristics:
Table 6-14 on page 6-35
Table 6-15 on page 6-36)

3. Create an LO handle for the new smart mi_lo_create(), mi_lo_expand(), page
large object and open the smart large mi_lo_copy(), mi_lo_from_file()
object.

6-24 IBM Informix DataBlade API Programmer’s Guide

Step Task Smart-Large-Object Function More Information
4. Write a specified number of bytes from a mi_lo_write(), mi_lo_writewithseek() page
user-defined buffer to the open smart
large object.
5. Pass the LO handle as the column value C Casting page
for an INSERT or UPDATE statement.
6. Execute an INSERT or UPDATE mi_exec(), mi_exec_prepared_statement(), page
statement to save the LO handle of the mi_value()
smart large object in a database column.
7. Close the smart large object. mi_lo_close() page
8. Free resources. mi_lo_spec_free(), mi_lo_release() page

shows the first six of these steps that a DataBlade API module uses to

insert the smart-large-object data
table (Figure 6-2 on page 6-14).

into the emp_picture column of the employee

BLOB
INSERT INTO employee column:
(emp_picture) VALUES... LO handle emp_picture
DataBlade routine \ é Server A employee
r®_ DAP|)=========== -==-=-% DS == empno emp_picture
1 o, |[€&=—===== L] F 1234
Smart- ®
1 create
1 |large-object # = = = = #r O handle 1235
| [interface 9
v 3 OMN . Database A
|@ M 4L write sbspace1_100
1 S -
Fe G-~ D
LO-specification LO file descriptors :
structure ——— | -- ol -
-7 Disk 100
Smart-large-object

Userdefined buffer

N

Figure 6-3. Inserting Into a BLOB Column

data:employee image

Obtaining the LO-Specification Structure

Before you create a new smart large object, obtain a valid LO-specification

structure to hold its storage chara

cteristics. You can obtain an LO-specification

structure in either of the following ways:

new smart large object with the

Obtain an LO-specification stru
existing smart large object with

Create a new LO-specification structure to hold the storage characteristics of a

mi_lo_spec_init() function.

cture that holds the storage characteristics of an
the mi_lo_stat_cspec() function.

Specifying New Storage Characteristics
The mi_lo_spec_init() function is the constructor for the LO-specification

structure. This function performs
LO-specification structure:

1.
pointer as an argument.

the following tasks to create a new

It allocates a new LO-specification structure when you provide a NULL-valued

Chapter 6. Using Smart Large Objects 6-25

6-26

2. It initializes all fields of the LO-specification structure (disk-storage information
and attributes flag) to the appropriate null values.

Important: Do not handle memory allocation for an LO-specification structure with
system memory-allocation routines (such as malloc() or mi_alloc())
or by direct declaration. You must use the LO-specification constructor,
mi_lo_spec_init(), to allocate a new LO-specification structure.

Allocating Memory for an LO-Specification Structure: When you pass a
NULL-valued pointer as the second argument of the mi_lo_spec_init() function,
this function allocates an LO-specification structure.

| Server Only |

This new LO-specification structure has the current memory duration.

| End of Server Only |

The following code fragment declares a pointer named myspec and initializes this
pointer to NULL:

MI_LO_SPEC *myspec;
MI_CONNECTION =*conn;

/* Allocate a new LO-specification structure */

myspec = NULL;

if (mi_lo_spec_init(conn, &myspec) != MI _OK)
handle_error();

/* Perform tasks with LO-specification structure x/

/* Once finished with LO-specification structure, free it */
if (mi_lo_spec_free(conn, myspec)!= MI_OK)
handle_error();

After the execution of mi_lo_spec_init(), the myspec variable points to the newly
allocated LO-specification structure. For more information on how to use an
LO-specification structure to create a new smart large object, see|’Choosing Storage|
[Characteristics” on page 6-28]

If you provide a second argument that does not point to NULL, the
mi_lo_spec_init() function assumes that this pointer references an existing
LO-specification structure that a previous call to mi_lo_spec_init() has allocated.
An LO-specification pointer that is not NULL allows a DataBlade API module to
reuse an LO-specification structure. The following code fragment reuses the
LO-specification structure that the LO_spec pointer references when the first_time
flag is false:

MI_CONNECTION *conn;

MI_LO_SPEC *LO_spec = NULL;

mi_integer first_time;

if (first_time)
{

LO_spec = NULL; /* tell interface to allocate memory */
first_time = 0; /* set "first_time" flag to false */

IBM Informix DataBlade API Programmer’s Guide

if (mi_lo_spec_init(conn, &LO0_spec) != MI 0K)
{

/* error x/

}

Important: Before you use an LO-specification structure, make sure that you either
call mi_lo_spec_init() with the LO-specification pointer set to NULL,
or that you have initialized this pointer with a previous call to
mi_lo_spec_init().

Once you have a valid LO-specification structure, you can use the accessor
functions to obtain the storage characteristics from this LO-specification structure.
For more information, see [‘Defining User-Specified Storage Characteristics” on|
For the syntax of mi_lo_spec_init(), see the IBM Informix: DataBlade
API Function Reference.

Initializing an LO-Specification Structure: The mi_lo_spec_init() function
initializes the LO-specification structure with values that obtain the
system-specified storage characteristics. The system-specified storage characteristics
are the defaults that the database server uses. They are the storage characteristics
at the bottom of the storage-characteristics hierarchy.

After this initialization, you can change the values in the LO-specification
structure:

* The new smart large object inherits column-level storage characteristics of a
CLOB or BLOB column.

* You provide user-specified storage characteristics for the new smart large object.

For more information on storage characteristics and the storage-characteristics
hierarchy, see|“Choosing Storage Characteristics” on page 6-2§

Copying Storage Characteristics from an Existing Smart Large
Object

The mi_lo_stat_cspec() function copies the storage characteristics from an existing
smart large object to an LO-specification structure. This function performs the
following tasks:

1. It allocates a new LO-specification structure to hold the storage characteristics.

2. It initializes all fields of this LO-specification structure (disk-storage
information and attributes flag) to the values of the storage characteristics of
the smart large object whose status information is in the LO-status structure
that you pass as an argument.

3. It returns the address of the newly allocated LO-specification structure.

The LO-status structure holds status information for an existing smart large object.
You initialize an LO-status structure with the mi _lo stat() function. For more
information on an LO-status structure, see|[“Obtaining Status Information” on page

The following code fragment assumes that the old_LOfd variable has already been
initialized as the LO file descriptor of an existing smart large object. This code
fragment uses the storage characteristics of the existing smart large object (which
the mi_lo_stat() function puts into the LO-specification structure that LO_spec
specifies) as the storage characteristics for the new smart large object (which the
mi_lo_create() function creates).

Chapter 6. Using Smart Large Objects 6-27

6-28

MI_LO_HANDLE #LO_hdl = NULL;
MI_LO_STAT =LO_stat = NULL;
MI_LO_SPEC =LO_spec;

MI_LO_FD new_LOfd, old_LOfd;

if (mi_lo_stat(conn, old_LOfd, &LO_spec) != MI _OK)
{
/* handle error and exit */
}
LO_spec = mi_Tlo_stat cspec(LO stat);
new_LOfd = mi_lo_create(conn, LO_spec, flags, &L0_hdl);

Choosing Storage Characteristics

After initializing an LO-specification structure, you need to ensure that this
structure contains the appropriate values for the storage characteristics you want
the smart large object to have. Then you pass this LO-specification structure to one
of the smart-large-object creation functions (Table 6-7 on page 6-20) so that the
smart-large-object optimizer can obtain the storage characteristics to use for the
new smart large object.

To choose storage characteristics for a new smart large object:

1. Use the system-specified storage characteristics as a basis for obtaining the
storage characteristics of a smart large object.

The system-specified storage characteristics are the default storage characteristics
for a smart large object.

2. Customize the storage characteristics.

You can override the system-specified storage characteristics with one of the
following levels of the storage-characteristics hierarchy:

* Storage characteristics defined for a particular CLOB or BLOB column in
which you want to store the smart large object

Storage characteristics that are unique to a particular CLOB or BLOB column
are called column-level storage characteristics.

* User-specified storage characteristics

Special storage characteristics that you define for this smart large object only
are called user-specified storage characteristics.

Important: For most applications, use the system-specified values for the
disk-storage information. Most DataBlade API modules need to ensure
correct storage characteristics only for an sbspace name (the location of
the smart large object) and for the smart-large-object attributes.

Obtaining Storage Characteristics

For most smart large objects, all you need to do is obtain the system-specified
storage characteristics. When you obtain these storage characteristics for a smart
large object, you can specify a location for it and override system-specified
attributes.

To obtain system-specified storage characteristics:

1. Use the mi_lo_spec_init() function to allocate an LO-specification structure
and to initialize this structure to the appropriate null values.

When a storage characteristic in the LO-specification structure has the
appropriate null value (zero or a NULL-valued pointer), the smart-large-object
optimizer obtains the system-specified value for the storage characteristic. The
smart-large-object optimizer calculates the system-specified values for

IBM Informix DataBlade API Programmer’s Guide

disk-storage storage characteristics. Most applications can use these
system-specified values. For more information, see ['Using System-Specified|
[Storage Characteristics” on page 6-32|

2. Specify the location of the smart large object to override the default location.
You can specify the location as one of the following:

* The name of the sbspace associated with the CLOB or BLOB column in
which you want to store the smart large object

To store a new smart large object in a CLOB or BLOB column, use the
mi_lo_colinfo_by_name() or mi_lo_colinfo_by_ids() function. These
functions obtain the column-level storage characteristics for this column. One
of the storage characteristics they obtain is the sbspace name for the column.
For more information, see [“Obtaining Column-Level Storage Characteristics”|

* The name of some other sbspace

You might want to specify an sbspace name for a new smart large object that
is embedded in an opaque data type. The mi_lo_specset_sbspace() accessor
function sets the name of the sbspace in the LO-specification structure. For
more information, see [“Defining User-Specified Storage Characteristics” onl
3. Optionally, override any attributes for the smart large object with the
mi_lo_specset_flags() accessor function.

The system-specified attributes have both logging and last-access time disabled.
You might want to enable one or more attributes for the new smart large object.
The mi_lo_specset_flags() function sets the attributes flag in the
LO-specification structure. For more information, see [“Defining User-Specified|
[Storage Characteristics” on page 6-35|

4. Pass this LO-specification structure to one of the smart-large-object creation
functions (mi_lo_create(), mi_lo_copy(), mi_lo_expand(), or
mi_lo_from_file()) to create the new smart large object.

The smart-large-object creation function creates a new smart large object that

has storage characteristics that the LO-specification structure indicates. For
more information, see [“Initializing an LO-Specification Structure” on page 6-27}

You would probably want to modify the storage characteristics of the new smart
large object in the following cases:

* Your application needs to obtain extra performance.

You can use other LO-specification accessor functions to change the disk-storage
information of a new smart large object. For more information, see
[User-Specified Storage Characteristics” on page 6-35.

* You want to use the storage characteristics of an existing smart large object.

The mi_lo_stat_cspec() function can obtain the storage characteristics of an
open smart large object through its LO-status structure. For more information,
see [“Copying Storage Characteristics from an Existing Smart Large Object” on|

|Eage 6-22}

Using the Storage-Characteristics Hierarchy
Dynamic Server uses the storage-characteristics hierarchy, which shows, to
obtain the storage characteristics for a new smart large object.

Chapter 6. Using Smart Large Objects 6-29

Database server storage characteristics
(system defaults)

Shspace storage characteristics
(assigned when the shspace is created with the onspaces utility
or when you change the sbspace with onspaces -ch)

A
Column-level storage characteristics
(assigned when the table is created with the CREATE TABLE statement
or when you change the table with the ALTER TABLE st

For a given storage characteristic, any value defined at the column level overrides
the system-specified value, and any user-level value overrides the column-level
value. summarizes the ways to specify disk-storage information for a
smart large object.

Table 6-9. Specifying Disk-Storage Information

Column-Level User-Specified
Storage Storage
System-Specified Storage Characteristics Characteristics Characteristics
Specified by the Specified by a
System Default Specified by onspaces PUT clause of DataBlade API
Disk-Storage Information Value Utility CREATE TABLE Function
Size of extent Calculated by EXTENT_SIZE EXTENT SIZE Yes
smart-large-object
optimizer
Size of next extent Calculated by NEXT_SIZE No No
smart-large-object
optimizer
Minimum extent size Four kilobytes MIN_EXT_SIZE No No
Size of smart large object Calculated by Average size of all No Estimated size of a
smart-large-object smart large objects in particular smart
optimizer sbspace: large object
AVG_LO_SIZE Maximum size of a

particular smart
large object

Maximum size of I/O Calculated by MAX_IO_SIZE No No
block smart-large-object
optimizer

Table 6-14. Disk-Storage Information in the LO-Specification Structure (continued)

Disk-Storage

LO-Specification

Information Description Accessor Function
Allocation extent size The allocation extent size, in kilobytes mi_lo_specget_extsz()
It is the size of the page extents for the smart large mi_lo_specset_extsz()

object. By default, this value is -1, which tells the
smart-large-object optimizer to obtain the allocation
extent size from the storage-characteristics hierarchy.

Name of the sbspace

The name of the sbspace that contains the smart large mi_lo_specget_sbspace()
object

mi_lo_specset_sbspace()
The sbspace name can be at most 18 characters long and
must be null terminated. By default, this value is null,
which tells the smart-large-object optimizer to obtain the
sbspace name from the storage-characteristics hierarchy.

For most applications, use the values for the disk-storage information that the
smart-large-object optimizer determines. If you know the size of the smart large
object, it is recommended that you specify this size in the
mi_lo_specset_estbytes() function instead of in the onspaces utility or the
CREATE TABLE or the ALTER TABLE statement. This mi_lo_specset_estbytes()
function (and the corresponding ESQL/C ifx_lo_specset_estbytes() function) is
the best way to set the extent size because the database server can allocate the
entire smart large object as one extent. For more information, see
[Information” on page 6-5|

Accessing Attributes: The LO-specification structure uses a bitmask flag, called an
attributes flag, to specify the attributes of a smart large object. [Table 6-15|shows the

attribute constants of an LO-specification structure.

Table 6-15. Attribute Constants in the LO-Specification Structure

Attribute Attribute Constant Description

Logging: MI_LO_ATTR_LOG Log changes to the smart large object in

the system log file.

MI_LO_ATTR_NO_LOG Turn off logging for all operations that

involve the associated smart large object.

Consider carefully whether to use the MI_LO_ATTR_LOG flag value. The database server incurs
considerable overhead to log smart large objects. For more information, see [‘Logeing” on pagel

Last-access time: MI_LO_ATTR_KEEP_LASTACCESS_TIME Save the last-access time for the smart

large object.

MI_LO_ATTR_NOKEEP_LASTACCESS_TIME Do not maintain the last-access time for

the smart large object.

Consider carefully whether to use the MI_LO_ATTR_KEEP_LASTACCESS_TIME flag value. The
database server incurs considerable overhead in logging and concurrency to maintain last-access
times for smart large objects. For more information, see [“Last-Access Time” on page 6-7.

6-36 IBM Informix DataBlade API Programmer’s Guide

Table 6-15. Attribute Constants in the LO-Specification Structure (continued)

Attribute Attribute Constant Description
Data integrity: MI_LO_ATTR_HIGH_INTEG Use both a page header and a page trailer
for the pages of the sbspace.
MI_LO_ATTR_MODERATE_INTEG Use only a page header for the pages of

the sbspace.

Consider carefully whether to use the MI_LO_ATTR_MODERATE_INTEG flag value. Although
moderate integrity takes less disk space per page, it also reduces the ability of the database
server to recover information should disk errors occur. For more information, see
[Integrity” on page 6-7|

The milo.h header file defines the attribute constants: MI_LO_ATTR_LOG,
MI_LO_ATTR_NO_LOG, MI_LO_ATTR_KEEP_LASTACCESS_TIME, and
MI_LO_ATTR_NOKEEP_LASTACCESS_TIME, MI_LO_ATTR_HIGH_INTEG, and
MI_LO_ATTR_MODERATE_INTEG.

able 6-16[shows the LO-specification accessor functions for the attribute
information.

Table 6-16. Accessor Functions for Attribute Information in the LO-Specification Structure

LO-Specification
Accessor Function Description

mi_lo_specget_flags() Overrides system-specified or column-level attributes in the
LO-specification structure with the attributes that the
attributes flag specifies

mi_lo_specset_flags() Retrieves the attributes flag from the LO-specification
structure

To set an attributes flag:

1. If you need to set more than one attribute, use the C-language bitwise OR
operator (|) to mask attribute constants together.

2. Use the mi_lo_specset_flags() accessor function to store the attributes flag in
the LO-specification structure.

Masking mutually exclusive flags results in an error. If you do not specify a value
for a particular attribute, the database server uses the storage-characteristics
hierarchy to determine this information.

For example, the following code fragment specifies the constants to enable logging
the last-access time for the attributes flag in the LO-specification structure that
LO_spec identifies:

MI_CONNECTION =conn;

MI_LO_SPEC =LO_spec = NULL;

mi_integer create_flgs;

if (mi_lo_spec_init(conn, &LO_spec) != MI_OK)
/* handle error and exit */

create_flgs =
MI_LO_ATTR_LOG | MI_LO_ATTR_KEEP_LASTACCESS TIME;

if (mi_lo_specset_flags(LO_spec, create flgs) != MI 0K)
/* handle error and exit =*/

Chapter 6. Using Smart Large Objects 6-37

6-38

For more information on the attributes of a smart large object, see
[[nformation” on page 6-5|and the descriptions of the mi_lo_specset_flags() and
mi_lo_specget_flags() functions in the IBM Informix: DataBlade API Function
Reference.

Accessing the Default Open Flag: When you open a smart large object, you can
specify the open mode for the data. The open mode describes the context in which
the I/O operations on the smart large object are performed. The LO-specification
structure uses a bitmask flag, called a default-open-mode flag, to specify the default
open mode of a smart large object. shows the open-mode constants of an
LO-specification structure.

Table 6-17. Open-Mode Constants in the LO-Specification Structure

Open-Mode

Information Open-Mode Constant Description

Access modes MI_LO_RDONLY Read-only mode
MI_LO_DIRTY_READ Dirty-read mode
MI_LO_WRONLY Write-only mode
MI_LO_APPEND Write/append mode
MI_LO_RDWR Read /write mode
MI_LO_TRUNC Truncate

These access-mode flags for a smart large object are patterned after the UNIX System V
file-access modes. For more information, see [“Access Modes” on page 6-8

Access methods MI_LO_RANDOM Random access
MI_LO_SEQUENTIAL Sequential access
MI_LO_FORWARD Forward
MI_LO_REVERSE Reverse

For more information, see [“Access Methods” on page 6-9|

Buffering modes MI_LO_BUFFER Buffered access (Buffered I/0)
MI_LO_NOBUFFER Unbuffered access (Lightweight 1/0)

For more information, see [‘Buffering Modes” on page 6-9}

Locking modes MI_LO_LOCKALL Lock-all locks
MI_LO_LOCKRANGE Byte-range locks

For more information, see ["Locking Modes” on page 6-11}

The milo.h header file defines the open-mode constants: MI_LO_RDONLY,
MI_LO_DIRTY_READ, MI_LO_WRONLY, MI_LO_APPEND, MI_LO_RDWR,
MI_LO_TRUNC, MI_LO_RANDOM, MI_LO_SEQUENTIAL, MI_LO_FORWARD,
MI_LO_REVERSE, MI_LO_BUFFER, MI_LO_NOBUFFER, MI_LO_LOCKALL, and
MI_LO_LOCKRANGE.

able 6-18| shows the LO-specification accessor functions for the default-open-mode
information.

IBM Informix DataBlade API Programmer’s Guide

Table 6-18. Accessor Functions for Attribute Information in the LO-Specification Structure

LO-Specification
Accessor Function Description

mi_lo_specget_def_open_flags() Overrides the system default open mode with the
open mode that the default-open-mode flag specifies

mi_lo_specset_def_open_flags() Retrieves the default-open-mode flag from the
LO-specification structure

To set a default-open-mode flag:

1. Use the appropriate open-mode constants from the list in [Table 6-17 on page
If you need to set more than one default-open-mode value, use the
C-language bitwise OR operator (|) to mask open-mode constants together.

2. Use the mi_lo_specset_def_open_flags() accessor function to store the
default-open-mode flag in the LO-specification structure.

Masking mutually exclusive flags results in an error. However, you can mask the
MI_LO_APPEND constant with another access-mode constant. In any of these OR
combinations, the seek operation remains unaffected. The following table shows
the effect that each of the OR combinations has on the read and write operations.

OR Operation Read Operations Write Operations
MI_LO_RDONLY | Starts at the LO seek Fails and does not move the LO seek
MI_LO_APPEND position and then moves position

the seek position to the end
of the data that has been

read
MI_LO_WRONLY | Fails and does not move Moves the LO seek position to the
MI_LO_APPEND the LO seek position end of the smart large object and
then writes the data
The LO seek position is at the end of
the data after the write operation.
MI_LO_RDWR | Starts at the LO seek Moves the LO seek position to the
MI_LO_APPEND position and then moves end of the smart large object and

the seek position to the end then writes the data

of the data that has been
read The LO seek position is at the end of

the data after the write operation.

For more information on access modes of a smart large object, see [‘Access Modes”]|

If you do not specify a value for a particular part of the open mode, the database
server assumes the following system default open mode when you open a smart
large object.

Access Capability Default Open Mode Smart-Large-Object Constant
Access mode Read-only MI_LO_RDONLY

Access method Random MI_LO_RANDOM

Buffering Buffered access MI_LO_BUFFER

Locking Whole-object locks MI_LO_LOCKALL

Chapter 6. Using Smart Large Objects 6-39

6-40

You can specify a different open mode for a particular smart large object when you
open a smart large object. For more information on how to open a smart large
object, see|“Opening a Smart Large Object” on page 6-48|

Initializing an LO Handle and an LO File Descriptor

Once you have an LO-specification structure that describes the storage
characteristics for the new smart large object, you can create the smart large object
with one of the smart-large-object creation functions: mi_lo_copy(),
mi_lo_create(), mi_lo_expand(), or mi_lo_from_file(). These smart-large-object
creation functions perform the following tasks to create a new smart large object:

1. Initialize the LO handle for the new smart large object

You provide a pointer to an LO handle as an argument to these functions. The
creation functions initialize the LO handle with information about the location
of the new smart large object.

2. Store the storage characteristics in a user-supplied LO-specification structure for
the new smart large object in the metadata area of the sbspace

You provide a pointer to an LO-specification structure as an argument to these
functions. For more information, see [“Obtaining the LO-Specification Structure”]

3. Open the new smart large object in the specified access mode

You provide the open mode as an argument to the mi_lo_create(),
mi_lo_copy(), or mi_lo_expand() function. The mi_lo_from_file() function
opens a smart large object in read /write mode. For more information, see
[“Opening a Smart Large Object” on page 6-48|

4. Write any associated data to the new smart large object

The mi_lo_copy(), mi_lo_expand(), and mi_lo_from_file() function specifies
data to write to the sbspace of the new smart large object.

5. Return an LO file descriptor that identifies the open smart large object

The LO file descriptor is needed for most subsequent operations on the smart
large object. However, this LO file descriptor is only valid within the current
database connection.

These smart-large-object creation functions initialize the following data type
structures for a smart large object:

* An LO handle, which identifies the location of the smart large object and can be
stored in a CLOB, BLOB, or opaque-type column

* An LO file descriptor, which identifies the open smart large object

Obtaining an LO Handle
A DataBlade API module can obtain an LO handle with any of the following
methods:

* Any of the smart-large-object creation functions can allocate an LO handle for a
new smart large object.
* A DataBlade API module can explicitly allocate an LO handle.

e A SELECT statement can return an LO handle from a CLOB or BLOB column in
the database.

For more information, see [‘Selecting the LO Handle” on page 6-47|

Implicitly Allocating an LO Handle: Any of the smart-large-object creation
functions (Table 6-7 on page 6-20)) can allocate memory for an LO handle when you
specify a NULL-valued pointer for the last argument. For example, the following

IBM Informix DataBlade API Programmer’s Guide

code fragment declares a pointer to an LO handle named LO_hd], initializes it to
NULL, and then calls the mi_lo_create() function to allocate memory for this LO
handle:

MI_CONNECTION =conn;

MI_LO_SPEC =LO_spec;

MI_LO_HANDLE *LO_hdl = NULL; /* request allocation =*/

MI_LO_FD LO_fd;

mi_integer flags;

LO_fd = mi_lo_create(conn, &LO_spec, flags, &L0_hd1);

After the execution of mi_lo_create(), the LO_hdl variable is a pointer to the new
LO handle, which identifies the location of the new smart large object.

| Server Only

This new LO handle has a default memory duration of PER_ROUTINE. If you
switch the memory duration, the creation function uses the current memory
duration for the LO handle that it allocates.

| End of Server Only

If you provide an LO-handle pointer that does not point to NULL, the
smart-large-object creation function assumes that memory has already been
allocated for the LO handle and it uses the LO handle that you provide.

Explicitly Allocating an LO Handle: You can explicitly allocate an LO handle in
either of the following ways:

* Dynamically, with one of the DataBlade API memory-management functions
such as mi_alloc():

MI_LO_HANDLE *LO_hdl = mi_alloc(sizeof (MI_LO_HANDLE));
* On the stack, with a direct declaration:

MI_LO_HANDLE my LOhnd1;
MI_LO_HANDLE *LO_hd12, &my LOhnd1;

However, this LO handle is still an opaque C data structure; that is, it is declared
as a flat array of undifferentiated bytes and its fields are not available to the
DataBlade API module.

Important: The LO handle structure is the only smart-large-object structure that a
DataBlade API module can allocate directly. You must allocate other
smart-large-object data type structures, such as the LO-specification
structure and the LO-status structure, with the appropriate DataBlade
API constructor function.

Obtaining an LO File Descriptor

The smart-large-object creation functions (Table 6-7 on page 6-20) return an LO file
descriptor for a smart large object. The LO file descriptor is needed for most
subsequent operations on the smart large object. However, this LO file descriptor is
only valid within the current database connection.

The following code fragment uses the mi_lo_create() function to generate an LO
file descriptor for a new smart large object:

MI_LO_FD LO_fd;

MI_LO_HANDLE *LO_hd1;

MI_LO_SPEC =LO_spec;

Chapter 6. Using Smart Large Objects 6-41

6-42

MI_CONNECTION =*conn;

LO fd = mi_To_create(conn, LO spec, MI_LO RDONLY, &LO hdl);

Tip: A return value of zero (0) from a smart-large-object creation function does not
indicate an error. The value zero (0) is a valid LO file descriptor.

Writing Data to a Smart Large Object

To write data to the sbspace of a smart large object, use one of the following
smart-large-object functions:

* The mi_lo_write() function begins the write operation at the current LO seek
position.
You can obtain the current LO seek position with the mi_lo_tell() function, or
you can set the LO seek position with the mi_lo_seek() function.

e The mi_lo_writewithseek() function performs the seek and write operations
with a single function call.

You specify the seek position at which to begin the write operation as arguments
to mi_lo_writewithseek().

These functions both write a specified number of bytes from a user-defined
character buffer to the open smart large object that an LO file descriptor identifies.
The smart-large-object optimizer determines the default extent size for the smart
large object based on the amount of data that you write. Therefore, try to
maximum the amount of data you write in a single call to mi_lo_write() or
mi_lo_writewithseek().

Important: An attempt to write data to an sbspace that does not exist results in an
error.

In addition to a write operation, you might also need to perform the following
operations on the open smart large object.

Smart-Large-Object

Task Function More Information

Read data from the sbspace mi_lo_read(), page
mi_lo_readwithseek()

Obtain the LO seek position mi_lo_tell() page

Obtain status information mi_lo_stat() page

Obtain storage characteristics mi_lo_stat_cspec() page

Storing an LO Handle

The INSERT or UPDATE statement can store the LO handle of a smart large object
into the CLOB, BLOB, or opaque-type column.

To store a smart large object in the database:
1. Provide the LO handle to the INSERT or UPDATE statement, as follows:
* For a CLOB or BLOB column, provide the LO handle as data for the column.
* For an opaque-type column, store the LO handle in the internal structure of
the opaque data type and pass this internal structure as data for the column.

2. Execute the INSERT or UPDATE statement with a DataBlade API function such
as mi_exec() or mi_exec_prepared_statement().

IBM Informix DataBlade API Programmer’s Guide

Tip: The data of the smart large object is stored when you write it to the sbspace
of the smart large object.

When you save the LO handle in the CLOB or BLOB column, the
smart-large-object optimizer increments the reference count of the smart large
object by one. When you save the LO handle in an opaque-type column, the
assign() support function for the opaque type must increment the reference count.

If you create a new smart large object but do not store it in a database column, the
smart large object is a transient smart large object. The database server does not
guarantee that transient smart large objects remain valid once they are closed.
When all references to the smart large objects are deleted, the database server
deletes the smart large object. For more information, see|’Deleting a Smart Large]
Object” on page 6-56|

For more information on how to execute an INSERT or UPDATE statement, see
(Chapter 8, “Executing SQL Statements,” on page 8-1|

Freeing Resources

After you store the new smart large object in the database, make sure that any
resources you no longer need are freed. When you create a new smart large object,
you might need to free resources of the following data type structures:

¢ The LO-specification structure

e The LO handle

| Server Only |

If any of the smart-large-object data type structures has a memory duration of
PER_ROUTINE, the database server automatically frees the structure when the
UDR completes.

| End of Server Only |

Freeing an LO-Specification Structure

| Server Only |

The mi_lo_spec_init() function allocates an LO-specification structure in the
current memory duration. Therefore, if an LO-specification structure has a memory
duration of PER_ROUTINE, the database server automatically frees it when the
UDR completes.

| End of Server Only |

To explicitly free the resources assigned to an LO-specification structure, use the
mi_lo_spec_free() function. The mi_lo_spec_free() function is the destructor
function for the LO-specification structure. When these resources are freed, they
can be reallocated to other structures that your program needs.

Freeing an LO Handle

| Server Only |

The LO handle structure is allocated with the current memory duration. Therefore,
if it has the default memory duration of PER_ROUTINE, the database server

Chapter 6. Using Smart Large Objects 6-43

automatically frees it when the UDR completes.

| End of Server Only

To explicitly free the resources assigned to an LO handle, you can use one of the
following DataBlade API functions.

DataBlade API Function Object Freed

mi_lo_release() Frees resources of a transient smart large object

Frees an LO handle that the DataBlade API allocated

mi_free() Frees an LO handle that you have allocated

If you allocate an LO handle with a DataBlade API
memory-management function (such as mi_alloc() or
mi_dalloc()), use mi_free() to explicitly free the
resources.

mi_lo_delete_immediate() Immediately frees the resources of a smart large object
(rather than waiting for the end of the transaction)

When these resources are freed, they can be reallocated to other structures that
your program needs.

Sample Code to Create a New Smart Large Object

Suppose you want to create a new smart large object for the cat_descr column in
the catalog2 table that contains the following data:

The rain in Spain stays mainly in the plain. In Hartford, Hereford, and
Hampshire, hurricanes hardly happen.

The following code fragment creates a new smart large object, which assumes the
storage characteristics of its column, cat_descr, and then modifies the logging
behavior:

#include "int8.h"
#include "mi.h"

#define BUFSZ 10000

{
MI_CONNECTION =*conn;
MI_LO_SPEC =*create_spec = NULL;
MI_LO_HANDLE =*descrip = NULL;
MI_LO FD Tofd;
char buf[BUFSZ];
mi_integer buflen = BUFSZ;
mi_int8 offset, est_size;
mi_integer numbytes;

/* Allocate and initialize the LO-specification structure */
if (mi_lo_spec_init(conn, &create spec) == MI_ERROR)
handle_lo_error("mi_To_spec_init()");

/* Obtain the following column-level storage characteristics
* for the cat_desc column:

shspace name = sbl (this sbspace must already exist)
keep Tast access time is ON

* ok

*/
if (mi_lo_colinfo_by name(conn, "catalog2.cat_descr",
create_spec) == MI_ERROR)
handle_lo_error("mi_lo_colinfo_by name()");

6-44 IBM Informix DataBlade API Programmer’s Guide

/* Provide user-specified storage characteristics:

* logging behavior is ON
* size estimate of two kilobytes
*/

mi_To_specset_flags(create_spec, MI_LO ATTR_LOG);

ifx_int8cvint (2000, &est size);
mi_To_specset_estbytes(create spec, &est size)

/* Create an LO handle and LO file descriptor for the new
* smart large object

*/

if (1ofd = mi_lo_create(conn, create_spec, MI_LO_RDWR,

&descrip) == MI_ERROR)

handle_To_error("mi_To_create()");

/* Copy data into the character buffer 'buf' */
sprintf(buf, "%s %s %s"
"The rain in Spain stays mainly in the plain.
"In Hartford, Hereford, and Hampshire, hurricanes",
" hardly happen.");

/* Write contents of character buffer to the open smart

* large object to which Tofd points.

*/

ifx_int8cvint (0, &offset);

if (numbytes = mi_lo_writewithseek(conn, lofd, buf,
buflen, &offset, MI_LO_SEEK SET) == MI_ERROR)

handle_To_error("mi_To_writewithseek()");

/* Close the LO file descriptor */
mi_To_close(conn, Tofd);

/* Free LO-specification structure */
mi_lo_spec_free(conn, create_spec);

After the mi_lo_create() function executes, the following items are true:

* The create_spec LO handle was allocated and identifies the new smart large

object.

e The lofd LO file descriptor identifies the open smart large object.

* The new smart large object has user-specified storage characteristics for logging
behavior and estimated size.

The smart large object inherits the other storage characteristics. [Table 6-19 shows
the complete storage characteristics for this new smart large object.

Table 6-19. Storage Characteristics for the New Smart Large Object

Storage Characteristic

Value

Specified By

Disk-storage information:

Size of extent

Calculated by smart-large-object optimizer

system-specified

Size of next extent

Calculated by smart-large-object optimizer

system-specified

Minimum extent size

Calculated by smart-large-object optimizer

system-specified

Size of smart large object

Two kilobytes (smart-large-object optimizer
uses as size estimate)

mi_lo_specset_estbytes()

Maximum size of 1/O block

Calculated by smart-large-object optimizer

system-specified

Name of sbspace

sb1

column-level

Attribute information:

Chapter 6. Using Smart Large Objects 6-45

Table 6-19. Storage Characteristics for the New Smart Large Object (continued)

Storage Characteristic

Value Specified By

Logging

ON mi_lo_specset_flags() with
MI_LO_ATTR_LOG

Last-access time

ON column-level

[Table 6-13 on page 6-33|shows the column-level storage characteristics for the
cat_descr column and [Table 6-12 on page 6-32 shows the system-specified storage
characteristics for the sb1 sbspace.

The mi_lo_writewithseek() function writes the buf data to the smart large object
that lofd identifies. When the write operation is successful, the descrip LO handle
is ready to be stored in the CLOB column with the INSERT statement.

For more information on how to insert a value into a column, see |[Chapter 8,
[‘Executing SQL Statements,” on page 8-1}

Accessing a Smart Large Object

6-46

To access an existing smart large object in the database, you need to perform the
following steps. For details on a step, see the page listed under “More
Information.”

More
Step Task Smart-Large-Object Function Information
1. Execute a SELECT statement to mi_exec(), page
obtain the LO handle of the mi_exec_prepared_statement(),
smart large object from the mi_value()
CLOB or BLOB column.
2. Convert the returned column C Cast page
value into an LO handle.
3. Open the smart large object mi_lo_open() page
that the LO handle identifies
and return a valid LO file
descriptor.
4. Read a specified number of mi_lo_read(), page
bytes and store them in a mi_lo_readwithseek()
user-defined buffer.
5. Close the smart large object. mi_lo_close() page
6. Free resources. mi_lo_release() page

shows the first four of these steps that a DataBlade API module uses to
access the smart-large-object data from the emp_picture column of the employee
table (Figure 6-2 on page 6-14).

IBM Informix DataBlade API Programmer’s Guide

SELECT emp_picture BLOB
FROM employee column:

emp_picture
/ DataBlade routine \ Server A employee /
___| DAPI >;‘_'_'_'_'_'_'_'_‘_'_'_'_'_ iy -*' empno emp picture
@ P
Smart | oper K ﬁ
-

. 1235
large-object T == N
ge-ob) ®

13 LO handle
interface ™ a
: Na <read Database A

LOfile descriptors N
O handle N sbspacei_100
- - @~

-
- ~
-~

K Userdefined buffer J @ ~==-

Disk 100
Smart-large-object
data:employeeimage

Figure 6-5. Selecting a BLOB Column

Selecting the LO Handle

The SELECT statement can select an LO handle of a smart large object from a
CLOB, BLOB, or opaque-type column. Because the desired result of a query is
usually the contents of an object, not just its LO handle, the DataBlade API module
must then use the LO handle that the mi_value() or mi_value_by_name()
function returns to access the smart-large-object data in its sbspace.

To select a smart large object from the database:

1. Execute the SELECT statement with a DataBlade API statement-execution
function such as mi_exec() or mi_exec_prepared_statement().

2. Obtain the column value that the mi_value() or mi_value_by_name()
function passes back in the MI_DATUM structure as appropriate for the
control mode of the query:

* For binary representation, the MI_DATUM structure contains a pointer to an
LO handle.

* For text representation, the MI_DATUM structure contains the hexadecimal
dump of an LO handle. To access the smart-large-object data, you must
convert the LO handle to its binary representation with
mi_lo_from_string().

For more information, see|’Binary and Text Representations of an LO Handle”]

3. Optionally, ensure that the LO handle is valid with mi_lo_validate().

For more information on how to select smart large objects, see [“Accessing Smart|
[Large Objects” on page 8-48

Validating an LO Handle

An LO handle is valid when it correctly identifies the location of a smart large
object in an sbspace. An LO handle might be invalid for either of the following
reasons:

* The memory address is invalid or a NULL-valued pointer.
* The LO handle contains invalid reference data.

Chapter 6. Using Smart Large Objects ~ 6-47

Use the mi_lo_validate() function to check whether an LO handle is valid. If
mi_lo_validate() returns a positive integer, the LO handle is invalid. You can
mark this LO handle as invalid with the mi_lo_invalidate() function. The
following code fragment checks whether the LO handle that LO_hdl references is
valid:

if (mi_lo_validate(conn, LO_hdl) > 0)
mi_lo_invalidate(conn, LO_hd1);

You can use the mi_lo_validate() function in the support function of an opaque
data type that contains smart large objects. In the lohandles() support function,
this function can determine unambiguously which LO handles are valid for the
given instance of the opaque type.

Opening a Smart Large Object
You can open a smart large object with one of the following functions:
* The mi_lo_open() function

* One of the smart-large-object creation functions: mi_lo_copy(), mi_lo_create(),
mi_lo_expand(), or mi_lo_from_file()

These functions open the smart large object in a particular open mode, which in turn
determines the lock mode of the smart large object. When you open a smart large
object with the mi_lo_copy(), mi_lo_create(), mi_lo_expand(), or mi_lo_open()
function, you tell the database server the open mode for the smart large object in
either of the following ways:

* Provide an open mode of zero (0) as an argument to specify use of the default
open mode of the smart large object.

For information on how to associate a default open mode with a smart large
object, see [“Accessing the Default Open Flag” on page 6-38)

* Provide a non-zero open-mode argument to override the default open mode
with an open mode you provide.

Choose the appropriate open-mode constants from the list in|Table 6-17 on pagg
If you need to set more than one open-mode value, use the C-language
bitwise OR operator (|) to mask open-mode constants together.

Tip: The mi_lo_from_file() function does not require an open mode for the smart
large object it creates. It always opens a smart large object in read/write
access mode. The smart-large-object optimizer determines which method of
access is most efficient (buffered I/O or lightweight 1/0).

All these open functions return an LO file descriptor, through which you can
access the data of a smart large object as if it were in an operating-system file.

Reading Data from a Smart Large Object

To read data from the sbspace of a smart large object, use one of the following
smart-large-object functions:

* The mi_lo_read() function begins the read operation at the current LO seek
position.

You can obtain the current LO seek position with the mi_lo_tell() function, or
you can set the LO seek position with the mi_lo_seek() function.

e The mi_lo_readwithseek() function performs a seek to a specified LO seek
position and then begins the read operation.

6-48 IBM Informix DataBlade API Programmer’s Guide

You specify the seek position at which to begin the read operation as arguments
to mi_lo_readwithseek().

These functions both read a specified number of bytes from the open smart large
object to a user-defined character buffer. For information on the syntax of the
mi_lo_read() and mi_lo_readwithseek() functions, see the IBM Informix:
DataBlade API Function Reference.

You might also need to perform other operations on the open smart large object.

Smart-Large-Object For More
Task Function Information
Write data to the sbspace mi_lo_write(), page
mi_lo_writewithseek()
Obtain the LO seek position mi_lo_tell() page
Obtain status information mi_lo_stat() page
Obtain storage characteristics mi_lo_stat_cspec() page

Freeing a Smart Large Object

A smart large object remains open until it is freed in either of the following ways:
* Explicitly, by a call to the mi_lo_close() function

 Implicitly, when the current session ends

Once you finish the operations on the smart large object, you can close it explicitly
with the mi_lo_close() function. This function frees the resources associated with
the LO file descriptor and LO handle so that they can be reallocated to other
structures that your program needs. In addition, the LO file descriptor can be
reassigned to another smart large object.

When you close a smart large object, you release any share-mode or update-mode
locks on that object. However, you do not release exclusive locks until the end of
the transaction. For more information, see ["Locking Modes” on page 6-11}

Important: The end of a transaction does not close any smart large objects that are
open. However, it does release any locks on the smart large objects.

If you do not explicitly close a smart large object, the database server closes it
automatically at the end of the session. For information on the syntax of the
mi_lo_close() function, see the IBM Informix: DataBlade API Function Reference. For
more information on when the database server deletes a smart large object, see
[“Deleting a Smart Large Object” on page 6-56}

Sample Code to Select an Existing Smart Large Object

Suppose you want to select the following data from a smart large object that was
inserted into a CLOB column named cat_descr in the catalog2 table:

The rain in Spain stays mainly in the plain. In Hartford, Hereford, and
Hampshire, hurricanes hardly happen.

The following code fragment assumes that the descrip LO handle identifies the

smart large object that was selected from the CLOB column. This LO handle was
obtained with the SELECT statement on the cat_descr column.

Chapter 6. Using Smart Large Objects 6-49

#include "int8.h"
#include "mi.h"

#define BUFSZ 1000

{
MI_CONNECTION =*conn;
MI_LO HANDLE =*descrip;
MI_LO_FD lofd;
char buf[BUFSZ];
mi_integer buflen = BUFSZ;
mi_int8 offset;
mi_integer numbytes;

/* Use the LO handle to identify the smart large object
* to open and get an LO file descriptor.
*/
Tofd = mi_To_open(conn, descrip, MI_LO_RDONLY);
if (lofd <0)
handle_lo_error("mi_To_open()");

/* Use the LO file descriptor to read the data of the
* smart large object.
*/
ifx_int8cvint (0, &offset);
strcpy (buf, "");
numbytes = mi_lo_readwithseek(conn, Tofd, buf, buflen,
&offset, MI_LO SEEK CUR);
if (numbytes == 0)
handle_To_error("mi_To_readwithseek()");

/* Close the smart large object =/
mi_To_close(lofd);
1

The mi_lo_readwithseek() function reads 1000 bytes of data from the smart large

object that lofd identifies to the buf user-defined buffer.

For more information on how to select a value from a column, see
[Smart Large Objects” on page 8-48]

Modifying a Smart Large Object

6-50

Once you have an LO file descriptor for an open smart large object, you can
modify the smart large object, as follows:

* You can update the smart large object.
* You can alter some storage characteristics of the smart large object.

The following sections describe each of these tasks.

Updating a Smart Large Object

A smart large object has two parts: its LO handle and its data in the sbspace. You
can update either of these parts.

The UPDATE statement can store a new LO handle in a CLOB, BLOB, or
opaque-type column. For the steps to update a column, see
[Handle” on page 6-42|

To update an LO handle:

IBM Informix DataBlade API Programmer’s Guide

1. Update the column with a new smart large object.

Overwrite the existing LO handle in the column with the LO handle for the
new smart large object.

2. Store an additional reference to an existing smart large object.

Multiple columns can reference the same smart large object on disk. You can
overwrite an existing LO handle in the column with the LO handle for an
existing smart large object. Both columns now reference the same smart large
object.

To update the data of an existing smart large object:

1. Use the SELECT statement to obtain the LO handle that identifies the location
of the data.

For more information, see [“Selecting the LO Handle” on page 6-47

2. Open the smart large object to obtain an LO file descriptor.

For more information, see[“Opening a Smart Large Object” on page 6-48|

3. Read data from and write data to the open smart large object.

For more information, see|“Reading Data from a Smart Large Object” on page|
[6-48] and [“Writing Data to a Smart Large Object” on page 6-42|

4. Close the smart large object.

For more information, see|“Freeing a Smart Large Object” on page 6-49|

Important: To update data of an existing smart large object, you do not need to
use the UPDATE statement to update the CLOB, BLOB, or opaque-type
column. The LO handle in the column does not need to change if you
modify only the smart-large-object data.

Altering Storage Characteristics

After you create a smart large object, you can change some of its storage
characteristics with the mi_lo_alter() function. This function enables you to alter
the following storage characteristics:

* Logging behavior
* Last-access time
* Extent size

All other storage characteristics cannot be changed once the smart large object is
created. For information on the syntax of the mi_lo_alter() function, see the
IBM Informix: DataBlade API Function Reference.

You can alter these storage characteristics in either of the following ways:
* Execute the SQL statement, ALTER TABLE.

The PUT clause of ALTER TABLE enables you to modify any storage
characteristics. However, any changes do not affect existing smart large objects;
they only affect smart large objects in rows created after the ALTER TABLE
statement executes. For more information, see the description of ALTER TABLE
in the IBM Informix: Guide to SQL Syntax.

¢ (Call the mi_lo_alter() function.
This function enables you to modify the logging characteristics, last-access time
characteristics, and the extent size.

Chapter 6. Using Smart Large Objects 6-51

Obtaining Status Information for a Smart Large Object

To obtain the status information for an existing smart large object, take the
following steps.

Smart-Large-Object More
Step Task Function Information
1. Obtain a valid LO file descriptor for mi_lo_create(), page
the smart large object whose status mi_lo_copy(),
information you need. mi_lo_expand(),

mi_lo_from_file()
mi_lo_open()

2. Initialize an LO-status structure with mi_lo_stat() page
the status information for the smart
large object.

3. Use the appropriate LO-status accessor [Table 6-20 on page 6-54| page
function to obtain the status
information that you need.

4. Free resources. mi_lo_stat_free() page

shows the first three of these steps that a DataBlade API module uses to
obtain status information for the smart large object data in the emp_picture
column of the employee table (Figure 6-2 on page 6-14).

BLOB
column:
emp_picture

/DataBIade routine \ Server A employee /

DAPI { IDS ———| empno erﬁp_picture

Smart 1234

mart lopen _ 1235

large-object 0 »]

|nte:ace F~ ftitus sbspacei_100 Database A
| LOfile descriptors ® Seo . ©
' @
P S S -
51t LR =ORS

\ LO-status structure / Disk 100

Smart-large-object
data:employee image

Figure 6-6. Obtaining Status Information

Obtaining a Valid LO File Descriptor

You can obtain status information for any smart large object for which you have a
valid LO file descriptor. To obtain an LO file descriptor, you can take any of the
following actions:

* Select an existing smart large object from a column in a database and open it

For more information, see|“Accessing a Smart Large Object” on page 6-46|

* Create a new smart large object

For more information, see|“Creating a Smart Large Object” on page 6-241

* Receive the LO handle as an argument

6-52 IBM Informix DataBlade API Programmer’s Guide

A DataBlade API module can receive an argument that might provide the LO
handle directly or it might provide an opaque data type in which the smart
large object is embedded.

Initializing an LO-Status Structure

The mi_lo_stat() function performs the following tasks:
1. It obtains either a new or existing LO-status structure.

2. It fills the LO-status structure with all status information for the smart large
object that the specified LO file descriptor identifies.

Important: Do not handle memory allocation for an LO-status structure with
system memory-allocation routines (such as malloc() or mi_alloc())
or by direct declaration. You must use the LO-status constructor,
mi_lo_stat(), to allocate a new LO-status structure.

Obtaining a Valid LO-Status Structure
The mi_lo_stat() function is the constructor for the LO-status structure. The third

argument to the mi_lo_stat() function indicates whether to create a new LO-status
structure:

* When you pass a NULL-valued pointer, the mi_lo_stat() function allocates a
new LO-status structure.

Server Only
This LO-status structure has the current memory duration.

| End of Server Only

* When you pass a pointer that does not point to NULL, the mi_lo_stat()
function assumes that the pointer references an existing LO-status structure that
a previous call to mi_lo_stat() has allocated.

An LO-status pointer that does not point to NULL allows a DataBlade API
module to reuse an LO-status structure.

For example, the code fragment in uses the mi_lo_stat() function to
allocate memory for the LO-status structure only when the first_time flag is true.

MI_CONNECTION =conn;
MI_LO_HANDLE *LO_hd1;
MI_LO_STAT =LO_stat;
MI_LO_FD LO_fd;
mi_integer first_time;

LO_fd = mi_lo_open(conn, LO_hd1, MI_LO_RDONLY);
if (first_time)
{

LO_stat = NULL; /* tell interface to allocate memory */
first_time = 0; /* set "first_time" flag to false */

err = mi_lo_stat(conn, LO_fd, &LO stat);

Figure 6-7. Sample mi_lo_stat() Call

Chapter 6. Using Smart Large Objects 6-53

Filling the LO-Status Structure

Once mi_lo_stat() has a pointer to a valid LO-status structure, it fills this structure
with the status information for the open smart large object. You pass an LO file
descriptor of the open smart large object as an argument to the mi_lo_stat()
function.

After the execution of mi_lo_stat() in the LO_stat variable points to an
allocated LO-status structure that contains status information for the smart large
object that the LO file descriptor, LO_fd, identifies.

Important: Before you use an LO-status structure, make sure that you either call
mi_lo_stat() with the LO-status pointer set to NULL or initialize this
pointer with a previous call to mi_lo_stat().

For more information, see [Table 6-20} For the syntax of the mi_lo_stat() function,
see the IBM Informix: DataBlade API Function Reference.

Obtaining Status Information

Once you have a valid LO-status structure, you can use the accessor functions to
obtain the status information from this structure. shows the status
information that an LO-status structure contains and the corresponding LO-status
accessor functions.

Table 6-20. Status Information in the LO-Status Structure

Status Information LO-Status Accessor Function

Last-access time mi_lo_stat_atime()

This value is available only if the last-access time
attribute (MI_LO_ATTR_KEEP_LASTACCESS_TIME) is
set for this smart large object.

Storage characteristics mi_lo_stat_cspec()

These characteristics are stored in an LO-specification
structure. Use the LO-specification accessor functions
(see ["Defining User-Specified Storage Characteristics” on|
[page 6-35) to obtain information from this structure.

Last-change time mi_lo_stat_ctime()

Last-modification time mi_lo_stat_mtime_sec(),
mi_lo_stat_mtime_usec()

Reference count mi_lo_stat_refcent()

Size mi_lo_stat_size()

Important: The LO-status structure, MI_LO_STAT, is an opaque structure to
DataBlade API modules. Do not access its internal structure directly.
The internal structure of MI_LO_STAT may change in future releases.
Therefore, to create portable code, always use the LO-status accessor
functions for this structure.

The following code fragment obtains the reference count from an LO-status
structure that the LO_stat variable references:

MI_CONNECTION *conn;

MI_LO_HANDLE *LO_hd1;

MI_LO_FD LO_fd;

MI_LO_STAT *=LO_stat = NULL; /* DataBlade API allocates =*/

6-54 IBM Informix DataBlade API Programmer’s Guide

mi_integer ref_count, err;

/* Open the selected large object */
LO_fd = mi_lo_open(conn, LO_hd1, MI_LO_RDONLY);
if (LO_fd == MI_ERROR)

/* handle error =*/

/* Allocate LO-specification structure and get status
* information for the opened smart Targe object
*/
if (mi_lo_stat(conn, LO_fd, &LO_stat) != MI_OK)
/* handle error */
else

{
/* get reference count for this smart large object =/
ref_count = mi_lo_stat_refcnt(LO_stat);

/* free the LO-status structure =/
err = mi_lo_stat_free(LO_stat);

}

The mi_lo_open() function opens the smart large object that the LO handle,
LO_hd]l, identifies. The mi_lo_stat() function then obtains the status information
for this open smart large object. The mi_lo_stat() function performs the following
tasks:

1. Allocates a new LO-status structure because the value of *LO_stat is NULL

The mi_lo_stat() function assigns a pointer to this new LO-status structure to
the LO_stat variable.

2. Initializes the LO_stat structure with the status information for the open smart
large object that the LO file descriptor, LO_fd, identifies

Once the LO-status structure contains the status information, the
mi_lo_stat_refcnt() accessor function obtains the reference count from the
LO-status structure and returns it into the ref_count variable. When the code no
longer needs the LO-status structure, it frees this structure with the
mi_lo_stat_free() function.

Freeing an LO-Status Structure

| Server Only |

The mi_lo_stat() function allocates an LO-status structure in the current memory
duration. Therefore, if the current memory duration is the default duration of
PER_ROUTINE, an LO-status structure has a memory duration of PER_ROUTINE
and the database server automatically frees it when the UDR completes.

| End of Server Only |

To explicitly free the resources assigned to an LO-status structure, use the
mi_lo_stat_free() function. The mi_lo_stat_free() function is the destructor
function for an LO-status structure. When the resources are freed, they can be
reallocated to other structures that your program needs.

Chapter 6. Using Smart Large Objects 6-55

Deleting a Smart Large Object

6-56

The following table shows the methods that can cause a smart large object to be
marked for deletion.

Location of Smart

Large Object Task for Deletion Method for Deletion
For a CLOB or BLOB Remove the LO handle as The DELETE statement
column data for the column

For an opaque-type Remove the LO handle from The destroy() support function
column (for an opaque the internal structure of the
type that contains a opaque data type and store
smart large object) this revised internal structure
as data for the column

Transient smart large ~ Remove the LO handle Wait for the end of the session.
object
The mi_lo_delete_immediate()
function

Alternatively, you can mark an LO handle as invalid with the mi_lo_invalidate()
function to indicate that it no longer identifies a valid smart large object.

When you delete an LO handle, the database server decrements the reference count
of the smart large object that the LO handle references by one. The database server
cannot delete a smart large object until it meets the following conditions:

e A reference count of zero

To decrement the reference count of a smart large object, you delete an LO
handle that references that smart large object. For more information, see
[“Managing the Reference Count” on page 6-56}

* No open LO file descriptors

When the smart large object is closed, its LO file descriptor is freed. For more
information, see [“Freeing an LO Handle” on page 6-43

Managing the Reference Count

The reference count of a smart large object is the number of LO handles that refer to
the smart large object in its sbspace. Each LO handle contains the location of the
smart large object in an sbspace. The reference count is stored with the
smart-large-object data in an sbspace. (For more information on sbspaces, see your
IBM Informix: Administrator’s Guide.) You can obtain the reference count with the
mi_lo_stat_refent() function.

A smart large object remains allocated as long as its reference count is greater than
zero (0). A reference count greater than zero indicates that at least one column
contains an LO handle that references the smart large object. In this sense, the
smart large object is permanent. The management that the database server performs
on a reference count depends on the associated smart large object:

* A smart large object whose LO handle is stored in a CLOB or BLOB column
* A smart large object whose LO handle is stored in an opaque data type
* A transient smart large object

Reference Counts for CLOB and BLOB Columns

For smart-large-object columns (CLOB and BLOB), the database server
automatically manages the reference count, as follows:

IBM Informix DataBlade API Programmer’s Guide

* When you store an LO handle into a CLOB or BLOB column, the
smart-large-object optimizer increments by one (1) the reference count for the
smart large object that the LO handle identifies.

* When you delete an LO handle from a CLOB or BLOB column, the
smart-large-object optimizer decrements by one (1) the reference count for the
smart large object that the LO handle identifies.

At the end of the transaction, the smart-large-object optimizer automatically deletes
all smart large objects stored in CLOB or BLOB columns with reference counts of
zero and no open LO file descriptors.

Reference Counts for Opaque-Type Columns

The database server does not automatically manage the reference count for an
opaque type that contains a smart large object (including multirepresentational
opaque types). For these opaque-type columns, you must explicitly manage the
reference count in special support functions of the opaque data type, as follows.

Support Function Reference-Count Task DataBlade API Function

assign() Increment the reference count by one mi_lo_increfcount()
each time a new LO handle for the
smart large object is saved in the
database.

destroy() Decrement the reference count by one mi_lo_decrefcount()
each time an LO handle that is stored
in the database is removed from the
database.

lohandles() If the opaque type does not have an lohandles() support function,
you must handle the reference count in the assign() and destroy()
support functions.

If the opaque type has an lohandles() support function, you do not
need to handle the reference count in the assign() and destroy()
support functions. The database server handles the decrement of the
reference count when it executes the lohandles() support function.

If you increment or decrement the reference count for a smart large object within a
transaction causing it to end up with a value of zero (0), the database server
automatically deletes the smart large object at the end of the transaction (as long as
it has no open LO file descriptors).

Reference Counts for Transient Smart Large Objects

A transient smart large object is one that you created but have not stored its LO

handle in the database. Transient smart large objects can occur in the following

ways:

* You create a smart large object (with mi_lo_create(), mi_lo_copy(),
mi_lo_expand(), or mi_lo_from_file()) but do not insert its LO handle into a
column of the database.

* You invoke a UDR that creates a smart large object in a query but never assigns
its LO handle to a column of the database.

For example, the following query creates one smart large object for each row in the
tablel table:

SELECT FILETOBLOB(...) FROM tablel;

Chapter 6. Using Smart Large Objects ~ 6-57

6-58

However, the preceding query does not store the LO handles for these smart large
objects in any database column. Therefore, each of these smart large objects is
transient.

Important: A smart large object is “temporary” in the sense that it will
automatically be deleted at the end of the session (unless its LO handle
is stored in the database). A transient smart large object is not a smart
large object that is stored in a temporary sbspace.

You only increment the reference count to tell the database server that the LO
handle for the smart large object is going to be stored in the database (and become
a permanent smart large object). Therefore, the reference count of a transient smart
large object is zero. The database server deletes the transient smart large object at
the end of the session.

You can explicitly deallocate the LO handle for a transient smart large object with
the mi_lo_release() function.

You can explicitly delete a transient smart large object with the
mi_lo_delete_immediate() function.

Freeing LO File Descriptors

An LO file descriptor exists until one of the following conditions occurs:
* You explicitly close a smart large object with the mi_lo_close() function.

When mi_lo_close() closes a smart large object, the associated LO file
descriptor is freed.

* The database server implicitly closes any open smart large objects at a session
boundary (when the current database or connection closes).

The resources that an open smart large object uses get automatically released at
the end of a session. However, LO handles get released based on their memory
duration. For more information on the memory duration of LO handles, see
[“Freeing an LO Handle” on page 6-43|

The effect of closing the LO file descriptors of a smart large object depends on
whether the smart large object is permanent or transient:

* Closing a permanent smart large object

When you close all its LO file descriptors, a permanent smart large object (one
that is referenced by at least one column) remains allocated. The database server
does not delete the data until the reference count is zero.

* Closing a transient smart large object

However, when you close the last LO file descriptor for a transient smart large
object, the database server marks the smart large object for deletion because both
deallocation conditions are true:
— The reference count of the transient smart large object is zero (0).
The reference count of any transient smart large object is zero because it has
no LO handles stored in the database. For more information, see
[the Reference Count” on page 6-56

— No LO file descriptors exist for the transient smart large object.

Once you close the last open LO file descriptor (explicitly or implicitly), no
more references to this smart large object exist, and the data is not kept.

IBM Informix DataBlade API Programmer’s Guide

Converting a Smart Large Object to a File or Buffer

The DataBlade API provides support for the conversion of a smart large object to
or from either of the following structures:

¢ Operating-system file
* User-defined buffer

Using Operating-System Files

Using

The DataBlade API supports the following types of functions for conversion
between operating-system files and smart large objects.

DataBlade API

Function Description

mi_lo_from_file(), Copies data in an operating-system file to a smart large
mi_lo_from_file_by_lofd() object

mi_lo_to_file(), Copies data in a smart large object to an operating-system
mi_lo_filename() file

The file functions have a set of file-mode constants that are distinct from the open
modes of smart large objects, as the table in [fable 6-21| shows.
Table 6-21. File Modes for Operating-System Files

File Mode for
Operating-System Files Purpose

MI_O_EXCL Fail if the file already exists

MI_O_APPEND Append to the end of file

MI_O_TRUNC Truncate to zero if file exists

MI_O_RDWR Read/write mode (default)

MI_O_RDONLY Read-only mode (copying from operating-system files only)
MI_O_WRONLY Write-only mode (copying to operating-system files only)
MI_O_TEXT Text mode (default off)

MI_O_CLIENT_FILE Indication that file is on client computer (default)
MI_O_SERVER_FILE Indication that file is on server computer

You can include an environment variable in the filename path for the
mi_lo_to_file(), mi_lo_from_file(), and mi_lo_from_file_by_lofd() functions.
This environment variable must be set in the server environment; that is, it must
be set before the database server starts.

User-Defined Buffers

The DataBlade API supports the following functions for conversion between
user-defined buffers and smart large objects.

DataBlade API Function Description

mi_lo_from_buffer() Copies data in a user-defined buffer to a smart
large object

mi_lo_to_buffer() Copies data in a smart large object to a
user-defined buffer

Chapter 6. Using Smart Large Objects 6-59

Converting an LO Handle Between Binary and Text

The DataBlade API library provides functions that convert between the binary
(internal) representation of an LO handle and its text (string) representation.

Binary and Text Representations of an LO Handle

The MI_LO_HANDLE data type (for an LO handle) is an opaque C data structure
with a length of MI_LO_SIZE. The binary representation of the LO handle is a flat
array of MI_LO_SIZE bytes. You can perform the following actions on the binary
representation of an LO handle:

* Store it in a C variable of type MI_LO_HANDLE.
* Pass it to a UDR.

¢ Bind it an MI_LO_HANDLE variable to hold a smart large object retrieved by a
query whose control mode is binary representation (for example, in mi_exec()).

e Store it in a CLOB or BLOB column of the database.

* Send it as part of the internal (binary) representation of an opaque type.

The text representation of an LO handle is the text hexadecimal dump of the flat
binary array. To represent the hexadecimal format, each binary byte requires two
bytes of characters. You can perform the following actions on the text
representation of an LO handle:

* Store it in a C character string or array.

* Bind it to a character-pointer variable to hold a smart large object retrieved by a
query whose control mode is text representation (for example, in mi_exec()).

* Store it in a CHAR (or other character-based) column in a database.

DataBlade API Functions for LO-Handle Conversion

The DataBlade API provides the following functions for conversion between binary
and text representations of an LO handle.

DataBlade API Function Converts from Converts to

mi_lo_to_string() LO handle Text representation of LO handle
(MI_LO_HANDLE)

mi_lo_from_string() Text representation of LO LO handle (MI_LO_HANDLE)
handle

| Server Only |

and output support function of an opaque data type that contains smart large
objects. These functions enable you to convert CLOB and BLOB values (LO
handles) between their external format (text) and their internal format (binary)
when you transfer them to and from client applications. For more information, see
“Conversion of Opaque-Type Data Between Text and Binary Representations” on|

page 16-16|

| End of Server Only |

The mi_lo_to_string() and mi_lo_from_string() functions are useful in the input

6-60 IBM Informix DataBlade API Programmer’s Guide

Transferring an LO Handle Between Computers (Server)

For an LO handle to be portable when transferred across different computer
architectures, the DataBlade API provides the following functions to handle type
alignment and byte order.

DataBlade API Function Description

mi_get_lo_handle() Copies an aligned LO handle, converting any
difference in alignment or byte order on the client
computer to that of the server computer

mi_put_lo_handle() Copies an aligned LO handle, converting any
difference in alignment or byte order on the server
computer to that of the client computer

The mi_get_lo_handle() and mi_put_lo_handle() functions are useful in the send
and receive support function of an opaque data type that contains a smart large
object. They enable you to ensure that BLOB or CLOB values (LO handles)
remained aligned when transferred to and from client applications. For more
information, see [“Conversion of Opaque-Type Data with Computer-Specific Data|
[Types” on page 16-21|

Using Byte-Range Locking

By default, the database server uses whole lock-all locks when it needs to lock a
smart large object. Lock-all locks are an “all or nothing” lock; that is, they lock the
entire smart large object. When the database server obtains an exclusive lock, no
other user can access the data of the smart large object as long as the lock is held.
(For more information on the default locking, see [“Locking Modes” on page 6-11})

If this locking is too restrictive for the concurrency requirements of your
application, you can use byte-range locking instead of lock-all locking. With
byte-range locking, you can specify the range of bytes to lock in the
smart-large-object data. If other users access other portions of the data, they can
still acquire their own byte-range lock.

To use byte-range locking;:

1. Enable the byte-range locking feature on the smart large object you need to
lock.

You can specify the byte-range locking feature either when you create the smart
large object or when you open it, as follows:

* At the time of smart-large-object creation

You can specify the LO_LOCKRANGE lock-mode constant as a default open
flag for the new smart large object.

* When you open the smart large object

You can specify the LO_LOCKRANGE lock-mode constant in the open-mode
argument of mi_lo_open().

2. Handle the lock requests for the byte-range locks with the appropriate function
of the smart-large-object interface.

The smart-large-object interface provides the following functions for handle
lock requests of byte-range locks.

Byte-Range Locking Function Description

2. Fill the fields of the connection-information descriptor with the default
connection parameters you need.

To change the database server, specify a value for server_name. Any non-zero
value for the server_port field is ignored. If you do not set a particular field,
the database server uses the system-default value in [Table 7-3 on page 7-5|for
the associated connection parameter.

3. Pass a pointer to this connection-information descriptor to the
mi_set_default connection_info() function.

The user-defined connection parameters provide connection information for all
connections made within a client LIBMI application after these functions execute
(unless the functions are called again to set new default values).

You can obtain existing default connection parameters with the
mi_get_default_connection_info() function. This function populates a
user-defined connection-information descriptor with the current default connection
parameters.

| Server Only

In a C UDR, mi_get_default_connection_info() obtains the same information as
mi_get_connection_info(). The mi_set_default_connection_info() function is
ignored when it is used in a UDR.

| End of Server Only

Obtaining Current Connection Parameters

To obtain connection parameters associated with an open connection, use the
mi_get_connection_info() function. This function populates a user-defined
connection-information descriptor with values from the specified open connection.

| Server Only

The mi_get_connection_info() function is valid when it is used in a C UDR. For
more information, see|”Accessing the Session Environment” on page 13-58

| End of Server Only

Using Database Parameters

To indicate which database it needs to connect to, the client LIBMI application uses
database parameters. The DataBlade API provides a database-information descriptor,
MI_DATABASE_INFO, to access database parameters. This data type structure
identifies the database for a particular session.

Unlike most DataBlade API structures, the database-information descriptor is not
an opaque C data structure. To access database information, you must allocate a
database-information descriptor and directly access its fields. shows the
fields in the database-information descriptor.

Table 7-4. Fields in the Database-Information Descriptor

Field Data Type Description

database_name char * The name of the database

user_name char * The user account name, as defined by the operating
system

7-6 IBM Informix DataBlade API Programmer’s Guide

Table 7-4. Fields in the Database-Information Descriptor (continued)

Field Data Type Description

password char * The account password, as defined by the operating system

The milib.h header file defines the MI_DATABASE_INFO structure.

With the database-information descriptor, you can use the following DataBlade API
functions to perform the database-parameter tasks.

Database-Parameter Task DataBlade API Function

Access the default database parameters to determine mi_set_default_database_info(),
the database and user for the connection mi_get_default_database_info()
Obtain current database parameters for an open mi_get_database_info()
connection

Establishing Default Database Parameters

The default database parameters identify the database and user for the connection.
Before you establish a connection, you can determine which of the following
database parameters to use:

* The system-default database parameters
* Default database parameters that you specify

System-Default Database Parameters: The database server obtains values for the
system-default database parameters from the execution environment of the client
LIBMI application. When you use system-default database parameters, you enable
your application to be portable across client/server environments. However, you
must ensure that the client/server environment is correctly initialized to provide
the system-default values.

able 7-5[shows the system-default database parameters that the database server
uses to open a database.

Table 7-5. System-Default Database Parameters

System-Default Database Parameter System-Default Value

Database name None

User-account name Account name of user that invoked the client
LIBMI application

Account password Account password of user that invoked the client
LIBMI application

The system-default database parameters provide database information for all
connections made within a client LIBMI application unless you explicitly override
them within the application.

User-Defined Database Parameters: The database server obtains values for the
database parameters from the database-information descriptor. The database server
initializes the database-information descriptor with the system-default database
parameters in You can initialize your own database-information
descriptor to override the default database parameters. When you override
system-default database parameters, you enable your application to have database
information that is independent of the client/server environment in which it runs.

Chapter 7. Handling Connections 7-7

7-8

To override the system-default database parameters:
1. Allocate a database-information descriptor.

2. Fill the fields of the database-information descriptor with the default database
parameters you need.

If you do not set a particular field, the database server uses the system-default
value in for the associated database parameter.

3. Pass a pointer to this database-information descriptor to the
mi_set_default database_info() function.

The user-defined database parameters provide database information for all
connections made within a client LIBMI application after these functions execute
(unless the functions are called again to set new default values).

You can obtain existing default database parameters with the
mi_get_default_database_info() function. This function populates a user-defined
database-information descriptor with the current default database parameters.

| Server Only |

In a C UDR, mi_get_default_database_info() obtains the same information as
mi_get_database_info(). The mi_set_default_database_info() function is ignored.

| End of Server Only |

Obtaining Current Database Parameters

To obtain database parameters associated with an open connection, use the
mi_get_database_info() function. This function populates a user-defined
database-information descriptor with values from the specified open connection.

| Server Only |

The mi_get_database_info() function is valid with a C UDR.

| End of Server Only |

Using Session Parameters

The parameter-information descriptor, MI_PARAMETER_INFO, allows you to set the
following session parameters for the client LIBMI application:

e Disables invocation of callbacks
* Enables checking of pointers

Unlike most DataBlade API structures, the parameter-information descriptor is not
an opaque C data structure. To access session-parameter information, you must

directly access the fields of a parameter-information descriptor that you allocate.
able 7-6| shows the fields in the MI_PARAMETER_INFO structure.

Table 7-6. Fields in the Parameter-Information Descriptor

Field Data Type Description

callbacks_enabled mi_integer Indicates whether callbacks are enabled:

e A value of 1 indicates that callbacks are
enabled.

e A value of 0 indicates that callbacks are
disabled.

IBM Informix DataBlade API Programmer’s Guide

Table 7-6. Fields in the Parameter-Information Descriptor (continued)

Field Data Type Description

pointer_checks_enabled mi_integer Indicates whether pointers (such as MI_ROW
pointers) that the client LIBMI application
passes to the database server are checked to
ensure that they are within the heap space of
the process:

* A value of 1 indicates that pointers are
checked.

* A value of 0 indicates that pointers are not
checked.

The milib.h header file defines the MI_ PARAMETER_INFO structure.

Before you establish a connection, you can determine which of the following
session parameters to use:

* The system-default session parameters

* Default session parameters that you specify

Using System-Default Session Parameters
When the database server establishes a connection, it uses the values in
as the system-default session parameters.

Table 7-7. System-Default Session Parameters

System-Default Session Parameter System-Default Value
Callbacks Enabled? Yes
Pointers Checked? Yes

The system-default session parameters provide session-parameter information for
all connections made within a client LIBMI application unless you explicitly
override them within the application.

Using User-Defined Session Parameters

The database server obtains values for the session parameters from the
parameter-information descriptor. The database server initializes the
parameter-information descriptor with the system-default session parameters in
page To override these system-default values, you can initialize your own
parameter-information descriptor to set session parameters.

The following DataBlade API functions access default session parameters for a
client LIBMI application.

DataBlade API Function Purpose
mi_set_parameter_info() Sets session parameters for the current session
mi_get_parameter_info() Obtains session parameters for the current session

To override the system-default session parameters:
1. Allocate a parameter-information descriptor.

2. Fill the fields of the parameter-information descriptor with the default session
parameters you need.

Chapter 7. Handling Connections 7-9

If you do not set a particular field, the database server uses the system-default
value in [Table 7-7 on page 7-9| for the associated session parameter.

3. Pass a pointer to this parameter-information descriptor to the
mi_set_parameter_info() function.

You can examine existing session parameters with the mi_get_parameter_info()
function. This function populates a user-defined parameter-information descriptor
with the current session parameters.

Setting Connection Parameters for a Client Connection

The following example shows one way to set default connection parameters.
Assume that the system-default connection parameters are as follows.

System-Default Parameter =~ Parameter Value

Default database server joe

(INFORMIXSERVER environment variable is set to joe.)

Default user tester

Default user password No password
Callbacks enabled? Yes (system default)
Pointers checked? Yes (system default)

The following code fragment uses DataBlade API functions to change the following
default system values.

DataBlade API Function Default Parameter Default Value
mi_set_default_connection_info() Database server name beth
Server port = 0 None
mi_set_default_database_info() Database name templatel
User-account name miadmin
User-account password No password

extern void MI_PROC_CALLBACK all_callback();

MI_CONNECTION *conn;
MI_CONNECTION_INFO conn_info;
MI_DATABASE_INFO db_info;

/* Initialize DataBlade API */
mi_register_callback(conn, MI_Exception, all_callback,
NULL, NULL);

/* Assign default connection parameter in the
* connection-information descriptor

*/

conn_info.server_name = "beth";
conn_info.server_port = 0;

/* Set default connection parameters for the application */
if (mi_set_default_connection_info(&conn_info) == MI_ERROR)
printf("FAILED: mi_set_default_connection_info()\n");

/* Assign default database parameters in the
* database-information descriptor

*/

db_info.user_name = "miadmin";
db_info.database_name = "templatel";

7-10 IBM Informix DataBlade API Programmer’s Guide

db_info.password = NULL;

/* Set default database parameters for the application */
if (mi_set_default_database_info(&db_info) == MI_ERROR)
printf("FAILED: mi_set default_database_info()\n");

/* Get default connection and database parameters for
* application

*/

mi_get_default_connection_info(&conn_info);
mi_get_default_database_info(&db_info);

/* Make sure the right database server is set as the default x/
if (strcmp("beth", conn_info.server_name) != 0)
printf("FAILED: got server_name %s, should be beth\n",
conn_info.server_name);

/* Connect to database server 'beth' =/
conn = mi_server_connect(&conn_info);
if (conn == NULL)

printf("FAILED: CONNECT to beth\n");
else

{

printf("0K: connected to %s\n", conn_info.server_name);

}

After these new defaults are established, the application calls mi_server_connect()
to request a connection to the beth database server. If this request is successful, the
application opens the templatel\. For more information on mi_server_connect(),
see [‘Connections with mi_server_connect()” on page 7-16|

Establishing a Connection

The following DataBlade API functions are constructor functions for a connection
descriptor:

* The mi_open() function

| Client Only |

e The mi_server_connect() function

| End of Client Only |

These functions establish a connection and return a pointer to a connection
descriptor, which holds information from the session context. You can then pass
this connection descriptor to subsequent DataBlade API functions that need to
access the session context.

The DataBlade API supports the establishment of two kinds of connections:
* UDR connection

¢ Client connection

Establishing a UDR Connection (Server)

A UDR connection is the way that a C UDR obtains access to the session context;
that is, to the database server and database that the calling client application has
already established. For a summary of restrictions that the UDR imposes on a
session, see [“Session Restrictions” on page 12-6

A C UDR can establish one of two kinds of connections to a session:

Chapter 7. Handling Connections 7-11

7-12

¢ The public connection descriptor provides the C UDR invocations within an SQL
command with access to the session context.

¢ The session-duration connection descriptor provides the C UDR invocations
within a session with access to the session context.

Obtaining a Connection Descriptor

A public connection descriptor (usually just called a connection descriptor) provides a
local copy of session information for the use of the UDR. Because it has a
PER_STMT_EXEC memory duration, all UDR invocations in the same SQL
statement can share the session-context information (see [Table 7-1 on page 7-3). The
following table summarizes the memory operations for a connection descriptor in a
C UDR.

Memory Duration Memory Operation Function Name
PER_STMT_EXEC Constructor mi_open()
Destructor mi_close()

To establish a UDR connection, pass all three arguments of mi_open() as
NULL-valued pointers. The following code fragment uses mi_open() to establish
a connection for a UDR:

mi_integer funcl()
MI_CONNECTION =conn;

/* Open a connection from C UDR to database server
* of current session context:
* database = currently open database
* user = operating-system user account which is running
* the SQL statement that called this
* user-defined routine
* password = default specified for this user
*
/
conn = mi_open(NULL, NULL, NULL);

/* If connection descriptor is NULL, there was an error
* connecting to the session context.
*/
if (conn == NULL)
{
mi_db_error_raise(conn, MI_EXCEPTION,
"funcl: cannot establish connection", NULL);

}

... /* Code for use of this connection goes here */

}

Important: When called within a C UDR, many DataBlade API functions do not
use the connection descriptor. You can pass a NULL-valued pointer as
a connection descriptor to the DataBlade API functions for smart large
objects, which have the mi_lo_ prefix. The IBM Informix: DataBlade API
Function Reference describes these functions. Exceptions to this rule are
listed in the documentation. Instead, pass in the connection descriptor
that the mi_open() function obtains.

The mi_open() call can be expensive in a C UDR. If the UDR instance contains
many invocations, you can obtain the connection descriptor the first time the UDR

IBM Informix DataBlade API Programmer’s Guide

is invoked and store it as part of the MI_FPARAM state information, as
Figure 10-6 on page 10-29|shows. For more information, see [‘Saving a User State”]

on page 9—§l

Tip: It is not valid for a UDR to cache a connection descriptor at a memory
duration higher than PER_COMMAND. If you need session-context
information with a higher duration, use a session-duration connection
descriptor. For more information, see [‘Obtaining a Session-Duration|
[Connection Descriptor” on page 7-13

Obtaining a Session-Duration Connection Descriptor

A session-duration connection descriptor provides a public copy of connection
information, providing access to the actual session information of the client
application. Because this connection descriptor has a PER_SESSION memory
duration, all UDR invocations in the session can share the session-context
information (see [Table 7-1 on page 7-3). (For more information on a session, see
[“PER_SESSION Memory Duration” on page 14-15})

The following table summarizes the memory operations for a session-duration
connection descriptor in a C UDR.

Memory Duration Memory Operation Initiator of Operation
PER_SESSION Constructor mi_get_session_connection()
Destructor End of session

Warning: The advanced mi_get_session_connection() function can adversely
affect your UDR if you use it incorrectly. Use it only when a regular
function cannot perform the task you need done.

The mi_get_session_connection() function is not a true constructor, in the sense
that it does not actually allocate a connection descriptor in a PER_SESSION
duration. Instead, it returns a handle to the actual session connection, which has a
PER_SESSION duration. Therefore, the mi_get_session_connection() is often
faster than mi_open() (which does allocate a connection descriptor in
PER_COMMAND memory).

The minmprot.h header file defines the restricted-access
mi_get_session_connection() function. The minmmem.h header file automatically
includes the minmprot.h header file. However, the mi.h header file does not
automatically includes minmmem.h. To use mi_get_session_connection(), you
must include minmmem.h in any DataBlade API routine that calls these functions.

A session-duration connection descriptor is useful in the following cases:
* As an alternative to frequent calls to mi_open()

The mi_open() function is a relatively expensive call. If you need to open
connections frequently in your UDR, mi_get_session_connection() is the
preferred alternative. With a session-duration connection descriptor, the database
server caches a connection for you.

* To obtain access to session-duration function descriptors

One of the DataBlade API data type structures that the connection descriptor
holds is a function descriptor. When you pass a Fastpath look-up function (see
[Table 9-5 on page 9-18) a public connection descriptor, the function descriptor
that these functions allocate is valid until the SQL command completes. If you
pass these look-up functions a session-duration connection descriptor instead of

Chapter 7. Handling Connections 7-13

7-14

a public connection descriptor, you can obtain a session-duration function
descriptor, which is valid until the session ends. In this way, other UDRs can use

Fastpath to execute the same UDR without having to create and destroy its
function descriptor for each execution. For more information, see

[Function Descriptor” on page 9-30}

Keep the following restrictions in mind when you decide to use a session-duration
connection:

* Do not use mi_close() to free a session-duration connection descriptor.

A session-duration connection descriptor has the duration of the session. An
attempt to free a session-duration connection with mi_close() generates an
error.

* Do not cache a session-duration connection descriptor in the user state of an
MI_FPARAM structure.

You must obtain a session-duration connection descriptor in each UDR that uses
it.
* Do not call mi_get_session_connection() in a parallelizable UDR.

If the UDR must be parallelizable, use mi_open() to obtain a connection
descriptor.

Establishing a Client Connection

A client LIBMI application can establish a client connection in either of the
following ways:

* The mi_open() function
¢ The mi_server_connect() function

These DataBlade API functions obtain a connection descriptor for the client
connection. The following table summarizes the memory operations for a
connection descriptor in a client LIBMI application.

Memory Duration Memory Operation Function Name
For the duration of the session Constructor mi_open(), mi_server_connect()
Destructor mi_close()

Important: When called within a client LIBMI application, DataBlade API
functions always use the connection descriptor. Therefore, never send in
a NULL-valued pointer as a connection descriptor to DataBlade API
functions. Instead, pass in the connection descriptor that the
mi_open(), mi_server_connect(), or mi_server_reconnect() function
obtains.

After the client LIBMI application has established a connection, the session begins.

Connections with mi_open()

The mi_open() function establishes a default connection for the calling DataBlade
API module and returns a connection descriptor. A default connection is a
connection to the default database server (which the INFORMIXSERVER
environment variable specifies) and a specified database.

To establish a default connection, the mi_open() function accepts the following
information as arguments.

IBM Informix DataBlade API Programmer’s Guide

Default Used When Argument

mi_open() Argument Purpose is NULL

Database name The name of the database to open None

User account name The name of the login account for The name of the system-defined
the user who is to open the user account
database

(See [Table 7-5 on page 7-7)

This account must be valid on the
server computer.

Account password The password of the login The password of the

account for the user who is to system-defined user account

open the database

(See [Table 7-5 on page 7-7)

This account must be valid on the
server computer.

All of these arguments are passed as pointers to character strings. You can specify

NULL for any of these arguments, in which case mi_open() uses the specified

default values. If the client LIBMI application uses a shared-memory
communication, it can only establish one connection per application.

The following code fragment demonstrates the simplest way for a client LIBMI

application to initiate a connection to the default database server and to open a

database:

/*

* Use mi_open() to connect to the database passed on the

* client application command Tine. Close the connection with
* mi_close().

*/

#include <mi.h>
#include <stdio.h>

main(mi_integer argc, char *argv[])
{
MI_CONNECTION =*conn;

/* Check incomming parameters from command Tine */
if (argc !=2)
{
printf(stderr, "Usage:%s <db name>\n", argv[0]);
exit(2);
1

/* Open a connection from client LIBMI application to
* database server.

* database = parameter on command line
* user = operating-system user account which is
* running this application
* password = default specified for this user
*
/

conn = mi_open(argv[1], NULL, NULL);

/* If connection descriptor is NULL, there was an error
* attempting to connect to the database server and database
* specified. Exit application.
*/
if (NULL == conn)
{
fprintf(stderr, "Cannot open database: %s\n",
argv[1]);

Chapter 7. Handling Connections

7-15

exit(3);
}

/* Code for application use of this connection goes here */

/* Valid connection has occurred. Close the connection
* and exit the application.
*/
mi_close(conn);
exit(0);
1

In this example, the name of the database to be opened is passed on the command
line. The user_name and the user_password arguments to mi_open() are both
passed as NULL, which indicates that mi_open() uses the default user and
password.

Connections with mi_server_connect()

To exercise more control over which connection to establish, a client LIBMI
application can use mi_server_connect(), which establishes a connection to a
specified database server. The mi_server_connect() function obtains information
about which database server to connect to from a connection-information
descriptor. This function does not open a database.

This DataBlade API function provides greater flexibility for client LIBMI
applications that run against different database servers. You can pass information
about the connection through descriptors.

Associating User Data with a Connection

The connection descriptor provides information about various data type structures
associated with the current connection. (For a list of this information, see
) In addition, you can store the address of private information, called
user data, in the connection descriptor. The connection descriptor can hold this
user-data pointer, which points to the private user-data information.

| Server Only

You allocate the user data with a DataBlade API memory-management function
from the shared memory of the database server. The memory duration of this user
data must correspond with the connection descriptor that holds the user-data
pointer, as the following table shows.

Memory Duration

Type of Connection Descriptor of User Data Which UDRs Can Access User Data

Public connection descriptor MI_COMMAND All UDR invocations in the same SQL command

(with mi_open()) have access to the connection descriptor that
mi_open() returns.

Session-duration connection descriptor MI_SESSION All C UDR invocations in the session have

(with mi_get_session_connection()) access to the connection descriptor that

mi_get_session_connection() returns.

Therefore, your user data is available to all UDRs that can access its connection
descriptor.

7-16 IBM Informix DataBlade API Programmer’s Guide

Important: A session-duration connection descriptor is a restricted feature that can
adversely affect your UDR if used incorrectly. Use it only when a
public connection descriptor will not support the task you need to
perform. For more information, see |’Obtaining a Session-Duration|
[Connection Descriptor” on page 7-13|

| End of Server Only |

| Client Only |

The user data is allocated in client-side memory. Therefore, your user data is
available to all DataBlade API functions that execute in the session.

| End of Client Only |

able 7-8| shows the functions that the DataBlade API provides to access the user
data of a connection descriptor.

Table 7-8. DataBlade API Accessor Functions for User Data in the Connection Descriptor
DataBlade API

Accessor Function User-State Information
mi_get_connection_user_data() Obtains the user-data pointer from the connection
descriptor
mi_set_connection_user_data() Sets the user-data pointer in the connection

descriptor

The size of the connection user data is the size of a pointer of type “void *”. The
DataBlade API does not interpret or touch the associated user-data address, other
than to store and retrieve it from the connection descriptor.

Initializing the DataBlade API

Before you can use the DataBlade API to communicate with the database server,
you must make sure that it is initialized. When you establish a connection, the
DataBlade API function automatically initializes the DataBlade API. However, if
your DataBlade API module does not establish a connection, it must still ensure
that it initializes the DataBlade APL

Important: If the DataBlade API was not initialized, calls to subsequent DataBlade
API functions generate errors.

able 7-9|lists the functions that can initialize the DataBlade API.
Table 7-9. DataBlade API Functions That Initialize the DataBlade API

Valid in Client Valid in User-Defined
DataBlade API Initialization Function LIBMI Application? Routine?
mi_client_locale() Yes Yes
mi_get_default_connection_info() Yes Yes
mi_get_default_database_info() Yes Yes
mi_get_next_sysname() Yes No
mi_get_parameter_info() Yes Yes
mi_init_library() Yes No

Chapter 7. Handling Connections 7-17

Table 7-9. DataBlade API Functions That Initialize the DataBlade API (continued)

Valid in Client Valid in User-Defined

DataBlade API Initialization Function LIBMI Application? Routine?

mi_open() Yes Yes
mi_register_callback() Yes Yes
mi_server_connect() Yes No
mi_set_default_connection_info() Yes Ignored
mi_set_default_database_info() Yes Ignored
mi_set_parameter_info() Yes No

mi_sysname() Yes Yes

One of the functions listed in must be the first DataBlade API function
called in a DataBlade API session. If you do not call one of these functions, the
DataBlade API is not initialized and all subsequent DataBlade API calls return
error status.

Closing a Connection

7-18

To close a connection, free the associated connection descriptor. When the
connection descriptor is freed, the DataBlade API also frees the session-context
resources, including the following:

* Save sets
* Prepared statements (explicit statement descriptors)

* For an SQL statement executed with mi_exec() (also called the current
statement):

— The implicit statement descriptor for the current statement
— The row structure and associated row descriptor for the current statement
* Cursors (implicit and explicit)
* Function descriptors
* Callbacks registered for the connection
* Connection user data

To conserve resources, use mi_close() to deallocate the connection descriptor
explicitly once your DataBlade API module no longer needs it. The mi_close()
function is the destructor function for a connection descriptor. It frees the
connection descriptor and any resources that are associated with it.

| Server Only

In a C UDR, a public connection descriptor has a memory duration of
PER_STMT_EXEC. Therefore, a connection descriptor remains active until one of
the following events occurs:

e The mi_close() function closes the specified UDR connection.
e The current SQL statement completes execution.

When a UDR connection is closed, the UDR can no longer access the associated
connection information (see [Table 7-1 on page 7-3). However, the session remains
open until the client application ends it. Therefore, a UDR can obtain a new UDR
connection with another call to mi_open().

IBM Informix DataBlade API Programmer’s Guide

Tip: After a C UDR closes a connection, the UDR can no longer access the
connection resources in [Table 7-1 on page 7-3] Any open smart large objects
and operating-system files, however, remain valid for the duration of the
session. You can explicitly close these descriptors with the mi_lo_close() and
mi_file_close() functions, respectively.

A session-duration connection descriptor has a memory duration of PER_SESSION.
Therefore, it and its associated connection information remain valid until the end
of the session. However, a session-duration connection is a restricted feature of the
DataBlade APL Use it only when a public connection descriptor will not perform
the task you need. For more information, see [“Obtaining a Session-Duration|
IConnection Descriptor” on page 7-13

| End of Server Only

| Client Only

In a client LIBMI application, a connection descriptor has a scope of the session.
When the client connection closes, the session ends. Therefore, a connection
descriptor remains active until one of the following events occurs:

* The mi_close() function closes the specified connection, ending the session.
* The client LIBMI application completes.

Tip: Once a client LIBMI application closes a connection, it can no longer access
the connection information. In addition, any open smart large objects and files
are closed.

| End of Client Only |

Chapter 7. Handling Connections 7-19

7-20 IBM Informix DataBlade API Programmer’s Guide

Chapter 8. Executing SQL Statements

In This Chapter. .
Executing SQL Statements . .
Choosing a DataBlade API Functlon
Type of Statement . .
Prepared Statements and Input Parameters
Queries and Implicit Cursors
Executing Basic SQL Statements
Assembling a Statement String.
Sending an SQL Statement .
Executing Prepared SQL Statements
Preparing an SQL Statement . .
Obtaining Input-Parameter Information
Sending the Prepared Statement .
Releasing Prepared-Statement Resources .
Executing Multiple SQL Statements.
Processing Statement Results . .
Executing the mi_get_result() Loop
Handling Unsuccessful Statements .
Handling a DDL Statement
Handling a DML Statement
Handling Query Rows .
Handling “No More Data”. .
Example: The get_results() Function .
Retrieving Query Data .
Obtaining Row Information
Obtaining Column Information .
Retrieving Rows .
Accessing the Current Row .
Executing the mi_next_row() Loop
Obtaining Column Values . .
Executing the Column-Value Loop
Accessing the Columns .
Obtaining Normal Values .
Obtaining NULL Values
Obtaining Row Values .
Obtaining Collection Values .
Example: The get_data() Function .
Completing Execution . o
Finishing Execution . .
Processing Remaining Rows .
Releasing Statement Resources
Interrupting Execution .
Inserting Data into the Database.
Assembling an Insert String
Sending the Insert Statement .
Processing Insert Results
Using Save Sets
Creating a Save Set .
Inserting Rows into a Save Set
Building a Save Set .

© Copyright IBM Corp. 1996, 2005

. 82
. 82
. 83

. 84
. 85

. 8-6
.87
. 811
. 811
. 8-15
. 8-17
. 831
. 8-32
. 833
. 8-34
. 8-34
. 8-34
. 835
. 8-37
. 8-38
. 8-38
. 8-39
. 840
. 841
. 8-41
. 8-41
. 841
. 8-42
. 8-42
. 843
. 8-44
. 8-49
. 8-49
. 852
. 8-53
. 8-57
. 8-57
. 8-57
. 857
. 8-58
. 8-59
. 8-59
. 8-59
. 8-59
. 8-59
. 8-60
. 8-60
. 8-61

8-1

Freeing a Save Set

. 8-64

In This Chapter

One basic task of a DataBlade API module is to send SQL statements to the
database server for execution. To execute an SQL statement, a DataBlade API
module must perform the following tasks:

e Assemble the SQL statement and send it to the database server for execution

* Process results that the database server returns to the module

 If the SQL statement (such as a SELECT) returns rows, obtain each row of data
* For each row, obtain the column value or values of interest

* Complete the execution of the statement

This chapter describes each of these execution steps in detail.

Executing SQL Statements

8-2

To execute an SQL statement, a DataBlade API module must send the SQL
statement to the database server, where the statement is actually executed. The
DataBlade API provides the following statement-execution functions for use in a
DataBlade API module:

* mi_exec()
* mi_exec_prepared_statement()
* mi_open_prepared_statement()

All of these functions perform the same basic task: they send a string
representation of an SQL statement to the database server, which executes it and
returns statement results. The mi_exec() function is the simplest way to execute
an SQL statement.

| Server Only |

A C user-defined routine (UDR) that executes SQL statements must be registered
as a variant function; that is, its CREATE FUNCTION statement must either
include the VARIANT routine modifier or omit both the NOT VARIANT and
VARIANT routine modifiers (VARIANT is the default).

| End of Server Only |

This section provides a summary of factors to consider when choosing the
DataBlade API statement-execution function to use. It then describes the two
methods for statement execution.

Method of Statement Execution More Information

Parse, optimize, and execute the statement [“Executing Basic SQL Statements” on page 8-6|
in one step

Parse and optimize the statement to create a [‘Executing Prepared SQL Statements” on|
prepared statement Execute the prepared page 8-11]
statement

Tip: Before you use a DataBlade API function that sends an SQL statement to the
database server, make sure you obtain a valid connection descriptor.

IBM Informix DataBlade API Programmer’s Guide

Choosing a DataBlade API Function
shows the functions that the DataBlade API provides to send SQL

statements to the database server for execution.

Table 8-1. Statement-Execution Functions of the DataBlade API

When to Use Function

Statement Executed
Many Times or Contains Query Can Use

DataBlade API Function Type of Statement Input Parameters? Implicit Cursor?
mi_exec() Query Other valid SQL No Yes
statements
mi_exec_prepared_statement() Query Other valid SQL Yes Yes
statements
mi_open_prepared_statement() Query only Yes No

As the preceding table shows, you need to consider the following factors when
deciding which DataBlade API statement-execution function to use:

* What type of SQL statement do you need to send?
* Does your SQL statement contain input parameters?

* If the SQL statement is a query, can you use an implicit cursor to access the
retrieved rows?

Choose the DataBlade API statement-execution function that is appropriate for the
needs of your DataBlade API application.

Type of Statement
The DataBlade API statement-execution functions can execute the following types
of SQL statements:

* An SQL statement that does not return rows of data (is not a SELECT statement
and not an EXECUTE FUNCTION statement that executes an iterator function)

Most SQL statements do not return rows. For example, all data definition (DDL)
statements and most data manipulation (DML) statements return only a status to
indicate the statement’s success.

* An SQL statement that does return one or more rows of data
The following SQL statements return rows:
— SELECT statement
— EXECUTE FUNCTION statement, when the user-defined function returns
more than one row of data

An SQL statement that returns rows is often called a query because it asks the
database server to answer a question: which rows match?

Tip: The term “query” is sometimes used to refer to any SQL statement. However,
this manual uses the more specific definition of “query”: an SQL statement
that returns rows.

The following table shows how to choose a DataBlade API statement-execution
function based on the type of SQL statement.

Type of Statement DataBlade API Function
Query, mi_exec(),
Other valid statements mi_exec_prepared_statement()

Chapter 8. Executing SQL Statements 8-3

8-4

Type of Statement DataBlade API Function

Query only mi_open_prepared_statement()

Prepared Statements and Input Parameters

A prepared SQL statement is the parsed version of an SQL statement. The database
server prepares an SQL statement for execution at a later time. Preparing a
statement enables you to separate the parsing and execution phases of the
statement execution. When you prepare a statement, you send the statement to the
database server to be parsed. The database server checks the statement for syntax
errors and creates an optimized version of the statement for execution.

You need to prepare an SQL statement only once. You can then execute the
statement multiple times. Each time you execute the statement, you avoid the
parsing phase. Prepared statements are useful for SQL statements that execute
often in your DataBlade API module.

SQL statements that have missing column or expression values are called
parameterized statements because you use input parameters as placeholders for
missing column or expression values. An input parameter is a placeholder in an
SQL statement that indicates that the actual column value is provided at runtime.
You can specify input parameters in the statement text representation of an SQL
statement for either of the following reasons:

* A column or expression value is unknown at the time you prepare the SQL
statement.

* A column or expression value changes for each execution of the SQL statement.

For a parameterized SQL statement, your DataBlade API module must provide the
following information to the database server for each of its input parameters.

Input-Parameter Information More Information

Specify the input parameter in the text of the [‘Assembling a Prepared Statement” on page|
SQL statement 8-11

Specify the value for the input parameter “ Assiening Values to Input Parameters” on|
when the statement executes [page 8-22|

You can also obtain information about the input parameters after the

parameterized statement is prepared. For more information, see
[nput-Parameter Information” on page 8-15|

A DataBlade API module can prepare an SQL statement for the following reasons:

* To increase performance by reducing the number of times that the database
server parses and optimizes the statement

* To execute a parameterized SQL statement and provide different
input-parameter values each time the statement executes

The following table shows how to choose a DataBlade API statement-execution
function based on whether the SQL statement needs to be prepared.

Statement Needs To Be Prepared? DataBlade API Function
No mi_exec()
Yes mi_exec_prepared_statement(),

mi_open_prepared_statement()

IBM Informix DataBlade API Programmer’s Guide

The mi_exec_prepared_statement() or mi_open_prepared_statement() function
provides argument values for specifying the input-parameter values when the
function executes the statement. You can also use these functions to execute
prepared statements that do not have input parameters.

Queries and Implicit Cursors

When a DataBlade API statement-execution function executes a query, the function
must create a place to hold the resulting rows. Each of these functions (mi_exec(),
mi_exec_prepared_statement(), or mi_open_prepared_statement()) automatically
creates a row cursor (often called simply a cursor). The row cursor is an area of
memory that serves as a holding place for rows that the database server has
retrieved.

The simplest way to hold the rows of a query is to use an implicit cursor, which is
defined with the following characteristics.

Cursor Characteristic Restriction

Read-only You can only examine the contents of the row
cursor. You cannot modify these contents.

Sequential A sequential cursor allows movement through the
rows of the cursor in the forward direction only.
You cannot go backward through the cursor. To
reaccess a row that you have already accessed, you
must close the cursor, reopen it, and move to the
desired row.

Most DataBlade API modules can use an implicit cursor for accessing rows.
However, if the cursor characteristics of the implicit cursor are not adequate for the
needs of your DataBlade API module, you can define an explicit cursor with any of
the following cursor characteristics.

Cursor Characteristic Description

Cursor type In which direction does the cursor enable you to
access rows? You can choose a sequential cursor or
a scroll cursor.

Cursor mode Which operations are valid on the rows in the
cursor? You can choose read-only or update mode.

Cursor lifespan How long does the cursor remain open? You can
choose whether to use a hold cursor.

For more information on these cursor characteristics, see[“Defining an Explicit|
ICursor” on page 8-22|

The following table shows how to choose a DataBlade API statement-execution
function based on the type of cursor that the query requires.

Can Query Use Implicit Cursor? DataBlade API Function

Yes mi_exec(),
mi_exec_prepared_statement()

No mi_open_prepared_statement()

Chapter 8. Executing SQL Statements 8-5

8-6

With the mi_open_prepared_statement() function, you can specify an explicit
cursor to hold the query rows. In addition, you can assign a name to the cursor
that you can use in other SQL statements.

Executing Basic SQL Statements

The mi_exec() function provides the simplest way to send a basic SQL statement
to the database server for execution. A basic SQL statement is one that does not
need to be prepared. That is, the statement does not execute many times in the
DataBlade API module or it does not contain input parameters. To send a basic
SQL statement to the database server for execution, take the following steps:

* Assemble a statement string, which contains the SQL statement to execute.
* Send the statement string to the database server with mi_exec().

The database server parses the statement string, optimizes it, executes it, and sends
back the statement results.

Assembling a Statement String

The mi_exec() function passes the SQL statement to the database server as a
statement string, which is a text representation of the SQL statement. To execute a
statement with mi_exec(), the statement string must include the entire SQL
statement; that is, it cannot contain any input parameters.

You can assemble this statement string in the following ways:

 If you know all the information at compile time, assemble the statement as a
fixed string.

If you know the whole statement structure, you can specify the string itself as
the argument to mi_exec(), as the following line shows:
mi_exec(conn,
"select company from customer where \
customer_num = 101;", MI_QUERY_BINARY);
* If you do not know all the information about the statement at compile time, you
can use the following features to assemble the statement string:
— Character variables can hold the identifiers in the SQL statement (column
names or table names) or parts of the statement like the WHERE clause. They
can also contain keywords of the statement.

You can then build the SQL statement as a series of string operations, as

[Figare 5] shows

mi_string stmt_txt[30];
mi_string fld_name[15];

stcopy("select ", stmt_txt);

f1d_name = obtain_fldname(...);

stcat(f1d_name, stmt_txt);

stcat("from customer where customer_num = 101", stmt_txt);

mi_exec(conn, stmt_txt, MI_QUERY_BINARY);

Figure 8-1. Assembling a SELECT Statement from a Character String

* If you know what column values the statement specifies, you can declare
program variables to provide column values that are needed in a WHERE clause
or to hold column values that database server returns.

IBM Informix DataBlade API Programmer’s Guide

shows the SELECT statement of changed so that it uses a

variable to determine the customer number dynamically.

mi_string stmt_txt[30];

mi_integer cust_num;

stcopy("select company from customer where customer_num = ",
stmt_txt);

cust_num = obtain_custnum(...);

stcat(cust_num, stmt_txt);

stmt_desc = mi_exec(conn, stmt_txt, MI_QUERY_BINARY);

Figure 8-2. Using a Variable to Assemble a SELECT Statement

The statement string can contain multiple SQL statements. Each SQL statement
must be terminated with the semicolon (;) symbol. For more information, see
[“Executing Multiple SQL Statements” on page 8-32|

Sending an SQL Statement

The mi_exec() function is for the execution of basic SQL statements, both queries
and other valid SQL statements. In a DataBlade API module, use the following
DataBlade API functions to execute a basic SQL statement.

Step in Execution of Basic SQL Statement DataBlade API Function

Send the basic SQL statement to the database server for mi_exec()
execution and open any cursor required

Release statement resources mi_query_finish(),
mi_query_interrupt()

Once the database server executes the statement that mi_exec() sends, the
statement becomes the current statement. The current statement is the most recent
SQL statement on the connection. Only one statement per connection is current.
The database server sends back the results of the current statement, including
whether the current statement was successful.

The mi_exec() function creates an implicit statement descriptor to hold the
information about the current statement. The following table summarizes the
memory operations for an implicit statement descriptor.

Memory Duration Memory Operation Function Name
Not allocated from memory-duration pools Constructor mi_exec()
Destructor mi_query_finish()

able 8-2|lists the DataBlade API accessor functions for the implicit statement
descriptor that mi_exec() creates.

Table 8-2. Accessor Functions for an Implicit Statement Descriptor

Statement-Descriptor Information DataBlade API Accessor Function

The name of the SQL statement that is mi_result_command_name()
the current statement

Chapter 8. Executing SQL Statements ~ 8-7

Table 8-2. Accessor Functions for an Implicit Statement Descriptor (continued)

Statement-Descriptor Information DataBlade API Accessor Function

A row descriptor for the columns in the = mi_get_row_desc_without_row()

current statement
From the row descriptor, you can use the

row-descriptor accessor functions to obtain
information about a particular column (see
[Table 5-3 on page 5-30).

You obtain the status of the current statement with the mi_get_result() function.
For more information, see [“Processing Statement Results” on page 8-33|

Tip: The return value that the mi_exec() function returns does not indicate the
success of the current statement. It indicates if mi_exec() was able to
successfully send the statement to the database server.

When mi_exec() executes a query, it performs the following additional steps:
1. Opens an implicit cursor to hold the query rows
2. Reads the query rows into the open cursor

The Implicit Row Cursor: When mi_exec() executes a query, it automatically
opens an implicit cursor to hold the resulting rows. This cursor is associated with
the current statement and is stored as part of the connection descriptor. Therefore
only one cursor per connection can be current. For more information, see
land Implicit Cursors” on page 8-5,

Tip: If the implicit cursor that mi_exec() creates does not adequately meet the
needs of your DataBlade API module, you can use the
mi_open_prepared_statement() function to define other types of cursors. For
more information, see|“Defining an Explicit Cursor” on page 8-22|

When the mi_exec() function successfully fetches the query results into the cursor,
the cursor position points to the first row of the cursor, and the mi_get_result()
function returns a status of MI_ROWS to indicate that the cursor contains rows.

You can access these rows one at a time with the mi_next_row() function. Each
access obtains the row to which the cursor position points. After each access to the
cursor, the cursor position moves to the next row. For more information, see
[“Retrieving Query Data” on page 8-39

Control Modes for Query Data: The data that the database server returns for a
query can be in one of two control modes:

* In text representation, the query data is represented as null-terminated strings.
Data in its text representation is often called a literal value.

* In binary representation, the query data is represented in its internal format; that
is, in the format that the database server uses to store the value.

able 8-3|shows the format of different data types in the two control modes.

Table 8-3. Control Modes for Data

Type of Data

Text Representation Binary Representation

Null-terminated string Varying-length structure:

mi_lvarchar

IBM Informix DataBlade API Programmer’s Guide

Table 8-3. Control Modes for Data (continued)

Type of Data

Text Representation

Binary Representation

Date "mm/dd/yyyy” Integer number of days since
December 31, 1899
Nondefault locale: End-user date format
(DATE, mi_date)
Date/time "yyyy-mm-dd HH:MM:SS” dtime_t
Nondefault locale: End-user date and time format (DATETIME, mi_datetime)
Interval "yyyy-mm" intrvl_t
"dd HH:MM:SS” (INTERVAL, mi_interval)
Nondefault locale: End-user date and time format
Integer Integer value as a string: Internal format:
o * Two-byte integer
thousands separator =", (SMALLINT, mi_smallint)
Nondefault locale: End-user numeric format * Four-byte integer
(INTEGER, mi_integer)
* Eight-byte integer: ifx_int8_t
(INT8, mi_int8)
Decimal Fixed-point value as a string: dec_t
thousands separator = "," (DECIMAL, mi_decimal)
decimal separator = "."
Nondefault locale: End-user numeric format
Monetary Fixed-point value as a string: dec_t

"o

thousands separator = ",
decimal separator = "."
currency symbol = "$"

Nondefault locale: End-user monetary format

(MONEY, mi_money)

Floating-point

Floating-point value as a string:

"on

thousands separator =",
decimal separator = "."

Nondefault locale: End-user numeric format

Internal format:

* single-precision floating point
(SMALLFLOAT, mi_real)

* double-precision floating point

(FLOAT, mi_double_precision)

Boolean

//t// or //T//

//f// or //F//

MI_TRUE, MI_FALSE

(BOOLEAN, mi_boolean)

Smart large object

Text representation of the LO handle
(obtained with mi_lo_to_string())

LO handle

(CLOB, BLOB; MI_LO_HANDLE)

Row type

Unnamed row type:
"ROW(fld_valuel, fld_value2, ...)"
Named row type:

"row_type(fld_valuel, fld_value2, ...)"

Row structure

(ROW, named row type; MI_ROW)

Chapter 8. Executing SQL Statements

8-9

Table 8-3. Control Modes for Data (continued)

Type of Data

Text Representation

Binary Representation

Collection type

"SET{elmnt_value, elmnt_value, ...}"

"MULTISET{elmnt_value, elmnt_value, ...}"

"LIST{elmnt_value, elmnt_value, ...}"

Collection structure

(SET, LIST, MULTISET;
MI_COLLECTION)

Varying-length
opaque type

External format of opaque type

Varying-length structure:

(as returned by output support function)

mi_bitvarying
(which contains the internal C data
type)

Fixed-length
opaque type

External format of opaque type
(as returned by output support function)

Internal C data type

Distinct type

Text representation of its source data type

Binary representation of its source
data type

The mi_exec() function indicates the control mode of the query with a bit-mask
control argument, which is one of the following flags.

Control Mode Control-Flag Value
MI_QUERY_NORMAL

MI_QUERY_BINARY

Text representation

Binary representation

In the send_statement() function (page [8-10), mi_exec() sets the control mode of
the query data to text representation.

To determine the control mode for query data, use the mi_binary_query()
function. The mi_binary_query() function determines the control mode for data of
the current statement.

Example: The send_statement() Function: The send_statement() function takes
an existing open connection and an SQL statement string as arguments and sends

the statement to the database server with the mi_exec() function. It specifies text

representation for the query results.

/* FUNCTION: send_statement()
* PURPOSE: To send an SQL statement to the database server for
* execution
*
* CALLED BY: Called from within a C user-defined function to
* execute a basic SQL statement
*/
mi_integer

send_statement (MI_CONNECTION *conn, mi_string *stmt)
{

mi_integer count;

/* Send the statement, specifying results be sent
* in their text representation (MI_QUERY_NORMAL)
*/
if (MI_ERROR == mi_exec(conn, stmt, MI_QUERY_NORMAL))
{
mi_db_error_raise(conn, MI_EXCEPTION,
"mi_exec failed\n");

}

/% Get the results of the current statement */
count = get_results(conn);

8-10 IBM Informix DataBlade API Programmer’s Guide

/* Release statement resources */
if (mi_query_finish(conn) == MI_ERROR)
{
mi_db_error_raise(conn, MI_EXCEPTION,
"mi_query finish failed\n");
}

return (count);

}

The send_statement() function calls another user function, get_results(), to
examine the status of the current statement. For the implementation of the
get_results() function, see [’Example: The get_results() Function” on page 8-38|

Executing Prepared SQL Statements

A prepared statement is an SQL statement that is parsed and ready for execution. For
these statements, you prepare the statement once and execute it as many times as
needed. The DataBlade API provides the following functions to execute a prepared
SQL statement.

DataBlade API Function Step in Prepared-Statement Execution
mi_prepare() Prepares a text representation of the SQL

statement to execute
mi_statement_command_name(), Obtains information about the prepared
mi_get_statement_row_desc(), or statement

input-parameter accessor function
(Table 8-5 on page 8-15)

mi_exec_prepared_statement() or Sends the prepared statement to the database
mi_open_prepared_statement() server for execution
mi_drop_prepared_statement() Releases prepared-statement resources

Preparing an SQL Statement

To turn a statement string for an SQL statement into a format that the database
server can execute, use the mi_prepare() statement. The mi_prepare() function
performs the following tasks to create a prepared statement:

¢ Sends a statement string to the database server for parsing
* Assigns an optional name to the SQL statement

* Returns a pointer to a statement descriptor for the prepared statement

Tip: The mi_prepare() function performs the same basic task for a DataBlade API
module as the SQL PREPARE statement does for an IBM Informix ESQL/C
application.

Assembling a Prepared Statement: The mi_prepare() function passes the SQL
statement to the database server as a statement string. For the mi_prepare()
function, a statement string can contain either of the following formats of an SQL
statement:

* An unparameterized SQL statement (the same as the mi_exec() function
accepts)

* A parameterized SQL statement, which contains input parameters

Assembling Unparameterized Statements: 1If you know all the statement information
before the statement is prepared, you assemble an unparameterized statement as the

Chapter 8. Executing SQL Statements ~ 8~11

8-12

statement string. Pass the SQL statement as a string (or a variable that contains a
string) to the mi_prepare() function. For example, prepares an
unparameterized SELECT statement that obtains column values from the customer
table.

stmt_desc = mi_prepare(conn,
"SELECT * FROM customer;", NULL)

Figure 8-3. Preparing an Unparameterized Statement

For more information, see ["Assembling a Statement String” on page 8-6|

Assembling Parameterized Statements: If some column or expression value is
provided when the statement actually executes, you assemble the parameterized
statement as the statement string. Specify input parameters in the statement text
representation of an SQL statement. For a description of an input parameter, see
[“Prepared Statements and Input Parameters” on page 8-4|

You indicate the presence of an input parameter with a question mark (?)
anywhere within a statement where an expression is valid. You cannot list a
program-variable name in the text of an SQL statement because the database server
knows nothing about variables declared in the DataBlade API module. You cannot
use an input parameter to represent an identifier such as a database name, a table
name, or a column name.

For example, shows an INSERT statement that uses input parameters as
placeholders for two column values in the customer table.

insrt_stdesc = mi_prepare(conn,
"INSERT INTO customer (customer_num, company) \
VALUES (?,?);", NULL

Figure 8-4. Preparing a Statement That Contains Input Parameters

In the first input parameter is defined for the value of the

customer_num column and the second for the value of the company column.

Before the prepared statement executes, your DataBlade API module must assign a
value to the input parameter. You pass these input-parameter values as arguments
to the mi_exec_prepared_statement() or mi_open_prepared_statement()
function. For more information, see |“Assigning Values to Input Parameters” onl|

Assigning an Optional Name: You can obtain access to a prepared statement
through its statement descriptor. However, other SQL statements that need to
reference the prepared statement cannot use a statement descriptor. Therefore, you
can assign an optional string name to a prepared SQL statement. Specify a name as
the third argument of the mi_prepare() function.

| Server Only |

The last argument to mi_prepare() specifies the cursor name for the prepared
statement. Assigning a cursor name is useful for a statement that includes an
update cursor so that an UPDATE or DELETE statement that contains the
following clause can reference the cursor in this clause:

IBM Informix DataBlade API Programmer’s Guide

WHERE CURRENT OF cursor_name

You can specify an update cursor in the syntax of the SELECT statement that you
prepare, as the following versions of the SELECT statement show:

SELECT customer_num, company FROM customer

WHERE customer_num = 104 FOR UPDATE OF company;

SELECT customer_num, company FROM customer
WHERE customer_num = 104;

For more information on the FOR UPDATE keywords of SELECT with databases
that are ANSI compliant and not ANSI compliant, see [‘Defining a Cursor Mode”|

| End of Server Only |

The following code fragment uses the mi_prepare() statement to assign a name to
a cursor and an UPDATE WHERE CURRENT OF statement to update the fifth row
in this cursor:

/* Prepare the FOR UPDATE statement */
if ((stmtl = mi_prepare(conn,
"select * from tabl for update;",
"cursl")) == NULL)
return MI_ERROR;

/* Open the cursor =/
if (mi_open_prepared_statement(stmtl, MI_BINARY,
MI_QUERY_BINARY, num_params, values, lengths, nulls,
types, NULL, 0, NULL) != MI_OK)
return MI_ERROR;

/* Fetch the 5th row */
if (mi_fetch_statement(stmtl, MI_CURSOR_NEXT, 0, 5)
1= MI_OK)
return MI_ERROR;

/* Get values from 5th row */
if (mi_get_result(conn) != MI_ROWS
mi_next_row(conn, &res) == NULL)
return MI_ERROR;

/* Update 5th row */
if (mi_exec("update tabl set int_col = int_col + 2 \
where current of cursl;", NULL) != MI _OK)

return MI_ERROR;

/* Clean up */

if (mi_close_statement(stmtl) != MI_OK)
return MI_ERROR;

if (mi_drop_prepared_statement(stmtl) != MI_OK)
return MI_ERROR;

The mi_open_prepared_statement() function also provides the ability to name the
cursor. However, if you specify a cursor name in mi_prepare(), make sure that
you pass a NULL-valued pointer as the cursor name to
mi_open_prepared_statement(). Conversely, if you want to specify the cursor
name in mi_open_prepared_statement(), use a NULL-valued pointer as the
cursor name in mi_prepare(). If you specify a cursor name in both mi_prepare()
and mi_open_prepared_statement(), the DataBlade API uses the cursor name that
mi_open_prepared_statement() provides.

Chapter 8. Executing SQL Statements ~ 8-13

8-14

If your prepared statement does not fetch rows, pass a NULL-valued pointer as the
third argument to mi_prepare().

| Client Only |

The last argument to mi_prepare() specifies the statement name for the prepared
statement. The cursor_name argument of mi_open_prepared_statement() specifies
the cursor name for the prepared statement. If you do not need to assign a
statement name, pass a NULL-valued pointer as the last argument to
mi_prepare().

| End of Client Only |

Returning a Statement Descriptor: The mi_prepare() function sends the contents
of an SQL statement string to the database server, which parses the statement and
returns it in an optimized executable format. The function returns a pointer to an
explicit statement descriptor (usually called just a statement descriptor). A statement
descriptor, MI_STATEMENT, is a DataBlade API structure that contains the
information about a prepared SQL statement, including the executable format of
the SQL statement.

The following table summarizes the memory operations for a statement descriptor.

Memory Duration Memory Operation Function Name

Not allocated from Constructor mi_prepare()
memory-duration pools

Destructor mi_drop_prepared_statement(),
mi_close_statement()

A statement descriptor can be identified in either of the following ways:
* As a pointer to an MI_STATEMENT structure, which mi_prepare() returns
The mi_prepare() function is a constructor function for a statement descriptor.

* As an integer statement identifier, which the mi_get_id() function returns when
passed MI_STATEMENT_ID as its second argument

able 8-4|lists the DataBlade API accessor functions for an explicit statement
descriptor.

Table 8-4. Accessor Functions for an Explicit Statement Descriptor

Statement-Descriptor Information DataBlade API Accessor Function

The name of the SQL statement that was mi_statement_command_name()
prepared

Information about any input parameters in The input-parameter accessor functions
the prepared statement (Table 8-5 on page 8-15)

A row descriptor for the columns in the mi_get_statement_row_desc()

prepared statement
From the row descriptor, you can use the

row-descriptor accessor functions to obtain
information about a particular column (see
[Table 5-3 on page 5-30).

Important: To DataBlade API modules, the statement descriptor (MI_STATEMENT)
is an opaque C structure. Do not access the internal fields of this
structure directly. The internal structure of the MI_STATEMENT may

IBM Informix DataBlade API Programmer’s Guide

change in future releases. Therefore, to create portable code, always use
these accessor functions to obtain prepared-statement information.

You pass a statement descriptor to the other DataBlade API functions that handle
prepared statements, including mi_exec_prepared_statement(),
mi_open_prepared_statement(), mi_fetch_statement(), mi_close_statement(),
and mi_drop_prepared_statement().

Obtaining Input-Parameter Information

From a statement descriptor, you can obtain information about an input parameter
once an SQL statement has been prepared. An input parameter indicates a value
that is provided when the prepared statement executes. lists the
DataBlade API accessor functions that obtain input-parameter information from the
statement descriptor.

Table 8-5. Input-Parameter Information in the Statement Descriptor
DataBlade API

Column Information Accessor Function

The number of input parameters in the prepared mi_parameter_count()
statement

The precision (total number of digits) of the column mi_parameter_precision()
associated with an input parameter

The scale of a column that is associated with the input mi_parameter_scale()
parameter

Whether the column associated with each input mi_parameter_nullable()

parameter was defined with the NOT NULL constraint

The type identifier of the column that is associated with mi_parameter_type_id()
the input parameter

The type name of the column that is associated with the ~ mi_parameter_type_name()
input parameter

Important: To DataBlade API modules, the input-parameter information in the
statement descriptor (MI_STATEMENT) is part of an opaque C data
structure. Do not access the internal fields of this structure directly. The
internal structure of the MI_STATEMENT structure may change in
future releases. Therefore, to create portable code, always use these
accessor functions to obtain input-parameter information.

Input-parameter information is available only for the INSERT and UPDATE
statements. Support for the UPDATE statement includes the following forms of
UPDATE:

* UPDATE with or without a WHERE clause
 UPDATE WHERE CURRENT OF

If you attempt to request input-parameter information for other SQL statements,

the input-parameter functions in [Table 8-5|raise an exception.

The statement descriptor stores input-parameter information in several parallel
arrays.

Input-Parameter Array Contents

Parameter-type ID array Each element is a pointer to a type identifier (MI_TYPEID) that
indicates the data type of the input parameter.

Chapter 8. Executing SQL Statements ~ 8-15

8-16

Input-Parameter Array Contents

Parameter-type name Each element is a pointer to the string name of the data type for

array each input parameter.

Parameter-scale array Each element is the scale of the column associated with the input
parameter.

Parameter-precision Each element is the precision of the column associated with the

array input parameter.

Parameter-nullable array Each element is either MI_FALSE or MI_TRUE:

* MI_FALSE indicates that the input parameter is associated with
a column that cannot contain SQL NULL values.

* MI_TRUE indicates that the input parameter is associated with
a column that can contain SQL NULL values.

All of the input-parameter arrays in the statement descriptor have zero-based
indexes. Within the statement descriptor, each input parameter in the prepared
statement has a parameter identifier, which is the zero-based position of the input
parameter within the input-parameter arrays. When you need information about
an input parameter, specify its parameter identifier to one of the
statement-descriptor accessor functions in [Table 8-5 on page 8-15|

shows how the information at index position 1 of these arrays holds the
input-parameter information for the second input parameter of a prepared
statement.

Type identifiers ~ Type names Scales Precisions NULL values
0 0 0 0 0
| 1 L 1 L 1 ‘ l Vi 1 <« |
2 2] 2 21/ 21
n n n n

All information for the second input parameter
(at index position 1)

Figure 8-5. Input-Parameter Arrays in the Statement Descriptor

To access information for the nth input parameter, provide an index value of n-1 to
the appropriate accessor function in [Table 8-5 on page 8-15/ The following calls to
the mi_parameter_type_id() and mi_parameter_nullable() functions obtain from
the statement descriptor that stmt_desc identifies the type identifier (param_type)
and whether the column is nullable (param_nullable) for the second input
parameter:

MI_STATEMENT =*stmt_desc;

MI_TYPEID =*param_type;

mi_integer param_nullable;

param_type = mi_parameter_type_id(stmt_desc, 1);
param nullable = mi_parameter_nullable(stmt_desc, 1);

IBM Informix DataBlade API Programmer’s Guide

To obtain the number of input parameters in the prepared statement (which is also
the number of elements in the input-parameter arrays), use the
mi_parameter_count() function.

Sending the Prepared Statement
For a prepared statement to be executed, you must send it to the database server
with one of the following DataBlade API functions.

DataBlade API Function When To Use

mi_exec_prepared_statement() If the prepared statement does not return rows

If the prepared statement does return rows but you
only need to access these rows sequentially (with an
implicit cursor)

mi_open_prepared_statement() If the prepared statement does return rows and you
need to perform one of the following tasks:

¢ Access these rows with a scroll, update, or hold
cursor (instead of a read-only sequential cursor)

¢ Control how many rows the database server puts
into the cursor at one time

Both these functions support the following parameters.

Parameter Description

stmt_desc Is a pointer to a statement descriptor for the prepared statement

The mi_prepare() function generates this statement descriptor.

control flag Determines whether any query rows are in binary or text
representation

params_are_binary Indicates whether the input-parameter values are in binary or text
representation

n_params Is the number of input-parameter values in the

input-parameter-value arrays

Input-parameter-value Arrays that contain the following information for each

arrays: input-parameter value:
* values e Value
 types e Data type
e lengths * Length (for varying-length data types)
e nulls * Whether the input-parameter value is an SQL NULL value
For more information, see[“Assigning Values to Input Parameters”]
retlen The number of column values that are in each retrieved row
rettypes An array that contains the data types of any returned column
values

Once the database server executes the prepared statement, the statement becomes
the current statement. The database server sends back the statement results,
including whether the current statement was successful. Obtain the status of the
current statement with the mi_get_result() function. For more information, see
[“Processing Statement Results” on page 8-33

Chapter 8. Executing SQL Statements ~ 8-17

8-18

Tip: The return value that the mi_exec_prepared_statement() or
mi_open_prepared_statement() function returns does not indicate the
success of the current statement. It indicates if
mi_exec_prepared_statement() or mi_open_prepared_statement() was able
to successfully send the prepared statement to the database server.

Statements with mi_exec_prepared_statement(): The
mi_exec_prepared_statement() function is for the execution of prepared
statements, both queries and other valid SQL statements. In a DataBlade API
module, use the following DataBlade API functions to execute a prepared SQL
statement with mi_exec_prepared_statement().

DataBlade API Function Step in Prepared-Statement Execution
mi_prepare() Prepares the statement string for execution
mi_statement_command_name(), Obtains information about the prepared statement
mi_get_statement_row_desc(), or (optional)

input-parameter accessor function
(Table 8-5 on page 8-15)

mi_exec_prepared_statement() Sends the prepared statement to the database
server for execution and opens any cursor
required

mi_drop_prepared_statement() Releases prepared-statement resources

The mi_exec_prepared_statement() function performs the following tasks for the

prepared SQL statement:

* Binds any input-parameter values to the appropriate input parameters in the
prepared statement

For more information, see[”Assigning Values to Input Parameters” on page 8-27

* Sends the prepared statement to the database server for execution

The control flag supports the MI_BINARY flag to indicate that query rows are to
be returned in binary representation. For more information, se

[Control Mode for Query Data” on page 8-30}

* When it executes a query, it performs the following additional steps:
— Opens an implicit cursor to hold the query rows
— Reads the query rows into the open cursor

The DataBlade API stores the cursor as part of the statement descriptor. For
more information on this row cursor, see [‘Queries and Implicit Cursors” on|

Tip: If the implicit cursor that mi_exec_prepared_statement() creates does not
adequately meet the needs of your DataBlade API module, you can use the
mi_open_prepared_statement() function to define other types of cursors. For
more information, see[“Defining an Explicit Cursor” on page 8-22|

When the mi_exec_prepared_statement() function successfully fetches the query
rows into the cursor, the cursor position points to the first row of the cursor, and the
mi_get_result() function returns a status of MI_ROWS to indicate that the cursor
contains rows.

IBM Informix DataBlade API Programmer’s Guide

You can access these rows one at a time with the mi_next_row() function. Each
access obtains the row to which the cursor position points. After each access to the
cursor, the cursor position moves to the next row. For more information, see
[‘Retrieving Query Data” on page 8-39%

The following variation of the send_statement() function (page uses
mi_exec_prepared_statement() instead of mi_exec() to send an SQL statement to
the database server:

mi_integer send_statement2(conn, stmt)

MI_CONNECTION =conn;
mi_string *stmt;

mi_integer count;
MI_STATEMENT =*stmt_desc;

/* Prepare the statement */
if ((stmt_desc = mi_prepare(conn, stmt, NULL)) == NULL)
mi_db_error_raise(conn, MI_EXCEPTION,
"mi_prepared failed\n");

/* Send the basic statement, specifying that query
* be sent in its text representation
*
/
if (mi_exec_prepared_statement(stmt desc, ©, MI_FALSE,
0, NULL, NULL, NULL, O, NULL) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,
"mi_exec_prepared_statement failed\n");

/* Get the results of the current statement */
count = get_results(conn);

/* Release statement resources x/
if (mi_drop_prepared_statement(stmt_desc) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,
"mi_drop_prepared_statement failed\n");
if (mi_query_finish(conn) == MI_ERROR)
mi_db_error_raise(conn, MI_EXCEPTION,
"mi_query finish failed\n");

return (count);

}

The mi_exec_prepared_statement() function allocates type descriptors for each of
the data types of the input parameters. If the calls to
mi_exec_prepared_statement() are in a loop in which these data types do not
vary between loop iterations, mi_exec_prepared_statement() can reuse the type
descriptors, as follows:

* On the first call to mi_exec_prepared_statement(), specify in the types array the
correct data type names for the input parameters.

* On subsequent calls to mi_exec_prepared_statement(), replace the array of data
type names with a NULL-valued pointer.

This method saves on the number of type descriptors that
mi_exec_prepared_statement() must allocate, thereby reducing memory usage.

In mi_exec_prepared_statement() in the initial pass of the for loop
specifies the INTEGER data type for the single input parameter in an INSERT

statement. For subsequent passes of the for loop, mi_exec_prepared_statement()
receives a NULL-valued pointer for its types array. When it receives this

Chapter 8. Executing SQL Statements ~ 8-19

NULL-valued pointer, mi_exec_prepared_statement() reuses the type descriptor
that it has already created.

mi_string *types[1l] = {"int"};
mi_string x*types_exec;

sprintf(command, "insert into tabA values(?, %d);", Jj);
if ((stmt_desc = mi_prepare(conn, command, NULL)) == NULL)
{

return -1;

}

types_e