)]: ¥4 IBM Informix

Version 2.90

IBM Informix ODBC Driver Programmer’s Manual

G251-2294-00

LI 15M Informix

Version 2.90

IBM Informix ODBC Driver Programmer’s Manual

G251-2294-00

Note!
FBefore using this information and the product it supports, read the information in[“Notices” on page B-1)

First Edition (November 2004)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction.
About This Manual
Types of Users
Software Dependencies
Assumptions About Your Locale
Demonstration Databases
New Features .
Documentation Conventlons
Typographical Conventions.
Feature, Product, and Platform
Syntax Diagrams . .
Example Code Conventlons .
Additional Documentation .
Installation Guides .
Online Notes . .
Informix Error Messages
Manuals .
Online Help
Accessibility
IBM Informix Dynamic Server Ver510n 10 O and CSDK Versmn 2. 90 Documentatlon Set
Compliance with Industry Standards .
IBM Welcomes Your Comments .

Chapter 1. Overview of IBM Informix ODBC Driver.
What is IBM Informix ODBC Driver? .
IBM Informix ODBC Driver Features
Additional Values for Some ODBC Function Arguments
ODBC Component Overview . .
IBM Informix ODBC Driver with a Drlver Manager
IBM Informix ODBC Driver Without a Driver Manager (UNIX)
IBM Informix ODBC Driver with the DMR .
Using IBM Informix ODBC Driver .
Environment Variables .
Header Files .
Data Types
Libraries
Using the IBM Informlx ODBC Drlver API
Environment, Connection, and Statement Handles
Buffers . .
SQLGetInfo Argument Implementatlon .
Global Language Support.
Client Locale . .
Database Locale .
Translation Library .
Translation Option .

© Copyright IBM Corp. 1996, 2004

. ix

X

.xi
. Xi
. Xii
. Xii

. xdii
. Xiv
. Xvii
. XViii
. Xviil
. Xviii

. XX

. xxi
. xxi
. xxi
. xxi
. XX1V
. XXV

. 141
.12

.14
. 15
.15
. 1-6
.17
. 1-8
. .18
. 1-10
. 1-10
. 1-11
. 1-12
. 1-14
. 1-15
. 117
. 1-19
. 1-19
. 120
. 1-20
. 1-20

iii

VMB Character . .
X/Open Standard Interface .
External Authentication

Pluggable Authentication Module (PAM) on UNIX and Llnux

LDAP Authentication on Windows

Using the SQLSetConnectAttr() function w1th Authentlcatlon
Partially Supported and Unsupported ODBC Features .

Transaction Processing.

ODBC Cursors

ODBC Bookmarks .

SQLBulkOperations.

SQLDescribeParam . .

Unsupported Microsoft ODBC Drlver Features

Chapter 2. Configuring Data Sources
Configuring a DSN on UNIX .

The sqlhosts File .

The odbcinst.ini File .

The odbc.ini File .

ODBC Section

Setting the $ODBCINI Env1ronment Varlable

The .netrc File . o
Configuring a DSN in Wmdows
Making a Connection Without DSN

Chapter 3. Data Types.

Data Types .

SQL Data Types . .

Standard SQL Data Types .

Additional SQL Data Types for GLS .
Additional SQL Data Types for Dynamic Server
Precision, Scale, Length, and Display Size.

C Data Types . e
C Interval Structure.

Transferring Data .

Reporting Standard ODBC Types .
SQL_INFX_ATTR_ODBC_TYPES_ ONLY
SQL_INFX_ATTR_LO_AUTOMATIC . .
SQL_INFX_ATTR_DEFAULT UDT_FETCH_ TYPE
Reporting Wide Character Columns
DSN Settings for Report Standard ODBC Data Types

Converting Data . o .

Chapter 4. Working with Smart Large Objects
Working with Data Structures for Smart Large Objects
Handling the Storage of Smart Large Ob]ects
Disk-Storage Information . .
Create-Time Flags.
Inheritance Hierarchy
Creating a Smart Large Object

iV IBM Informix ODBC Driver Programmer’s Manual

. 1-20
. 1-21
. 1-22
. 1-22
. 122
. 1-22
. 1-25
. 1-25
. 1-26
. 1-26
. 1-27
. 1-27
. 1-27

. 241

. 2-1

. 2-1

. .23
. 2-10

. 2-10

. 2-11

. 2-11

. 2-19

. 3-1
.31
.32
.32
. 3-5

. .36
. 3-11
. 3-13
. 3-14
. 3-15
. 3-15
. 3-16
. 3-16
. 3-17
. 3-17
. 3-18

. 41
.42
. 43
. 4-3
.44

. 4-8

Transferring Smart-Large-Object Data.
Accessing a Smart Large Object.
Smart-Large-Object Automation
Using ifx_lo Functions.
Retrieving the Status of a Smart Large Ob]ect .
Example of Retrieving Information About a Smart Large Ob]ect
Reading or Writing a Smart Large Object to or from a File.

Chapter 5. Working with Rows and Collections .
Transferring Row and Collection Data .
Fixed-Type Buffers and Unfixed-Type Buffers
Buffers and Memory Allocation . .
SQL Data
Local Fetch .

Example of Retr1ev1ng Row and Collectlon Data from the Database .

Creating a Row or Collection

Example of Creating a Row and a Llst on the Chent
Modifying a Row or Collection .
Retrieving Information About a Row or Collect1on

Chapter 6. Client Functions.
Calling a Client Function .
SQL Syntax .
Function Syntax .
Input and Output Parameters
SQL_BIGINT
Return Codes . .
Functions for Smart Large ObJects .
ifx_lo_alter()
ifx_lo_close()
ifx_lo_col_info()
ifx_lo_create() . .
ifx_lo_def_create_spec()
ifx_lo_open() .
ifx_lo_read() .
ifx_lo_readwithseek() .
ifx_lo_seek() .
ifx_lo_specget_ estbytes()
ifx_lo_specget_extsz() .
ifx_lo_specget_flags() .
ifx_lo_specget_maxbytes()
ifx_lo_specget_sbspace() .
ifx_lo_specset_estbytes() .
ifx_lo_specset_extsz() .
ifx_lo_specset_flags()
ifx_lo_specset_maxbytes().
ifx_lo_specset_sbspace()
ifx_lo_stat()
ifx_lo_stat_atime() .
ifx_lo_stat_cspec()

. 4-15
. 4-16
. 417
. 4-18
. 4-31
. 431
. 4-39

. 5-1
. 5-1
.52
. 52
. 52
. 53

. .54
. 5-11
. 5-11
. 5-17
. 5-18

. 6-1
. 62
. 6-2
. 6-2
. 63
. 63
. 6-3
. 6-4
. 65
. 6-6
. 6-7

. .68
. 6-10
. 6-11
. 6-13
. 6-14
. 6-16
. 6-17
. 6-18
. 6-19
. 6-20
. 6-21
. 6-22
. 6-23
. 6-25
. 6-26
. 6-27
. 6-28
. 629
. 6-30

Contents

A\

ifx_lo_stat_ctime()
ifx_lo_stat_refent() .
ifx_lo_stat_size() .
ifx_lo_tell()
ifx_lo_truncate() .
ifx_lo_write() .
ifx_lo_writewithseek() .
Functions for Rows and Collections
ifx_rc_count().
ifx_rc_create().
ifx_rc_delete().
ifx_rc_describe() .
ifx_rc_fetch() .
ifx_rc_free()
ifx_rc_insert() .
ifx_rc_isnull() .
ifx_rc_setnull()
ifx_rc_typespec().
ifx_rc_update()

Chapter 7. Improving Application Performance .
Case-Sensitive Catalog Functions
Connection Level Optimizations .
Optimizing Query Execution .
Inserting Multiple Rows
Automatically Freeing a Cursor .
Enabling the AUTOFREE Feature
Using the AUTOFREE Feature
Delaying Execution of the SQLPREPARE Statement

Setting the Fetch Array Size for Simple-Large-Object Data .

Using the SPL Output Parameter Feature .
Using Asynchronous Execution . . .
Updating Data with Positioned Updates and Deletes .
Message Transfer Optimization . e
Message Chaining Restrictions .
Disabling Message Chaining .
Handling Errors with Optimized Message Transfers

Chapter 8. Error Messages .
Diagnostic SQLSTATE Values .
Mapping SQLSTATE Values to Informlx Error Messages
Mapping Informix Error Messages to SQLSTATE Values
SQLAIllocConnect (Core Level Only) .
SQLAllocEnv (Core Level Only)
SQLAIllocStmt (Core Level Only)
SQLBindCol (Core Level Only) . .
SQLBindParameter (Level One Only) .
SQLBrowseConnect (Level Two Only)
SQLCancel (Core Level Only) .
SQLColAttributes (Core Level Only) .

vi IBM Informix ODBC Driver Programmer’s Manual

. 6-31
. 6-32
. 6-33
. 6-34
. 6-35
. 6-36
. 6-37
. 6-39
. 6-40
. 6-41
. 6-43
. 6-44
. 6-46
. 6-47
. 6-48
. 6-50
. 6-51
. 6-52
. 6-53

.71
. 7-1
. 7-3
.73
. 7-3

.74
.74

. 7-6
.77

. .78
. 7-10
. 7-10
. 7-11
. 7-12

. 8-1

. .83
. 8-15
. 8-15
. 8-16
. 8-16
. 8-17
. 8-17
. 8-18
. 819
. 820

SQLColumnPrivileges (Level TwoOnly).820

SQLColumns (Level One Only). .82
SQLConnect (Core Level Only) .82
SQLDataSources (Level Two Only). .823
SQLDescribeCol (Core Level Only) .823
SQLDisconnect . . P 22
SQLDriverConnect (Level One Only) N « A
SQLDrivers (Level TwoOnly) .8%26
SQLError (Core Level Only) .826
SQLExecDirect (Core Level Only) .827
SQLExecute (Core Level Only) .828
SQLExtendedFetch (Level Two Only). .82
SQLFetch (Core Level Only). .83
SQLForeignKeys (Level TwoOnly) .83
SQLFreeConnect (Core Level Only) .833
SQLFreeEnv (Core Level Only) .833
SQLFreeStmt (Core Level Only). .83
SQLGetConnectOption (Level OneOnly)834
SQLGetCursorName (Core Level Only) .83
SQLGetData (Level OneOnly) .83
SQLGetFunctions (Level One Only) .836
SQLGetInfo (Level One Only) .836
SQLGetStmtOption (Level One Only). .837
SQLGetTypelnfo (Level One Only). .837
SQLMoreResults (Level TwoOnly) .838
SQLNativeSql (Level Two Only) .839
SQLNumParams (Level TwoOnly) .839
SQLNumResultCols (Core Level Only) .840
SQLParamData (Level OneOnly) .840
SQLParamOptions (Core and Level Two Only) e 1!
SQLPrepare . . . Ce 842
SQLPrimaryKeys (Level Two Only) e - <
SQLProcedureColumns (Level TwoOnly)843
SQLProcedures (Level TwoOnly) .844
SQLPutData (Level OneOnly) .845
SQLRowCount (Core Level Only) .846
SQLSetConnectOption (Level One Only).846
SQLSetCursorName (Core Level Only) .847
SQLSetStmtOption (Level One Only) .847
SQLSpecialColumns (Level One Only) .848
SQLStatistics (Level One Only) .849
SQLTablePrivileges (Level TwoOnly). .850
SQLTables (Level One Only). .850
SQLTransact (Core Level Only) .85l
Chapter 9. Unicode.0 .00 e e e e a9
Overview of Unicode 00009
Unicode versions . . . T |
Unicode in an ODBC Apphcatlon e e s 92
Using Unicode in an ODBC Application .93

Contents Vil

Configuration
Unicode Functions Supported.

Appendix. Accessibility .
Notices.

Index

viii IBM Informix ODBC Driver Programmer’s Manual

Introduction

About This Manual

Types of Users

Software Dependencies .

Assumptions About Your Locale

Demonstration Databases

New Features .
Documentation Conventlons

Typographical Conventions.

Feature, Product, and Platform

Syntax Diagrams .

How to Read a Command Lme Syntax Dlagram
Keywords and Punctuation
Identifiers and Names .
Example Code Conventions .
Additional Documentation .

Installation Guides .

Online Notes . .
Locating Online Notes .
Online Notes Filenames .

Informix Error Messages.

Manuals . .

Online Manuals
Printed Manuals .
Online Help
Accessibility

IBM Informix Dynamic Server Versmn 1() () and CSDK Versmn 2. 90 Documentatlon Set

Compliance with Industry Standards .
IBM Welcomes Your Comments .

. ix

X

.xi
. xi
. Xii
. Xii

. xiii
. Xiv

. XV

. Xvii
. xvil
. Xvii
. XViii
. XViii
. Xviil
. XiX

. XX
. XX

. xxi
. xxi
. Xxi
. xxi
. xxi
. xxi
. XXiv
. XXV

In This Introduction

This introduction provides an overview of the information in this manual and

describes the conventions it uses.

About This Manual

This manual is a user guide and reference manual for IBM Informix ODBC
Driver, which is the Informix implementation of the Microsoft Open Database
Connectivity (ODBC) interface, Version 3.0. This manual explains how to use
the IBM Informix ODBC Driver application programming interface (API) to

access an Informix database and interact with an Informix database server.

© Copyright IBM Corp. 1996, 2004

ix

X

Types of Users

This manual is written for C programmers who use IBM Informix ODBC
Driver to access Informix databases.

This manual assumes that you have the following background:

* A working knowledge of your computer, your operating system, and the
utilities that your operating system provides

* Some experience working with relational or object-relational databases, or
exposure to relational database concepts

* C programming language

If you have limited experience with relational databases, SQL, or your
operating system, refer to the IBM Informix: Getting Started Guide for your
database server for a list of supplementary titles.

Software Dependencies

This manual assumes that you are using IBM Informix ODBC Driver, Version
2.90, on either UNIX, Windows NT, Windows 95, or Windows 98.

In places where this manual presents database server-specific information, this
information applies to one of the following database servers:

* IBM Informix Dynamic Server, Version 7.31
¢ IBM Informix Extended Parallel Server, Version 8.4 or 8.5
* IBM Informix Dynamic Server, Version 9.4 or later

If you are using a database server that is not listed here, see your release
notes for information about client behavior on your database server.

Assumptions About Your Locale

IBM Informix products can support many languages, cultures, and code sets.
All the information related to character set, collation and representation of
numeric data, currency, date, and time is brought together in a single
environment, called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, ¢, and .

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

IBM Informix ODBC Driver Programmer’s Manual

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix: GLS User’s
Guide.

Demonstration Databases

The demonstration files that you receive with IBM Informix ODBC Driver
contain demonstration source programs and files that create, populate, and
drop the odbc_demodb database. You can find the demonstration files in the
following locations.

| UNIX Only |

On UNIX (Solaris), the ODBC demonstration files are located at:
$INFORMIXDIR/demo/c11idemo

| End of UNIX Only |

| Windows Only |

In Windows, the ODBC demonstration files are located at:
%INFORMIXDIR%\demo\odbcdemo

| End of Windows Only

The readme.txt file in each of these locations describes each of the
demonstration files and its purpose. Some of the demonstration program
source code is also provided as example text in the manual.

New Features

IBM Informix ODBC Driver, Version 2.90, is a new product that replaces
IBM Informix CLI, Version 3.82. IBM Informix ODBC Driver has been
renamed to match Client SDK. IBM Informix ODBC Driver implements the
Microsoft Open Database Connectivity (ODBC) Version 3.0 standard.

New features in IBM Informix ODBC Driver include:

¢ Fetch array size

* Large object automation

* Deferred-prepare

* Insert cursor

* Auto freeing of cursors

¢ Using Stored Procedure Language (SPL) output parameters

Introduction X1

* Manual Data-Source Name (DSN) Migration

» DSN Migration with the DSN Migrate graphical user interface (GUI)
* Default user-defined type (UDT) fetch type

* Advanced tab options

* Support for third-party applications

* Case-sensitive catalog functions

* Message transfer optimization (OPTMSG)

| UNIX Only

IBM Informix Client Software Developer's Kit, Version 2.8, supports silent
installation on UNIX. The installation script includes additional options that
allow you to override version checking, so that the installation can proceed
without further user interaction.

| End of UNIX Only

Documentation Conventions

This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.

The following conventions are discussed:
* Typographical conventions

* Other conventions

* Syntax diagrams

* Command-line conventions

* Example code conventions

Typographical Conventions

This manual uses the following conventions to introduce new terms, illustrate
screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.

italics Within syntax and code examples, variable values that you are to

italics specify appear in italics.

xii IBM Informix ODBC Driver Programmer’s Manual

Convention Meaning

boldface Names of program entities (such as classes, events, and tables),

boldface environment variables, file and pathnames, and interface elements
(such as icons, menu items, and buttons) appear in boldface.

monospace Information that the product displays and information that you

monospace enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans serif
font.

> This symbol indicates a menu item. For example, “Choose Tools >

Options” means choose the Options item from the Tools menu.

Tip: When you are instructed to “enter” characters or to “execute” a
command, immediately press RETURN after the entry. When you are
instructed to “type” the text or to “press” other keys, no RETURN is
required.

Feature, Product, and Platform

Feature, product, and platform markup identifies paragraphs that contain
feature-specific, product-specific, or platform-specific information. Some
examples of this markup follow:

| Dynamic Server |

Identifies information that is specific to IBM Informix Dynamic Server

| End of Dynamic Server |

| Extended Parallel Server |

Identifies information that is specific to IBM Informix Extended Parallel Server

| End of Extended Parallel Server |

| UNIX Only |

Identifies information that is specific to UNIX platforms

| End of UNIX Only |

| Windows Only |

Identifies information that is specific to the Windows environment

| End of Windows Only |

Introduction X1ii

This markup can apply to one or more paragraphs within a section. When an
entire section applies to a particular product or platform, this is noted as part
of the heading text, for example:

Table Sorting (Linux Only)

Syntax Diagrams

This guide uses syntax diagrams built with the following components to
describe the syntax for statements and all commands other than system-level
commands.

Note: Starting in 2004, syntax diagrams have been reformatted to conform to
the IBM standard.

Syntax diagrams depicting SQL and command-line statements have changed
in the following ways:

* The symbols at the beginning and end of statements are now double arrows
instead of a vertical line at the end.

* The symbols at the beginning and end of syntax segment diagrams are now
vertical lines instead of arrows.

* How many times a loop can be repeated is now explained in a diagram
footnote instead of a number in a gate symbol.

* Syntax statements that are longer than one line now continue on the next
line instead of looping down with a continuous line.

* Product or condition-specific paths are now explained in diagram footnotes
instead of icons.

The following table describes syntax diagram components.

Component represented in PDF Component represented in HTML | Meaning
> - Statement begins.
LA e e L > Statement continues on
next line.
> LR EE PR EEE Statement continues from

previous line.

_______________________ >< Statement ends.

Y
A

—FSELECT—— = |-=7=---- SELECT---------- Required item.

ittt +o-- Optional item.
I— LOCAL 4 e LOCAL------ '

Xiv IBM Informix ODBC Driver Programmer’s Manual

Component represented in PDF

Component represented in HTML

Meaning

— FOR READ ONLY—

ALL S, ALL-=mmmmm S Required item with choice.
+--DISTINCT----- + One and only one item
—— DISTINCT—— '---UNIQUE------ ' must be present.
—— UNIQUE ——
o S Optional items with choice
L FOR UPDATE — +--FOR UPDATE----- + are shown below the main
'--FOR READ ONLY--' line, one of which you

might specify.

NEXT --=-NEXT-=--=---- The values below the
e e i +--- main line are optional, one
+---PRIOR-------- + of which you might
PRIOR '---PREVIOUS----- ' specify. If you do not
— PREVIOUS—— specify an item, the value
above the line will be used
as the default.
i fmm————— ymmm—————— Optional items. Several
l | v items are allowed; a
e t--- comma must precede each
i: index_name +---index_name---+ repetition.
'---table name---'
table_name -

»—iTabIe Reference H

>>-| Table Reference |-><

Reference to a syntax
segment.

Table Reference

I view |
table

synonym ———

Table Reference

| -=t-mn-- View-------- +o-
LR table------ +
'----synonym------ !

Syntax segment.

How to Read a Command-Line Syntax Diagram
The following command-line syntax diagram uses some of the elements listed
in the table in the previous section.

Creating a No-Conversion Job

»»>—onpladm create job—job |_ _| n—-d—device—-D—database———
-p—project

Introduction XV

xvi

»—t—table— ><

(1)
L'S_SEFver—l L'T—tar‘get—l i Setting the Run Mode '—

Notes:

1 See page 17-4

The second line in this diagram has a segment named “Setting the Run
Mode,” which according to the diagram footnote, is on page 17-4. This

segment is shown in the following segment diagram (the diagram uses
segment start and end components).

Setting the Run Mode:

F_LC_J_
—-f B
gk

p

To construct a command correctly, start at the top left with the command.
Follow the diagram to the right, including the elements that you want. The
elements in the diagram are case sensitive.

Lot Ly '

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:
°* -n
* -d and the name of the device
* -D and the name of the database
¢ -t and the name of the table

4. Optionally, you can choose one or more of the following elements and
repeat them an arbitrary number of times:

* -S and the server name
* -T and the target server name

* The run mode. To set the run mode, follow the Setting the Run Mode
segment diagram to type -f, optionally type d, p, or a, and then
optionally type 1 or u.

5. Follow the diagram to the terminator.

IBM Informix ODBC Driver Programmer’s Manual

Your diagram is complete.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except
system-level commands. When a keyword appears in a syntax diagram, it is
shown in uppercase letters. When you use a keyword in a command, you can
write it in uppercase or lowercase letters, but you must spell the keyword
exactly as it appears in the syntax diagram.

You must also use any punctuation in your statements and commands exactly
as shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax
diagrams and examples. You can replace a variable with an arbitrary name,
identifier, or literal, depending on the context. Variables are also used to
represent complex syntax elements that are expanded in additional syntax
diagrams. When a variable appears in a syntax diagram, an example, or text,
it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

»>—SELECT—column_name—FROM—table_name >

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the
code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules

for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must

Introduction XVii

use EXEC SQL at the start of each statement and a semicolon (or other
appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be
added in a full application, but it is not necessary to show it to describe
the concept being discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation

xviii

For additional information, refer to the following types of documentation:
* Installation guides

* Online notes

* Informix error messages

* Manuals

* Online help

Installation Guides

Installation guides are located in the /doc directory of the product CD or in
the /doc directory of the product’s compressed file if you downloaded it from
the IBM Web site. Alternatively, you can obtain installation guides from the
IBM Informix Online Documentation site at

Ihttp: / /www.ibm.com/software/data/informix/pubs/library/ l

Online Notes

The following sections describe the online files that supplement the
information in this manual. Please examine these files before you begin using
your IBM Informix product. They contain vital information about application
and performance issues.

IBM Informix ODBC Driver Programmer’s Manual

http://www.ibm.com/software/data/informix/pubs/library/

Online File Description Format

TOC Notes The TOC (Table of Contents) notes file HTML
provides a comprehensive directory of
hyperlinks to the release notes, the fixed and
known defects file, and all the documentation
notes files for individual manual titles.

Documentation Notes = The documentation notes file for each manual HTML, text
contains important information and
corrections that supplement the information
in the manual or information that was
modified since publication.

Release Notes The release notes file describes feature HTML, text
differences from earlier versions of IBM
Informix products and how these differences
might affect current products. For some
products, this file also contains information
about any known problems and their
workarounds.

Machine Notes (Non-Windows platforms only) The machine text
notes file describes any platform-specific
actions that you must take to configure and
use IBM Informix products on your

computer.
Fixed and Known This text file lists issues that have been text
Defects File identified with the current version. It also lists

customer-reported defects that have been
fixed in both the current version and in
previous versions.

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site
at |http: / /www.ibm.com/software/data/informix/pubs/library/ l Additionally
you can locate these files before or after installation as described below.

Before Installation
All online notes are located in the /doc directory of the product CD. The
easiest way to access the documentation notes, the release notes, and the fixed

and known defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided
in text format.

After Installation

Introduction XX

http://www.ibm.com/software/data/informix/pubs/library/

On UNIX platforms in the default locale, the documentation notes, release
notes, and machine notes files appear under the
$INFORMIXDIR/release/en_us/0333 directory.

| Dynamic Server

On Windows the documentation and release notes files appear in the
Informix folder. To display this folder, choose Start > Programs > IBM
Informix Dynamic Server version > Documentation Notes or Release Notes
from the taskbar.

Machine notes do not apply to Windows platforms.

| End of Dynamic Server

Online Notes Filenames
Online notes have the following file formats:

Online File File Format Examples

TOC Notes prod_os_tocnotes_version.html ids_win_tocnotes_10.0.html

Documentation Notes prod_bookname_docnotes_version.html/txt ids_hpl_docnotes_10.0.html

Release Notes prod_os_relnotes_version.html/txt ids_unix_relnotes_10.0.txt

Machine Notes prod_machine_notes_version.txt ids_machine_notes_10.0.txt

Fixed and Known prod_defects_version.txt ids_defects_10.0.txt

Defects File client_defects_2.90.txt
ids_win_fixed_and_known ids_win_fixed_and_known
_defects_version.txt _defects_10.0.txt

Informix Error Messages

This file is a comprehensive index of error messages and their corrective
actions for the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and
their corrective actions.

| Dynamic Server

On Windows, use the Informix Error Messages utility to read error messages
and their corrective actions. To display this utility, choose Start > Programs >
IBM Informix Dynamic Server version > Informix Error Messages from the
taskbar.

| End of Dynamic Server

XX IBM Informix ODBC Driver Programmer’s Manual

You can also access these files from the IBM Informix Online Documentation
site at |http:/ /www.ibm.com/software /data/informix/pubs/library /|

Manuals

Online Manuals

A CD that contains your manuals in electronic format is provided with your
IBM Informix products. You can install the documentation or access it directly
from the CD. For information about how to install, read, and print online
manuals, see the installation insert that accompanies your CD. You can also
obtain the same online manuals from the IBM Informix Online Documentation
site at |http:/ /www.ibm.com /software /data/informix/pubs/library /|

Printed Manuals

To order hardcopy manuals, contact your sales representative or visit the IBM
Publications Center Web site at

lhttp:/ /www.ibm.com /software /howtobuy/data.htmi}

Online Help
IBM Informix online help, provided with each graphical user interface (GUI),
displays information about those interfaces and the functions that they
perform. Use the help facilities that each GUI provides to display the online
help.

Accessibility

IBM is committed to making our documentation accessible to persons with
disabilities. Our books are available in HTML format so that they can be
accessed with assistive technology such as screen reader software. The syntax
diagrams in our manuals are available in dotted decimal format, which is an
accessible format that is available only if you are using a screen reader. For
more information about the dotted decimal format, see the Accessibility
appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90
Documentation Set

The following tables list the manuals that are part of the IBM Informix
Dynamic Server, Version 10.0 and the CSDK Version 2.90, documentation set.
PDF and HTML versions of these manuals are available at

lhttp:/ /www.ibm.com /software/data/informix/pubs/library /| You can order
hardcopy versions of these manuals from the IBM Publications Center at
lhttp:/ /www.ibm.com /software/howtobuy /data.html|

Introduction ~ XXi

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html

Table 1. Database Server Manuals

Manual

Subject

Administrator’s Guide

Understanding, configuring, and administering your database server.

Administrator’s Reference

Reference material for Informix Dynamic Server, such as the syntax of
database server utilities onmode and onstat, and descriptions of
configuration parameters, the sysmasters tables, and logical-log records.

Backup and Restore Guide

The concepts and methods you need to understand when you use the
ON-Bar and ontape utilities to back up and restore data.

DB-Access User’s Guide

Using the DB-Access utility to access, modify, and retrieve data from
Informix databases.

DataBlade API
Function Reference

The DataBlade API functions and the subset of ESQL/C functions that
the DataBlade API supports. You can use the DataBlade API to develop
client LIBMI applications and C user-defined routines that access data in
Informix databases.

DataBlade API
Programmer’s Guide

The DataBlade API, which is the C-language application-programming
interface provided with Dynamic Server. You use the DataBlade API to
develop client and server applications that access data stored in Informix
databases.

Database Design and
Implementation Guide

Designing, implementing, and managing your Informix databases.

Enterprise Replication
Guide

How to design, implement, and manage an Enterprise Replication system
to replicate data between multiple database servers.

Error Messages file

Causes and solutions for numbered error messages you might receive
when you work with IBM Informix products.

Getting Started Guide

Describes the products bundled with IBM Informix Dynamic Server and
interoperability with other IBM products. Summarizes important features
of Dynamic Server and the new features for each version.

Guide to SQL: Reference

Information about Informix databases, data types, system catalog tables,
environment variables, and the stores_demo demonstration database.

Guide to SQL: Syntax

Detailed descriptions of the syntax for all Informix SQL and SPL
statements.

Guide to SQL: Tutorial

A tutorial on SQL, as implemented by Informix products, that describes
the basic ideas and terms that are used when you work with a relational
database.

High-Performance Loader
User’s Guide

Accessing and using the High-Performance Loader (HPL), to load and
unload large quantities of data to and from Informix databases.

Installation Guide for
Microsoft Windows

Instructions for installing IBM Informix Dynamic Server on Windows.

Installation Guide for
UNIX and Linux

Instructions for installing IBM Informix Dynamic Server on UNIX and
Linux.

xxii

IBM Informix ODBC Driver Programmer’s Manual

Table 1. Database Server Manuals (continued)

Manual

Subject

J/Foundation Developer’s
Guide

Writing user-defined routines (UDRs) in the Java programming language
for Informix Dynamic Server with J/Foundation.

Large Object Locator
DataBlade Module User’s
Guide

Using the Large Object Locator, a foundation DataBlade module that can
be used by other modules that create or store large-object data. The Large
Object Locator enables you to create a single consistent interface to large
objects and extends the concept of large objects to include data stored
outside the database.

Migration Guide

Conversion to and reversion from the latest versions of Informix
database servers. Migration between different Informix database servers.

Optical Subsystem Guide

The Optical Subsystem, a utility that supports the storage of BYTE and
TEXT data on optical disk.

Performance Guide

Configuring and operating IBM Informix Dynamic Server to achieve
optimum performance.

R-Tree Index User’s Guide

Creating R-tree indexes on appropriate data types, creating new operator
classes that use the R-tree access method, and managing databases that
use the R-tree secondary access method.

SNMP Subagent Guide

The IBM Informix subagent that allows a Simple Network Management
Protocol (SNMP) network manager to monitor the status of Informix
servers.

Storage Manager
Administrator’s Guide

Informix Storage Manager (ISM), which manages storage devices and
media for your Informix database server.

Trusted Facility Guide

The secure-auditing capabilities of Dynamic Server, including the creation
and maintenance of audit logs.

User-Defined Routines and
Data Types Developer’s
Guide

How to define new data types and enable user-defined routines (UDRs)
to extend IBM Informix Dynamic Server.

Virtual-Index Interface
Programmer’s Guide

Creating a secondary access method (index) with the Virtual-Index
Interface (VII) to extend the built-in indexing schemes of IBM Informix
Dynamic Server. Typically used with a DataBlade module.

Virtual-Table Interface
Programmer’s Guide

Creating a primary access method with the Virtual-Table Interface (VTI)
so that users have a single SQL interface to Informix tables and to data
that does not conform to the storage scheme of Informix Dynamic Server.

Table 2. Client/Connectivity Manuals

Manual

Subject

Client Products Installation
Guide

Installing IBM Informix Client Software Developer’s Kit (Client SDK) and
IBM Informix Connect on computers that use UNIX, Linux, and
Windows.

Embedded SQLJ User’s
Guide

Using IBM Informix Embedded SQL]J to embed SQL statements in Java
programs.

Introduction XXiii

Table 2. Client/Connectivity Manuals (continued)

Manual

Subject

ESQL/C Programmer’s
Manual

The IBM Informix implementation of embedded SQL for C.

GLS User’s Guide

The Global Language Support (GLS) feature, which allows IBM Informix
APIs and database servers to handle different languages, cultural
conventions, and code sets.

JDBC Driver Programmer’s
Guide

Installing and using Informix JDBC Driver to connect to an Informix
database from within a Java application or applet.

NET Provider Reference
Guide

Using Informix .NET Provider to enable .NET client applications to
access and manipulate data in Informix databases.

ODBC Driver Programmer’s
Manual

Using the Informix ODBC Driver API to access an Informix database and
interact with the Informix database server.

OLE DB Provider
Programmer’s Guide

Installing and configuring Informix OLE DB Provider to enable client
applications, such as ActiveX Data Object (ADO) applications and Web
pages, to access data on an Informix server.

Object Interface for C++
Programmer’s Guide

The architecture of the C++ object interface and a complete class
reference.

Table 3. DataBlade Developer’s Kit Manuals

Manual

Subject

DataBlade Developer’s Kit
User’s Guide

Developing and packaging DataBlade modules using BladeSmith and
BladePack.

DataBlade Module
Development Overview

Basic orientation for developing DataBlade modules. Includes an
example illustrating the development of a DataBlade module.

DataBlade Module
Installation and Registration
Guide

Installing DataBlade modules and using BladeManager to manage
DataBlade modules in Informix databases.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International
Organization of Standardization (ISO) have jointly established a set of
industry standards for the Structured Query Language (SQL). IBM Informix
SQL-based products are fully compliant with SQL-92 Entry Level (published
as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many
features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications
Environment (CAE) standards.

xXxiv

IBM Informix ODBC Driver Programmer’s Manual

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find
useful in our manuals, which will help us improve future versions. Include
the following information:

¢ The name and version of the manual that you are using
* Section and page number

* Your suggestions about the manual

Send your comments to us at the following email address:

[docinf@us.ibm.com|

This email address is reserved for reporting errors and omissions in our
documentation. For immediate help with a technical problem, contact IBM
Technical Support.

We appreciate your suggestions.

Introduction XXV

mailto:docinf@us.ibm.com

XXVi IBM Informix ODBC Driver Programmer’s Manual

Chapter 1. Overview of IBM Informix ODBC Driver

What is IBM Informix ODBC Driver? .
IBM Informix ODBC Driver Features
Support for Extended Data Types (IDS)
Support for GLS Data Types .
Extended Error Detection . .
Additional Values for Some ODBC Functron Arguments .
ODBC Component Overview . .
IBM Informix ODBC Driver with a Drlver Manager
IBM Informix ODBC Driver Without a Driver Manager (UNIX)
IBM Informix ODBC Driver with the DMR . .
Using IBM Informix ODBC Driver .
Environment Variables . .
Setting Environment Variables on UNIX .
Setting Environment Variables in Windows .
Header Files .
Data Types
Libraries
Using the IBM Informlx ODBC Dr1ver API
Environment, Connection, and Statement Handles
Buffers . .
Input Buffers
Output Buffers .
SQLGetInfo Argument Implementatlon .
Global Language Support.
Client Locale . .
Database Locale .
Translation Library .
Translation Option .
VMB Character . .
X/Open Standard Interface .
External Authentication
Pluggable Authentication Module (PAM) on UNIX and Lrnux
LDAP Authentication on Windows
Using the SQLSetConnectAttr() function w1th Authentlcatlon
Connection Pooling and Authentication .
Connect Functions .
Using Third Party Apphcatlons or Intermedlate Code
Partially Supported and Unsupported ODBC Features .
Transaction Processing . .o Lo
Transaction Isolation Levels .
Transaction Modes .
ODBC Cursors
ODBC Bookmarks .
SQLBulkOperations.

© Copyright IBM Corp. 1996, 2004

.12
.14
.14
.14

. 15
. 1-5

.17
. 1-8
. 1-8
. .19
. 1-10
. 1-10
. 1-10
. 1-11
. 1-12
. 1-14
. 1-15
. 1-15
. 1-16
. 117
. 1-19
. 1-19
. 1-20
. 1-20
. 1-20
. 120
. 121
. 1-22
. 1-22
. 1-22
. 1-22
. 1-23
. 1-24
. 1-24
. 1-25
. 125
. 125
. 1-26
. 1-26
. 1-26
. 1-27

1-1

SQLDescribeParam 127
Unsupported Microsoft ODBC Driver Features127

In This Chapter

This chapter introduces IBM Informix ODBC Driver, Version 2.90, and
describes its advantages and architecture. The chapter also describes
conformance, isolation and lock levels, libraries, and environment variables.

What is IBM Informix ODBC Driver?

Open Database Connectivity (ODBC) is a specification for a database
Application Programming Interface (API). Microsoft ODBC, Version 3.0, is
based on the Call Level Interface specifications from X/Open and the
International Standards Organization/International Electromechanical
Commission (ISO/IEC). ODBC supports SQL statements with a library of C
functions. An application calls these functions to implement ODBC
functionality.

ODBC applications enable you to perform the following operations:
* Connect to and disconnect from data sources

* Retrieve information about data sources

* Retrieve information about IBM Informix ODBC Driver

* Set and retrieve IBM Informix ODBC Driver options

* Prepare and send SQL statements

* Retrieve SQL results and process the results dynamically

* Retrieve information about SQL results and process the information
dynamically

ODBC lets you allocate storage for results before or after the results are
available. This feature lets you determine the results and the action to take
without the limitations that predefined data structures impose.

ODBC does not require a preprocessor to compile an application program.

IBM Informix ODBC Driver Features

IBM Informix ODBC Driver implements the Microsoft Open Database
Connectivity (ODBC) Version 3.0 standard. The IBM Informix ODBC Driver
product also provides the following features and functionality:

* Data Source Name (DSN) migration

| UNIX Only

1-2 IBM Informix ODBC Driver Programmer’s Manual

Driver Manager Replacement Module, which supports compatibility
between ODBC 2.x applications and the ODBC driver, Version 2.90.

End of UNIX Only

Windows Only

Microsoft Transaction Server (MTS), which is an environment that lets you
develop, run, and manage scalable, component-based Internet and intranet
server applications. MTS performs the following tasks:

— Manages system resources, including processes, threads, and database
connections, so that your application can scale to many simultaneous
users

— Manages server component creation, execution, and deletion

— Automatically initiates and controls transactions to make your
application reliable

— Implements security so that unauthorized users cannot access your
application

— Provides tools for configuration, management, and deployment

Note: If you want to use distributed transactions managed by MTS with

the Informix ODBC Driver, you must have connection pooling
enabled.

End of Windows Only

Dynamic Server |

Extended data types, including rows and collections

End of Dynamic Server |

Long identifiers

Limited support of bookmarks
GLS data types

Extensive error detection
Unicode support

XA support

Internet Protocol Version 6 support for internet protocols of 128-bits. (For
more information, see IBM Informix: Administrator’s Guide.)

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-3

Support for Extended Data Types (IDS)
IBM Informix ODBC Driver supports the following extended data types:

* Collection (LIST, MULTISET, SET)

» DISTINCT

* OPAQUE (fixed, unnamed)

* Row (named, unnamed)

* Smart large object (BLOB, CLOB)

* Client functions to support some of the extended data types

Support for GLS Data Types
IBM Informix ODBC Driver supports the following GLS data types:

* NCHAR
* NVCHAR

For more information on data types, see ["SQL Data Types” on page 3-2]

Extended Error Detection
IBM Informix ODBC Driver detects the following types of errors:

* ISAM
* XA

Additional Values for Some ODBC Function Arguments

IBM Informix ODBC Driver supports additional values for some ODBC
function arguments including:

| Dynamic Server

* fDescType values for SQLColAttributes
- SQL_INEX_ATTR_FLAGS
- SQL_INFX_ATTR_EXTENDED_TYPE_ALIGNMENT
- SQL_INFX_ATTR_EXTENDED_TYPE_CODE
— SQL_INEFX_ATTR_EXTENDED_TYPE_NAME
- SQL_INFX_ATTR_EXTENDED_TYPE_OWNER
- SQL_INEFX_ATTR_SOURCE_TYPE_CODE
* fInfoType return value for SQLGetInfo
- SQL_INFX_LO_PTR_LENGTH
- SQL_INFX_LO_SPEC_LENGTH

| End of Dynamic Server

* SQL_INFX_LO_STAT LENGTH

1-4 1BM Informix ODBC Driver Programmer’s Manual

* fOption value for SQLGetConnectOption and SQLSetConnectOption:
SQL_INFX_OPT_LONGID

| Windows Only

* fOption value for SQLGetConnectOption and SQLSetConnectOption:
SQL_ATTR_ENLIST_IN_DTC

| End of Windows Only |

ODBC Component Overview

ODBC with the IBM Informix ODBC Driver can include the following
components:

* Driver manager

An application can link to a driver manager, which links to the driver
specified by the data source. The driver manager also checks parameters
and transitions. On most UNIX platforms, the ODBC Driver Manager can
be purchased from a third-party vendor. The Data Direct ODBC driver
manager is shipped with the CSDK bundle for Sun Solaris 32-bit and IBM
AIX 32-bit platforms.

On Microsoft Windows platforms, the ODBC Driver Manager is a part of
the OS.

e IBM Informix ODBC Driver

The driver provides an interface to Informix database server. Applications
can use the driver in the following configurations:

— to link to the ODBC driver manager
— to link to the Driver Manager Replacement & the driver
— to link to the driver directly

 Data sources
The drive provides access to the following data sources:
— database management systems (DBMS), including a database server
— databases
— operating systems and network software required for accessing the

database
IBM Informix ODBC Driver with a Driver Manager

shows the software architecture when a driver manager is included
in the system. In such a system, the driver and driver manager act like a
single unit that processes function calls.

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-5

Sewer

K IBM Informix data source \

DBMS (including

\ database server)

Client Database

ODBC

Operatingsystemand
network software

A licati Dr|ver IBM Inform|x
pp ication manager ODBCDrlver
IBM Informix data source
/ DBMS (including \
N\ database server)

/'
_

Operating system and
K network software /

N /

Figure 1-1. IBM Informix ODBC Driver with a Driver Manager

IBM Informix ODBC Driver Without a Driver Manager (UNIX)

shows an application using IBM Informix ODBC Driver without a
driver manager. In this case, the application must link to the IBM Informix
ODBC Driver library. For more information, see|“Libraries” on page 1-11|

1-6 1BM Informix ODBC Driver Programmer’s Manual

Server

K IBM Informix data source \
/

DBMS (including

\ database server)

Database

Client

Operatingsystemand
network software

Aoolicat P | 1BM Informix K /
pplication)< *| ODBCDriver
IBM Informix data source

4 N

DBMS (including
N\ database server)
Operating system and
\ network software /

. %

Figure 1-2. IBM Informix ODBC Driver Without a Driver Manager

IBM Informix ODBC Driver with the DMR

IBM Informix ODBC Driver includes a Driver Manager Replacement (DMR)
library. The DMR replaces the driver manager on platforms where no driver
manager is available. shows an ODBC configuration with the DMR.

ODBC 2.x/3.x
Application

IBM Informix ODBC Driver IBM Informix i
> Manager Replacement Module == ODBCDriver

Figure 1-3. Architecture of the Driver Manager Replacement Module

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-7

Applications that are linked directly to the ODBC 3.5 driver and the DMR do
not require the ODBC Driver Manager.

In addition to supporting ODBC 3.5 features, the DMR supports compatibility
between ODBC 2.x applications and Version 2.90 of the IBM Informix ODBC
Driver. To be compatible with ODBC 2.x applications, the application must
link to Version 2.90 of IBM Informix ODBC Driver through the DMR or
through the ODBC 3.5 driver manager.

You cannot use the IBM Informix DMR to connect to non-Informix data
sources. The DMR does not support connection pooling. The DMR does not
map between Unicode and ANSI APIs.

Using IBM Informix ODBC Driver

IBM Informix ODBC Driver includes the following components:
* Environment variables

* Header files

* Data types

* Libraries

Environment Variables

The following table describes environment variables that you must set for the

driver. For more information about environment variables, see the
IBM Informix: Guide to SQL Reference.

1-8 1BM Informix ODBC Driver Programmer’s Manual

Environment

Variable Description

INFORMIXDIR Full path of the directory where the IBM Informix Client
Software Developer's Kit is installed.

On Windows platforms, INFORMIXDIR is a registry setting
rather than an environment variable. It is set during
installation.

PATH Directories that are searched for executable programs. Your
PATH setting must include the path to your
$INFORMIXDIR/bin directory.

DBCENTURY Controls the setting of year values. DBCENTURY affects a

(optional) client program when a user issues a statement that contains a
date or datetime string that specifies only the last two digits of
the year. For example:
insert into datetable (datecol) values ("01/01/01");
The database server stores the date specified in this statement
as either 01-01-1901 or 01-01-2001, depending on the
DBCENTURY value on the client.

DBDATE or DBDATE and GL_DATE control the interpretation of dates.

GL_DATE (optional)

For example, you can specify whether the date format is
mm-dd-yyyy or yyyy-mm-dd.

Setting Environment Variables on UNIX

If you set these environment variables at the command line, you must reset
them whenever you log onto your system. If you set these environment
variables in a file, they are set automatically when you log onto your system.

IBM Informix ODBC Driver provides a sample setup file called setup.odbc in
$INFORMIXDIR/etc. You can use this file to set environment variables for the
driver. The following table describes the environment variables that are in

setup.odbc.

Environment Variable Description

INFORMIXDIR Full path of the directory where IBM Informix
Client Software Developer's Kit is installed

INFORMIXSQLHOSTS This value is optional. It specifies the directory
that contains sqlhosts. By default, sqlhosts is
in SINFORMIXDIR/etc. Set
INFORMIXSQLHOSTS if you want sqlhosts
to be in a different directory.

ODBCINI This value is optional. You can use it to

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-9

1-10

specify an alternative location for the odbc.ini
file. The default location is your home
directory.

Setting Environment Variables in Windows

If you set the environment variables at the command line, you must reset
them whenever you log into your Windows environment. If you set them in
the Windows registry, however, they are set automatically when you log in.
IBM Informix ODBC Driver stores environment variables in the following
location in the Windows registry:

\HKEY_CURRENT_USERS\Software\Informix\Environment

In a Windows environment you must use setnet32.exe, or a tool that will
update the registry correctly, to set environment variables that IBM Informix
dynamic link libraries (DLLs), such as iclit09b.dll, use.

You can use environment variables as required by your development
environment. For example, the compiler needs to know where to find include
files. To specify the location of include files, set the environment variable
INFORMIXDIR (or some other environment variable) and then set the
include path to INFORMIXDIR\incl\cli.

Header Files

You can use the sql.h and sqlext.h header files, which are part of the
Microsoft compiler, to run IBM Informix ODBC Driver. To run Informix
extensions, include the infxcli.h file, which is installed in
INFORMIXDIR/incl/cli. This file defines IBM Informix ODBC Driver
constants and types, and provides function prototypes for the IBM Informix
ODBC Driver functions. If you include the infxcli.h file, it automatically
includes the slq.h and sqlext.h files.

The sql.h and sqlext.h header files contain definitions of the C data types. For
more information about data types, see

You should include xa.h in XA ODBC applications.

Data Types

A column of data stored on a data source has an SQL data type.

IBM Informix ODBC Driver maps Informix-specific SQL data types to ODBC
SQL data types, which are defined in the ODBC SQL grammar. (The driver
returns these mappings through SQLGetTypelnfo. It also uses the ODBC SQL
data types to describe the data types of columns and parameters in
SQLColAttributes and SQLDescribeCol).

Each SQL data type corresponds to an ODBC C data type. By default, the
driver assumes that the C data type of a storage location corresponds to the

IBM Informix ODBC Driver Programmer’s Manual

SQL data type of the column or parameter to which the location is bound. If
the C data type of a storage location is not the default C data type, the
application can specify the correct C data type with the TargetType argument
for SQLBindCol, the fCType argument for SQLGetData, and the ValueType
argument in SQLBindParameter. Before the driver returns data from the data
source, it converts the data to the specified C data type. Before the driver
sends data to the data source, it converts the data from the specified C data
type to the SQL data type.

The Informix data type names differ from the Microsoft ODBC data type
names. For information about these differences, refer to [Chapter 3, “Data|
[Types,” on page 3-1|and to the appendix on data types in the IBM Informix:
Microsoft ODBC 3.0 Programmer’s Reference.

Libraries

| UNIX Only

The installation procedure installs the following libraries into
INFORMIXDIR/lib/cli. In each data source specification section in the
odbc.ini file, set the driver value indicating the full path to one of the
following library filenames.

Filename Description

libifcli.a or libcli.a Static version for single (nonthreaded) library

libifcli.so or iclis09b.so Shared version for single (nonthreaded)
library

libthcli.a Static version for multithreaded library

libthcli.so or iclit09b.so Shared version for multithreaded library

libifdrm.so or idmrs09a.so Shared library for DMR (thread safe)

For more information about the odbc.ini file, see|“The odbc.ini File” on page]

If you do not use a driver manager, your application needs to link to either
the static or the shared version of the IBM Informix ODBC Driver libraries.

The following compile command links an application to the thread-safe
version of the IBM Informix ODBC Driver libraries:

cc ... -L$INFORMIXDIR/1ib/c1i -Tlifdmr - 1thcli

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-11

End of UNIX Only

Windows Only

The installation procedure installs the following libraries into
INFORMIXDIR\Iib.

Filename Description

iclit09b.lib Enables linking directly to the driver without the use of a

driver manager

iregt07b.lib Allows linking directly to iregt07b.dll

End of Windows Only

The following compile command links an application to the thread-safe
version of the IBM Informix ODBC Driver libraries:

cl ...

-L$INFORMIXDIR/1ib/cli ic1it@9b.1ib

If you use a driver manager, you must link your application to the driver
manager library only, as the following example shows:

cl odbc32.1ib

IBM Informix ODBC Driver requires a Version 3.0 driver manager.

Using the IBM Informix ODBC Driver API

An application uses the IBM Informix ODBC Driver API to make a
connection to a data source, send SQL statements to a data source, process
result data dynamically, and terminate a connection. The driver enables your
application to perform the following steps:

1-12

1.

Connect to the data source.

You can connect to the data source through a DSN connection, or you can
use DSN-less connection strings. Specify the data-source name and any
additional information needed to complete the connection.

2. Process one or more SQL statements:

a. Place the SQL text string in a buffer. If the statement includes
parameter markers, set the parameter values.

b. If the statement returns a result set, either assign a cursor name for the
statement or let the driver assign one.

c. Either prepare the statement or submit it for immediate execution.

IBM Informix ODBC Driver Programmer’s Manual

d. If the statement creates a result set, you can inquire about the attributes
of the result set, such as the number of columns and the name and
type of a specific column. For each column in the result set, assign
storage and fetch the results.

e. If the statement causes an error, retrieve error information from the
driver and take the appropriate action.

3. End any transaction by committing it or rolling it back.

4. Terminate the connection when the application finishes interacting with
the data source.

Every IBM Informix ODBC Driver function name starts with the prefix SQL.
Each function accepts one or more arguments. Arguments are defined as input
(to the driver) or output (from the driver).

[Figure 1-4 on page 1-14 shows the basic function calls that an application
makes even though an application generally calls other functions also.

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-13

1-14

SQLAllocHandle
(SQL_HANDLE_ENV)

SQLAllocHandle
—»
(SQL_HANDLE_DBC)

—» SQLConnect

SQLAllocHandle I
(SQL_HANDLE_STMT)

Process SQL statements ¢———

Receive results

!

SQLFreeStmt

CLOSE option

SQLFreeHandle
(SQL_HANDLE_STMT)

SQLDisconnect

SQLFreeHandle
(SQL_HANDLE_DBC)
|
SQLFreeHandle
(SQL_HANDLE_ENV)

Figure 1-4. Sample Listing of Function Calls That an IBM Informix ODBC Driver Application Makes

Environment, Connection, and Statement Handles
When an application requests it, the driver and the driver manager allocate
storage for information about the environment, each connection, and each
SQL statement. The driver returns a handle for each of these allocations to the
application, which uses one or more handles in each call to a function.

IBM Informix ODBC Driver Programmer’s Manual

The IBM Informix ODBC Driver API uses the following types of handles:

* Environment handles. Environment handles identify memory storage for
global information, including the valid connection handles and the current
active connection handle. The environment handle is an henv variable type.
An application uses one environment handle. It must request this handle
before it connects to a data source.

* Connection handles. Connection handles identify memory storage for
information about particular connections. A connection handle is an hdbc
variable type. An application must request a connection handle before it
connects to a data source. Each connection handle is associated with the
environment handle. However, the environment handle can be associated
with multiple connection handles.

 Statement handles. Statement handles identify memory storage for
information about SQL statements. A statement handle is an hstmt variable
type. An application must request a statement handle before it submits SQL
requests. Each statement handle is associated with exactly one connection
handle. However, each connection handle can be associated with multiple
statement handles.

Buffers

An application passes data to the driver in an input buffer. The driver returns
data to the application in an output buffer. The application must allocate
memory for both input and output buffers. If the application uses the buffer
to retrieve string data, the buffer must contain space for the null termination
byte.

Some functions accept pointers to buffers that are used later by other
functions. The application must ensure that these pointers remain valid until
all applicable functions have used them. For example, the argument rgbValue
in SQLBindCol points to an output buffer where SQLFetch returns the data
for a column.

Input Buffers

An application passes the address and length of an input buffer to the driver.

The length of the buffer must be one of the following values:

* A length greater than or equal to zero
This value is the actual length of the data in the input buffer. For character
data, a length of zero indicates that the data is an empty (zero length)
string. A length of zero is different from a null pointer. If the application
specifies the length of character data, the character data does not need to be
null-terminated.

* SQL_NTS
This value specifies that a character data value is null-terminated.

* SQL_NULL_DATA

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-15

1-16

This value tells the driver to ignore the value in the input buffer and use a
NULL data value instead. It is valid only when the input buffer provides
the value of a parameter in an SQL statement.

For character data that contains embedded null characters, the operation of
IBM Informix ODBC Driver functions is undefined; for maximum
interoperability, it is better not to use them. Informix database servers treat
null characters as end-of-string markers or as indicators that no more data
exists.

Unless it is specifically prohibited in a function description, the address of an
input buffer can be a null pointer. In such cases, the value of the
corresponding buffer-length argument is ignored. For more information about
input buffers, see [’Converting Data from SQL to C” on page 3-21}

Output Buffers
An application passes the following arguments to the driver so that the driver
can return data in an output buffer:

* The address of the output buffer, to which the driver returns the data

Unless it is specifically prohibited in a function description, the address of
an output buffer can be a null pointer. In such cases, the driver does not

return anything in the buffer and, in the absence of other errors, returns
SQL_SUCCESS.

If necessary, the driver converts data before returning it. The driver always
null-terminates character data before returning it.

* The length of the buffer

The driver ignores this value if the returned data has a fixed length in C, as
with an integer, real number, or date structure.

* The address of a variable in which the driver returns the length of the data
(the length buffer)

The returned length of the data is SQL_NULL_DATA if the data is a null
value in a result set. Otherwise, the returned length of the data is the
number of bytes of data that are available to return. If the driver converts
the data, the returned length of the data is the number of bytes that remain
after the conversion; for character data, it does not include the
null-termination byte that the driver adds.

If the output buffer is too small, the driver attempts to truncate the data. If
the truncation does not cause a loss of significant data, the driver returns the
truncated data in the output buffer, returns the length of the available data (as
opposed to the length of the truncated data) in the length buffer, and returns
SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of significant

IBM Informix ODBC Driver Programmer’s Manual

data, the driver leaves the output and length buffers untouched and returns
SQL_ERROR. The application calls SQLGetDiagRec to retrieve information

about the truncation or the error.

For more information about output buffers, see [“Converting Data from SQL to|

[C” on page 3-21|

SQLGetInfo Argument Implementation

The following table describes the Informix implementation of SQLGetInfo
arguments for IBM Informix ODBC Driver. For more information on
SQLGetlInfo, see the IBM Informix: Microsoft ODBC 3.0 Programmer’s Reference

and ["SQLGetInfo (Level One Only)” on page 8-36|

Argument Name

Informix Implementation

SQL_ACTIVE_ENVIRONMENTS

IBM Informix driver does not have a limit on
number of active environments. Zero is always
returned.

SQL_AGGREGATE_FUNCTIONS

IBM Informix driver will return all aggregate
functions that the database server supports.

SQL_ASYNC_MODE

IBM Informix driver will return SQL_AM_NONE.

SQL_ATTR_METADATA_ID

Supported for GetInfo and PutInfo

SQL_BATCH_ROW_COUNT

IBM Informix driver will return bitmask zero.

SQL_BATCH_SUPPORT

IBM Informix driver will return bitmask zero.

SQL_CA1_POS_DELETE

Operation arguments supported in a call to
SQLSetPos

SQL_CA1_POS_POSITION

Operation arguments supported in a call to
SQLSetPos

SQL_CA1_POS_REFRESH

Operation arguments supported in a call to
SQLSetPos

SQL_CA1_POS_UPDATE

Operation arguments supported in a call to
SQLSetPos

SQL_CA1_POSITIONED_DELETE

A DELETE WHERE CURRENT OF SQL statement
is supported when the cursor is a forward-only
cursor. (An SQL-92 entry-level-conforming driver
will always return this option as supported.)

SQL_CA1_POSITIONED_UPDATE

An UPDATE WHERE CURRENT OF SQL
statement is supported when the cursor is a
static-only cursor. (An SQL-92
entry-level-conforming driver will always return
this option as supported.)

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-17

Argument Name

Informix Implementation

SQL_CA1_LOCK_NO_CHANGE

A LockType argument of
SQL_LOCK_NO_CHANGE is supported in a call
to SQLSetPos when the cursor is a static-only
Cursor.

SQL_CA1_SELECT_FOR_UPDATE

A SELECT FOR UPDATE SQL statement is
supported when the cursor is a forward-only
cursor. (An SQL-92 entry-level-conforming driver
will always return this option as supported.)

SQL_CATALOG_NAME

IBM Informix driver will return “Y’

SQL_COLLATION_SEQ

INTERSOLV DataDirect ODBC Driver returns
InfoValuePtr (unmodified)

SQL_DDL_INDEX

Returns bitmask SQL_DL_CREATE_INDEX |
SQL_DL_DROP_INDEX

SQL_DESCRIBE_PARAMETER

Returns ‘N’; parameters cannot be described. (This
is because the latest Informix database servers
support function overloading such that multiple
functions with the same name can accept different
parameter types.)

SQL_DIAG_DYNAMIC_FUNCTION

Returns empty string

SQL_DROP_TABLE

Returns bitmask SQL_DT_DROP_TABLE |
SQL_DT_CASCADE | SQL_DT_RESTRICT

SQL_DROP_VIEW

Returns bitmask SQL_DV_DROP_TABLE |
SQL_DV_CASCADE | SQL_DV_RESTRICT

SQL_INDEX_KEYWORDS_

SQL_LLK_ASC | SQL_LK_DESC

SQL_INSERT_STATEMENT

Returns bitmask SQL_IS_INSERT_LITERALS |
SQL_ INSERT_SEARCHED |
SQL_IS_SELECT_INTO

SQL_MAX_DRIVER_CONNECTIONS

Returns zero

SQL_MAX_IDENTIFIER_LEN

Returns different values, depending on database
server capability

SQL_ODBC_INTERFACE_CONFORMANCE

Returns SQL_OIC_CORE

SQL_PARAM_ARRAY_ROW_COUNTS

Returns SQL_PARC_NO_BATCH

SQL_PARAM_ARRAY_SELECTS

Returns SQL_PAS_NO_SELECT

SQL_SQL_CONFORMANCE

Returns SQL_OSC_CORE

SQL_SQL92_FOREIGN_KEY_DELETE_RULE

Returns bitmask zero

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE

Returns bitmask zero

SQL_SQL92_GRANT

Returns bitmask zero

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS

Returns bitmask zero

1-18 1BM Informix ODBC Driver Programmer’s Manual

Argument Name

Informix Implementation

SQL_SQL92_PREDICATES

Returns bitmask zero

SQL_SQL92_RELATIONAL_JOIN_OPERATORS

Returns bitmask zero

SQL_SQL92_REVOKE

SQL_SR_CASCADE | SQL_SR_RESTRICT

SQL_SQL92 ROW_VALUE_CONSTRUCTOR

Returns bitmask zero

SQL_SQL92_STRING_FUNCTIONS

Returns bitmask zero

SQL_SQL92_VALUE_EXPRESSIONS

Returns bitmask zero

SQL_STANDARD_CLI_CONFORMANCE

Returns bitmask SQL_SCC_XOPEN_CLI_
VERSION1 | SQL_SCC_IS092_CLI

SQL_STATIC_CURSOR_ATTRIBUTES1

Scrollable only

SQL_STATIC_CURSOR_ATTRIBUTES2

Scrollable only

SQL_XOPEN_CLI_YEAR

Returns string “1995”

Global Language Support

IBM Informix products can support many languages, cultures, and code sets.
Global Language Support (GLS) provides support for all language- and
culture-specific information. The following table describes how to set the GLS
options depending on your platform.

Platform
UNIX

How to Set GLS Options
Specify the GLS options in the odbc.ini file. For more

information, see [“Configuring a DSN on UNIX” on page 2-1

Windows

Specify the GLS options in the IBM Informix ODBC Driver

DSN Setup dialog box. For more information, see

[“Configuring a DSN in Windows” on page 2-11]

The rest of this section describes the GLS options for IBM Informix ODBC
Driver. For more information about GLS and locales, see the IBM Informix:
GLS User’s Guide. Please refer to|Chapter 9, “Unicode,” on page 9-1} for detail

on Unicode support.
Client Locale

Description:

Format:

odbc.ini field for UNIX:

Default value for UNIX:

Default value for Windows:

Chapter 1. Overview of IBM Informix ODBC Driver

Locale and codeset that the application runs in
locale.codeset@modifier

CLIENT_LOCALE

en_us.8859-1

en_us.1252

1-19

1-20

Database Locale

Description:

Format:
odbc.ini field for UNIX:
Default value for UNIX:

Default value for Windows:

Translation Library
Description:

Format:

odbc.ini field for UNIX:
Default value for UNIX:

Default value for Windows:

Translation Option

Description:

Format:

odbc.ini field for UNIX:

Default value for Windows:

Locale and codeset that the database was
created in

locale.codeset@modifier
DB_LOCALE
en_us.8859-1

en_us.1252

Performs the codeset conversion

Path to the file for the library. The translation
DLL must follow the ODBC standard for
translation libraries. For more information, see
the IBM Informix: Microsoft ODBC 3.0
Programmer’s Reference.

TRANSLATIONDLL

SINFORMIXDIR/lib/esql/igo4a304.xx where
xx is platform-specific extension for shared
library

igo4n304.d11

Option for a non-IBM Informix translation
library

Determined by the vendor
TRANSLATION_OPTION

Determined by the vendor

Important: Do not set this option for an IBM Informix translation library. An
IBM Informix translation library determines the translation option
based on the client locale and database locale values.

VMB Character

Description:

Varying multibyte character length reporting
option that specifies how to set pcbValue when
rgbValue (the output area) is not large enough
for the code-set-converted data. The possible
values are:

IBM Informix ODBC Driver Programmer’s Manual

Possible values for UNIX:

Possible values for Windows:

odbc.ini field for UNIX:
Default value for UNIX:

Default value for Windows:

Estimate. IBM Informix ODBC Driver makes
a worst-case estimate of the storage space
needed to return the data.

Exact. IBM Informix ODBC Driver writes the
code-set-converted data to disk until all the
data is converted. Because this option can
degrade performance, it is recommended that
you do not use this option unless your
application does not work with Estimate.

When you use a multibyte code set (in which
characters vary in length from 1 to 4 bytes) for
either the database or client locale, the length
of a character string or simple large object
(TEXT) in the database locale does not
indicate the length of the string after it is
converted to the client locale.

0 = Estimate
1 = Exact

Estimate
Exact

VMBCHARLENEXACT
Estimate

Estimate

X/Open Standard Interface

In addition to the standard ODBC functions, the IBM Informix ODBC Driver
also supports the following functions:

* _fninfx_xa_switch: Function for acquiring the xa_switch structure defined

by Informix RM

* IFMX_SQLGetXaHenv: Function for obtaining the environment handle
associated with an XA Connection

* IFMX_SQLGetXaHdbc: Function for obtaining the database handle
associated with an XA Connection

* xa_open function takes an xa_info parameter. The IBM Informix ODBC
Driver uses this xa_info to establish a XA connection

The format of xa_info is as follows:

<app1’1cat1‘ontoken>|<DSN name>

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-21

The application token is a unique number the application generates for each
xa_open request. It must use the same application token as parameter to
IFMX_SQLGetXaHenv and IFMX_SQLGetXaHdbc to get the associated
environment and database handles.

For information on programming with XA, refer to IBM Informix: TP/XA
Programmer’s Manual.

External Authentication

1-22

For IBM Informix Dynamic Server Version 10.0 and later, you can implement
external authentication through the IBM Informix ODBC driver. There are two
external authentication modules available to use with the IBM Informix ODBC
Driver. The Pluggable Authentication Module (PAM), works on UNIX and
Linux servers and the LDAP Authentication is supported on Microsoft
Windows operating systems.

Pluggable Authentication Module (PAM) on UNIX and Linux

You can use PAM with the IBM Informix ODBC Driver on the UNIX and
Linux operating systems that support PAM. PAM enables system
administrators to implement different authentication mechanisms for different
applications. For example, the needs of a system like the UNIX login program
might be different from an application that accesses sensitive information
from a database. PAM allows for many such scenarios in a single machine,
because the authentication services are attached at the application level.

LDAP Authentication on Windows

You can use LDAP Authentication with the IBM Informix ODBC Driver on
Windows operating systems. LDAP Authentication is similar to the Pluggable
Authentication Module.

Use the LDAP Authentication Support module when you want to use an
LDAP server to authenticate your system users. The module contains source
code that you can modify for your specific LDAP Authentication Support
module. For information on installing and customizing the LDAP
Authentication Support module, see the security chapter of the IBM Informix:
Administrator’s Guide.

Using the SQLSetConnectAttr() function with Authentication

Use the SQLSetConnectAttr() function to specify the callback function used
by the server. SQLSetConnectAttr() is also used to specify what parameters
are used by the callback function. Parameter attributes are passed back to the
callback function exactly as they are specified to the driver.

The following attributes are IBM Informix-specific extensions to the ODBC
standard:

IBM Informix ODBC Driver Programmer’s Manual

Parameter

Type

Description

SQL_INFX_ATTR_PAM_FUNCTION

void *

A pointer to the call back function.

SQL_INFX_ATTR_PAM_RESPONSE_BUF

void *

A generic pointer to a buffer
containing the response to an
authentication challenge.

SQL_INFX_ATTR_PAM_RESPONSE_LEN

int

The length of the response buffer in
bytes.

SQL_INEX_ATTR_PAM_RESPONSE_LEN_PTR

int *

The address which stores the number
of bytes in the response.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF

void *

A generic pointer to a buffer
containing the authentication
challenge. The driver stores any
challenge received from the server
into this buffer. If the buffer is not
large enough to contain the challenge,
the challenge is truncated. The
callback function can detect this by
comparing the buffer length with the
number of bytes in the challenge. It is
up to the application developer to
detect this situation and handle it
correctly.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF_LEN

int

The length of the challenge buffer in
bytes.

SQL_INFX_ATTR_PAM_CHALLENGE_LEN_PTR

int *

The address which stores the number
of bytes in the challenge.

The challenge and response buffer pointers can be null. If the authentication
server requires the information that would be stored in these buffers, a
connection failure results due to an authentication failure. The challenge
length information will be returned whether the connection is successful or

not. If the message type does not require a response, the response buffer may
be null (default) or it may contain an empty string.

The attributes above can be set at any time and in any order. However, they
will only be valid for connections established with subsequent calls to one of
the driver’s connect functions.

Connection Pooling and Authentication

An application programmer must be aware of the effects of connection
pooling when using authentication. In ODBC, the driver manager controls
connection pooling. The driver does not control when its connections are
placed in the pool or when a connection is pulled from the pool. If the
application connects and disconnects without the user’s knowledge, the

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-23

1-24

performance benefits of connection pooling will be maintained and the user
will not receive any unexpected authentication challenges. If the application
does make the user aware they are reestablishing a connection, there will still
be no authentication challenge because the connection between the driver
manager and the server was never closed. For more information on
connection pooling refer to the Microsoft Data Access SDK documentation.

Connect Functions

Any ODBC function which establishes a connection, SQLConnect(),
SQLDriverConnect(), or SQLBrowseConnect(), can be used with
authentication modules. Consider the following when using these functions:

SQLConnect(): The DriverCompletion parameter to the SQLConnect()
function can take the following values

* SQL_DRIVER_PROMPT

* SQL_DRIVER_COMPLETE

* SQL_DRIVER_COMPLETE_REQUIRED
* SQL_DRIVER_NOPROMPT

If an authentication challenge is expected, it is recommended that you use
SQL_DRIVER_NOPROMPT. Using other values may result in the user being
presented with multiple requests for authentication information.

SQLBrowseConnect(): SQLBrowseConnect() is designed to be used

iteratively where the driver provides guidance to the application on how to
complete the connection string and the application prompts the user for the
required values. This can create situations where the user is presented with
multiple prompts between connection string completion and authentication.

Additionally, it is typical for the driver to present a choice of databases to the
application as part of the connection string completion process. However, the
driver is not able to query the server for a list of databases until after the user
is authenticated. Depending on application logic, whether or not it provides a
database name in the original connection string, and whether or not a
challenge is going to be received from the authentication server, it might not
be possible to use SQLBrowseConnect() when the server uses authentication.

Using Third Party Applications or Intermediate Code

When using authentication, it is the responsibility of the application to handle
any challenges that originate from the authentication server. To do this, the
application programmer must be able to register a callback function with the
driver. Because there are no attributes defined in the ODBC standard that are
used to accomplish this, the attributes used are IBM Informix extensions.

IBM Informix ODBC Driver Programmer’s Manual

Many applications are written using Microsoft’s ADO layer to abstract the
ODBC calls from the developer. Most Visual Basic applications are written
using ADO objects. These applications and third party applications in general
will not be aware of the IBM Informix extensions and will not be able to
handle an authentication challenge.

The ODBC Data Source Administrator on Windows also falls under the class
of third party applications. Not all features will be available when configuring
a UNIX data source. For example, the Apply and Test Connection button and
the User Server Database Locale toggle will not work if a challenge is
received because those features require the ability to connect to the server.

Partially Supported and Unsupported ODBC Features
IBM Informix ODBC Driver supports partial implementation of the following
ODBC features:
* Transaction processing
* ODBC cursors
* ODBC bookmarks
* SQLBulkOperations

Transaction Processing

IBM Informix ODBC Driver implementation of transaction isolation levels and
transaction modes is slightly different from the Microsoft ODBC
implementation of these features. The following sections describe the
implementation of transaction isolation levels and transaction modes in

IBM Informix ODBC Driver.

Transaction Isolation Levels
The following table lists the transaction isolation levels that IBM Informix
ODBC Diriver supports for these Informix database servers.

Database Servers Transaction Isolation Levels

Dynamic Server * SQL_TXN_READ_COMMITTED
* SQL_TXN_READ_UNCOMMITTED
* SQL_TXN_SERIALIZABLE

IBM Informix Extended . SQL_TXN_RE AD_COMMITTED
Parallel Server + SQL_TXN_READ_UNCOMMITTED
« SQL_TXN_SERIALIZABLE

Cursor stability. To use this isolation level, call
SQLSetConnectOption() with the fOption value set to 1040
and vParam set to 1.

Chapter 1. Overview of IBM Informix ODBC Driver ~ 1-25

1-26

The default transaction isolation level is SQL_TXN_READ_COMMITTED. To
change the transaction isolation level, call SQLSetConnectOption() with an
fOption value of SQL_TXN_ISOLATION.

For more information about transaction isolation levels, see the
SQL_DEFAULT_TXN_ISOLATION and SQL_TXN_ISOLATION_OPTION
descriptions in the IBM Informix: Microsoft ODBC 3.0 Programmer’s Reference.

Transaction Modes
The default transaction mode is auto-commit.

To change the transaction mode to manual commit:
1. Enable transaction logging for your database server.

For information about transaction logging, see your IBM Informix:
Administrator’s Guide.

2. Call SQLSetConnectOption() with SQL_AUTOCOMMIT set to
SQL_AUTOCOMMIT_OFE

ODBC Cursors

IBM Informix ODBC Driver supports static and forward cursors but not
dynamic and keyset-driven cursors.

For more information about cursors, see the IBM Informix: Microsoft ODBC 3.0
Programmer’s Reference.

ODBC Bookmarks

A bookmark is a value that identifies a row of data. IBM Informix ODBC
Driver supports bookmarks with SQLFetchScroll and SQLExtendedFetch and
does not support them with SQLBulkOperations. IBM Informix ODBC
Driver supports bookmarks to the following extent:

* Uses only variable length bookmarks.
* SQL_DESC_OCTET_LENGTH is set to 4 for bookmark columns.

* A bookmark is an integer that contains the row number within the row set,
starting with 1.

* Bookmarks persist only as long as the cursor remains open.

* SQLFetchScroll, using SQL_FETCH_BOOKMARK for the fetch orientation
argument, is fully supported.

* SQLBulkOperations will not update the bookmark column for SQL_ADD.

For more information about ODBC bookmarks, see the IBM Informix: Microsoft
ODBC 3.0 Programmer's Reference.

IBM Informix ODBC Driver Programmer’s Manual

SQLBulkOperations
IBM Informix ODBC Driver supports only the SQL_ADD argument of
SQLBulkOperations.

SQLDescribeParam

SQLDescribeParam is an ODBC API which returns metadata for the
parameters of a query.

Prior to IBM Informix ODBC Driver, Version 2.90, this API returned metadata
only for parameters in an INSERT or UPDATE statement. Parameters in the

WHERE clause of an UPDATE statement required the IFX_UPDDESC
environment variable to be set. For parameters in other statement,

SQLDescribeParam returned the “Driver Does Not Support This Function”

error.

| Dynamic Server

When connecting to IBM Informix Dynamic Server, Version 9.40 or later with
IBM Informix ODBC Driver Version 2.90, SQLDescribeParam will provide

metadata for parameters of all statement types.

Important: The SQLDescribeParam API returns “SQL_UNKNOWN” if the

APl is called to get information about an expression value or

parameter embedded inside another procedure.

| End of Dynamic Server

Unsupported Microsoft ODBC Driver Features

IBM Informix ODBC Driver does not support implementation of the
following ODBC features:

* Asynchronous communication mode
* Concurrency checking

- SQL_CA2_OPT_ROWVER_CONCURRENCY

- SQL_CA2_OPT_VALUES_CONCURRENCY
¢ CONVERT scalar functions
* Cursor simulation features:

- SQL_CA2_CRC_APPROXIMATE
SQL_CA2_CRC_EXACT
SQL_CA2_SIMULATE_NON_UNIQUE
- SQL_CA2_SIMULATE_TRY_UNIQUE
SQL_CA2_SIMULATES_UNIQUE
* Dynamic cursor attributes
¢ Installer DLL

Chapter 1. Overview of IBM Informix ODBC Driver

1-27

* SQL functions: SQLSetStmtAttr

1-28 1BM Informix ODBC Driver Programmer’s Manual

Chapter 2. Configuring Data Sources

Configuring a DSN on UNIX .
The sqlhosts File .
The odbcinst.ini File .
ODBC Drivers .
Driver Specifications .
The odbc.ini File .
ODBC Data Sources .
Data-Source Specification .
ODBC Section e
Setting the $SODBCINI Environment Variable .
The .netrc File e
Configuring a DSN in Windows
Making a Connection Without DSN

. 2-1

. 2-1
.22

.23
. 2-4

. 2-10
. 2-10
. 2-11
. 2-11
. 2-19

In This Chapter

This chapter explains how to configure a data source (DSN) on UNIX and

Windows for IBM Informix ODBC Driver, Version 2.90. After you install the

driver, you must configure your DSN before you can connect to it.

Configuring a DSN on UNIX

This section provides information on driver specifications and DSN
specifications, and describes the following DSN configuration files:

* sqlhosts
* odbcinst.ini
* odbc.ini

The configuration files provide information, such as driver attributes, that the
driver uses to connect to DSNs. To modify these files, use a text editor. The

section also provides examples of driver and DSN specifications.

The sqlhosts File

This file consists of connection information. It contains an entry for each
Informix database server. For information about sqlhosts, see your

IBM Informix: Administrator’s Guide.
The odbcinst.ini File

Installed ODBC drivers use the odbcinst.ini sample file, which is located in
$INFORMIXDIR/etc/odbcinst.ini. To create your odbcinst.ini file, copy the
odbcinst.ini sample file to your home directory as SHOME/.odbcinst.ini (note
the added dot at the beginning of the filename). This file has entries for all the

© Copyright IBM Corp. 1996, 2004

2-1

2-2

installed drivers on your computer. Update this file when you install a new
driver or a new version of a driver. The following table describes section
items in the SHOME/.odbcinst.ini file.

Section Description Status
ODBC Dirivers List of names of all the installed ODBC drivers Optional
ODBC Driver List of driver attributes and values Optional
Specifications

ODBC Drivers
This section provides information on ODBC drivers.

The following example illustrates information about drivers:

[ODBC Drivers]
driver_namel=Installed
driver_name2=Installed

The following example illustrates information about installed drivers:

[ODBC Drivers]
INFORMIX 2.8 32 BIT=Installed
INFORMIX 3.81 32 BIT=Installed

Driver Specifications
Each installed driver has a properties section under the name of the driver.
The following example illustrates a driver-specification format:

[driver namel]
Driver=driver_library_path
Setup=setup/driver_library_path
APILevel=api_level supported
ConnectFunctions=connectfunctions
DriverODBCVer=odbc_version
FileUsage=file_usage

SQLLevel=sql _level

The following example illustrates information about driver specifications:

[INFORMIX 3.81 32]
Driver=/vobs/tristarm/odbc/ic1is09b.so
Setup=/vobs/tristarm/odbc/ic1is09b.so
APILevel=1

ConnectFunctions=YYY
DriverODBCVer=03.81

FileUsage=0

SQLLevel=1

IBM Informix ODBC Driver Programmer’s Manual

The following table describes the keywords that are in the driver- specification

section.
Keywords Description Status
API Level ODBC interface conformance level that the Required
driver supports
0=None
1=Level 1 supported
2=Level 2 supported
ConnectFunctions Three-character string that indicates whether Required
the driver supports SQLConnect,
SQLDriverConnect, and SQLBrowseConnect
DriverODBCVer Character string with the version of ODBC that | Required
the driver supports
Driver Driver library path Required
FileUsage Number that indicates how a file-based driver |Required
directly treats files in a DSN
Setup Setup library Required
SQLLevel Number that indicates the SQL-92 grammar Required
that the driver supports

For a detailed description of the Driver Specification section, see the
IBM Informix: Microsoft ODBC 3.0 Programmer’s Reference.

The odbc.ini File

The odbc.ini file is a sample data-source configuration information file. For

the location of odbc.ini file, see the release notes. To create this file, copy
odbc.ini to your home directory as $HOME/.odbc.ini (note the added dot at
the beginning of the filename). Every DSN to which your application connects
must have an entry in this file. The following table describes the sections in

$HOME/.odbc.ini.
Section Description Status
ODBC Data Sources | This section lists the DSNs and associates them |Required
with the name of the driver. You need to
provide this section only if you use an ODBC
driver manager from a third-party vendor.
Data Source Each DSN listed in the ODBC Data Sources Required
Specification section has a Data-Source Specification section
that describes the DSN.
ODBC This section lists ODBC tracing options. Optional

Chapter 2. Configuring Data Sources

2-3

ODBC Data Sources

Each entry in the ODBC Data Sources section lists a DSN and the driver
name. The data_source_name value is any name that you choose. It is like an
envelope that contains all relevant connection information about the DSN.

The following example illustrates an ODBC data-source format:

[ODBC Data Sources]
data_source_name=INFORMIX ODBC 3.81 Driver

The following example defines two DSNs called EmpInfo and CustInfo:

[ODBC Data Sources]
EmpInfo=IINFORMIX ODBC 3.81 Driver
CustInfo=INFORMIX-CLI 2.8 Driver

Data-Source Specification
Each DSN in the data-sources section has a data-source specification section.

The following example illustrates a data-source specification format:

[data_source_name]
Driver=driver_path
Description=data_source_description
Database=database_name
LogonID=user_id
pwd=user_password
Server=database_server
CLIENT_LOCALE=application_locale
DB_LOCALE=database_locale
TRANSLATIONDLL=translation_path
CURSORBEHAVIOR=cursor_behavior
DefaultUDTFetchType=default_UDT _Fetch_type
ENABLESCROLLABLECURSORS=enable_scroll_cursors
ENABLEINSERTCURSORS=enable_insert_cursors
OPTIMIZEAUTOCOMMIT=optimize_auto_commit
NEEDODBCTYPESONLY=need odbc_types_only
OPTOFC=open_fetch _close optimization
REPORTKEYSETCURSORS=report_keyset_cursors
FETCHBUFFERSIZE=fetchbuffer size
DESCRIBEDECIMALFLOATPOINT=describe_decimal_as_float
USESERVERDBLOCALE=use_server_dblocale
DONOTUSELVARCHAR=do_not_use_lvarchar
REPORTCHARCOLASWIDECHARCOL=char_col_as_widechar_col
[0DBC]

UNICODE=unicode_type

The following table describes the keywords that are in the data-source
specification section and the order that they appear in each section.

Keywords

Description Status

data_source_name Data source specified in the Data Sources section Required

2-4 IBM Informix ODBC Driver Programmer’s Manual

Keywords Description Status
driver_path Path for the driver Required
Set this value to the complete pathname for the driver
library. For more information on the library directory
and filenames, see the release notes.
data_source_description Description of the DSN Optional
Configured for a single user or for system users.
database_name Database to which the DSN connects by default Required
user_id User identification or account name for access to the Optional
DSN
user_password Password for access to the DSN Optional
database_server Informix database server on which database_name resides | Required
application_locale (GLS only) Client locale. Optional
Default value: en_us.8859-1
database_locale (GLS only) Database locale. Default value: en_us.8859-1 Optional
translation_path (GLS only) DLL that performs code-set conversion; default value: Optional
SINFORMIXDIR/lib/esql/ig04a304.xx, where xx
represents a platform-specific file extension
cursor_behavior_name Flag for cursor behavior when a commit or rollback Optional
transaction is called.
Possible values are:
* O=close cursor
* l=preserve cursor
Default value: 0
default_ UDT_Fetch_type Default UDT fetch type. Optional
Default value: SQL_C_BINARYPossible values are:
* SQL_C_BINARY
* SQL_C_CHAR
Enable_scroll_cursors If this option is activated, the IBM Informix ODBC Optional

Driver supports only scrollable, static cursors.

Available only as a connection option:
SQL_INFX_ATTR_ENABLE_SCROLL_CRUSORS

or as a connection attribute string:

EnableScrollableCursors

Default value is: 0 (disabled)

Chapter 2. Configuring Data Sources

2-5

Keywords

Description

Status

Enable_insert_cursors

Reduces the number of network messages sent to and
from the server by buffering the inserted rows used
with arrays or parameters and insert statements. This
option improves the performance of bulk insert
operations.

Available as both a connection and statement option:
SQL_INFX_ATTR_ENABLE_INSERT CURSORS

or as a connection attribute string:
EnableInsertCursors

Default value is: 0

Optional

optimize_auto_commit

Defers automatic commit operations while cursors
remain open. This option can reduce database
communication when the application is using non-ANSI
logging databases.

Available as a connection option:
SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string:
OptimizeAutoCommit

Default value is: 1 (enabled)

Optional

open_fetch_close_optimization

Causes the driver to buffer the open, fetch, and close
cursor messages to the server. This option eliminates on
or more message cycles when you use SQLPrepare,
SQLExecute, and SQLFetch statements to fetch data
with a cursor.

Only available as a connection option:
SQL_INFX_ATTR_OPTOFC

or as a connection attribute string:
OPTOFC

Default is: 0 (disabled)

Optional

2-6 IBM Informix ODBC Driver Programmer’s Manual

Keywords

Description

Status

Report_keyset_cursors

Causes the driver to report (via SQLGetInfo) that is
supports forward-only, static, and keyset-driver cursors
even though the driver only supports forward-only and
static cursors. This option is used to enable
dynaset-type functions, such as MicroSoft Visual Basic,
which require drivers that support keyset-driven
Cursors.

Also available as connection option:
SQL_INFX_ATTR_REPORT_KEYSET CURSORS

or as a connection attribute string:

ReportKeysetCursors

Default is: 0 (disabled)

Optional

fetchbuffer_size

Size of a fetch buffer in bytes.

Available as connection attribute string:
FETCHBUFFERSIZE

Default is: 4096

Optional

describe_decimal_as_float

Describes all floating-point decimal columns as:
* Float(SQL_REAL) or
* Float(SQL_DOUBLE)

A floating-point decimal column is a column that was
created without a scale, for example DECIMAL(12).
Some prepackaged applications such as Visual Basic can
not properly format Decimal columns that do not have
a fixed scale. To use these applications, you must enable
this option or redefine the column with a fixed scale.

Enabling this option has the disadvantage that
SQL_DECIMAL is an exact numeric data type while
SQL_REAL and SQL_DOUBLE are approximate
numeric data types. SQL_DECIMAL with a precision of
8 or less will be described as SQLREAL. With a
precision greater than 8, it is described as
SQL_DOUBLE.

Available as connection attribute string:
DESCRIBEDECIMALFLOATPOINT

Default is: 0 (disabled)

Optional

Chapter 2. Configuring Data Sources ~ 2-7

Keywords

Description

Status

use_server_dblocale

Users server database locale.

Available as a connection attribute string:
USERSERVERDBLOCALE

Default is: 0 (disabled)

Optional

do_not_use_lvarchar

If enabled, the SQLGetTypelnfo does not report
LVARCHAR as a supported type (DATA_TYPE) of
SQL_VARCHAR. Some applications will use
LVARCHAR instead of VARCHAR, even in columns
that are less than 256 bytes. The minimum number of
bytes transmitted for LVARCHAR is higher than
VARCHAR. A large number of LVARCHAR columns
can result in the rowset size exceeding the maximum.

Enable this option only if your SQL_VARCHAR columns are
less than 256 bytes.

Available as a connection attribute string:
DONOTUSELVARCHAR

Default is: 0 (disabled)

Optional

char_col_as_widechar_col

Causes SQLDescribeCol to report character columns as
wide character columns as follows:

¢ SQL_CHAR is reported as SQL_WCHAR
* SQL_VARCHAR is reported as SQL_WVARCHAR

* SQL_LONGVARCHAR is reported as
SQL_WLONGVARCHAR

Available as a connection attribute string:
REPORTCHARCOLASWIDECHARCOL

Default is: 0 (disabled)

Optional

2-8 IBM Informix ODBC Driver Programmer’s Manual

Keywords Description Status

unicode_type Indicates the type of Unicode used by an application. Required
This attribute is applies to UNIX applications only and
is set in the ODBC section of the odbc.ini file. The
following considerations apply:

* Application on UNIX not linking to Data Direct
ODBC driver manager should set this to UCS-4

* Applications on IBM AIX with version lower than 5L
should set this to UCS-2

* Applications using Data Direct driver manager do
not need to set this attribute.

Default is: UTF-8

For more information on using Unicode in an ODBC
application, see |Chapter 9, “Unicode,” on page 9-1]

The following example shows the configuration for a DSN called EmplInfo:

[EmpInfo]

Driver=/informix/1ib/c1i/ic1is09b.so
Description=Demo data source

Database=odbc_demo

LogonID=admin

pwd=tiger

Server=ifmx_91

CLIENT LOCALE=en_us.8859-1

DB_LOCALE=en_us.8859-1
TRANSLATIONDLL=/opt/informix/1ib/esql/igo4a304.so

The following example shows the configuration for a DSN called Informix 9:

[Informix9]
Driver=/work/informix/1ib/c1i/ic1is09b.so
Description=Informix 9.x ODBC Driver
LogonID=userl

pwd=tigressé4

Database=odbc_demo

ServerName=my_server

If you specify a null LogonID or pwd, the following error occurs:
Insufficient connect information supplied

Tip: You can establish a connection to a DSN with null values for LogonID
and pwd if the local Informix database server is on the same computer
where the client is located. In this case, the current user is considered a
trusted user.

Chapter 2. Configuring Data Sources ~ 2-9

2-10

A sample data source, with no LogonID and pwd, where the server and client
are on the same computer, might look like the following example:

Driver=/work/informix/1ib/c1i/ic1is09b.so
Description=Informix 9.x ODBC Driver
LogonID=

pwd=tiger

Database=odbc_demo

ServerName=1ifmx_server

ODBC Section

The values in the ODBC section of odbc.ini specify ODBC tracing options.
With tracing, you can find the log of calls made and also the return codes for
each call. These options are set through the Tracing tab of the ODBC Data
Source Administrator dialog box on Windows.

The following table describes the tracing options in the ODBC section:
Table 2-1. Tracing options for ODBC section of ODBC.ini

TRACE=1 Tracing enabled

TRACE=0 Tracing disabled

TRACEFILE Set to where you want to driver to write the call logs.
TRACEDILL Always IDMRS09A.SO

The following example illustrates an ODBC section specification format:

[oDBC]

TRACE=1
TRACEFILE=/WORK/ODBC/0DBC. LOG
TRACEDLL=IDMRS09A.S0
UNICODE=UCS-4

You will need to set the TRACEFILE to where you want the driver to write all
of the call logs. Keep in mind that TRACE=1 means that tracing is enabled.
TRACE=0 disables tracing options.

Setting the SODBCINI Environment Variable

By default, IBM Informix ODBC Driver uses configuration information found
in the SHOME/.odbc.ini file. If you want to provide access to your DSN by
system users, modify the path in the $ODBCINI environment variable to
point to another configuration file that also contains the configuration
information found in the $HOME/.odbc.ini file. Then change the
configuration file permissions to allow read access for system users. Do not
change the permissions to the $HOME/.odbc.ini file.

In the following example, the configuration filename is myodbc.ini:
setenv ODBCINI /work/myodbc.ini

IBM Informix ODBC Driver Programmer’s Manual

The .netrc File

The .netrc file contains data for logging into a remote database server over the
network. For information on the .netrc file, see the UNIX man pages. Create
the .netrc file in the home directory where the client computer initiates the
connection. Set the .netrc file permissions for the user to deny read access by
the group and others.

To connect to a remote database server, create entries in the .netrc file for the
LogonID and pwd required to autoconnect to the data source. To establish a
connection to a remote data source, the ODBC driver first reads the LogonID
and pwd from the data source entry in the $HOME/.odbc.ini file. If the
$HOME/.odbc.ini file does not specify a LogonID and pwd, the ODBC driver
searches the $HOME/.netrc file.

For example, to allow an autologin to the computer called ray using the login
name log8in with password mypassword, your .netrc file should contain the
following line:

machine ray login 10g8in password mypassword

Configuring a DSN in Windows

In Windows environments, IBM Informix ODBC Driver provides a GUI to
configure DSNs.

To configure a DSN:
* Choose a procedure to modify your DSN:
— Choose the User DSN option to restrict access to one user.
— Choose the System DSN option to restrict access to system users.
— Choose the File DSN option to allow access to all users on a network.

* Enter DSN-configuration values to create a new DSN, such as the
data-source name, the database server name, and the database locale.

For a description of values, see [Table 2-2 on page 2-12| and [Table 2-3 on pagel
Values are shown in the order that they appear in each section.

Tip: To find out what kind of DSN you have, follow the steps
click the General tab and read the contents of the Description text box.

Tip: You can also use Microsoft ODBC, Version 2.5 or later, to configure a
DSN. To configure an existing DSN, see page

Chapter 2. Configuring Data Sources ~ 2-11

2-12

Table 2-2. Required DSN Values

Required Values

Description

Data Source Name

DSN to access

This value is any name that you choose. Data Source Name
is like an envelope that contains all relevant connection
information about the DSN.

Database Name

Name of the database to which the DSN connects by default

Host Name

Computer on which Server resides

Protocol

Protocol used to communicate with Server

Once you have added a DSN, the pull-down menu will
display the available choices.

Server Name

Informix database server on which Database resides

Service

Informix database server process that runs on your Host
computer

Confirm the service name with your system administrator or
database administrator.

Table 2-3. Optional DSN Values

Optional Values

Description

Client Locale

Default value: en_us.1252

Database Locale

Default value: en_us.1252

Description Any kind of information, such as version number and service
Options General information, such as password settings
For more information on this value, see the sqlhosts
information in your IBM Informix: Administrator's Guide.
Password Password for access to the DSN

Translation Library

Dynamic linked library (DLL) that performs code-set
conversion; default value:
$INFORMIXDIR\bin\ig04n304.d11

User Id

User identification or account name for access to the DSN

IBM Informix ODBC Driver Programmer’s Manual

Table 2-3. Optional DSN Values (continued)

Optional Values

Description

Translation Option

Option for a non-IBM Informix translation library

Varying multibyte character length reporting option that
specifies how to set pcbValue when rgbValue (the output area)
is not large enough for the code-set-converted data

Possible values:
* (O=Estimate
* 1=Exact

Default value: 0

Cursor Behavior

Flag for cursor behavior when a commit or rollback
transaction is called

Possible values are:
* O=close cursor

° 1=preserve cursor

Default value: 0

To configure a new user DSN or system DSN:

1. Choose Start > Settings > Control Panel.
2. Double-click ODBC to open the ODBC Data Source Administrator dialog

box.

To configure a user DSN, go to step% To configure a system DSN, click

the System DSN tab and go to step

All subsequent steps are the same

to configure either a user DSN or a system DSN.

3. Click Add.

The Create New Data Source dialog box appears.
4. Double-click INFORMIX 3.81 32 BIT on the Create New Data Source

wizard.

The General page for the IBM Informix ODBC Driver Setup dialog box

appears.

5. Enter the values in the General page, as the following example shows:

* Data Source Name: odbc33int
* Description: file DSN 3.81 on turbo
For a description of the values, see [Table 2-2 on page 2-12| and [Table 2-3 on|

|.’ A
)

Chapter 2. Configuring Data Sources ~ 2-13

2-14

Important: Do not click OK after you enter the values on this page. If you

click OK before you enter all the values, you get an error
message.

6. Click the Connection tab to display the Connection page and enter the
values, as the following example shows:

Server Name: o1_cTipper (or use the pull-down menu to choose a
server that is on the sqglhosts registry. If you use the pull-down menu,
the ODBC application sets the Host Name, Service, Protocol, and
Options values.)

Host Name: clipper

Service: turbo

Protocol: olsoctcp (or use the pull-down menu to choose a protocol)
Options: csm=(SPWDCSM)

Database Name: odbc_demo (or use the pull-down menu to find a
database name)

User Id: myname

Password: #**%*x*

To save the values you chose and verify that your DSN connects
successfully, click Apply & Test Connection. An ODBC Message dialog
box appears. The box tells you if your connection was successful or, if it
was not, tells you which Connection-tab value is incorrect.

7. Click the Environment tab to display the Environment page and enter the
values, as the following example shows:

Client Locale: en_US.CP1252
Database Locale: en_US.CP1252

Use Server Database Locale: if checkbox is checked, database locale
value is set to the server locale. If the checkbox is unchecked, the
database locale is set to the default locale, en_US.CP1252.

Translation Library: INFORMIXDIR\1ib\esql\ig04n304.d11
Translation Option: 0

Cursor Behavior: 0 - Close

VMB Character: 0 - Estimate

Fetch Buffer Size: 4096

8. Click the Advanced tab to display the Advanced page and click all
applicable boxes.

Auto Commit Optimization

This option defers automatic commit operations while cursors remain
open and can reduce database communication when the application is
using non-ANSI logging databases. This option is available only as a
connection option:

IBM Informix ODBC Driver Programmer’s Manual

SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string:

"OptimizeAutoCommit”

The default is: 1 (enabled).

Open-Fetch-Close Optimization

This option causes the driver to buffer the open, fetch, and close cursor
messages to the server. In addition, this option eliminates one or more
message round trips when you use SQLPrepare, SQLExecute, and
SQLFetch statements to fetch data with a cursor. This option is available
only as a connection option:

SQL_INFX_ATTR_OPTOFC

or as a connection attribute string:

"OPTOFC”

The default is: 0 (disabled).

Insert Cursors

This option reduces the number of network messages sent to and from
the server by buffering the inserted rows that are used with arrays of
parameters and insert statements. This option can greatly improve the
performance of bulk insert operations, and is available as both
connection and statement options:
SQL_INFX_ATTR_ENABLE_INSERT_CURSORS.

or as a connection attribute string:

"EnablelnsertCursors”

The default is: 0 (disabled).

Scrollable Cursor

If this option is activated, IBM Informix ODBC Driver, Version 2.90,
supports only scrollable, static cursors. This option is available only as a
connection option:

SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS

or as a connection attribute string:

"EnableScrollableCursors”

The default is: 0 (disabled).

Report KeySet Cursors

This option causes the driver to report (through SQLGetInfo) that it
supports forward-only, static, and keyset-driven cursor types, although
the driver only supports forward-only and static cursors. When you set
this option, the driver enables dynaset-type functions, such as
Microsoft’s Visual Basic. These functions require drivers that support

keyset-driven cursor types. This option is also available as a connection
attribute:

Chapter 2. Configuring Data Sources ~ 2-15

2-16

SQL_INFX_ATTR_REPORT_KEYSET_CURSORS
or as a connection attribute string:
"ReportKeysetCursors”

The default is: 0 (disabled).

Report Standard ODBC Types Only

If you activate this feature, the driver causes SQLGetTypelnfo to map
all occurrences of user-defined types (UDTs) as follows:

Blob SQL_LONGVARBINARY
Clob SQL_LONGVARBINARY

Multiset SQL_C_CHAR/SQL_C_BINARY
Set SQL_C_CHAR/SQL_C_BINARY
List SQL_C_CHAR/SQL_C_BINARY
Row SQL_C_CHAR/SQL_C_BINARY

The driver maps multiset, set, row, and list data types to SQL_C_CHAR
or SQL_C_BINARY, which is the default UDT FetchType to
SQL_C_CHAR features.

The default is: 0 (disabled).
Describe decimal floating point as SQL_REAL / SQL_DOUBLE

This option describes all floating-point decimal columns as Float
(SQL_REAL or SQL_DOUBLE). A floating-point decimal column is a
column that was created without a scale, ex: DECIMAL(12). Some
prepackaged applications such as Visual Basic can not properly format
Decimal columns that do not have a fixed scale. To use these
applications you must enable this option or re-define the column with a
fixed scale.

There is a disadvantage to enabling this option however,
SQL_DECIMAL is an exact numeric data type while SQL_REAL and
SQL_DOUBLE are approximate numeric data types. A SQL_DECIMAL
with a precision of 8 or less will be described as SQL_REAL, with a
precision greater than 8 it is SQL_DOUBLE.

The default is: 0 (disabled).
Do not use LVARCHAR

Causes SQLGetTypelnfo to not report LVARCHAR as a supported type
of DATA_TYPE of SQL_VARCHAR.

Some applications such as MS Access97 will use LVARCHAR instead of
VARCHAR even for columns that are less than 256 bytes long. The
minimum number of bytes transmitted for LVARCHAR is higher than
for Varchar and a large number of LVARCHAR columns can result in

IBM Informix ODBC Driver Programmer’s Manual

the rowset size exceeding the maximum. Enable this option only if your
SQL_VARCHAR columns are less than 256 bytes in length.

The default is: 0 (disabled)
* Report CHAR Columns As Wide CHAR Columns

Causes SQLDescribeCol to report char columns as wide char columns.
SQL_CHAR column is reported as SQL_WCHAR, SQL_VARCHAR as
SQL_WVARCHAR and SQL_LONGVARCHAR column as
SQL_WLONGVARCHAR

The default is: 0 (disabled)
1. To check your connection to the database server, click Test Connection.

2. Click OK to return to the ODBC Data Source Administrator dialog box
and to update the DSN information in the appropriate files.

When your application connects to this DSN, the values that you entered are
the default entries for the DSN connection.

To remove a DSN:

1. Follow steps|ljand El

2. Click Remove in the ODBC Data Source Administrator dialog box.
The 32-bit ODBC Administrator dialog box appears.

3. Click Yes to remove the DSN and return to the ODBC Data Source
Administrator dialog box.

To reconfigure an existing DSN:

1. Follow steps|ljand El
2. Click Configure to display the IBM Informix ODBC Driver Setup dialog
box.

Enter the new configuration values in the corresponding text boxes and
click OK to return to the ODBC Data Source Administrator dialog box.

After you complete these steps, you will connect to the DSN.

To configure a file DSN:
1. Choose Start > Settings > Control Panel.

2. Double-click the ODBC icon to open the ODBC Data Source
Administrator dialog box.

3. Click the File DSN tab to display the File DSN page.

Choose the File DSN option to allow access to the DSN to all users on a
network. For a description of values, see [Table 2-2 on page 2-12| and
[Table 2-3 on page 2-12|

4. Click Add.

Chapter 2. Configuring Data Sources 2-17

2-18

The Create New Data Source wizard appears.

5. Select INFORMIX 3.81 32 BIT from the driver list and click Next to
display the Create New Data Source Setup wizard, which contains a file
data source text box.

6. If you know the name of the date source file, type the name into the text
box, click Next to display the completed Create New Data Source wizard,
and go to Step Iﬂ

If you do not know the name of the file, click Browse to display the Save
As dialog box and enter the values, as the following example shows:

* File Name: File DSN
* Save as type: ODBC File Data Sources
Select a filename or type a filename in the File_name text box.

7. Click Save to display the Create New Data Source wizard, which
displays information about the data source name.

8. Click Next to display the completed Create New Data Source wizard.
9. Click Finish to display the IBM Informix Connect dialog box. For a
description of the values, see [Table 2-2 on page 2-12|and [Table 2-3 on|
For Advanced tab values, see page R-14]
10. Click OK to save the values and display the ODBC Data Source
Administrator dialog box.

The name of the data file that you chose or typed in step @ appears in the
text box.

After you add or change DSN-configuration information, the driver updates
the appropriate Windows registry to reflect the specified values. To be
compatible with other IBM Informix connectivity products, the driver stores
the DSN-configuration information in the Windows registry.

To create logs of calls to the drivers:

1. Click the Tracing tab to display the Tracing page, as shows.

IBM Informix ODBC Driver Programmer’s Manual

{_1 ODBC Data Source Administrator

Llzer DBN] Sustem DSN | Fle DSM | Driwers Tracing | Connection P:n:nllngl About]

‘When to trace

Start Tracing Mow Start Yisual Studio &nalvzer |
Log file Path LCustom Trace DLL
C\Logs\ODBLCTRACE.LOG |E;\WINNT\Syslem32\udbclfac.cHI

Browsze,.. Select DLL...

uze by support perzonnel or to aid you in debugaing your applications.

ODEC tracing allovs pou to create logs of the calls bo ODBC drivers for
@ Wisual studio tracing ensbles Microzaft Yisual studio racing for DDEC.

arx Cancel Lpply Help

Figure 2-1. Tracing Page

2. Select Start Tracing Now to turn tracing on.

3. To enter an existing log file, click Browse to display the Select ODBC Trace
File dialog box.

4. Enter the filename in the File_name text box and click Save to return to
the Tracing page.

5. To select a custom trace dynamic link library (DLL), click Select DLL to
display the Select a custom trace dll dialog box, and enter the values, as
the following example shows:

* File name: test2_dsn

* Files of type: Dynamic link Tibraries(*.d11)

Choose a file or type a filename in the File_name text box.
6. Click Open to display the Tracing page.
7. Click OK to save the changes.

After you complete these steps, you will connect to the DSN.

Making a Connection Without DSN

The following table lists the connection string keywords that can be used in
making a connection without DSN:

Chapter 2. Configuring Data Sources 2-19

Keyword Short Versions

DRIVER DRIVER
DSN DSN
FILEDSN FILEDSN
UID UID
DATABASE DB
HOST HOST
PWD PWD
SERVER SRVR
SERVICE SERV
PROTOCOL PRO
CLIENT_LOCALE CLOC
DB_LOCALE DLOC
TRANSLATIONDLL TDLL
TRANSLATIONOPTION TOPT
CONNECTDATABASE CONDB
EXCLUSIVE XCL
CURSORBEHAVIOR CURB
SAVEFILE SAVEFILE
OPTIONS OPT
DESCRIPTION DESC
ENABLESCROLLABLECURSORS

SCUR

ENABLEINSERTCURSORS ICUR
OPTIMIZEAUTOCOMMIT OAC

OPTOFC OPTOFC
NEEDODBCTYPESONLY ODTYP
REPORTKEYSETCURSORS RKC
FETCHBUFFERSIZE FBC
DESCRIBEDECIMALFLOATPOINT
DDFP

2-20 IBM Informix ODBC Driver Programmer’s Manual

DONOTUSELVARCHAR DNL

REPORTCHARCOLASWIDECHARCOL
RCWC

Chapter 2. Configuring Data Sources ~ 2-21

2-22 IBM Informix ODBC Driver Programmer’s Manual

Chapter 3. Data Types

Data Types .
SQL Data Types .
Standard SQL Data Types . .
Using Visual Basic Client-side Cursors
Additional SQL Data Types for GLS

Additional SQL Data Types for Dynamic Server

Precision, Scale, Length, and Display Size.
C Data Types . e
C Interval Structure.
Transferring Data .
Reporting Standard ODBC Types .
SQL_INFX_ATTR_ODBC_TYPES_ ONLY
SQL_INFX_ATTR_LO_AUTOMATIC .

SQL_INFX_ATTR_DEFAULT _UDT_FETCH_ TYPE

Reporting Wide Character Columns

DSN Settings for Report Standard ODBC Data Types

Converting Data .

.31
.32
.32

. 35
. 3-6

. 3-11
. 3-13
. 3-14
. 3-15
. 3-15
. 3-16
. 3-16
. 3-17
. 3-17
. 3-18

In This Chapter

This chapter discusses the following topics:

* Kinds of data types
* SQL data types

+ C data types

* Transferring data

¢ Converting data

Data Types
The following table describes the data types that IBM Informix ODBC Driver
supports.
Data Type Description Example
Informix SQL data type Data types that your Informix CHAR(n)
database server uses
Informix ODBC Driver SQL | Data types that correspond to the SQL_CHAR

data type

Informix SQL data types

Standard C data type

Data types that your C compiler
defines

unsigned char

© Copyright IBM Corp. 1996, 2004

3-1

Data Type Description Example
Informix ODBC Driver Typedefs that correspond to the UCHAR
typedef standard C data types

Informix ODBC Driver C Data types that correspond to the SQL_C_CHAR
data type standard C data types

SQL Data Types

For detailed information about the Informix SQL data types, see the
IBM Informix: Guide to SQL Reference, the IBM Informix: Guide to SQL Tutorial,
and IBM Informix: User-Defined Routines and Data Types Developer’s Guide.

Standard SQL Data Types

The following table lists the standard Informix SQL data types and their
corresponding Informix ODBC Driver data types.

Informix ODBC Driver SQL

Informix SQL Data Type |Data Type (f£SqlType) Description

BOOLEAN SQL_BIT t’ or ‘f’

(IDS)

BYTE SQL_LONGVARBINARY Binary data of variable length
CHAR(n), SQL_CHAR Character string of fixed length n
CHARACTER(n) (1=n=232767)

CHARACTER SQL_VARCHAR Character string of variable
VARYING(m,) length with maximum length m

(1 = m = 255) and minimum
amount of reserved space r

O=r<m)
DATE SQL_DATE Calendar date
DATETIME SQL_TIMESTAMP Calendar date and time of day
DEC(p, s), DECIMAL(p, s) | SQL_DECIMAL Signed numeric value with

precision p and scale s
(1=p=32,0=s=p)

DOUBLE PRECISION SQL_DOUBLE Signed numeric value with the
same characteristics as the
standard C double data type

FLOAT SQL_DOUBLE Signed numeric value with the
same characteristics as the
standard C double data type

3-2 IBM Informix ODBC Driver Programmer’s Manual

Informix SQL Data Type

Informix ODBC Driver SQL
Data Type (£SqlType)

Description

INT, INTEGER

SQL_INTEGER

Signed numeric value with
precision 10, scale 0, and range n
(-2,147,483,647 = n =
2,147,483,647)

INTS (IDS)

SQL_BIGINT

Signed numeric value with
precision 10, scale 0, and range n
2% -1)=n=2%-1)

INTERVAL MONTH(p)

SQL_INTERVAL_MONTH

Number of months between two
dates; p is the interval leading
precision.

INTERVAL YEAR(p)

SQL_INTERVAL_YEAR

Number of years and months
between two dates; p is the
interval leading precision.

INTERVAL YEAR(p) TO
MONTH

SQL_INTERVAL_YEAR_TO_MONTH

Number of years and months
between two dates; p is the
interval leading precision.

INTERVAL DAY(p)

SQL_INTERVAL_DAY

Number of days between two
dates; p is the interval leading
precision.

INTERVAL HOUR(p)

SQL_INTERVAL_HOUR

Number of hours between two
date times; p is the interval
leading precision.

INTERVAL MINUTE(p)

SQL_INTERVAL_MINUTE

Number of minutes between two
date/times; p is the interval
leading precision.

INTERVAL SECOND(p,g)

SQL_INTERVAL_SECOND

Number of seconds between two
date/times; p is the interval
leading precision and g is the
interval seconds precision.

INTERVAL DAY (p) TO
HOUR

SQL_INTERVAL_DAY_TO_HOUR

Number of days/hours between
two date/times; p is the interval
leading precision.

INTERVAL DAY(p) TO
MINUTE

SQL_INTERVAL_DAY_TO_MINUTE

Number of days/hours/minutes
between two date/times; p is the
interval leading precision.

INTERVAL DAY(p) TO
SECOND(g)

SQL_INTERVAL_DAY_TO_SECOND

Number of
days/hours/minutes/seconds
between two date/times; p is the
interval leading precision and g
is the interval seconds precision.

Chapter 3. Data Types ~ 3-3

Informix SQL Data Type

Informix ODBC Driver SQL
Data Type (fSqlType)

Description

INTERVAL HOUR (p) TO
MINUTE

SQL_INTERVAL_HOUR_TO_MINUTE

Number of hours/minutes
between two date/times; p is the
interval leading precision.

INTERVAL HOUR(p) TO
SECOND(q)

SQL_INTERVAL_HOUR_TO_SECOND

Number of
hours/minutes/seconds between
two date/times; p is the interval
leading precision and g is the
interval seconds precision.

INTERVAL MINUTE(p)
TO SECOND(g)

SQL_INTERVAL_MINUTE
_TO_SECOND

Number of minutes/seconds
between two date/times; p is the
interval leading precision and g
is the interval seconds precision.

LVARCHAR (IDS)

SQL_VARCHAR

Character string of variable
length with length [

(255 =1 = 32,000). When
connecting to IDS 10.0 servers
using the ODBC 2.90 driver, the
SQLDescribeCol,
SQLColAttributes &
SQLDescribeParam APIs report
the length mentioned during
creation of the LVARCHAR
column. If no length was
mentioned during creation,
length defaults to 2048 bytes.

MONEY(p, s)

SQL_DECIMAL

Signed numeric value with
precision p and scale s
(1=p=32,0=s=p)

NUMERIC SQL_NUMERIC Signed, exact, numeric value
with precision p and scale s
(1=p=150=s=p)

REAL SQL_REAL Signed numeric value with the
same characteristics as the
standard C float data type

SERIAL SQL_INTEGER Sequential INTEGER

SERIALS SQL_BIGINT Sequential INT8

(IDS)

SMALLFLOAT SQL_REAL Signed numeric value with the
same characteristics as the
standard C float data type

3-4 IBM Informix ODBC Driver Programmer’s Manual

Informix SQL Data Type

Informix ODBC Driver SQL
Data Type (£SqlType)

Description

SMALLINT

SQL_SMALLINT

Signed numeric value with

precision 5, scale 0, and range n
(-32,767 = n = 32,767)

SQL_LONGVARCHAR Character string of variable
length
VARCHAR(m,) SQL_VARCHAR Character string of variable

length with maximum length m
(1 = m = 255) and minimum
amount of reserved space r
O=r<m)

Using Visual Basic Client-side Cursors

When you use Visual Basic client side cursors to perform rowset update
related operations using CHAR or LVARCHAR columns with lengths greater
than or equal to 16,385, the IBM Informix ODBC Driver might return an error.

Visual Basic sends the SQL data type to SQLBindParameter as
SQL_LONGVARCHAR instead of SQL_VARCHAR when the length is greater
than or equal to 16,385. IBM Informix ODBC driver maps
SQL_LONGVARCHAR to TEXT data type. Therefore, applications might see
the error:

[Informix] [Informix ODBC Driver]No cast from text to Tvarchar

or
[Informix] [Informix ODBC Driver]Illegal attempt to use Text/Byte host variable.

Additional SQL Data Types for GLS

The following table lists the additional Informix SQL data types for GLS and
their corresponding Informix ODBC Driver data types. IBM Informix ODBC
Driver does not provide full GLS support. For more information about GLS,
see the IBM Informix: GLS User’s Guide.

Informix ODBC Driver
Informix SQL Data SQL

Type Data Type (fSqlType) Description

NCHAR(n) SQL_CHAR Character string of fixed length n
(1 =n =32,767). Collation depends
on locale.

Chapter 3. Data Types 3-5

Type

Informix SQL Data

SOL
Data Type (fSqlType)

Informix ODBC Driver

Description

NVARCHAR(m, 7)

SQL_VARCHAR

Character string of variable length
with maximum length m

(1 = m = 255) and minimum
amount of reserved space r (0 = r
< m). Collation depends on locale.

Additional SQL Data Types for Dynamic Server

The following table lists the additional Informix SQL data types for Dynamic
Server and their corresponding Informix ODBC Driver data types. To use the
Informix ODBC Driver SQL data types for Dynamic Server, include infxcli.h.

Informix SQL Data Type

Informix ODBC Driver SQL
Data Type (£SqlType)

Description

Collection
(LIST, MULTISET, SET)

Any Informix ODBC Driver SQL
data type

Composite value that consists of one
or more elements, where each
element has the same data type.

(Named row, unnamed row)

data type

DISTINCT Any Informix ODBC Driver SQL | UDT that is stored the same way as
data type its source data type but has different

casts and functions

OPAQUE SQL_INEX_UDT_FIXED Fixed-length UDT with an internal

(fixed) structure that has the same size for
all possible values

OPAQUE SQL_INEX_UDT_VARYING Variable-length UDT with an internal

(varying) structure that can have a different
size for each different value

Row Any Informix ODBC Driver SQL | Composite value that consists of one

or more elements, where each
element can have a different data

type. For more information, see

Smart large object
(BLOB or CLOB)

SQL_IFMX_UDT_BLOB
SQL_IFMX_UDT_CLOB

Large object that is stored in an
sbspace on disk and is recoverable.

For more information, see [Chapter 4

Precision, Scale,

Length, and Display Size

The functions that get and set precision, scale, length, and display size for
SQL values have size limitations for their input arguments. Therefore, these
values are limited to the size of an SDWORD that has a maximum value of
2,147,483,647. The following table describes these values.

3-6

IBM Informix ODBC Driver Programmer’s Manual

Description for a Numeric Data | Description for a

Value Type Non-Numeric Data Type

Precision Maximum number of digits. Either the maximum length or

the specified length.

Scale Maximum number of digits to the |Not applicable.
right of the decimal point. For
floating point values, the scale is
undefined because the number of
digits to the right of the decimal
point is not fixed.

Length Maximum number of bytes that a | Maximum number of bytes
function returns when a value is | that a function returns when a
transferred to its default C data value is transferred to its
type. default C data type. The length

does not include the NULL
termination byte.

Display size Maximum number of bytes Maximum number of bytes
needed to display data in needed to display data in
character form. character form.

Standard SQL Data Types
The following table describes the precision, scale, length, and display size for
the standard Informix ODBC Driver SQL data types.

Informix ODBC Driver
SQL Data Type (£SqlType)

Description

SQL_BIGINT Precision: 19. SQLBindParameter ignores the value of cbColDef for this
(IDS) data type.
Scale: 0. SQLBindParameter ignores the value of ibScale for this data type.
Length: 8 bytes.
Display size: 20 digits. One digit is for the sign.
SQL_BIT Precision: 1. SQLBindParameter ignores the value of cbColDef for this
(IDS) data type.

Scale: 0. SQLBindParameter ignores the value of ibScale for this data type.
Length: 1 byte.

Display size: 1 digit.

Chapter 3. Data Types ~ 3-7

Informix ODBC Driver
SQL Data Type (fSqlType) | Description

SQL_CHAR Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: The specified length. For example, the length of CHAR(10) is 10
bytes.

Display size: Same as the length.

SQL_DATE Precision: 10. SQLBindParameter ignores the value of cbColDef for this
data type.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: 6 bytes.

Display size: 10 digits in the format yyyy-mm-dd.

SQL_DECIMAL Precision: The specified precision. For example, the precision of
DECIMAL (12, 3) is 12.

Scale: The specified scale. For example, the scale of DECIMAL(12, 3) is 3.

Length: The specified precision plus 2. For example, the length of
DECIMAL(12, 3) is 14 bytes. The two additional bytes are used for the
sign and the decimal points because functions return this data type as a
character string.

Display size: Same as the length.

SQL_DOUBLE Precision: 15. SQLBindParameter ignores the value of cbColDef for this
data type.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: 8 bytes.

Display size: 22 digits. The digits are for a sign, 15 numeric characters, a
decimal point, the letter E, another sign, and 2 more numeric characters.

SQL_INTEGER Precision: 10. SQLBindParameter ignores the value of cbColDef for this
data type.

Scale: 0. SQLBindParameter ignores the value of ibScale for this data type.
Length: 4 bytes.

Display size: 11 digits. One digit is for the sign.

3-8 IBM Informix ODBC Driver Programmer’s Manual

Informix ODBC Driver
SQL Data Type (fSqlType) | Description

SQL_LONGVARBINARY Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: The maximum length. If a function cannot determine the
maximum length, it returns SQL_NO_TOTAL.

Display size: The maximum length times 2. If a function cannot
determine the maximum length, it returns SQL_NO_TOTAL.

SQL_LONGVARCHAR Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: The maximum length. If a function cannot determine the
maximum length, it returns SQL_NO_TOTAL.

Display size: Same as the length.

SQL_REAL Precision: 7. SQLBindParameter ignores the value of cbColDef for this
data type.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: 4 bytes.

Display size: 13 digits. The digits are for a sign, 7 numeric characters, a
decimal point, the letter E, another sign, and 2 more numeric characters.

SQL_SMALLINT Precision: 5. SQLBindParameter ignores the value of cbColDef for this
data type.

Scale: 0. SQLBindParameter ignores the value of ibScale for this data type.

Length: 2 bytes.

Display size: 6 digits. One digit is for the sign.

Chapter 3. Data Types ~ 3-9

Informix ODBC Driver
SQL Data Type (£SqlType)

Description

SQL_TIMESTAMP

Precision: 8. SQLBindParameter ignores the value of cbColDef for this
data type.

Scale: The number of digits in the FRACTION field.
Length: 16 bytes.

Display size: 19 or more digits:

* If the scale of the time stamp is 0: 19 digits in the format yyyy-mm-dd
hh:mm:ss.

* If the scale of the time stamp exceeds 0: 20 digits plus digits for the
FRACTION field in the format yyyy-mm-dd hh:mm:ss.f...

SQL_VARCHAR

Precision: Same as the length.

Scale: Not applicable. SQLBindParameter ignores the value of ibScale for
this data type.

Length: The specified length. For example, the length of VARCHAR(10) is
10 bytes.

Display size: Same as the length.

Additional

SQL Data Types for Dynamic Server

The following table describes the precision, scale, length, and display size for
the Informix ODBC Driver SQL data types for Dynamic Server.

Informix ODBC Driver SQL
Data Type (fSqlType)

Description

SQL_IFMX_UDT_BLOB

Precision: Variable value. To determine this value, call a function that
returns the precision for a column.

Scale: Not applicable. A function that returns the scale for a column
returns -1 for this data type.

Length: Variable value. To determine this value, call a function that
returns the length for a column.

Display Size: Variable value. To determine this value, call a function
that returns the display size for a column.

3-10 IBM Informix ODBC Driver Programmer’s Manual

Informix ODBC Driver SQL
Data Type (fSqlType) Description

SQL_IFMX_UDT_CLOB Precision: Variable value. To determine this value, call a function that
returns the precision for a column.

Scale: Not applicable. A function that returns the scale for a column
returns -1 for this data type.

Length: Variable value. To determine this value, call a function that
returns the length for a column.

Display Size: Variable value. To determine this value, call a function
that returns the display size for a column.

SQL_INFX_UDT_FIXED Precision: Variable value. To determine this value, call a function that
returns the precision for a column.

Scale: Not applicable. A function that returns the scale for a column
returns -1 for this data type.

Length: Variable value. To determine this value, call a function that
returns the length for a column.

Display Size: Variable value. To determine this value, call a function
that returns the display size for a column.

SQL_INFX_UDT_VARYING | Precision: Variable value. To determine this value, call a function that
returns the precision for a column.

Scale: Not applicable. A function that returns the scale for a column
returns -1 for this data type.

Length: Variable value. To determine this value, call a function that
returns the length for a column.

Display Size: Variable value. To determine this value, call a function
that returns the display size for a column.

C Data Types

An IBM Informix ODBC Driver application uses C data types to store values
that the application processes. The following table describes the C data types
that IBM Informix ODBC Driver provides.

Important: String arguments in IBM Informix ODBC Driver functions are
unsigned. Therefore, you need to cast a CString object as an
unsigned string before you use it as an argument in an
IBM Informix ODBC Driver function.

Chapter 3. Data Types 3-11

Kind of Value

Informix ODBC Driver C
Data Type (fCType)

Informix ODBC Driver
Typedef

Standard C Data Type

Binary SQL_C_BINARY UCHAR FAR * unsigned char FAR *

Boolean SQL_C_BIT UCHAR unsigned char

(IDS)

Character SQL_C_CHAR UCHAR FAR * unsigned char FAR *

Wide Character | SQL_C_WCHAR WCHAR FAR * wchar_t FAR *

Date SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT{
SWORD year; UWORD
month; UWORD day; }

Interval SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT | C Interval Structure

SQL_C_INTERVAL_MONTH |SQL_INTERVAL_STRUCT | C Interval Structure
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT | C Interval Structure
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT | C Interval Structure
SQL_C_INTERVAL_MINUTE |SQL_INTERVAL_STRUCT | C Interval Structure
SQL_C_INTERVAL SQL_INTERVAL_STRUCT | C Interval Structure
_SECOND
SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT | C Interval Structure
_TO_MONTH
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT | C Interval Structure
_TO_HOUR
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT | C Interval Structure
_TO_MINUTE
SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT | C Interval Structure
_TO_SECOND
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT | C Interval Structure
_TO_MINUTE
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT | C Interval Structure
_TO_SECOND
SQL_C_INTERVAL_MINUTE |SQL_INTERVAL_STRUCT |C Interval Structure
_TO_SECOND
Numeric SQL_C_DOUBLE SDOUBLE signed double
SQL_C_FLOAT SFLOAT signed float
SQL_C_LONG SDWORD signed long int
3-12 IBM Informix ODBC Driver Programmer’s Manual

Informix ODBC Driver C Informix ODBC Driver
Kind of Value |Data Type (fCType) Typedef Standard C Data Type

SQL_C_NUMERIC SQL_NUMERIC_STRUCT |struct tag
SQL_NUMERIC_STRUCT {
SQLCHAR precision;
SQLSCHAR scale;
SQLCHAR sign; SQLCHAR
val [SQL_MAX_
NUMERIC_LEN];
}SQL_NUMERIC_STRUCT;

SQL_C_SHORT SWORD signed short int
SQL_C_SLONG SDWORD signed long int
SQL_C_SSHORT SWORD signed short int
SQL_C_STINYINT SCHAR signed char
SQL_C_TINYINT SCHAR signed char
SQL_C_ULONG UDWORD unsigned long int
SQL_C_USHORT UWORD unsigned short int
SQL_C_UTINYINT UCHAR unsigned char
Time stamp SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct

tagTIMESTAMP_STRUCT {
SWORD year;

UWORD month; UWORD

day; UWORD hour;

UWORD minute;

UWORD second;

UDWORD fraction; }

C Interval Structure
The following structures specify the C data type for the SQL interval data
type:
typedef struct tagSQL_INTERVAL_STRUCT
{
SQLINTERVAL interval type;
SQLSMALLINT interval_sign;
union

{
SQL_YEAR_MONTH_STRUCT year month;
SQL_DAY_SECOND_STRUCT day_second;
} intval;

}SQLINTERVAL_STRUCT;

typedef enum

{

SQL_IS YEAR=1,

SQL_IS_MONTH=2,

Chapter 3. Data Types 3-13

SQL_IS_DAY=3,
SQL_IS_HOUR=4,
SQL_IS_MINUTE=5,
SQL_IS_SECOND=6,
SQL_IS_YEAR TO_MONTH=7,
SQL_IS_DAY_TO_HOUR=8,
SQL_IS_DAY_TO_MINUTE=9,
SQL_IS_DAY_TO_SECOND=10,
SQL_IS_HOUR TO_MINUTE=11,
SQL_IS_HOUR_TO_SECOND=12,
SQL_IS_MINUTE_TO_SECOND=13,
}SQLINTERVAL;

typedef struct tagSQL_YEAR_MONTH

SQLUINTEGER year;
SQLUINTEGER month;
}SQL_YEAR_MOHTH_STRUCT;

typedef struct tagSQL_DAY_SECOND

{

SQLUINTEGER day;
SQLUNINTEGER hour;
SQLUINTEGER minute;
SQLUINTEGER second;
SQLUINTEGER fraction;
}SQL_DAY_SECOND_STRUCT;

Transferring Data

Among data sources that use the same DBMS, you can safely transfer data in
the internal form that a DBMS uses. For a particular piece of data, the SQL
data types must be the same in the source and target data sources. The C data
type is SQL_C_BINARY.

When you call SQLFetch, SQLExtendedFetch, or SQLGetData to retrieve this
kind of data from a data source, IBM Informix ODBC Driver retrieves the
data and transfers it, without conversion, to a storage location of type
SQL_C_BINARY. When you call SQLExecute, SQLExecDirect, or
SQLPutData to send this kind of data to a target data source, IBM Informix
ODBC Driver retrieves the data from the storage location and transfers it,
without conversion, to the target data source.

| Dynamic Server

The binary representation of INT8 and SERIALS is an array of two unsigned
long integers followed by a short integer that indicates the sign field. The sign
field is 1 for a positive value, -1 for a negative value, or 0 for a null value.

| End of Dynamic Server

3-14 IBM Informix ODBC Driver Programmer’s Manual

Important: Applications that transfer any data (except binary data) in this
manner are not interoperable among DBMSs.

Reporting Standard ODBC Types

IBM Informix ODBC Driver supports existing applications that support

standard ODBC data types only. You should check the DSN option Report

Standard ODBC Types to turn on this behavior. When an application sets this

option, the driver sets the following behavior:

* Only Standard ODBC data types are reported for all the driver defined new
data types.

¢ The data type access method for smart-large-object (LO) data can be
accessed as SQL_LONGVARCHAR and SQL_LONGVARBINARY. In other
words, SQL_LONGVARCHAR and SQL_LONGVARBINARY act like the
simple large objects, byte and text.

* The defaultUDTfetchtype is set to SQL_C_CHAR.

However, you can control each of the preceding behaviors individually as a
connection or a statement level option. Use the following connection and
statement level attributes:

* SQL_INFX_ATTR_ODBC_TYPES_ONLY
* SQL_INFX_ATTR_LO_AUTOMATIC
* SQL_INFX_ATTR_DEFAULT _UDT_FETCH_TYPE

Applications can use SQLSetConnectAttr and SQLSetStmtAttr to set and unset
these values. (ODBC 2.x applications can use SQLSetConnectOption and
SQLSetStmtOption equivalently.)

SQL_INFX_ATTR_ODBC_TYPES_ONLY

Applications can set this attribute to value SQL_TRUE or SQL_FALSE. This
attribute can be set and unset at connection and statement level. All the
statements allocated under the same connection inherit this value.

Alternatively each statement can change this attribute. By default this attribute
is set to SQL_FALSE.

An application can change the value of this attribute using
SQLSetConnectAttr and SQLSetStmtAttr (SQLSetConnectOption and
SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set
using SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and
SQLGetStmtOption in ODBC 2.x).

This attribute cannot be set to SQL_TRUE when
SQL_INFX_ATTR_LO_AUTOMATIC is set SQL_FALSE. An error message is
returned that reports the following message: Attribute cannot be set.
LoAutomatic should be ON to set this value.

Chapter 3. Data Types 3-15

The application should first set the SQL_INFX_ATTR_LO_AUTOMATIC
attribute to SQL_TRUE and then set the attribute
SQL_INFX_ATTR_ODBC_TYPES_ONLY to SQL_TRUE.

SQL_INFX_ATTR_LO_AUTOMATIC

Applications can set this attribute to value SQL_TRUE or SQL_FALSE. This
attribute can be set and unset at connection and statement level. All the
statements allocated under the same connection inherit this value.
Alternatively each statement can change this attribute. By default this attribute
is set to SQL_FALSE.

An application can change the value of this attribute using
SQLSetConnectAttr and SQLSetStmtAttr (SQLSetConnectOption and
SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set
using SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and
SQLGetStmtOption in ODBC 2.x).

The attribute SQL_INFX_ATTR_LO_AUTOMATIC cannot be set to
SQL_FALSE when SQL_INFX_ATTR_ODBC_TYPES_ONLY is set to
SQL_TRUE. An error message is returned that reports the following message:
Attribute cannot be set. ODBC types only should be OFF to set this value.

Applications should first set the attribute SQL_INFX_ODBC_TYPES_ONLY to
SQL_FALSE and then set the attribute SQL_INFX_ATTR_LO_AUTOMATIC to
SQL_FALSE.

SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

Applications can set this attribute to SQL_C_CHAR or SQL_C_BINARY to

set the default fetch type for UDTs. The default value of this attribute is set

depending on the following conditions:

* If the DSN setting for Report Standard ODBC Types is ON, the value of
DefaultUDTFetchType is set to SQL_C_CHAR.

* If the DSN setting for Report Standard ODBC Types is OFF, the value of
DefaultUDTFetchType is set to SQL_C_BINARY.

 If a user has set a registry key, the value of DefaultUDTFetchType is set to
the value in the registry provided Report Standard ODBC Types is not set.

An application can change the value of this attribute using
SQLSetConnectAttr and SQLSetStmtAttr (SQLSetConnectOption and
SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set
using SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and
SQLGetStmtOption in ODBC 2.x).

Setting the Report ODBC Types to ON always overrides
DefaultUDTFetchType to SQL_C_CHAR.

3-16 IBM Informix ODBC Driver Programmer’s Manual

Reporting Wide Character Columns

Informix servers do not support wide character data types. When an
application sets the Report Char Columns as Wide Char Columns option, the
driver sets the following behavior:

* SQLDescribeCol reports char columns as wide char columns

* SQL_CHAR column is reported as SQL_WCHAR

* SQL_VARCHAR column is reported as SQL_WVARCHAR

* SQL_LONGVARCHAR column is reported as SQL_WLONGVARCHAR
* The default is 0: (disabled)

After setting the Report Char Columns as Wide Char Columns option, calls
to SQLBindParameter with SQL data types have the following behavior:

¢ SQL_WCHAR is mapped to SQL_CHAR
¢ SQL_WVARCHAR is mapped to SQL_VARCHAR
* SQL_WLONGVARCHAR is mapped to SQL_LONGVARCHAR

DSN Settings for Report Standard ODBC Data Types

| UNIX Only |

Add a new DSN option “NeedODBCTypesOnly” under your DSN setting in
your .odbc.ini file [default is 0]. For example:

[Informix9]
Driver=/informix/1ib/c1i/1ibthcli.so
Description=Informix ODBC 3.81 Driver

NeedODBCTypesOnly=1

| End of UNIX Only |

| Windows Only |

Check this option under the Advanced tab of the ODBC Administration for
IBM Informix Driver DSN [default is 0].

| End of Windows Only |

The following table shows how the INFORMIX 9 data types map to the
standard ODBC data types. These types are in addition to the Informix data

types.
INFORMIX 9 ODBC
Blob SQL_LONGVARBINARY

Chapter 3. Data Types 3-17

Boolean
Clob
Int8
Lvarchar
Serial8
Multiset
Set

List

Row

SQL_BIT

SQL_LONGVARCHAR
SQL_BIGINT

SQL_VARCHAR

SQL_BIGINT
SQL_C_CHAR/SQL_C_BINARY
SQL_C_CHAR/SQL_C_BINARY
SQL_C_CHAR/SQL_C_BINARY
SQL_C_CHAR/SQL_C_BINARY

Important: For multiset, set, row, and list data types, the data type is mapped

to the defaultUDTFetchType attribute set (SQL_C_CHAR or

SQL_C_BINARY).

Converting Data

3-18

The word convert is used in this section in a broad sense; it includes the

transfer of data from one storage location to another without a conversion in

data type.

Standard Conversions

The following table shows the supported conversions between the Informix

SQL data types and the Informix ODBC Driver C data types. An X indicates a
supported conversion.

Dynamic Server

Only Dynamic Server can convert data to SQL_C_BIT.

End of Dynamic Server

Informix ODBC Driver C Data Type (Target Type)

o]
S | = =
— <| =| Z
= ~ bl = HlZ| & =
MR E P EEEEEHEE R EEEE
Sl ol 2l Elel2 &z 2 cl6| 22 5|z 0 &| &
ZIEIZ Y 22 2|02 &| 3@ E|&|&|lalglE
m| ml Ul g| Q| Q| ml)_]l Zl m| c,J| U)I ml [_‘| [_‘| D| D| D|
Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul
i b [[| | | [[[e [| | | | [[[
Informix SQL | 5| 5 5| 5| & & & & 3| 3| Q| 2| 2| 2| 9| 9| T &
Data Type AN A DDA A A A AlA A Ao ananlan
BOOLEAN (IDS) |X [X [X |X

IBM Informix ODBC Driver Programmer’s Manual

INIANILN D 10S

IMOHSN D 10S

HONO1N D 10S

INIANIL D 10S

JINVLSANIL D 10S

INIANILS D 10S

IdOHSS O 10S

ONO1IS O 10S

IMOHS D 10S

JDIMANNN O 10S

DNOT D 10S

IVO1i D 10S

41900d O 10S

aLva O 10S

AVHOM DO 10S

Informix ODBC Driver C Data Type (Target Type)

AVHD D 10S

119 D 10S

XIVNII O 10S

Informix SQL
Data Type

BYTE

3-19

X [X [X |X
X | X | X |X
X [X | X |X
X [X [X |X
X X | X |X
X [X | X |X
X X | X | X
X [X [X |X

XX X[X [X [X [X|X|X
XX [X [X | X[X |X[X[X
Chapter 3. Data Types

X
X [X [X [X |X
XX [X[X | X | X[X [X

XX [X [X [X | X |X[X
X

X X [X[X [X|X [X[X
XX I X | X[X | X [X|X
XX | X[X | X [X[|X|X
X X[X | X [X | X [X[X
XX I X | X[X | X [X|X
XX I X | X[X | X [X|X

X
X
X
X [X [X |X

X

XX I XXX [X[X[X|X[|X[X[X|X|X]|X[|X
X

XX I XXX [X[X | XXX [X[X|X]|X]|X[X
XX I XXX [X[XX |X[|X[X[X|X|X]|X[|X

XX [X [X | X |X

X
XX X [X [X[X[X[XXX [X[X[X[X[|X[X[X]|X

XX (XX [X[X [X[XX [X[X[X|X]|X[|X|X[X][X

X [X | X |X
X [X [X [X
X
X
X
X
X [X | X |X
X [X [X |X

X
X

LVARCHAR (IDS) X [X [X |X [X

DEC, DECIMAL |X X |X |X
MONEY

CHARACTER
DOUBLE

CHARACTER
VARYING

DATE
INT, INTEGER

INTS (IDS)
SMALLFLOAT
SMALLINT

SERIALS (IDS)
TEXT

CHAR,
DATETIME
PRECISION
FLOAT
NUMERIC
REAL
SERIAL
VARCHAR

The following table shows the supported conversions between the additional
Informix SQL data types for GLS and the Informix ODBC Driver C data

Additional Conversions for GLS

3-20

types. An X indicates a supported conversion.

Dynamic Server

Only Dynamic Server can convert data to SQL_C_BIT.

End of Dynamic Server

Informix ODBC Driver C Data Type (fCType)

S
e =
<| & =l Z
> = Bl &l B Ol 2| &
= <l wl B 2 o E| 2| & 2| B Zl 2| 3| =
< =/ 2 5| z| o & g & 5| z| ol £ &
Zl =l | <| 9 8| 3| & 2| B E| & & 2| 8| B
m| pn| UI QI o| ml '-‘II wl ml ml ml Hl HI DI DI DI
Ul UI UI Ul UI UI UI UI Ul UI UI UI UI Ul UI UI
3 - - - - 1 - - - - - - - 1 - - -1
Informix SQL | &5 5 & o o o 9 O o o o o o o o O
Data Type N @ N B B Al B A B B B B A B Al n
NCHAR X [X |X X [X X [X [X [X [x [X X X
NVARCHAR ([X [X [X [X [X |[X |X |X |X [X [X | X [X [X [X [X

Additional Conversions for Dynamic Server

The following table shows the supported conversions between the additional
Informix SQL data types for Dynamic Server and the Informix ODBC Driver
C data types, including the additional Informix ODBC Driver C data type for
Dynamic Server. An X indicates a supported conversion.

Informix ODBC Driver C Data Type (fCType)

S
= -
<| = H| Z
z - gl &l E o| £| &
~ o w B gl o Bl 2| &l = gl gzl 82
<l el 23|zl o 8 % & S|z oz &
ZIEl | <| 9 Q| S| | 2| B E| & &l 2| 8 &
m| ml UI D| D| u"l '_]I c’)I EDl ml cI)I [-'I P'I D| D| D|
UI UI UI UI UI UI UI UI UI UI UI UI UI UI UI UI
: — - [— — — — - — — — — — — — -
Informix SQL | 5/ &5 & o & & & ol o & & & & & ol o
Data Type A B B B B B B B B B B B B B B D
Collection X [X [X X (X X [x [x [x |x [x X |X
DISTINCT [X |X |X [x [x |x [x [x [x [x [x |x [x [x [x [x
OPAQUE® [X X
Row XX [x [x o [x [x |Ix [x [x Ix [x o [x Ix [x [x |x
Smart large X X [X [X | X | X [X [X [X |[X |[X [X | X |X |X [X
object

IBM Informix ODBC Driver Programmer’s Manual

Informix ODBC Driver C Data Type (fCType)
5

= =
> = =l z| & & Bl &
Bl x| W Bl g o B2 E e g 2
< <| &l 2| 3| z| © zl Sz 0| | &
Z &l = 2| 288 g 3 % E|l& & 2 s E
2 el Q| Q| o O s M M Bt
] e e et e e et e et et e e e e It Bt
i e It T L N A S e B B e | R | RS R |
Informix SQL | & & & & o 3| a| a| ol 9l 2| 3 3 3 | &
Data Type N B N Al B Al B A B D B B A B Al »
@ Use SQL_C_CHAR to access an OPAQUE value in the external format as a string.

Use SQL_C_BINARY to access an OPAQUE value in the internal binary format.

Converting Data from SQL to C

When you call SQLExtendedFetch, SQLFetch, or SQLGetData, IBM Informix
ODBC Driver retrieves data from a data source. If necessary, IBM Informix
ODBC Driver converts the data from the source data type to the data type
that the TargetType argument in SQLBindCol or the fCType argument in
SQLGetData specifies. Finally, IBM Informix ODBC Driver stores the data in
the location pointed to by the rgbValue argument in SQLBindCol or
SQLGetData.

The tables in the following sections describe how IBM Informix ODBC Driver
converts data that it retrieves from a data source. For a given Informix ODBC
Driver SQL data type, the first column of the table lists the legal input values
of the TargetType argument in SQLBindCol and the fCType argument in
SQLGetData. The second column lists the outcomes of a test, often using the
cbValueMax argument specified in SQLBindCol or SQLGetData, which

IBM Informix ODBC Driver performs to determine whether it can convert the
data. For each outcome, the third and fourth columns list the values of the
rgbValue and pcbValue arguments specified in SQLBindCol or SQLGetData
after IBM Informix ODBC Driver tries to convert the data.

The last column lists the SQLSTATE returned for each outcome by
SQLExtendedFetch, SQLFetch, or SQLGetData.

If the TargetType argument in SQLBindCol or the fCType argument in
SQLGetData contains a value for an Informix ODBC Driver C data type that
is not shown in the table for a given Informix ODBC Driver SQL data type,
SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE 07006
(Restricted data type attribute violation). If the fCType argument or the
TargetType argument contains a value that specifies a conversion from a
driver-specific SQL data type to an Informix ODBC Driver C data type and

Chapter 3. Data Types ~ 3-21

IBM Informix ODBC Driver does not support this conversion, then
SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE S1C00
(Driver not capable).

Although the tables in this chapter do not show it, the pcbValue argument
contains SQL_NULL_DATA when the SQL data value is null. When

IBM Informix ODBC Driver converts SQL data to character C data, the
character count returned in pcbValue does not include the null-termination
byte. If rgbValue is a null pointer, SQLBindCol or SQLGetData returns
SQLSTATE S1009 (Invalid argument value).

The following terms and conventions are used in the tables:

* Length of data is the number of bytes of C data that are available to return in
rgbValue, regardless of whether or not the data is truncated before it returns
to the application. For string data, this does not include the
null-termination byte.

* Display size is the total number of bytes that are needed to display the data
in character format.

* Words in italics represent function arguments or elements of the Informix
ODBC Driver SQL grammar.

Default C Data Types

If you specify SQL_C_DEFAULT for the TargetType argument in SQLBindCol,
the fCType argument in SQLGetData, or the ValueType argument in
SQLBindParameter, IBM Informix ODBC Driver uses the C data type of the
output or input buffer for the SQL data type of the column or parameter to
which the buffer is bound.

Standard Default C Data Types: For each Informix ODBC Driver SQL data
type, the following table shows the default C data type.

Informix ODBC Driver
SQL Data Type (fSqlType) Default Informix ODBC Driver
C Data Type (fCType)

SQL_BIGINT (IDS) SQL_C_CHAR
SQL_BIT (IDS) SQL_C_BITS
SQL_CHAR SQL_C_CHAR
SQL_DATE SQL_C_DATE
SQL_DECIMAL SQL_C_CHAR
SQL_DOUBLE SQL_C_DOUBLE
SQL_INTEGER SQL_C_SLONG
SQL_LONGVARBINARY SQL_C_BINARY

3-22 IBM Informix ODBC Driver Programmer’s Manual

SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIMESTAMP
SQL_VARCHAR

SQL_C_CHAR
SQL_C_NUMERIC
SQL_C_FLOAT
SQL_C_SSHORT
SQL_C_TIMESTAMP
SQL_C_CHARS

Additional Default C Data Types for Dynamic Server: For each additional
Informix ODBC Driver SQL data type for Dynamic Server, the following table

shows the default C data type.

Informix ODBC Driver
SQL Data Type (£SqlType)

SQL_IFMX_UDT _BLOB
SQL_IFMX_UDT_CLOB
SQL_INFX_UDT_FIXED

SQL_INFX_UDT_VARYING

SQL to C: Binary

Default Informix ODBC Driver
C Data Type (fCType)

SQL_C_BINARY
SQL_C_BINARY

This Informix ODBC Driver SQL data type
does not have a default Informix ODBC
Driver C data type. Because this Informix
ODBC Driver SQL data type can contain
binary data or character data, you must bind a
variable for this Informix ODBC Driver SQL
data type before you fetch a corresponding
value. The data type of the bound variable
specifies the C data type for the value.

This Informix ODBC Driver SQL data type
does not have a default Informix ODBC
Driver C data type. Because this Informix
ODBC Driver SQL data type can contain
binary data or character data, you must bind a
variable for this Informix ODBC Driver SQL
data type before you fetch a corresponding
value. The data type of the bound variable
specifies the C data type for the value.

The binary Informix ODBC Driver SQL data type is SOL_LONGVARBINARY.
The following table shows the Informix ODBC Driver C data types to which
binary SQL data can be converted.

Chapter 3. Data Types 3-23

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BINARY |Length of data = cbValueMax Data Length of data |N/A
Length of data > cbValueMax Truncated data |Length of data |01004

SQL_C_CHAR (Length of data) * 2 < cbValueMax | Data Length of data |N/A
(Length of data) * 2 = cbValueMax | Truncated data |Length of data |01004

When IBM Informix ODBC Driver converts binary SQL data to character C
data, each byte (8 bits) of source data is represented as two ASCII characters.
These characters are the ASCII character representation of the number in its
hexadecimal form. For example, IBM Informix ODBC Driver converts binary
00000001 to “01” and binary 11111111 to “FE.”

IBM Informix ODBC Driver converts individual bytes to pairs of hexadecimal
digits and terminates the character string with a null byte. Because of this
conversion, if chValueMax is even and is less than the length of the converted
data, the last byte of the rgbValue buffer is not used. (The converted data
requires an even number of bytes, the next-to-last byte is a null byte, and the
last byte cannot be used.)

SQL to C: Boolean (IDS)

The boolean Informix ODBC Driver SQL data type is SQL_BIT. The following
table shows the Informix ODBC Driver C data types to which boolean SQL
data can be converted. When IBM Informix ODBC Driver converts boolean
SQL data to character C data, the possible values are 0 and 1.

fCType Test rgbValue |pcbValue SQLSTATE5
SQL_C_BINARY |cbValueMax = 1 Data 1 N/A
cbValueMax < 1 Untouched | Untouched 22003
SQL_C_BIT IBM Informix ODBC Driver Data 1 N/A
ignores the value of chValueMax (This is the size of
for this conversion. the corresponding
IBM Informix ODBC Driver C data type.)
uses the size of rgbValue for the
size of the C data type.
SQL_C_CHAR cbValueMax > 1 Data 1 N/A
cbValueMax = 1 Untouched | Untouched 22003
SQL to C: Character
The character Informix ODBC Driver SQL data types are:
* SQL_CHAR
3-24 IBM Informix ODBC Driver Programmer’s Manual

* SQL_LONGVARCHAR
¢ SQL_VARCHAR

The following table shows the Informix ODBC Driver C data types to which
character SQL data can be converted. When IBM Informix ODBC Driver
converts character SQL data to numeric, date, or time stamp C data, it ignores
leading and trailing spaces.

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax. | Data Length of data |N/A
Length of data > cbValueMax. | Truncated data |Length of data 01004
SQL_C_BIT Data is 0 or 1. Data 1 N/A
(IDS)
Data is greater than 0, less |Truncated 1 01004
than 2, and not equal to 1. |data
Data is less than 0 or Untouched Untouched 22003
greater than or equal to 2.
Data is not a numeric-literal. | Untouched Untouched 22005
(The size of the
corresponding
C data type is
1.)
SQL_C_CHAR Length of data < cbValueMax. | Data Length of data N/A
Length of data = cbValueMax. | Truncated data |Length of data | 01004
Chapter 3. Data Types ~ 3-25

fCType

Test

rgbValue

pcbValue

SQLSTATE

SQL_C_DATE

Data value is a valid
date-value.

Data value is a valid
timestamp-value;
time portion is zero.

Data value is a valid
timestamp-value;

time portion is non-zero.
(IBM Informix ODBC
Driver ignores the date
portion of timestamp-value.)

Data value is not a valid

date-value or timestamp-value.

(For all these conversions,
IBM Informix ODBC
Driver ignores the value
of cbValueMax.

IBM Informix ODBC
Driver uses the size of
rgbValue for the size of the
C data type.)

Data

Data

Truncated
data

Untouched

Untouched

(The size of the
corresponding
C data type is
6.)

N/A

N/A

01004

22008

SQL_C_FLOAT

SQL_C_DOUBLE

Data is within the range
of the data type to which
the number is being
converted.

Data is outside the range
of the data type to which
the number is being
converted.

Data is not a numeric-literal.

(For all these conversions,
IBM Informix ODBC
Driver ignores the value
of cbValueMax.

IBM Informix ODBC
Driver uses the size of
rgbValue for the size of the
C data type.)

Data

Untouched

Untouched

Size of the C
data type

Untouched

Untouched

N/A

22003

22005

3-26

IBM Informix ODBC Driver Programmer’s Manual

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_LONG Data converted without Data Size of the C N/A
SQL_C_SHORT truncation. data type
SQL_C_SLONG
SQL_C_SSHORT Data converted with Truncated Size of the C 01004
SQL_C_STINYINT truncation of fractional data data type
SQL_C_TINYINT digits.
SQL_C_ULONG
SQL_C_USHORT Conversion of data would | Untouched Untouched 22003
SQL_C_UTINYINT result in loss of whole (as

opposed to fractional)

digits.

Data is not a numeric-literal. | Untouched Untouched 22005

(For all these conversions,
IBM Informix ODBC
Driver ignores the value
of cbValueMax.

IBM Informix ODBC
Driver uses the size of
rgbValue for the size of the
C data type.)

Chapter 3. Data Types ~ 3-27

date-value, time-value, or
timestamp-value.

(For all these conversions,
IBM Informix ODBC
Driver ignores the value
of cbValueMax.

IBM Informix ODBC
Driver uses the size of
rgbValue for the size of
the C data type.)

(The size of the
corresponding
C data type is
16.)

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_TIMESTAMP | Data value is a valid Data 16 N/A
timestamp-value; fractional
seconds portion not
truncated.
Data value is a valid Truncated 16 N/A
timestamp-value; fractional data
seconds portion truncated.
Data value is a valid Data 16 N/A
date-value. (IBM Informix
ODBC Driver
sets the time
fields of the
time stamp
structure to
zero.)
Data value is a valid Data 16 N/A
time-value. (IBM Informix
ODBC Driver
sets the date
fields of the
time stamp
structure to
the current
date.)
Data value is not a valid Untouched Untouched 22008

SQL to C: Date
The date IBM Informix ODBC Driver SQL data type is SQL_DATE. The

following table shows the IBM Informix ODBC Driver C data types to which
date SQL data can be converted. When IBM Informix ODBC Driver converts
date SQL data to character C data, the resulting string is in the
“yyyy-mm-dd” format.

3-28

IBM Informix ODBC Driver Programmer’s Manual

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BINARY Length of data = cbValueMax |Data Length of data |[N/A
Length of data > cbValueMax | Untouched Untouched 22003

SQL_C_CHAR cbValueMax = 11 Data 10 N/A
cbValueMax < 11 Untouched Untouched 22003

SQL_C_DATE IBM Informix ODBC Driver |Data 6 N/A
ignores the value of (This is the size
cbValueMax for this of the
conversion. IBM Informix corresponding
ODBC Driver uses the size C data type.)
of rgbValue for the size of the
C data type.

SQL_C_TIMESTAMP |IBM Informix ODBC Driver |Data 16 N/A
ignores the value of (IBM Informix | (This is the size
cbValueMax for this ODBC Driver of the
conversion. IBM Informix sets the time corresponding
ODBC Diriver uses the size | fields of the C data type.)
of rgbValue for the size of the | time stamp
C data type. structure to

Zero.)

SQL to C: Numeric
The numeric Informix ODBC Driver SQL data types are:

« SQL_DECIMAL
« SQL_DOUBLE

« SQL_INTEGER
 SQL_REAL

+ SQL_SMALLINT

The following table shows the Informix ODBC Driver C data types to which
numeric SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax. |Data Length of data N/A
Length of data > cbValueMax. |Untouched Untouched 22003
Chapter 3. Data Types ~ 3-29

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BIT Data is 0 or 1. Data 1 N/A

(IDS)

Data is greater than 0, less |Truncated 1 01004
than 2, and not equal to 1. |data
Data is less than 0 or Untouched Untouched 22003
greater than or equal to 2.
Data is not a numeric-literal. | Untouched Untouched 22005
(The size of
the
corresponding
C data type is
1)

SQL_C_CHAR Display size < cbValueMax. |Data Length of data |N/A
Number of whole (as Truncated Length of data |01004
opposed to fractional) data
digits < cbValueMax.

Number of whole (as Untouched Untouched 22003
opposed to fractional)
digits = cbValueMax.

SQL_C_DOUBLE Data is within the range Data Size of the C N/A

SQL_C_FLOAT of the data type to which data type
the number is being
converted.

Data is outside the range Untouched Untouched 22003
of the data type to which
the number is being
converted.
(IBM Informix ODBC
Driver ignores the value
of cbValueMax for this
conversion.
IBM Informix ODBC
Driver uses the size of
rgbValue for the size of
the C data type.)

3-30 IBM Informix ODBC Driver Programmer’s Manual

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_LONG Data converted without Data Size of the C N/A
SQL_C_SHORT truncation. data type

SQL_C_SLONG

SQL_C_SSHORT Data converted with Truncated Size of the C 01004
SQL_C_STINYINT |truncation of fractional data data type

SQL_C_TINYINT digits.

SQL_C_ULONG

SQL_C_USHORT Conversion of data would Untouched Untouched 22003

SQL_C_UTINYINT

result in loss of whole (as
opposed to fractional) digits.

(IBM Informix ODBC
Driver ignores the value
of cbValueMax for this
conversion.

IBM Informix ODBC
Driver uses the size of
rgbValue for the size of the
C data type.)

SQL to C: Time Stamp
The time-stamp Informix ODBC Driver SQL data type is SQL_TIMESTAMP.
The following table shows the Informix ODBC Driver C data types to which
time-stamp SQL data can be converted.

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_BINARY Length of data = cbValueMax. | Data Length of data N/A
Length of data > cbValueMax. | Untouched Untouched 22003
SQL_C_CHAR cbValueMax > Display size. |Data Length of data |N/A
20 = cbValueMax = Display |Truncated data |Length of data |01004
size. (IBM Informix
ODBC Driver
truncates the
fractional
seconds
portion of the
time stamp.)
cbValueMax < 20. Untouched Untouched 22003
Chapter 3. Data Types 3-31

fCType Test rgbValue pcbValue SQLSTATE
SQL_C_DATE Time portion of time Data 6 N/A
stamp is zero.
Time portion of time Truncated data |6 01004
stamp is nonzero.
(IBM Informix ODBC (IBM Informix |(The size of the
Driver ignores the value ODBC Driver |corresponding C
of cbValueMax for this truncates the |data type is 6.)
conversion. time portion
IBM Informix ODBC of the time
Driver uses the size of stamp.)
rgbValue for the size of
the C data type.)
SQL_C_TIMESTAMP |Fractional seconds portion |Data 16 N/A
of time stamp is not
truncated.
Fractional seconds portion |Truncated data |16 01004
of time stamp is truncated.
(IBM Informix ODBC (IBM Informix |(The size of the
Driver ignores the value ODBC Driver | corresponding C
of cbValueMax for this truncates the data type is 16.)
conversion. fractional
IBM Informix ODBC seconds
Driver uses the size of portion of the
rgbValue for the size of time stamp.)
the C data type.)

3-32

When IBM Informix ODBC Driver converts time stamp SQL data to character
C data, the resulting string is in the “yyyy-mm-dd hh:mm:ss[.f...]” format,
where up to nine digits can be used for fractional seconds. Except for the
decimal point and fractional seconds, the entire format must be used,
regardless of the precision of the time stamp SQL data type.

SQL-to-C Data Conversion Examples

The following table illustrates how IBM Informix ODBC Driver converts SQL
data to C data. “\0” represents a null-termination byte (“\0” represents a
wide null termination character when the C data type is SQL_C_WCHAR).
IBM Informix ODBC Driver always null-terminates SQL_C_CHAR and
SQL_C_WCHAR data. For the combination of SQL_DATE and
SQL_C_TIMESTAMP, IBM Informix ODBC Driver stores the numbers that
are in the rgbValue column in the fields of the TIMESTAMP_STRUCT
structure.

IBM Informix ODBC Driver Programmer’s Manual

SQL Data

SQL Data Type Value C Data Type cbValueMax | rgbValue SQLSTATE
SQL_CHAR tigers SQL_C_CHAR 7 tigers\0 N/A
SQL_CHAR tigers SQL_C_CHAR 6 tiger\0 01004
SQL_CHAR tigers SQL_C_WCHAR 14 tigers\0 N/A
SQL_CHAR tigers SQL_C_WCHAR 12 tiger\0 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 N/A
SQL_DECIMAL 1234.56 SQL_C_CHAR 1234\0 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 4 — 22003
SQL_DECIMAL 1234.56 SQL_C_WCHAR 16 1234.56\0 N/A
SQL_DECIMAL 1234.56 SQL_C_WCHAR 10 1234\0 01004
SQL_DECIMAL 1234.56 SQL_C_WCHAR 8 — 220023
SQL_DECIMAL 1234.56 SQL_C_FLOAT Ignored 1234.56 N/A
SQL_DECIMAL 1234.56 SQL_C_SSHORT Ignored 1234 01004
SQL_DECIMAL 1234.56 SQL_C_STINYINT | Ignored — 22003
SQL_DOUBLE 1.2345678 SQL_C_DOUBLE Ignored 1.2345678 N/A
SQL_DOUBLE 1.2345678 SQL_C_FLOAT Ignored 1.234567 N/A
SQL_DOUBLE 1.2345678 SQL_C_STINYINT |Ignored 1 N/A
SQL_DATE 1992-12-31 | SQL_C_CHAR 11 1992-12-31\0 |N/A
SQL_DATE 1992-12-31 | SQL_C_CHAR 10 — 22003
SQL_DATE 1992-12-31 | SQL_C_WCHAR 22 1992-12-31\0 |N/A
SQL_DATE 1992-12-31 | SQL_C_WCHAR 20 — 22003
SQL_DATE 1992-12-31 | SQL_C_TIMESTAMP | Ignored 1992,12,31, N/A
0,0,0,0
SQL_TIMESTAMP |1992-12-31 |SQL_C_CHAR 23 1992-12-31 N/A
23:45:55.12 23:45:55.12\0
SQL_TIMESTAMP |1992-12-31 |SQL_C_CHAR 22 1992-12-31 01004
23:45:55.12 23:45:55.1\0
SQL_TIMESTAMP |1992-12-31 |SQL_C_CHAR 18 — 22003
23:45:55.12
SQL_TIMESTAMP |1992-12-31 |SQL_C_WCHAR 46 1992-12-31 N/A
23:45:55.12 23:45:55.12\0
SQL_TIMESTAMP |1992-12-31 |SQL_C_WCHAR 44 1992-12-31 01004
23:45:55.12 23:45:55.1\0
SQL_TIMESTAMP |1992-12-31 |SQL_C_WCHAR 36 — 22003
23:45:55.12
Chapter 3. Data Types 3-33

3-34

Important: The size of a wide character (wchar_t) is platform dependent. The

above examples are applicable to Windows where the size of wide
characters is two bytes. On most UNIX platforms, wide characters
are four bytes. On IBM AIX versions lower than AIX5L, it is 2
bytes.

Converting Data from C to SQL

When you call SQLExecute or SQLExecDirect, IBM Informix ODBC Driver
retrieves the data for parameters that are bound with SQLBindParameter
from storage locations in the application. For data-at-execution parameters,
call SQLPutData to send the parameter data. If necessary, IBM Informix
ODBC Driver converts the data from the data type that the ValueType
argument specifies in SQLBindParameter to the data type that the fSq/Type
argument specifies in the SQLBindParameter. Finally, IBM Informix ODBC
Driver sends the data to the data source.

If the rgbValue and pcbValue arguments specified in SQLBindParameter are
both null pointers, then that function returns SQLSTATE 51009 (Invalid
argument value). To specify a null SQL data value, set the value that the
pcbValue argument of SQLBindParameter points to or the value of the cbValue
argument to SQL_NULL_DATA. To specify that the value in rgbValue is a
null-terminated string, set these values to SQL_NTS.

The following terms are used in the tables:

Length of data is the number of bytes of SQL data that are available to send
to the data source, regardless of whether the data is truncated before it goes
to the data source. For string data, this does not include the
null-termination byte.

Column_length and display size are defined for each SQL data type in
[‘Precision, Scale, Length, and Display Size” on page 3-6,

Number of digits is the number of characters that represent a number,
including the minus sign, decimal point, and exponent (if needed).

Words in italics represent elements of the Informix ODBC Driver SQL
syntax.

C to SQL: Binary

The binary Informix ODBC Driver C data type is SQL_C_BINARY. The
following table shows the Informix ODBC Driver SQL data types to which
binary C data can be converted. In the Test column, the SQL data length is the
number of bytes needed to store the data on the data source. This length
might be different from the column length, as defined in|“Precision, Scale,

[Length, and Display Size” on page 3-6

IBM Informix ODBC Driver Programmer’s Manual

fSqlType Test SQLSTATE
SQL_BIGINT Length of data = SQL data length. N/A
(IDS)

Length of data # SQL data length. 22003
SQL_BIT Length of data = SQL data length. N/A
(IDS)

Length of data # SQL data length. 22003
SQL_CHAR Length of data = Column length. N/A
SQL_LONGVARCHAR
SQL_VARCHAR Length of data > Column length. 01004
SQL_DATE Length of data = SQL data length. N/A
SQL_TIMESTAMP

Length of data # SQL data length. 22003
SQL_DECIMAL Length of data = SQL data length. N/A
SQL_DOUBLE
SQL_INTEGER Length of data # SQL data length. 22003
SQL_REAL
SQL_SMALLINT
SQL_LONGVARBINARY Length of data = Column length. N/A

Length of data > Column length. 01004

C to SQL: Bit (IDS)

The bit Informix ODBC Driver C data type is SQL_C_BIT. The following
table shows the Informix ODBC Driver SQL data types to which bit C data

can be converted.

fSqlType

Test SQLSTATE

SQL_BIGINT
SQL_DECIMAL
SQL_DOUBLE
SQL_INTEGER
SQL_REAL
SQL_SMALLINT

None N/A

SQL_BIT

None N/A

SQL_CHAR
SQL_LONGVARCHAR
SQL_VARCHAR

None N/A

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the boolean C data type.

IBM Informix ODBC Driver uses the size of rgbValue for the size of the

boolean C data type.

Chapter 3. Data Types

3-35

C to SQL: Character

The character Informix ODBC Driver C data type is SQL_C_CHAR. The
following table shows the Informix ODBC Driver SQL data types to which C
character data can be converted.

fSqlType Test SQLSTATE
SQL_BIGINT Data converted without truncation. N/A
(IDS)

Data converted with truncation of 01004

fractional digits.

Conversion of data would result in 22003
loss of whole (as opposed to
fractional) digits.

Data value is not a numeric-literal. 22005
SQL_BIT Data is 0 or 1. N/A
(IDS)

Data is greater than 0, less than 2, 01004

and not equal to 1.

Data is less than 0 or greater than 22003

or equal to 2.

Data is not a numeric-literal. 22005
SQL_CHAR Length of data = Column length. N/A
SQL_LONGVARCHAR
SQL_VARCHAR Length of data > Column length. 01004
SQL_DATE Data value is a valid Informix ODBC |[N/A

Driver date-literal.

Data value is a valid Informix ODBC |N/A
Driver timestamp-literal; time portion is
zero.

Data value is a valid Informix ODBC |01004
Driver timestamp-literal; time portion is
non-zero. IBM Informix ODBC

Driver truncates the time portion of
the time stamp.

Data value is not a valid Informix 22008
ODBC Driver date-literal or Informix
ODBC Driver timestamp-literal.

3-36 IBM Informix ODBC Driver Programmer’s Manual

fSqlType

Test

SQLSTATE

SQL_DECIMAL
SQL_INTEGER
SQL_SMALLINT

Data converted without truncation.

Data converted with truncation of
fractional digits.

Conversion of data would result in
loss of whole (as opposed to

fractional) digits.

Data value is not a numeric-literal.

N/A

01004

22003

22005

SQL_DOUBLE
SQL_REAL

Data is within the range of the data
type to which the number is being
converted.

Data is outside the range of the data
type to which the number is being

converted.

Data value is not a numeric-literal.

N/A

22003

22005

SQL_LONGVARBINARY

(Length of data) / 2 = Column length.
(Length of data) / 2 > Column length.

Data value is not a hexadecimal value.

N/A
01004

22005

SQL_TIMESTAMP

Data value is a valid Informix ODBC
Driver timestamp-literal; fractional
seconds portion not truncated.

Data value is a valid Informix ODBC
Driver timestamp-literal; fractional
seconds portion truncated.

Data value is a valid Informix ODBC
Driver date-literal. IBM Informix ODBC
Driver sets the time portion of the
time stamp to zero.

Data value is a valid Informix ODBC
Driver time-literal. IBM Informix ODBC
Driver sets the date portion of the
time stamp to the current date.

Data value is not a valid Informix
ODBC Driver date-literal, Informix
ODBC Driver time-literal, or Informix
ODBC Diriver timestamp-literal.

N/A

01004

N/A

N/A

22008

Chapter 3. Data Types ~ 3-37

3-38

When IBM Informix ODBC Driver converts character C data to numeric, date,
or time stamp SQL data, it ignores leading and trailing blanks. When

IBM Informix ODBC Driver converts character C data to binary SQL data, it
converts each two bytes of character data to one byte of binary data. Each two
bytes of character data represent a number in hexadecimal form. For example,
IBM Informix ODBC Driver converts “01” to binary 00000001 and “FF” to
binary 11111111.

IBM Informix ODBC Driver always converts pairs of hexadecimal digits to
individual bytes and ignores the null-termination byte. Because of this
conversion, if the length of the character string is odd, the last byte of the
string (excluding the null termination byte, if any) is not converted.

C to SQL: Date

The date Informix ODBC Driver C data type is SQL_C_DATE. The following
table shows the Informix ODBC Driver SQL data types to which date C data
can be converted.

fSqlType Test SQLSTATE
SQL_CHAR Column length = 10. N/A
SQL_LONGVARCHAR
SQL_VARCHAR Column length < 10. 22003
Data value is not a valid date. 22008
SQL_DATE Data value is a valid date. N/A
Data value is not a valid date. 22008
SQL_TIMESTAMP Data value is a valid date. N/A
IBM Informix ODBC
Driver sets the time portion
of the time stamp to zero.
Data value is not a valid date. 22008

When IBM Informix ODBC Driver converts date C data to character SQL
data, the resulting character data is in the “yyyy-mm-dd” format.

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the date C data type. IBM Informix
ODBC Driver uses the size of rgbValue for the size of the date C data type.

C to SQL: Numeric
The numeric Informix ODBC Driver C data types are:

* SQL_C_DOUBLE

IBM Informix ODBC Driver Programmer’s Manual

+ SQL_C_FLOAT

- SQL_C_LONG

« SQL_C_SHORT

« SQL_C_SLONG

« SQL_C_STINYINT
« SQL_C_TINYINT
« SQL_C_ULONG

« SQL_C_USHORT
+ SQL_C_UTINYINT

The following table shows the Informix ODBC Driver SQL data types to
which numeric C data can be converted.

fSqlType Test SQLSTATE
SQL_BIGINT Data converted without truncation. N/A
(IDS)
Data converted with truncation of 01004
fractional digits.
Conversion of data would result in 22003
loss of whole (as opposed to
fractional) digits.
SQL_BIT Data is 0 or 1. N/A
(IDS)
Data is greater than 0, less than 2, 01004
and Inot equal to 1.
Data is less than 0 or greater than or |22003
equal to 2.
SQL_CHAR Number of digits = Column length. N/A
SQL_LONGVARCHAR
SQL_VARCHAR Number of whole (as opposed to 01004
fractional) digits = Column length.
Number of whole (as opposed to 22003
fractional) digits > Column length.
SQL_DECIMAL Data converted without truncation. N/A
SQL_INTEGER
SQL_SMALLINT Data converted with truncation of 01004
fractional digits.
Conversion of data would result in 22003
loss of whole (as opposed to
fractional) digits.
Chapter 3. Data Types 3-39

converted.

Data is outside the range of the data
type to which the number is being
converted.

£SqlType Test SQLSTATE
SQL_DOUBLE Data is within the range of the data N/A
SQL_REAL type to which the number is being

22003

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the numeric C data types.

IBM Informix ODBC Driver uses the size of rgbValue for the size of the

numeric C data type.

C to SQL: Time Stamp

The time-stamp Informix ODBC Driver C data type is SQL_C_TIMESTAMP.
The following table shows the Informix ODBC Driver SQL data types to
which time-stamp C data can be converted.

date.

fSqlType Test SQLSTATE
SQL_CHAR Column length = Display size. N/A
SQL_LONGVARCHAR
SQL_VARCHAR 19 = Column length < Display size. |01004
IBM Informix ODBC
Driver truncates the fractional
seconds of the time stamp.
Column length < 19. 22003
Data value is not a valid date. 22008
SQL_DATE Time fields are zero. N/A
Time fields are non-zero. 01004
IBM Informix ODBC
Driver truncates the time fields
of the time stamp structure.
Data value does not contain a valid |22008

3-40 1BM Informix ODBC Driver Programmer’s Manual

£SqlType Test SQLSTATE

SQL_TIMESTAMP Fractional seconds fields are not N/A
truncated.
Fractional seconds fields are 01004
truncated.

IBM Informix ODBC
Driver truncates the fractional
seconds fields of the
time stamp structure.

Data value is not a valid time stamp. | 22008

When IBM Informix ODBC Driver converts time stamp C data to character
SQL data, the resulting character data is in the “yyyy-mm-dd hh:mm:ss[.f...]”
format.

IBM Informix ODBC Driver ignores the value that the pcbValue argument of
SQLBindParameter points to and the value of the cbValue argument of
SQLPutData when it converts data from the time stamp C data type.

IBM Informix ODBC Driver uses the size of rgbValue for the size of the time
stamp C data type.

C-to-SQL Data Conversion Examples

The following table illustrates how IBM Informix ODBC Driver converts C
data to SQL data. “\0” represents a null-termination byte. The
null-termination byte is required only if the length of the data is SQL_NTS.
For SQL_C_DATE, the numbers that are in the C Data Value column are the
numbers that are stored in the fields of the DATE_STRUCT structure. For
SQL_C_TIMESTAMP, the numbers that are in the C Data Value column are
the numbers that are stored in the fields of the TIMESTAMP_STRUCT
structure.

C Data SQL Data
C Data Type Value SQL Data Type Column Length | Value SQLSTATE
SQL_C_CHAR tigers\0 SQL_CHAR 6 tigers N/A
SQL_C_CHAR tigers\0 SQL_CHAR 5 tiger 01004
SQL_C_CHAR 1234.56\0 |SQL_DECIMAL 8 1234.56 N/A
(In addition to
bytes for

numbers, one byte
is required for a
sign and another
for the decimal
point.)

Chapter 3. Data Types 3-41

C Data SQL Data
C Data Type Value SQL Data Type Column Length | Value SQLSTATE
SQL_C_CHAR 1234.56\0 |SQL_DECIMAL |7 1234.5 01004
(In addition to
bytes for
numbers, one byte
is required for a
sign and another
for the decimal
point.)
SQL_C_CHAR 1234.56\0 |SQL_DECIMAL |4 — 22003
SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A
SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004
SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable — 22003
SQL_C_DATE 1992,12,31 |SQL_CHAR 10 1992-12-31 |N/A
SQL_C_DATE 1992,12,31 |SQL_CHAR 9 — 22003
SQL_C_DATE 1992,12,31 |SQL_TIMESTAMP | not applicable 1992-12-31 |N/A
00:00:00.0
SQL_C_TIMESTAMP |1992,12,31, |SQL_CHAR 22 1992-12-31 |N/A
23,45,55, 23:45:55.12
120000000
SQL_C_TIMESTAMP |1992,12,31, |SQL_CHAR 21 1992-12-31 | 01004
23,45,55, 23:45:55.1
120000000
SQL_C_TIMESTAMP |1992,12,31, |SQL_CHAR 18 — 22003
23,45,55,
120000000

3-42

IBM Informix ODBC Driver Programmer’s Manual

Chapter 4. Working with Smart Large Objects

Working with Data Structures for Smart Large Objects
Handling the Storage of Smart Large Ob]ects
Disk-Storage Information . . .
Create-Time Flags.
Inheritance Hierarchy .
System-Specified Storage Characterlshcs .
Column-Level Storage Characteristics .
User-Defined Storage Characteristics
Creating a Smart Large Object
Transferring Smart-Large-Object Data.
Accessing a Smart Large Object.
Smart-Large-Object Automation
Setting the Access Method Using INFX LO AUTOMATIC ATTR
Inserting, Updating, and Deleting Smart Large Objects Using the ODBC API
Selecting Smart Large Objects Using the ODBC API . S
Using ifx_lo Functions.
Selecting a Smart Large Ob]ect Usmg 1fx _lo functlons
Opening a Smart Large Object Using ifx_lo functions
Lightweight I/0. e
Smart-Large-Object Locks .o .
Duration of an Open Operation on a Smart Large Ob]ect .
Deleting a Smart Large Object .
Modifying a Smart Large Object
Closing a Smart Large Object .
Example of Retrieving a Smart Large Ob]ect from the Database Usmg 1fx _lo Functlons .
Retrieving the Status of a Smart Large Object . .
Example of Retrieving Information About a Smart Large Ob]ect
Reading or Writing a Smart Large Object to or from a File.

.43
.43
.44
. 4-6

.47
.47

. 4-15
. 4-16
. 417
. 417
. 4-17
. 4-18
. 4-18
. 4-18
. 4-19
. 4-20
. 4-22
. 4-22
. 4-23
. 4-23
. 4-23
. 4-23
. 4-31
. 4-31
. 4-39

In This Chapter

The information in this chapter applies only if your database server is
IBM Informix Dynamic Server.

This chapter describes how to store, create, and access a smart large object;

how to transfer smart-large-object data; how to retrieve the status of a smart
large object; and how to read or write a smart large object to or from a file.

A smart large object is a recoverable large object that is stored in an sbspace

on disk. You can access a smart large object with read, write, and seek

operations similar to an operating-system file. The two data types for smart

© Copyright IBM Corp. 1996, 2004

4-1

large objects are character large object (CLOB) and binary large object (BLOB). A
CLOB consists of text data and a BLOB consists of binary data in an
undifferentiated byte stream.

For more information about smart-large-object data types, see

[‘Data Types,” on page 3-1| and the IBM Informix: Guide to SQL Reference. For

information about the client functions that you use to access smart large

objects, see [Chapter 6, “Client Functions,” on page 6-1)

Working with Data Structures for Smart Large Objects

A smart large object can be huge. Therefore, instead of storing the content of a
smart large object in a database table, Dynamic Server does the following:

* Stores the content of the smart large object in an sbspace

* Stores a pointer to the smart large object in the database table

Because a smart large object can be huge, an IBM Informix ODBC Driver
application cannot receive a smart large object in a variable. Instead, the
application sends or receives information about the smart large object in a
data structure. The following table describes the data structures that

IBM Informix ODBC Driver uses for smart large objects.

Data Structure

Name

Description

lofd

Smart-large-object
file descriptor

Provides access to a smart large object. Uses a
file descriptor to access smart-large-object data
as if it were in an operating-system file.

loptr

Smart-large-object
pointer structure

Provides security information and a pointer to a
smart large object. This structure is the data that
the database server stores in a database table for
a smart large object. Therefore, SQL statements
such as INSERT and SELECT accept a
smart-large-object pointer structure as a value
for a column or a parameter that has a data type
of smart large object.

lospec

Smart-large-object
specification
structure

Specifies the storage characteristics for a smart
large object.

lostat

Smart-large-object
status structure

Stores status information for a smart large object.
Normally you can fetch a user-defined data type
(UDT) in either binary or character
representation. However, it is not possible to
convert a smart-large-object status structure to
character representation. Therefore, you need to
use SQL_C_BINARY as the Informix ODBC
Driver C data type for lostat.

4-2 IBM Informix ODBC Driver Programmer’s Manual

Important: These data structures are opaque to IBM I[nformix ODBC Driver
applications and their internal structures might change. Therefore,
do not access the internal structures directly. Use the
smart-large-object client functions to manipulate the data
structures.

The application is responsible for allocating space for these smart-large-object
data structures.

To work with a smart-large-object data structure:
1. Determine the size of the smart-large-object structure.

2. Use either a fixed size array or a dynamically allocated buffer that is at
least the size of the data structure.

3. Free the array or buffer space when you are done using it.

The following code example illustrates these steps:

rc = SQLGetInfo(hdbc, SQL_INFX LO_SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
Tospec_buffer = malloc(lospec_size);

free(lospec_buffer);

Handling the Storage of Smart Large Objects
The smart-large-object specification structure stores the following storage
characteristics for a smart large object:
* Disk-storage information
* Create-time flags

Disk-Storage Information

Disk-storage information helps Dynamic Server determine how to store the
smart large object most efficiently on disk. The following table describes the
types of disk-storage information and the corresponding client functions. For
most applications, it is recommended that you use the values for the
disk-storage information that the database server determines.

Chapter 4. Working with Smart Large Objects ~ 4-3

Disk-Storage
Information

Description

Client Functions

Estimated size

An estimate of the final size, in
bytes, of the smart large object. The
database server uses this value to
determine the extents in which to
store the smart large object. This
value provides optimization
information. If the value is grossly
incorrect, it does not cause incorrect
behavior. However, it does mean
that the database server might not
necessarily choose optimal extent
sizes for the smart large object.

ifx_lo_specget_estbytes|()

ifx_lo_specset_estbytes()

Maximum size

The maximum size, in bytes, for the
smart large object. The database
server does not allow the smart
large object to grow beyond this
size.

ifx_lo_specget_maxbytes()

ifx_lo_specset_maxbytes()

Allocation extent
size

The allocation extent size is
specified in kilobytes. Optimally, the
allocation extent is the single extent
in a chunk that holds all the data
for the smart large object.

The database server performs
storage allocations for smart large
objects in increments of the
allocation extent size. It tries to
allocate an allocation extent as a
single extent in a chunk. However,
if no single extent is large enough,
the database server must use
multiple extents as necessary to
satisfy the request.

ifx_lo_specget_extsz()

ifx_lo_specset_extsz()

Name of the
sbspace

The name of the sbspace that
contains the smart large object. On
this database server, an sbspace
name can be up to 128 characters
long and must be null terminated.

ifx_lo_specget_sbspace()

ifx_lo_specset_sbspace()

Create-Time Flags

Create-time flags tell Dynamic Server what options to assign to the smart
large object. The following table describes the create-time flags.

4-4

IBM Informix ODBC Driver Programmer’s Manual

Type of
Indicator

Create-Time Flag

Description

Logging

LO_LOG

Tells the database server to log
changes to the smart large object
in the system log file.

Consider carefully whether to use
the LO_LOG flag value. The
database server incurs
considerable overhead to log
smart large objects. You must also
make sure that the system log file
is large enough to hold the value
of the smart large object. For more
information, see your

IBM Informix: Administrator’s
Guide.

LO_NOLOG

Tells the database server to turn
off logging for all operations that
involve the associated smart large
object.

Last
access-time

LO_KEEP_LASTACCESS_TIME

Tells the database server to save
the last access time for the smart
large object. This access time is the
time of the last read or write
operation.

Consider carefully whether to use
the
LO_KEEP_LASTACCESS_TIME
flag value. The database server
incurs considerable overhead to
maintain last access times for
smart large objects.

LO_NOKEEP_LASTACCESS_TIME

Tells the database server not to
maintain the last access time for
the smart large object.

The ifx_lo_specset_flags() function sets the create-time flags to a new value.
The ifx_lo_specget_flags() function retrieves the current value of the
create-time flag.

Logging indicators and the last access-time indicators are stored in the
smart-large-object specification structure as a single flag value. To set a flag
from each group, use the C-language OR operator to mask the two flag values
together. However, masking mutually exclusive flags causes an error. If you

Chapter 4. Working with Smart Large Objects

4-5

do not specify a value for one of the flag groups, the database server uses the
inheritance hierarchy to determine this information.

Inheritance Hierarchy
Dynamic Server uses an inheritance hierarchy to obtain storage characteristics.

gure 4-1| shows the inheritance hierarchy for smart-large-object storage
characteristics.

Database server storage characteristics
(system defaults and the ONCONFIG file)

l

sbspace storage characteristics
(assigned when the database server creates the shspace

l

Column-level storage characteristics
(assigned with the CREATE TABLE statement)

l

Userdefined storage characteristics
(assigned from within an IBM Informix ODBC application)

Figure 4-1. Inheritance Hierarchy for Storage Characteristics

System-Specified Storage Characteristics
Dynamic Server uses one of the following sets of storage characteristics as the
system-specified storage characteristics:

* If the sbspace in which the smart large object is stored specifies a value for
a particular storage characteristic, the database server uses the sbspace
value as the system-specified storage characteristic.

The database administrator can use the onspaces utility to define storage
characteristics for an sbspace.

* If the sbspace in which the smart large object is stored does not specify a
value for a particular storage characteristic, the database server uses the
system default as the system-specified storage characteristic.

The database server defines the system defaults for storage characteristics
internally. However, you can specify a default sbspace name with the
SBSPACENAME configuration parameter in the ONCONFIG file. Also, an
application call to ifx_lo_col_info() or ifx_lo_specset_sbspace() can supply
the target sbspace in the smart-large-object specification structure.

4-6 1BM Informix ODBC Driver Programmer’s Manual

Warning: An error will occur if the sbspacename configuration parameter is
not specified and the smart-large-object specification structure does not
contain the name of the target sbspace.

It is recommended that you use the system-specified storage characteristics for
the disk-storage information. For more information about sbspaces and the
description of the onspaces utility, see your IBM Informix: Administrator’s
Guide.

To use system-specified storage characteristics for a new smart large object:

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification
structure and to initialize the structure to null values.

2. Call ifx_lo_create() to create an instance of the smart large object.

Column-Level Storage Characteristics

The CREATE TABLE statement assigns storage characteristics to a database
column. The PUT clause of the CREATE TABLE statement specifies storage
characteristics for a smart-large-object column. The syscolattribs system
catalog table stores the column-level storage characteristics.

To use column-level storage characteristics for a new smart-large-object
instance:

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification
structure and initialize this structure to null values.

2. Call ifx_lo_col_info() to retrieve the column-level storage characteristics
and store them in the specified smart-large-object specification structure.

3. Call ifx_lo_create() to create an instance of the smart large object.

User-Defined Storage Characteristics
You can define a unique set of storage characteristics for a new smart large
object, as follows:

* For a smart large object that will be stored in a column, you can override
some storage characteristics for the column when you create an instance of
a smart large object.

If you do not override some or all of these characteristics, the smart large
object uses the column-level storage characteristics.

* You can specify a wider set of characteristics for a smart large object
because a smart large object is not constrained by table column properties.

If you do not override some or all of these characteristics, the smart large
object inherits the system-specified storage characteristics.

To specify user-defined storage characteristics, call an ifx_lo_specset_*
function.

Chapter 4. Working with Smart Large Objects ~ 4-7

Creating a Smart Large Object

4-8

The following code example, locreate.c, shows how to create a smart large
object. You can find the locreate.c file in the
%INFORMIXDIR%/demo/clidemo directory on UNIX platforms and in the
%INFORMIXDIR%\demo\odbcdemo directory in Windows environments.
You can also find instructions on how to build the odbc_demo database in the

same location.

/*
*k locreate.c
*%

*% To create a smart Targe object

*% 0BDC Functions:

*k SQLATTocHandle
*% SQLBindParameter
*% SQLConnect

*k SQLFreeStmt

*k SQLGetInfo

*%k SQLDisconnect

*% SQLExecDirect

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x/

#include "infxcli.h"

#define BUFFER_LEN 12
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) 8& (rc != SQL_SUCCESS_WITH_INFO))

{
while (retcode != SQL_NO_DATA)

{

retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

IBM Informix ODBC Driver Programmer’s Manual

if (retcode == SQL_INVALID HANDLE)

{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;
1

if ((retcode == SQL_SUCCESS) | (retcode == SQL_SUCCESS WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

}

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

}

else
return 03 /* no errors to report x/
1
int main (Tong argc,
char xargv[])
{

/* Declare variables
*/

/* Handles x/

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
Tong lTofd;
Tong lofd_valsize = 0;

/* Smart large object pointer structure */

charx Toptr_buffer;
short loptr_size;
Tong loptr_valsize = 0;

/* Smart large object specification structure */

char* Tospec_buffer;
short lospec_size;
long lospec_valsize = 0;

/* Write buffer x/

charx* write_buffer;
short write_size;
Tong write_valsize = 0;

/* Miscellaneous variables */
UCHAR dsn[20] ;/*name of the DSN used for connecting to the

database*/
SQLRETURN rc = 0;
int in;
FILE=* hfile;
charx lo_file_name = "advert.txt";
char colname[BUFFER_LEN] = "item.advert";
long colname_size = SQL_NTS;

Chapter 4. Working with Smart Large Objects

4-10

long mode = LO RDWR;

long cbMode

03

char= insertStmt = "INSERT INTO item VALUES (1005, 'Helmet', 235,

/*
**
*k
**
ok

*/
/*
if
{

'"Each', ?, '39.95")";

STEP 1. Get data source name from command Tine (or use default).

Allocate environment handle and set ODBC version.
Allocate connection handle.

Establish the database connection.

Allocate the statement handle.

If (dsn is not explicitly passed in as arg) */
(argc 1= 2)

/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);

else

{

/*
rc
if

/*

rc

/*

rc

/*

rc

/*

rc

/* Use specified dsn */
strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

Allocate the Environment handle */
= SQLATTocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
(rc != SQL_SUCCESS)

fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
return (1);

Set the ODBC version to 3.5 */

= SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);

(checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))

return (1);

Allocate the connection handle */

= SQLA1TocHandle (SQL_HANDLE DBC, henv, &hdbc);

(checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))

return (1);

Establish the database connection */

= SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);

(checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))

return (1);

Allocate the statement handle =/

= SQLATTocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

(checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))

return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

IBM Informix ODBC Driver Programmer’s Manual

/*

/*

STEP 2. Get the size of the smart large object specification
*k structure.

*k Allocate a buffer to hold the structure.

*k Create a default smart large object specification structure.
% Reset the statement parameters.

*/

/* Get the size of a smart large object specification structure =/
rc = SQLGetInfo (hdbc, SQL_INFX_LO SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 2 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object specification
structurex/
lospec_buffer = malloc (lTospec_size);

/* Create a default smart large object specification structure */
rc = SQLBindParameter (hstmt, 1, SQL PARAM_INPUT OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter failed\n"))
goto Exit;
rc = SQLExecDirect (hstmt, "{call ifx_lo_def_create_spec(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...default smart large object specification
structure created\n");

STEP 3. Initialise the smart large object specification structure
*% with values for the database column where the smart large
*k object is being inserted.
% Reset the statement parameters.
*

/

/* Initialise the smart large object specification structure */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL _C_CHAR, SQL_CHAR,
BUFFER_LEN, 0, colname, BUFFER_LEN, &colname_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

lospec_valsize = Tospec_size;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, ©, lospec_buffer,
Tospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

Chapter 4. Working with Smart Large Objects

4-11

rc = SQLExecDirect (hstmt, "{call ifx_lo_col_info(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStm failed\n"))
goto Exit;

fprintf(stdout, "STEP 3 done...smart large object specification
structure initialised\n");

/% STEP 4. Get the size of the smart large object pointer structure.
*k Allocate a buffer to hold the structure.

*/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO PTR_LENGTH, &loptr size,
sizeof (Toptr_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 4 --
SQLGetInfo failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart Targe object pointer structure =/
Toptr_buffer = malloc (Toptr_size);

fprintf (stdout, "STEP 4 done...smart large object pointer structure
allocated\n");

/* STEP 5. Create a new smart large object.
% Reset the statement parameters.
*/

/* Create a new smart large object x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
Tospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)®, 0, &mode, sizeof(mode), &cbMode);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

loptr_valsize = loptr_size;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
Toptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 3)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd valsize);

4-12 1BM Informix ODBC Driver Programmer’s Manual

if (checkError (rc, SQL _HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 4)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_create(?, ?, ?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object created\n");

STEP 6. Open the file containing data for the new smart large object.
*k Allocate a buffer to hold the smart large object data.

*k Read data from the input file into the smart large object.

*k data buffer

*k Write data from the data buffer into the new smart large.

*ok object.

wx Reset the statement parameters.

*

/

/* Open the file containing data for the new smart large object */
hfile = open (lo_file_name, "rt");

/* sneaky way to get the size of the file */

write_size = 1seek (open (To_file name, "rt"), OL, SEEK END);

/* Allocate a buffer to hold the smart large object data x/
write_buffer = malloc (write_size + 1);

/* Read smart large object data from file %/
read (hfile, write_buffer, write size);

write_buffer[write size] = '\0';

write_valsize = write_size;

/* Write data from the data buffer into the new smart large object x/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
(UDWORD)write_size, 0, write_buffer, write_size, &write_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo write(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

Chapter 4. Working with Smart Large Objects

4-13

fprintf (stdout, "STEP 6 done...data written to new smart large
object\n");

/* STEP 7. Insert the new smart large object into the database.
% Reset the statement parameters.
*/

/* Insert the new smart large object into the database */
loptr_valsize = loptr_size;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr size, 0, loptr_ buffer,
Toptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, insertStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object inserted into the
database\n");

/* STEP 8. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;
fprintf (stdout, "STEP 8 done...smart large object closed\n");
/% STEP 9. Free the allocated buffers.
*/
free (lospec_buffer);
free (lToptr_buffer);
free (write_buffer);
fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");
Exit:

/* CLEANUP: Close the statement handle

4-14 1BM Informix ODBC Driver Programmer’s Manual

*k Free the statement handle

*k Disconnect from the datasource

*k Free the connection and environment handles
*% Exit

*/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source */
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE DBC, hdbc);
SQLFreeHandle (SQL_HANDLE ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Transferring Smart-Large-Object Data

An INSERT or UPDATE statement does not perform the actual input of the
smart-large-object data. It does, however, provide a means for the application
to identify which smart-large-object data to associate with the column. A
BLOB or CLOB column in a database table stores the smart-large-object
pointer structure for a smart large object. Therefore, when you store a BLOB
or CLOB column, you provide a smart-large-object pointer structure for the
column in a loptr variable to the INSERT or UPDATE statement.

shows how an application transfers the data of a smart large object
to the database server.

Chapter 4. Working with Smart Large Objects ~ 4-15

IBM Informix ODBC Driver Application

1. Useclient functions to create a
smart-large-object pointer structure.

2. Initialize the smart-large-object data through
the smart-large-object pointer structure.

l

3. Execute INSERT or UPDATE statement to
assign the smart-large-object pointer structure
to a CLOB or BLOB column.

Dynamic Server

Figure 4-2. Transferring Smart-Large-Object Data from Client Application to Database Server

The smart large object that a smart-large-object pointer structure identifies
exists as long as the smart-large-object pointer structure exists. When you
store a smart-large-object pointer structure in a database, the database server
deallocates the smart large object when appropriate.

If your application does not store the smart-large-object pointer structure for a
new smart large object in the database, the smart-large-object pointer structure
is only valid to access the version of the smart large object that was current
when the pointer was passed to the application. If the smart large object is
subsequently updated, the pointer is invalid. The smart-large-object pointer
structures that you store in a row do not expire when the object version
changes.

When you retrieve a row and then update a smart large object that is
contained in that row, the database server exclusively locks the row for the
time that it updates the smart large object. Moreover, long updates for smart
large objects (whether or not logging is enabled and whether or not they are
associated with a table row) create the potential for a long transaction
condition if the smart large object takes a long time to update or create.

The smart-large-object pointer structure, not the CLOB or BLOB data itself, is
stored in a CLOB or BLOB column in the database. Therefore, SQL statements
such as INSERT and SELECT accept and return a smart-large-object pointer
structure as the column value for a smart-large-object column.

Accessing a Smart Large Object

This section describes how to select, open, delete, modify, and close a smart
large object using either the standard ODBC API or using ifx_lo functions.

4-16 IBM Informix ODBC Driver Programmer’s Manual

Smart-Large-Object Automation

Instead of accessing smart large objects using the ifx_lo functions, you can
access smart large objects using the standard ODBC APL

Operations supported when accessing smart large objects using the standard
ODBC API include select, insert, update, and delete for CLOB and BLOB data
types. You cannot access BYTE and TEXT smart large objects in this way:.

Setting the Access Method Using INFX_LO_AUTOMATIC_ATTR

You can use the INFX_LO_AUTOMATIC_ATTR attribute to tell the database
server whether you will access smart large objects using the ODBC api or
using ifx_lo functions. If the application enables the
INFX_LO_AUTOMATIC_ATTR attribute as a connection attribute, all
statements for that connection inherit the attribute value. To change this
attribute value per statement, you have to set and reset it as a statement
attribute. If you enable this attribute for the statement, the application can
access the smart large object using the standard ODBC way, as previously
described. If you do not enable this attribute for the statement, the application
accesses smart large objects using ifx_lo functions. The application cannot use
the ifx_lo functions if this attribute is enabled for the statement.

You can also enable the INFX_LO_AUTOMATIC_ATTR attribute by turning
on the Report Standard ODBC Types option under the Advanced tab of the
ODBC Administration for Informix Driver DSN.

SQLDescribeCol for a CLOB data type column returns SQL_LONGVARCHAR
for the DataPtrType. SQLDescribeCol for a BLOB data type column returns
SQL_LONGVARBINARY, if the INFEX_LO_AUTOMATIC_ATTR attribute is
enabled for that statement.

SQLColAttributes for a CLOB data type column returns
SQL_LONGVARCHAR for the Field Identifier of SQL_DESC_TYPE, whereas
for the BLOB data type column it returns SQL_LONGVARBINARY only if the
INFX_LO_AUTOMATIC_ATTR attribute is enabled for that statement.

Inserting, Updating, and Deleting Smart Large Objects Using the ODBC
API

When you insert, update, or delete a CLOB data type, the application binds
the CLOB data type using SQLBindParameter with C type as SQL_C_CHAR
and SQL type as SQL_LONGVARCHAR.

When you insert, update, or delete a BLOB data type, the application binds
BLOB data type using SQLBindParameter with C type as SQL_C_BINARY
and SQL type as SQL_LONGVARBINARY.

Chapter 4. Working with Smart Large Objects ~ 4-17

4-18

IBM Informix ODBC Driver performs insertion of smart large objects in the

following way:

* The driver sends a request to the database server to create a smart large
object on the server side in the form of a new file.

* The driver gets back the file descriptor (for example, lofd) of this file from
the database server.

* The driver sends the preceding lofd file and the smart-large-object data that
was bound by the application using SQLBindParameter to the database
server.

¢ The database server writes the data onto the file.

Selecting Smart Large Objects Using the ODBC API

When you select a CLOB data type, the application binds the column’s C type
as SQL_C_CHAR. When you select a BLOB data type, the C type is bound as
SQL_C_BINARY.

IBM Informix ODBC Driver selects smart large objects in the following way:

* The driver sends a request to the database server to open the smart large
object as a file on the server side.

* The driver gets back the file descriptor (for example, lofd) of this file from
the database server.

* The driver sends the preceding lofd and a read request to the database
server to read the smart-large-object data from the file.

* The database server reads the data from the corresponding file using the
preceding lofd and sends it to the driver.

* The driver writes the data to the buffer that was bound by the application
using SQLBindParameter.

Using ifx_lo Functions

This section describes how to select, open, delete, modify, and close a smart
large object using ifx_lo functions. The section includes a code example at the
end.

Selecting a Smart Large Object Using ifx_lo functions

A SELECT statement does not perform the actual output for the
smart-large-object data. It does, however, establish a means for the application
to identify a smart large object so that the application can then perform
operations on the smart large object. [Figure 4-3 on page 4-19 shows how the
database server transfers the data of a smart large object to the application.

IBM Informix ODBC Driver Programmer’s Manual

Dynamic Server

1. Execute SELECT statement.
2. Obtain smart-large-object pointer structure.

l

3. Use client functions to access data through the
smart-large-object pointer structure.

IBM Informix ODBCDriver Application

Figure 4-3. Transferring Smart-Large-Object Data from Database Server to Client Application

Opening a Smart Large Object Using ifx_lo functions

When you open a smart large object, you obtain a smart-large-object file
descriptor for the smart large object. Through the smart-large-object file
descriptor you can access the data of a smart large object as if it were in an
operating-system file.

Access Modes: When you open a smart large object, you specify the access
mode for the data. The access mode determines which read and write
operations are valid on the open smart large object. The following table
describes the access modes that ifx_lo_open() and ifx_lo_create() support.

Access Mode Purpose Constant
Read only Only read operations are valid on the data. | LO_RDONLY
Dirty read Lets you read uncommitted data pages for |LO_DIRTY_READ

the smart large object. You cannot write to
a smart large object after you set the mode
to LO_DIRTY_READ. When you set this
flag, you reset the current transaction
isolation mode to dirty read for this smart
large object.

Do not base updates on data that you
obtain from a smart large object in
dirty-read mode.

Write only Only write operations are valid on the data. | LO_WRONLY

Chapter 4. Working with Smart Large Objects ~ 4-19

Access Mode

Purpose

Constant

Append

Intended for use in conjunction with
LO_WRONLY or LO_RDWR. Sets the
location pointer to the end of the object
immediately prior to each write. Appends
any data you write to the end of the smart
large object. If LO_APPEND is used alone,
the object is opened for reading only.

LO_APPEND

Read /write

Both read and write operations are valid on

LO_RDWR

the data.

Buffered access

Uses standard database server buffer pool. | LO_BUFFER

Lightweight I/O

Uses private buffers from the session pool | LO_NOBUFFER

of the database server.

When you open a smart large object with LO_APPEND only, the database
server opens the smart large object as read-only. Seek operations and read
operations move the file pointer. Write operations fail and do not move the

file pointer.

You can mask the LO_APPEND flag with another access mode. In any of
these OR combinations, the seek operation remains unaffected. The following
table shows the effect on the read and write operations that each of the OR

combinations has.

OR Operation

Read Operations

Write Operations

LO_RDONLY |
LO_APPEND

Occur at the file position
and then move the file
position to the end of the
data that has been read.

Fail and do not move the
file position.

LO_WRONLY |
LO_APPEND

Fail and do not move the
file position.

Move the file position to the
end of the smart large object
and then write the data; file
position is at the end of the

data after the write.

LO_RDWR |
LO_APPEND

Occur at the file position
and then move the file
position to the end of the
data that has been read.

Move the file position to the
end of the smart large object
and then write the data; file
position is at the end of the

data after the write.

Lightweight I/0

When the database server accesses smart large objects, it uses buffers from the
buffer pool for buffered access. Unbuffered access is called lightweight 1/O.

4-20 IBM Informix ODBC Driver Programmer’s Manual

Lightweight I/O uses private buffers instead of the buffer pool to hold smart
large objects. These private buffers are allocated out of the database server
session pool.

Lightweight I/O allows you to bypass the overhead of the least-recently-used
(LRU) queues that the database server uses to manage the buffer pool. For
more information about LRU queues, see your IBM Informix: Performance
Guide.

You can specify lightweight /O by setting the flags parameter to
LO_NOBUFFER when you create or open a smart large object. To specify
buffered access, which is the default, use the LO_BUFFER flag.

Important: Keep the following issues in mind when you use lightweight 1/0:

* Close smart large objects with ifx_lo_close() when you finish
with them to free memory allocated to the private buffers.

» All open operations that use lightweight I/O for a particular
smart large object share the same private buffers. Consequently,
one operation can cause the pages in the buffer to be flushed

while other operations expect the object to be present in the
buffer.

The database server imposes the following restrictions on switching from
lightweight 1/0O to buffered 1/0:

* You can use the ifx_lo_alter() function to switch a smart large object from
lightweight I/O (LO_NOBUFFER) to buffered I/O (LO_BUFFER) if the
smart large object is not open. However, ifx_lo_alter() generates an error if
you try to change a smart large object that uses buffered I/O to one that
uses lightweight 1/0.

* Unless you first use ifx_lo_alter() to change the access mode to buffered
access (LO_BUFFER), you can only open a smart large object that was
created with lightweight 1/O with the LO_NOBUFFER access-mode flag. If
an open operation specifies LO_BUFFER, the database server ignores the
flag.

* You can open a smart large object that has been created with buffered
access (LO_BUFFER) with the LO_NOBUFFER flag only if you open the
object in read-only mode. If you attempt to write to the object, the database
server returns an error. To write to the smart large object, you must close it
and then reopen it with the LO_BUFFER flag and an access flag that allows
write operations.

You can use the database server utility onspaces to specify lightweight I/0O

for all smart large objects in an sbspace. For more information on the
onspaces utility, see your IBM Informix: Administrator’s Guide.

Chapter 4. Working with Smart Large Objects ~ 4-21

4-22

Smart-Large-Object Locks

To prevent simultaneous access to smart-large-object data, the database server
locks a smart large object when you open it. Locks on smart large objects are
different than row locks. If you retrieve a smart large object from a row, the
database server might hold a row lock as well as a smart-large-object lock.
The database server locks smart large objects because many columns can
contain the same smart-large-object data.

To specify the lock mode of a smart large object, pass the access-mode flags,
LO_RDONLY, LO_DIRTY_READ, LO_APPEND, LO_WRONLY, LO_RDWR,
and LO_TRUNC, to the ifx_lo_open() and ifx_lo_create() functions. When
you specify LO_RDONLY, the database server places a lock on the
smart-large-object data. When you specify LO_DIRTY_READ, the database
server does not place a lock on the smart-large-object data. If you specify any
other access-mode flag, the database server obtains an update lock, which it
promotes to an exclusive lock on first write or other update operation.

Share and update locks (read-only mode or write mode before an update
operation occurs) are held until your application takes one of the following
actions:

* Closes the smart large object
¢ Commits the transaction or rolls it back

Exclusive locks are held until the end of a transaction even if you close the
smart large object.

Important: You lose the lock at the end of a transaction even if the smart
large object remains open. When the database server detects that a
smart large object does not have an active lock, it places a new
lock the next time that you access the smart large object. The lock
that it places is based on the original open mode of the smart
large object.

Duration of an Open Operation on a Smart Large Object

After you open a smart large object with the ifx_lo_create() function or the
ifx_lo_open() function, it remains open until one of the following events
occurs:

* The ifx_lo_close() function closes the smart large object.

¢ The session ends.

Warning: The end of the current transaction does not close a smart large
object. It does, however, release any lock on a smart large object.

IBM Informix ODBC Driver Programmer’s Manual

Close smart large objects as soon as you finish using them. Leaving
smart large objects open unnecessarily consumes system memory.
Leaving many smart large objects open can eventually produce an
out-of-memory condition.

Deleting a Smart Large Object
A smart large object is not deleted until both of the following conditions are
met:

e The current transaction commits.

* The smart large object is closed, if the application opened the smart large
object.

Modifying a Smart Large Object
To modify the data of a smart large object, perform the following steps:

1. Read and write the data in the open smart large object.

2. Use an UPDATE or INSERT statement to store the smart-large-object
pointer in the database.

Closing a Smart Large Object

After you finish modifying a smart large object, call ifx_lo_close() to
deallocate the resources that are assigned to it. When the resources are freed,
you can reallocate them to other structures that your application needs. You
can also reallocate the smart-large-object file descriptor to other smart large
objects.

Example of Retrieving a Smart Large Object from the Database Using
ifx_lo Functions

The following code example, loselect.c, shows how to retrieve a smart large
object from the database. You can find the loselect.c file in the
%INFORMIXDIR %/demo/clidemo directory on UNIX platforms and in the
%INFORMIXDIR%\demo\odbcdemo directory on Windows platforms. You
can also find instructions on how to build the odbc_demo database in the
same location.

/*

*k loselect.c

*%

*% To access a smart large object
*x SQLBindCol

*k SQLBindParameter
*k SQLConnect

*k SQLFetch

*% SQLFreeStmt

*k SQLGetInfo

*k SQLDisconnect

*% SQLExecDirect

*/

#include <stdio.h>
#include <stdlib.h>

Chapter 4. Working with Smart Large Objects ~ 4-23

#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x/

#include "infxcli.h"
#define ERRMSG_LEN 200
UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT ~ handleType,
SQLHANDLE handle,
char *errmsg)

SQLRETURN retcode = SQL_SUCCESS;

SQLSMALLINT errNum = 1;

SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;
SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{

while (retcode != SQL_NO_DATA)
{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

if (retcode == SQL_INVALID HANDLE)
{

fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;

}

if ((retcode == SQL_SUCCESS) || (retcode ==
SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

}

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

1
else
return 03 /* no errors to report */
}
int main (long argc,

char xargv[])

{

/* Declare variables

*/

4-24 1BM Informix ODBC Driver Programmer’s Manual

/*

/* Handles =/
SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
Tong Tofd;
Tong lofd_valsize = 0;

/* Smart large object pointer structure */

charx Toptr_buffer;
short Toptr_size;
Tong Toptr_valsize = 0;

/* Smart large object status structure */

char=* lostat_buffer;
short lostat_size;
long lostat_valsize = 0;

/* Smart large object data */
char* lo_data;
Tong lo_data_valsize = 0;

/* Miscellaneous variables */

UCHAR dsn[20]; /*name of the DSN used for connecting to the
databasex*/

SQLRETURN rc = 03

int ing

charx selectStmt = "SELECT advert FROM item WHERE item_num =
1004";

Tong mode = LO_RDONLY;

Tong lo_size;

Tong cbMode = 0, cbLoSize = 0;

STEP 1. Get data source name from command line (or use default)

*k Allocate the environment handle and set ODBC version
*k Allocate the connection handle

*k Establish the database connection

*k Allocate the statement handle

*/

/* 1f(dsn is not explicitly passed in as arg) */

if (argc != 2)

{

/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);

else
{

/* Use specified dsn */

strcpy ((char x)dsn, (char *)argv[1]);

fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
}

/* Allocate the Environment handle */
rc = SQLATTlocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Environment Handle Allocation
failed\nExiting!!\n");

Chapter 4. Working with Smart Large Objects

4-25

4-26

/*

/*

return (1);

/* Set the ODBC version to 3.5 */
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!\n"))
return (1);

/* Allocate the connection handle x/
rc = SQLA11ocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!\n"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL _NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\nExiting!!"))
return (1);
/* Allocate the statement handle */
rc = SQLA11ocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Select a smart-large object from the database
*k -- the select statement executed is -

*% "SELECT advert FROM item WHERE item num = 1004"
*/

/* Execute the select statement x/
rc = SQLExecDirect (hstmt, selectStmt, SQL _NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...select statement executed...smart large
object retrieved from the databse\n");

STEP 3. Get the size of the smart large object pointer structure.
*k Allocate a buffer to hold the structure.
*% Get the smart large object pointer structure from the
*k database.
*k Close the result set cursor.
*
/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO PTR_LENGTH, &loptr size,
sizeof (loptr_size),
NULL) ;
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 3 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure */
Toptr_buffer = malloc (Toptr_size);

IBM Informix ODBC Driver Programmer’s Manual

/*

rc

/*
rc
if

Bind the smart large object pointer structure buffer allocated to the
column in the result set & fetch it from the database */

= SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr buffer, loptr_size,
&loptr_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindCol failed\n"))

goto Exit;

= SQLFetch (hstmt);
(rc == SQL_NO_DATA_FOUND)

fprintf (stdout, "No Data Found\nExiting!!\n");
goto Exit;

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
failed\n"))
goto Exit;

Close the result set cursor x/

= SQLCloseCursor (hstmt);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLCloseCursor failed\n"))

goto Exit;

fprintf (stdout, "STEP 3 done...smart large object pointer structure

fetched from the database\n");

STEP 4. Use the smart large object's pointer structure to open it

**
*%

*/
rc

if

rc

rc
if

/*
rc
if

and obtain the smart Targe object file descriptor.
Reset the statement parameters.

= SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

= SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr size, 0, loptr_buffer,
Toptr_size, &loptr_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))

goto Exit;

= SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &mode, sizeof(mode), &cbMode);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 3)\n"))

goto Exit;

= SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)}", SQL_NTS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))

goto Exit;

Reset the statement parameters */

= SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLFreeStmt failed\n"))

goto Exit;

Chapter 4. Working with Smart Large Objects

4-27

4-28

fprintf (stdout, "STEP 4 done...smart large object opened... file
descriptor obtained\n");

/* STEP 5. Get the size of the smart large object status structure.

*k Allocate a buffer to hold the structure.
% Get the smart Targe object status structure from the
*k database.
*% Reset the statement parameters.
*
/

/* Get the size of the smart large object status structure */

rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
sizeof(lostat_size), NULL);

(checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 5 -- SQLGetInfo
failed\n"))

goto Exit;

—_
—+

/* Allocate a buffer to hold the smart Targe object status structure. =/
Tostat_buffer = malloc(lostat_size);

/* Get the smart Targe object status structure from the database. */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
Tostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDiret failed\n"))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object status structure
fetched from the database\n");

/* STEP 6. Use the smart large object's status structure to get the

% size of the smart large object.
% Reset the statement parameters.
*/

/* Use the smart large object status structure to get the size of the
smart Targe object x/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat size, 0, lostat_buffer,
Tostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

IBM Informix ODBC Driver Programmer’s Manual

/*

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_BIGINT, (UDWORD)®, 0, &lo_size, sizeof(lo_size), &cbLoSize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 6 done...smart large object size = %1d bytes\n",
lo_size);

STEP 7. Allocate a buffer to hold the smart large object's data.
**k Read the smart large object's data using its file descriptor.
*k Null-terminate the last byte of the smart Targe-object's data.
*ok Print out the contents of the smart large object.
% Reset the statement parameters.
*

/

/* Allocate a buffer to hold the smart large object's data chunks =/
lo_data = malloc (To_size + 1);

/* Read the smart Targe object's data */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
lo_size, 0, lo_data, lo_size, &lo_data_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_read(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

/* Null-terminate the last byte of the smart Targe objects data */
lo_data[lo_size] = '\0';

/* Print the contents of the smart large object */
fprintf (stdout, "Smart large object contents are..... \n\n\n%s\n\n\n",
lo_data);

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLFreeStmt failed\n"))
goto Exit;

Chapter 4. Working with Smart Large Objects

4-29

fprintf (stdout, "STEP 7 done...smart large object read completely\n");

/* STEP 8. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 8 done...smart large object closed\n");
/* STEP 9. Free the allocated buffers.

*/

free (Toptr_buffer);

free (lostat_buffer);

free (1o_data);

fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");

Exit:

/* CLEANUP: Close the statement handle

*k Free the statement handle

*k Disconnect from the datasource

*k Free the connection and environment handles
*k Exit

*/

/* Close the statement handle */
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle x/
SQLFreeHandle (SQL_HANDLE DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");

in = getchar ();
return (rc);

4-30 IBM Informix ODBC Driver Programmer’s Manual

Retrieving the Status of a Smart Large Object

The following table describes the status information and the corresponding

client functions.

Disk-Storage
Information

Description

Client Functions

Last access time

The time, in seconds, that a smart
large object was last accessed.

This value is available only if the
LO_KEEP_LASTACCESS_TIME flag is
set for the smart large object.

ifx_lo_stat_atime()

Last change in
status

The time, in seconds, of the last status
change for a smart large object.

A change in status includes updates,
changes in ownership, and changes to
the number of references.

ifx_lo_stat_ctime()

Last modification
time (seconds)

The time, in seconds, that a smart
large object was last modified.

ifx_lo_stat_mtime_sec()

Last modification
time
(microseconds)

The microsecond component of the
time of last modification.

This value is only supported on
platforms that provide system time to
microsecond granularity.

ifx_lo_stat_mtime_usec()

Reference count

A count of the number of references
to a smart large object.

ifx_lo_stat_refcnt()

Size

The size, in bytes, of a smart large
object.

ifx_lo_stat_size()

The time values (such as last access time and last change time) might differ
slightly from the system time. This difference is due to the algorithm that the
database server uses to obtain the time from the operating system.

Example of Retrieving Information About a Smart Large Object
The following code example, loinfo.c, shows how to retrieve information

about a smart large object. You can find the loinfo.c file in the
%INFORMIXDIR%/demo/clidemo directory on UNIX platforms and in the
%INFORMIXDIR%\demo\odbcdemo directory in Windows environments.
You can also find instructions on how to build the odbc_demo database in the

same location.
/*

*k loinfo.c
*%

*% To check the status of a smart Targe object

Chapter 4. Working with Smart Large Objects

4-31

%

*% 0BDC Functions:

*k SQLBindCol

*% SQLBindParameter
*% SQLConnect

*k SQLFetch

*% SQLFreeStmt

*% SQLDisconnect

*% SQLExecDirect

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x/

#include "infxcli.h"

#define BUFFER_LEN 20
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,

SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))

{
while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

if (retcode == SQL_INVALID HANDLE)
{

fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;

}
if ((retcode == SQL_SUCCESS) || (retcode ==
SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

4-32 IBM Informix ODBC Driver Programmer’s Manual

}

fprintf (stderr, "%s\n", errmsg);

return 1; /* all errors on this handle have been reported */
}
else

return 03 /* no errors to report x/

int main (long argc,

{

char *xargv[])

/* Declare variables

*/

/* Handles */

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
Tong lTofd;
Tong lofd_valsize = 0;

/* Smart large object specification structure */

charx lospec_buffer;
short lospec_size;
long lospec_valsize = 0;

/* Smart large object status structure =/

char* Tostat_buffer;
short lostat_size;
Tong Tostat_valsize = 0;

/* Smart large object pointer structure */

char=* Toptr_buffer;
short Toptr_size;
Tong Toptr_valsize = 0;

/* Miscellaneous variables */

UCHAR dsn[20]; /*name of the DSN used for connecting to the
database*/

SQLRETURN rc = 03

int ing

charx selectStmt = "SELECT advert FROM item WHERE item_num =
1004";

Tong lo_size;

Tong mode = LO_RDONLY;

char sbspace_name[BUFFER_LEN] ;

long sbspace_name_size = SQL_NTS;

Tong cbMode = 0, cbLoSize = 0;

STEP 1. Get data source name from command line (or use default).

** Allocate the environment handle and set ODBC version.

*k Allocate the connection handle.

*k Establish the database connection.

*k Allocate the statement handle.

*/

/* If (dsn is not explicitly passed in as arg) */

Chapter 4. Working with Smart Large Objects

4-33

if (argc != 2)
{
/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char x)defDsn);
1
else
{
/* Use specified dsn x/
strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

/* Allocate the Environment handle =/
rc = SQLA11ocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

fprintf (stdout, "Environment Handle Allocation
failed\nExiting!!\n");
return (1);

/* Set the ODBC version to 3.5 */
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0)
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!\n"))
return (1);

/* Allocate the connection handle x/
rc = SQLA11ocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!\n"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\nExiting!!"))
return (1);

/* Allocate the statement handle */
rc = SQLA11ocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Select a smart-large object from the database.

*k -- the select statement executed is -
*% "SELECT advert FROM item WHERE item_num = 1004"
*/

/* Execute the select statement x/
rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...select statement executed...smart large

4-34 IBM Informix ODBC Driver Programmer’s Manual

/*

/*

object retrieved from the databse\n");

STEP 3. Get the size of the smart large object pointer structure.

*k Allocate a buffer to hold the structure.

*k Get the smart large object pointer structure from the database.
*k Close the result set cursor.

*/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO _PTR_LENGTH, &loptr_size,
sizeof (loptr_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 3 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure x/
Toptr_buffer = malloc (Toptr_size);

/* Bind the smart large object pointer structure buffer allocated to the
column in the result set & fetch it from the database */
rc = SQLBindCol (hstmt, 1, SQL C BINARY, loptr_buffer, Toptr size,
&loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindCol failed\n"))
goto Exit;

rc = SQLFetch (hstmt);
if (rc == SQL_NO_DATA_FOUND)

fprintf (stdout, "No Data Found\nExiting!!\n");
goto Exit;

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
failed\n"))
goto Exit;

/* Close the result set cursor */
rc = SQLCloseCursor (hstmt);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLCloseCursor failed\n"))
goto Exit;

fprintf (stdout, "STEP 3 done...smart large object pointer structure
fetched from the database\n");

STEP 4. Use the smart large object's pointer structure to open it

*k and obtain the smart Targe object file descriptor.
% Reset the statement parameters.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
Toptr_size, &loptr_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))

Chapter 4. Working with Smart Large Objects

4-35

4-36

/*

goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &mode, sizeof(mode), &cbMode);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 3)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 4 done...smart large object opened... file
descriptor obtained\n");

STEP 5. Get the size of the smart large object status structure.
*% Allocate a buffer to hold the structure.
*x Get the smart large object status structure from the database.
% Reset the statement parameters.
*
/

/* Get the size of the smart large object status structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
sizeof(lostat_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 5 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object status structure. */
Tostat_buffer = malloc(lostat_size);

/* Get the smart large object status structure from the database. */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat size, 0, lostat_buffer,
Tostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL _NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

IBM Informix ODBC Driver Programmer’s Manual

/*

/*

fprintf (stdout, "STEP 5 done...smart large object status structure
fetched from the database\n");

STEP 6. Use the smart large object's status structure to get the size
%k of the smart large object.
Hx Reset the statement parameters.
*% You can use additional ifx_lo_stat () functions to get more
*k status information about the samrt Targe object.
*k You can also use it to retrieve the smart Targe object
*k specification structure and get further information about the
*k smart large objectusing it's specification structure.
*

/

/* Use the smart large object status structure to get the size of the
smart large object. */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL _C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
lostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_BIGINT, (UDWORD)O, 0, &lo_size, sizeof(lo_size), &cbLoSize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "LARGE OBJECT SIZE = %1d\n", lo_size);
fprintf (stdout, "STEP 6 done...smart large object size retrieved\n");

STEP 7. Get the size of the smart large object specification structure.
*k Allocate a buffer to hold the structure.

%k Get the smart large object specification structure from the

*k database.

% Reset the statement parameters.

*

/

/* Get the size of the smart large object specification structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO _SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 7 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object specification

structure */
lospec_buffer = malloc (lospec_size);

Chapter 4. Working with Smart Large Objects

4-37

/* Get the smart large object specification structure from the
database */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
Tostat_size, &lostat valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
Tospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_cspec(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object status structure
fetched from the database\n");

/* STEP 8. Use the smart large object's specification structure to get

*k the sbspace name where the smart large object is stored.
*% Reset the statement parameters.
*/

/* Use the smart large object's specification structure to get the
sbspace name of the smart large object. */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, Tospec_buffer,
Tospec_size, &lospec_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
BUFFER_LEN, 0, sbhspace_name, BUFFER_LEN, &sbhspace name_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed (param 2)\n"))
goto Exit;
rc = SQLExecDirect (hstmt, "{call ifx_lo_specget sbspace(?, ?)}",
SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "LARGE OBJECT SBSPACE NAME = %s\n", sbspace_name);
fprintf (stdout, "STEP 8 done...large object shspace name retrieved\n");

/* STEP 9. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)O, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
SQLBindParameter failed\n"))
goto Exit;

4-38 IBM Informix ODBC Driver Programmer’s Manual

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 9 done...smart large object closed\n");
/* STEP 10.Free the allocated buffers.

*/

free (Toptr_buffer);

free (lostat_buffer);

free (lospec_buffer);

fprintf (stdout, "STEP 10 done...smart large object buffers freed\n");

Exit:

/* CLEANUP: Close the statement handle.

*k Free the statement handle.

*k Disconnect from the datasource.

*k Free the connection and environment handles.
*% Exit.

*/

/* Close the statement handle */
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE STMT, hstmt);

/* Disconnect from the data source */
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Reading or Writing a Smart Large Object to or from a File

You can use the SQL functions FILETOBLOB() and FILETOCLOB() to
transfer data from a file to a smart large object. The file can be on a client
computer or on a server computer.

You can use the SQL function LOTOFILE() to transfer data from a smart large
object to a file. The file might be on a client computer or on a server
computer. LOTOFILE() accepts a smart-large-object pointer as a parameter.
You can use the smart-large-object pointer structure for this parameter.

Chapter 4. Working with Smart Large Objects ~ 4-39

For more information about these SQL functions, see the IBM Informix: Guide
to SQL Syntax.

4-40 1BM Informix ODBC Driver Programmer’s Manual

Chapter 5. Working with Rows and Collections

Transferring Row and Collection Data . . . 5-1
Fixed-Type Buffers and Unfixed-Type Buffers .52
Buffers and Memory Allocation . .52
SQL Data . 52
Local Fetch 53
Example of Retrieving Row and Collectlon Data from the Database . . .54

Creating a Row or Collection . 5-11
Example of Creating a Row and a Llst on the Chent . 5-11

Modifying a Row or Collection . . 5-17

Retrieving Information About a Row or Collect1on . 5-18

In This Chapter

The information in this chapter applies only if your database server is
IBM Informix Dynamic Server.

Rows and collections are composite values that consist of one or more
elements. You can use the SELECT, UPDATE, INSERT, and DELETE
statements to access an entire row or collection. However, these SQL
statements do not let you access an element that is in a row or collection. To
access an element, you need to retrieve the row or collection and then access
the element from the local copy of the row or collection.

For more information about rows and collections, see [Chapter 3, “Data|
[Types,” on page 3-1} the IBM Informix: Guide to SQL Reference, and

IBM Informix: User-Defined Routines and Data Types Developer’s Guide. For
information about the client functions that you use to access rows and
collections, see [Chapter 6, “Client Functions,” on page 6-1|

Transferring Row and Collection Data

When you retrieve a row or collection, the database server puts the row or
collection into a buffer that is local to your IBM Informix ODBC Driver
application.

To allocate and bind a row or collection buffer:
1. Call ifx_rc_create() to allocate the buffer.
2. Call SQLBindCol() to bind the buffer handle to the database column.

3. Execute a SELECT statement to transfer the row or collection data to the
local buffer.

4, Use the row or collection buffer.

© Copyright IBM Corp. 1996, 2004 5-1

5. C(Call ifx_rc_free() to deallocate the buffer.

Fixed-Type Buffers and Unfixed-Type Buffers

The following table describes the differences between fixed-type buffers and
unfixed-type buffers.

Kind of Buffer |Description

Fixed type When you call ifx_rc_create() to create a row or collection buffer,
you specify the following data types for the buffer:

* The buffer data type (a row or one of the collection types)

* The data types of the elements that are in the row or collection

When you retrieve the row or collection, the database server
compares the source and target data types and converts data from
one Informix SQL data type to another as necessary.

You can modify the row or collection buffer before you retrieve
data into the buffer.

Unfixed type When you call ifx_rc_create() to create a row or collection buffer,
you specify only the buffer data type (a row or a collection) and
not the element types.

When you retrieve the row or collection, the database server does
not compare data types because you did not specify the target
data types. Instead, the row or collection buffer adopts the data
types of the source data.

You must initialize the row or collection buffer before you modify
it. To initialize the buffer, retrieve a row or collection into it.

The buffer type remains unfixed even when it contains data.

Buffers and Memory Allocation
When you retrieve data into a buffer that already contains a row or collection,
IBM Informix ODBC Driver does not reuse the same buffer. Instead,
IBM Informix ODBC Driver performs the following steps:
1. Creates a new row or collection buffer.
2. Associates the new buffer with the given buffer handle.

3. Deallocates the original bulffer.
SQL Data

If the data types for a row or collection that are on a database server differ
from the data types for a row or collection buffer into which the data is
retrieved, the database server calls cast functions to convert the data from the
source Informix SQL data types to the target Informix SQL data types. The
following table lists the provider of the cast functions for each combination of
source data type and target data type. Cast functions that a data type

5-2 IBM Informix ODBC Driver Programmer’s Manual

provides are located on the database server.

Source Data Type Target Data Type Provider of Cast Functions
Built-in Built-in Database server
Built-in Extended Data type
Extended Built-in Data type
Extended Extended Data type
Local Fetch

IBM Informix ODBC Driver performs a local fetch when you retrieve a row
or collection from one location on the client computer to another location on
the client computer.

To perform a local fetch:

1.
2.
3.

4.

5.
6.

Call ifx_rc_create() to allocate a row or collection buffer.
Call SQLBindCol() to bind the buffer handle to the local row or collection.

Execute a SELECT statement to transfer the row or collection data to the
local buffer.

For each element in the row or collection, call ifx_rc_fetch() to copy the
value to the buffer.

Use the row or collection buffer.
Call ifx_rc_free() to deallocate the buffer.

A local fetch has the following limits on SQL data conversion:

IBM Informix ODBC Driver cannot convert extended data types for which
the cast functions are on a database server.

IBM Informix ODBC Driver cannot convert data from one named row type
to another. Only the database server can perform this kind of conversion.

IBM Informix ODBC Driver cannot convert SQL data types when retrieving
an entire row or collection. Thus, IBM Informix ODBC Driver can perform
a local fetch of an entire row or collection only if the internal structures for
the source and destination are the same or if the destination is an
unfixed-type buffer.

For example, if you define a local collection as list (char(1) not null), the
database server can put a list (int not null) value from the database server
into the local collection. During this operation, the database server converts
each integer into a string and constructs a new list to return to the client
computer. You cannot perform this operation on the client computer where
you retrieve a local list of integers into a list characters.

Chapter 5. Working with Rows and Collections ~ 5-3

5-4

Example of Retrieving Row and Collection Data from the Database

The following sample program, rcselect.c, retrieves row and collection data
from the database and displays it. This example also illustrates the fact that
the same client functions can use row and collection handles interchangeably.

You can find the rcselect.c file in the %INFORMIXDIR %/demo/clidemo
directory on UNIX and in the %INFORMIXDIR%\demo\odbcdemo
directory in Windows. You can also find instructions on how to build the
odbc_demo database in the same location.

/*

*k rcselect.c
*%

*% To access rows and collections
*% 0BDC Functions:

*% SQLBindParameter
*% SQLConnect

*% SQLDisconnect

*% SQLExecDirect

*k SQLFetch

*% SQLFreeStmt

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /+*NO_WIN32*/

#include "infxcli.h"

#define BUFFER_LEN 25
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,

SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))

{
while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,

&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

IBM Informix ODBC Driver Programmer’s Manual

}
/*

**
**
**
**
**
**
**
**
**
**
**

*/

if (retcode == SQL_INVALID HANDLE)
{

fprintf (stderr, "checkError function was called with an
invalid handle!!\n");

return 1;
1
if ((retcode == SQL_SUCCESS) [(retcode == SQL_SUCCESS_WITH_INF0))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);
errNum++;

}

fprintf (stderr, "%s\n", errmsg);

return 1; /* all errors on this handle have been reported */
}
else

return 03 /* no errors to report x/

Executes the given select statement and assumes the results will be

either rows or collections. The 'hrc' parameter may reference either
a row or a collection. Rows and collection handles may often be used
interchangeably.

Each row of the select statement will be fetched into the given row or
collection handle. Then each field of the row or collection will be
individually converted into a character buffer and displayed.

This function returns 0 if an error occurs, else returns 1

int do_select (SQLHDBChdbc,

/*

charx select_str,
HINFX_RChrc)

SQLHSTMT hRCStmt ;
SQLHSTMT hSelectStmt;
SQLRETURN rc = 03

short index, rownum;

short position = SQL_INFX_RC_ABSOLUTE;

short jump;

char fname [BUFFER_LEN] ;

char Tname [BUFFER_LEN] 3

char rc_data[BUFFER_LEN];

SQLINTEGER cbFname = 0, cbLname = 0, cbHrc = 03

SQLINTEGERcbPosition = 0, cbJump = 0, cbRCData = 0;

STEP A. Allocate the statement handles for the select statement and
*k the statement used to retrieve the row/collection data.
*/

/* Allocate the statement handle */

rc = SQLAT1ocHandle (SQL_HANDLE_STMT, hdbc, &hRCStmt);

if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step A -- Statement
Handle Allocation failed for row/collection
statement\nExiting!!"))

Chapter 5. Working with Rows and Collections

return 0;

/* Allocate the statement handle */
rc = SQLA11ocHandle (SQL_HANDLE_STMT, hdbc, &hSelectStmt);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step A -- Statement
Handle Allocation failed for select statement\nExiting!!"))
return 0;

fprintf (stdout, "STEP A done...statement handles allocated\n");

/* STEP B. Execute the select statement.

*k Bind the result set columns -
** -- coll = fname
*k col2 = Iname
*k col3 = row/collection data
*
/

/* Execute the select statement x/
rc = SQLExecDirect (hSelectStmt, select_str, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLExecDirect failed\n"))
return 0;

/* Bind the result set columns */
rc = SQLBindCol (hSelectStmt, 1, SQL_C_CHAR, (SQLPOINTER)fname,
BUFFER_LEN, &cbFname);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLBindCol failed for column 'fname'\n"))
return 0;

rc = SQLBindCol (hSelectStmt, 2, SQL_C_CHAR, (SQLPOINTER)1name,
BUFFER_LEN, &cbLname);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLBindCol failed for column 'lTname'\n"))
return 0;

rc = SQLBindCol (hSelectStmt, 3, SQL_C_BINARY, (SQLPOINTER)hrc,
sizeof (HINFX_RC), &cbHrc);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLBindCol failed for row/collection column\n"))
return 0;

fprintf (stdout, "STEP B done...select statement executed and result set
columns bound\n");

/% STEP C. Retrieve the results.
*/

for (rownum = 1;; rownum++)
{
rc = SQLFetch (hSelectStmt);
if (rc == SQL_NO_DATA_FOUND)
{
fprintf (stdout, "No data found...\n");
break;
}
else if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in
Step C -- SQLFetch failed\n"))
return 0;

5-6 IBM Informix ODBC Driver Programmer’s Manual

fprintf(stdout, "Retrieving row number %d:\n\tfname -- %s\n\tlname --
%s\n\tRow/Collection Data --\n", rownum, fname, Iname);

/* For each row in the result set, display each field of the
retrieved row/collection */
for (index = 1;; index++)

{
strcpy(rc_data, "<null>");
/* Each value in the Tocal row/collection will be fetched into a
% character buffer and displayed using fprintf().
*/
rc = SQLBindParameter (hRCStmt, 1, SQL_PARAM_OUTPUT, SQL_C CHAR,
SQL_CHAR, 0, 0, rc_data, BUFFER_LEN, &cbRCData);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 1)\n"))
return 0;
rc = SQLBindParameter (hRCStmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrc,
sizeof (HINFX_RC), &cbHrc);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 2)\n"))
return 0;
rc = SQLBindParameter (hRCStmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 3)\n"))
return 0;
jump = index;
rc = SQLBindParameter (hRCStmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &jump, 0, &cbhJump);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 4)\n"))
return 0;
rc = SQLExecDirect(hRCStmt, "{ ? = call ifx_rc_fetch(?, ?, 7) ",
SQL_NTS);
if (rc == SQL_NO_DATA_FOUND)
{
break;
1
else if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in
Step C -- SQLExecDirect failed\n"))
return 0;
/* Display retrieved row */
fprintf(stdout, "\t\t%d: %s\n", index, rc_data);
}

}

fprintf (stdout, "STEP C done...results retrieved\n");
/* Free the statement handles =*/

SQLFreeHandle (SQL_HANDLE_STMT, hSelectStmt);
SQLFreeHandle (SQL_HANDLE_STMT, hRCStmt);

return 1; /* no error x/

Chapter 5. Working with Rows and Collections

/*
* This function allocates the row and collection buffers, passes
* them to the do_select() function, along with an appropriate select
* statement and then frees all allocated handles.
*/
int main (Tong argc,
char *argv[])
{

/* Declare variables
*/

/* Handles x/

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;
HINFX_RC hrow, hlist;

/* Miscellaneous variables */

UCHAR dsn[20] ;/*name of the DSN used for connecting to the
database*/

SQLRETURN rc = 0;

int in;

int data_size = SQL_NTS;

charx listSelectStmt = "SELECT fname, Iname, contact_dates FROM
customer";

charx rowSelectStmt = "SELECT fname, 1name, address FROM
customer";

SQLINTEGER cbHlist = 0, cbHrow = 0;

/% STEP 1. Get data source name from command line (or use default).

*k Allocate environment handle and set ODBC version.
*k Allocate connection handle.

*k Establish the database connection.

*% Allocate the statement handle.

*/

/* If(dsn is not explicitly passed in as arg) */

if (argc != 2)

{

/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char x)defDsn);

else
{
/* Use specified dsn */
strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

/* Allocate the Environment handle =/

rc = SQLATlocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (rc != SQL_SUCCESS)
fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
return (1);

/* Set the ODBC version to 3.5 */

5-8 IBM Informix ODBC Driver Programmer’s Manual

rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL _HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))
return (1);

/* Allocate the connection handle */
rc = SQLATlocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))
return (1);

/* Allocate the statement handle */
rc = SQLA1TlocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Allocate an unfixed collection handle.

**k Retrieve database rows containing a list.
*% Reset the statement parameters.
*/

/* Allocate an unfixed Tist handle */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, &hlist, sizeof (HINFX_RC),
&cbHlist);
if (checkError (rc, SQL _HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 1) failed\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL C CHAR, SQL_CHAR,
0, 0, (UCHAR *) "1ist", 0, &data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 2) failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{? = call ifx_rc_create(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

/* Retrieve databse rows containing a Tist */
if (!do_select (hdbc, TistSelectStmt, hlist))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...list data retrieved\n");
fprintf (stdout,"\nHit <Enter> to continue...");

Chapter 5. Working with Rows and Collections

5-10

/*

/*

/*

in = getchar ();

STEP 3. Allocate an unfixed row handle.

*k Retrieve database rows containing a row.
% Reset the statement parameters.
*/

/* Allocate an unfixed row handle */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof (HINFX_RC), 0O, &hrow, sizeof (HINFX_RC),
&cbHrow) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 1) failed\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
0, 0, (UCHAR *) "row", 0, &data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 2) failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{? = call ifx_rc_create(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed\n"))
goto Exit;

/* Retrieve databse rows containing a row */
if (!do_select (hdbc, rowSelectStmt, hrow))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 3 done...row data retrieved\n");

STEP 4. Free the row and list handles.
*/

/* Free the row handle */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC),
&cbHrow) ;

rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

/* Free the Tist handle */

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof (HINFX_RC), 0, hlist, sizeof (HINFX_RC),
&cbHlist);

rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

fprintf (stdout, "STEP 4 done...row and list handles freed\n");

Exit:
CLEANUP: Close the statement handle.
*k Free the statement handle.

*k Disconnect from the datasource.

IBM Informix ODBC Driver Programmer’s Manual

*%
**k

*/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */

Free the connection and environment handles.

Exit.

SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source */
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Creating a Row or Collection

The following code example, rccreate.c, creates a row and a list on the client,

adds items to them, and inserts them into the database. You can find the

rccreate.c file in the %INFORMIXDIR%/demo/clidemo directory on UNIX
and in the %INFORMIXDIR%\demo\odbcdemo directory in Windows. You

can also find instructions on how to build the odbc_demo database in the

same location.

Example of Creating a Row and a List on the Client

/*

*% rccreate.c

**

*% To create a collection & insert it into the database table

**
**

*% 0BDC Functions:

**
**

*/

#include
#include
#include

SQLBindParameter
SQLConnect
SQLDisconnect
SQLExecDirect

<stdio.h>
<stdlib.h>
<string.h>

#ifndef NO_WIN32

#include
#include
#include

<io.h>
<windows.h>
<conio.h>

#endif /*NO_WIN32x/

#include

"infxcli.h"

#define BUFFER_LEN 25
#define ERRMSG_LEN 200

Chapter 5. Working with Rows and Collections

5-11

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURNrc,
SQLSMALLINT ~ handleType,

SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN] ;

SQLSMALLINT textLengthPtr;
if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{

while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

if (retcode == SQL_INVALID_HANDLE)
{

fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;

}

if ((retcode == SQL_SUCCESS) || (retcode ==
SQL_SUCCESS_WITH_INFO)) fprintf (stderr, "ERROR: %d: %s
: %s \n", nativeError, sqlState, errMsg);

errNum++;

}

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

1
else
return 03 /* no errors to report */
}
int main (Tong argc,

char *argv[])
{
/* Declare variables

*/

/* Handles */
SQLHDB hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

HINFX_RC hrow;
HINFX_RC hlist;

/* Miscellaneous variables =/

UCHAR dsn[20];/*name of the DSN used for connecting to the
database*/

SQLRETURN rc = 0;

int i, in;

int data_size = SQL_NTS;

short position = SQL_INFX_RC_ABSOLUTE;

5-12 IBM Informix ODBC Driver Programmer’s Manual

/*

short Jump;

UCHAR row_data[4] [BUFFER_LEN] = {"520 Topaz Way", "Redwood City",
IICAII’ II94062II};

int row_data_size = SQL_NTS;

UCHAR 1ist_data[2] [BUFFER_LEN] = {"1991-06-20", "1993-07-17"};

int 1ist_data_size = SQL_NTS;

charx insertStmt = "INSERT INTO customer VALUES (110, 'Roy',

'Jaeger', 7, 7)";
SQLINTEGER cbHrow = 0, cbHlist = 0, cbPosition = 0, cbhJump = 0;
STEP 1. Get data source name from command line (or use default).

**k Allocate environment handle and set ODBC version.
*k AlTocate connection handle.

*k Establish the database connection.

*k Allocate the statement handle.

*/

/* If(dsn is not explicitly passed in as arg) =/

if (argc !'= 2)

{

/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);
}
else
{
/* Use specified dsn */
strcpy ((char *)dsn, (char *)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);

/* Allocate the Environment handle */

rc = SQLATlocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

{

fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
return (1);

/* Set the ODBC version to 3.5 */
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))
return (1);

/* Allocate the connection handle */
rc = SQLATlocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE _ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
if (checkError (rc, SQL_HANDLE DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))
return (1);

/* Allocate the statement handle x/

rc = SQLATlocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))

Chapter 5. Working with Rows and Collections

5-13

5-14

return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Allocate fixed-type row handle -- this creates a non-null row

% buffer, each of whose values is null, and can be updated.
*k Allocate a fixed-type 1ist handle -- this creates a non-null
*k but empty list buffer into which values can be inserted.
*% Reset the statement parameters.
*
/

/* Allocate a fixed-type row handle -- this creates a row with each
value empty */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof (HINFX_RC), 0, &hrow, sizeof (HINFX_RC),
&cbHrow) ;

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 1) failed for row handle\n")) goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL PARAM_INPUT, SQL _C_CHAR, SQL_CHAR,
0, 0, (UCHAR =) "ROW(addressl VARCHAR(25), city VARCHAR(15), state
VARCHAR(15), zip VARCHAR(5))", 0, &data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 2) failed for row handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt, (UCHAR %) "{? = call ifx_rc_create(?)}",
SQL_NTS)
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed for row handle\n"))
goto Exit;

/* Allocate a fixed-type 1ist handle */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX RC), 0, &hlist, sizeof (HINFX_RC),
&cbHlist);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 1) failed for list handle\n"))
goto Exit;

data_size = SQL_NTS;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
0, 0, (UCHAR =) "LIST (DATETIME YEAR TO DAY NOT NULL)",0,
&data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 2) failed for list handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt, (UCHAR %) "{? = call ifx_rc_create(?)}",
SQL_NTS) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed for 1ist handle\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...fixed-type row and collection handles

IBM Informix ODBC Driver Programmer’s Manual

allocated\n");

/* STEP 3. Update the elements of the fixed-type row buffer allocated.

*k Insert elements into the fixed-type 1list buffer allocated.
% Reset the statement parameters.
*/

/* Update elements of the row buffer */
for (i=0; i<4; i++)
{
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof (HINFX_RC), 0, hrow, sizeof (HINFX_RC),
&cbHrow) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 1) failed for row handle\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM INPUT, SQL C_CHAR,
SQL_CHAR, BUFFER_LEN, 0, row_data[i], 0, &row_data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 2) failed for row handle\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 3) failed for row handle\n"))
goto Exit; jump = i + 13
rc = SQLBindParameter (hstmt, 4, SQL_PARAM INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &jump, 0, &chJump);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 4) failed for row handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt,
(UCHAR *)"{call ifx_rc_update(?, ?, ?, ?)}", SQL_NTS);
if (checkError (rc, SQL _HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed for row handle\n"))
goto Exit;
}

/* Insert elements into the Tist buffer */
for (i=0; i<2; i++)
{
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof (HINFX_RC), 0, hlist, sizeof (HINFX_RC),
&cbHlist);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 1) failed for Tist handle\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM INPUT, SQL C_CHAR,
SQL_DATE, 25, 0, 1ist_data[i], 0, &list_data_size);
if (checkError (rc, SQL _HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 2) failed for Tist handle\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 3) failed for Tist handle\n"))
goto Exit;

Chapter 5. Working with Rows and Collections

5-15

Jjump =i + 13
rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &jump, 0, &chJump);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 4) failed for Tist handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt,
(UCHAR *)"{call ifx_rc_insert(?, ?, 7, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed for list handle\n"))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 3 done...row and list buffers populated\n");

/% STEP 4. Bind parameters for the row and Tist handles.

*% Execute the insert statement to insert the new row into table
*k 'customer'.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrow,
sizeof (HINFX_RC), &cbHrow);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX RC), 0, hlist,
sizeof (HINFX_RC), &cbHlist);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, (UCHAR =*)insertStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 4 done...new row inserted into table
'customer'\n");
/% STEP 5. Free the row and list handles.

*/

/* Free the row handle */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), O, hrow, sizeof(HINFX_RC),
&cbHrow) ;

rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

/* Free the Tist handle */
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,

5-16 1BM Informix ODBC Driver Programmer’s Manual

SQL_INFX_RC_LIST, sizeof (HINFX_RC), 0, hlist, sizeof(HINFX_RC),
&cbHlist);

rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);
fprintf (stdout, "STEP 5 done...row and list handles freed\n");
Exit:

/* CLEANUP: Close the statement handle.

*k Free the statement handle.

*k Disconnect from the datasource.

*k Free the connection and environment handles.
*k Exit.

*/

/* Close the statement handle */
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source =*/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Modifying a Row or Collection

The following table provides an overview of the functions that IBM Informix
ODBC Diriver provides for modifying rows and collections.

Function Modification Row Collection
ifx_rc_delete() Delete an element No Yes
ifx_rc_insert() Insert an element No Yes (See the

following table.)

ifx_rc_setnull() Set the row or collection to null | Yes Yes

ifx_rc_update() Update the value of an element | Yes Yes

The following table describes the collection locations into which you can
insert an element. You can insert an element only at the end of a SET or
MULTISET collection because elements in these types of collections do not
have ordered positions.

Beginning Middle End
List Yes Yes Yes

Chapter 5. Working with Rows and Collections ~ 5-17

Beginning Middle End

Multiset No No Yes

Set No No Yes

Tip: If you only need to insert or update a row or collection column with
literal values, you do not need to use a row or collection buffer. Instead,
you can explicitly list the literal value in either the INTO clause of the
INSERT statement or the SET clause of the UPDATE statement.

Each row and collection maintains a seek position that points to the current
element in the row or collection. When the row or collection is created, the
seek position points to the first element that is in the row or collection. All
calls to client functions share the same seek position for a row or collection
buffer. Therefore, one client function can affect the seek position for another
client function that uses the same buffer handle. The following table describes
how client functions use and modify the seek position.

Client Function |Acts On Changes

ifx_rc_delete() At the specified position Sets the seek position to the value
after the one that was deleted

ifx_rc_fetch() At the specified position Sets the seek position to the
specified position

ifx_rc_insert() Before the specified position |Sets the seek position to the
specified position

ifx_rc_update() | At the specified position Sets the seek position to the
specified position

Retrieving Information About a Row or Collection

5-18

The following table provides an overview of the functions that IBM Informix
ODBC Diriver provides for retrieving information about rows and collections.
The ifx_rc_describe() function returns the data types of elements in a row or
collection. [Chapter 6, “Client Functions,” on page 6-1} describes these
functions.

Function Information Page
ifx_rc_count() Number of columns
ifx_rc_describe() Data type information
ifx_rc_isnull() Value that indicates whether or not it is null
ifx_rc_typespec() Type specification 6-52,

IBM Informix ODBC Driver Programmer’s Manual

Chapter 6. Client Functions

Calling a Client Function .62
SQLSyntax. L ..o 62
Function Syntax . . . O 22
Input and Output Parameters T
SQL_BIGINT063
Return Codes . . . P S5

Functions for Smart Large Ob]ects R
ifx_lo_alter() .65
ifx_lo_close()60
ifx_lo_col_info() L L L 6T
ifx_lo_create()68
ifx_lo_def_create_spec() .610
ifx_lo_open()
ifx lo_read() .613
ifx_lo_readwithseek() .614
ifx_lo_seek() .616
ifx_lo_specget_estbytes() . 617
ifx_lo_specget_extsz() .618
ifx_lo_specget_flags() .61
ifx_lo_specget_maxbytes() .620
ifx_lo_specget_sbspace() .. .621
ifx_lo_specset_estbytes() .. .622
ifx_lo_specset_extsz() .623
ifx_lo_specset_flags() .625
ifx_lo_specset_maxbytes(). .626
ifx_lo_specset_sbspace() .627
ifx_lo_stat) .628
ifx_lo_stat_atime() .62
ifx_lo_stat_cspec() .63
ifx_lo_stat_ctime() .63
ifx_lo_stat_refent() L . L L L L. ... L6632
ifx_lo_stat_size(). .633
ifx_lo_tell) L. L 634
ifx_lo_truncate(). .63
ifx_lo_write() . . . P 6 56 4]
ifx_lo wr1tew1thseek() N s £< 74

Functions for Rows and Collections .63
ifx_rc_count(). .64
ifx_rc_create(). L . L L. L ..o .64
ifx_rc_delete(). .643
ifx_rc_describe() .64
ifx_rc_fetch() .646
ifx_rc_free() L oL L. 64T
ifx_rc_insert(). .648

© Copyright IBM Corp. 1996, 2004 6-1

ifx_rc_isnull() .
ifx_rc_setnull()

ifx_rc_typespec().
ifx_rc_update()

. 6-50
. 6-51
. 6-52
. 6-53

In This Chapter

The information in this chapter applies only if your database server is
IBM Informix Dynamic Server.

This chapter describes the IBM Informix ODBC Driver client functions. Use

these functions to access and manipulate smart large objects and rows and

collections.

Calling a Client Function

This section describes the syntax of client functions, their input/output
arguments, return values, and SQL_BIGINT.

SQL Syntax

The SQL syntax for a client function is:

{? = call client_function(?, ?,...)}

“uy

Use the first parameter marker (
output parameter.

) only when the first parameter is an

The following code example invokes a client function when the first
parameter is an output parameter:

{? = call ifx_lo_open(?, ?, ?)}

The following code example invokes a client function when the first
parameter is not an output parameter:

{call ifx_lo_create(?, ?, ?, ?)}

Function Syntax
The database server and the application both partially implement each client

function. You can execute a client function with either SQLPrepare() and

SQLExecute() or with SQLExecDirect(). You need to call SQLBindParameter()

or SQLBindCol() to bind each parameter before you call SQLExecute() or

SQLExecDirect().

To execute a client function with SQLPrepare() and SQLExecute():
1. Prepare the SQL statement for the client function.

2. Bind the parameters.

3. Execute the SQL statement.

6-2 IBM Informix ODBC Driver Programmer’s Manual

The following code examples illustrates these steps for ifx_lo_open():
rc = SQLPrepare(hstmt, "{? = call ifx_lo_open(?, ?, ?)}",

SQL_NTS);
rc = SQLBindParameter(...);
rc = SQLExecute(hstmt);

To execute a client function with SQLExecDirect():
1. Bind the parameters.
2. Execute the SQL statement.

The following code example illustrates these steps for ifx_lo_open():

rc = SQLBindParameter(...);

rc = SQLExecDirect(hstmt, "{? = call ifx_lo_open(?, 7, ?)}",
SQL_NTS);

Input and Output Parameters

Most of the input and output parameters for client functions are output
parameters from the perspective of the client application. However, a client
function that accepts an input/output parameter initializes the parameter
internally and sends it to the database server with the request to execute the
client function. Therefore, you need to pass these parameters as input/output
parameters to the driver.

SQL_BIGINT

Dynamic Server supports the INT8 Informix SQL data type. By default, the
driver maps INTS8 to the SQL_BIGINT Informix ODBC Driver SQL data type
and to the SQL_C_CHAR default Informix ODBC Driver C data type.
However, client functions cannot access all the data type conversion functions.
Therefore, you must use a data type other than SQL_C_CHAR when you use
a value of type SQL_BIGINT.

For example, before you call ifx_lo_specset_estbytes(), you need to bind a
variable for the estbytes input argument. Because estbytes is an SQL_BIGINT,
you would normally bind estbytes to an SQL_C_CHAR. However,
SQL_C_CHAR does not work for SQL_BIGINT for a client function. The
following code example illustrates how to bind estbytes to an SQL_C_LONG
instead of an SQL_C_CHAR for ifx_lo_specset_estbytes():
rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG,

SQL_BIGINT, (UDWORD)O, 0, &estbytes, sizeof(estbytes), NULL);
rc = SQLExecDirect(hstmt, "{call ifx_lo_specset_estbytes(?, ?)}",

SQL_NTS)

Return Codes

The client functions do not provide return codes. For success or failure
information, see the return codes for the IBM Informix ODBC Driver function
with which you call the client function (SQLExecDirect() or SQLExecute()).

Chapter 6. Client Functions 6-3

Functions for Smart Large Objects

This section describes each client function that the driver provides for smart
large objects. The functions are listed alphabetically. For more information, see
[Chapter 4, “Working with Smart Large Obijects,” on page 4-1]

6-4 1BM Informix ODBC Driver Programmer’s Manual

ifx_lo_alter()
The ifx_lo_alter() function alters the storage characteristics of a smart large

object.

Syntax

ifx_To_alter(loptr, lospec)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

loptr SQL_INFX_UDT_FIXED | Input Smart-large-object pointer structure

lospec SQL_INFX_UDT_FIXED | Input Smart-large-object specification
structure

Usage

The ifx_lo_alter() function performs the following steps to update the storage
characteristics of a smart large object:

1. Gets an exclusive lock for the smart large object.

2. Uses the characteristics that are in the lospec smart-large-object
specification structure to update the storage characteristics of the smart
large object. The ifx_lo_alter() function lets you change the following
storage characteristics:

* Logging characteristics
* Last-access time characteristics
* Extent size

3. Unlocks the smart large object.

As an alternative to calling this function, you can call one of the following
functions if you want to change only one of these characteristics:

+ ifx_lo_specset_flags()
* ifx_lo_specset_extsz()

Chapter 6. Client Functions 6-5

6-6

ifx_lo_close()

The ifx_lo_close() function closes a smart large object.

Syntax
ifx_To_close(lofd)

Arguments
The function accepts the following argument.

Argument |Type Use Description
lofd SQL_INTEGER |Input Smart-large-object file descriptor
Usage

The ifx_lo_close() function closes a smart large object. During this function,
the database server tries to unlock the smart large object. If the isolation mode
is repeatable read or if the lock is an exclusive lock, the database server does
not release the lock until the end of the transaction.

Tip: If you do not update a smart large object inside a BEGIN WORK
transaction block, each update is a separate transaction.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_col_info()

The ifx_lo_col_info() function updates a smart-large-object specification
structure with column-level storage characteristics.

Syntax
ifx_To_col_info(colname, lospec)

Arguments
The function accepts the following arguments.

Argument

Type Use Description

colname

SQL_CHAR Input Pointer to a buffer that contains the name of a

database column

This value must be in the following format:

database@server_name:table.column

If the column is in a database that is ANSI
compliant, you can include the owner name. In this
case, use the following format:

database@server_name:owner.table.column

lospec

SQL_INFX_UDT_FIXED 1/0 Smart-large-object specification structure

Usage

The ifx_lo_col_info() function sets the fields for a smart-large-object
specification structure to the storage characteristics for the colname database
column. If the specified column does not have column-level storage
characteristics defined, the database server uses the storage characteristics that
are inherited.

Important: You must call ifx_lo_def create_spec() before you call this
function.

Chapter 6. Client Functions 6-7

6-8

ifx_lo_create()
The ifx_lo_create() function creates and opens a new smart large object.

Syntax
ifx_lo_create(lospec, flags, loptr, lofd)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED |Input Smart-large-object specification

structure that contains storage
characteristics for the new smart
large object

flags SQL_INTEGER Input Mode in which to open the new

smart large object. For more

information, see |”Access Modes"l
|on page 4-19|

loptr SQL_INFX_UDT_FIXED [1/0O Smart-large-object pointer structure

lofd SQL_INTEGER Output | Smart-large-object file descriptor.

This file descriptor is only valid
within the current database
connection.

Usage
The ifx_lo_create() function performs the following steps to create and open a
new smart large object:

1.
2.
3.

Creates a smart-large-object pointer structure.
Assigns a pointer to this structure and returns this pointer in loptr.

Assigns storage characteristics for the smart large object from the
smart-large-object specification structure that lospec indicates.

If lospec is null, ifx_lo_create() uses the system-specified storage
characteristics. If the smart-large-object specification structure exists but
does not contain storage characteristics, ifx_lo_create() uses the storage
characteristics from the inheritance hierarchy.

Opens the smart large object in the access mode that flags specifies.
Associates the smart large object with the current connection.

When you close this connection, the database server deallocates any
associated smart large objects that have a reference count of zero. The
reference count indicates the number of database columns that refer to the
smart large object.

Returns a file descriptor that identifies the smart large object.

IBM Informix ODBC Driver Programmer’s Manual

The database server uses the default parameters that the call to ifx_lo_create()
establishes to determine whether or not to lock or log subsequent operations
on the smart large object.

Chapter 6. Client Functions 6-9

6-10

ifx_lo_def_create_spec()

The ifx_lo_def_create_spec() function creates a smart-large-object specification
structure.

Syntax
ifx_lo_def create_spec(lospec)

Arguments
The function accepts the following argument.

Argument |Type Use Description

lospec SQL_INEX_UDT_FIXED |1/0O Smart-large-object specification
structure

Usage

The ifx_lo_def_create_spec() function creates a smart-large-object specification
structure and initializes the fields to null values. If you do not change these
values, the null values tell the database server to use the system-specified
defaults for the storage characteristics of the smart large object.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_open()
The ifx_lo_open() function opens a smart large object.

Syntax

ifx_lo_open(lofd, loptr, flags)

Arguments

The function accepts the following arguments.

Argument | Type Use Description

lofd SQL_INTEGER Output | Smart-large-object file descriptor.

This file descriptor is only valid
within the current database

connection.
loptr SQL_INFX_UDT_FIXED | Input Smart-large-object pointer structure
flags SQL_INTEGER Input Mode in which to open the smart

large object. For more information,
see ["Access Modes” on page 4-19

Usage
The ifx_lo_open() function performs the following steps to open a smart large

object:

1. Opens the loptr smart large object in the access mode that flags specifies.

2. Sets the seek position to byte zero.

3. Locks the smart large object.

Important: The database server does not check access permissions on the
smart large object. Your application must make sure that the end

user or application is trusted.

As the following table describes, the access mode determines the type of lock.

Access Mode Type of Lock

Dirty read No lock

Read only Shared lock

Write only, Update lock. When you call ifx_lo_write() or
write/append, or ifx_lo_writewithseek() for the smart large object, the
read/write database server promotes the lock to an exclusive lock.

The database server loses this lock when the current transaction terminates.
The database server obtains the lock again the next time you call a function
that needs a lock.

Chapter 6. Client Functions ~ 6-11

As an alternative, you can use a BEGIN WORK transaction block and place a
COMMIT WORK or ROLLBACK WORK statement after the last statement
that needs to use the lock.

1. Associates the smart large object with the current connection.

When you close this connection, the database server deallocates any
associated smart large objects that have a reference count of zero. The
reference count indicates the number of database columns that refer to the
smart large object.

2. Returns a file descriptor that identifies the smart large object.
The database server uses the default parameters that the call to ifx_lo_open()

establishes to determine whether or not to lock or log subsequent operations
on the smart large object.

6-12 1BM Informix ODBC Driver Programmer’s Manual

ifx_lo_read()
The ifx_lo_read() function reads data from an open smart large object.

Syntax
ifx_lo_read(lofd, buf)

Arguments
The function accepts the following arguments.

Argument | Type Use Description

lofd SQL_INTEGER |Input Smart-large-object file descriptor

buf SQL_CHAR Output | Pointer to a character buffer into which
the function will read the data

Usage

The ifx_lo_read() function reads data from an open smart large object. The
read begins at the current seek position for lofd. You can call ifx_lo_tell() to
obtain the current seek position.

The ifx_lo_read() function reads cbValueMax bytes of data. cbValueMax is an
input argument for SQLBindParameter() and SQLBindCol(). Neither the size
of buf nor cbValueMax can exceed 2 gigabytes. To read a smart large object that
is larger than 2 gigabytes, read it in 2-gigabyte chunks. The ifx_lo_read()
function reads this data into the user-defined buffer to which buf points.

If SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS, then
pcbValue, which is an argument for each of these functions, contains the
number of bytes that the function read from the smart large object. If
SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS_WITH_INFO,
then pcbValue contains the number of bytes that are available to read from the
smart large object.

Chapter 6. Client Functions 6-13

6-14

ifx_lo_readwithseek()

The ifx_lo_readwithseek() function performs a seek operation and then reads
data from an open smart large object.

Syntax
ifx_lo_readwithseek(lofd, buf, offset, whence)

Arguments
The function accepts the following arguments.

Argument |Type Use Description
lofd SQL_INTEGER |Input Smart-large-object file descriptor
buf SQL_CHAR Output | Pointer to a character buffer into which the

function will read the data

offset SQL_BIGINT Input Offset from the starting seek position, in
bytes. Instead of using the default Informix
ODBC Diriver C data type of
SQL_C_CHAR for offset, use
SQL_C_LONG or SQL_C_SHORT. For
more information, see ["SQL_BIGINT” on|

whence SQL_INTEGER |Input Starting seek position. The possible values
are:

¢ LO_SEEK_CUR: The current seek
position in the smart large object

¢ LO_SEEK_END: The end of the smart
large object

* LO_SEEK_SET: The start of the smart
large object

Usage

The ifx_lo_readwithseek() function performs a seek operation and then reads
data from an open smart large object. The read begins at the seek position of
lofd that the offset and whence arguments indicate.

The ifx_lo_readwithseek() function reads cbValueMax bytes of data.
cbValueMax is an input argument for SQLBindParameter() and SQLBindCol().
Neither the size of buf nor chValueMax can exceed 2 gigabytes. To read a smart
large object that is larger than 2 gigabytes, read it in 2-gigabyte chunks. The
ifx_lo_readwithseek() function reads this data into the user-defined buffer to
which buf points.

If SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS, then
pcbValue, which is an argument for each of these functions, contains the

IBM Informix ODBC Driver Programmer’s Manual

number of bytes that the function read from the smart large object. If
SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS_WITH_INFO,
then pcbValue contains the number of bytes that are available to read from the
smart large object.

Chapter 6. Client Functions 6-15

6-16

ifx_lo_seek()

The ifx_lo_seek() function sets the file position for the next read or write
operation on an open smart large object.

Syntax

ifx_lo_seek(lofd, offset, whence, seek pos)

Arguments

The function accepts the following arguments.

Argument | Type Use

Description

lofd SQL_INTEGER

Input

Smart-large-object file descriptor

offset SQL_BIGINT

Input

Offset from the starting seek position, in
bytes. Instead of using the default Informix
ODBC Diriver C data type of
SQL_C_CHAR for offset, use
SQL_C_LONG or SQL_C_SHORT. For
more information, see [‘SQL_BIGINT” on|

whence SQL_INTEGER

Input

Starting seek position. The possible values

are:

¢ LO_SEEK_CUR: The current seek
position in the smart large object

¢ LO_SEEK_END: The end of the smart
large object

e LO_SEEK_SET: The start of the smart
large object

seek_pos SQL_BIGINT 1/0

New seek position. Instead of using the
default Informix ODBC Driver C data type
of SQL_C_CHAR for seek_pos, use
SQL_C_LONG. For more information, see
['SQL_BIGINT” on page 6-3

Usage

The ifx_lo_seek() function sets the seek position of lofd to the position that the

offset and whence arguments indicate.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_specget_estbytes()
The ifx_lo_specget_estbytes() function gets the estimated number of bytes
from a smart-large-object specification structure.

Syntax

ifx_To_specget_estbytes(lospec, estbytes)

Arguments

The function accepts the following arguments.

Argument

Type

Use

Description

lospec

SQL_INFX_UDT_FIXED

Input

Smart-large-object specification
structure

estbytes

SQL_BIGINT

Output

Estimated final size of the smart
large object, in bytes. This estimate
is an optimization hint for the
smart-large-object optimizer.
Instead of using the default
Informix ODBC Driver C data type
of SQL_C_CHAR for estbytes, use
SQL_C_LONG. For more
information, see|“SQL_BIGINT” on|

Usage

The ifx_lo_specget_estbytes() function gets the estimated number of bytes
from a smart-large-object specification structure.

Chapter 6. Client Functions ~ 6-17

6-18

ifx_lo_specget_extsz()

The ifx_lo_specget_extsz() function gets the allocation extent from a
smart-large-object specification structure.

Syntax

ifx_lo_specget_extsz(lospec, extsz)

Arguments

The function accepts the following arguments.

Argument

Type

Use

Description

lospec

SQL_INFX_UDT_FIXED

Input

Smart-large-object specification
structure

extsz

SQL_INTEGER

Output

Extent size of the smart large
object, in bytes. This value is the
size of the allocation extents to be
allocated for the smart large object
when the database server writes
beyond the end of the current
extent. This value overrides the
estimate that the database server
generates for how large an extent
should be.

Usage

The ifx_lo_specget_extsz() function gets the allocation extent from a
smart-large-object specification structure.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_specget_flags()
The ifx_lo_specget_flags() function gets the create-time flags from a
smart-large-object specification structure.

Syntax

ifx_To_specget_flags(lospec, flags)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED | Input Smart-large-object specification
structure

flags SQL_INTEGER Output | Create-time flags. For more
information, see |”Access Modes”|
|or1 page 4—19I

Usage

The ifx_lo_specget_flags() function gets the create-time flags from a
smart-large-object specification structure.

Chapter 6. Client Functions

6-19

6-20

ifx_lo_specget_maxbytes()
The ifx_lo_specget_maxbytes() function gets the maximum number of bytes
from a smart-large-object specification structure.

Syntax

ifx_lo_specget maxbytes(lospec, maxbytes)

Arguments

The function accepts the following arguments.

Argument

Type

Use

Description

lospec

SQL_INFX_UDT_FIXED

Input

Smart-large-object specification
structure

maxbytes

SQL_BIGINT

Input

Maximum size, in bytes, of the
smart large object. Instead of using
the default Informix ODBC Driver
C data type of SQL_C_CHAR for
maxbytes, use SQL_C_LONG. For
more information, see
[“SQL_BIGINT” on page 6-3|

Usage

The ifx_lo_specget_maxbytes() function gets the maximum number of bytes
from a smart-large-object specification structure.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_specget_sbspace()
The ifx_lo_specget_sbspace() function gets the sbspace name from a
smart-large-object specification structure.

Syntax

ifx_To_specget_sbspace(lospec, sbspace)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED | Input Smart-large-object specification
structure

sbspace SQL_CHAR Output | Name of the sbspace for the smart
large object. An sbspace name can
be up to 18 characters long and
must be null terminated.

Usage

The ifx_lo_specget_sbspace() function returns the name of the sbspace in
which to store the smart large object. The function copies up to (pcbValue-1)
bytes into the sbspace buffer and makes sure that it is null terminated. pcbValue
is an argument for SQLBindParameter() and SQLBindCol().

Chapter 6. Client Functions ~ 6-21

6-22

ifx_lo_specset_estbytes()

The ifx_lo_specset_estbytes() function sets the estimated number of bytes in a
smart-large-object specification structure.

Syntax
ifx_lo_specset_estbytes(lospec, estbytes)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED |Input |Smart-large-object specification
structure

estbytes SQL_BIGINT Input |Estimated final size of the smart large

object, in bytes. This estimate is an
optimization hint for the smart large
object optimizer. This value cannot
exceed 2 gigabytes.

If you do not specify an estbytes value
when you create a new smart large
object, the database server gets the
value from the inheritance hierarchy
of storage characteristics.

Do not change this system value
unless you know the estimated size
for the smart large object. If you do
set the estimated size for a smart
large object, do not specify a value
much higher than the final size of the
smart large object. Otherwise, the
database server might allocate
unused storage.

Instead of using the default Informix
ODBC Diriver C data type of
SQL_C_CHAR for estbytes, use
SQL_C_LONG or SQL_C_SHORT.
For more information, see
[’SQL_BIGINT” on page 6-3

Usage
The ifx_lo_specset_estbytes() function sets the estimated number of bytes in a
smart-large-object specification structure.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_specset_extsz()

The ifx_lo_specset_extsz() function sets the allocation extent size in a
smart-large-object specification structure.

Syntax

ifx_To_specset_extsz(lospec, extsz)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED |Input |Smart-large-object specification
structure

extsz SQL_INTEGER Input | Extent size of the smart large object,

in bytes. This value specifies the size
of the allocation extents to be
allocated for the smart large object
when the database server writes
beyond the end of the current extent.
This value overrides the estimate
that the database server generates for
how large an extent should be.

If you do not specify an extsz value
when you create a new smart large
object, the database server attempts
to optimize the extent size based on
past operations on the smart large
object and other storage
characteristics (such as maximum
bytes) that it obtains from the
inheritance hierarchy of storage
characteristics.

Do not change this system value
unless you know the allocation
extent size for the smart large object.
Only applications that encounter
severe storage fragmentation should
ever set the allocation extent size. For
such applications, make sure you
know exactly the number of bytes by
which to extend the smart large
object.

Chapter 6. Client Functions 6-23

Usage
The ifx_lo_specset_extsz() function sets the allocation extent size in a
smart-large-object specification structure.

6-24 1BM Informix ODBC Driver Programmer’s Manual

ifx_lo_specset_flags()
The ifx_lo_specset_flags() function sets the create-time flags in a
smart-large-object specification structure.

Syntax

ifx_To_specset_flags(lospec, flags)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED | Input Smart-large-object specification
structure

flags SQL_INTEGER Input Create-time flags. For more
information, see |”Create-Tima
[Flags” on page 4-4|

Usage

The ifx_lo_specset_flags() function sets the create-time flags in a
smart-large-object specification structure.

Chapter 6. Client Functions

6-25

6-26

ifx_lo_specset_maxbytes()
The ifx_lo_specset_maxbytes() function sets the maximum number of bytes in
a smart-large-object specification structure.

Syntax
ifx_lo_specset_maxbytes(lospec, maxbytes)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED |Input Smart-large-object specification
structure

maxbytes SQL_BIGINT Input Maximum size of the smart large

object, in bytes. This value cannot
exceed 2 gigabytes. Instead of using
the default Informix ODBC Driver
C data type of SQL_C_CHAR for
maxbytes, use SQL_C_LONG or
SQL_C_SHORT. For more
information, see|"SQL_BIGINT” on|

|Eage 6-§l

Usage
The ifx_lo_specset_maxbytes() function sets the maximum number of bytes in
a smart-large-object specification structure.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_specset_sbspace()
The ifx_lo_specset_sbspace() function sets the sbspace name in a
smart-large-object specification structure.

Syntax

ifx_lo_specset_sbspace(lospec, sbspace)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lospec SQL_INFX_UDT_FIXED | Input Smart-large-object specification
structure

sbspace SQL_CHAR Input Name of the sbspace for the smart
large object. An sbspace name can
be up to 18 characters long and
must be null terminated. If you do
not specify ansbspace when you
create a new smart large object, the
database server obtains the sbspace
name from either the column
information or from the
SBSPACENAME parameter of the
ONCONFIG file.

Usage

The ifx_lo_specset_sbspace() function uses pcbValue to determine the length of
the sbspace name. pcbValue is an argument for SQLBindParameter() and
SQLBindCol().

Chapter 6. Client Functions ~ 6-27

6-28

ifx_lo_stat()

The ifx_lo_stat() function initializes a smart-large-object status structure.

Syntax
ifx_lo_stat(lofd, lostat)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor
lostat SQL_INFX_UDT_FIXED [1/O Smart-large-object status structure
Usage

Before you call ifx_lo_stat(), call SQLGetInfo() to get the size of the
smart-large-object status structure. Use this size to allocate memory for the
structure.

The ifx_lo_stat() function allocates a smart-large-object status structure and
initializes it with the status information for the smart large object.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_stat_atime()

The ifx_lo_stat_atime() function retrieves the last access time for a smart large

object.

Syntax
ifx_To_stat_a

Arguments

The function accepts the following arguments.

time(lostat, atime)

Argument

Type

Use

Description

lostat

SQL_INFX_UDT_FIXED

Input

Smart-large-object status structure

atime

SQL_INTEGER

Output

Time of the last access for a smart
large object, in seconds. The
database server maintains the time
of last access only if the
LO_KEEP_LASTACCESS _TIME
flag is set for the smart large
object.

Usage

The ifx_lo_stat_atime() function retrieves the last access time for a smart large

object.

Chapter 6. Client Functions 6-29

6-30

ifx_lo_stat_cspec()
The ifx_lo_stat_cspec() function retrieves a smart-large-object specification

structure.

Syntax

ifx_lo_stat_cspec(lostat, lospec)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lostat SQL_INFX_UDT_FIXED |Input Smart-large-object status structure

lospec SQL_INFX_UDT_FIXED |Output |Smart-large-object specification
structure

Usage

The ifx_lo_stat_cspec() function retrieves a smart-large-object specification
structure and returns a pointer to the structure.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_stat_ctime()

The ifx_lo_stat_ctime() function retrieves the time of the last change of a
smart large object.

Syntax
ifx_To_stat c

Arguments

The function accepts the following arguments.

time(lostat, ctime)

Argument

Type

Use

Description

lostat

SQL_INFX_UDT_FIXED

Input

Smart-large-object status structure

ctime

SQL_INTEGER

Output

Time of the last change of the
smart large object, in seconds. The
last change in status includes
modification of storage
characteristics, including a change
in the number of references and
writes to the smart large object.

Usage

The ifx_lo_stat_ctime() function retrieves the time of the last change of a
smart large object.

Chapter 6. Client Functions 6-31

6-32

ifx_lo_stat_refcnt()

The ifx_lo_stat_refcnt() function retrieves the number of references to a smart
large object.

Syntax
ifx_lo_stat_refcnt(lostat, refcount)

Arguments
The function accepts the following arguments.

Argument |Type Use Description
lostat SQL_INFX_UDT_FIXED |Input Smart-large-object status structure
refcount SQL_INTEGER Output | Number of references to a smart

large object. This value is the
number of database columns that
refer to the smart large object.

Usage
The ifx_lo_stat_refcnt() function retrieves the number of references to a smart

large object.

A database server can remove a smart large object and reuse any resources

that are allocated to it when the reference count for the smart large object is

zero and one of the following events occurs:

* The transaction in which the reference count is decremented to zero
commits.

* The connection during which the smart large object was created terminates,
but the reference count is not incremented.
The database server increments a reference counter when it stores the
smart-large-object pointer structure for a smart large object in a row.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_stat_size()

The ifx_lo_stat_size() function retrieves the size of a smart large object.

Syntax

ifx_lo_stat_size(lostat, size)

Arguments
The function accepts the following arguments.

Argument

Type

Use

Description

lostat

SQL_INFX_UDT_FIXED

Input

Smart-large-object status structure

size

SQL_BIGINT

Output

Size of a smart large object, in
bytes. This value cannot exceed 2
gigabytes. Instead of using the
default Informix ODBC Driver C
data type of SQL_C_CHAR for
size, use SQL_C_LONG. For more

information, see |”SQL_BIGINT”|

bn page 6-3|

Usage

The ifx_lo_stat_size() function retrieves the size of a smart large object.

Chapter 6. Client Functions 6-33

6-34

ifx_lo_tell()

The ifx_lo_tell() function retrieves the current file or seek position for an open
smart large object.

Syntax

ifx_lo_tell(lofd, seek pos)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lofd SQL_INTEGER |Input Smart-large-object file descriptor

seek_pos SQL_BIGINT I/0 New seek position, which is the offset for the
next read or write operation on the smart
large object. Instead of using the default
Informix ODBC Driver C data type of
SQL_C_CHAR for seek_pos, use
SQL_C_LONG. For more information, see
[“SQL_BIGINT” on page 6-3|

Usage

The ifx_lo_tell() function retrieves the current file or seek position for an open
smart large object.

This function works correctly for smart large objects up to 2 gigabytes in size.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_truncate()

The ifx_lo_truncate() function truncates a smart large object at the specified

position.

Syntax

ifx_To_truncate(lofd, offset)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

lofd SQL_INTEGER |Input Smart-large-object file descriptor

offset SQL_BIGINT Input | End of the smart large object. If this value
exceeds the end of the smart large object, the
function extends the smart large object. If this
value is less than the end of the smart large
object, the database server reclaims all
storage from the offset position to the end of
the smart large object.
Instead of using the default Informix ODBC
Driver C data type of SQL_C_CHAR for
offset, use SQL_C_LONG or SQL_C_SHORT.
For more information, see[“SQL_BIGINT” on|

Usage

The ifx_lo_truncate() function sets the end of a smart large object to the
location that the offset argument specifies.

Chapter 6. Client Functions 6-35

6-36

ifx_lo_write()

The ifx_lo_write() function writes data to an open smart large object.

Syntax
ifx_To_write(lofd, buf)

Arguments
The function accepts the following arguments.

Argument |Type Use Description
lofd SQL_INTEGER |Input Smart-large-object file descriptor
buf SQL_CHAR Input Buffer that contains the data that the

function writes to the smart large object.
The size of the buffer cannot exceed 2
gigabytes.

Usage

The ifx_lo_write() function writes data to an open smart large object. The
write begins at the current seek position for lofd. You can call ifx_lo_tell() to
obtain the current seek position.

The ifx_lo_write() function writes cbValueMax bytes of data. cbValueMax is an
input argument for SQLBindParameter() and SQLBindCol(). Neither the size
of buf nor cbValueMax can exceed 2 gigabytes. To write to a smart large object
that is larger than 2 gigabytes, write to it in 2-gigabyte chunks. The
ifx_lo_write() function gets the data from the user-defined buffer to which buf
points.

If SQLExecDirect() or SQLExecute() returns SQL_SUCCESS_WITH_INFO,
then the database server wrote less than cbValueMax bytes of data to the smart
large object and pcbValue, which is an argument for each of these functions,
contains the number of bytes that the function wrote. This condition can occur
when the sbspace runs out of space.

IBM Informix ODBC Driver Programmer’s Manual

ifx_lo_writewithseek()

The ifx_lo_writewithseek() function performs a seek operation and then
writes data to an open smart large object.

Syntax

ifx_To_writewithseek(lofd, buf, offset, whence)

Arguments

The function accepts the following arguments.

Argument

Type

Use

Description

lofd

SQL_INTEGER

Input

Smart-large-object file descriptor.

buf

SQL_CHAR

Input

Buffer that contains the data that the
function writes to the smart large object.
The size of the buffer must not exceed 2
gigabytes.

offset

SQL_BIGINT

Input

Offset from the starting seek position, in
bytes. Instead of using the default Informix
ODBC Driver C data type of
SQL_C_CHAR for offset, use
SQL_C_LONG or SQL_C_SHORT. For
more information, see [SQL_BIGINT” on|

whence

SQL_INTEGER

Input

Starting seek position. The possible values

are:

* LO_SEEK_CUR: The current seek
position in the smart large object

¢ LO_SEEK_END: The end of the smart
large object

¢ LO_SEEK_SET: The start of the smart
large object

Usage

The ifx_lo_writewithseek() function performs a seek operation and then
writes data to an open smart large object. The write begins at the seek
position of lofd that the offset and whence arguments indicate.

The ifx_lo_writewithseek() function writes cbValueMax bytes of data.
cbValueMax is an input argument for SQLBindParameter() and SQLBindCol().
Neither the size of buf nor cbValueMax can exceed 2 gigabytes. To write to a
smart large object that is larger than 2 gigabytes, write to it in 2-gigabyte
chunks. The ifx_lo_writewithseek() function gets the data from the
user-defined buffer to which buf points.

Chapter 6. Client Functions 6-37

If SQLExecDirect() or SQLExecute() returns SQL_SUCCESS_WITH_INFO,
then the database server wrote less than cbValueMax bytes of data to the smart
large object and pcbValue, which is an argument for each of these functions,
contains the number of bytes that the function wrote. This condition can occur
when the sbspace runs out of space.

6-38 IBM Informix ODBC Driver Programmer’s Manual

Functions for Rows and Collections

This section describes each client function that Informix ODBC Driver
provides for rows and collections. The functions are listed alphabetically. For
more information about rows and collections, see [Chapter 5, “Working with|
[Rows and Collections,” on page 5-1)

Chapter 6. Client Functions 6-39

6-40

ifx_rc_count()

The ifx_rc_count() function returns the number of elements or fields that are
in a row or collection.

Syntax

ifx_rc_count(rowcount, rchandle)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

rowcount SQL_SMALLINT |Output |Number of elements or fields that are in
the row or collection

rchandle HINEX_RC Input Handle for a row or collection buffer

Usage

The ifx_rc_count() function returns the number of elements or fields that are
in the row or collection.

IBM Informix ODBC Driver Programmer’s Manual

ifx_rc_create()
The ifx_rc_create() function creates a buffer for a row or collection.

Syntax
ifx_rc_create(rchandle, typespec)

Arguments
The function accepts the following arguments.

Argument | Type Use Description
rchandle HINFX_RC Output | Handle for a row or collection buffer

typespec SQL_CHAR Input Type specification for the buffer. See the
following table.

The following table describes the syntax for the typespec argument.

Type of Buffer Syntax Example

Unfixed-type COLLECTION COLLECTION

collection

Fixed-type collection | COLLECTION {SET | MULTISET | |[COLLECTION SET (int not
LIST} (type not null) null)
or {SET | MULTISET | LIST or

(type not null) SET (int not null)

where type is the Informix SQL
data type for the elements in
the collection

Unfixed-type row ROW ROW

Fixed-type row ROW ["name"] (field_id type ROW "employee t" (name
[, field id type, ...1) char(255), id_num int, dept
where: int)

* name is an optional name for
the entire row

* field_id is the name for a field

* type is the Informix SQL data
type for the field

Usage

The ifx_rc_create() function allocates memory for a row or collection buffer
and returns a handle to the buffer. The following table describes how the
function initializes the buffer.

Chapter 6. Client Functions ~ 6-41

Initial Value for the
Initial Value for the |Contents of the Row or
Type of Buffer Row or Collection Collection
Fixed-type collection Non-null Empty
Fixed-type row Non-null Each value is null
Unfixed-type collection Null Empty
Unfixed-type row Null Empty

For a row, the function sets the seek position to element number one. An
empty collection buffer does not have a seek position.

6-42 1BM Informix ODBC Driver Programmer’s Manual

ifx_rc_delete()
The ifx_rc_delete() function deletes an element from a collection.

Syntax
ifx_rc_delete(rchandle, action, jump)

Arguments
The function accepts the following arguments.

Argument |Type Use Description
rchandle HINFX_RC Input Handle for a collection buffer
action SQL_SMALLINT |Input Location of the element relative to the seek

position. The possible values are:

* SQL_INFX_RC_ABSOLUTE: Element
number jump where the first element in
the buffer is element number one

* SQL_INFX_RC_CURRENT: Current
element

* SQL_INFX_RC_FIRST: First element

e SQL_INFX_RC_LAST: Last element

* SQL_INFX_RC_NEXT: Next element

¢ SQL_INFX_RC_PRIOR: Previous
element

* SQL_INEFX_RC_RELATIVE: Element that
is jump elements past the current
element

jump SQL_SMALLINT |Input Offset when action is
SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_delete() function deletes an element from a collection from the
location that is specified by action and jump. The function sets the seek
position to the value that was just deleted. It is not possible to delete an
element from a row.

Chapter 6. Client Functions 6-43

6-44

ifx_rc_describe()

The ifx_rc_describe() function returns descriptive information about the data
type for a row or collection or for an element that is in a row or collection.

Syntax

ifx_rc_describe(rchandle, fieldnum, fieldname, typecode,
columnsize, decdigits, nullable, typename, typeowner)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

rchandle HINEX_RC Input Handle for a row or collection buffer

fieldnum SQL_SMALLINT | Input Field number. If this value is 0, the
function returns information for the
entire row or collection. For a collection,
any value other than 0 causes the
function to return information for the
elements that are in the collection. For a
row, this value specifies the element for
which the function returns information.

fieldname SQL_CHAR Output | Field name. The function returns this
value only for an element that is in a
row.

typecode SQL_SMALLINT |Output |Informix ODBC Driver SQL data type of
the element

columnsize SQL_INTEGER Output | Column size. For a character element,
this value is the size of the column, in
bytes. For a numeric element, this value
is the precision. For other data types, the
function does not return this value.

decdigits SQL_SMALLINT |Output |Decimal digits. For a numeric element,
this value is the number of digits to the
right of the decimal point. For other data
types, the function does not return this
value.

nullable SQL_SMALLINT |Output |Null indicator. The possible values are:
* SQL_NO_NULLS
* SQL_NULLABLE

typename SQL_CHAR Output | Type name. For a named row, this value
is the name of the row. For collections
and unnamed rows, the function does
not return this value.

IBM Informix ODBC Driver Programmer’s Manual

Argument | Type Use Description

typeowner | SQL_CHAR Output | Type owner. This value is the name of
the owner of the data type. This name
can be up to 18 characters long.

Usage

The ifx_rc_describe() function returns information about the data type for a

row or collection or for an element that is in a row or collection. For elements
that are in a collection, this information is the same for all elements that are in
the collection. This function does not change the seek position.

Chapter 6. Client Functions

6-45

ifx_rc_fetch()

The ifx_rc_fetch() function retrieves the value of an element that is in a row
or collection.

Syntax
ifx_rc_fetch(result, rchandle, action, jump)

Arguments
The function accepts the following arguments.

Argument |Type Use Description
result Data type of the Output | Retrieved value
element

rchandle HINEX_RC Input Handle for a row or collection
buffer

action SQL_SMALLINT Input Location of the element relative to
the seek position. The possible
values are:

* SQL_INFX_RC_ABSOLUTE:
Element number jump where the
first element in the buffer is
element number one

* SQL_INFX_RC_CURRENT:
Current element

* SQL_INFX_RC_FIRST: First
element

* SQL_INFX_RC_LAST: Last
element

* SQL_INFX_RC_NEXT: Next
element

* SQL_INFX_RC_PRIOR: Previous
element

* SQL_INFX_RC_RELATIVE:
Element that is jump elements
past the current element

jump SQL_SMALLINT Input Offset when action is
SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_fetch() function retrieves the value of the element that is specified
by action and jump and returns the value in result. The function sets the seek
position to the value that was just fetched.

6-46 IBM Informix ODBC Driver Programmer’s Manual

ifx_rc_free()

The ifx_rc_free() function frees a row or collection handle.

Syntax

ifx_rc_free(rchandle)

Arguments

The function accepts the following argument.

Argument | Type Use Description

rchandle HINFX_RC Input Handle for a row or collection buffer
Usage

The ifx_rc_free() function frees all the resources that are associated with a row
or collection handle and frees the handle.

Chapter 6. Client Functions ~ 6-47

ifx_rc_insert()
The ifx_rc_insert() function inserts a new element into a collection.

Syntax
ifx_rc_insert(rchandle, value, action, jump)

Arguments
The function accepts the following arguments.

Argument |Type Use Description
rchandle HINFX_RC Input Handle for a collection buffer
value Data type of the Input Value to insert
element
action SQL_SMALLINT Input Location of the element relative to the

seek position. The possible values are:

e SQL_INFX_RC_ABSOLUTE:
Element number jump where the
first element in the buffer is element
number one

e SQL_INFX_RC_CURRENT: Current
element

e SQL_INFX_RC_FIRST: First element

e SQL_INFX_RC_LAST: Last element

* SQL_INFX_RC_NEXT: Next element

¢ SQL_INFX_RC_PRIOR: Previous
element

e SQL_INFX_RC_RELATIVE: Element
that is jump elements past the
current element

jump SQL_SMALLINT Input Offset when action is
SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_insert() function inserts a new element into a collection before the
location that is specified by action and jump. The function sets the seek
position to the value that was just inserted. It is not possible to insert a new
element into a row.

The following table describes the allowable insertion locations for each type of
collection.

Type of Collection Allowable Insertion Locations

6-48 IBM Informix ODBC Driver Programmer’s Manual

List Anywhere in the buffer
Set or multiset At the end of the buffer

If the seek position specified by action and jump exceeds the end of the buffer,
ifx_rc_insert() appends the new element at the end of the buffer. Likewise, if
the seek position specified by action and jump precedes the beginning of the
buffer, ifx_rc_insert() inserts the new element at the beginning of the buffer. If
action specifies an insertion point other than the end for a set or multiset,
ifx_rc_insert() fails.

For example, if action is SQL_INFX_RC_LAST, the function inserts the new
element before the last element. To append a new element, take one of the
following actions:

* Set the seek position to the end of the buffer and set action to
SQL_INFX_RC_NEXT.

* Set action to SQL_INFX_RC_ABSOLUTE or SQL_INFX_RC_RELATIVE and
set jump to a value that exceeds the end of the buffer.

To insert a new element at the beginning of a buffer, set action to
SQL_INFX_RC_FIRST.

Chapter 6. Client Functions 6-49

6-50

ifx_rc_isnull()

The ifx_rc_isnull() function returns a value that indicates whether or not a
row or collection is null.

Syntax

ifx_rc_isnul1(nullflag, rchandle)

Arguments

The function accepts the following arguments.

Argument |Type Use Description

nullflag SQL_SMALLINT |Output |Flag that indicates whether or not a row
or collection is null. The possible values
are:
+ TRUE
* FALSE

rchandle HINFX_RC Input Handle for a row or collection buffer

Usage

The ifx_rc_isnull() function returns a value that indicates whether or not a
row or collection is null.

IBM Informix ODBC Driver Programmer’s Manual

ifx_rc_setnull()

The ifx_rc_setnull() function sets a row or collection to null.

Syntax

ifx_rc_setnull(rchandle)

Arguments

The function accepts the following argument.

Argument | Type Use Description
rchandle HINFX_RC Input Handle for a row or collection buffer
Usage

The ifx_rc_setnull() function sets a row or collection to null. The
ifx_rc_setnull() function does not set each element within the row or
collection to null.

Chapter 6. Client Functions

6-51

ifx_rc_typespec()
The ifx_rc_typespec() function returns the type specification for a row or
collection.

Syntax
ifx_rc_typespec(typespec, rchandle, flag)

Arguments
The function accepts the following arguments.

Argument |Type Use Description

typespec SQL_CHAR Output | Type specification. The format for this
value is the same as the type specification
syntax for ifx_rc_create(). For more
information on ifx_rc_create() arguments,
see |"Arguments” on page 6-41|

rchandle HINEX_RC Input Handle for a row or collection buffer

flag SQL_SMALLINT |Input Flag that specifies whether to return the
current or original type specification. If
this value is TRUE, the function returns
the original type specification. Otherwise,
the function returns the current type

specification.
Usage
The ifx_rc_typespec() function returns the type specification for a row or
collection.

6-52 IBM Informix ODBC Driver Programmer’s Manual

ifx_rc_update()

The ifx_rc_update() function updates the value for an element that is in a row

or collection.

Syntax

ifx_rc_update(rchandle, value, action, jump)

Arguments

The function accepts the following arguments.

Argument

Type

Use

Description

rchandle

HINFX_RC

Input

Handle for a row or collection buffer

value

Data type of the
element

Input

Value with which to update the
element

action

SQL_SMALLINT

Input

Location of the element relative to the
seek position. The possible values are:

SQL_INFX_RC_ABSOLUTE:
Element number jump where the
first element in the buffer is
element number one
SQL_INFX_RC_CURRENT: Current
element

SQL_INFX_RC_FIRST: First element
SQL_INFX_RC_LAST: Last element
SQL_INFX_RC_NEXT: Next
element

SQL_INEX_RC_PRIOR: Previous
element

SQL_INFX_RC_RELATIVE: Element
that is jump elements past the
current element

jump

SQL_SMALLINT

Input

Offset when action is
SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_update() function updates the value for an element that
immediately precedes the location that is specified by action and jump. The
function sets the seek position to the value that was just updated.

Chapter 6. Client Functions 6-53

6-54 IBM Informix ODBC Driver Programmer’s Manual

Chapter 7. Improving Application Performance

Case-Sensitive Catalog Functions .71
Connection Level Optimizations. .73
Optimizing Query Execution .73
Inserting Multiple Rows .73
Automatically Freeing a Cursor .74
Enabling the AUTOFREE Feature .74
Using the AUTOFREE Feature . . e e T4
Delaying Execution of the SQLPREPARE Statement)
Setting the Fetch Array Size for Simple-Large-Object Data76
Using the SPL Output Parameter Feature. .77
Using Asynchronous Execution . . . e T8
Updating Data with Positioned Updates and Deletes e e e e T8
Message Transfer Optimization. .710
Message Chaining Restrictions .710
Disabling Message Chaining. . . S v
Handling Errors with Optimized Message Transfers e e e e T2

In This Chapter

This chapter suggests ways to improve performance of IBM Informix ODBC
Driver applications.

Case-Sensitive Catalog Functions

By default, the database server creates tables and columns in lowercase
parameters and always passes catalog functions as lowercase, regardless of
what case the SQL statement uses.

The following example creates a table called TestTable and fetches the
characteristics of the table:

SQLExecDirect (hstmt, "create table \"TestTable\" (a int)",
SQL_NTS)

SQLColumns (hstmt, NULL, O, NULL, O, "TESTTABLE", SQL_NTS,
NULL, 0)

| UNIX Only

To change the default database server behavior on UNIX, set the
DELIMIDENT environment variable. For information on setting environment
variables, see the IBM Informix: Guide to SQL Reference.

© Copyright IBM Corp. 1996, 2004 7-1

7-2

The following example creates a table called TestTable and fetches the
characteristics of the TestTable table:
SQLExecDirect (hstmt, "create table 'TestTable' (a char(5))",
SQL_NTS)
SQLColumns (hstmt, NULL, ©, NULL, O, 'TestTable', SQL_NTS,
NULL, 0)

| End of UNIX Only |

| Windows Only |

To change the default database server behavior on Windows, set the
DELIMIDENT environment variable to “y” in the registry with Setnet32 and
use double quotes around identifiers. For information on setting environment
variables, see the IBM Informix: Guide to SQL Reference.

| End of Windows Only |

If you set the DELIMIDENT environment variable before you run the
statements, the database server differentiates between the two table names
(testtable and TestTable) and returns the characteristics of the correct table.

Important: If you set the DELIMIDENT environment variable, use single
quotes to quote string constants. If you use double quotes, you get
an error.

For example, if you set the DELIMIDENT environment variable, you get an
error when you run the first statement in the following example. The second
statement in the example inserts the string value correctly.
SQLExecDirect (hstmt, "insert into \"TestTable\" values

("abcde")", SQL_NTS) inserts the string value properly.
SQLExecDirect (hstmt, "insert into \"TestTable\" values

('abcde')", SQL_NTS)

Both cases send a query to the database server, but in Case 1, SQLColumns
must evaluate the query and form a result set that it must send to the client.
In Case 2, SQLDescribeCol gets the result-column information and the order
of the columns within the table without returning the information to the
client, thus improving performance.

Avoid using SQLColumns to determine characteristics of a table. Instead, use
a dummy query with SQLDescribeCol.

IBM Informix ODBC Driver Programmer’s Manual

Connection Level Optimizations

Establishing a connection to a database is an expensive process. Optimally, an
application should perform as many tasks as possible while a connection is
open. This can by achieved by:

* Pooling connections when using Windows Driver Manager

* Using multiple statement handles on the same connection handle

Also, you can fine tune application performance by setting the following
connection level attributes:

¢ AutoCommit optimization
* Message transfer optimization (OPTMSG)
* Open-Fetch-Close optimization (OPTOFC)

For more information on connection level attributes, see|Chapter 2
[“Configuring Data Sources,” on page 2-1)

Optimizing Query Execution
Consider the following when using prepared SQL queries:

* SQLExecDirect is optimized for a single execution of an SQL statement.
Thus it should be used for SQL queries that are not executed repeatedly.

¢ In cases where SQL queries are executed multiple times, using SQLPrepare
and SQLExecute improves performance. Typically, you can do this with
input and output parameters.

* SPL routines can be called from an ODBC application to perform certain
SQL tasks and to expand what you can accomplish with SQL alone.
Because SPL is native to the database and SPL routines are parsed and
optimized at creation, rather than at runtime, SPL routines can improve
performance for some tasks. SPL routines can also reduce traffic between a
client application and the database server and reduce program complexity.

Inserting Multiple Rows

Use an insert cursor to efficiently insert rows into a table in bulk. To create an
insert cursor, set the SQL_ENABLE_INSERT_CURSOR attribute using
SQLSetStmtOption, then call SQLParamOptions with the number of rows as
a parameter. You can create an insert cursor for data types TEXT, BYTE,
VARCHAR, LVARCHAR, and opaque.

When you open an insert cursor, a buffer is created in memory to hold a

block of rows. The buffer receives rows of data as the program produces
them; then they are passed to the database server in a block when the buffer

Chapter 7. Improving Application Performance 7-3

is full. The buffer reduces the amount of communication between the program
and the database server. As a result, the insertions go faster.

Automatically Freeing a Cursor

7-4

When an application uses a cursor, it usually sends a FREE statement to the
database server to deallocate memory assigned to a cursor once it no longer
needs that cursor. Execution of this statement involves of message requests
between the application and the database server. When the AUTOFREE is
enabled, IBM Informix ODBC Driver saves message requests because it does
not need to execute the FREE statement. When the database server closes an
insert cursor, it automatically frees the memory that it has allocated for it.

Enabling the AUTOFREE Feature

You can enable the AUTOFREE feature for an ODBC application in either of
the following ways:

* Set the SQL_INFX_ATTR_AUTO_FREE attribute using SQLSetConnectAttr.

When you use SQLSetConnectAttr to enable this attribute, all new
allocated statements for that connection inherit the attribute value. The only
way to change this attribute value per statement is to set and reset it again
as a statement attribute. The default is DISABLED for the connection
attribute.

* Set the SQL_INFX_ATTR_AUTO_FREE attribute using SQLSetStmtAttr.

The SQL_INFX_ATTR_AUTO_FREE attribute can be set in any connection
state between C2 and C5 (both included) when setting it using
SQLSetConnectAttr, whereas it can be set using SQLSetStmtAttr only when
the statement is in S1 (allocated) state. The value of the
SQL_INFX_ATTR_AUTO_FREE attribute can be retrieved using
SQLGetConnectAttr or SQLSetStmtAfttr.

Using the AUTOFREE Feature

The AUTOFREE feature only works with result generating statements
executed using SQLExecDirect, as it opens the cursor which is then closed
and released by the corresponding SQLCloseCursor or SQLFreeStmt. The
AUTOEFREE feature does not work when the application has to prepare a
statement once and then execute it several times (for example, using
SQLPrepare to prepare and then executing it by calling SQLExecute several
times). When you close the cursor using SQLCloseCursor after SQLExecute, it
only closes the cursor but does not release the cursor memory on the database
server side. But if you close the cursor using SQLFreeStmt with SQL_CLOSE
or SQL_DROP, it not only closes and releases the cursor, but it also
unprepares the statement. In the latter case there is savings of a network
roundtrip, but the application is unable to execute the statement again until it
reprepares it.

IBM Informix ODBC Driver Programmer’s Manual

When AUTOEFREE is enabled, the application sees an improvement in the
network performance when the application closes the cursor using
SQLCloseCursor or SQLFreeStmt with SQL_DROP.

Delaying Execution of the SQLPREPARE Statement

You can defer execution of the SQLPrepare statement by enabling the
deferred-PREPARE feature. This feature works primarily with dynamic SQL
statements where the application does a series of SQLPrepare and
SQLExecute statements. It optimizes the number of round-trip messages to
the database server by not sending SQLPrepare statements to the database
server until the application calls SQLExecute on that statement.

When deferred-PREPARE is enabled, the following behavior is expected of the
application:

* Execution of SQLPrepare does not put the statement in a prepared state.

¢ Syntax errors in an SQLPrepare statement are not known until the
statement is executed because the SQL statement is never sent to the
database server until it is executed. If open-fetch-close optimization is
turned on, errors are not returned to the client until the first fetch, because
open-fetch-close optimizes the OPEN/FETCH so that OPEN is sent on the
first fetch.

* SQLColAttribute, SQLDescribeCol, SQLNumResultCols, and
SQLNumParams always return HY010 (function sequence error) if called
after SQLPrepare but before SQLExecute by the application.

* SQLCopyDesc returns HY010 if the source descriptor handle is an IRD if
called after SQLPrepare but before SQLExecute by the application.

* SQLGetDescField and SQLGetDescRec return HY010 if the descriptor
handle is an IRD if called after SQLPrepare but before SQLExecute by the
application.

You can enable the deferred-PREPARE feature for an ODBC application in

either of the following ways:

* Set the SQL_INFX_ATTR_DEFERRED_PREPARE attribute using
SQLSetConnectAttr.
When you use SQLSetConnectAttr to enable this attribute, all new
allocated statements for that connection inherit the attribute value. The only
way to change this attribute value per statement, is to set/reset it again as a
statement attribute. The default is DISABLED for the connection attribute.

* Set the SQL_INFX_ATTR_DEFERRED_PREPARE attribute using
SQLSetStmtAttr.

The SQL_INFX_ATTR_DEFERRED_PREPARE attribute can be set in any
connection state between C2 and C5 (both included) when setting it using

Chapter 7. Improving Application Performance 7-5

SQLSetConnectAttr, whereas it can be set using SQLSetStmtAttr only when
the statement is in S1 (allocated) state. The value of the
SQL_INFX_ATTR_DEFERRED_PREPARE attribute can be retrieved using
SQLGetConnectAttr or SQLSetStmtAfttr.

Setting the Fetch Array Size for Simple-Large-Object Data

7-6

To reduce the network overhead for fetches involving multiple rows of
simple-large-object data, you can set the array size so when the driver receives
a multiple-row fetch request, it optimizes the fetch buffer size and the internal
fetch array size, and eliminates a round trip to the database server for every
simple large object. Setting the array size greater than 1 can result in a
performance improvement even for other types of data because it has the side
effect of automatically increasing the fetch buffer size if necessary. (If the
number of rows specified will fit in the current fetch buffer, setting it will
have little effect.)

An application can request that multiple rows be returned to it by setting the
statement attribute SQL_ATTR_ROW_ARRAY_SIZE or setting the ARD header
field SQL_DESC_ARRAY_SIZE to a value greater than one, and then calling
either SQLFetch or SQLFetchScroll. (The default value of
SQL_ATTR_ROW_ARRAY_SIZE is one.) The driver then recognizes when it
receives a multiple-row fetch request and optimizes the settings for the fetch
buffer size and the internal fetch array size. Settings for these are based on the
internal tuple size, the user setting of row array size, and the current setting
of fetch array size.

You cannot use the internal fetch array feature under the following conditions:
* When OPTOFC and deferred-PREPARE are both enabled

To use the fetch array feature, the driver is dependent upon knowing how
large a row is going to be, as received from the database server, prior to
sending the fetch request to the database server. When both of these are
enabled, this information is not available until after a fetch is performed.

* When using scroll cursors

There are separate internal client-to-server protocols used for scroll cursors
that are distinct from those used for fetching arrays. The database server
does not support simple large object columns in a scroll cursor. An error
will be returned.

* When using SQLGetData
In order for the driver to utilize the fetch array feature, it has to be able to

tell the database server how much data it is prepared to receive at the time
of the fetch request. Calls to SQLGetData take place after SQLFetch.

According to the ODBC standard, when using block cursors, the application
must call SQLSetPos to position the cursor on a particular row prior to

IBM Informix ODBC Driver Programmer’s Manual

calling SQLGetData. SQLSetPos is only usable with scroll cursors and, as
above, simple-large-object columns are not allowed in scroll cursors. Also
according to the standard, SQLGetData must not be used in conjunction
with a forward-only cursor with a rowset size greater than 1.

The alternative to using SQLGetData is to use SQLBindCol, which would
come before the call to SQLFetch.

You might want to optimize use of SQL_ATTR_ROW_ARRAY_SIZE so the
application sets the value of it according to the maximum number of rows
that can be transported in a single buffer. After a statement is prepared, the
application might call SQLGetStmtAttr to get the value of
SQL_INFX_ATTR_FET_ARR_SIZE. If the data fits in one fetch buffer, the
internal setting of SQL_INFX_ATTR_FET_ARR_SIZE equals the application
setting of SQL_ATTR_ROW_ARRAY_SIZE. In practice, this is only useful on
large result sets.

Using the SPL Output Parameter Feature

IBM Informix ODBC Driver supports the ODBC defined method of getting
the return value from a database procedure. Specifically, ODBC supports the
parameter to the left of the equals sign in a procedure-call escape sequence.
The host variable associated with that parameter is updated upon statement
execution either using SQLExecute or SQLExecDirect.

In the IBM Informix ODBC Driver definition of a procedure-call escape
sequence, there is only one return value; therefore, the following restrictions
are placed on this feature:

* Procedures used with this feature must return only one value, although
they might return multiple rows.

If this condition is not met, the parameter and its binding are ignored.

* Data from the first row only will be placed in the host variable associated
with the bound parameter, although procedures used with this feature can
return multiple rows.

To return multiple-value, multiple-row result sets from an Informix database
server, you have to fetch the data as though it were the result columns of a
select statement. This output parameter feature works with existing
applications that bind column(s) and call SQLFetch or call SQLFetch and
SQLGetData when accessing data through a procedure call. Therefore, no
error or warning is generated when more than one row is available to be
returned.

You can use either or both methods for retrieving the data from a stored

procedure. A host variable can be bound as a parameter or as a column, or
both. If separate buffers are used, only the host variable bound as a parameter

Chapter 7. Improving Application Performance 7-7

is updated upon statement execution, and only the host variable bound as a
column is updated upon a fetch. Unbound columns accessed through
SQLGetData remain unaffected.

Using Asynchronous Execution

Design your application to take advantage of data sources that support
asynchronous execution. Asynchronous calls do not perform faster, but
well-designed applications appear to run more efficiently.

Turning on asynchronous execution does not by itself improve performance.
Well-designed applications, however, can take advantage of asynchronous
query execution by allowing the user to work on other things while the query
is being evaluated on the database server. Perhaps users will start one or more
subsequent queries or choose to work in another application, all while the
query is executing on the database server. Designing for asynchronous
execution makes your application appear to run faster by allowing the user to
work concurrently on multiple tasks.

By default, an application makes calls to an ODBC driver that then executes
statements against the database server in a synchronous manner. In this mode
of operation, the driver does not return control to the application until its own
request to the database server is complete. For statements that take more than
a few seconds to complete execution, this control return delay can result in
the perception of poor performance.

Some data sources support asynchronous execution. When in asynchronous
mode, an application makes calls to an ODBC driver and control is returned
almost immediately. In this mode the driver returns the status
SQL_STILL_EXECUTING to the application and then sends the appropriate
request to the database server for execution. The application polls the driver
at various intervals at which point the driver itself polls the database server to
see if the query has completed execution. If the query is still executing, then
the status SQL_STILL_EXECUTING is returned to the application. If it has
completed, then a status such as SQL_SUCCESS is returned, and the
application can then begin to fetch records.

Updating Data with Positioned Updates and Deletes

7-8

Although positioned updates do not apply to all types of applications, try to
use positioned updates and deletes whenever possible. Positioned updates
(with UPDATE WHERE CURRENT OF CURSOR) allow you to update data
by positioning the database cursor to the row to be changed and signaling the
driver to change the data. You are not forced to build a complex SQL
statement; you simply supply the data to be changed.

IBM Informix ODBC Driver Programmer’s Manual

Besides making the code more maintainable, positioned updates typically
result in improved performance. Because the database server is already
positioned on the row (for the SELECT statement currently in process),
expensive operations to locate the row to be changed are unnecessary. If the
row must be located, the database server typically has an internal pointer to
the row available (for example, ROWID).

To support positioned UPDATE and DELETE statements with scrollable
cursors, IBM Informix ODBC Driver constructs a new searched UPDATE or
DELETE statement from the original positioned statement. However, the
database server cannot update scroll cursors directly. Instead, IBM Informix
ODBC Diriver constructs a WHERE clause that references each column fetched
in the SELECT statement referenced in the WHERE CURRENT OF CURSOR
clause. Values from the rowset data cache of the SELECT statement are bound
to each value in the constructed WHERE clause.

This method of positioning is both slower and perhaps more error prone than
using a WHERE CURRENT OF CURSOR clause with FORWARD ONLY
cursors. If the fetched rows do not contain a unique key value, the
constructed WHERE clause might identify one or many rows, causing many
rows to be deleted or updated. Deletion of rows in this manner affects both
positioned UPDATE and DELETE statements, and SQLSetPos statements
when you use scroll cursors.

Use SQLSpecialColumns to determine the optimal set of columns to use in
the WHERE clause for updating data. Many times pseudocolumns provide the
fastest access to the data; you can determine these columns only by using
SQLSpecialColumns.

Many applications cannot be designed to take advantage of positioned
updates and deletes. These applications typically update data by forming a
WHERE clause that consists of some subset of the column values that are
returned in the result set. Some applications might formulate the WHERE
clause by using all searchable result columns or by calling SQLStatistics to
find columns that might be part of a unique index. These methods typically
work but can result in fairly complex queries.

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT first _name, last_name, ssn,
address, city, state, zip FROM emp", SQL_NTS);
// fetchdata

rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ?
WHERE first_name = ? AND last_name = ? AND ssn =
address = ? AND city = ? AND state = ? AND zip =
// fairly complex query

? AND
?", SQL_NTS);

Chapter 7. Improving Application Performance ~ 7-9

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve
the optimal set of columns (possibly a pseudocolumn) that identifies any
given record. Many databases support special columns that are not explicitly
user-defined in the table definition but are hidden columns of every table (for
example, ROWID, TID, and so on). These pseudocolumns almost always
provide the fastest access to the data because they typically are pointers to the
exact location of the record. Because pseudocolumns are not part of the
explicit table definition, they are not returned from SQLSpecialColumns. The
only way to determine whether pseudocolumns exist is to call
SQLSpecialColumns.

Consider the previous example, this time using SQLSpecialColumns:

rc = SQLSpecialColumns (hstmt, emp', ...);

rc = SQLExecDirect (hstmt, "SELECT first _name, last_name, ssn,
address, city, state, zip, ROWID FROM emp", SQL_NTS);
// fetch data and probably "hide" ROWID from the user

rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ? WHERE
ROWID = ?", SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudocolumns, the result set of
SQLSpecialColumns consists of the columns of the optimal unique index on
the specified table (if a unique index exists). Therefore, your application need
not additionally call SQLStatistics to find the smallest unique index.

Message Transfer Optimization

If you activate the message transfer optimization feature (OPTMSG), the
driver minimizes message transfers with the database server for most

IBM Informix ODBC functions. In addition, the driver chains messages from
the database server together and eliminates some small message packets to
accomplish optimized message transfers.

To activate message transfer optimization, set the SQL_INFX_ATTR_OPTMSG
statement attribute to one (1). The optimization default is: OFF.
Message Chaining Restrictions

IBM Informix ODBC does not chain the following SQL functions even when
you enable message transfer optimization:

¢ SQLDisconnect
* SQLConnect
* SQLEndTran

7-10 1BM Informix ODBC Driver Programmer’s Manual

* SQLExecute (if the driver returns results using the select or call procedure
and when the driver uses insert cursors to perform a bulk insert)

* SQLExtendedFetch
* SQLFetch

* SQLFetchScroll

* SQLPrepare

When the driver reaches one of the functions listed previously, it performs the
following actions:

1. Flushes the message queue to the database server only when it encounters
SQL statements that require a response from the database server.

The driver does not flush the message queue when it encounters functions
that do not require network traffic, such as SQLAllocStmt.

2. Continues message chaining for subsequent SQL statements.

Disabling Message Chaining

You can choose to disable message chaining. Before you disable message
chaining, consider the following situations:

* Some SQL statements require immediate replies. If you disable message
chaining, re-enable the OPTMSG feature once the restricted SQL statement
completes.

* If you perform debugging, you can disable the OPTMSG feature when you
are trying to determine how each SQL statement responds.

* If you enable OPTMSG, the message is queued up for the database server
but it is not sent for processing. Consider disabling message chaining before
the last SQL statement in the program to ensure that the database server
processes all messages before the application exits.

* If you disable message chaining, you must reset the
SQL_INFX_ATTR_OPTMSG attribute immediately after the SQL statement
that requires it to avoid unintended chaining.

The following example shows how to disable message chaining by placing
the SQL_INFX_ATTR_OPTMSG attribute after the DELETE statement. If
you place the attribute after the delete statement, the driver can flush all
the queued messages when the next SQL statement executes.
SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 1);

SQLExecDirect (hstmt, (unsigned char *)

"delete from customer", SQL _NTS);

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 0);

SQLExecDirect (hstmt, (unsigned char *)

"create index ix1 on customer (zipcode)", SQL_NTS);

Unintended message chaining can make it difficult to determine which of
the chained statements failed.

Chapter 7. Improving Application Performance ~ 7-11

7-12

At the CREATE INDEX statement, the driver sends both the DELETE and
the CREATE INDEX statements to the database server.

Handling Errors with Optimized Message Transfers

When you enable the OPTMSG feature, IBM Informix ODBC does not
perform error handling on any chained statement. If you are not sure whether
a particular statement might generate an error, include error-handling
statements in your code and do not enable message chaining for that
statement.

The database server stops execution of subsequent statements when an error
occurs in a chained statement. For example, in the following code fragment,
the intent is to chain five INSERT statements:

SQLExecDirect(hstmt, "create table tabl (coll INTEGER)", SQL_NTS);

/* enable message chaining */

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 1);

/* these two INSERT statements execute successfully x/

SQLExecDirect(hstmt, "insert into tabl values (1)", SQL_NTS);

SQLExecDirect (hstmt, "insert into tabl values (2)", SQL_NTS);

/* this INSERT statement generates an error because the data

* in the VALUES clause is not compatible with the column type */
SQLExecDirect(hstmt, "insert into tabl values ('a')", SQL_NTS);

/* these two INSERT statements never execute */

SQLExecDirect(hstmt, "insert into tabl values (3)", SQL_NTS);
SQLExecDirect(hstmt, "insert into tabl values (4)", SQL_NTS);

/* disable message chaining =/

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 0);

/* commit work */

rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

if (rc != SQL_SUCCESS)

In this example, the following actions occur:

e The driver sends the five INSERT statements and the COMMIT WORK
statements to the database server for execution.

¢ The database inserts coll values of 1 and 2 into the tabl table.

* The third INSERT statement generates an error, so the database server does
not execute the subsequent INSERT statements or the COMMIT WORK
statement.

* The driver flushes the message queue when the queue reaches the
SQLEndTran function.

e The SQLEndTran function, which is the last statement in the chained
statements, returns the error from the failed INSERT statement.

If you want to keep the values that the database server inserted into coll, you
must commit them yourself.

IBM Informix ODBC Driver Programmer’s Manual

Chapter 8. Error Messages

Diagnostic SQLSTATE Values .

Mapping SQLSTATE Values to Infornux Error Messages .

Mapping Informix Error Messages to SQLSTATE Values
SQLAIllocConnect (Core Level Only) .
SQLAIllocEnv (Core Level Only)
SQLAllocStmt (Core Level Only)
SQLBindCol (Core Level Only) . .
SQLBindParameter (Level One Only) .
SQLBrowseConnect (Level Two Only)
SQLCancel (Core Level Only) .
SQLColAttributes (Core Level Only) .
SQLColumnPrivileges (Level Two Only).
SQLColumns (Level One Only).
SQLConnect (Core Level Only) .
SQLDataSources (Level Two Only).
SQLDescribeCol (Core Level Only)
SQLDisconnect .

SQLDriverConnect (Level One Only)
SQLDrivers (Level Two Only)

SQLError (Core Level Only) .
SQLExecDirect (Core Level Only) .
SQLExecute (Core Level Only) . .
SQLExtendedFetch (Level Two Only) .
SQLFetch (Core Level Only) . .
SQLForeignKeys (Level Two Only)
SQLFreeConnect (Core Level Only)
SQLFreeEnv (Core Level Only) .
SQLFreeStmt (Core Level Only). .
SQLGetConnectOption (Level One Only)
SQLGetCursorName (Core Level Only) .
SQLGetData (Level One Only) .
SQLGetFunctions (Level One Only)
SQLGetInfo (Level One Only) .
SQLGetStmtOption (Level One Only).
SQLGetTypelnfo (Level One Only).
SQLMoreResults (Level Two Only)
SQLNativeSql (Level Two Only)
SQLNumParams (Level Two Only)
SQLNumResultCols (Core Level Only)
SQLParamData (Level One Only) . .

SQLParamOptions (Core and Level Two Only)
SQLPrepare .o
SQLPrimaryKeys (Level Two Only)
SQLProcedureColumns (Level Two Only)

© Copyright IBM Corp. 1996, 2004

. 83
. 815
. 815
. 8-16
. 8-16
. 8-17
. 817
. 8-18
. 8-19
. 820
. 820
. 821
. 822
. 823
. 823
. 8-24
. 824
. 8-26
. 8-26
. 8-27
. 8-28
. 829
. 831
. 8-32
. 833
. 833
. 8-34
. 8-34
. 8-34
. 835
. 8-36
. 8-36
. 837
. 8-37
. 8-38
. 8-39
. 8-39
. 8-40
. 840
. 841
. 842
. 843
. 843

8-1

SQLProcedures (Level Two Only) .844

SQLPutData (Level OneOnly) .845
SQLRowCount (Core Level Only) .846
SQLSetConnectOption (Level One Only).846
SQLSetCursorName (Core Level Only) .847
SQLSetStmtOption (Level One Only) .847
SQLSpecialColumns (Level One Only) .848
SQLStatistics (Level One Only) .84
SQLTablePrivileges (Level TwoOnly). .850
SQLTables (Level One Only). .850
SQLTransact (Core Level Only) .85l

In This Chapter

This chapter describes the IBM Informix ODBC Driver, Version 2.90, error
messages. The chapter provides information on:

* Diagnostic SQLSTATE values

* SQLSTATE values mapped to Informix error messages

* IBM Informix ODBC Driver error messages mapped to specific SQLSTATE
values

For a detailed description of an error message, see finderr or IBM Informix:
Error Messages on the IBM Informix Online Documentation site at
http:/ /www.ibm.com/software/data/informix/pubs/library/.

Diagnostic SQLSTATE Values

Each IBM Informix ODBC Driver function can return an SQLSTATE value
that corresponds to an Informix error code. A function can return additional
SQLSTATE values that arise from implementation-specific situations.
SQLError returns SQLSTATE values as defined by the X/Open and SQL
Access Group SQL CAE specification (1992).

SQLSTATE values are character strings that consist of a two-character class
value followed by a three-character subclass value. A class value of 01
indicates a warning and is accompanied by a return code of
SQL_SUCCESS_WITH_INFO. Class values other than 01, except for the class
IM, indicate an error and are accompanied by a return code of SQL_ERROR.
The class IM signifies warnings and errors that derive from the
implementation of IBM Informix ODBC Driver. The subclass value 000 in any
class is for implementation-defined conditions within the given class. ANSI
SQL-92 defines the assignment of class and subclass values.

8-2 IBM Informix ODBC Driver Programmer’s Manual

Mapping SQLSTATE Values to Informix Error Messages

The following table maps SQLSTATE values that IBM Informix ODBC Driver

can return.

A return value of SQL_SUCCESS normally indicates a function has executed
successfully, although the SQLSTATE 00000 also indicates success.

SQLSTATE

Error Message

Can be returned from

01000

General warning

All IBM Informix ODBC
Driver functions except:
SQLAIllocEnv

SQLError

01002

Disconnect error

SQLDisconnect

01004

Data truncated

SQLBrowseConnect
SQLColAttributes
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPutData
SQLSetPos

01006

Privilege not revoked

SQLExecDirect
SQLExecute

01500

Invalid connection string attribute

SQLBrowseConnect
SQLDriverConnect

01501

Error in row

SQLExtendedFetch
SQLSetPos

01502

Option value changed

SQLSetConnectOption
SQLSetStmtOption

01S03

No rows updated or deleted

SQLExecDirect
SQLExecute
SQLSetPos

01504

More than one row updated or deleted

SQLExecDirect
SQLExecute
SQLSetPos

Chapter 8. Error Messages

8-3

8-4

SQLSTATE

Error Message

Can be returned from

07001

Wrong number of parameters

SQLExecDirect
SQLExecute

07006

Restricted data type attribute violation

SQLBindParameter
SQLExtendedFetch
SQLFetch
SQLGetData

08001

Unable to connect to data source

SQLBrowseConnect
SQLConnect
SQLDriverConnect

08002

Connection in use

SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption

08003

Connection not open

SQLAIllocStmt
SQLDisconnect
SQLGetConnectOption
SQLGetInfo
SQLNativeSql
SQLSetConnectOption
SQLTransact

08004

Data source rejected establishment of
connection

SQLBrowseConnect
SQLConnect
SQLDriverConnect

08007

Connection failure during transaction

SQLTransact

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE

Error Message

Can be returned from

08501

Communication link failure

SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLGetData
SQLGetTypelnfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecial Columns
SQLStatistics
SQLTablePrivileges
SQLTables

21501

Insert value list does not match column
list

SQLExecDirect
SQLPrepare

21502

Degree of derived table does not match
column list

SQLExecDirect
SQLPrepare
SQLSetPos

22001

String data right truncation

SQLPutData

22003

Numeric value out of range

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLPutData
SQLSetPos

Chapter 8. Error Messages

8-5

8-6

SQLSTATE

Error Message

Can be returned from

22005

Error in assignment

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPrepare
SQLPutData
SQLSetPos

22008

Datetime field overflow

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPutData
SQLSetPos

22012

Division by zero

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData

22026

String data, length mismatch

SQLParamData

23000

Integrity constraint violation

SQLExecDirect
SQLExecute
SQLSetPos

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE

Error Message

Can be returned from

24000

Invalid cursor state

SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetStmtOption
SQLGetTypelnfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetCursorName
SQLSetPos
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000

Invalid transaction state

SQLDisconnect

28000

Invalid authorization specification

SQLBrowseConnect
SQLConnect
SQLDriverConnect

34000

Invalid cursor name

SQLExecDirect
SQLPrepare
SQLSetCursorName

37000

Syntax error or access violation

SQLExecDirect
SQLNativeSql
SQLPrepare

3C000

Duplicate cursor name

SQLSetCursorName

40001

Serialization failure

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch

42000

Syntax error or access violation

SQLExecDirect
SQLExecute
SQLPrepare
SQLSetPos

70100

Operation aborted

SQLCancel

Chapter 8. Error Messages

8-7

8-8

SQLSTATE | Error Message Can be returned from
IM001 Driver does not support this function | All ODBC functions except:
SQLAIllocConnect
SQLAIllocEnv
SQLDataSources
SQLDrivers
SQLError
SQLFreeConnect
SQLFreeEnv
SQLGetFunctions
1IM002 Data source name not found and no SQLBrowseConnect
default driver specified SQLConnect
SQLDriverConnect
IMO003 Specified driver could not be loaded SQLBrowseConnect
SQLConnect
SQLDriverConnect
IM004 Driver SQLAllocEnv failed SQLBrowseConnect
SQLConnect
SQLDriverConnect
IMO005 Driver SQLAllocConnect failed SQLBrowseConnect
SQLConnect
SQLDriverConnect
IMO006 Driver SQLSetConnectOption failed SQLBrowseConnect
SQLConnect
SQLDriverConnect
IMO007 No data source or driver specified; SQLDriverConnect
dialog prohibited
IM008 Dialog failed SQLDriverConnect
IMO009 Unable to load translation shared SQLBrowseConnect
library SQLConnect
SQLDriverConnect
SQLSetConnectOption
IM010 Data source name too long SQLBrowseConnect
SQLDriverConnect
IMO011 Driver name too long SQLBrowseConnect
SQLDriverConnect
IM012 DRIVER keyword syntax error SQLBrowseConnect
SQLDriverConnect
MO013 Trace file error All ODBC functions.
50001 Base table or view already exists SQLExecDirect
SQLPrepare
S0002 Base table not found SQLExecDirect
SQLPrepare

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE

Error Message

Can be returned from

50011

Index already exists

SQLExecDirect
SQLPrepare

50012

Index not found

SQLExecDirect
SQLPrepare

50021

Column already exists

SQLExecDirect
SQLPrepare

50022

Column not found

SQLExecDirect
SQLPrepare

50023

No default for column

SQLSetPos

51000

General error

All ODBC functions except:
SQLAIllocEnv
SQLError

51001

Memory allocation failure

All ODBC functions except:
SQLAIllocEnv

SQLError
SQLFreeConnect
SQLFreeEnv

51002

Invalid column number

SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

51003

Program type out of range

SQLBindCol
SQLBindParameter
SQLGetData

51004

SQL data type out of range

SQLBindParameter
SQLGetTypelnfo

Chapter 8. Error Messages ~ 8-9

8-10

SQLSTATE

Error Message

Can be returned from

51008

Operation canceled

All ODBC functions that can

be processed
asynchronously:
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetTypelnfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

51009

Invalid argument value

SQLAIllocConnect
SQLAIllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetStmtOption

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE

Error Message

Can be returned from

51010

Function sequence error

SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLGetStmtOption
SQLGetTypelnfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

51011

Operation invalid at this time

SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

51012

Invalid transaction operation code

specified

SQLTransact

Chapter 8. Error Messages

8-11

8-12

SQLSTATE

Error Message

Can be returned from

51015

No cursor name available

SQLGetCursorName

51090

Invalid string or buffer length

SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

51091

Descriptor type out of range

SQLColAttributes

51092

Option type out of range

SQLFreeStmt
SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

51093

Invalid parameter number

SQLBindParameter

51094

Invalid scale value

SQLBindParameter

51095

Function type out of range

SQLGetFunctions

51096

Information type out of range

SQLGetInfo

51097

Column type out of range

SQLSpecialColumns

51098

Scope type out of range

SQLSpecialColumns

51099

Nullable type out of range

SQLSpecialColumns

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Message Can be returned from

S1100 Uniqueness option type out of range SQLStatistics

S1101 Accuracy option type out of range SQLStatistics

S1103 Direction option out of range SQLDataSources
SQLDrivers

51104 Invalid precision value SQLBindParameter

S1105 Invalid parameter type SQLBindParameter

51106 Fetch type out of range SQLExtendedFetch

51107 Row value out of range SQLExtendedFetch
SQLParamOptions
SQLSetPos
SQLSetScrollOptions

51108 Concurrency option out of range SQLSetScrollOptions

51109 Invalid cursor position SQLExecute
SQLExecDirect
SQLGetData
SQLGetStmtOption
SQLSetPos

S1110 Invalid driver completion SQLDriverConnect

S1111 Invalid bookmark value SQLExtendedFetch

Chapter 8. Error Messages

8-13

8-14

SQLSTATE

Error Message

Can be returned from

51C00

Driver not capable

SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetConnectOption
SQLGetData
SQLGetInfo
SQLGetStmtOption
SQLGetTypelnfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetConnectOption
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Message Can be returned from

S1T00 Time-out expired SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDescribeCol
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLGetTypelnfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

Mapping Informix Error Messages to SQLSTATE Values

The rest of this chapter describes diagnostic SQLSTATE values for

IBM Informix ODBC Driver functions. The return code for each SQLSTATE
value is SQL_ERROR unless a description indicates otherwise. When a
function returns SQL_SUCCESS_WITH_INFO or SQL_ERROR, you can call
SQLError to get the SQLSTATE value.

SQLAIllocConnect (Core Level Only)

The following table describes the SQLSTATE and error values for
SQLAIllocConnect.

SQLSTATE | Error Value |Error Message
01000 -11001 General warning
51000 -11060 General error

Chapter 8. Error Messages ~ 8-15

8-16

SQLSTATE | Error Value |Error Message

51001 -11061 Memory-allocation failure

51009 -11066 Invalid argument value

SQLAIllocEnv (Core Level Only)

SQLAllocEnv allocates memory for an environment handle and initializes the
driver call level interface for application use. An application must call
SQLAIllocEnv before it calls any other driver function.

A driver cannot return SQLSTATE values directly after the call to
SQLAIllocEnv because no valid handle exists with which to call SQLError.

Two levels of SQLAllocEnv functions exist, one within the driver manager (if
you are using one) and one within the driver. The driver manager does not
call the driver-level function until the application calls SQLConnect,
SQLBrowseConnect, or SQLDriverConnect. If an error occurs in the
driver-level SQLAllocEnv function, the driver manager-level SQLConnect,
SQLBrowseConnect, or SQLDriverConnect function returns SQL_ERROR. A
subsequent call to SQLError with henv, SQL_NULL_HDBC, and
SQL_NULL_HSTMT returns SQLSTATE IM004 (the driver SQLAllocEnv
function failed), followed by one of the following errors from the driver:

* SQLSTATE S1000 (General error)

* An IBM Informix ODBC Driver SQLSTATE value, which ranges from S$1000
to S1977.
For example, SQLSTATE S1001 (Memory-allocation failure) indicates that
the call from the driver manager to the driver-level SQLAllocEnv returned
SQL_ERROR, and the henv from the driver manager was set to
SQL_NULL_HENW.

SQLAIllocStmt (Core Level Only)

SQLAllocStmt allocates memory for a statement handle and associates the
statement handle with the connection that hdbc specifies.

An application must call SQLAllocStmt before it submits SQL statements.

The following table describes the SQLSTATE and error values for
SQLAIllocStmt.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning
08003 -11017 Connection not open
51000 -11060 General error

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51001 -11061 Memory-allocation failure

51009 -11066 Invalid argument value

08501 -11301 A protocol error has been detected. Current connection
is closed.

SQLBindCol (Core Level Only)

SQLBindCol assigns the storage and Informix ODBC Driver C data type for a
column in a result set, as follows:

* A storage buffer that receives the contents of a column of data
* The length of the storage buffer

* A storage location that receives the actual length of the column of data
returned by the fetch operation

* Data type conversion from the Informix SQL data type to the Informix
ODBC Driver C data type

The following table describes the SQLSTATE and error values for

SQLBindCol.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

51000 -11060 General error

51001 -11061 Memory-allocation failure
51002 -11062 Invalid column number
51003 -11063 Program type out of range
51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length
S1C00 -11092 Driver not capable

Important: An application can call SQLBindCol to bind a column to a new
storage location, regardless of whether data has already been
fetched. The new binding replaces the old binding for bookmark
columns as well as other bound columns. The new binding does
not apply to data already fetched; it takes effect the next time
SQLFetch, SQLExtendedFetch, or SQLSetPos is called.

SQLBindParameter (Level One Only)

SQLBindParameter binds a buffer to a parameter marker in an SQL
statement.

Chapter 8. Error Messages ~ 8-17

The following table describes the SQLSTATE and error values for

SQLBindParameter.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

07006 -11013 Restricted data type attribute violation
51000 -11060 General error

51001 -11061 Memory-allocation failure
51003 -11063 Program type out of range
51004 -11064 SQL data type out of range
51009 -11066 Invalid argument value

51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length
51093 -11074 Invalid parameter number
51094 -11075 Invalid scale value

S1104 -11084 Invalid precision value

51105 -11085 Invalid parameter type

S1C00 -11092 Driver not capable

SQLBrowseConnect (Level Two Only)

SQLBrowseConnect supports an iterative method of discovering and
enumerating the attributes and attribute values required to connect to a data
source. Each call to SQLBrowseConnect returns successive levels of attributes
and attribute values. When all levels are enumerated, a connection to the data
source is completed, and SQLBrowseConnect string. A return code of now
connected to the data source.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

01500 -11005 Invalid connection string attribute

08001 -11015 Unable to connect to data source

08002 -11016 Connection in use

08501 -11020 Communication-link failure

28000 -11033 Invalid authorization specification

IMO002 -11041 Data source not found and no default driver specified
IM003 -11042 Specified driver could not be loaded

8-18 IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

IM004 -11043 Driver SQLAllocEnv failed

IMO005 -11044 Driver SQLAllocConnect failed

IM006 -11045 Driver SQLSetConnectOption failed

IMO009 -11048 Unable to load translation shared library

IMO010 -11049 Data-source name too long

IM011 -11050 Driver name too long

IM012 -11051 DRIVER keyword syntax error

51000 -11060 General error

51001 -11061 Memory-allocation failure

51090 -11071 Invalid string or buffer length

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11303 Input connection string too large

51000 -11317 Invalid connectdatabase value specified

51000 -11318 Invalid vmbcharlenexact value specified

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLCancel (Core Level Only)

SQLCancel cancels the processing on an hstmt or a query.

The following table describes the SQLSTATE and error values for the function.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01505 -11010 Cancel treated as FreeStmt/Close.

70100 -11039 Operation aborted

51000 -11060 General error

51001 -11061 Memory-allocation failure

08501 -11301 A protocol error has been detected. Current connection
is closed.

Chapter 8. Error Messages ~ 8-19

SQLColAttributes (Core Level Only)
SQLColAttributes returns descriptor information for a column in a result set;
it cannot be used to return information about the bookmark column (column
0). Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

The following table describes the SQLSTATE and error values for

SQLColAttributes.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51002 -11062 Invalid column number
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length
51091 -11072 Descriptor type out of range
S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

SQLColAttributes can return any SQLSTATE that can be returned by
SQLPrepare or SQLExecute when it is called after SQLPrepare and before
SQLExecute, depending on when the data source evaluates the SQL statement
associated with the hstmt.

SQLColumnPrivileges (Level Two Only)

SQLColumnPrivileges returns a list of columns and associated privileges for
the specified table. The driver returns the information as a result set on the
specified hstmt.

The following table describes the SQLSTATE and error values for

SQLColumnPrivileges.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure
24000 -11031 Invalid cursor state

8-20 IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLColumns (Level One Only)

SQLColumns returns the list of column names in specified tables. The driver
returns this information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for

SQLColumns.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure
24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length
S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

51C00 -11300 SQL_DEFAULT_PARAM not supported

Chapter 8. Error Messages ~ 8-21

8-22

SQLSTATE | Error Value |Error Message

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLConnect (Core Level Only)

SQLConnect loads a driver and establishes a connection to a data source. The
connection handle references where all information about the connection,
including status, transaction state, and error information is stored.

The following table describes the SQLSTATE and error values for

SQLConnect.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08001 -11015 Unable to connect to data source

08002 -11016 Connection in use

08501 -11020 Communication-link failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified
IM003 -11042 Specified driver could not be loaded

IM004 -11043 Driver SQLAllocEnv failed

IMO005 -11044 Driver SQLAllocConnect failed

IMO006 -11045 Driver SQLSetConnectOption failed

IM009 -11048 Unable to load translation shared library

51000 -11060 General error

51001 -11061 Memory-allocation failure

51090 -11071 Invalid string or buffer length

S1T00 -11094 Time-out expired

51000 -11302 Insufficient connection information was supplied
51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported

by this database driver

IBM Informix ODBC Driver Programmer’s Manual

SQLDataSources (Level Two Only)
SQLDataSources lists data-source names.

The following table describes the SQLSTATE and error values for

SQLDataSources.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

51000 -11060 General error

51001 -11061 Memory-allocation failure
51090 -11071 Invalid string or buffer length
51103 -11083 Direction option out of range

SQLDescribeCol (Core Level Only)

SQLDescribeCol returns the result descriptor (column name, type, precision,
scale, and whether or not it can have a NULL value) for one column in the
result set; it cannot be used to return information about the bookmark column
(column 0).

The following table describes the SQLSTATE and error values for

SQLDescribeCol.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51002 -11062 Invalid column number
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length
S1T00 -11094 Time-out expired

SQLDescribeCol can return any SQLSTATE that SQLPrepare or SQLExecute
returns when SQLDescribeCol is called after SQLPrepare and before
SQLExecute, depending on when the data source evaluates the SQL statement
associated with the hstmt.

Chapter 8. Error Messages ~ 8-23

SQLDisconnect
SQLDisconnect closes the connection associated with a specific connection

handle.

The following table describes the SQLSTATE and error values for

SQLDisconnect.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01002 -11002 Disconnect error

08003 -11017 Connection not open

25000 -11032 Invalid transaction state

51000 -11060 General error

51001 -11061 Memory-allocation failure

51010 -11067 Function-sequence error

08501 -11301 A protocol error has been detected. Current connection
is closed.

Usage

If an application calls SQLDisconnect after SQLBrowseConnect returns
SQL_NEED_DATA and before it returns a different return code, the driver
cancels the connection-browsing process and returns the hdbc to an
unconnected state.

If an application calls SQLDisconnect while an incomplete transaction is
associated with the connection handle, the driver returns SQLSTATE 25000
(Invalid transaction state), indicating that the transaction is unchanged and
the connection is open. An incomplete transaction is one that was not
committed or rolled back with SQLTransact.

If an application calls SQLDisconnect before it frees every hstmt associated
with the connection, the driver frees each remaining hstmt after it successfully
disconnects from the data source. However, if one or more of the hstmts
associated with the connection are still executing asynchronously,
SQLDisconnect returns SQL_ERROR with an SQLSTATE value of S1010
(Function sequence error).

SQLDriverConnect (Level One Only)

SQLDriverConnect is an alternative to SQLConnect. It supports data sources
that require more connection information than the three arguments in
SQLConnect dialog boxes to prompt the user for all connection information
and data sources that are not defined data-source names.

8-24 1BM Informix ODBC Driver Programmer’s Manual

SQLDriverConnect provides the following connection options:

* You can establish a connection using a connection string that contains the
data-source name, one or more user IDs, one or more passwords, and other
information that the data source requires.

* You can establish a connection using a partial connection string or no
additional information; in this case, IBM Informix ODBC Driver can
prompt the user for connection information.

Once a connection is established, SQLDriverConnectconnection string. The
application can use this string for subsequent connection requests.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

01500 -11005 Invalid connection string attribute

08001 -11015 Unable to connect to data source

08002 -11016 Connection in use

08501 -11020 Communication-link failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified

IM003 -11042 Specified driver could not be loaded

IM004 -11043 Driver SQLAllocEnv failed

IM005 -11044 Driver SQLAllocConnect failed

IM006 -11045 Driver SQLSetConnectOption failed

IM007 -11046 No data source or driver specified; dialog prohibited

IM008 -11047 Dialog failed

IM009 -11048 Unable to load translation shared library

IM010 -11049 Data-source name too long

IMO011 -11050 Driver name too long

IM012 -11051 DRIVER keyword syntax error

51000 -11060 General error

51001 -11061 Memory-allocation failure

51090 -11071 Invalid string or buffer length

S1110 -11090 Invalid driver completion

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

Chapter 8. Error Messages ~ 8-25

8-26

SQLSTATE | Error Value |Error Message

51000 -11302 Insufficient connection information was supplied

51000 -11303 Input connection string too large

51000 -11317 Invalid connectdatabase value specified

51000 -11318 Invalid vmbcharlenexact value specified

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLDrivers (Level Two Only)

SQLDrivers lists driver descriptions and driver-attribute keywords.

The following table describes the SQLSTATE and error values for SQLDrivers.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

51000 -11060 General error

51001 -11061 Memory-allocation failure
51090 -11071 Invalid string or buffer length
51103 -11083 Direction option out of range

SQLError (Core Level Only)

SQLError returns error or status information.

SQLError does not post error values for itself. SQLError returns
SQL_NO_DATA_FOUND when it cannot retrieve any error information (in
which case sqlstate equals 00000). If SQLError cannot access error values for
any reason that would normally return SQL_ERROR, SQLError returns
SQL_ERROR but does not post any error values. If the buffer for the error
message is too short, SQLError returns SQL_SUCCESS_WITH_INFO but still
does not return an SQLSTATE value for SQLError.

To determine that a truncation occurred in the error message, an application
can compare cbErrorMsgMax to the actual length of the message text written
to pcbErrorMsg.

IBM Informix ODBC Driver Programmer’s Manual

SQLExecDirect (Core Level Only)

SQLExecDirect executes a preparable statement, using the current values of
the parameter-marker variables if any parameters exist in the statement.
SQLExecDirect is the fastest way to submit an SQL statement for one-time
execution.

The following table describes the SQLSTATE and error values for

SQLExecDirect.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

01006 -11004 Privilege not revoked

01S03 -11008 No rows updated or deleted

01504 -11009 More than one row updated or deleted
07001 -11012 Wrong number of parameters

07501 -11014 Invalid use of default parameter

08501 -11020 Communication-link failure

21501 -11021 Insert value list does not match column list
21502 -11022 Degree of derived table does not match column list
22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Division by zero

23000 -11030 Integrity-constraint violation

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

37000 -11035 Syntax error or access violation

40001 -11037 Serialization failure

42000 -11038 Syntax error or access violation

50001 -11053 Base table or view already exists

50002 -11054 Table or view not found

50011 -11055 Index already exists

50012 -11056 Index not found

50021 -11057 Column already exists

50022 -11058 Column not found

51000 -11060 General error

Chapter 8. Error Messages ~ 8-27

8-28

SQLSTATE | Error Value |Error Message

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51009 -11066 Invalid argument value

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

51109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

51C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLExecute (Core Level Only)

SQLExecute executes a prepared statement, using the current values of the
parameter-marker variables if any parameter markers exist in the statement.

The following table describes the SQLSTATE and error values for

SQLExecute.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

01006 -11004 Privilege not revoked

01503 -11008 No rows updated or deleted
01504 -11009 More than one row updated or deleted
07001 -11012 Wrong number of parameters
07501 -11014 Invalid use of default parameter.
08501 -11020 Communication-link failure
22003 -11025 Numeric value out of range
22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

22012 -11028 Division by zero

23000 -11030 Integrity constraint violation

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

42000 -11038 Syntax error or access violation

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

51109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLExecute can return any SQLSTATE that SQLPrepare can return based on
when the data source evaluates the SQL statement associated with the hstmt.

SQLExtendedFetch (Level Two Only)
SQLExtendedFetch extends the functionality of SQLFetch in the following

ways:

* It returns row-set data (one or more rows), in the form of an array, for each
bound column.

* It scrolls through the result set according to the setting of a scroll-type

argument.

SQLExtendedFetch works with SQLSetStmtOption.

To fetch one row of data at a time in a forward direction, an application
should call SQLFetch.

The following table describes the SQLSTATE and error values for
SQLExtendedFetch.

Chapter 8. Error Messages ~ 8-29

8-30

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

01501 -11006 Error in row

07006 -11013 Restricted data type attribute violation

08501 -11020 Communication-link failure

22002 -11024 Indicator value required but not supplied

22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Division by zero

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

51000 -11060 General error

51001 -11061 Memory-allocation failure

51002 -11062 Invalid column number

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51106 -11086 Fetch type out of range

51107 -11087 Row value out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

S1000 -11307 In SQLExtendedFetch, only SQL_FETCH_NEXT is
supported for SQL_SCROLL_Forward_only cursors

If an error occurs that pertains to the entire row set, such as SQLSTATE S1T00
(Time-out expired), the driver returns SQL_ERROR and the appropriate

SQLSTATE. The contents of the row set buffers are undefined, and the cursor
position is unchanged.

If an error occurs that pertains to a single row, the driver performs the
following actions:

* Sets the element in the rgfRowStatus array for the row to
SQL_ROW_ERROR

* Posts SQLSTATE 01S01 (Error in row) in the error queue

IBM Informix ODBC Driver Programmer’s Manual

* Posts zero or more additional SQLSTATE values for the error after
SQLSTATE 01S01 (Error in row) in the error queue

After the driver processes the error or warning, it continues the operation for
the remaining rows in the row set and returns SQL_SUCCESS_WITH_INFO.
Thus, for each error that pertains to a single row, the error queue contains
SQLSTATE 01501 (Error in row) followed by zero or more additional
SQLSTATEs.

After the driver processes the error, it fetches the remaining rows in the row
set and returns SQL_SUCCESS_WITH_INFO. Thus, for each row that returns
an error, the error queue contains SQLSTATE 01S01 (Error in row) followed by
zero or more additional SQLSTATE values.

If the row set contains rows that are already fetched, the driver is not required
to return SQLSTATE values for errors that occurred when the rows were first
fetched. However, it is required to return SQLSTATE 01501 (Error in row) for
each row in which an error originally occurred and to return
SQL_SUCCESS_WITH_INFO. For example, a static cursor that maintains a
cache might cache row-status information (so that it can determine which
rows contain errors) but might not cache the SQLSTATE associated with those
€errors.

Error rows do not affect relative cursor movements. For example, suppose the
result set size is 100, and the row-set size is 10. If the current row set is rows
11 through 20 and the element in the r¢fRowStatus array for row 11 is
SQL_ROW_ERROR, calling SQLExtendedFetch with the SQL_FETCH_NEXT
fetch type still returns rows 21 through 30.

If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated),
it returns warnings that apply to the entire row set or to unknown rows in the
row set before it returns error information that applies to specific rows. It
returns warnings for specific rows with any other error information about
those rows.

SQLFetch (Core Level Only)

SQLFetch fetches a row of data from a result set. The driver returns data for
all columns that were bound to storage locations with SQLBindCol.

The following table describes the SQLSTATE and error values for SQLFetch.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

07006 -11013 Restricted data-type attribute violation

Chapter 8. Error Messages ~ 8-31

SQLSTATE | Error Value |Error Message

08501 -11020 Communication-link failure
22002 -11024 Indicator value required but not supplied
22003 -11025 Numeric value out of range
22005 -11026 Error in assignment

22008 -11027 Datetime field overflow
22012 -11028 Division by zero

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

51000 -11060 General error

51001 -11061 Memory-allocation failure
51002 -11062 Invalid column number
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

SQLForeignKeys (Level Two Only)
SQLForeignKeys can return either of the following items:

* A list of foreign keys in the specified table (columns in the specified table
that refer to primary keys in other tables)

* A list of foreign keys in other tables that refer to the primary key in the
specified table

The driver returns each list as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for

SQLForeignKeys.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication link failure

24000 -11031 Invalid cursor state

IMO001 -11040 Driver does not support this function
51000 -11060 General error

51001 -11061 Memory allocation failure

51008 -11065 Operation canceled

8-32 IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51009 -11066 Invalid argument value

51010 -11067 Function sequence error

51090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Timeout expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLFreeConnect (Core Level Only)

SQLFreeConnect releases a connection handle and frees all memory

associated with the handle.

The following table describes the SQLSTATE and error values for

SQLFreeConnect.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure
51000 -11060 General error

51010 -11067 Function-sequence error

SQLFreeEnv (Core Level Only)

SQLFreeEnv frees the environment handle and releases all memory associated
with the environment handle.

The following table describes the SQLSTATE and error values for

SQLFreeEnv.

SQLSTATE

Error Value

Error Message

01000

-11001

General warning

Chapter 8. Error Messages ~ 8-33

SQLSTATE | Error Value |Error Message

51000 -11060 General error

51010 -11067 Function-sequence error

SQLFreeStmt (Core Level Only)

SQLFreeStmt stops the processing that is associated with a specific hstmt,
closes any open cursors that are associated with the hstmt, discards pending
results, and, optionally, frees all resources associated with the statement

handle.

The following table describes the SQLSTATE and error values for
SQLFreeStmt.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

51000 -11060 General error

51001 -11061 Memory-allocation failure

51010 -11067 Function-sequence error

51092 -11073 Option type out of range

SQLGetConnectOption (Level One Only)

SQLGetConnectOption returns the current setting of a connection option.

The following table describes the SQLSTATE and error values for

SQLGetConnectOption.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08003 -11017 Connection not open
51000 -11060 General error

51001 -11061 Memory-allocation failure
51010 -11067 Function-sequence error
51092 -11073 Option type out of range
51C00 -11092 Driver not capable

SQLGetCursorName (Core Level Only)

SQLGetCursorName returns the cursor name associated with a specified
hstmt.

8-34 IBM Informix ODBC Driver Programmer’s Manual

The following table describes the SQLSTATE and error values for

SQLGetCursorName.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

51000 -11060 General error

51001 -11061 Memory-allocation failure
51010 -11067 Function-sequence error
51015 -11070 No cursor name available
51090 -11071 Invalid string or buffer length

SQLGetData (Level One Only)

SQLGetData returns result data for a single unbound column in the current
row. The application must call SQLFetch or SOQLExtendedFetch and
(optionally) SQLSetPos to position the cursor on a row of data before it calls
SQLGetData. It is possible to use SQLBindCol for some columns and use

SQLGetData for others within the same row. This function can be used to

retrieve character or binary data values in parts from a column with a
character, binary, or data source-specific data type (for example, data from
SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

The following table describes the SQLSTATE and error values for

SQLGetData.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

07006 -11013 Restricted data- type attribute violation
08501 -11020 Communication-link failure

22002 -11024 Indicator value required but not supplied
22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime-field overflow

22012 -11028 Division by zero

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure

51002 -11062 Invalid column number

Chapter 8. Error Messages

8-35

8-36

SQLSTATE | Error Value |Error Message

51003 -11063 Program type out of range

51008 -11065 Operation canceled

51009 -11066 Invalid argument value

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

51109 -11089 Invalid cursor position

51C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

SQLGetFunctions (Level One Only)

SQLGetFunctions returns information about whether the driver supports a
specific function.

The following table describes the SQLSTATE and error values for

SQLGetFunctions.

SQLSTATE | Error Value |Error Message

01000 -1101 General warning

51000 -11060 General error

51001 -11061 Memory-allocation failure
51010 -11067 Function-sequence error
51095 -11076 Function type out of range

SQLGetInfo (Level One Only)

SQLGetInfo returns general information about the driver and data source
associated with an hdbc.

The following table describes the SQLSTATE and error values for

SQLGetInfo.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

08003 -11017 Connection not open

22003 -11025 Numeric value out of range

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51000 -11060 General error

51001 -11061 Memory-allocation failure

51009 -11066 Invalid argument value

51090 -11071 Invalid string or buffer length

51096 -11077 Information type out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

SQLGetStmtOption (Level One Only)

SQLGetStmtOption returns the current setting of a statement option.

The following table describes the SQLSTATE and error values for

SQLGetStmtOption.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51010 -11067 Function-sequence error
51011 -11068 Operation invalid at this time
51092 -11073 Option type out of range
51109 -11089 Invalid cursor position
S1C00 -11092 Driver not capable

SQLGetTypelnfo (Level One Only)

SQLGetTypelnfo returns information about data types that the data source
supports. The driver returns the information in the form of an SQL result set.

The following table describes the SQLSTATE and error values for

SQLGetTypelnfo.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure

Chapter 8. Error Messages

8-37

8-38

SQLSTATE | Error Value |Error Message

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure

51004 -11063 SQL data type out of range

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11305 SQLGetTypelnfo supported for FORWARD_ONLY
cursors

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLMoreResults (Level Two Only)

SQLMoreResults determines whether more results are available on an hstmt
that contains SELECT, UPDATE, INSERT, or DELETE statements and, if so,
initializes processing for those results.

The following table describes the SQLSTATE and error values for

SQLMoreResults.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

IBM Informix ODBC Driver Programmer’s Manual

SQLNativeSql (Level Two Only)

SQLNativeSql returns the SQL string that the driver translates.

The following table describes the SQLSTATE and error values for

SQLNativeSql.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

08003 -11017 Connection not open

37000 -11035 Syntax error or access violation

51000 -11060 General error

51001 -11061 Memory-allocation failure

51009 -11066 Invalid argument value

51090 -11071 Invalid string or buffer length

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

Usage

The following example shows what SQLNativeSql might return for an input
SQL string that contains the scalar function LENGTH:

SELECT {fn LENGTH(NAME)} FROM EMPLOYEE

Dynamic Server

Dynamic Server might return the following translated SQL string:
SELECT Tength(NAME) FROM EMPLOYEE

End of Dynamic Server

SQLNumParams (Level Two Only)
SQLNumParams returns the number of parameters in an SQL statement.

The following table describes the SQLSTATE and error values for

SQLNumParams.

SQLSTATE | Error Value |Error Message
01000 -11001 General warning
51000 -11060 General error

Chapter 8. Error Messages

8-39

SQLSTATE | Error Value |Error Message

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
S1T00 -11094 Time-out expired

SQLNumResultCols (Core Level Only)
SQLNumResultCols returns the number of columns in a result set.

The following table describes the SQLSTATE and error values for

SQLNumResultCols.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

51000 -11060 General error

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
S1T00 -11094 Time-out expired

SQLNumResultCols can return any SQLSTATE that SQLPrepare or
SQLExecute can return when SQLNumResultCols is called after SQLPrepare
and before SQLExecute is called, depending on when the data source
evaluates the SQL statement associated with the hstmt.

SQLParamData (Level One Only)

SQLParamData is used with SQLPutData to supply parameter data when a
statement executes.

The following table describes the SQLSTATE and error values for

SQLParamData.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure
22026 -11029 String data, length mismatch
51000 -11060 General error

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

8-40 1BM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51010 -11067 Function-sequence error

S1T00 -11094 Time-out expired

51C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

If SQLParamData is called while sending data for a parameter in an SQL
statement, it can return any SQLSTATE that can be returned by the function
that was called to execute the statement (SQLExecute or SQLExecDirect). If it
is called while sending data for a column being updated or added with
SQLSetPos, it can return any SQLSTATE that can be returned by SQLSetPos.

If SQLParamData is called while sending data for a parameter in an SQL
statement, it can return any SQLSTATE that can be returned by the function
that was called to execute the statement (SQLExecute or SQLExecDirect).

SQLParamOptions (Core and Level Two Only)

SQLParamOptions allows an application to specify multiple values for the set
of parameters assigned by SQLBindParameter. The ability to specify multiple
values for a set of parameters is useful for bulk inserts and other work that
requires the data source to process the same SQL statement multiple times
with various parameter values. For example, an application can specify three
sets of values for the set of parameters associated with an INSERT statement,
and then execute the INSERT statement once to perform the three insert
operations.

The following table lists the SQLSTATE values commonly returned by
SQLParamOptions and explains each one in the context of this function; the
notation “(DM)” precedes the description of each SQLSTATE returned by the
driver manager. The return code associated with each SQLSTATE value is
SQL_ERROR unless noted otherwise.

SQLSTATE |Error Value |Error Message

01000 General warning

51000 General error

51001 Memory-allocation failure
51010 Function-sequence error
51107 Row value out of range

Chapter 8. Error Messages ~ 8-41

8-42

SQLPrepare

SQLPrepare prepares an SQL string for execution.

The following table describes the SQLSTATE and error values for

SQLPrepare.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure

21501 -11021 Insert value list does not match column list

21502 -11022 Degree of derived table does not match column list

22005 -11026 Error in assignment

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

37000 -11035 Syntax error or access violation

42000 -11038 Syntax error or access violation

50001 -11053 Base table or view already exists

50002 -11054 Base table not found

50011 -11055 Index already exists

50012 -11056 Index not found

50021 -11057 Column already exists

50022 -11058 Column not found

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51009 -11066 Invalid argument value

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

IBM Informix ODBC Driver Programmer’s Manual

SQLPrimaryKeys (Level Two Only)

SQLPrimaryKeys returns the column names that comprise the primary key
for a table. The driver returns the information as a result set. This function
does not support returning primary keys from multiple tables in a single call.

The following table describes the SQLSTATE and error values for

SQLPrimaryKeys.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

51C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLProcedureColumns (Level Two Only)

SQLProcedureColumns returns the list of input and output parameters, as
well as the columns that make up the result set for the specified procedures.
The driver returns the information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for
SQLProcedureColumns.

SQLSTATE

Error Value

Error Message

01000

-11001

General warning

Chapter 8. Error Messages ~ 8-43

8-44

SQLSTATE | Error Value |Error Message

08501 -11020 Communication link failure

24000 -11031 Invalid cursor state

IM001 -11040 Driver does not support this function

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function sequence error

51090 -11071 Invalid string or buffer length

51C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLProcedures (Level Two Only)

SQLProcedures returns the list of procedure names stored in a specific data
source. Procedure is a generic term used to describe an executable object, or a
named entity that can be invoked using input and output parameters, and
which can return result sets similar to the results that SELECT statements

return.

The following table describes the SQLSTATE and error values for

SQLProcedures.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure
24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

51010 -11067 Function-sequence error

IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLPutData (Level One Only)

SQLPutData allows an application to send data for a parameter or column to
the driver at statement execution time. This function can send character or
binary data values in parts to a column with a character, binary, or
data-source-specific data type (for example, parameters of
SQL_LONGVARBINARY or SQL_LONGVARCHAR).

The following table describes the SQLSTATE and error values for

SQLPutData.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

01004 -11003 Data truncated

07501 -11014 Invalid use of default parameter
08501 -11020 Communication-link failure
22001 -11023 String data right truncation
22003 -11025 Numeric value out of range
22005 -11026 Error in assignment

22008 -11027 Datetime-field overflow
51000 -11060 General error

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

51009 -11066 Invalid argument value

51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length

Chapter 8. Error Messages ~ 8-45

SQLSTATE | Error Value |Error Message
S1T00 -11094 Time-out expired

Important: An application can use SQLPutData to send sections of character
C data to a column with a character, binary, or data source-specific
data type or to send binary C data to a column with a character,
binary, or data source-specific data type. If SQLPutData is called
more than once under any other conditions, it returns
SQL_ERROR and SQLSTATE 22003 (Numeric value out of range).

SQLRowCount (Core Level Only)

SQLRowCount returns the number of rows affected by an UPDATE, INSERT,
or DELETE statement or by an SQL_UPDATE, SQL_ADD, or SQL_DELETE
operation in SQLSetPos.

The following table describes the SQLSTATE and error values for

SQLRowCount.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

51000 -11060 General error

51001 -11061 Memory-allocation failure
51010 -11067 Function-sequence error

SQLSetConnectOption (Level One Only)

SQLSetConnectOption sets options that govern aspects of connections.

The following table describes the SQLSTATE and error values for

SQLSetConnectOption.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01502 -11007 Option value changed
08002 -11016 Connection in use

08003 -11017 Connection not open

08501 -11020 Communication-link failure
IM009 -11048 Unable to load translation shared library
51000 -11060 General error

51001 -11061 Memory-allocation failure
51009 -11066 Invalid argument value

8-46 IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

51010 -11067 Function-sequence error

51011 -11068 Operation invalid at this time

51092 -11073 Option type out of range

S1C00 -11092 Driver not capable

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

When fOption is a statement option, SQLSetConnectOption can return any
SQLSTATE that SQLSetStmtOption returns.

SQLSetCursorName (Core Level Only)

SQLSetCursorName associates a cursor name with an active hstmt. If an
application does not call SQLSetCursorName, the driver generates cursor
names as needed for SQL statement processing.

The following table describes the SQLSTATE and error values for

SQLSetCursorName.

SQLSTATE |Error Value |Error Message

01000 -11001 General warning

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name
3C000 -11036 Duplicate cursor name
51000 -11060 General error

51001 -11061 Memory-allocation failure
51009 -11066 Invalid argument value
51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length

SQLSetStmtOption (Level One Only)

SQLSetStmtOption sets options that are related to an hstmt. To set an option
for all the statements associated with a specific hdbc, an application can call
SQLSetConnectOption.

Chapter 8. Error Messages ~ 8-47

The following table describes the SQLSTATE and error values for

SQLSetStmtOption.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

01502 -11007 Option value changed
08501 -11020 Communication-link failure
24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51009 -11066 Invalid argument value
51010 -11067 Function-sequence error
51011 -11068 Operation invalid at this time
51092 -11073 Option value out of range
S1C00 -11092 Driver not capable

SQLSpecialColumns (Level One Only)

SQLSpecialColumns retrieves the following information about columns
within a specified table:

* The optimal set of columns that uniquely identifies a row in the table

* Columns that are automatically updated when any value in the row is
updated by a transaction

The following table describes the SQLSTATE and error values for

SQLSpecialColumns.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure
24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure
51008 -11065 Operation canceled

51010 -11067 Function-sequence error
51090 -11071 Invalid string or buffer length
51097 -11078 Column type out of range
51098 -11079 Scope type out of range
51099 -11080 Nullable type out of range

8-48 IBM Informix ODBC Driver Programmer’s Manual

SQLSTATE | Error Value |Error Message

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

51C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLStatistics (Level One Only)

SQLStatistics retrieves a list of statistics about a single table and the indexes
associated with the table. The driver returns this information as a result set.

The following table describes the SQLSTATE and error values for

SQLStatistics.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory- allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

51100 -11081 Uniqueness option type out of range

51101 -11082 Accuracy option type out of range

51C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

Chapter 8. Error Messages ~ 8-49

SQLSTATE

Error Value

Error Message

51000

-11323

The statement contains an escape clause not supported
by this database driver

SQLTablePrivileges (Level Two Only)

SQLTablePrivileges returns a list of tables and the privileges associated with
each table. The driver returns the information as a result set on the specified

hstmt.

The following table describes the SQLSTATE and error values for

SQLTablePrivileges.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

51C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLTables (Level One Only)

SQLTables returns the list of table names that are stored in a specific data
source. The driver returns this information as a result set.

8-50 IBM Informix ODBC Driver Programmer’s Manual

The following table describes the SQLSTATE and error values for SQLTables.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08501 -11020 Communication-link failure

24000 -11031 Invalid cursor state

51000 -11060 General error

51001 -11061 Memory-allocation failure

51008 -11065 Operation canceled

51010 -11067 Function-sequence error

51090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

51C00 -11300 SQL_DEFAULT_PARAM not supported

08501 -11301 A protocol error has been detected. Current connection
is closed.

51000 -11310 Create and Drop must be executed within a ServerOnly
Connection

51000 -11320 Syntax error

51000 -11323 The statement contains an escape clause not supported
by this database driver

SQLTransact (Core Level Only)

SQLTransact requests a commit or rollback operation for all active operations
on all hstmts associated with a connection. SQLTransact can also request that a
commit or rollback operation be performed for all connections associated with

the henv.

The following table describes the SQLSTATE and error values for

SQLTransact.

SQLSTATE | Error Value |Error Message

01000 -11001 General warning

08003 -11017 Connection not open

51000 -11060 General error

51001 -11061 Memory-allocation failure

51010 -11067 Function-sequence error

51012 -11069 Invalid transaction operation code

Chapter 8. Error Messages ~ 8-51

8-52

SQLSTATE | Error Value |Error Message

S1C00 -11092 Driver not capable

08501 -11301 A protocol error has been detected. Current connection
is closed.

IBM Informix ODBC Driver Programmer’s Manual

Chapter 9. Unicode

Overview of Unicode .91
Unicode versions . A .91
Unicode in an ODBC Application C s 92
Using Unicode in an ODBC Application .93
Configuration 9-3
Unicode Functions Supported. 9-4

In This Chapter

This chapter provides a brief overview of the Unicode standard and shows
how it is used within ODBC applications.

Overview of Unicode

Unicode is a character encoding standard that provides a means of
representing each character used in every major language. In the Unicode
standard, each character is assigned a unique numeric value and name. These
values can be used consistently between applications across multiple

platforms.

Unicode versions

Although Unicode provides a consistent way of representing text across
multiple languages, there are different versions which provide different data
sizes for each character. The following table describes the versions that are
supported within an IBM Informix ODBC application.

UcCs-2

UCS-4

UTF-8

© Copyright IBM Corp. 1996, 2004

ISO encoding standard that maps Unicode characters to 2
bytes each. UCS-2 is the common encoding standard on
Windows.

IBM Informix ODBC Driver for IBM AIX platforms supports
UCS-2 encoding. IBM Informix ODBC Driver for Windows
supports only UCS-2.

ISO encoding standard that maps Unicode characters into 4
bytes each.

The IBM Informix ODBC Driver supports UCS-4 on UNIX
platforms.

Encoding standard that is based on a single (8 bit) byte. UTF-8
defines a mechanism to transform all Unicode characters into
a variable length (1 to 4) encoding of bytes.

The IBM Informix ODBC Driver uses UTF-8 encoding for all
UNIX applications that connect to the Data Direct (formerly
Merant) driver manager.

7-bit ASCII characters have the same encoding under both ASCII and UTE-8.
This has the advantage that UTF-8 can be used with much existing software
without extensive revision.

Important: In applications that use Unicode, the driver does the work of
codeset conversion from Unicode to the database local and vice
versa. Please note that UTF-8 is the only type of Unicode codeset
that can be set as the client locale.

Unicode in an ODBC Application

9-2

The following diagram shows the architecture of a typical ODBC application
using a driver manager and the IBM Informix ODBC Driver.

Application Driver manager IBM Inform|x
DMR ODBCDnver Database

ANSI or Unicode {UTF-8} or other
locale

Figure 9-1. Typical ODBC Application Architecture

In this scenario, if an application is making calls to Unicode enabled APIs,
then it must be connected to a Unicode enabled IBM Informix ODBC Driver
(Version 3.8 and later) to ensure there is no loss of data. If the application is
making calls to ANSI ODBC APIs, the application can be linked to either a
Unicode enabled driver or an ANSI driver.

Note that the IBM Informix ODBC Driver continues to support IBM Informix
GLS. Hence all data fetched in character buffers will be fetched in the client
locale codeset. Only data fetched using wide character buffers will use
Unicode.

On Windows, if the ODBC driver is not Unicode enabled, the ODBC Driver
Manager maps all Unicode API function calls to ANSI ODBC APIs.

If the ODBC driver is Unicode enabled, the Windows ODBC driver manager
(Version 3.5 or later) maps all ANSI ODBC APIs to Unicode ODBC APIs. The
Data Direct (formerly Merant) driver manager for UNIX also works this way.

Important: In CSDK Version 2.70 there are two ODBC Drivers. One with only
ANSI APIs (called ANSI ODBC Driver, Version 3.34) and another

IBM Informix ODBC Driver Programmer’s Manual

with both ANSI and UNICODE APIs (called Unicode ODBC
Driver, Version 3.80). For CSDK 2.80 and later, there is only one
ODBC Driver that supports both ANSI and UNICODE APIs.

Important: The IBM Informix Driver Manager Replacement (DMR) for UNIX
platforms does not map between Unicode and ANSI APIs.

For details about how the Windows ODBC driver manager handles mapping,
please refer to the following URL:

http://msdn.microsoft.com/Tibrary/en-us/odbc/htm
/odbcfunction_mapping_in_the_driver_manager.asp

Using Unicode in an ODBC Application

This section provides details on compiling and configuring Unicode within an
IBM Informix ODBC application.

Configuration

Since the IBM Informix ODBC Driver supports different types of Unicode on
UNIX platforms, the type of Unicode used by an application must be
indicated in the ODBC section of the odbc.ini file as follows:

[0DBC]

UNICODE=UCS-4

On IBM AIX platforms with versions lower than 5L, the supported values for
the UNICODE parameter is UCS-2. For all other UNIX platforms the
supported values are UCS-4 and UTE-8.

Important: A Unicode enabled application must indicate the type of Unicode
used in the odbc.ini file. If the Unicode parameter is not set in
odbc.ini, the default type is UCS-4.

It is required that all UNIX ODBC applications must set the Unicode type in
the odbc.ini file as follows:

* An ANSI ODBC application on UNIX must set UNICODE=UCS-4
* An ANSI ODBC application on IBM AIX must set UNICODE-UCS-2

* An ANSI ODBC application using the Data Direct (formerly Merant) ODBC
driver manager should never indicate a Unicode type other than UTF-8 in
the odbc.ini file.

Chapter 9. Unicode 9-3

The following table provides an overview of the odbc.ini settings:

Platform Driver Manager odbc.ini Setting
AIX Data Direct UTF-8

AIX DMR or none ucCs-2

UNIX Data Direct UTF-8

UNIX DMR or none UCs-4
Windows Windows ODBC Driver Manager N/A

Unicode Functions Supported

The IBM Informix ODBC Driver supports both ANSI and Unicode version of
all functions that accept pointer to character strings or SQLPOINTER in their

9-4

arguments. The following table describes the two types of functions

supported:
ODBC “A” functions

ODBC “W” functions

These are the normal ODBC functions that
accept single byte (ASCII) data as input for all
the character/string parameters.

These are the Unicode functions that accept
“wide characters” as input for all
character/string parameters.

The ODBC specification defines these functions using the wchar_t data type.
This is the standard C library wide character data type.

The following Unicode “wide” functions are supported by the IBM Informix

ODBC Diriver:

SQLColAttribute W SQLColAttributesW SQLConnectW
SQLDescribeColW SQLErrorW SQLExecDirectW
SQLGetConnectAttrW SQLGetCursorNameW SQLSetDescFieldW
SQLGetDescField W SQLGetDescRecW SQLGetDiagFieldW
SQLGetDiagRecW SQLPrepareW SQLSetConnectAttrW
SQLSetCursorNameW SQLColumnsW SQLGetConnectOptionW
SQLGetTypelnfoW SQLSetConnectOptionW SQLSpecial ColumnsW
SQLStatisticsW SQLTablesW SQLDataSourcesW
SQLDriverConnectW SQLBrowseConnectW SQLColumnPrivilegesW
SQLGetStmtAttrW SQLSetStmtAttrW SQLForeignKeysW
SQLNativeSqlW SQLPrimaryKeysW SQLProcedureColumnsW

IBM Informix ODBC Driver Programmer’s Manual

|SQLProceduresW | SQLTablePrivilegesW | SQLDriversW

Chapter 9. Unicode 9-5

9-6 IBM Informix ODBC Driver Programmer’s Manual

Appendix. Accessibility

The syntax diagrams in the HTML version of this manual are available in
dotted decimal syntax format, which is an accessible format that is available
only if you are using a screen reader.

Dotted Decimal Syntax Diagrams

In dotted decimal format, each syntax element is written on a separate line. If
two or more syntax elements are always present together (or always absent
together), the elements can appear on the same line, because they can be
considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1.
To hear these numbers correctly, make sure that your screen reader is set to
read punctuation. All syntax elements that have the same dotted decimal
number (for example, all syntax elements that have the number 3.1) are
mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1
SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example,
if a syntax element with dotted decimal number 3 is followed by a series of
syntax elements with dotted decimal number 3.1, all the syntax elements
numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to
add information about the syntax elements. Occasionally, these words and
symbols might occur at the beginning of the element itself. For ease of
identification, if the word or symbol is a part of the syntax element, the word
or symbol is preceded by the backslash (\) character. The * symbol can be
used next to a dotted decimal number to indicate that the syntax element
repeats. For example, syntax element *FILE with dotted decimal number 3 is
read as 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats.
Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line
with the same dotted decimal number as the relevant items. The line can also
show another symbol that provides information about the syntax elements.
For example, the lines 5.1%, 5.1 LASTRUN, and 5.1 DELETE mean that if you
use more than one of the LASTRUN and DELETE syntax elements, the elements

© Copyright IBM Corp. 1996, 2004 A-1

A-2

must be separated by a comma. If no separator is given, assume that you use
a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this identifies a reference that
is defined elsewhere. The string following the % symbol is the name of a
syntax fragment rather than a literal. For example, the line 2.1 %0P1 means
that you should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal
numbers:

? Specifies an optional syntax element. A dotted decimal number
followed by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a
dotted decimal number, the ? symbol is displayed on the same line as
the syntax element (for example, 57 NOTIFY). If there is more than one
syntax element with a dotted decimal number, the ? symbol is
displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5
UPDATE, you know that syntax elements NOTIFY and UPDATE are
optional; that is, you can choose one or none of them. The ? symbol is
equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed
by the ! symbol and a syntax element indicates that the syntax
element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that
share the same dotted decimal number can specify a ! symbol. For
example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1
(DELETE), you know that (KEEP) is the default option for the FILE
keyword. In this example, if you include the FILE keyword but do not
specify an option, default option KEEP is applied. A default option also
applies to the next higher dotted decimal number. In this example, if
the FILE keyword is omitted, default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE),
the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword),
and does not apply to 2? FILE. Nothing is used if the keyword FILE is
omitted.

Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this
syntax element can be used zero or more times; that is, it is optional
and can be repeated. For example, if you hear the line 5.1%
data-area, you know that you can include more than one data area or

IBM Informix ODBC Driver Programmer’s Manual

you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE,
you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there
is only one item with that dotted decimal number, you can repeat
that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several
items have that dotted decimal number, you can use more than
one item from the list, but you cannot use the items more than
once each. In the previous example, you could write HOST STATE,
but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this
syntax element must be included one or more times. For example, if
you hear the line 6.1+ data-area, you must include at least one data
area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you
must include HOST, STATE, or both. As for the * symbol, you can only
repeat a particular item if it is the only item with that dotted decimal
number. The + symbol, like the * symbol, is equivalent to a loop-back
line in a railroad syntax diagram.

Appendix. Accessibility A-3

A-4 1BM Informix ODBC Driver Programmer’s Manual

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1996, 2004 B-1

B-2

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003
US.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

IBM Informix ODBC Driver Programmer’s Manual

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years).
All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Notices B-3

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; 0S/2, OS/390, and OS/400; IBM Informix®;
C-ISAM®; Foundation.2000""; IBM Informix ® 4GL; IBM
Informix®DataBlade®Module; Client SDK™; Cloudscapem; Cloudsyncm; IBM
Informix®Connect; IBM Informix®Driver for JDBC; Dynamic Connect'; IBM
Informix®Dynamic Scalable ArchitectureTM(DSA); IBM Informix®Dynamic
Server; IBM Informix®Enterprise Gateway Manager (Enterprise Gateway
Manager); IBM Informix®Extended Parallel Server '; i.Financial Services" ;
J/Foundation™"; MaxConnect""; Object Translator'"; Red Brick™; IBM
Informix® SE; IBM Informix® SQL; InformiXML""; RedBack®; SystemBuilderTM;
U2™; UniData®; UniVerse®; wintegrate®are trademarks or registered
trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other
countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.

B-4 IBM Informix ODBC Driver Programmer’s Manual

Index

Special characters
.h files.

See Header files.
netre file 2-11

A

Accessibility xxi
dotted decimal format of syntax diagrams A-1
syntax diagrams, reading in a screen reader A-1
Allocating handles.

See Connection handles; Environment handles; Statement handles.

Architecture 1-5
Arguments

See also Parameters.

null pointers 1-16

pointers 1-15
Arrays.

See Binding columns; Parameters, arrays.
Attributes, columns 8-24
Auto-commit mode.

See Transactions.
AUTOFREE feature 7-4

B

Binary data
C data type 3-12
converting to C 3-23
converting to SQL 3-34
transferring 3-14
Binding columns 5-1, 8-17
See Converting data; Rowsets.
Binding parameters.
See Parameters, binding.
Bit data, converting to SQL 3-35
BLOB data type 3-6
Boldface type xiii
Bookmarks, support 1-26
Boolean data
C data type 3-12
converting to C 3-24
BOOLEAN data type 3-2
Boundaries, segment 1-15
Buffers
See also NULL data; Null-termination byte.
allocating 1-15
input 1-15
interoperability 1-15
maintaining pointers 1-15
NULL data 1-16
null pointers 1-16

© Copyright IBM Corp. 1996, 2004

X-1

Buffers (continued)
null-termination 1-16
output 1-15, 1-16
segment boundaries 1-15
truncating data 1-16

Bulk operations 8-41

BYTE data type 3-2

C

C data type
See also Converting data; SQL data types.
binary 3-12
boolean 3-12
character 3-12
conversion examples 3-32, 3-41
converting from SQL data type 3-1, 3-21
converting to SQL data types 3-34
date 3-12
default conversions 3-22
Informix ODBC Driver 3-2
numeric 3-12
SQL_C_BINARY 3-12
SQL_C_BIT 3-12
SQL_C_CHAR 3-12
SQL_C_DATE 3-12
SQL_C_DOUBLE 3-12
SQL_C_FLOAT 3-12
SQL_C_LONG 3-12
SQL_C_SHORT 3-13
SQL_C_SLONG 3-13
SQL_C_SSHORT 3-13
SQL_C_STINYINT 3-13
SQL_C_TIMESTAMP 3-13
SQL_C_TINYINT 3-13
SQL_C_ULONG 3-13
SQL_C_USHORT 3-13
SQL_C_UTINYINT 3-13
standard 3-1
timestamp 3-13
typedefs 3-2
Calls, executing with SQLPrepare and SQLExecute 7-7
Canceling, connection browsing 8-24
Case-sensitive catalog functions 7-1
Catalog functions, case-sensitive 7-1
Challenge and response buffer pointers 1-23
CHAR data type 3-2
Character data 3-12
converting to C 3-24
converting to SQL 3-36
empty string 1-15
CHARACTER data type 3-2
CHARACTER VARYING data type 3-2
Characters, special x
Client functions, calling 6-2
Client locale 1-19

X-2 IBM Informix ODBC Driver Programmer’s Manual

CLIENT_LOCALE environment variable 1-19, 2-4
CLOB data types 3-6
Code, example
See specific function descriptions.
Code, sample, conventions for xvii
Collections 3-6
buffers 5-1
converting SQL data 5-2
creating 5-11, 6-41
current position 5-18
deleting 5-17, 6-43
inserting 5-17, 6-48
local fetch 5-3
modifying 5-17
retrieving 6-46
retrieving information 5-18
transferring 5-1
updating 5-17, 6-53
Columns
See also Result sets; SQL data types; Table.
attributes 8-24
binding.
See Binding columns.
precision.
See Precision.
procedure 8-43
Command-line conventions
how to read xv
sample diagram xv
Compliance
with industry standards xxiv
Concurrency 1-27
Configuring a DSN on
UNIX 2-1
Configuring a DSN on Windows 2-11
Configuring data sources.
See Data sources, configuring.
Connection handles
defined connection handles
HDBC variable type 1-15
SQLFreeConnect 8-33
Connections, SQLDisconnect 8-24
Contact information xxv
Conventions
command-line xv
documentation xii
sample-code xvii
syntax diagrams xiv
syntax notation xiv
typographical xii
Converting data
See also Translation, shared library.
CtoSQL 3-34
default conversions 3-22
examples 3-32, 3-41

Index

X-3

Converting data (continued)
hexadecimal characters 3-34
SQL to C 3-21

Create-time flags 4-4

Cursor
automatically freeing 7-4
enable insert cursor 2-15
insert 7-3
position errors 8-31
Report KeySet 2-15
scrollable 2-15

D

Data

committing 7-10

converting
See Converting data.

length 3-7

transferring in binary form 3-14

translating.

See Translation, shared library.
truncating.
See Truncating data.

updating 7-8
Data sources

configuring on UNIX 2-1

configuring on Windows 2-11
Data types.

See C data type; SQL data types.
Data-source specification 2-4
Database locale 1-20
Database server, client behavior on x
Date data

C data type 3-12

converting to C 3-28

converting to SQL 3-38
DATE data type 3-2
DATE_STRUCT typedef 3-12
DATETIME data type 3-2
DB_LOCALE environment variable 1-20, 2-4
DBCENTURY environment variable 1-9
DBDATE environment variable 1-9
DEC data type 3-2
DECIMAL data type 3-2
Default fetch type for UDTs 3-16
Default locale x
DELETE statements 8-38, 8-46

See also SQLSetPos.

affected rows 8-46
Demonstration databases xi
Dependencies, software x
Descriptors, columns 8-24
Diagnostics 8-2
Disabilities, visual

reading syntax diagrams A-1

X-4 IBM Informix ODBC Driver Programmer’s Manual

Disk-storage information 4-3
Display size 3-7
DISTINCT data type 3-6
Documentation conventions xii
Documentation Notes xix
Documentation set of all manuals xxi
Documentation, types of xviii
machine notes xix
online manuals xxi
printed manuals xxi
Dotted decimal format of syntax diagrams A-1
DOUBLE PRECISION data type 3-2
Driver manager, described 1-5
Driver, Informix ODBC 1-5
Drivers, allocating handles 8-16
DSN settings 3-17

E

Empty strings 1-15
en_us.8859-1 locale x
Environment handles
defined 1-15
SQLAllocEnv 8-16
SQLFreeEnv 8-33
Environment variables xiii
CLIENT_LOCALE 1-19, 24
DB_LOCALE 1-20, 2-4
DBCENTURY 1-9
DBDATE 19
INFORMIXDIR 1-9
INFORMIXSQLHOSTS 1-9
ODBCINI 1-9
PATH 1-9
TRANSLATION_OPTION 1-20
TRANSLATIONDLL 1-20, 2-4
VMBCHARLENEXACT 1-21
Error messages xx
Informix
mapping SQLSTATE values 8-3
Errors
See also specific function descriptions.
diagnostic SQLSTAGE values 8-2
error messages 8-2
handling with OPTMSG 7-12
mapping Informix to SQLSTATE values 8-3
rowsets 8-30
Examples, data conversion 3-32, 3-41
Extended data types 1-3
Extensive error detection 1-3
External authentication 1-22

F

fCType 3-22
Features, new xi
Fetch simple large object data 7-6

Index X-5

Fetch type 3-16
Fetching data.
See Binding columns; Rowsets; Rows.
Files
.h files.
See Header files.
.netrc 2-11
infxcli.h 1-10, 3-6
odbc.ini 2-3
odbcinst.ini 2-1
sqlhosts 2-1
Fixed and Known Defects File xix
FLOAT data type 3-2
Floating point data
converting to C 3-29
converting to SQL 3-38
Freeing handles.
See Connection handles; Environment handles; Statement handles.
Functions
catalog 7-1
rows and collections
ifx_rc_count() 6-40
ifx_rc_create() 6-41
ifx_rc_delete() 6-43
ifx_rc_describe() 6-44
ifx_rc_fetch() 6-46
ifx_rc_free() 6-47
ifx_rc_insert() 6-48
ifx_rc_isnull() 6-50
ifx_rc_setnull() 6-51
ifx_rc_typespec() 6-52
ifx_rc_update() 6-53
smart large objects 6-4
ifx_lo_alter() 6-5
ifx_lo_close() 6-6
ifx_lo_col_info() 6-7
ifx_lo_create() 6-8
ifx_lo_def_create_spec() 6-10
ifx_lo_open() 6-11
ifx_lo_read() 6-13
ifx_lo_readwithseek() 6-14
ifx_lo_seek() 6-16
ifx_lo_specget_estbytes() 6-17
ifx_lo_specget_extsz() 6-18
ifx_lo_specget_flags() 6-19
ifx_lo_specget_maxbytes() 6-20
ifx_lo_specget_sbspace() 6-21
ifx_lo_specset_estbytes() 6-22
ifx_lo_specset_extsz() 6-23
ifx_lo_specset_flags() 6-25
ifx_lo_specset_maxbytes() 6-26
ifx_lo_specset_sbspace() 6-27
ifx_lo_stat_atime() 6-29
ifx_lo_stat_cspec() 6-30
ifx_lo_stat_ctime() 6-31

X-6 IBM Informix ODBC Driver Programmer’s Manual

Functions (continued)
ifx_lo_stat_refent() 6-32
ifx_lo_stat_size() 6-33
ifx_lo_stat() 6-28
ifx_lo_tell() 6-34
ifx_lo_truncate() 6-35
ifx_lo_write() 6-36

ifx_lo_writewithseek() 6-37

G

Global Language Support x
GLS

data types 1-3, 3-5
GLS.

See Global Language Support.

H

Handles.

See Connection handles; Environment handles; Statement handles.

hdbec.

See Connection handles.
Header files

required 1-10

sqlext.h C data type 1-11
Help xxi
henv.

See Environment handles.
Hexadecimal characters 3-34
hstmt.

See Statement handles.

ifx_lo_alter() 6-5
ifx_lo_close() 6-6
ifx_lo_col_info() 6-7
ifx_lo_create() 6-8
ifx_lo_def_create_spec() 6-10
ifx_lo_open() 6-11
ifx_lo_read() 6-13
ifx_lo_readwithseek() 6-14
ifx_lo_seek() 6-16
ifx_lo_specget_estbytes() 6-17
ifx_lo_specget_extsz() 6-18
ifx_lo_specget_flags() 6-19
ifx_lo_specget_maxbytes() 6-20
ifx_lo_specget_sbspace() 6-21
ifx_lo_specset_estbytes() 6-22
ifx_lo_specset_extsz() 6-23
ifx_lo_specset_flags() 6-25
ifx_lo_specset_maxbytes() 6-26
ifx_lo_specset_sbspace() 6-27
ifx_lo_stat_atime() 6-29
ifx_lo_stat_cspec() 6-30
ifx_lo_stat_ctime() 6-31
ifx_lo_stat_refent() 6-32
ifx_lo_stat_size() 6-33

Index

X-7

ifx_lo_stat() 6-28
ifx_lo_tell() 6-34
ifx_lo_truncate() 6-35
ifx_lo_write() 6-36
ifx_lo_writewithseek() 6-37
ifx_rc_count() 6-40
ifx_rc_create() 6-41
ifx_rc_delete() 6-43
ifx_rc_describe() 6-44
ifx_rc_fetch() 6-46
ifx_rc_free() 6-47
ifx_rc_insert() 6-48
ifx_rc_isnull() 6-50
ifx_rc_setnull() 6-51
ifx_rc_typespec() 6-52
ifx_rc_update() 6-53
Include files.
See Header files.
Industry standards, compliance with xxiv
Informix Dynamic Server documentation set xxi
INFORMIXDIR environment variable 1-9
INFORMIXSQLHOSTS environment variable 1-9
INFX_LO_AUTOMATIC_ATTR 4-17
infxcli.h file 3-6
Initializing data sources 2-1
Input buffers 1-15
Insert cursor 7-3
enabling 2-15
INSERT statements
affected rows 8-46
SQLParamOptions 8-41
INSERT statements.
See SQLSetPos.
Installation Guides xviii
INT data type 3-3
INTS data type 3-3
Integer data
converting to C 3-29
converting to SQL 3-38
INTEGER data type 3-3
Internet Protocol Version 6 1-3
Interoperability
buffer length 1-15
default C data type 3-22
transferring data 3-14
ISO 8859-1 code set x

K

Keywords
in syntax diagrams xvii

L

LDAP authentication on Windows 1-22
Length
data 3-7

X-8 IBM Informix ODBC Driver Programmer’s Manual

Length, buffers

input 1-15

maximum 1-15

output 1-16
Length, defined 3-7
Length, unknown

precision 3-7
Libraries 1-11
Library

Informix ODBC Driver 1-11

translation 1-20

shared 1-20

LIST data type 3-6
LO_APPEND 4-20
LO_BUFFER 4-20
LO_DIRTY_READ 4-19
LO_KEEP_LASTACCESS_ TIME 4-5
LO_LOG 4-5
LO_NOBUFFER 4-20
LO_NOKEEP_LASTACCESS_ TIME 4-5
LO_NOLOG 4-5
LO_RDONLY 4-19
LO_RDWR 4-20
LO_SEEK_CUR 6-14, 6-16, 6-37
LO_SEEK_END 6-14, 6-16, 6-37
LO_SEEK_SET 6-14, 6-16, 6-37
LO_WRONLY 4-19
Locale x

client 1-19

database 1-20
lofd 4-2
Login authorization.

See Connections.
Logon ID 2-4
Long identifiers 1-3
loptr 4-2
lospec 4-2
lostat 4-2
LVARCHAR data type 3-4

M

Machine notes xix
Manual-commit mode.
See Transactions.

Memory.

See Connection handles; Environment handles; Statement handles.

Message chaining 7-11
Message transfer optimization 7-10
Messages, error.
See Errors.
Microsoft Transaction Server 1-3
Migrating to Informix ODBC
DSN connection on UNIX 3-17
DSN connection on Windows 3-17

Index

X-9

Modes
auto-commit.
See Transactions.
manual commit.
See Transactions.
MONEY data type 3-4
MTS.
See Microsoft Transaction Server.
MULTISET data type 3-6
Multithreading, with environment handles 8-16

N

Named rows 3-6
NCHAR data type 3-5
New features xi
NULL data
output buffers 1-16
Null pointers
input buffers 1-16
output buffers 1-16
Null-termination byte
embedded 1-16
examples 3-32, 3-41
input buffers 1-15
output buffers 1-16
Numeric data
See also Floating point data; Integer data.
C data type 3-12
converting to C 3-29
converting to SQL 3-38
NUMERIC data type 3-4
NVARCHAR data type 3-6

o)

odbc.ini file 2-3
Data Source Specification section 2-4
ODBC Data Sources section 2-4
odbc.ini tracing options 2-10
ODBCINI environment variable 1-9
odbcinst.ini file 2-1
Online help xxi
Online manuals xxi
Online notes xviii, xix
OPAQUE data type 3-6
Optimistic concurrency control.
See Concurrency.
OPTMSG 7-10
Output buffers 1-16

P

PAM.

See Pluggable Authentication Module.
Parameters

See also Arguments.

arrays 8-41

binding 7-7

X-10 IBM Informix ODBC Driver Programmer’s Manual

Parameters (continued)
SQLBindParameter 8-17
number 8-39
Password 2-12
PATH environment variable 1-9
Pluggable Authentication Module
Connect functions 1-24
Connection pooling 1-23
Intermediate Code 1-24
SQLSetConnectAttr() function 1-22
Third party connections 1-24
Pointers, maintaining 1-15
Pointers, null.
See Null pointers.
Position, cursor.
See Cursor.
Positioned
DELETE statements 7-9
UPDATE statements 7-9
Precision 3-7
Printed manuals xxi
Procedure
defined 8-44
Procedure columns 8-43
Procedures, SQL 8-44
SQLSTAGE and error values 8-44
pwd 2-4

Q

Queries.
See SQL statements.

R

REAL data type 3-4
Release Notes xix
Report KeySet cursors 2-15
Report sets
SQLDescribeCol 8-23
Report standard ODBC data type
DSN settings 3-17
Result sets
See also Cursor; Rows.
arrays.
See Rowsets.
defined 1-12
SQLNumResultCols 8-40
SQLRowCount 8-46
Retrieving data
arrays.
See Rowsets.
binding columns.
See Binding columns.
rows.
See Rows.
Row status array, errors 8-30

Index

X-11

Rows 3-6
See also Cursor; Rowsets.
affected 8-46
and collections 5-1
buffers 5-1
converting SQL data 5-2
creating 5-11, 6-41
current position 5-18
deleting 5-17, 6-43
errors in 8-30
inserting 5-17, 6-48
local fetch 5-3
modifying 5-17
retrieving 6-46
retrieving information 5-18
transferring 5-1
updating 5-17, 6-53
Rowsets
errors 8-30

S

Sample-code conventions xvii
SBSPACENAME 4-6
Scale, defined 3-7
SCHAR typedef 3-13
Screen reader
reading syntax diagrams A-1
Scrollable cursor 2-15
SDOUBLE typedef 3-12
SDWORD typedef 3-12
Segment boundaries 1-15
SELECT statements
See also Result sets.
affected rows 8-46
bulk 8-41
SERIAL data type 3-4
SERIALS data type 3-4
SET data type 3-6
setup.odbc 1-9
SFLOAT typedef 3-12
Simple large object fetches 7-6
Size, display 3-7
SMALLFLOAT data type 3-4
SMALLINT data type 3-5
Smart large objects 3-6
access modes 4-19
accessing 4-16
allocation extent size 4-4
altering 6-5
closing 4-23, 6-6
creating 4-8, 6-8
data structures 4-2
disk-storage information 4-3
estimated size 4-4
file descriptor 4-2

X-12 IBM Informix ODBC Driver Programmer’s Manual

Smart large objects (continued)
functions 6-4
getting file position 6-34
ifx_lo functions 4-18
inheritance hierarchy 4-6
inserting 4-15
last access-time 4-5
lightweight I/O 4-20
locks 4-22
logging indicator 4-5
maximum size 4-4
modifying 4-23
ODBC API 4-17
opening 4-19, 6-11
pointer structure 4-2
reading 6-13, 6-14
retrieving status 4-31
sbspace name 4-4
selecting 4-18
setting file position 6-16, 6-35
specification structure 4-2
status structure 4-2
storage characteristics 4-3, 6-7
transferring 4-15
updating 4-15
writing 6-36, 6-37

Software dependencies x

Special characters x

SQL code xvii

SQL data types
See also C data type; Converting data; SQL statements.
BLOB 3-6
BOOLEAN 3-2
BYTE 3-2
CHAR 3-2
CHARACTER 3-2
CHARACTER VARYING 3-2
CLOB 3-6
collection 3-6
conversion examples 3-32, 3-41
converting from C data type 3-34
converting to C data type 3-21

DATE 3-2
DATETIME 3-2
DEC 3-2
DECIMAL 3-2

default C data type 3-22
display size 3-7
DISTINCT 3-6

DOUBLE PRECISION 3-2
FLOAT 3-2

Informix 3-1

Informix ODBC Driver 3-1
INT 3-3

INT8 3-3

Index X-13

SQL data types (continued)

INTEGER 3-3

length 3-7

LIST 3-6

LVARCHAR 3-4

MONEY 3-4

MULTISET 3-6

NCHAR 3-5

NUMERIC 3-4

NVARCHAR 3-6

OPAQUE 3-6

precision 3-7

REAL 34

row 3-6

scale 3-7

SERIAL 3-4

SERIALS 3-4

SET 3-6

SMALLFLOAT 3-4

SMALLINT 3-5

smart large object 3-6

SQL_BIGINT 3-3

SQL_BIT 3-2

SQL_CHAR 3-2

SQL_DATE 3-2

SQL_DECIMAL 3-2

SQL_DOUBLE 3-2

SQL_IFMX_UDT_BLOB 3-6

SQL_IFMX_UDT_CLOB 3-6

SQL_INFX_UDT_FIXED 3-6

SQL_INFX_UDT_VARYING 3-6

SQL_INTEGER 3-3

SQL_LONGVARBINARY 3-2

SQL_LONGVARCHAR 34, 3-5

SQL_REAL 3-4

SQL_SMALLINT 3-5

SQL_TIMESTAMP 3-2

SQL_VARCHAR 3-2

TEXT 3-5

VARCHAR 3-5
SQL statements

native 8-39
SQL_ATTR_ROW_ARRAY_SIZE 7-6
SQL_BIGINT data type 3-3
SQL_BIT data type 3-2
SQL_C_BINARY data type 3-12
SQL_C_BIT data type 3-12
SQL_C_CHAR data type 3-12
SQL_C_DATE data type 3-12
SQL_C_DOUBLE data type 3-12
SQL_C_FLOAT data type 3-12
SQL_C_LONG data type 3-12
SQL_C_SHORT data type 3-13
SQL_C_SLONG data type 3-13
SQL_C_SSHORT data type 3-13

X-14 1BM Informix ODBC Driver Programmer’s Manual

SQL_C_STINYINT data type 3-13
SQL_C_TIMESTAMP data type 3-13
SQL_C_TINYINT data type 3-13
SQL_C_ULONG data type 3-13
SQL_C_USHORT data type 3-13
SQL_C_UTINYINT data type 3-13
SQL_CHAR data type 3-2
SQL_DATE data type 3-2
SQL_DECIMAL data type 3-2
SQL_DESC_OCTET_LENGTH, and bookmarks 1-26
SQL_DOUBLE data type 3-2
SQL_ENABLE_INSERT_CURSOR 7-3
SQL_IFMX_UDT_BLOB data type 3-6
SQL_IFMX_UDT_CLOB data type 3-6
SQL_INFX_ATTR_AUTO_FREE 7-4
SQL_INFX_ATTR_DEFAULT UDT_FETCH_TYPE 3-16
SQL_INFX_ATTR_DEFERRED_PREPARE 7-5
SQL_INFX_ATTR_ENABLE_INSERT_CURSORS 2-15
SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS 2-15
SQL_INFX_ATTR_LO_AUTOMATIC 3-16
SQL_INFX_ATTR_ODBC_TYPES_ONLY 3-15, 3-16
SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT 2-15
SQL_INFX_ATTR_OPTMSG 7-10
SQL_INFX_ATTR_OPTOFC 2-15
SQL_INFX_ATTR_REPORT_KEYSET CURSORS 2-16
SQL_INFX_UDT_FIXED data type 3-6
SQL_INFX_UDT_VARYING data type 3-6
SQL_INTEGER data type 3-3
SQL_LONGVARBINARY data type 3-2
SQL_LONGVARCHAR data type 3-4, 3-5
SQL_REAL data type 3-4
SQL_SMALLINT data type 3-5
SQL_TIMESTAMP data type 3-2
SQL_VARCHAR data type 3-2
SQLAllocConnect

See also Connection handles.

function description 8-15
SQLAllocEnv

See also Environment handles.

function description 8-16
SQLAllocStmt

See also Statement handles.

function description 8-16
SQLBindCol

function description 8-17
SQLBindParameter

function description 8-17
SQLBrowseConnect

function description 8-18
SQLBulkOperations 1-27

bookmarks 1-26

function description 1-26
SQLCancel, function description 8-19
SQLColAttributes, function description 8-20
SQLColumnPrivileges, function description 8-20

Index

X-15

SQLColumns, function description 8-21
SQLConnect, function description 8-22
SQLDataSources, function description 8-23
SQLDescribeCol, function description 8-23
SQLDescribeParam 1-27
SQLDisconnect, function description 8-24
SQLDriverConnect, function description 8-24
SQLDrivers, function description 8-26
SQLError

See also Errors; SQLSTATE.

function description 8-26
SQLExecDirect, function description 8-27
SQLExecute, function description 8-28
SQLExtendedFetch

bookmarks 1-26

function description 8-29
SQLFetch, function description 8-31
SQLFetchScroll, bookmarks 1-26
SQLForeignKeys, function description 8-32
SQLFreeConnect

See also Connection handles.

function description 8-33
SQLFreeEnv

See also Environment handles.

function description 8-33
SQLFreeStmt

See also Statement handles.

function description 8-34
SQLGetConnectOption, function description 8-34
SQLGetCursorName, function description 8-34
SQLGetData, function description 8-35
SQLGetFunctions, function description 8-36
SQLGetInfo, function description 8-36
SQLGetStmtOption, function description 8-37
SQLGetTypelnfo

function description 8-37

supported data types 1-10
sqlhosts file 2-1
SQLMoreResults, function description 8-38
SQLNativeSql, function description 8-39
SQLNumParams, function description 8-39
SQLNumResultCols, function description 8-40
SQLParamData

function description 8-40

SQLPutData 8-40
SQLParamOptions

function description 8-41

multiple parameter values 8-41
SQLPrepare

deferring execution 7-5

function description 8-42
SQLPrimaryKeys, function description 8-43
SQLProcedureColumns, function description 8-43
SQLProcedures, function description 8-44

X-16 1BM Informix ODBC Driver Programmer’s Manual

SQLPutData
function description 8-45
SQLParamData 8-40
SQLRowCount, function description 8-46
SQLSetConnectOption
See also Connection options.
function description 8-46
SQLSetCursorName, function description 8-47
SQLSetPos
column binding 8-17
error messages 8-3
LockType argument
SQL_CA1_LOCK_NO_CHANGE 1-18
operation argument
SQL_CA1_POS_DELETE 1-17
SQL_CA1_POS_POSITION 1-17
SQL_CA1_POS_REFRESH 1-17
SQL_CA1_POS_UPDATE 1-17
positioned UPDATE and DELETE statements
scroll cursors 7-6, 7-9
SQLGetData 7-6, 8-35
SQLParamData 8-40
SQLRowCount 8-46
SQLSetStmtOption
function description 8-47
SQLSpecialColumns, function description 8-48
SQLSTATE
naming conventions 8-2
values
See Error messages.
values.
See specific function descriptions.
SQLStatistics 8-49
function description 8-49
SQLTablePrivileges, function description 8-50
SQLTables, function description 8-50
SQLTransact, function description 8-51
SqlType 3-2
Statement handles
defined 1-15
HSTMT variable type 1-15
SQLAllocStmt 8-16
SQLFreeStmt 8-34
Status array, errors 8-30
Status information.
See Errors.
Storage characteristics
create-time flags 4-4
disk-storage information 4-3
inheritance hierarchy 4-6
String data.
See Character data.
SWORD typedef 3-13
Syntax diagrams
conventions for xiv

7-9

Index

X-17

Syntax diagrams (continued)
keywords in xvii
reading in a screen reader A-1
variables in xvii

Syntax segment xvi

syscolattribs = 4-7

System requirements
database x
software x

T
Table
columns.
See Columns.
indexes.
See SQLStatistics.
TOWS.
See Rows.
Termination byte, null.
See Null-termination byte.
TEXT data type 3-5
Threads, multiple
with environment handles 8-16
Time-stamp data 3-13
converting to C 3-31
converting to SQL 3-40
TIMESTAMP_STRUCT typedef 3-13
TOC Notes xix
Tracing values in ODBC 2-10
Transactions
concurrency 1-27
incomplete 8-24
Transferring binary data 3-14
Translation
library 1-20
options 1-20
shared library 1-20
error 8-8, 8-19, 8-22, 8-25, 8-46
TRANSLATION_OPTION environment variable 1-20
TRANSLATIONDLL environment variable 1-20, 2-4
Truncating data
See also Binary data; Character data.
See also Character data.
output buffers 1-16
SQLBindCol 8-17
Typedefs
DATE_STRUCT 3-12
SCHAR 3-13
SDOUBLE 3-12
SDWORD 3-12
SFLOAT 3-12
SWORD 3-13
TIMESTAMP_STRUCT 3-13
UCHAR 3-13
UDWORD 3-13

X-18 IBM Informix ODBC Driver Programmer’s Manual

Typedefs (continued)
UWORD 3-13
Typographical conventions xii

U

UCHAR typedef 3-13

UDT fetch type 3-16

UDWORD typedef 3-13

Unicode 1-3

Unnamed rows 3-6

UPDATE statements
See also SQLSetPos.
affected rows 8-46
bulk 8-41

User ID 2-12

Users, types ix

UWORD typedef 3-13

\'

VARCHAR data type 3-5
Variable, binding
SQL_INFX_UDT_FIXED 3-23
Variables, binding
estbytes input argument 6-3
SQL_INFX_UDT_VARYING 3-23
Variables, in syntax diagrams xvii
Visual Basic client-side cursors 3-5
Visual disabilities
reading syntax diagrams A-1
VMBCHARLENEXACT environment variable 1-21

w

Window handles.
See SQLDriverConnect.

X

XA 1-3,1-10, 1-21

Index X-19

X-20 IBM Informix ODBC Driver Programmer’s Manual

Printed in USA

6G251-2294-00

jenuely S awwelfiold JaaUQ 9900 X1waopu| gl

06°¢ uoisIap xiwloul NGl ¢9a Nl

:uoLjewdolul aulds

	Informix Documentation Website
	Informix CSDK 2.90 Documentation Website
	IDS 10.0 Documentation Website
	Master Index Enterprise Edition
	Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	New Features
	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	Example Code Conventions

	Additional Documentation
	Installation Guides
	Online Notes
	Locating Online Notes
	Online Notes Filenames

	Informix Error Messages
	Manuals
	Online Manuals
	Printed Manuals

	Online Help

	Accessibility
	IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Chapter 1. Overview of IBM Informix ODBC Driver
	What is IBM Informix ODBC Driver?
	IBM Informix ODBC Driver Features
	Support for Extended Data Types (IDS)
	Support for GLS Data Types
	Extended Error Detection

	Additional Values for Some ODBC Function Arguments

	ODBC Component Overview
	IBM Informix ODBC Driver with a Driver Manager
	IBM Informix ODBC Driver Without a Driver Manager (UNIX)

	IBM Informix ODBC Driver with the DMR
	Using IBM Informix ODBC Driver
	Environment Variables
	Setting Environment Variables on UNIX
	Setting Environment Variables in Windows

	Header Files
	Data Types
	Libraries

	Using the IBM Informix ODBC Driver API
	Environment, Connection, and Statement Handles
	Buffers
	Input Buffers
	Output Buffers

	SQLGetInfo Argument Implementation

	Global Language Support
	Client Locale
	Database Locale
	Translation Library
	Translation Option
	VMB Character

	X/Open Standard Interface
	External Authentication
	Pluggable Authentication Module (PAM) on UNIX and Linux
	LDAP Authentication on Windows
	Using the SQLSetConnectAttr() function with Authentication
	Connection Pooling and Authentication
	Connect Functions
	Using Third Party Applications or Intermediate Code

	Partially Supported and Unsupported ODBC Features
	Transaction Processing
	Transaction Isolation Levels
	Transaction Modes

	ODBC Cursors
	ODBC Bookmarks
	SQLBulkOperations
	SQLDescribeParam
	Unsupported Microsoft ODBC Driver Features

	Chapter 2. Configuring Data Sources
	Configuring a DSN on UNIX
	The sqlhosts File
	The odbcinst.ini File
	ODBC Drivers
	Driver Specifications

	The odbc.ini File
	ODBC Data Sources
	Data-Source Specification

	ODBC Section
	Setting the $ODBCINI Environment Variable
	The .netrc File

	Configuring a DSN in Windows
	Making a Connection Without DSN

	Chapter 3. Data Types
	Data Types
	SQL Data Types
	Standard SQL Data Types
	Using Visual Basic Client-side Cursors

	Additional SQL Data Types for GLS
	Additional SQL Data Types for Dynamic Server
	Precision, Scale, Length, and Display Size

	C Data Types
	C Interval Structure
	Transferring Data

	Reporting Standard ODBC Types
	SQL_INFX_ATTR_ODBC_TYPES_ONLY
	SQL_INFX_ATTR_LO_AUTOMATIC
	SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE
	Reporting Wide Character Columns
	DSN Settings for Report Standard ODBC Data Types

	Converting Data

	Chapter 4. Working with Smart Large Objects
	Working with Data Structures for Smart Large Objects
	Handling the Storage of Smart Large Objects
	Disk-Storage Information
	Create-Time Flags
	Inheritance Hierarchy
	System-Specified Storage Characteristics
	Column-Level Storage Characteristics
	User-Defined Storage Characteristics

	Creating a Smart Large Object
	Transferring Smart-Large-Object Data
	Accessing a Smart Large Object
	Smart-Large-Object Automation
	Setting the Access Method Using INFX_LO_AUTOMATIC_ATTR
	Inserting, Updating, and Deleting Smart Large Objects Using the ODBC API
	Selecting Smart Large Objects Using the ODBC API

	Using ifx_lo Functions
	Selecting a Smart Large Object Using ifx_lo functions
	Opening a Smart Large Object Using ifx_lo functions
	Lightweight I/O
	Smart-Large-Object Locks
	Duration of an Open Operation on a Smart Large Object
	Deleting a Smart Large Object
	Modifying a Smart Large Object
	Closing a Smart Large Object
	Example of Retrieving a Smart Large Object from the Database Using ifx_lo Functions

	Retrieving the Status of a Smart Large Object
	Example of Retrieving Information About a Smart Large Object

	Reading or Writing a Smart Large Object to or from a File

	Chapter 5. Working with Rows and Collections
	Transferring Row and Collection Data
	Fixed-Type Buffers and Unfixed-Type Buffers
	Buffers and Memory Allocation
	SQL Data
	Local Fetch
	Example of Retrieving Row and Collection Data from the Database

	Creating a Row or Collection
	Example of Creating a Row and a List on the Client

	Modifying a Row or Collection
	Retrieving Information About a Row or Collection

	Chapter 6. Client Functions
	Calling a Client Function
	SQL Syntax
	Function Syntax
	Input and Output Parameters
	SQL_BIGINT
	Return Codes

	Functions for Smart Large Objects
	ifx_lo_alter()
	ifx_lo_close()
	ifx_lo_col_info()
	ifx_lo_create()
	ifx_lo_def_create_spec()
	ifx_lo_open()
	ifx_lo_read()
	ifx_lo_readwithseek()
	ifx_lo_seek()
	ifx_lo_specget_estbytes()
	ifx_lo_specget_extsz()
	ifx_lo_specget_flags()
	ifx_lo_specget_maxbytes()
	ifx_lo_specget_sbspace()
	ifx_lo_specset_estbytes()
	ifx_lo_specset_extsz()
	ifx_lo_specset_flags()
	ifx_lo_specset_maxbytes()
	ifx_lo_specset_sbspace()
	ifx_lo_stat()
	ifx_lo_stat_atime()
	ifx_lo_stat_cspec()
	ifx_lo_stat_ctime()
	ifx_lo_stat_refcnt()
	ifx_lo_stat_size()
	ifx_lo_tell()
	ifx_lo_truncate()
	ifx_lo_write()
	ifx_lo_writewithseek()

	Functions for Rows and Collections
	ifx_rc_count()
	ifx_rc_create()
	ifx_rc_delete()
	ifx_rc_describe()
	ifx_rc_fetch()
	ifx_rc_free()
	ifx_rc_insert()
	ifx_rc_isnull()
	ifx_rc_setnull()
	ifx_rc_typespec()
	ifx_rc_update()

	Chapter 7. Improving Application Performance
	Case-Sensitive Catalog Functions
	Connection Level Optimizations
	Optimizing Query Execution
	Inserting Multiple Rows
	Automatically Freeing a Cursor
	Enabling the AUTOFREE Feature
	Using the AUTOFREE Feature

	Delaying Execution of the SQLPREPARE Statement
	Setting the Fetch Array Size for Simple-Large-Object Data
	Using the SPL Output Parameter Feature
	Using Asynchronous Execution
	Updating Data with Positioned Updates and Deletes
	Message Transfer Optimization
	Message Chaining Restrictions
	Disabling Message Chaining
	Handling Errors with Optimized Message Transfers

	Chapter 8. Error Messages
	Diagnostic SQLSTATE Values
	Mapping SQLSTATE Values to Informix Error Messages
	Mapping Informix Error Messages to SQLSTATE Values
	SQLAllocConnect (Core Level Only)
	SQLAllocEnv (Core Level Only)
	SQLAllocStmt (Core Level Only)
	SQLBindCol (Core Level Only)
	SQLBindParameter (Level One Only)
	SQLBrowseConnect (Level Two Only)
	SQLCancel (Core Level Only)
	SQLColAttributes (Core Level Only)
	SQLColumnPrivileges (Level Two Only)
	SQLColumns (Level One Only)
	SQLConnect (Core Level Only)
	SQLDataSources (Level Two Only)
	SQLDescribeCol (Core Level Only)
	SQLDisconnect
	SQLDriverConnect (Level One Only)
	SQLDrivers (Level Two Only)
	SQLError (Core Level Only)
	SQLExecDirect (Core Level Only)
	SQLExecute (Core Level Only)
	SQLExtendedFetch (Level Two Only)
	SQLFetch (Core Level Only)
	SQLForeignKeys (Level Two Only)
	SQLFreeConnect (Core Level Only)
	SQLFreeEnv (Core Level Only)
	SQLFreeStmt (Core Level Only)
	SQLGetConnectOption (Level One Only)
	SQLGetCursorName (Core Level Only)
	SQLGetData (Level One Only)
	SQLGetFunctions (Level One Only)
	SQLGetInfo (Level One Only)
	SQLGetStmtOption (Level One Only)
	SQLGetTypeInfo (Level One Only)
	SQLMoreResults (Level Two Only)
	SQLNativeSql (Level Two Only)
	SQLNumParams (Level Two Only)
	SQLNumResultCols (Core Level Only)
	SQLParamData (Level One Only)

	SQLParamOptions (Core and Level Two Only)
	SQLPrepare
	SQLPrimaryKeys (Level Two Only)
	SQLProcedureColumns (Level Two Only)
	SQLProcedures (Level Two Only)
	SQLPutData (Level One Only)
	SQLRowCount (Core Level Only)
	SQLSetConnectOption (Level One Only)
	SQLSetCursorName (Core Level Only)
	SQLSetStmtOption (Level One Only)
	SQLSpecialColumns (Level One Only)
	SQLStatistics (Level One Only)
	SQLTablePrivileges (Level Two Only)
	SQLTables (Level One Only)
	SQLTransact (Core Level Only)

	Chapter 9. Unicode
	Overview of Unicode
	Unicode versions

	Unicode in an ODBC Application
	Using Unicode in an ODBC Application
	Configuration

	Unicode Functions Supported

	Appendix. Accessibility
	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

