
DB2® IBM Informix

DataBlade Module Development Overview

Version 4.0A

G251-2275-00

���

DB2® IBM Informix

DataBlade Module Development Overview

Version 4.0A

G251-2275-00

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page E-1.

First Edition (December 2004)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by

copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . v

About This Manual . v

Organization of This Manual . vi

Types of Users . vi

Software Dependencies . vii

Documentation Conventions . vii

Typographical Conventions . vii

Feature, Product, and Platform . viii

Syntax Diagrams . ix

Example Code Conventions . xii

Additional Documentation . xiii

Installation Guides . xiii

Online Notes . xiii

Informix Error Messages . xv

Manuals . xvi

Online Help . xvi

Accessibility . xvi

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xvi

Compliance with Industry Standards . xix

IBM Welcomes Your Comments . xx

Chapter 1. DataBlade Module Concepts . 1-1

What Are DataBlade Modules? . 1-2

Why Extend Your Informix Database Server? 1-2

Why Create a DataBlade Module? . 1-4

Why Use the DataBlade Developers Kit? . 1-5

DataBlade Modules and the Database Server . 1-5

DataBlade Module Programming Languages 1-7

Internal Architecture of the Database Server 1-9

The Client Software Developer’s Kit . 1-10

Client Objects and Programs . 1-11

DataBlade Module Components . 1-11

Aggregates . 1-12

Data Types . 1-12

Routines . 1-19

Casts . 1-21

Interfaces . 1-22

Errors . 1-22

Unit Tests . 1-22

Functional Tests . 1-22

Imported SQL Files . 1-23

Imported Client Files . 1-23

Chapter 2. Building a DataBlade Module . 2-1

DataBlade Developers Kit Tools . 2-1

© Copyright IBM Corp. 1996, 2004 iii

BladeSmith . 2-1

BladePack . 2-2

BladeManager . 2-3

DBDK Visual C++ Add-In and IfxQuery . 2-4

How to Create a DataBlade Module . 2-5

DataBlade Module Development Resources . 2-7

The DataBlade Developers Kit InfoShelf . 2-7

The Tutorial . 2-8

Example DataBlade Modules . 2-8

The IBM Informix Developer Zone . 2-9

Appendix A. DataBlade Module Documentation A-1

Appendix B. IBM Informix DataBlade Modules B-1

Appendix C. Accessibility . C-1

Glossary . D-1

Notices . E-1

Index . X-1

iv DataBlade Module Development Overview

Introduction

About This Manual . v

Organization of This Manual . vi

Types of Users . vi

Software Dependencies . vii

Documentation Conventions . vii

Typographical Conventions . vii

Feature, Product, and Platform . viii

Syntax Diagrams . ix

How to Read a Command-Line Syntax Diagram x

Keywords and Punctuation . xi

Identifiers and Names . xii

Example Code Conventions . xii

Additional Documentation . xiii

Installation Guides . xiii

Online Notes . xiii

Locating Online Notes . xiv

Online Notes Filenames . xv

Informix Error Messages . xv

Manuals . xvi

Online Manuals . xvi

Printed Manuals . xvi

Online Help . xvi

Accessibility . xvi

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xvi

Compliance with Industry Standards . xix

IBM Welcomes Your Comments . xx

In This Introduction

This introduction provides an overview of the information in this manual and

describes the conventions it uses.

About This Manual

This manual is an overview of the DataBlade module development process. A

DataBlade module extends the functionality of IBM Informix Dynamic Server

to handle data with user-defined routines or to handle nontraditional kinds of

data, such as full text, images, video, spatial data, and time series.

This section discusses the organization of the manual, the intended audience,

and the associated software products you must have to develop and use a

DataBlade module.

© Copyright IBM Corp. 1996, 2004 v

Organization of This Manual

This manual begins with a conceptual overview of DataBlade modules and

then provides a procedural overview of the development of a DataBlade

module. Two appendixes describe current DataBlade module documentation

and DataBlade modules available from IBM.

This manual provides a basic orientation for DataBlade module development.

See Appendix A, “DataBlade Module Documentation,” on page A-1, for a

reference guide to current Informix documentation on DataBlade modules and

related topics.

This manual includes the following chapters:

v Chapter 1, “DataBlade Module Concepts,” on page 1-1, introduces

DataBlade modules. It includes the definition of a DataBlade module, an

overview of how DataBlade modules fit into Dynamic Server architecture,

descriptions of DataBlade module components, and DataBlade module

programming language options.

v Chapter 2, “Building a DataBlade Module,” on page 2-1, provides a

description of the DataBlade Developers Kit tools, a list of DataBlade

module development tasks, and a description of programming resources

and examples.

v Appendix A, “DataBlade Module Documentation,” on page A-1, is a

reference guide to current IBM Informix documentation on DataBlade

modules. The appendix is divided into three sections:

– An overview of the documentation set, arranged by concept

– A descriptive catalog of the documents, arranged alphabetically by title

– An alphabetical list of topics concerning DataBlade modules, with

references to the document or documents that contain detailed

information about each topic
v Appendix B, “IBM Informix DataBlade Modules,” on page B-1, introduces

several IBM Informix DataBlade modules and describes how they extend

Dynamic Server.

v An Accessibility appendix describes how to read syntax diagrams in the

HTML version of this manual using a screen reader.

v A Notices appendix describes IBM products, features, and services.

v A glossary of relevant terms follows the chapters, and an index directs you

to areas of particular interest.

Types of Users

This guide is an overview for anyone interested in learning about DataBlade

modules, including managers, developers who plan to create DataBlade

vi DataBlade Module Development Overview

modules, and developers who plan to create applications that use DataBlade

modules. However, you should be familiar with SQL and basic programming

concepts.

In contrast, the IBM Informix: DataBlade Developer’s Kit User's Guide provides

technical information specifically for developers who are ready to develop

DataBlade modules.

Software Dependencies

See the IBM Informix: Read Me First sheet for the DataBlade Developers Kit for

complete system requirements for DBDK.

Documentation Conventions

 This section describes the conventions that this manual uses. These

conventions make it easier to gather information from this and other volumes

in the documentation set.

The following conventions are discussed:

v Typographical conventions

v Other conventions

v Syntax diagrams

v Command-line conventions

v Example code conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms, illustrate

screen displays, describe command syntax, and so forth.

 Convention Meaning

KEYWORD All primary elements in a programming language statement

(keywords) appear in uppercase letters in a serif font.

italics

italics

italics

Within text, new terms and emphasized words appear in italics.

Within syntax and code examples, variable values that you are to

specify appear in italics.

boldface

boldface

Names of program entities (such as classes, events, and tables),

environment variables, file and pathnames, and interface elements

(such as icons, menu items, and buttons) appear in boldface.

monospace

monospace

Information that the product displays and information that you

enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif

font.

Introduction vii

Convention Meaning

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Tip: When you are instructed to “enter” characters or to “execute” a

command, immediately press RETURN after the entry. When you are

instructed to “type” the text or to “press” other keys, no RETURN is

required.

Feature, Product, and Platform

Feature, product, and platform markup identifies paragraphs that contain

feature-specific, product-specific, or platform-specific information. Some

examples of this markup follow:

Dynamic Server

Identifies information that is specific to IBM Informix Dynamic Server

End of Dynamic Server

Extended Parallel Server

Identifies information that is specific to IBM Informix Extended Parallel Server

End of Extended Parallel Server

UNIX Only

Identifies information that is specific to UNIX platforms

End of UNIX Only

Windows Only

Identifies information that is specific to the Windows environment

End of Windows Only

 This markup can apply to one or more paragraphs within a section. When an

entire section applies to a particular product or platform, this is noted as part

of the heading text, for example:

 Table Sorting (Linux Only)

viii DataBlade Module Development Overview

Syntax Diagrams

This guide uses syntax diagrams built with the following components to

describe the syntax for statements and all commands other than system-level

commands.

Note: Starting in 2004, syntax diagrams have been reformatted to conform to

the IBM standard.

Syntax diagrams depicting SQL and command-line statements have changed

in the following ways:

v The symbols at the beginning and end of statements are now double arrows

instead of a vertical line at the end.

v The symbols at the beginning and end of syntax segment diagrams are now

vertical lines instead of arrows.

v How many times a loop can be repeated is now explained in a diagram

footnote instead of a number in a gate symbol.

v Syntax statements that are longer than one line now continue on the next

line instead of looping down with a continuous line.

v Product or condition-specific paths are now explained in diagram footnotes

instead of icons.

The following table describes syntax diagram components.

 Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

-----------------------> Statement continues on

next line.

>----------------------- Statement continues from

previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---

 ’------LOCAL------’

Optional item.

---+-----ALL-------+---

 +--DISTINCT-----+

 ’---UNIQUE------’

Required item with choice.

One and only one item

must be present.

Introduction ix

Component represented in PDF Component represented in HTML Meaning

---+------------------+---

 +--FOR UPDATE-----+

 ’--FOR READ ONLY--’

Optional items with choice

are shown below the main

line, one of which you

might specify.

 .---NEXT---------.

----+----------------+---

 +---PRIOR--------+

 ’---PREVIOUS-----’

The values below the

main line are optional, one

of which you might

specify. If you do not

specify an item, the value

above the line will be used

as the default.

 .-------,-----------.

 V |

---+-----------------+---

 +---index_name---+

 ’---table_name---’

Optional items. Several

items are allowed; a

comma must precede each

repetition.

>>-| Table Reference |->< Reference to a syntax

segment.

Table Reference

|--+-----view--------+--|

 +------table------+

 ’----synonym------’

Syntax segment.

How to Read a Command-Line Syntax Diagram

The following command-line syntax diagram uses some of the elements listed

in the table in the previous section.

Creating a No-Conversion Job

�� onpladm create job job

-p

project
 -n -d device -D database �

�

-t

table

�

(1)

Setting the Run Mode

-S

server

-T

target

��

x DataBlade Module Development Overview

Notes:

1 See page 17-4

The second line in this diagram has a segment named “Setting the Run

Mode,” which according to the diagram footnote, is on page 17-4. This

segment is shown in the following segment diagram (the diagram uses

segment start and end components).

Setting the Run Mode:

-f

d

p

a

 l

c

u

n

N

To construct a command correctly, start at the top left with the command.

Follow the diagram to the right, including the elements that you want. The

elements in the diagram are case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table
4. Optionally, you can choose one or more of the following elements and

repeat them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then

optionally type l or u.
5. Follow the diagram to the terminator.

Your diagram is complete.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

Introduction xi

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword

exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly

as shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax

diagrams and examples. You can replace a variable with an arbitrary name,

identifier, or literal, depending on the context. Variables are also used to

represent complex syntax elements that are expanded in additional syntax

diagrams. When a variable appears in a syntax diagram, an example, or text,

it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the

code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules

for that product. For example, if you are using DB–Access, you must delimit

multiple statements with semicolons. If you are using an SQL API, you must

use EXEC SQL at the start of each statement and a semicolon (or other

appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be

added in a full application, but it is not necessary to show it to describe

the concept being discussed.

xii DataBlade Module Development Overview

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the manual for your product.

Additional Documentation

For additional information, refer to the following types of documentation:

v Installation guides

v Online notes

v Informix error messages

v Manuals

v Online help

Installation Guides

Installation guides are located in the /doc directory of the product CD or in

the /doc directory of the product‘s compressed file if you downloaded it from

the IBM Web site. Alternatively, you can obtain installation guides from the

IBM Informix Online Documentation site at

http://www.ibm.com/software/data/informix/pubs/library/.

Online Notes

The following sections describe the online files that supplement the

information in this manual. Please examine these files before you begin using

your IBM Informix product. They contain vital information about application

and performance issues.

Introduction xiii

http://www.ibm.com/software/data/informix/pubs/library/

Online File Description Format

TOC Notes The TOC (Table of Contents) notes file

provides a comprehensive directory of

hyperlinks to the release notes, the fixed and

known defects file, and all the documentation

notes files for individual manual titles.

HTML

Documentation Notes The documentation notes file for each manual

contains important information and

corrections that supplement the information

in the manual or information that was

modified since publication.

HTML, text

Release Notes The release notes file describes feature

differences from earlier versions of IBM

Informix products and how these differences

might affect current products. For some

products, this file also contains information

about any known problems and their

workarounds.

HTML, text

Machine Notes (Non-Windows platforms only) The machine

notes file describes any platform-specific

actions that you must take to configure and

use IBM Informix products on your

computer.

text

Fixed and Known

Defects File

This text file lists issues that have been

identified with the current version. It also lists

customer-reported defects that have been

fixed in both the current version and in

previous versions.

text

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site

at http://www.ibm.com/software/data/informix/pubs/library/. Additionally

you can locate these files before or after installation as described below.

Before Installation

All online notes are located in the /doc directory of the product CD. The

easiest way to access the documentation notes, the release notes, and the fixed

and known defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided

in text format.

After Installation

xiv DataBlade Module Development Overview

http://www.ibm.com/software/data/informix/pubs/library/

On UNIX platforms in the default locale, the documentation notes, release

notes, and machine notes files appear under the

$INFORMIXDIR/release/en_us/0333 directory.

Dynamic Server

On Windows the documentation and release notes files appear in the

Informix folder. To display this folder, choose Start > Programs > IBM

Informix Dynamic Server version > Documentation Notes or Release Notes

from the taskbar.

Machine notes do not apply to Windows platforms.

End of Dynamic Server

Online Notes Filenames

Online notes have the following file formats:

 Online File File Format Examples

TOC Notes prod_os_tocnotes_version.html ids_win_tocnotes_10.0.html

Documentation Notes prod_bookname_docnotes_version.html/txt ids_hpl_docnotes_10.0.html

Release Notes prod_os_relnotes_version.html/txt ids_unix_relnotes_10.0.txt

Machine Notes prod_machine_notes_version.txt ids_machine_notes_10.0.txt

Fixed and Known

Defects File

prod_defects_version.txt

ids_win_fixed_and_known

_defects_version.txt

ids_defects_10.0.txt

client_defects_2.90.txt

ids_win_fixed_and_known

_defects_10.0.txt

Informix Error Messages

This file is a comprehensive index of error messages and their corrective

actions for the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and

their corrective actions.

Dynamic Server

On Windows, use the Informix Error Messages utility to read error messages

and their corrective actions. To display this utility, choose Start > Programs >

IBM Informix Dynamic Server version > Informix Error Messages from the

taskbar.

End of Dynamic Server

Introduction xv

You can also access these files from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Manuals

Online Manuals

A CD that contains your manuals in electronic format is provided with your

IBM Informix products. You can install the documentation or access it directly

from the CD. For information about how to install, read, and print online

manuals, see the installation insert that accompanies your CD. You can also

obtain the same online manuals from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Printed Manuals

To order hardcopy manuals, contact your sales representative or visit the IBM

Publications Center Web site at

http://www.ibm.com/software/howtobuy/data.html.

Online Help

IBM Informix online help, provided with each graphical user interface (GUI),

displays information about those interfaces and the functions that they

perform. Use the help facilities that each GUI provides to display the online

help.

Accessibility

IBM is committed to making our documentation accessible to persons with

disabilities. Our books are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our manuals are available in dotted decimal format, which is an

accessible format that is available only if you are using a screen reader. For

more information about the dotted decimal format, see the Accessibility

appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90

Documentation Set

The following tables list the manuals that are part of the IBM Informix

Dynamic Server, Version 10.0 and the CSDK Version 2.90, documentation set.

PDF and HTML versions of these manuals are available at

http://www.ibm.com/software/data/informix/pubs/library/. You can order

hardcopy versions of these manuals from the IBM Publications Center at

http://www.ibm.com/software/howtobuy/data.html.

xvi DataBlade Module Development Overview

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html

Table 1. Database Server Manuals

Manual Subject

Administrator’s Guide Understanding, configuring, and administering your database server.

Administrator’s Reference Reference material for Informix Dynamic Server, such as the syntax of

database server utilities onmode and onstat, and descriptions of

configuration parameters, the sysmasters tables, and logical-log records.

Backup and Restore Guide The concepts and methods you need to understand when you use the

ON-Bar and ontape utilities to back up and restore data.

DB-Access User’s Guide Using the DB-Access utility to access, modify, and retrieve data from

Informix databases.

DataBlade API

Function Reference

The DataBlade API functions and the subset of ESQL/C functions that

the DataBlade API supports. You can use the DataBlade API to develop

client LIBMI applications and C user-defined routines that access data in

Informix databases.

DataBlade API

Programmer’s Guide

The DataBlade API, which is the C-language application-programming

interface provided with Dynamic Server. You use the DataBlade API to

develop client and server applications that access data stored in Informix

databases.

Database Design and

Implementation Guide

Designing, implementing, and managing your Informix databases.

Enterprise Replication

Guide

How to design, implement, and manage an Enterprise Replication system

to replicate data between multiple database servers.

Error Messages file Causes and solutions for numbered error messages you might receive

when you work with IBM Informix products.

Getting Started Guide Describes the products bundled with IBM Informix Dynamic Server and

interoperability with other IBM products. Summarizes important features

of Dynamic Server and the new features for each version.

Guide to SQL: Reference Information about Informix databases, data types, system catalog tables,

environment variables, and the stores_demo demonstration database.

Guide to SQL: Syntax Detailed descriptions of the syntax for all Informix SQL and SPL

statements.

Guide to SQL: Tutorial A tutorial on SQL, as implemented by Informix products, that describes

the basic ideas and terms that are used when you work with a relational

database.

High-Performance Loader

User’s Guide

Accessing and using the High-Performance Loader (HPL), to load and

unload large quantities of data to and from Informix databases.

Installation Guide for

Microsoft Windows

Instructions for installing IBM Informix Dynamic Server on Windows.

Installation Guide for

UNIX and Linux

Instructions for installing IBM Informix Dynamic Server on UNIX and

Linux.

Introduction xvii

Table 1. Database Server Manuals (continued)

Manual Subject

J/Foundation Developer’s

Guide

Writing user-defined routines (UDRs) in the Java programming language

for Informix Dynamic Server with J/Foundation.

Large Object Locator

DataBlade Module User’s

Guide

Using the Large Object Locator, a foundation DataBlade module that can

be used by other modules that create or store large-object data. The Large

Object Locator enables you to create a single consistent interface to large

objects and extends the concept of large objects to include data stored

outside the database.

Migration Guide Conversion to and reversion from the latest versions of Informix

database servers. Migration between different Informix database servers.

Optical Subsystem Guide The Optical Subsystem, a utility that supports the storage of BYTE and

TEXT data on optical disk.

Performance Guide Configuring and operating IBM Informix Dynamic Server to achieve

optimum performance.

R-Tree Index User’s Guide Creating R-tree indexes on appropriate data types, creating new operator

classes that use the R-tree access method, and managing databases that

use the R-tree secondary access method.

SNMP Subagent Guide The IBM Informix subagent that allows a Simple Network Management

Protocol (SNMP) network manager to monitor the status of Informix

servers.

Storage Manager

Administrator’s Guide

Informix Storage Manager (ISM), which manages storage devices and

media for your Informix database server.

Trusted Facility Guide The secure-auditing capabilities of Dynamic Server, including the creation

and maintenance of audit logs.

User-Defined Routines and

Data Types Developer’s

Guide

How to define new data types and enable user-defined routines (UDRs)

to extend IBM Informix Dynamic Server.

Virtual-Index Interface

Programmer’s Guide

Creating a secondary access method (index) with the Virtual-Index

Interface (VII) to extend the built-in indexing schemes of IBM Informix

Dynamic Server. Typically used with a DataBlade module.

Virtual-Table Interface

Programmer’s Guide

Creating a primary access method with the Virtual-Table Interface (VTI)

so that users have a single SQL interface to Informix tables and to data

that does not conform to the storage scheme of Informix Dynamic Server.

 Table 2. Client/Connectivity Manuals

Manual Subject

Client Products Installation

Guide

Installing IBM Informix Client Software Developer’s Kit (Client SDK) and

IBM Informix Connect on computers that use UNIX, Linux, and

Windows.

Embedded SQLJ User’s

Guide

Using IBM Informix Embedded SQLJ to embed SQL statements in Java

programs.

xviii DataBlade Module Development Overview

Table 2. Client/Connectivity Manuals (continued)

Manual Subject

ESQL/C Programmer’s

Manual

The IBM Informix implementation of embedded SQL for C.

GLS User’s Guide The Global Language Support (GLS) feature, which allows IBM Informix

APIs and database servers to handle different languages, cultural

conventions, and code sets.

JDBC Driver Programmer’s

Guide

Installing and using Informix JDBC Driver to connect to an Informix

database from within a Java application or applet.

.NET Provider Reference

Guide

Using Informix .NET Provider to enable .NET client applications to

access and manipulate data in Informix databases.

ODBC Driver Programmer’s

Manual

Using the Informix ODBC Driver API to access an Informix database and

interact with the Informix database server.

OLE DB Provider

Programmer’s Guide

Installing and configuring Informix OLE DB Provider to enable client

applications, such as ActiveX Data Object (ADO) applications and Web

pages, to access data on an Informix server.

Object Interface for C++

Programmer’s Guide

The architecture of the C++ object interface and a complete class

reference.

 Table 3. DataBlade Developer’s Kit Manuals

Manual Subject

DataBlade Developer’s Kit

User’s Guide

Developing and packaging DataBlade modules using BladeSmith and

BladePack.

DataBlade Module

Development Overview

Basic orientation for developing DataBlade modules. Includes an

example illustrating the development of a DataBlade module.

DataBlade Module

Installation and Registration

Guide

Installing DataBlade modules and using BladeManager to manage

DataBlade modules in Informix databases.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of

industry standards for the Structured Query Language (SQL). IBM Informix

SQL-based products are fully compliant with SQL-92 Entry Level (published

as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many

features of IBM Informix database servers comply with the SQL-92

Intermediate and Full Level and X/Open SQL Common Applications

Environment (CAE) standards.

Introduction xix

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find

useful in our manuals, which will help us improve future versions. Include

the following information:

v The name and version of the manual that you are using

v Section and page number

v Your suggestions about the manual

Send your comments to us at the following email address:

docinf@us.ibm.com

This email address is reserved for reporting errors and omissions in our

documentation. For immediate help with a technical problem, contact IBM

Technical Support.

We appreciate your suggestions.

xx DataBlade Module Development Overview

mailto:docinf@us.ibm.com

Chapter 1. DataBlade Module Concepts

What Are DataBlade Modules? . 1-2

Why Extend Your Informix Database Server? 1-2

Better Performance . 1-3

Simpler Applications . 1-3

Transaction Control . 1-4

Scalability . 1-4

Why Create a DataBlade Module? . 1-4

Control . 1-4

Code Reuse . 1-4

Why Use the DataBlade Developers Kit? . 1-5

DataBlade Modules and the Database Server . 1-5

DataBlade Module Programming Languages 1-7

C Language . 1-8

C++ Language . 1-8

Java Language . 1-8

Informix Stored Procedure Language . 1-9

Internal Architecture of the Database Server 1-9

DataBlade Modules and Virtual Processors 1-9

DataBlade Module Memory Allocation 1-10

Java Virtual Machine . 1-10

The Client Software Developer’s Kit . 1-10

Client Objects and Programs . 1-11

DataBlade Module Components . 1-11

Aggregates . 1-12

Data Types . 1-12

Built-in Data Types . 1-13

Qualified Built-in Data Types . 1-14

Distinct Data Types . 1-14

Collection Data Types . 1-14

Row Data Types . 1-16

Opaque Data Types . 1-17

Routines . 1-19

Built-in Functions and Operator Functions 1-20

User-Defined Routines . 1-21

Casts . 1-21

Interfaces . 1-22

Errors . 1-22

Unit Tests . 1-22

Functional Tests . 1-22

Imported SQL Files . 1-23

© Copyright IBM Corp. 1996, 2004 1-1

Imported Client Files . 1-23

What Are DataBlade Modules?

A DataBlade module is a software package that extends the functionality of

IBM Informix Dynamic Server. The package includes SQL statements and

supporting code written in an external language or Informix SPL. DataBlade

modules can also contain client components.

A DataBlade module adds user-defined database objects that extend the SQL

syntax and commands you can use with your Informix database server. A

database object is an SQL entity, such as a data type, routine, or database

table. Your Informix database server handles DataBlade module objects as

built-in objects. When it handles a user-defined database object, it executes the

associated source code provided with the DataBlade module.

Extensions to your database server belong to two main categories:

v Types of data. This category includes extended data types that are not built

into the database server. Extended data types can contain multiple elements

(row, collection, and opaque data types) and data types that support

inheritance (distinct and row data types). The internal structure of opaque

data types is not accessible through built-in SQL commands, but it can be

accessed through user-defined routines and opaque data type support

routines.

v Routines. This category includes user-defined routines, aggregates, data

type support routines, cast support routines, and routines that support

user-defined access methods.

If you are unfamiliar with DataBlade module technology and the DataBlade

Developers Kit, you might have the following questions:

v Why should I extend my database server?

v Why should I use a DataBlade module to extend my database server?

v Why should I use the DataBlade Developers Kit to create a DataBlade

module?

Each of these questions is addressed in the following subsections.

Why Extend Your Informix Database Server?

The primary advantages of using the extensibility of IBM Informix Dynamic

Server over using traditional relational databases and applications are:

v better performance.

v simpler applications.

v transaction control.

v scalability.

1-2 DataBlade Module Development Overview

Better Performance

Your Informix database server improves the performance of your applications

in the following ways:

v User-defined routines are optimized.

When you put your custom routines in the database server, the query

optimizer can calculate when to run them during queries.

v Indexes increase query speed.

Indexes, created with secondary access methods, can efficiently find and

compare values. Secondary access methods build and manipulate index

structures on data. With your Informix database server, you can create

indexes on data that cannot be sorted in a standard relational database. You

can implement your data as extended data types and create functional

indexes to speed sorting. A functional index sorts information about the data,

instead of the data itself.

For example, if your data is images, you can index features of the images.

Then, when you run a query to match an image, the index runs much faster

than comparing the binary files of each image.

v Network traffic is reduced.

When you use user-defined routines and other extensibility features, you

perform more processing on the data within the database server. Therefore,

you send less data to the client application.

Simpler Applications

Using DataBlade modules simplifies applications in the following ways:

v DataBlade modules handle code for manipulating and storing data so the

application does not have to.

v DataBlade module routines and data types can be accessed using SQL.

SQL is a standard language and does not require complex application code

or programming languages.

v DataBlade modules are easy to upgrade.

When you change a DataBlade module, you do not need to relink existing

applications; all changes are handled within the database server.

v All data is stored and processed in the same database server.

For example, with a geospatial DataBlade module, geographic coordinates

are analyzed and processed by the database server instead of in a complex

application. In addition, the geospatial data is easily integrated with other

types of data in a relational database.

v DataBlade modules are easy to combine.

You can combine DataBlade modules that handle different kinds of data in

the same database. You can then create one application to integrate all the

data.

Chapter 1. DataBlade Module Concepts 1-3

For example, if a broadcast news company wanted to integrate video,

images, audio, and text data for its programs, it could store all the data in

one database and use a DataBlade module for each type of data. Then the

company could use an application that employs the IBM Informix Web

DataBlade module to access information and display it in a Web browser.

Transaction Control

DataBlade modules become part of the database. Therefore, all operations

carried out by DataBlade module routines are supported by database services,

such as backup, rollback, and recovery. You can safely store your data, which

you formerly stored in files, in the database by using smart large objects.

Scalability

DataBlade extensions to Dynamic Server scale to a large number of users just

as well as the database server itself.

Why Create a DataBlade Module?

You can extend your Informix database server without creating a DataBlade

module by executing the SQL statements to create each object individually.

However, the advantages of packaging extended database objects in a

DataBlade module include:

v control

v code reuse

Control

DataBlade modules contain all related extended objects, enabling you to easily

install, upgrade, and remove a whole module at once. If you need to fix a

problem or add a feature to a program, you only have to do it in one

place—the DataBlade module. Because a DataBlade module is a package

ready to be distributed commercially or internally, these changes can be easily

extended to any application that uses the DataBlade module. In addition,

DataBlade modules make it easy for you to maintain version information

about the software.

Code Reuse

DataBlade modules can use the functionality of other DataBlade modules

through interfaces. Interfaces are references to other DataBlade modules. When

you include an interface in a DataBlade module, you create a dependency so

that your DataBlade module can be used only if the DataBlade module that

provides the interface is installed in the database server.

Some DataBlade modules are specifically designed as foundation DataBlade

modules. Foundation DataBlade modules are not usually intended to be used

alone. For example, the IBM Informix Large Object Locator DataBlade module

handles the location of the large objects that other DataBlade modules use to

store their data.

1-4 DataBlade Module Development Overview

Why Use the DataBlade Developers Kit?

Although you can create a DataBlade module manually, you can reduce

development time considerably if you use the DataBlade Developers Kit.

Three graphical user interfaces are provided for DataBlade module

development:

v BladeSmith. To create your DataBlade module.

v BladePack. To package your DataBlade module.

v BladeManager. To make your DataBlade module available in a database.

In addition, the DataBlade Developers Kit provides the following tools for

debugging your DataBlade module on Windows:

v DBDK Visual C++ Add-In. To debug your DataBlade module within

Microsoft Visual C++.

v IfxQuery. To execute SQL debugging tests from within Microsoft Visual

C++.

The DataBlade Developers Kit reduces development time because it:

v uses wizards to guide you through complex SQL object creation options.

v generates the following types of files:

– Complete SQL definitions for your database objects

– Complete code, or code entry points for C, C++, and Java source code

– Unit tests for debugging user-defined routines, opaque data type support

routines, and cast support functions

– Functional tests for validating user-defined routines, opaque data type

support routines, and cast support functions
v automates creating an interactive installation program for UNIX and

Windows operating systems

The source code generated by the DataBlade Developers Kit follows good

coding practices for your Informix database server and ensures consistency

among your user-defined routines.

DataBlade Modules and the Database Server

This section discusses the overall architecture of the Informix database server,

how DataBlade modules affect database server processes, and the application

programming interfaces you can use in your DataBlade modules and client

applications.

Figure 1-1 on page 1-7 illustrates the following components of Informix

database server architecture when it includes DataBlade modules:

Chapter 1. DataBlade Module Concepts 1-5

v DataBlade modules, which extend the capabilities of the database server

v DataBlade module application programming interfaces, which allow

DataBlade modules access to data stored in a database

v The database server, which includes virtual processors that your Informix

database server uses to process tasks, the shared memory that these virtual

processors use, and the Java virtual machine to process routines written in

Java

v The Client Software Developer’s Kit, which includes client-side APIs that

enable you to write client applications that access data stored in a database

v DataBlade module ActiveX and Java value objects, which enable you to

provide client-side interfaces to extended data types and their support

routines

v Client visualization tools, which enable you to view and manipulate data

retrieved from DataBlade modules with third-party applications

v Client applications, which allow the user access to DataBlade module

functions and data stored in a database

1-6 DataBlade Module Development Overview

The close integration of DataBlade modules with the database server means

that the database server treats new, extended data types in exactly the same

way that it treats its own built-in data types.

Important: You must use the IBM Informix Dynamic Server with

J/Foundation upgrade to IBM Informix Dynamic Server to enable

services that use Java. For more information about J/Foundation,

see the manual IBM Informix: J/Foundation Developer's Guide.

DataBlade Module Programming Languages

The DataBlade Developers Kit supports the following languages for

programming DataBlade modules:

v C, using the DataBlade API

v C++, using the DataBlade API

v Java, using IBM Informix JDBC Driver

v Stored Procedure Language (SPL)

Figure 1-1. IBM Informix Dynamic Server with DataBlade Modules

Chapter 1. DataBlade Module Concepts 1-7

For more information on programming language options and restrictions, see

the IBM Informix: DataBlade Developer’s Kit User's Guide.

C Language

The DataBlade Developers Kit enables you to create database objects in C. You

can create user-defined routines, cast support functions, aggregates, and

opaque data type support routines in C.

The code generated for C by the DataBlade Developers Kit uses DataBlade

API routines to communicate with the database server. The DataBlade API is

the primary API for the database server. The DataBlade API provides routines

to manage database connections, send SQL command strings, process query

results, manage database server events and errors, create database server

routines, manage database server memory, and so on. The DataBlade API

provides a subset of IBM Informix ESQL/C and IBM Informix GLS routines

that you can use in your DataBlade module code. For more information about

the DataBlade API, see the IBM Informix: DataBlade API Programmer's Guide.

C++ Language

The DataBlade Developers Kit currently allows you to write opaque data type

support routines in C++. You can also create ActiveX value objects to

represent opaque data types on a client computer. If you want to include

other database objects in your DataBlade module, the DataBlade Developers

Kit allows you to code them in C or Java.

The C++ support routines use DataBlade API routines to process opaque data

types in the database server. For more information about the DataBlade API,

see the IBM Informix: DataBlade API Programmer's Guide.

Important: It is recommended that developers create DataBlade modules in

C++ only for client projects and for server projects that use

Dynamic Server on Windows only. Check the IBM Informix

Developer Zone at

www.ibm.com/software/data/developer/informix for the latest

recommendations on C++ programming options.

Java Language

The DataBlade Developers Kit enables you to create database objects in Java.

You can create user-defined routines, cast support functions, aggregates, and

opaque data type support routines in Java. You can also create Java value

objects to represent opaque data types on a client computer. You cannot create

Java routines that take row or collection data types.

The code generated for Java by the DataBlade Developers Kit uses

IBM Informix JDBC Driver methods to communicate with the database server.

1-8 DataBlade Module Development Overview

IBM Informix JDBC Driver supports the JDBC 2.0 API. You can use the JDBC

2.0 API to create database applications in Java.

For more information on IBM Informix JDBC Driver, see the IBM Informix:

JDBC Driver Programmer's Guide.

For a complete discussion of creating user-defined routines in Java, see the

manual IBM Informix: J/Foundation Developer's Guide.

Important: You must use the IBM Informix Dynamic Server with

J/Foundation upgrade to IBM Informix Dynamic Server to enable

services that use Java. For more information about J/Foundation,

see the manual IBM Informix: J/Foundation Developer's Guide.

Informix Stored Procedure Language

You can use Informix Stored Procedure Language (SPL) statements to write

routines, and you can store these SPL routines in the database. SPL is an

extension to SQL that provides flow control, such as looping and branching.

SPL routines can execute routines written in C or other external languages,

and external routines can execute SPL routines.

You can use SPL routines to perform any task that you can perform in SQL

and to expand what you can accomplish with SQL alone. SPL routines are

parsed and optimized when they are created. The DataBlade Developers Kit

enables you to include SPL statements to create routines. For more

information on SPL, see the IBM Informix: Guide to SQL Tutorial.

Internal Architecture of the Database Server

If you want to add user-defined routines to your Informix database server,

you must understand the internal architecture of the database server and how

DataBlade module routines can affect the database system. The following

aspects of the internal architecture of your Informix database server are

affected the most by DataBlade modules:

v Virtual processors

v Memory management

v Java virtual machine

DataBlade Modules and Virtual Processors

The internal architecture of your Informix database server contains virtual

processors. Virtual processors are operating system tasks that execute requests.

Virtual processors are separated into virtual processor classes. Each of the

virtual processor classes provided in the database server handles a different

Chapter 1. DataBlade Module Concepts 1-9

type of task, such as executing queries and routines, fetching data from disk,

and administering network connections. You can create user-defined virtual

processors to handle tasks you define.

One of the critical virtual processors is the CPU VP, which acts as a router

and handles basic administrative tasks, processes certain user requests, and

delegates other requests to the appropriate processor. Tasks thus participate in

a highly distributed environment that is optimized for performance and

scalability.

By default, all user-defined routines execute in the CPU VP; however, if your

DataBlade module routine makes use of certain system services, you must

assign it to a user-defined virtual processor. A user-defined VP is created by

the system administrator and executes only those routines assigned to it. For

more information about the system services that require a user-defined VP, see

the IBM Informix: Dynamic Server Administrator's Guide and the IBM Informix

Developer Zone at www.ibm.com/software/data/developer/informix.

DataBlade Module Memory Allocation

Another important aspect of the internal architecture of your Informix

database server is that virtual processors communicate with one another

through shared memory. Therefore, when you write code for user-defined

routines, you cannot use standard memory allocation functions. To manage

memory for DataBlade modules, you must use the memory management

functions provided by the DataBlade API or the JDBC 2.0 API.

See the IBM Informix: DataBlade API Programmer's Guide or the IBM Informix:

J/Foundation Developer's Guide manual for complete information.

Java Virtual Machine

Dynamic Server executes UDRs written in Java in its specialized virtual

processors, called a Java virtual processor (JVP). A JVP embeds a Java virtual

machine (JVM) in its code.

The JVPs are responsible for executing all UDRs written in Java. Although the

JVPs are mainly used for Java-related computation, they have the same

capabilities as a user-defined VP, and they can process all types of SQL

queries. This embedded VM architecture avoids the cost of shipping Java-related

queries back and forth between CPU VPs and JVPs.

For more information on how the database server handles Java code, see the

IBM Informix: J/Foundation Developer's Guide manual.

The Client Software Developer’s Kit

The Client Software Developer’s Kit (SDK) is a set of APIs you can use to

develop applications for your Informix database server; they handle

1-10 DataBlade Module Development Overview

communication between the database server and the client application. Client

APIs allow you to write applications in the following languages:

v C

v C++

v Java

v ESQL/C

The Client SDK provides several connectivity products for ODBC-compliant

applications and a global language support API.

For a list of current APIs, see IBM Informix: Client Products Installation Guide

for Microsoft Windows Environments or IBM Informix: Client Products Installation

Guide for UNIX.

Client Objects and Programs

You can use the following types of client objects and programs with your

DataBlade module applications:

v ActiveX value objects. An ActiveX value object encapsulates data retrieved

from an Informix database server about an opaque type and its support

routines for use by a client application. The DataBlade Developers Kit

generates code for ActiveX value objects. You can use ActiveX value objects

in a Microsoft Visual Basic program.

v Java value objects. A Java value object encapsulates data retrieved from an

Informix database server about an opaque type and its support routines for

use by a client application. The DataBlade Developers Kit generates code

for Java value objects.

v Client visualization tools. A visualization tool enables you to view and

manipulate data retrieved by DataBlade modules with third-party

applications.

DataBlade Module Components

You can include the following objects in the DataBlade module project you

create with the DataBlade Developers Kit:

v Aggregates. To perform user-defined computations on data.

v Data Types. To characterize data to the database server (either built-in data

types or new data types).

v Routines. To operate on or return data.

v Casts. To convert data from one type to another.

v Interfaces. To create dependencies between DataBlade modules.

v Errors. To create messages raised by user-defined routines that appear as

standard database server messages.

Chapter 1. DataBlade Module Concepts 1-11

v Unit Tests. To test your database objects during the coding and debugging

cycle.

v Functional Tests. To validate your completed DataBlade module routines.

v Imported SQL Files. To include custom SQL statements to create tables,

user-defined access methods, and other database objects in your DataBlade

module.

v Imported Client Files. To include client components, such as query tools

and ActiveX value objects, in your DataBlade module package.

The DataBlade Developers Kit generates the SQL for each of the objects that

you define or include. The objects are described in the following sections.

Important: Not all database objects and options described in this section are

available with all versions of Dynamic Server. For more

information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Aggregates

An aggregate is a set of functions that returns information about a set of query

results. For example, the built-in SUM aggregate adds the values returned

from a query and returns the result. An aggregate is invoked in SQL as a

single function, but it is implemented as one or more support functions.

You can define two types of aggregates:

v Built-in aggregates whose support functions are overloaded to work with

extended data types

v New, user-defined aggregates that implement user-defined routines.

The built-in aggregates are AVG, COUNT, MAX, MIN, SUM, RANGE, STDEV,

and VARIANCE. The COUNT aggregate is defined for all data types. For

more information on these aggregates, see the IBM Informix: Guide to SQL

Syntax.

For more information on defining aggregates, see the IBM Informix: DataBlade

Developer’s Kit User's Guide.

Data Types

The database server uses data types to determine how to store and retrieve

different kinds of data.

The following table lists the categories of data types available to you when

you create a DataBlade module. You must define some of these data types;

others you can use just as they are.

1-12 DataBlade Module Development Overview

Data Type

You

Define? Code Needed? Description

Built-in No No A native Informix data type that

comes with the database server

Qualified built-in Yes No A built-in data type that takes

one or more qualifications, such

as storage size, range of values,

or precision

Opaque Yes Yes (the basic

code needed to

implement an

opaque type is

generated by

BladeSmith)

A structured data type whose

internal members cannot be

accessed directly using SQL

statements

Distinct Yes No A unique name for an existing

built-in or extended type

Collection Yes No A group of elements of the same

data type

Row Yes No A structured data type whose

internal members can be directly

accessed through SQL statements

An extended data type is a data type that is not built into your Informix

database server. Extended data types include opaque data types, distinct data

types, collection data types, and row data types. Extended data types are

described in the IBM Informix: User-Defined Routines and Data Types Developer's

Guide.

Collection and row data types are extended data types built from a

combination of other data types; their components are accessed through SQL

statements.

Built-in Data Types

Built-in data types include character, numeric, time, large object, and Boolean

data types. You can use built-in data types as building blocks in opaque,

distinct, row, and collection data types.

Built-in data types are automatically included in your DataBlade module

project file as imported objects.

For a complete list and descriptions of built-in data types, see the

IBM Informix: Guide to SQL Reference manual.

Chapter 1. DataBlade Module Concepts 1-13

Qualified Built-in Data Types

A qualified data type is a built-in data type that has an added qualification that

specifies information about the storage size, range of values, or precision of

the type. For example, the DECIMAL(p,s) data type can take qualifiers for

precision (the total number of digits) and scale (the total number of digits to

the right of the decimal point).

You must define a qualified data type by specifying its qualifications.

Example: The DECIMAL(6,3) data type has six digits, with three digits to the

right of the decimal point; for example, 123.456.

More Information: For a complete list of qualified data types and their

parameters, see the IBM Informix: Guide to SQL Reference manual.

Distinct Data Types

A distinct data type is an existing data type to which you assign a unique

name. The distinct data type inherits all routines from the source data type,

but it cannot be directly compared to the source data type without an explicit

cast.

Why Use a Distinct Data Type? Use a distinct data type if you want to create

routines that do not work on the source data type. You can use a distinct data

type to control how the data type is cast, or converted, to other data types.

You can use distinct data types to create inheritance hierarchies, which allow

you to write very selective routines. A distinct data type can be passed to all

routines defined for the source; however, the source data type cannot be

passed to routines defined for the distinct data type.

Example: You can create two distinct data types based on the MONEY type:

lira and us_dollar. To determine the dollar value of a specified lira value, you

can create an explicit cast between lira and us_dollar by writing a function

that multiplies the value of lira by the exchange rate. Using the cast allows

you to perform arithmetic operations involving both distinct data types and to

return a meaningful result.

More Information: For a description of distinct data types, see the

IBM Informix: User-Defined Routines and Data Types Developer's Guide.

Collection Data Types

A collection data type is a group of values of a single data type in a column.

Each value is referred to as an element. A collection data type is defined using

a type constructor and an element data type. Type constructors determine

whether the database server checks for duplicate elements or orders the

elements. The following table describes the collection type constructors.

1-14 DataBlade Module Development Overview

Type Constructor Duplicates Allowed? Ordered?

SET No No

MULTISET Yes No

LIST Yes Yes

For a SET, the database server prevents insertion of duplicate elements. For a

MULTISET, the database server takes no special actions. For a LIST, the

database server orders the elements.

Elements can be almost any data type, including other extended data types

and built-in data types such as smart large objects. You can access any

element in a collection individually through SQL statements.

The number of elements in a collection is not mandated. You can change the

number of elements in a collection without reinserting it into a table, and

different rows can have different numbers of elements in their collections.

What Does a Collection Look Like? The following diagram illustrates a

collection data type using a SET constructor and the LVARCHAR data type in

a column called Dependents.

Instead of putting information on dependents in a separate table, all the

information is contained in one row, using a collection data type. You can add

or remove elements without altering the table’s columns.

Why Use a Collection Data Type? You can use collection data types to

reconfigure a table with awkwardly long rows by grouping data into a single

column. Use a collection if you have data of the same data type that can be

naturally grouped into a single column. You can group data even further by

creating a collection of row types or other collections.

Figure 1-2. Sample Collection Data Type

Chapter 1. DataBlade Module Concepts 1-15

Collections are also useful as returned values: for example, a group of values

from many rows in a column or fields in a row type. For example, if you

want to obtain a list of every city in which your employees live from the

sample collection data type in Figure 1-2, you could create a collection on the

Location column to return a set of values.

The following function types can return collections:

v A user-defined function that returns a collection

v An iterator function that returns a single value at a time but is called

repeatedly to assemble a collection

More Information: For a description of collection data types, see the

IBM Informix: Guide to SQL Tutorial.

Row Data Types

A row data type can be thought of as a row of columns, of varying data

types, stored in a single database table column. Row data types follow

essentially the same rules as database tables. The columns within a row data

type are called fields. They can be almost any data type, including other

extended data types and built-in data types, such as smart large objects. You

can access fields individually using SQL statements.

To create a row data type, you specify:

v a unique name for the whole row type

v a unique name for each field

v a data type for each field.

What Does a Row Data Type Look Like? The following diagram illustrates a

row type named address_t in a column named Address.

Instead of having additional columns in the Address table, the row data type

groups data that is most often accessed together in one column. The table

Figure 1-3. Sample Row Data Type

1-16 DataBlade Module Development Overview

Address consists of the columns Name(LVARCHAR(30)), Address(address_t),

and Dependents(SET(LVARCHAR)). The row data type address_t consists of

the named fields Street(LVARCHAR(20)), City(LVARCHAR(20)),

State(CHAR(2)), and Zip_code(INTEGER).

Why Use a Row Data Type? Like collection data types, row data types allow

you to reconfigure your database table. Use a row type if you have data of

differing data types that group naturally into a single column. You can further

group your data if you include a collection or another row data type as a field

within your row data type.

Row data types can be useful for handling smart large objects. For example, if

a row data type has a field that is an opaque data type containing an image in

a smart large object, the other fields of the row data type could contain

additional information about the image.

For best performance, use row data types if most user queries access all or

most of the row data type’s fields.

You can use row data types to create inheritance hierarchies, allowing you to

write very selective routines. A child row data type inherits its parent’s fields

and can be passed to all routines defined for the parent; however, the parent

data type cannot be passed to routines defined for the child data type.

More Information: For a discussion on row data types, see the IBM Informix:

Guide to SQL Tutorial.

Opaque Data Types

An opaque data type is a user-defined data structure. To successfully interpret

opaque data types, the database server requires that the DataBlade module

provide opaque data type support routines. You must provide support

routines for your opaque data type.

BladeSmith generates boilerplate code for opaque data type support routines.

You can write additional code in C or Java to implement the functionality

your opaque data type requires. If you provide ActiveX value objects as a

client-side interface to your opaque data types, you can write the underlying

support routines for the opaque data type in C++. See “Opaque Data Type

Support Routines” on page 1-19 for more information.

Opaque data types typically contain more than one member, so they are

similar to row data types, except that the database server can only operate on

the individual components with support routines you define in the DataBlade

module.

Chapter 1. DataBlade Module Concepts 1-17

What Does an Opaque Data Type Look Like? The following diagram

illustrates an opaque data type called circle, based on a structure called

circle_t, in a column called circle_col.

The table circle_tab consists of the columns circle_id(SERIAL),

color(VARCHAR(15)), and circle_col(circle). The opaque data type circle is

defined as a C structure, circle_t, which contains a radius member and

another structure, point_t. The point_t structure contains x and y members. To

the database server, however, the whole circle_t structure is indivisible, unless

you provide accessor functions.

Why Use an Opaque Data Type? Use an opaque type to extend SQL to

address fundamentally new data types and allow operations on them. Such

data types are typically indivisible or made up of components to which you

want to control access.

For example, geographic data and many sorts of rich media data (images,

audio, text, and so on) are have been represented by the use of opaque types.

Opaque data types often contain smart large objects. Smart large objects are

logically stored in a column in a database table but physically stored in a file.

For example, an opaque data type for images could have a smart large object

member containing the image and other members containing metadata about

the image.

Opaque types require more work to create than other data types because you

must write all the routines that support them.

Figure 1-4. Sample Opaque Type

1-18 DataBlade Module Development Overview

Opaque Data Type Support Routines: BladeSmith enables you to generate

support routine code for opaque data types. You might have to add code to

implement the functionality your opaque data type requires.

The following table describes the support routines you can create and

indicates the categories of opaque types for which they are recommended.

Function

Recommended

for Description

Text input and

output

All opaque types Convert between external and internal

representations.

Send and receive All opaque types Convert between internal representation on the

database server and client computers. Not

available for Java.

Text import and

export

All opaque types Process opaque types for bulk loading and

unloading as textual data to and from a file.

Import binary

and export

binary

All opaque types Process opaque types for bulk loading and

unloading as binary data to and from a file. Not

available for Java.

Assign() and

Destroy()

Large objects and

multi-

representational

types

Stores or deletes data on disk just before a

commit: for example, to ensure proper reference

counting on smart large objects. Not available for

ActiveX.

LOhandles() Large objects and

multi-

representational

types

Returns the large object handle or list of

large-object handles in opaque types that

contain smart large objects. Not available for

ActiveX.

Compare() Opaque data

types sorted by a

B-tree or R-tree

index

Sorts opaque type data within SQL statements

and supports the B-tree and R-tree access

method.

Statistics support All opaque types Compile information about the values in an

opaque data type column that the optimizer

can use to create a query plan. Not available for

Java or ActiveX.

More Information: For a description of creating opaque types and their

support routines, see the IBM Informix: DataBlade Developer’s Kit User's Guide

or IBM Informix: User-Defined Routines and Data Types Developer's Guide.

Routines

A routine is a stored collection of programming statements that allows you to

manipulate data.

Chapter 1. DataBlade Module Concepts 1-19

A routine can be a function, which returns values, or a procedure, which does

not. You can write routines in the Informix Stored Procedure Language (SPL),

or in an external language, such as C or Java.

Important: Not all routine options are available for SPL and Java. For more

information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Routine overloading, or polymorphism, refers to writing a routine that performs

the same task and has the same name as an existing routine—but one that

takes a different data type as an argument. When you create opaque,

collection, or row types, you can overload existing routines for your new data

type. When the overloaded routine is called, your Informix database server

determines which variant of the routine to use by examining the argument.

BladeSmith creates a template for the overloaded routine; however, you must

complete the code to enable the routine to complete the assigned task.

You can overload built-in and operator functions for all data types except

built-in data types. You can create user-defined routines for all categories of

data types. You can create support routines for all extended data types. You

must create support routines for opaque data types (see “Opaque Data Type

Support Routines” on page 1-19).

Built-in Functions and Operator Functions

Built-in functions perform arithmetic and other basic operations when included

in SQL statements. Operator functions are built-in functions that are bound to

operator symbols: for example, the plus() function is bound to the + operator.

Some of the arithmetic functions take a single argument, such as the root()

function, which calculates the square root of its argument; others take two

arguments, such as the pow() function, which raises one argument to the

power of the second.

When you overload a built-in or operator function, you must specify what the

function does and what it returns. For example, if you overload the plus()

function on a row type, you can choose to:

v add the respective field values and return a row type with the same

number of fields as the input row types

v return a row type that contains all the fields of the first input row type

followed by all the fields of the second input row type.

There are also built-in functions that do not take arguments and that you

cannot overload, such as the today() function, which returns the current date

and time.

1-20 DataBlade Module Development Overview

For more information, see the IBM Informix: User-Defined Routines and Data

Types Developer's Guide.

User-Defined Routines

Typically, user-defined routines perform operations specific to the data or

application for which they are created and are not based on routines provided

with your Informix database server. End users call user-defined routines

within SQL statements or through the DataBlade API. BladeSmith has a

wizard to help you define the parameters for user-defined routines.

Casts

A cast is a rule that converts one data type into another. Casts work in only

one direction: from the source data type to the target data type. You can,

however, define two casts for the same two data types to support conversion

in both directions.

For some data types, you can choose whether the database server or the user

controls casting.

Create an implicit cast if you want the database server to automatically

convert the source data type.

Create an explicit cast if you want the user to specify the cast within an SQL

statement.

If you are creating a cast between two data types that have different internal

structures, you must write a cast support function. A straight cast, between two

data types that have the same internal structure, does not require a cast

support function; however, you can supply one to perform a conversion

operation. You typically define straight casts to allow implicit casting from a

distinct data type to its source data type (but not from a source data type to

the distinct data type based on it).

You can use a built-in type as a source or target data type in a cast, but not as

both. Built-in types have system-defined casts between each other that the

database server invokes automatically.

A distinct type inherits all the casts of the source type. The database server

automatically creates an explicit cast between the distinct type and the source

type.

For more information about casting, see the IBM Informix: User-Defined

Routines and Data Types Developer's Guide.

Chapter 1. DataBlade Module Concepts 1-21

Interfaces

An interface is a way to reference another DataBlade module within your

DataBlade module. Using an interface creates a dependency on the DataBlade

module that provides the interface. You cannot register a DataBlade module

that uses an interface unless the DataBlade module that provides the interface

is already installed in the database server.

You can import an interface from another DataBlade module to facilitate

development of your module. Similarly, you can build a DataBlade module

that provides an interface for other DataBlade modules to use.

For more information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Errors

You can define error or trace messages for your DataBlade module. An error

or trace consists of a unique five-character code, a locale (for translation), and

a message. If you are developing a DataBlade module as a commercial

product, qualify its name with a three-character DataBlade module prefix such

as ″USR″ to create unique error codes and other DataBlade module objects.

To localize your error messages, define multiple messages using the same

error code, a different locale, and the message text for that locale. Which

message the user sees is controlled by the value of the locale environment

variables.

For more information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Unit Tests

BladeSmith generates unit tests for your opaque data type support routines,

user-defined routines, and cast support functions. BladeSmith adds data to

test boundary conditions for your data types. Use unit tests while you debug

your DataBlade module using Microsoft Visual C++ on Windows. Run unit

tests with the DBDK Visual C++ Add-In and IfxQuery (see “DBDK Visual

C++ Add-In and IfxQuery” on page 2-4).

For more information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Functional Tests

BladeSmith generates functional tests for your opaque data type support

routines, user-defined routines, and cast support functions. You must supply

input data, the expected output data (if applicable), or an error code (if the

input data is not valid) in BladeSmith. Run functional tests on UNIX after you

finish coding your DataBlade module.

1-22 DataBlade Module Development Overview

For more information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Imported SQL Files

You can include custom SQL statements in your DataBlade module to perform

tasks such as creating and dropping user-defined access methods, support

tables, or SPL routines. You can include custom SQL statements by typing

them in the SQL File wizard or by referencing a file.

You can specify dependencies between objects in your DataBlade module and

your custom SQL. These dependencies determine the sequence in which the

SQL statements are executed when you register the DataBlade module.

For more information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Imported Client Files

After your customers install a DataBlade module on a database server, they

may download any client files included in your DataBlade module to client

computers. The types of client files you can package with your DataBlade

module include:

v graphical user interfaces

v documentation and help files

v shared object files, dynamic link libraries, or header files containing

DataBlade module routines executed in the client address space.

Your customers use BladeManager to download the client files to their client

computers.

For more information, see the IBM Informix: DataBlade Developer’s Kit User's

Guide.

Chapter 1. DataBlade Module Concepts 1-23

1-24 DataBlade Module Development Overview

Chapter 2. Building a DataBlade Module

DataBlade Developers Kit Tools . 2-1

BladeSmith . 2-1

BladePack . 2-2

BladeManager . 2-3

DBDK Visual C++ Add-In and IfxQuery . 2-4

How to Create a DataBlade Module . 2-5

DataBlade Module Development Resources . 2-7

The DataBlade Developers Kit InfoShelf . 2-7

The Tutorial . 2-8

Example DataBlade Modules . 2-8

The IBM Informix Developer Zone . 2-9

DataBlade Developers Kit Tools

The following graphical user interfaces are provided for creating, packaging,

and registering DataBlade modules, as well as tools for debugging DataBlade

modules on Windows:

v BladeSmith

v BladePack

v BladeManager

v DBDK Visual C++ Add-In and IfxQuery.

BladeSmith

You use BladeSmith to begin creating your DataBlade module, such as

defining its contents and generating files and source code. BladeSmith guides

you through object definition with wizard pages. BladeSmith automates many

of the tasks of object creation, such as writing the SQL statements necessary to

define objects in the database.

Using BladeSmith, you create a project for your DataBlade module and then

add or define the following types of objects for your module:

v User-defined objects. Includes aggregates, casts, errors, interfaces, routines,

and data types.

v Files. Can be custom SQL statements or files necessary for a client.

v Imported objects. Includes built-in data types and interfaces from other

DataBlade modules.

Each of these objects is summarized in Chapter 1, “DataBlade Module

Concepts,” on page 1-1

© Copyright IBM Corp. 1996, 2004 2-1

After you specify the user-defined objects, imported objects, and files you

want to include in your DataBlade module, use BladeSmith to generate the

files you need for compiling a shared object file or dynamic link library,

managing a DataBlade module in your Informix database server, testing object

functionality, and creating installation packaging files. These categories of files

are described in the following table.

 Type of Generated File Description

Source code You use these files to create a shared library file. They can

include source code files, header files, Visual C++ workspace

and project files, and makefiles.

SQL script These files contain the SQL statements that support the

DataBlade modules in the database system tables. They

include prepare scripts that describe the DataBlade module

and object scripts that describe the DataBlade objects.

Test You use unit test files to test your database objects while

you code and debug your DataBlade module on Windows.

You use functional test files to test the positive and negative

operation of user-defined routines, opaque data type

support routines, and casts when your DataBlade module is

complete.

Packaging You use these files with BladePack to generate installation

files and executables.

The generated source code files contain routine definitions. BladeSmith

generates complete code for some routines, such as basic opaque data type

support routines. BladeSmith generates code templates for other types of

routines, such as user-defined routines. You must add code to these routines

to implement the functionality you require. The areas of the generated source

code that need modification are marked with TO DO: comments.

When your code is complete, you compile it into a file that the database

server can interpret.

For instructions, see the IBM Informix: DataBlade Developer’s Kit User's Guide or

the tutorial in the on-line DataBlade Developers Kit InfoShelf.

BladePack

You use BladePack to create an installable DataBlade module package.

BladePack uses the packaging project file created by BladeSmith as the basis

for the installation package. The packaging file references the SQL scripts,

shared object file, and other files required by the DataBlade module. The

installation scripts ensure that all DataBlade modules created with the

DataBlade Developers Kit can be installed in a similar way.

2-2 DataBlade Module Development Overview

You can create installation packages for a UNIX installation or a Windows

installation for InstallShield 3.1 or InstallShield 5.1. The options you have for

your installation package vary with each type of installation. For information

on your options, see the IBM Informix: DataBlade Developer’s Kit User's Guide.

You can perform the following tasks with BladePack:

v Add files to your DataBlade module

For example, you can include documentation, on-line help, and example

files.

v Include several BladePack projects in an installation package

For example, you can include DataBlade modules that facilitate similar

financial calculations into a single installation package.

v Divide files into separate components, subcomponents, and shared

components

You can designate the components and subcomponents to include in typical

and compact installations. You can also allow users to customize their

installations by choosing the components and subcomponents they want to

install. Shared components can belong to more than one component, and

they are always installed with components to which they belong.

v Include custom installation routines

You can add custom DLL routines, dialog boxes, and programs for

Windows InstallShield 3.1 installations and custom programs for UNIX

installations. You can also include README files for any type of

installation.

v Generate disk images or a directory tree for interactive installations

On UNIX platforms, an interactive installation includes install and

uninstall shell scripts. On Windows, an interactive InstallShield installation

includes the Setup program and, for InstallShield 3.1, the Uninstall

program.

See the IBM Informix: DataBlade Developer’s Kit User's Guide for more

information.

BladeManager

You use BladeManager to register or unregister your DataBlade module in a

database and to install or uninstall DataBlade module client files.

After you install a DataBlade module on a database server, you must register

it in every database that uses the module. Registration involves executing the

DataBlade SQL scripts to create DataBlade objects in the database and making

the DataBlade shared object or dynamic link library available to the database

server.

Chapter 2. Building a DataBlade Module 2-3

BladeManager checks for dependencies between DataBlade modules. If you

have imported an interface from another DataBlade module, BladeManager

registers your DataBlade module only after it confirms that the interface is

registered in the database.

If you are upgrading your DataBlade module, BladeManager automatically

unregisters the previous version.

You can also unregister any module by using BladeManager. BladeManager

does not allow you to unregister a DataBlade module if there is another

DataBlade module that depends on it or if any of its objects are in use by the

database.

See the IBM Informix: DataBlade Module Installation and Registration Guide for

more information.

DBDK Visual C++ Add-In and IfxQuery

The DataBlade Developers Kit provides the following tools for debugging C

and C++ code on Windows:

v DBDK Visual C++ Add-In

v IfxQuery.

The DBDK Visual C++ Add-In is a toolbar you add to Microsoft Visual C++,

Version 6.0, to aid in debugging. You must have Dynamic Server on the same

computer as the DataBlade Developers Kit to use the debugging features of

the add-in.

The IfxQuery tool is launched by the add-in from within Visual C++.

IfxQuery runs the SQL unit test file in the active window in Visual C++.

The add-in and IfxQuery automate many of the steps necessary for debugging

a DataBlade module. After you compile your DataBlade module in Visual

C++ and set breakpoints in your source code, you can click Debug DataBlade

Module.

The Debug DataBlade Module command performs the following steps:

 1. Checks if the DataBlade module is compiled (and compiles it, if

necessary)

 2. If necessary, creates a new directory for the DataBlade module under the

INFORMIXDIR\extend directory

 3. Installs the DataBlade module shared library file and SQL scripts in the

INFORMIXDIR\extend\project.0 directory

 4. Shuts down the database server

2-4 DataBlade Module Development Overview

5. Starts the Visual C++ debugger and the database server attached to the

Visual C++ debugger

 6. Launches IfxQuery, if the active window contains an SQL file

 7. If necessary, creates the database specified by the add-in

 8. Connects to the database specified by the add-in

 9. Registers the DataBlade module

10. Executes the SQL statements from the unit test file

11. Writes the results to an HTML file

12. Launches the default HTML browser for your computer

13. Displays the SQL results in the HTML browser

The first time you run the Debug DataBlade Module command for a

DataBlade module project, the Properties dialog box appears, in which you

specify the database server and database you want to use for debugging. You

can also access the Properties dialog box with the Run Properties dialog box

button of the add-in.

How to Create a DataBlade Module

While the DataBlade Developer Kit tools run only on Windows, you can

create DataBlade modules for both Windows and UNIX operating systems for

the C, C++, and Java languages. The tools you use on each operating system

and for each programming language vary.

The following table describes, in order, the tasks needed to create a DataBlade

module and the tools you should use to complete the tasks.

 To Perform This Task Use This Tool on UNIX Use This Tool on Windows

Write the design and functional specifications. Your word processing

program

Your word processing

program

Create your DataBlade module:

v Set up a project for your DataBlade

module.

v Import objects from other DataBlade

modules.

v Define new objects for your DataBlade

module.

v Add validation test data for your new

routines, opaque types, and casts.

v Generate source code, SQL scripts,

installation files, and unit and functional

test files.

BladeSmith

Chapter 2. Building a DataBlade Module 2-5

To Perform This Task Use This Tool on UNIX Use This Tool on Windows

Edit the source code to add C, C++, or Java

code for routines, as needed.

Your development tool or

text editor

For C or C++ code:

Microsoft Visual C++

For Java code: your

development tool or text

editor

Compile your source code. For C or C++ code: your

compiler

For Java code: JDK 1.1

compiler

For C or C++ code:

Microsoft Visual C++

For Java code: JDK 1.1.x

compiler

Install your DataBlade module. Operating system copy

command or FTP

For C or C++ code: DBDK

Visual C++ Add-In

For Java code: operating

system copy of FTP

Register your DataBlade module in your test

database.

For all code:

v BladeManager

v Dynamic Server*

For C or C++ code:

v DBDK Visual C++

Add-In

v Dynamic Server

For Java code:

v BladeManager

v Dynamic Server*

Debug your DataBlade module by running

unit tests.

For C or C++ code:

v a debugging utility

v DB-Access or a client

application

v Dynamic Server

For Java code:

v the Java log file

v DB-Access or a client

application

v Dynamic Server*

For C or C++ code:

v Microsoft Visual C++

v DBDK Visual C++

Add-In

v IfxQuery or other SQL

query tool

v Dynamic Server

For Java code:

v the Java log file

v an SQL query tool

v Dynamic Server*

Validate your DataBlade module with

functional tests.

For all code:

v DB-Access

v Dynamic Server*

For all code:

v MKS Toolkit

v DB-Access

v Dynamic Server*

2-6 DataBlade Module Development Overview

To Perform This Task Use This Tool on UNIX Use This Tool on Windows

Package your DataBlade module:

v Add examples, on-line help files, and any

other files you want to include to the

project.

v Define any additional components for a

selective installation.

v Perform optional customizations for

installation packages.

v Build the installation package.

BladePack

Transfer files to the installation media. Your operating system Your operating system

Document your DataBlade module with a

user’s guide, release notes, examples, and

online help, as needed.

Your word processing

program

Your word processing

program

* You must use the IBM Informix Dynamic Server with J/Foundation upgrade to IBM Informix

Dynamic Server to enable services that use Java. For more information about J/Foundation, see the

IBM Informix: J/Foundation Developer's Guide.

DataBlade Module Development Resources

The DataBlade Developers Kit includes various resources to help you learn

about and develop DataBlade modules, discussed in the following

subsections:

v “The DataBlade Developers Kit InfoShelf,” next

v “The Tutorial” on page 2-8

v “Example DataBlade Modules” on page 2-8

v “The IBM Informix Developer Zone” on page 2-9

The DataBlade Developers Kit InfoShelf

The DataBlade Developers Kit InfoShelf is a set of HTML documents included

with the DataBlade Developers Kit software.

The DataBlade Developers Kit InfoShelf can be launched from the BladeSmith

Help menu or started independently from the Informix program group.

The InfoShelf provides the following information in HTML format:

v An online version of this manual

v A tutorial that illustrates the fundamentals of DataBlade module

development

v Descriptions of example DataBlade modules shipped with the DataBlade

Developers Kit

v A reference library that contains the following manuals:

Chapter 2. Building a DataBlade Module 2-7

– IBM Informix: DataBlade Developer’s Kit User's Guide

– IBM Informix: DataBlade Module Installation and Registration Guide

– IBM Informix: DataBlade API Programmer's Guide

– IBM Informix: User-Defined Routines and Data Types Developer's Guide

– IBM Informix: Guide to SQL Reference

– IBM Informix: Guide to SQL Syntax

– IBM Informix: Guide to SQL Tutorial

– IBM Informix: J/Foundation Developer's Guide

– IBM Informix: JDBC Driver Programmer's Guide

– IBM Informix: GLS Programmer's Manual

– IBM Informix: GLS User's Guide

– IBM Informix: ESQL/C Programmer's Manual

v A master index containing the merged index entries of all the books listed

above

The index entries provide links into the HTML versions of the manuals

included in the InfoShelf.

The Tutorial

The DataBlade Developers Kit Tutorial is a set of HTML documents that you

access through the DataBlade Developers Kit InfoShelf.

The tutorial consists of step-by-step exercises that demonstrate how to create

DataBlade modules that extend your Informix database server.

The first exercise demonstrates a simple DataBlade module so that you can

focus on learning the mechanics of BladeSmith and the DBDK Visual C++

Add-In without complex coding. All tutorial users should start with Exercise

1.

Each subsequent exercise is more complex than the previous one; you can

choose to either work through the exercises sequentially or just pick the ones

that interest you.

Example DataBlade Modules

Example DataBlade modules are included with the DataBlade Developers Kit

software. Example DataBlade modules are in the

%INFORMIXDIR%\dbdk\examples directory. The InfoShelf has descriptions

of the example DataBlade modules with links to README files and source

code.

The example DataBlade modules are frequently updated. The topics you

might find covered in the example DataBlade modules include:

v Client. Using extended data types with ESQL/C and C++ client programs.

2-8 DataBlade Module Development Overview

v Routines. Using user-defined routines written with the DataBlade API and

using MMX technology.

v Types. Using extended data types that have support routines written with

the DataBlade API, use MMX technology, are implemented as ActiveX value

objects, and create user-defined statistics.

The IBM Informix Developer Zone

The Informix Developer Zone Web site is designed to provide you with the

technical information, tools, forums, and links to relevant information that

you need when using Informix products.

The DataBlade Developers Kit InfoShelf contains links to the IBM Informix

Developer Zone at www.ibm.com/software/data/developer/informix. This

page has a link to the DataBlade Developers’ Corner, which is of particular

interest to DataBlade module developers. Its goal is to answer questions asked

by DataBlade developers. The information in the DataBlade Developers’

Corner is frequently updated, and it includes topics such as:

v Getting started. Lists software, documentation, and training resources and

describes how to install and set up the requisite software.

v DataBlade modules and your Informix database server. Includes

descriptions of the interaction between DataBlade modules and your

database server and how to debug DataBlade modules.

v DataBlade API. Includes tips and code examples, from snippets to complete

DataBlade modules, using the DataBlade API.

v Data types. Describes the data types you can use with your Informix

database server, such as extended data types and smart large objects.

Chapter 2. Building a DataBlade Module 2-9

2-10 DataBlade Module Development Overview

Appendix A. DataBlade Module Documentation

This appendix is a reference to current IBM Informix documentation

pertaining to DataBlade modules. The appendix is divided into three sections:

v “Manual Overview,” a survey of the documentation set, arranged by

concept

v “Title-to-Topic Reference” on page A-2, a descriptive catalog of the

documents, arranged alphabetically by title

v “Topic-to-Title Reference” on page A-4, an alphabetical list of topics

concerning DataBlade modules, with references to the document or

documents that contain detailed information about each topic

For other DataBlade module resources, see “DataBlade Module Development

Resources” on page 2-7.

Manual Overview

In the following table, the manuals mentioned in the DataBlade Module

Development Overview are arranged into basic categories.

 Category Manual Title

DataBlade module concepts IBM Informix: User-Defined Routines and Data Types Developer's Guide

IBM Informix: DataBlade Developer’s Kit User's Guide

IBM Informix: J/Foundation Developer's Guide

DataBlade module

development tools

IBM Informix: DataBlade Developer’s Kit User's Guide

IBM Informix: DataBlade Module Installation and Registration Guide

APIs IBM Informix: DataBlade API Programmer's Guide

IBM Informix: DataBlade API Function Reference

IBM Informix: JDBC Driver Programmer's Guide

IBM Informix: GLS Programmer's Manual

IBM Informix: GLS User's Guide

IBM InformixCLI Programmer's Manual

IBM Informix: ESQL/C Programmer's Manual

© Copyright IBM Corp. 1996, 2004 A-1

Category Manual Title

IBM Informix Dynamic Server IBM Informix: Dynamic Server Getting Started Guide

IBM Informix: Dynamic Server Administrator's Guide

IBM Informix: Dynamic Server Performance Guide

SQL IBM Informix: Guide to SQL Reference

IBM Informix: Guide to SQL Syntax

IBM Informix: Guide to SQL Tutorial

Title-to-Topic Reference

In the following table, the manuals mentioned in the DataBlade Module

Development Overview are listed alphabetically by title, with a brief description

of each.

 Manual Title Description

IBM Informix: J/Foundation

Developer's Guide

Describes how Java is implemented in the Informix database server.

Describes a library of classes and interfaces that allow programmers

to create and execute Java user-defined routines that access Informix

database servers.

IBM Informix: DataBlade API

Programmer's Guide

IBM Informix: DataBlade API

Function Reference

Provide a complete reference for the DataBlade API, which is used to

develop applications that interact with your Informix database server.

IBM Informix: DataBlade

Developer’s Kit User's Guide

Describes how to develop and package DataBlade modules using the

DataBlade Developers Kit.

IBM Informix: DataBlade Module

Installation and Registration

Guide

Explains how to install DataBlade modules and use BladeManager to

register, upgrade, and unregister DataBlade modules in Informix

databases.

IBM Informix: User-Defined

Routines and Data Types

Developer's Guide

Explains how to extend existing data types, define new data types,

and define your own functions and procedures for an Informix

database.

Describes the tasks you must perform to extend operations on data

types, to create new casts, to extend operator classes for secondary

access methods, and to write opaque data types.

Defines common considerations for SPL and external routines and

describes how to create user-defined aggregates.

A-2 DataBlade Module Development Overview

Manual Title Description

IBM Informix: R-Tree Index

User's Guide

Describes the IBM Informix R-tree secondary access method and how

use its components. It describes how to create an R-tree index on

appropriate data types and how to create a new operator class that

uses the R-tree access method to index a user-defined data type.

IBM Informix: Dynamic Server

Getting Started Guide

Provides an overview of the architecture of your Informix database

server, introduces the major features of the server, introduces the

server kits, and provides information to help you use the

documentation that is included with each kit.

IBM Informix: GLS

Programmer's Manual

Describes IBM Informix GLS, an application programming interface

available in IBM Informix products. IBM Informix GLS provides

ESQL/C and DataBlade module developers the ability to write

programs (or change existing programs) to handle different languages,

cultural conventions, and code sets.

IBM Informix: GLS User's Guide Describes the Global Language Support (GLS) feature available in

IBM Informix products. The GLS feature allows IBM Informix APIs

and Informix database servers to handle different languages, cultural

conventions, and code sets. This manual describes only the

language-related topics that are unique to GLS.

IBM InformixCLI Programmer's

Manual

Explains how to use the IBM Informix CLI application programming

interface to gain access to Informix databases, manipulate the data in

your program, interact with the database server, and check for errors.

IBM Informix: ESQL/C

Programmer's Manual

Explains how to use IBM Informix ESQL/C to create client

applications with database management capabilities. This manual is a

complete guide to the features of ESQL/C that allow you to gain

access to Informix databases, manipulate the data in your program,

interact with the database server, and check for errors.

IBM Informix: Guide to SQL

Reference

Describes the Informix system catalog tables, common environment

variables that you might need to set, and the built-in data types that

your Informix database server supports.

IBM Informix: Guide to SQL

Syntax

This manual contains syntax descriptions for the Structured Query

Language (SQL) and Stored Procedure Language (SPL) statements

that your Informix database server supports.

IBM Informix: Guide to SQL

Tutorial

Includes instructions for using basic and advanced Structured Query

Language (SQL), as well as for designing and managing your

database.

IBM Informix: Dynamic Server

Administrator's Guide

Describes how to install, configure, and use the features of your

Informix database server.

IBM Informix: Dynamic Server

Performance Guide

Explains how to configure and operate your database server to

improve overall system performance as well as the performance of

SQL queries.

IBM Informix: JDBC Driver

Programmer's Guide

Describes the JDBC driver that implements the Java interfaces and

classes that programmers use to connect to an Informix database

server.

Appendix A. DataBlade Module Documentation A-3

Topic-to-Title Reference

The following table provides an alphabetical list of DataBlade module

development topics, with references to the manuals in which each topic is

documented.

 Topic Detail/Manual Title

ActiveX value objects IBM Informix: DataBlade Developer’s Kit User's Guide

Aggregates IBM Informix: DataBlade API Programmer's Guide

IBM Informix: DataBlade Developer’s Kit User's Guide

APIs DataBlade API: IBM Informix: DataBlade API Programmer's Guide

IBM Informix CLI: IBM InformixCLI Programmer's Manual

IBM Informix ESQL/C: IBM Informix: ESQL/C Programmer's Manual

IBM Informix GLS: IBM Informix: GLS Programmer's Manual

IBM Informix JDBC Driver: IBM Informix: JDBC Driver Programmer's

Guide

BladeManager IBM Informix: DataBlade Module Installation and Registration Guide

IBM Informix: DataBlade Developer’s Kit User's Guide

BladePack IBM Informix: DataBlade Developer’s Kit User's Guide

BladeSmith IBM Informix: DataBlade Developer’s Kit User's Guide

Casts IBM Informix: User-Defined Routines and Data Types Developer's Guide

IBM Informix: Guide to SQL Tutorial

Coding standards IBM Informix: DataBlade API Programmer's Guide

IBM Informix: J/Foundation Developer's Guide

IBM Informix: DataBlade Developer’s Kit User's Guide

Compiling source code IBM Informix: DataBlade Developer’s Kit User's Guide

A-4 DataBlade Module Development Overview

Topic Detail/Manual Title

Data types Using with user-defined routines: IBM Informix: DataBlade API

Programmer's Guide

Built-in: IBM Informix: Guide to SQL Reference

Qualified built-in: IBM Informix: Guide to SQL Reference

Opaque: IBM Informix: User-Defined Routines and Data Types Developer's

Guide

Distinct: IBM Informix: User-Defined Routines and Data Types Developer's

Guide

Collection: IBM Informix: Guide to SQL Tutorial

Row: IBM Informix: Guide to SQL Tutorial

DBDK Visual C++ Add-In IBM Informix: DataBlade Developer’s Kit User's Guide

Dependencies between

DataBlade modules

IBM Informix: DataBlade Module Installation and Registration Guide

Error messages IBM Informix: DataBlade Developer’s Kit User's Guide

IBM Informix: DataBlade API Programmer's Guide

Example DataBlade modules DBDK InfoShelf

Java value objects IBM Informix: DataBlade Developer’s Kit User's Guide

Importing files IBM Informix: DataBlade Developer’s Kit User's Guide

Inheritance IBM Informix: Guide to SQL Tutorial

Installing DataBlade modules IBM Informix: DataBlade Module Installation and Registration Guide

IBM Informix: DataBlade Developer’s Kit User's Guide

Interfaces to DataBlade

modules

IBM Informix: DataBlade Developer’s Kit User's Guide

DBDK Tutorial

Internationalization IBM Informix: GLS Programmer's Manual, IBM Informix: GLS User's

Guide

Memory management IBM Informix: DataBlade API Programmer's Guide

Operator class support

functions

IBM Informix: User-Defined Routines and Data Types Developer's Guide

IBM Informix: R-Tree Index User's Guide

IBM Informix Developer Zone at

www.ibm.com/software/data/developer/informix

Packaging a DataBlade module IBM Informix: DataBlade Developer’s Kit User's Guide

Appendix A. DataBlade Module Documentation A-5

Topic Detail/Manual Title

Performance issues IBM Informix: Dynamic Server Performance Guide

IBM Informix: User-Defined Routines and Data Types Developer's Guide

IBM Informix: DataBlade API Programmer's Guide

Polymorphism IBM Informix: User-Defined Routines and Data Types Developer's Guide

Registering a DataBlade

module

IBM Informix: DataBlade Module Installation and Registration Guide

Routines IBM Informix: DataBlade API Programmer's Guide

IBM Informix: DataBlade API Function Reference

IBM Informix: User-Defined Routines and Data Types Developer's Guide

IBM Informix: J/Foundation Developer's Guide

IBM Informix: DataBlade Developer’s Kit User's Guide

Secondary access methods IBM Informix: Dynamic Server Performance Guide

IBM Informix: R-Tree Index User's Guide

IBM Informix Developer Zone at

www.ibm.com/software/data/developer/informix

Server architecture IBM Informix: Dynamic Server Administrator's Guide

IBM Informix: Dynamic Server Getting Started Guide

Shared memory IBM Informix: DataBlade Developer’s Kit User's Guide

IBM Informix: Dynamic Server Administrator's Guide

Smart large objects IBM Informix: DataBlade API Programmer's Guide

IBM Informix: Large Object Locator DataBlade Module User's Guide

IBM Informix: Guide to SQL Tutorial

IBM Informix Developer Zone at

www.ibm.com/software/data/developer/informix

SQL IBM Informix: Guide to SQL Reference

IBM Informix: Guide to SQL Syntax

IBM Informix: Guide to SQL Tutorial

Storage of DataBlade modules IBM Informix: Dynamic Server Administrator's Guide

Stored Procedure Language IBM Informix: User-Defined Routines and Data Types Developer's Guide

IBM Informix: Guide to SQL Syntax

A-6 DataBlade Module Development Overview

Topic Detail/Manual Title

Testing and debugging

DataBlade modules

IBM Informix: DataBlade Developer’s Kit User's Guide

Unit tests IBM Informix: DataBlade Developer’s Kit User's Guide

Virtual processors IBM Informix: DataBlade Developer’s Kit User's Guide

IBM Informix: Dynamic Server Administrator's Guide

Appendix A. DataBlade Module Documentation A-7

A-8 DataBlade Module Development Overview

Appendix B. IBM Informix DataBlade Modules

This appendix introduces some of the IBM Informix DataBlade modules to

serve as examples of the type of functionality DataBlade modules can provide.

For more information on available DataBlade modules, see the IBM Informix

Developer Zone at www.ibm.com/software/data/developer/informix.

This appendix includes descriptions of the following DataBlade modules and

the extensions to IBM Informix Dynamic Server that each one provides:

v IBM Informix Geodetic DataBlade Module

v IBM Informix Large Object Locator DataBlade Module

v Excalibur Text Search DataBlade Module

v IBM Informix TimeSeries DataBlade Module

v IBM Informix Video Foundation DataBlade Module

v IBM Informix Web DataBlade Module

IBM Informix Geodetic DataBlade Module

The IBM Informix Geodetic DataBlade module manages objects defined on

the Earth’s surface with a high degree of precision. It is designed to manage

spatio-temporal data with global content, such as metadata associated with

satellite images. To do this, the IBM Informix Geodetic DataBlade module

module uses a latitude and longitude coordinate system on an ellipsoidal

Earth model, or geodetic datum, rather than a planar, x- and y-coordinate

system.

With the IBM Informix Geodetic DataBlade module, you can extend your

database server to store and manipulate objects in space, referenced by

latitude and longitude. You can also provide additional attributes representing

an altitude range and a time range.

You can create the following spatio-temporal objects with this module:

v Points

v Line segments

v Strings

v Rings

v Polygons

v Boxes

v Circles

© Copyright IBM Corp. 1996, 2004 B-1

v Ellipses

Extensions to Dynamic Server

The IBM Informix Geodetic DataBlade module provides three kinds of data

types:

v Spatio-temporal. To represent objects.

v Distinct and range. Building blocks that simplify the construction and

manipulation of spatio-temporal objects.

Spatio-temporal data types enable you to store data that represents spatial

objects with a time component in an Informix database. The time component

associates the object with a time period or moment in time. Spatio-temporal

types are defined in a type hierarchy, with a supertype—GeoObject—that has

the time and altitude attributes common to all spatio-temporal types.

Distinct types provide angular components such as latitude and longitude and

linear components such as distance.

Range data types specify the altitude and time dimensions of spatio-temporal

data.

The IBM Informix Geodetic DataBlade module provides more than 60

functions to enable you to manipulate your spatio-temporal data. These

functions can be grouped into the following categories:

v Accessor functions. These functions allow you to access information about

objects stored in a database. For example, the Latitude function returns—or

accesses—the latitude value of an object.

Type verification functions are included in this group.

v Computational functions. These functions perform standard computations.

v Constructor and conversion functions. These functions are the basis for the

data types. Many of these functions are overloaded, with a conversion

syntax in addition to a constructor. The conversion syntax converts an

object from the GeoObject supertype back to its original representation.

v Spatial operators. The functions take spatio-temporal objects and test them

for proximity or intersection. Spatial operators return Boolean TRUE or

FALSE.

v Data validation functions. These functions verify GeoRing and GeoPolygon

objects.

v System functions. These functions control session parameters and provide

information about the version of the IBM Informix Geodetic DataBlade

module.

v Tracing functions. These functions control the trace files and tracing output.

v Warning functions. These functions control warning messages and output.

B-2 DataBlade Module Development Overview

v Z Value functions. These functions manipulate Z values.

The IBM Informix Geodetic DataBlade module also provides:

v a client utility called geovalidate that you can use to verify the correctness

of your input data.

v support for the R-tree spatial access method. The R-tree access method

allows you to create an index on columns containing spatio-temporal data.

Documentation

For more information, see the IBM Informix: Geodetic DataBlade Module User's

Guide.

IBM Informix Large Object Locator DataBlade Module

The IBM Informix Large Object Locator DataBlade module enables you to

create a single consistent interface to smart large objects. It expands the

concept of smart large objects to include data stored outside the database.

Smart large object data exceeds a length of 255 bytes or contains non-ASCII

characters.

With the IBM Informix Large Object Locator DataBlade module, you create a

reference to a smart large object and store the reference as a row in the

database. The object itself can reside outside the database: for example, on a

file system (or it could be a BLOB or CLOB column in the database). The

reference identifies the type, or access protocol, of the object and points to its

storage location.

The IBM Informix Large Object Locator DataBlade module is a foundation

DataBlade module for other DataBlade modules that handle smart large

objects.

Extensions to Dynamic Server

The IBM Informix Large Object Locator DataBlade module provides new data

types and functions to extend your database server.

The lld_locator data type is a row data type that contains the access protocol

for a smart large object and a pointer to its location. The lld_lob data type is

an opaque data type that is identical to the BLOB and CLOB data types,

except that in addition to pointing to the data, it tracks whether the

underlying smart large object contains binary or character data. It is contained

in the lld_locator data type as a field in the row.

The IBM Informix Large Object Locator DataBlade module provides basic

functions for creating, opening, closing, deleting, reading from, and writing to

smart large objects; client functions to process client files; utility functions for

raising errors; and functions for copying smart large objects.

Appendix B. IBM Informix DataBlade Modules B-3

Most of the IBM Informix Large Object Locator DataBlade module functions

are implemented in an API library, an ESQL/C library, and an SQL interface

for maximum programming flexibility.

Documentation

For more information, see the IBM Informix: Large Object Locator DataBlade

Module User's Guide.

Excalibur Text Search DataBlade Module

The Excalibur Text Search DataBlade module enables you to search your data

in ways that are faster and more sophisticated than the keyword matching

that SQL provides. Excalibur text search capabilities include phrase matching,

exact and fuzzy searches, compensation for misspelling, and synonym

matching. The Excalibur Text Search DataBlade module can search any type of

text.

The Excalibur Text Search DataBlade module uses dynamic links in the

Excalibur class library, or text search engine, to perform the text search section

of the SELECT statement instead of having the database server perform a

traditional search. The text search engine is specifically designed to perform

sophisticated and fast text searches. It runs in one of the database

server-controlled virtual processes.

Extensions to Dynamic Server

The Excalibur Text Search DataBlade module provides four kinds of objects to

extend your Informix database server: the etx access method, the filter utility,

the etx_contains() operator, and text search routines.

The etx access method allows you to call on the Excalibur Text Retrieval

Library to create indexes that support sophisticated searches on table columns

that contain text. The indexes that you create with the etx access method are

called etx indexes.

To take advantage of the etx access method, you must store the data you want

to search—called search text—in a column of type IfxDocDesc, BLOB, CLOB,

CHAR, VARCHAR, or LVARCHAR. The first data type in this list,

IfxDocDesc, is a data type designed specifically for use with text access

methods. The most popular data types for large documents are BLOB and

CLOB.

When you store your documents in a column, you do not need to manually

convert them from their proprietary format into ASCII when creating an etx

index; the Excalibur Text Search DataBlade module does this for you. One of

B-4 DataBlade Module Development Overview

the components of the Excalibur Text Search DataBlade module is a filtering

utility that recognizes a number of document formats and converts them into

ASCII form whenever needed.

You use the etx_contains() operator within SELECT statements to perform

searches of etx indexes.

In addition to the etx_contains() operator, the Excalibur Text Search DataBlade

module supplies several routines that you can use to perform tasks such as

creating and dropping synonym and stopword lists.

Documentation

For more information, see the IBM Informix: Excalibur Text Search DataBlade

Module User's Guide.

IBM Informix TimeSeries DataBlade Module

The IBM Informix TimeSeries DataBlade module enables you to store and

manipulate a series of data entries associated with a date and time. This

timestamped data is stored in a row type, which you define to include

whatever data you want, in addition to the timestamp. You also control the

granularity of time recording. The IBM Informix TimeSeries DataBlade

module supports regularly or irregularly repeating timestamped series.

Time series data is stored and analyzed by applications in many different

industries, including manufacturing, journalism, science, and engineering.

Time series data is also used in the financial world for corporate financial

reporting, stock prices, bond yields, and derivative securities.

Extensions to Dynamic Server

The IBM Informix TimeSeries DataBlade module allows you to create an

intuitively organized data model by grouping all the timestamped data for an

entity into a single row in a database table, using the TimeSeries data type.

The TimeSeries data type is a type constructor that creates a collection of

elements that are row types, as illustrated in Figure B-1.

Appendix B. IBM Informix DataBlade Modules B-5

You create the row type to fit your data; the first field, or column, in the row

must be a timestamp of type DATETIME YEAR TO FRACTION 5, but the rest

of the columns can be any data type supported in row types. Since the time

series data is in a row type instead of an opaque type, you can retrieve

individual columns within an element.

The collection elements are indexed according to their timestamp, making

retrieval of chronologically contiguous elements very fast. Once the number of

elements exceeds the user-supplied threshold, the IBM Informix TimeSeries

DataBlade module moves all the elements to a container, which exists in a

user-defined dbspace. Containers are necessary because time series data

typically becomes too large to fit in a database table. Containers also allow

you to retrieve only the information you need, instead of the whole time

series, as would happen if you used a smart large object to store your data.

For both regular and irregular time series, the Calendar and CalendarPattern

data types allow you to specify an arbitrarily complex pattern of when entries

are accepted. For regular time series, the calendar additionally creates a vector

from which to calculate an element’s position, so that an element’s timestamp

does not have to be stored, or even specified.

The IBM Informix TimeSeries DataBlade module provides a wide variety of

routines to manage and manipulate time series data. The routines allow you

to manipulate columns in an element, an element itself, a portion of a time

Figure B-1. Time Series Architecture

B-6 DataBlade Module Development Overview

series, a whole time series, or many time series. In addition, there are routines

to manage calendars, containers, and metadata. Most routines are

implemented in both an SQL interface and an API library.

The IBM Informix TimeSeries DataBlade module also includes system tables

to record information about calendars, time series, and containers.

Documentation

For more information, see the IBM Informix: TimeSeries DataBlade Module

User's Guide.

IBM Informix Video Foundation DataBlade Module

The IBM Informix Video Foundation DataBlade module enables you to store,

manage, and manipulate video data and metadata in the same system in which

you store more traditional data. Such a system is called a media management

system.

Video data represents an image that changes continuously in time. Unlike

traditional data that is retrieved and displayed as a discrete value, video data

is incrementally accessed and is displayed as a real-time stream of frames.

Video data can be located on one or more storage servers, such as Web video

streamers, VTRs (video tape recorders), or video servers. If an IBM Informix

Video Foundation interface has been created for the storage server, that

storage server can come under database control.

Video metadata is data about the video data. This is the information that is

actually stored in database tables, along with information on how to retrieve

requested video segments from the various storage servers. The Video

Foundation DataBlade module defines two categories of metadata:

v Physical attributes. Descriptions of the media on which the video data is

stored, such as length, format, and capture rate.

v Abstract descriptions. Multimedia descriptions of the video data content,

such as text annotations, or audio or video clips that represent a larger

video program.

The Video Foundation DataBlade module is referred to as a foundation

DataBlade module because it provides a base on which new or specialized

video technologies can be quickly added or changed. Because the foundation

is open, secure, and scalable, it provides a clear path toward reusing and

repurposing valuable video assets among video formats and distribution

channels.

A media management system is a collection of processes, computers, and other

machines that enable you to store and manipulate video (and, often, other

media) data along with more traditional data, such as text. The IBM Informix

Appendix B. IBM Informix DataBlade Modules B-7

Video Foundation DataBlade module provides interfaces among the following

basic elements of such a media management system:

v A video client application, such as an editing or logging application,

running on a stand-alone computer.

v Your Informix database server and the Video Foundation DataBlade

module, running on a second computer; the database contains the video

metadata. (Other IBM Informix and third-party DataBlade modules—such

as IBM Informix Image, Text, and Web DataBlade modules, and third-party

storage server and video scene-change detection DataBlade modules—can

also be running on this computer.)

v Video data located on one or more storage servers, such as Web video

streamers, VTRs, or video servers. Generally, each storage server is hosted

on a separate computer.

Extensions to Dynamic Server

The Video Foundation DataBlade module consists of the following

components:

v Temporal component. This component consists of the data types and

functions that provide a format-independent interface between your

Informix database server and video data. This interface enables the server

to reference specific points in time (media points and timecodes) and intervals

(media chunks) within video data, regardless of the data format (AVI, MPEG,

and so on).

v Storage component. This component consists of the data types and

functions that provide a device- and format-independent interface between

your Informix database server, video data, and the storage servers on which

that data is located.

v Video database schema. This schema is a set of database tables that connect

the data of the temporal and storage components; it is a repository for

video metadata.

v Client API. This API provides the opaque types of the Video Foundation

DataBlade module as value objects for application developers using the

IBM Informix C++ client interface. It also provides a subset of the

DataBlade module server functions as client-side functions for application

developers using any of the following client APIs:

– IBM Informix ESQL/C API

– IBM Informix DataBlade API

– IBM Informix Object Interface for C++

Documentation

For more information, see the IBM Informix: Video Foundation DataBlade Module

User's Guide.

B-8 DataBlade Module Development Overview

IBM Informix Web DataBlade Module

The IBM Informix Web DataBlade module enables you to create Web

applications that incorporate data retrieved dynamically from an Informix

database.

Using the Web DataBlade module, you need not develop a Common Gateway

Interface (CGI) application to dynamically access database data. Instead, you

create HTML pages that include Web DataBlade module tags and functions

that dynamically execute the SQL statements you specify and format the

results. These pages are called application pages (AppPages). The types of data

you retrieve can include traditional data types, as well as HTML, image,

audio, and video data.

Extensions to Dynamic Server

The Web DataBlade module consists of three main components:

v Webdriver. As a client application to your Informix database server,

Webdriver builds the SQL queries that execute the WebExplode function to

retrieve AppPages from the database. Webdriver returns the HTML

resulting from calls to the WebExplode function to the Web server.

v WebExplode function. The WebExplode function builds dynamic HTML

pages based on data stored in the database. WebExplode parses AppPages

that contain Web DataBlade module tags within HTML and dynamically

builds and executes the SQL statements and processing instructions

embedded in the Web DataBlade module tags. WebExplode formats the

results of these SQL statements and processing instructions and returns the

resulting HTML page to the client application (usually Webdriver). The SQL

statements and processing instructions are specified using SGML-compliant

processing tags.

v Web DataBlade module tags and attributes. The Web DataBlade module

includes its own built-in set of SGML-compliant tags and attributes that

enable SQL statements to be executed dynamically within AppPages.

The following diagram illustrates the architecture of the Web DataBlade

module.

Appendix B. IBM Informix DataBlade Modules B-9

When a URL contains a Webdriver request, the Web browser makes a request

to the Web server to invoke Webdriver. Based on configuration information

from both a file on the operating system file system (web.cnf) and Webdriver

configuration information stored in a database, Webdriver composes an SQL

statement to retrieve the requested AppPage and then executes the

WebExplode function. WebExplode retrieves the requested AppPage from the

Web application table (stored in the database), executes the SQL statements

within that AppPage by expanding the Web DataBlade module tags, and

formats the results. WebExplode returns the resulting HTML to Webdriver.

Webdriver returns the HTML to the Web server, which returns the HTML to

be rendered by the Web browser.

Webdriver also enables you to retrieve large objects, such as images, directly

from the database when you specify a path that identifies a large object stored

in the database.

Documentation

For more information, see the IBM Informix: Web DataBlade Module Application

Developer's Guide.

Figure B-2. Web DataBlade Module Architecture

B-10 DataBlade Module Development Overview

Appendix C. Accessibility

The syntax diagrams in the HTML version of this manual are available in

dotted decimal syntax format, which is an accessible format that is available

only if you are using a screen reader.

Dotted Decimal Syntax Diagrams

In dotted decimal format, each syntax element is written on a separate line. If

two or more syntax elements are always present together (or always absent

together), the elements can appear on the same line, because they can be

considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1.

To hear these numbers correctly, make sure that your screen reader is set to

read punctuation. All syntax elements that have the same dotted decimal

number (for example, all syntax elements that have the number 3.1) are

mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1

SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example,

if a syntax element with dotted decimal number 3 is followed by a series of

syntax elements with dotted decimal number 3.1, all the syntax elements

numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to

add information about the syntax elements. Occasionally, these words and

symbols might occur at the beginning of the element itself. For ease of

identification, if the word or symbol is a part of the syntax element, the word

or symbol is preceded by the backslash (\) character. The * symbol can be

used next to a dotted decimal number to indicate that the syntax element

repeats. For example, syntax element *FILE with dotted decimal number 3 is

read as 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats.

Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line

with the same dotted decimal number as the relevant items. The line can also

show another symbol that provides information about the syntax elements.

For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you

use more than one of the LASTRUN and DELETE syntax elements, the elements

© Copyright IBM Corp. 1996, 2004 C-1

must be separated by a comma. If no separator is given, assume that you use

a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this identifies a reference that

is defined elsewhere. The string following the % symbol is the name of a

syntax fragment rather than a literal. For example, the line 2.1 %OP1 means

that you should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal

numbers:

? Specifies an optional syntax element. A dotted decimal number

followed by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a

dotted decimal number, the ? symbol is displayed on the same line as

the syntax element (for example, 5? NOTIFY). If there is more than one

syntax element with a dotted decimal number, the ? symbol is

displayed on a line by itself, followed by the syntax elements that are

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5

UPDATE, you know that syntax elements NOTIFY and UPDATE are

optional; that is, you can choose one or none of them. The ? symbol is

equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed

by the ! symbol and a syntax element indicates that the syntax

element is the default option for all syntax elements that share the

same dotted decimal number. Only one of the syntax elements that

share the same dotted decimal number can specify a ! symbol. For

example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1

(DELETE), you know that (KEEP) is the default option for the FILE

keyword. In this example, if you include the FILE keyword but do not

specify an option, default option KEEP is applied. A default option also

applies to the next higher dotted decimal number. In this example, if

the FILE keyword is omitted, default FILE(KEEP) is used. However, if

you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE),

the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword),

and does not apply to 2? FILE. Nothing is used if the keyword FILE is

omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this

syntax element can be used zero or more times; that is, it is optional

and can be repeated. For example, if you hear the line 5.1*

data-area, you know that you can include more than one data area or

C-2 DataBlade Module Development Overview

you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE,

you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there

is only one item with that dotted decimal number, you can repeat

that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several

items have that dotted decimal number, you can use more than

one item from the list, but you cannot use the items more than

once each. In the previous example, you could write HOST STATE,

but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this

syntax element must be included one or more times. For example, if

you hear the line 6.1+ data-area, you must include at least one data

area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you

must include HOST, STATE, or both. As for the * symbol, you can only

repeat a particular item if it is the only item with that dotted decimal

number. The + symbol, like the * symbol, is equivalent to a loop-back

line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 DataBlade Module Development Overview

Glossary

access method. A set of server routines that the

database server uses to access and manipulate an

index or a table. B-tree is the default secondary

access method used by DataBlade modules.

Some DataBlade modules have their own access

methods, with routines defined by the module.

 See also primary access method, secondary access

method.

access privilege. Permission for a user to

perform an operation in a specific database,

table, table fragment, or column.

ActiveX value object. A Microsoft Common

Object Model (COM)-compliant object that

contains a client-side copy of an opaque type

and its support routines.

 See also value object.

aggregate function. A function that performs a

mathematical operation on a set of rows selected

by a query and returns a single value that

contains information about those rows.

Aggregates use one or more support functions to

perform the aggregate operations. Examples of

built-in aggregates include SUM, AVG, and

COUNT.

arithmetic function. A function that returns a

value by performing a mathematical operation

on one or more arguments.

B-tree index. A type of index that uses a

balanced tree structure for efficient record

retrieval. B-tree indexes store key data in

ascending or descending order.

BLOB. A smart large object data type that stores

any kind of binary data, including images. The

database server performs no interpretation on the

contents of a BLOB column.

 See also smart large object.

built-in cast. A cast that is built into the

database server. A built-in cast performs

automatic conversions between different built-in

data types.

built-in data type. A fundamental data type

defined by the database server: for example,

INTEGER, CHAR, or SERIAL8.

built-in function. A predefined, SQL-invoked

function that provides some basic arithmetic and

other operations, such as cos(), log(), or today().

cast. A mechanism that the database server uses

to convert data from one data type to another.

The server provides built-in casts that it performs

automatically. Users can create both implicit and

explicit casts.

 See also cast support function, explicit cast, implicit

cast, built-in cast.

cast support function. A function that is used to

implement an implicit or explicit cast by

performing the necessary operations for

conversion between two data types. A cast

support function is optional unless the internal

storage representations of the two data types are

not equivalent.

class. A category of objects that have common

properties and are managed through a specific

system table. Informix database classes include

access methods, aggregates, casts, routines,

operators, tables, and types.

client files. The files that reside on a client

workstation that accesses a DataBlade module’s

objects. Not all DataBlade modules have client

files. Examples include client applications or

client libraries that are specific to the DataBlade

module.

CLOB. A smart large object data type that

stores blocks of text items, such as ASCII or

PostScript files.

© Copyright IBM Corp. 1996, 2004 D-1

See also smart large object.

collection. An instance of a collection data type;

a group of elements of the same data type stored

in a SET, MULTISET, or LIST type constructor.

 See also collection data type.

collection data type. A complex data type that

groups values, called elements, of a single data

type in a column. Collection data types consist of

the SET, MULTISET, or LIST type constructor

and an element type, which can be any data

type, including a complex data type.

commutator function. A Boolean function that

accepts the same two arguments, in reverse

order, as another Boolean function, and returns

the same result. The query optimizer might

choose the commutator function if it executes

more quickly in a given query than the specified

function.

 See also negator function.

complex data type. A data type that is built

from a combination of other data types using an

SQL type constructor or the CREATE ROW TYPE

statement, and whose components can be

accessed through SQL statements. Complex data

types include collection data types and row data

types.

concurrency. The ability of two or more

processes to access the same database

simultaneously.

constructed data type. A complex data type

created with a type constructor: for example, a

collection data type or an unnamed row data

type.

constructor. See type constructor.

data file. A flat file containing data to be loaded

into the database.

data type. See built-in data type, extended data

type.

database object. A discrete entity within a

database, such as a data type, a routine, a table,

an index, or a view. Users can define database

objects with the CREATE statement.

DataBlade API. The C application

programming interface (API) for your Informix

database server. The DataBlade API is used for

the development of DataBlade modules. The

DataBlade API contains routines to process data

in the database server and return the results to

the calling application.

DataBlade module. A group of database objects

and supporting code that extends an

object-relational database to manage new kinds

of data or add new features. A DataBlade

module can include new data types, routines,

casts, access methods, SQL code, client code, and

installation programs.

distinct data type. A data type based on an

existing opaque, built-in, distinct, or named row

data type, which is known as its source type. The

distinct data type has the same internal storage

representation as its source type, but it has a

different name. To compare a distinct data type

with its source type requires an explicit cast. A

distinct data type inherits all routines that are

defined on its source type.

element. A member of a collection. See also

collection data type.

element data type. The data type of the

elements in a collection.

explicit cast. A cast that requires a user to

specify the CAST AS keyword or cast operator (

::) to convert data from one data type to another.

 See also cast, cast support function.

extended data type. A data type that is not

built-in: namely, a collection data type, row data

type, opaque data type, or distinct data type.

external function. An external routine that can

accept one or more arguments and returns a

single value.

external procedure. An external routine that can

accept one or more arguments, but does not

return a value.

D-2 DataBlade Module Development Overview

external routine. A routine written in a

language external to the database (for example,

C), whose body is stored outside the database

but whose name and parameters are registered in

the system catalog tables.

field. A component of a named row data type.

A field has a name and a data type and is

accessed in an SQL statement by using dot

notation: for example, row_type_name.field_name.

function. A routine that can accept arguments

and returns one or more values.

 See also built-in function, routine, user-defined

function.

functional index. An index that stores the result

of executing a specified function on a table

column.

function overloading. See routine overloading.

Global Language Support (GLS). An

application environment that allows

IBM Informix application-programming

interfaces (APIs) and database servers to handle

different languages, cultural conventions, and

code sets. Developers use the GLS libraries to

manage all string, currency, date, and time data

types in their code. Using GLS, you can add

support for a new language, character set, and

encoding by editing resource files, without access

to the original source code and without

rebuilding the DataBlade module or client

software.

grant privileges. Privileges granted to one or

more users. The users then have the authority to

grant these same privileges to other users. A

privilege list identifies the exact privileges to be

granted.

hash rule. A user-defined algorithm that maps

each row in a table to a set of hash values used

to determine the fragment in which a row is

stored.

implicit cast. A cast that the database server

automatically performs to convert data from one

data type to another.

 See also cast, cast support function.

index. A structure of pointers to rows of data in

a table. An index optimizes the performance of

database queries by ordering rows to make

access faster.

Informix user ID. A login user ID (login user

name) that must be valid on all computer

systems (operating systems) involved in the

client’s database access. Often referred to as the

client’s “user ID” or “user name.”

Informix user password. A user ID password

that must be valid on all computer systems

(operating systems) involved in the client’s

database access. When the client specifies an

explicit user ID, most computer systems require

the Informix user password to validate the user

ID.

INFORMIXDIR. The Informix environment

variable that specifies the directory in which

IBM Informix products are installed.

inheritance. The property that allows a named

row data type or a typed table to inherit

representation (data fields and columns) and

behavior (routines, operators, and rules) from a

named row data type or typed table superior to

it in a defined hierarchy. Inheritance allows for

incremental modification, so that an object can

inherit a general set of properties and then add

properties that are specific to itself. Under certain

circumstances, distinct data types can also have

inheritance.

input parameter. A placeholder within a

prepared SQL statement that represents a value

to be provided at the time the statement is

executed.

interface. In the DataBlade Developers Kit, a

way to refer to a DataBlade module within

another DataBlade module. Because an interface

creates a dependency on another module,

BladeManager ensures that the originating

module is registered before the module that

contains the interface.

Glossary D-3

iterator function. A function that returns a set

of results one row at a time. The database server

calls iterator functions repeatedly to process all

the return values.

keyword. A word that has meaning to a

programming language. In Informix SQL,

keywords are shown in syntax diagrams in all

uppercase letters. They must be used in SQL

statements exactly as shown in the syntax, but

they can be entered as either uppercase or

lowercase letters.

large object. A data object that exceeds 255

bytes in length. A large object is logically stored

in a table column but physically stored

independently of the column, because of its size.

Large objects can contain non-ASCII data. Your

Informix database server recognizes two kinds of

large objects: simple large objects (TEXT, BYTE)

and smart large objects (CLOB, BLOB).

 See also SLV, smart large object.

LIST constructor. A type constructor used to

create a LIST data type.

LIST data type. A collection data type in which

elements are ordered and duplicates are allowed.

 See also collection data type.

locale. A set of files that define the

native-language behavior of the program at

runtime. The rules are usually based on the

linguistic customs of the region or the territory.

The locale can be set through an environment

variable that dictates output formats for

numbers, currency symbols, dates, and time, as

well as collation order for character strings and

regular expressions.

 See also Global Language Support (GLS).

LVARCHAR. A built-in data type that stores

varying-length character data greater than 256

bytes. It is used for input and output casts for

opaque data types. LVARCHAR supports

code-set order for comparisons of character data.

math function. See built-in function, operator

function.

member. A component of an opaque data type.

A member has a name and a data type and can

be accessed in an SQL statement by user-defined

accessor functions.

multirepresentational data type. A data type

whose storage location can switch between a row

and a smart large object.

MULTISET constructor. A type constructor

used to create a MULTISET data type.

MULTISET data type. A collection data type in

which elements are not ordered and duplicates

are allowed.

 See also collection data type.

named row data type. A row data type that is

created with the CREATE ROW TYPE statement

and has a name. A named row data type can be

used to construct a typed table and can be part

of a type or table hierarchy.

 See also row data type, unnamed row data type.

negator function. A Boolean function that

accepts the same arguments in the same order as

another Boolean function, but returns the

Boolean complement. The query optimizer might

choose the negator function if it executes more

quickly in a given query than the specified

function.

 See also commutator function.

nonvariant function. A function that always

returns the same value when passed the same

arguments.

not null constraint. A constraint on a column

that specifies that the column cannot contain null

values.

object. See database object.

objects script. A file containing SQL statements

that describe the objects in a DataBlade module.

opaque data type. An extended data type that

contains one or more members but whose

internal structure is interpreted by the database

server using user-defined support routines.

D-4 DataBlade Module Development Overview

operator. A symbol, such as =, >, +, or -, that

invokes an operator function.

operator binding. The association between an

operator and an operator function. Operator

binding occurs when an SQL statement contains

an operator and the database server

automatically invokes the associated operator

function.

operator class. The set of operators that the

database server associates with a secondary

access method. When an index is created, it is

associated with a particular operator class.

operator function. An arithmetic function that

has a corresponding operator symbol. An

operator function processes one to three

arguments and returns a value. For example, the

plus() function corresponds to the “+” operator

symbol.

overloading. See routine overloading.

parallel database query (PDQ). A query that

allows the database server to distribute the

execution of the query among several virtual

processors by dividing it into subqueries.

parallelizable routine. A routine that can be

executed within a parallel database query

statement.

 See also parallel database query (PDQ).

parameter. A variable to which a value can be

assigned in a specific application. In a routine, a

parameter is the placeholder for the argument

values passed to the subroutine at runtime.

polymorphism. See routine overloading.

prepare script. A file containing SQL statements

that describe the DataBlade module. There are

two types of prepare scripts:

v The script called prepare.sql contains

information about the module that is not

language-specific.

v Scripts with names in the format

prepare.locale.sql contain language-specific

information such as the module and vendor

descriptions.

primary access method. A set of routines that

perform table operations such as inserting,

deleting, updating, and scanning data. The

database server provides a virtual table interface

(VTI), with which advanced users can create

primary access methods for virtual tables.

privilege. Rights granted to specific users on

specific objects within the database. A privilege

list identifies the exact privileges that are

applicable for a particular object and that are

held by the user invoking the grant. Privileges

are granted or revoked on a database object

using the GRANT and REVOKE statements.

procedure. A routine that can accept arguments

but does not return a value.

 See also external procedure, stored procedure.

procedure overloading. See routine overloading.

query optimizer. A server facility that estimates

the most efficient plan for executing a query in

the DBMS. The optimizer considers the CPU cost

and the I/O cost of executing a plan.

R-tree index. A type of index that uses a tree

structure based on overlapping bounding

rectangles to speed access to spatial and

multidimensional data types.

registration. The process of executing SQL

statements to create DataBlade module objects or

individual user-defined routines in a database

and giving the database server the location of the

associated shared object file. Registration makes

a DataBlade module available for use by client

applications that open that database.

routine. A named collection of program

statements that perform a particular task and can

accept arguments. Routines include functions,

which return one or more values, and

procedures, which do not return values.

 See also function, procedure, user-defined routine.

routine resolution. The process that the

database server uses to determine which routine

to execute, given the routine signature.

 See also routine signature.

Glossary D-5

routine signature. The information that the

database server uses to identify a routine. The

signature of a routine includes the type of the

routine (function or procedure), the routine

name, the number of parameters, the data types

of the parameters, and the order of the

parameters. In an ANSI-compliant database, the

name of the routine is specified as owner.name.

routine overloading. Defining more than one

routine with the same name but different

parameter lists.

ROW constructor. The type constructor used to

construct unnamed row data types.

row data type. A complex data type consisting

of a group of ordered data elements (fields) of

the same or different data types. The fields of a

row type can be of any supported built-in or

extended data type, including complex data

types, except SERIAL and SERIAL8 and, in

certain situations, TEXT and BYTE.

 There are two kinds of row data types:

v Named row types, created using the CREATE

ROW TYPE statement

v Unnamed row types, created using the ROW

constructor

See also named row data type, unnamed row data

type.

sbspace. A logical storage area that contains one

or more chunks that store only smart large object

data.

secondary access method. A set of database

server functions that build, access, and

manipulate an index structure: for example, a

B-tree, an R-tree, or an index structure provided

by a DataBlade module. Typically, a secondary

access method speeds up the retrieval of data.

 When an SQL query uses an index created on a

secondary access method, it accesses the index

using the functions defined in the operator class

associated with that access method.

 See also operator class.

selectivity function. A function that calculates

the percentage of rows that will be returned by a

filter function in the WHERE clause of a query.

The optimizer uses selectivity information to

determine the fastest way to execute an SQL

query.

SET constructor. A type constructor used to

create a SET data type.

SET data type. A collection data type in which

elements are not ordered and duplicates are not

allowed.

 See also collection data type.

shared memory. A portion of main memory that

processes can use to communicate and share

common data, thus reducing disk I/O and

improving performance.

signature. See routine signature.

SLV. Abbreviation for statement local variable.

smart large object. A large object that:

v is stored in an sbspace, a logical storage area

that contains one or more chunks.

v has read, write, and seek properties similar to

a UNIX file.

v is recoverable.

v obeys transaction isolation modes.

v can be retrieved in segments by an application.

Smart large objects include CLOB and BLOB data

types.

SPL. Abbreviation for Stored Procedure Language.

statement local variable (SLV). A variable for

storing a value that a function returns indirectly,

through a pointer, in addition to the value that

the function returns directly. An SLV’s scope is

limited to the statement in which it is used. The

RANK parameter of the Resembles operator

function is an SLV.

stored procedure. A user-defined routine that is

stored in a database in executable format. Stored

procedures are used to execute frequently

repeated tasks, to improve performance, and to

monitor access to data. Stored procedures are

written in Stored Procedure Language (SPL).

D-6 DataBlade Module Development Overview

Stored Procedure Language. An Informix

extension to SQL that provides flow-control

features such as sequencing, branching, and

looping, comparable to those features provided

in the SQL/PSM standard. SPL can be used for

writing DataBlade module routines.

strategy functions. The functions that the

optimizer uses to determine what filters in a

query can use a secondary access method

(index).

subquery. A SELECT statement within a

WHERE clause.

support routines. The internal routines that the

database server automatically invokes to process

a data type, cast, aggregate, or access method.

 The database server uses user-defined support

routines to perform operations on opaque data

types (such as converting to and from the

internal, external, and binary representations of

the type).

 An secondary access method uses a support

routine in an operator class to perform

operations on an index (such as building or

searching).

system catalog. A group of database tables that

contain information about the database itself,

such as the names of tables or columns in the

database, the number of rows in a table, the

information about indexes and database

privileges, and so on.

table. A rectangular array of data in which each

row describes a single entity and each column

contains the values for each category of

description. A table is sometimes referred to as a

base table to distinguish it from the views,

indexes, and other objects defined on the

underlying table or associated with it.

type constructor. An SQL keyword that

indicates to the database server the type of

complex data to create.

 See also LIST constructor, MULTISET constructor,

ROW constructor, SET constructor.

type inheritance. The property that allows a

named row data type to inherit representation

(data fields, columns) and behavior (routines,

operators, rules) from a named row type above it

in the type hierarchy.

unnamed row data type. A row type created

with the ROW constructor that has no defined

name and no inheritance properties. Two

unnamed row types are equivalent if they have

the same number of fields and if corresponding

fields have the same data type, even if the fields

have different names.

unregistration. The process of executing SQL

statements to drop DataBlade module objects or

individual user-defined routines in a database

and removing the ability to access the associated

shared object file from the database server.

user-defined function. A user-defined routine

that returns a value.

user-defined routine. A routine, written in one

of the languages that your Informix database

server supports, that provides added

functionality for data types or encapsulates

application logic.

user-defined procedure. A user-defined routine

that does not return a value.

user-defined statistics. Information about the

opaque data type values in your database that is

collected by the UPDATE STATISTICS statement,

which calls user-defined functions to calculate

the statistics. The optimizer uses these statistics

to determine the fastest way to execute an SQL

query.

user-defined virtual processor. (1) A virtual

processor that executes the user-defined routines

that are assigned to it. (2) See also virtual

processor.

value object. A self-contained binary object that

provides standard interfaces to its callers. Value

objects can be used in client applications.

Glossary D-7

variant function. A function that, with the same

arguments, can either return different values or

have varying side effects, such as updating a

table or external file.

virtual processor. One of the multithreaded

processes that make up the database server and

are similar to the hardware processors in the

computer.

D-8 DataBlade Module Development Overview

Notices

IBM may not offer the products, services, or features discussed in this

document in all countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any

other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1996, 2004 E-1

improvements and/or changes in the product(s) and/or the program(s)

described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Program License Agreement, or any equivalent

agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments

may vary significantly. Some measurements may have been made on

development-level systems and there is no guarantee that these measurements

will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results

may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

E-2 DataBlade Module Development Overview

All statements regarding IBM’s future direction or intent are subject to change

or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are

subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are

written. These examples have not been thoroughly tested under all conditions.

IBM, therefore, cannot guarantee or imply reliability, serviceability, or function

of these programs. You may copy, modify, and distribute these sample

programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs

conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,

must include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years).

All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Notices E-3

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database

Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix®;

C-ISAM®; Foundation.2000™; IBM Informix

® 4GL; IBM

Informix®DataBlade®Module; Client SDK™; Cloudscape™; Cloudsync™; IBM

Informix®Connect; IBM Informix®Driver for JDBC; Dynamic Connect™; IBM

Informix®Dynamic Scalable Architecture™(DSA); IBM Informix®Dynamic

Server™; IBM Informix®Enterprise Gateway Manager (Enterprise Gateway

Manager); IBM Informix®Extended Parallel Server™; i.Financial Services™;

J/Foundation™; MaxConnect™; Object Translator™; Red Brick™; IBM

Informix® SE; IBM Informix® SQL; InformiXML™; RedBack®; SystemBuilder™;

U2™; UniData®; UniVerse®; wintegrate®are trademarks or registered

trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other

countries.

UNIX is a registered trademark in the United States and other countries

licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be

trademarks or service marks of others.

E-4 DataBlade Module Development Overview

Index

A
Accessibility xvi

dotted decimal format of syntax diagrams C-1

syntax diagrams, reading in a screen reader C-1

ActiveX value objects 1-8, 1-11

Aggregates
defined 1-12

where documented A-4

API.
See Application programming interface.

Application programming interface
DataBlade API 1-8

JDBC 1-8

supplied in Client SDK 1-10

where documented A-4

Application, client B-8

Applications, simplifying with DataBlade modules 1-3

B
BladeManager

defined 2-3

registering DataBlade modules with 2-6

BladePack
DataBlade module packaging tasks 2-7

defined 2-2

packaging options 2-3

BladeSmith
aggregates, creating with 1-12

casts, creating with 1-21

client files, importing with 1-23

collection data types
creating with 1-14

data type categories in 1-12

DataBlade module creation tasks 2-5

defined 2-1

distinct data types
creating with 1-14

errors, creating with 1-22

functional tests, generating with 1-22

generated files from 2-2

interfaces
creating with 1-22

opaque data type support routines
creating with 1-19

opaque data types, creating with 1-17

overloading routines with 1-20

qualified data types, specifying with 1-14

routines
creating with 1-19

BladeSmith (continued)
row data types, creating with 1-16

SQL files, importing with 1-23

unit tests, generating with 1-22

Boldface type vii

Built-in data types 1-13

Built-in routines 1-20

C
C code in DataBlade modules 1-8

C++ code in DataBlade modules 1-8

Casts
defined 1-21

where documented A-4

Client API, example of B-8

Client application B-8

Client files, adding with BladeSmith 1-23

Client objects
using with DataBlade modules 1-11

Client Software Developer’s Kit 1-10

Client utility B-3

Client visualization tools 1-11

Code, sample, conventions for xii

Codes for errors 1-22

Coding standards, documentation of A-4

Collection data types
defined 1-14

elements of 1-14

example of B-5

illustration of 1-15

LIST type constructor for 1-15

MULTISET type constructor for 1-15

return values, using as 1-16

SET type constructor for 1-15

where documented A-5

Combining DataBlade modules 1-3

Command-line conventions
how to read x

sample diagram x

Compiling source code
tools for 2-6

where documented A-4

Compliance
with industry standards xix

Constructors.
See Type constructors.

Contact information xx

Conventions
command-line x

documentation vii

© Copyright IBM Corp. 1996, 2004 X-1

Conventions (continued)
sample-code xii

syntax diagrams ix

syntax notation ix

typographical vii

Converting data types 1-21

Creating DataBlade modules 2-5

D
Data types

built-in 1-13

categories of 1-12

collection 1-14

converting 1-21

defined 1-12

distinct 1-14

documentation of A-5

opaque 1-17

qualified built-in 1-14

row 1-16

Database schema, example of B-8

DataBlade API 1-8

DataBlade Developers Kit
example DataBlade modules 2-8

InfoShelf 2-7

overview 1-5

tools in 2-1

tutorial 2-8

DataBlade modules
advantages 1-4

aggregates in 1-12

C code for 1-8

C++ code for 1-8

casts in 1-21

client files with 1-23

client objects in 1-11

combining 1-3

compiling source code for 2-6

components 1-11

components of 1-23

creation task list for 2-5

data types in 1-12, 1-17

debugging 2-6

defined 1-2

dependencies between A-5

development resources for 2-7, 2-9

documenting 2-7

editing source code for 2-6

errors in 1-22

examples of A-5

extending IBM Informix Dynamic Server with 1-2

foundation, using as 1-4

functional tests for 1-22

IBM Informix B-1, B-10

imported files in 1-23

DataBlade modules (continued)
installation files for 2-2

installing 2-6, A-5

interfaces in 1-4, 1-22

Java code for 1-8

location of examples of 2-8

memory allocation for 1-10

programming languages for 1-7

registering in a database 2-3

routines in 1-19

server architecture, role within 1-5

simplifying applications with 1-3

source code for 2-2

SQL scripts for 2-2

storage for A-6

Stored Procedure Language, in 1-9

test files 2-2

testing 2-6, A-7

transaction control for 1-4

tutorial for 2-8

unit tests for 1-22

virtual processors, using with 1-9

DBDK Visual C++ Add-In
debugging a DataBlade module with 2-6

defined 2-4

documentation of A-5

registering DataBlade modules with 2-6

Debug DataBlade Module command 2-4

Debugging DataBlade modules
on UNIX 2-6

on Windows 2-4, 2-6

Development resources for creating DataBlade

modules 2-7, 2-9

Disabilities, visual
reading syntax diagrams C-1

Distinct data types 1-14

Documentation
IBM Informix Developer Zone 2-9

InfoShelf 2-7

list of A-1, B-1

Tutorial 2-8

Documentation conventions vii

Documentation Notes xiv

Documentation set of all manuals xvi

Documentation, types of xiii

machine notes xiv

online manuals xvi

printed manuals xvi

Documenting a DataBlade module 2-7

Dotted decimal format of syntax diagrams C-1

E
Editing source code 2-6

Elements, of collections 1-14

Environment variables vii

X-2 DataBlade Module Development Overview

Error messages xv

Errors
defined 1-22

where documented A-5

Example DataBlade modules 2-8

Excalibur Text Search DataBlade module B-4

Explicit casts 1-21

F
Fields

row data types 1-16

Files generated by BladeSmith 2-2

Files imported into DataBlade modules 1-23

Fixed and Known Defects File xiv

Foundation DataBlade modules
defined 1-4

example of B-3

Functional indexes 1-3

Functional tests for DataBlade modules 1-22

Functions.
See Routines.

G
Generated files from BladeSmith 2-2

Geodetic DataBlade module B-1

H
Help xvi

I
IBM Informix Developer Zone 2-9

IBM Informix Dynamic Server
advantages of extending 1-2

architecture of 1-7, A-6

components 1-5

extended by DataBlade modules 1-2

improving performance 1-3

memory allocation for DataBlade modules in 1-10

transaction control for DataBlade modules in 1-4

using Client SDK with 1-10

virtual processors in 1-9

IBM Informix Geodetic DataBlade module B-1

IBM Informix TimeSeries DataBlade module B-5

IBM Informix Video Foundation DataBlade

module B-7

IBM Informix Web DataBlade module B-9

IfxQuery 2-4

Illustrations
collection data type 1-15

IBM Informix Dynamic Server architecture 1-7

IBM Informix TimeSeries DataBlade module

architecture B-6

opaque data type 1-18

row data type 1-16

Implicit cast 1-21

Imported files
defined 1-23

where documented A-5

Indexes, functional 1-3

Industry standards, compliance with xix

Informix Dynamic Server documentation set xvi

InfoShelf 2-7

Inheritance
in row data types 1-17

where documented A-5

Installation files for DataBlade modules 2-2

Installation Guides xiii

Installation packaging options 2-3

Installing a DataBlade module
tools for 2-6

where documented A-5

Interfaces
defined 1-4

importing 1-22

where documented A-5

Internationalization A-5

J
Java code in DataBlade modules 1-8

Java value objects
about 1-8, 1-11

where documented A-5

JDBC API 1-8

K
Keywords

in syntax diagrams xi

L
Large Object Locator DataBlade module B-3

Large objects.
See Smart large objects.

LIST type constructor 1-15

Locales for errors 1-22

M
Machine notes xiv

Memory allocation
for DataBlade modules 1-10

where documented A-5

MULTISET type constructor 1-15

O
Online help xvi

Online manuals xvi

Online notes xiii, xiv

Opaque data types
ActiveX value objects, implemented as 1-8

defined 1-17

example of B-2, B-3, B-8

illustrated 1-18

Index X-3

Opaque data types (continued)
Java value objects, implementing as 1-8

rich media data, using for 1-18

smart large objects in 1-18

support functions for 1-19

where documented A-5

Operator class support functions A-5

Operator functions 1-20

Overloading routines
defined 1-20

where documented A-6

P
Packaging DataBlade modules

options for 2-3

using BladePack for 2-7

where documented A-5

Performance
improving with DataBlade modules 1-3

where documented A-6

Polymorphism 1-20

Printed manuals xvi

Procedures.
See Routines.

Programming languages for DataBlade modules 1-7

Q
Qualified built-in data types 1-14

R
R-tree access method B-3

Registering DataBlade modules
defined 2-3

where documented A-6

with BladeManager 2-6

with the DBDK Visual C++ Add-In 2-6

Release Notes xiv

Routines
adding code to 2-2

built-in 1-20

categories of 1-20

defined 1-20

opaque type support 1-19

operator 1-20

overloading 1-20

returning collections with 1-16

user-defined 1-21

where documented A-6

Row data types
defined 1-16

example of B-3, B-5

fields in 1-16

illustration of 1-16

inheritance for 1-17

smart large objects in 1-17

S
Sample-code conventions xii

Screen reader
reading syntax diagrams C-1

Secondary access methods
defined 1-3

example of B-4

where documented A-6

SET type constructor 1-15

Shared memory
defined 1-10

where documented A-6

Smart large objects
accessing B-3

in opaque data types 1-18

in row data types 1-17

where documented A-6

Source code
compiling 2-6

editing 2-6

files for DataBlade modules 2-2

SPL.
See Stored Procedure Language.

SQL
documentation of A-6

files included in DataBlade modules 1-23

scripts for DataBlade modules 2-2

SQL code xii

Storage for DataBlade modules A-6

Stored Procedure Language
using in DataBlade modules 1-9

where documented A-6

Straight casts 1-21

Support functions
for casts 1-21

for opaque data types 1-19

Syntax diagrams
conventions for ix

keywords in xi

reading in a screen reader C-1

variables in xii

Syntax segment xi

System, media management B-7

T
Test files for DataBlade modules 2-2

Testing a DataBlade module
tools for 2-6

where documented A-7

Text Search DataBlade module B-4

TimeSeries DataBlade module B-5

TOC Notes xiv

Tutorial 2-8

Type constructors
LIST 1-15

X-4 DataBlade Module Development Overview

Type constructors (continued)
MULTISET 1-15

SET 1-15

TimeSeries B-5

Typographical conventions vii

U
Unit tests

defined 1-22

executing with IfxQuery 2-4

using during debugging 2-6

where documented A-7

Unregistering a DataBlade module 2-4

Upgrading a DataBlade module 2-4

User-defined routines 1-21

User-defined virtual processors 1-10

V
Variables, in syntax diagrams xii

Video foundation DataBlade module B-7

Virtual processors
defined 1-9

where documented A-7

Visual disabilities
reading syntax diagrams C-1

W
Web DataBlade module B-9

Index X-5

X-6 DataBlade Module Development Overview

����

Printed in USA

G251-2275-00

	Informix Documentation Website
	IDS 10.0 Documentation Website
	Master Index Enterprise Edition
	Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	Example Code Conventions

	Additional Documentation
	Installation Guides
	Online Notes
	Locating Online Notes
	Online Notes Filenames

	Informix Error Messages
	Manuals
	Online Manuals
	Printed Manuals

	Online Help

	Accessibility
	IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Chapter 1. DataBlade Module Concepts
	What Are DataBlade Modules?
	Why Extend Your Informix Database Server?
	Better Performance
	Simpler Applications
	Transaction Control
	Scalability

	Why Create a DataBlade Module?
	Control
	Code Reuse

	Why Use the DataBlade Developers Kit?

	DataBlade Modules and the Database Server
	DataBlade Module Programming Languages
	C Language
	C++ Language
	Java Language
	Informix Stored Procedure Language

	Internal Architecture of the Database Server
	DataBlade Modules and Virtual Processors
	DataBlade Module Memory Allocation
	Java Virtual Machine

	The Client Software Developer’s Kit
	Client Objects and Programs

	DataBlade Module Components
	Aggregates
	Data Types
	Built-in Data Types
	Qualified Built-in Data Types
	Distinct Data Types
	Collection Data Types
	Row Data Types
	Opaque Data Types

	Routines
	Built-in Functions and Operator Functions
	User-Defined Routines

	Casts
	Interfaces
	Errors
	Unit Tests
	Functional Tests
	Imported SQL Files
	Imported Client Files

	Chapter 2. Building a DataBlade Module
	DataBlade Developers Kit Tools
	BladeSmith
	BladePack
	BladeManager
	DBDK Visual C++ Add-In and IfxQuery

	How to Create a DataBlade Module
	DataBlade Module Development Resources
	The DataBlade Developers Kit InfoShelf
	The Tutorial
	Example DataBlade Modules
	The IBM Informix Developer Zone

	Appendix A. DataBlade Module Documentation
	Appendix B. IBM Informix DataBlade Modules
	Appendix C. Accessibility
	Glossary
	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

