
DB2® IBM Informix

IBM Informix R-Tree Index User’s Guide

Version 10.0

G251-2297-00

���

DB2® IBM Informix

IBM Informix R-Tree Index User’s Guide

Version 10.0

G251-2297-00

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page D-1.

First Edition (December 2004)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by

copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction . vii

About This Manual . vii

Types of Users . viii

Software Dependencies . viii

Assumptions About Your Locale . ix

Demonstration Database . ix

Documentation Conventions . x

Typographical Conventions . x

Feature, Product, and Platform . xi

Syntax Diagrams . xi

Example Code Conventions . xv

Additional Documentation . xvi

Installation Guides . xvi

Online Notes . xvi

Informix Error Messages . xviii

Manuals . xix

Online Help . xix

Accessibility . xix

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set xix

Compliance with Industry Standards . xxii

IBM Welcomes Your Comments . xxiii

Chapter 1. R-Tree Secondary Access Method Concepts 1-1

About Access Methods . 1-2

The R-Tree Secondary Access Method . 1-3

R-Tree Index Structure . 1-4

Searching with an R-Tree Index . 1-8

Nearest-Neighbor Searching . 1-9

Inserting into an R-Tree Index . 1-9

R-Link Trees and Concurrency . 1-11

About Operator Classes . 1-12

R-Tree Functionality That IBM Provides . 1-13

IBM Informix Dynamic Server . 1-14

R-Tree Secondary Access Method DataBlade Module 1-14

IBM Informix DataBlade Modules That Use the R-Tree Access Method 1-16

Chapter 2. Using the R-Tree Secondary Access Method 2-1

Before You Begin . 2-1

Creating R-Tree Indexes . 2-2

Syntax . 2-3

R-Tree Index Parameters . 2-4

Bottom-Up Building of R-Tree Indexes . 2-7

Using the NO_SORT Index Parameter . 2-8

R-Tree Index Options . 2-9

Examples of Creating R-Tree Indexes . 2-9

© Copyright IBM Corp. 1996, 2004 iii

When Does the Query Optimizer Use an R-Tree Index? 2-11

Complex Qualifications . 2-13

R-Tree Indexes and Null Values . 2-13

How an R-Tree Index Internally Handles Null Values 2-13

How Strategy Functions Handle Null Values 2-13

Performing Nearest-Neighbor Searches . 2-14

Limitations . 2-15

Example . 2-15

Database Isolation Levels and R-Tree Indexes 2-16

Functional R-Tree Indexes . 2-16

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method . . 3-1

Overview of DataBlade Module Development 3-2

Deciding Whether to Use the R-Tree Access Method 3-3

Designing a User-Defined Data Type . 3-4

Data Objects and Bounding Boxes . 3-4

Data Type Hierarchies . 3-6

Maximum Size of the User-Defined Data Type 3-8

Loose Bounding Box Calculations . 3-9

Other User-Defined Data Type Design Considerations 3-9

Creating a New Operator Class . 3-10

Support Functions . 3-11

Strategy Functions . 3-26

Selectivity and Cost Functions . 3-37

Syntax for Creating a New Operator Class 3-39

Setting Up Nearest-Neighbor Searching . 3-41

Setting Up a Strategy Function for Nearest-Neighbor Searching 3-41

Creating Registration Scripts for Dependent DataBlade Modules 3-44

Importing the ifxrltree Interface Object . 3-44

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-1

Performance Tips . 4-2

Updating Statistics . 4-2

Deletions . 4-3

Effectiveness of Bounding Box Representation 4-4

Clustering Spatial Data on the Disk . 4-5

Returning the Coordinates of the Root Bounding Box 4-6

Syntax . 4-7

Estimating the Size of an R-Tree Index . 4-7

Calculating Index Size Based on Number of Rows 4-7

Using the oncheck Utility to Calculate Index Size 4-9

R-Tree Index and Logging . 4-9

Description of the R-Tree-Specific Logical-Log Records 4-10

Using the onlog Utility to View R-Tree Logical-Log Records 4-10

System Catalogs . 4-12

sysams . 4-12

sysopclasses . 4-13

sysindices . 4-15

Checking R-Tree Indexes with the oncheck Utility 4-15

Checking Pages with the -ci and -cI Options 4-16

iv IBM Informix R-Tree Index User’s Guide

The second line in this diagram has a segment named “Setting the Run

Mode,” which according to the diagram footnote, is on page 17-4. This

segment is shown in the following segment diagram (the diagram uses

segment start and end components).

Setting the Run Mode:

-f

d

p

a

 l

c

u

n

N

To construct a command correctly, start at the top left with the command.

Follow the diagram to the right, including the elements that you want. The

elements in the diagram are case sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:

1. Type onpladm create job and then the name of the job.

2. Optionally, type -p and then the name of the project.

3. Type the following required elements:

v -n

v -d and the name of the device

v -D and the name of the database

v -t and the name of the table

4. Optionally, you can choose one or more of the following elements and

repeat them an arbitrary number of times:

v -S and the server name

v -T and the target server name

v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f , optionally type d, p, or a, and then

optionally type l or u.

5. Follow the diagram to the terminator.

Your diagram is complete.

Keywords and Punctuation

Keywords are words reserved for statements and all commands except

system-level commands. When a keyword appears in a syntax diagram, it is

shown in uppercase letters. When you use a keyword in a command, you can

write it in uppercase or lowercase letters, but you must spell the keyword

exactly as it appears in the syntax diagram.

xiv IBM Informix R-Tree Index User’s Guide

You must also use any punctuation in your statements and commands exactly

as shown in the syntax diagrams.

Identifiers and Names

Variables serve as placeholders for identifiers and names in the syntax

diagrams and examples. You can replace a variable with an arbitrary name,

identifier, or literal, depending on the context. Variables are also used to

represent complex syntax elements that are expanded in additional syntax

diagrams. When a variable appears in a syntax diagram, an example, or text,

it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a

simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables

column_name and table_name with the name of a specific column and table.

Example Code Conventions

Examples of SQL code occur throughout this manual. Except as noted, the

code is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by

semicolons. For instance, you might see the code in the following example:

CONNECT TO stores_demo

...

DELETE FROM customer

 WHERE customer_num = 121

...

COMMIT WORK

DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules

for that product. For example, if you are using DB–Access, you must delimit

multiple statements with semicolons. If you are using an SQL API, you must

use EXEC SQL at the start of each statement and a semicolon (or other

appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be

added in a full application, but it is not necessary to show it to describe

the concept being discussed.

For detailed directions on using SQL statements for a particular application

development tool or SQL API, see the manual for your product.

Introduction xv

Additional Documentation

For additional information, refer to the following types of documentation:

v Installation guides

v Online notes

v Informix error messages

v Manuals

v Online help

Installation Guides

Installation guides are located in the /doc directory of the product CD or in

the /doc directory of the product‘s compressed file if you downloaded it from

the IBM Web site. Alternatively, you can obtain installation guides from the

IBM Informix Online Documentation site at

http://www.ibm.com/software/data/informix/pubs/library/.

Online Notes

The following sections describe the online files that supplement the

information in this manual. Please examine these files before you begin using

your IBM Informix product. They contain vital information about application

and performance issues.

xvi IBM Informix R-Tree Index User’s Guide

http://www.ibm.com/software/data/informix/pubs/library/

Online File Description Format

TOC Notes The TOC (Table of Contents) notes file

provides a comprehensive directory of

hyperlinks to the release notes, the fixed and

known defects file, and all the documentation

notes files for individual manual titles.

HTML

Documentation Notes The documentation notes file for each manual

contains important information and

corrections that supplement the information

in the manual or information that was

modified since publication.

HTML, text

Release Notes The release notes file describes feature

differences from earlier versions of IBM

Informix products and how these differences

might affect current products. For some

products, this file also contains information

about any known problems and their

workarounds.

HTML, text

Machine Notes (Non-Windows platforms only) The machine

notes file describes any platform-specific

actions that you must take to configure and

use IBM Informix products on your

computer.

text

Fixed and Known

Defects File

This text file lists issues that have been

identified with the current version. It also lists

customer-reported defects that have been

fixed in both the current version and in

previous versions.

text

Locating Online Notes

Online notes are available from the IBM Informix Online Documentation site

at http://www.ibm.com/software/data/informix/pubs/library/. Additionally

you can locate these files before or after installation as described below.

Before Installation

All online notes are located in the /doc directory of the product CD. The

easiest way to access the documentation notes, the release notes, and the fixed

and known defects file is through the hyperlinks from the TOC notes file.

The machine notes file and the fixed and known defects file are only provided

in text format.

After Installation

Introduction xvii

http://www.ibm.com/software/data/informix/pubs/library/

On UNIX platforms in the default locale, the documentation notes, release

notes, and machine notes files appear under the

$INFORMIXDIR/release/en_us/0333 directory.

Dynamic Server

On Windows the documentation and release notes files appear in the

Informix folder. To display this folder, choose Start > Programs > IBM

Informix Dynamic Server version > Documentation Notes or Release Notes

from the taskbar.

Machine notes do not apply to Windows platforms.

End of Dynamic Server

Online Notes Filenames

Online notes have the following file formats:

 Online File File Format Examples

TOC Notes prod_os_tocnotes_version.html ids_win_tocnotes_10.0.html

Documentation Notes prod_bookname_docnotes_version.html/txt ids_hpl_docnotes_10.0.html

Release Notes prod_os_relnotes_version.html/txt ids_unix_relnotes_10.0.txt

Machine Notes prod_machine_notes_version.txt ids_machine_notes_10.0.txt

Fixed and Known

Defects File

prod_defects_version.txt

ids_win_fixed_and_known

_defects_version.txt

ids_defects_10.0.txt

client_defects_2.90.txt

ids_win_fixed_and_known

_defects_10.0.txt

Informix Error Messages

This file is a comprehensive index of error messages and their corrective

actions for the Informix products and version numbers.

On UNIX platforms, use the finderr command to read the error messages and

their corrective actions.

Dynamic Server

On Windows, use the Informix Error Messages utility to read error messages

and their corrective actions. To display this utility, choose Start > Programs >

IBM Informix Dynamic Server version > Informix Error Messages from the

taskbar.

End of Dynamic Server

xviii IBM Informix R-Tree Index User’s Guide

You can also access these files from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Manuals

Online Manuals

A CD that contains your manuals in electronic format is provided with your

IBM Informix products. You can install the documentation or access it directly

from the CD. For information about how to install, read, and print online

manuals, see the installation insert that accompanies your CD. You can also

obtain the same online manuals from the IBM Informix Online Documentation

site at http://www.ibm.com/software/data/informix/pubs/library/.

Printed Manuals

To order hardcopy manuals, contact your sales representative or visit the IBM

Publications Center Web site at

http://www.ibm.com/software/howtobuy/data.html.

Online Help

IBM Informix online help, provided with each graphical user interface (GUI),

displays information about those interfaces and the functions that they

perform. Use the help facilities that each GUI provides to display the online

help.

Accessibility

IBM is committed to making our documentation accessible to persons with

disabilities. Our books are available in HTML format so that they can be

accessed with assistive technology such as screen reader software. The syntax

diagrams in our manuals are available in dotted decimal format, which is an

accessible format that is available only if you are using a screen reader. For

more information about the dotted decimal format, see the Accessibility

appendix.

IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90

Documentation Set

The following tables list the manuals that are part of the IBM Informix

Dynamic Server, Version 10.0 and the CSDK Version 2.90, documentation set.

PDF and HTML versions of these manuals are available at

http://www.ibm.com/software/data/informix/pubs/library/. You can order

hardcopy versions of these manuals from the IBM Publications Center at

http://www.ibm.com/software/howtobuy/data.html.

Introduction xix

http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html
http://www.ibm.com/software/data/informix/pubs/library/
http://www.ibm.com/software/howtobuy/data.html

Table 1. Database Server Manuals

Manual Subject

Administrator’s Guide Understanding, configuring, and administering your database server.

Administrator’s Reference Reference material for Informix Dynamic Server, such as the syntax of

database server utilities onmode and onstat, and descriptions of

configuration parameters, the sysmasters tables, and logical-log records.

Backup and Restore Guide The concepts and methods you need to understand when you use the

ON-Bar and ontape utilities to back up and restore data.

DB-Access User’s Guide Using the DB-Access utility to access, modify, and retrieve data from

Informix databases.

DataBlade API

Function Reference

The DataBlade API functions and the subset of ESQL/C functions that

the DataBlade API supports. You can use the DataBlade API to develop

client LIBMI applications and C user-defined routines that access data in

Informix databases.

DataBlade API

Programmer’s Guide

The DataBlade API, which is the C-language application-programming

interface provided with Dynamic Server. You use the DataBlade API to

develop client and server applications that access data stored in Informix

databases.

Database Design and

Implementation Guide

Designing, implementing, and managing your Informix databases.

Enterprise Replication

Guide

How to design, implement, and manage an Enterprise Replication system

to replicate data between multiple database servers.

Error Messages file Causes and solutions for numbered error messages you might receive

when you work with IBM Informix products.

Getting Started Guide Describes the products bundled with IBM Informix Dynamic Server and

interoperability with other IBM products. Summarizes important features

of Dynamic Server and the new features for each version.

Guide to SQL: Reference Information about Informix databases, data types, system catalog tables,

environment variables, and the stores_demo demonstration database.

Guide to SQL: Syntax Detailed descriptions of the syntax for all Informix SQL and SPL

statements.

Guide to SQL: Tutorial A tutorial on SQL, as implemented by Informix products, that describes

the basic ideas and terms that are used when you work with a relational

database.

High-Performance Loader

User’s Guide

Accessing and using the High-Performance Loader (HPL), to load and

unload large quantities of data to and from Informix databases.

Installation Guide for

Microsoft Windows

Instructions for installing IBM Informix Dynamic Server on Windows.

Installation Guide for

UNIX and Linux

Instructions for installing IBM Informix Dynamic Server on UNIX and

Linux.

xx IBM Informix R-Tree Index User’s Guide

Table 1. Database Server Manuals (continued)

Manual Subject

J/Foundation Developer’s

Guide

Writing user-defined routines (UDRs) in the Java programming language

for Informix Dynamic Server with J/Foundation.

Large Object Locator

DataBlade Module User’s

Guide

Using the Large Object Locator, a foundation DataBlade module that can

be used by other modules that create or store large-object data. The Large

Object Locator enables you to create a single consistent interface to large

objects and extends the concept of large objects to include data stored

outside the database.

Migration Guide Conversion to and reversion from the latest versions of Informix

database servers. Migration between different Informix database servers.

Optical Subsystem Guide The Optical Subsystem, a utility that supports the storage of BYTE and

TEXT data on optical disk.

Performance Guide Configuring and operating IBM Informix Dynamic Server to achieve

optimum performance.

R-Tree Index User’s Guide Creating R-tree indexes on appropriate data types, creating new operator

classes that use the R-tree access method, and managing databases that

use the R-tree secondary access method.

SNMP Subagent Guide The IBM Informix subagent that allows a Simple Network Management

Protocol (SNMP) network manager to monitor the status of Informix

servers.

Storage Manager

Administrator’s Guide

Informix Storage Manager (ISM), which manages storage devices and

media for your Informix database server.

Trusted Facility Guide The secure-auditing capabilities of Dynamic Server, including the creation

and maintenance of audit logs.

User-Defined Routines and

Data Types Developer’s

Guide

How to define new data types and enable user-defined routines (UDRs)

to extend IBM Informix Dynamic Server.

Virtual-Index Interface

Programmer’s Guide

Creating a secondary access method (index) with the Virtual-Index

Interface (VII) to extend the built-in indexing schemes of IBM Informix

Dynamic Server. Typically used with a DataBlade module.

Virtual-Table Interface

Programmer’s Guide

Creating a primary access method with the Virtual-Table Interface (VTI)

so that users have a single SQL interface to Informix tables and to data

that does not conform to the storage scheme of Informix Dynamic Server.

 Table 2. Client/Connectivity Manuals

Manual Subject

Client Products Installation

Guide

Installing IBM Informix Client Software Developer’s Kit (Client SDK) and

IBM Informix Connect on computers that use UNIX, Linux, and

Windows.

Embedded SQLJ User’s

Guide

Using IBM Informix Embedded SQLJ to embed SQL statements in Java

programs.

Introduction xxi

Table 2. Client/Connectivity Manuals (continued)

Manual Subject

ESQL/C Programmer’s

Manual

The IBM Informix implementation of embedded SQL for C.

GLS User’s Guide The Global Language Support (GLS) feature, which allows IBM Informix

APIs and database servers to handle different languages, cultural

conventions, and code sets.

JDBC Driver Programmer’s

Guide

Installing and using Informix JDBC Driver to connect to an Informix

database from within a Java application or applet.

.NET Provider Reference

Guide

Using Informix .NET Provider to enable .NET client applications to

access and manipulate data in Informix databases.

ODBC Driver Programmer’s

Manual

Using the Informix ODBC Driver API to access an Informix database and

interact with the Informix database server.

OLE DB Provider

Programmer’s Guide

Installing and configuring Informix OLE DB Provider to enable client

applications, such as ActiveX Data Object (ADO) applications and Web

pages, to access data on an Informix server.

Object Interface for C++

Programmer’s Guide

The architecture of the C++ object interface and a complete class

reference.

 Table 3. DataBlade Developer’s Kit Manuals

Manual Subject

DataBlade Developer’s Kit

User’s Guide

Developing and packaging DataBlade modules using BladeSmith and

BladePack.

DataBlade Module

Development Overview

Basic orientation for developing DataBlade modules. Includes an example

illustrating the development of a DataBlade module.

DataBlade Module

Installation and Registration

Guide

Installing DataBlade modules and using BladeManager to manage

DataBlade modules in Informix databases.

Compliance with Industry Standards

The American National Standards Institute (ANSI) and the International

Organization of Standardization (ISO) have jointly established a set of

industry standards for the Structured Query Language (SQL). IBM Informix

SQL-based products are fully compliant with SQL-92 Entry Level (published

as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition, many

features of IBM Informix database servers comply with the SQL-92

Intermediate and Full Level and X/Open SQL Common Applications

Environment (CAE) standards.

xxii IBM Informix R-Tree Index User’s Guide

IBM Welcomes Your Comments

We want to know about any corrections or clarifications that you would find

useful in our manuals, which will help us improve future versions. Include

the following information:

v The name and version of the manual that you are using

v Section and page number

v Your suggestions about the manual

Send your comments to us at the following email address:

docinf@us.ibm.com

This email address is reserved for reporting errors and omissions in our

documentation. For immediate help with a technical problem, contact IBM

Technical Support.

We appreciate your suggestions.

Introduction xxiii

mailto:docinf@us.ibm.com

xxiv IBM Informix R-Tree Index User’s Guide

Chapter 1. R-Tree Secondary Access Method Concepts

About Access Methods . 1-2

The R-Tree Secondary Access Method . 1-3

R-Tree Index Structure . 1-4

Bounding Boxes . 1-4

Bounding-Box-Only R-Tree Indexes . 1-6

Hierarchical Index Structure . 1-7

Searching with an R-Tree Index . 1-8

Nearest-Neighbor Searching . 1-9

Inserting into an R-Tree Index . 1-9

R-Link Trees and Concurrency . 1-11

About Operator Classes . 1-12

R-Tree Functionality That IBM Provides . 1-13

IBM Informix Dynamic Server . 1-14

R-Tree Secondary Access Method DataBlade Module 1-14

Contents of the DataBlade Module . 1-15

DataBlade Module Registration . 1-15

IBM Informix DataBlade Modules That Use the R-Tree Access Method 1-16

In This Chapter

This chapter provides a detailed discussion of the R-tree secondary access

method and an in-depth discussion about how R-tree indexes work. It

includes the following topics:

v About Access Methods

v The R-Tree Secondary Access Method

v About Operator Classes

v R-Tree Functionality That IBM Provides

v IBM Informix DataBlade Modules That Use the R-Tree Access Method

DataBlade module developers can use the DataBlade Developer's Kit to

develop the objects that form the DataBlade module that uses the R-tree

access method. The DataBlade Developer's Kit automatically generates most of

the SQL commands and some of the C code needed to create the objects. For

purposes of clarity, however, this guide gives examples of the SQL commands

and C code so that the process of creating the objects is easier to understand.

This guide uses the Shapes3 sample DataBlade module, described in

Appendix A, to illustrate how to use the R-tree access method and how to

create DataBlade modules that implement the R-tree access method.

© Copyright IBM Corp. 1996, 2004 1-1

About Access Methods

An access method is a set of database server routines that IBM Informix

Dynamic Server uses to access and manipulate a table or an index. The two

types of access methods are primary and secondary.

Dynamic Server uses a primary access method to perform standard table

operations, such as inserting, deleting, updating, and retrieving data.

Dynamic Server uses a secondary access method to build, use, and manipulate

an index structure. Indexes are built on one or more columns of a table to

provide a quick way to find rows in a database based on the value in the

indexed column or columns.

The routines of a secondary access method encapsulate index operations, such

as how to:

v Build an index

v Scan the index

v Insert new information into an index as new data is inserted into the

indexed table

v Update an index as the indexed table is updated

v Delete data from an index as data is deleted from the indexed table

These routines are collectively called purpose functions.

Secondary access methods are used in combination with operator classes that

describe when an access method can be used in a query and how to perform

the index operations, such as scanning and updating. Operator classes are a

way of specifying the routines that play particular roles in access-method

operations. Operator classes are described in more detail in the section “About

Operator Classes” on page 1-12.

Dynamic Server provides two secondary access methods:

v B-tree, which stands for balanced tree. B-tree is the default secondary access

method for ordered data values.

v R-tree, which stands for range tree. R-tree is an access method for

multidimensional (spatial) and interval data.

The B-tree access method is described in your IBM Informix: Administrator's

Guide.

Tip: Indexes that are created and manipulated by a particular secondary

access method are referred to by the name of the access method. For

example, the R-tree secondary access method is used to create and

manipulate R-tree indexes.

1-2 IBM Informix R-Tree Index User’s Guide

The R-Tree Secondary Access Method

R-tree is a type of secondary access method that is specifically designed to

index table columns that contain the following types of data:

v Multidimensional data, such as:

– Spatial data in two or three dimensions

An extra dimension that represents time could also be included.

– Combinations of numerical values treated as multidimensional values,

such as a configuration for a house that includes the number of stories,

the number of bedrooms, the number of baths, the age of the house, and

the square feet of floor space

v Range values, as opposed to single point values, such as the time of a

television program (9:00 P.M. to 9:30 P.M.) or the north-south extent of a

county on a map

Important: You can build R-tree indexes only on a single column of a table or

on the result of a single function (functional R-tree indexes); you

cannot build a single R-tree index on multiple columns.

To index multiple attributes, incorporate them into a single data

type. For more information on how to create a new data type,

refer to “Designing a User-Defined Data Type” on page 3-4.

The R-tree access method is implemented internally using the Virtual-Index

Interface, a mechanism provided with Dynamic Server so you can create new

secondary access methods.

The purpose of a spatial index, such as R-tree, is to produce, during query

processing, a candidate result set that is much smaller than the original set

being searched (the table), as opposed to immediately finding the correct

result set. The candidate result set that is found by traversing the R-tree index

often contains false hits as well as true hits because the index uses enclosing

boxes instead of the true shapes of the data objects. The false hits are

eliminated by applying a more expensive, exact test to the small candidate set.

An R-tree index is inexact, but it is conservative. This means that a search that

uses the R-tree index often retrieves too much information, but never too

little. The final result of a search that uses the R-tree index is the same as a

search that does not use the index or a search that uses an exact test on every

object in the table.

Another way to look at an R-tree index is that it eliminates large amounts of

data that could not possibly qualify in a search, without actually examining

the data itself. It does this by eliminating data that falls outside boxes that

enclose the area of interest.

Chapter 1. R-Tree Secondary Access Method Concepts 1-3

R-tree indexes are dynamic. This means that an R-tree index maintains itself

during updates, inserts, and deletes of the indexed table. In addition, you do

not need to know anything about the amount of data or the range of values in

the column to be indexed before you create an R-tree index.

R-Tree Index Structure

The hierarchical structure of an R-tree index is similar to that of a B-tree

index, although the data stored in the index is quite different.

Bounding Boxes

The R-tree access method organizes data in a tree-shaped structure called an

R-tree index. The index uses a bounding box, which is a rectilinear shape that

completely contains the bounded object or objects. Bounding boxes can

enclose data objects or other bounding boxes.

Bounding boxes are usually stored as a set of coordinates of equal dimension

as the bounded object. While it is useful for performance reasons to choose

the bounding box that is as small as possible, the R-tree access method does

not require it. The minimum bounding box is often, however, the most

efficient one. For example, the minimum bounding box for a two-dimensional

circle is a square whose side is equal to the diameter of the circle. The

minimum bounding box for a three-dimensional sphere is a cube whose edge

is equal to the diameter of the sphere.

Tip: A dimension of a bounding box can be time or some other nonspatial

quantity.

The lower part of Figure 1-1 shows a set of bounding boxes that enclose data

objects and other bounding boxes. In the diagram, the data objects are shaded.

Important: Data objects are only shown for bounding boxes R8, R9, and R10.

The other bounding boxes at the leaf level (R11 through R19) also

contain data items, but they are omitted from the figure to

simplify the graphic.

1-4 IBM Informix R-Tree Index User’s Guide

As the figure shows, bounding boxes can enclose a single data object or one

or more bounding boxes. For example, bounding box R8, which is at the leaf

level of the tree, contains the data object D1. Bounding box R3, which is at the

branch level of the tree, contains the bounding boxes R8, R9, and R10.

Bounding box R1, which is at the root level, contains the bounding boxes R3,

R4, and R5.

The R-tree access method evaluates the index entries (data objects and

bounding boxes) as opaque objects (strings of bytes). The R-tree access

method uses the support and strategy functions to interpret these objects.

Figure 1-1. R-Tree Index Structure

Chapter 1. R-Tree Secondary Access Method Concepts 1-5

Bounding-Box-Only R-Tree Indexes

For R-tree indexes created with Version 9.21 or later of the database server, if

the datablade module you are working with is appropriately set up, default

R-tree indexes no longer store a copy of the data object in leaf pages. Instead,

the leaf pages store bounding box representations of the data object. This type

of R-tree index is called a bounding-box-only R-tree index.

Important: The Informix Geodetic and Spatial DataBlade modules support

bounding-box-only R-tree indexes. To set up your own DataBlade

module to support these indexes, you must implement the

RtreeInfo function with the operation strat_func_substitutions .

You might also need to redesign your strategy functions that

occupy slots 5 and up, if you want them to behave differently at

non-leaf pages. This is because you cannot distinguish between

leaf and non-leaf items in a bounding-box-only index. For more

information, see “The RtreeInfo Function” on page 3-17.

Important: Only R-tree indexes created using Version 9.21 or later of the

database server can be bounding-box-only R-tree indexes. R-tree

indexes created in Version 9.20 and earlier versions of the

database server continue to store copies of data objects in leaf

pages.

The advantages of bounding-box-only R-tree indexes are the following:

v The R-tree index is significantly smaller, saving both disk space and the

time to build and maintain the index.

v Bottom-up build performance is improved, because memory and temporary

dbspace usage are reduced.

v The log space needed to update the index is reduced.

You might want to override this behavior if your table contains other large

columns in addition to the column being indexed with the R-tree index. For

more information about the BOUNDING_BOX_INDEX index parameter, see

“R-Tree Index Parameters” on page 2-4.

Functional R-tree indexes are not bounding-box-only indexes; they store the

data objects themselves in leaf pages.

R-tree indexes built in Version 9.20 of the database server continue to work

correctly in Version 9.21. If, however, you build a new bounding-box-only

R-tree index in Version 9.21 of the database server, this index will not work

correctly if you revert to Version 9.20 of the database server.

1-6 IBM Informix R-Tree Index User’s Guide

Hierarchical Index Structure

An R-tree index is arranged as a hierarchy of pages. The topmost level of the

hierarchy is the root page. Intermediate levels, when needed, are branch pages.

Each branch page contains entries that refer to a subset of pages, or a subtree,

in the next level of the index. The bottom level of the index contains a set of

leaf pages. Each leaf page contains a list of index entries that refer back to rows

in the indexed table. Each index entry also includes a copy of the

bounding-box of the indexed key from the table, or data object. The pages of

an R-tree index do not usually contain the maximum possible number of

index entries.

An R-tree index is height-balanced, which means that all paths down the tree,

from the root page to any leaf page, traverse the same number of levels. This

also means that all leaf nodes are at the same level.

Each page in an R-tree index structure is a physical disk page. The R-tree

index is designed to minimize the number of pages that need to be fetched

from disk during the execution of a query, since disk I/O is often the most

costly part.

The upper section of Figure 1-1 shows how the data objects and the bounding

boxes (described in “Bounding Boxes” on page 1-4) stored in an R-tree index

structure are related. The root page contains entries for bounding boxes R1

and R2. Together, these two bounding boxes enclose all the objects in the

index.

Tip: Use the rtreeRootBB() function to return coordinates of the bounding

box that enclose all objects in an R-tree index. For detailed instructions

on how to use this function, refer to Chapter 4, “Managing Databases

That Use the R-Tree Secondary Access Method,” on page 4-1.

The bounding boxes of an index page can overlap. However, a data object

appears only once in the index even if it falls inside more than one bounding

box at the branch levels. For example, data object D2 appears only once in the

index that Figure 1-1 on page 1-5 shows, even though it falls inside bounding

boxes R9, R3, R4, and R1.

The reason data objects appear only once in an R-tree index is to keep the

index small. If each object had to be replicated in several index pages, the size

of the R-tree index would be larger than it needs to be.

An index entry in a leaf page consists of:

v A copy of the key, or data object, from the table

v A pointer back to the row in the indexed table (also known as a row ID)

Chapter 1. R-Tree Secondary Access Method Concepts 1-7

The size of an index entry in a leaf page is the size of the data object plus 20

bytes.

An index entry in a root or branch page consists of:

v A bounding box that contains all the objects in its child pages

v A page number that points to a lower-level (branch or leaf) page in the

index

The size of an index entry in a root or branch page is the size of the bounding

box plus 12 bytes.

Each type of page in an R-tree index (leaf, branch, or root) also has an

overhead of 20 bytes plus the size of the overall bounding box of the page.

The number of levels needed to support an R-tree index depends on the

number of index entries each index page can hold. The number of entries per

index page depends, in turn, on the size of the key value. The number of

entries per page determines the branching factor of the tree. More entries per

page, or a higher branching factor, means that fewer levels are needed for the

same number of leaf pages as well as fewer leaf pages for a given number of

base table keys. For any reasonable branching factor, almost all the space that

an R-tree index needs is used by leaf pages.

The next sections describe a search and an update of an R-tree index that

results from a search or update of the indexed table.

Searching with an R-Tree Index

The simplest kind of search that uses an R-tree access method is for objects

that overlap a search object. For example, you might want to search for all the

polygons stored in the column of a table that overlap a specified polygon. To

use the R-tree access method to improve the performance of this type of

search, you must create an R-tree index on the table column that contains the

polygons, and then you must specify a function that checks for overlap (listed

in the operator class definition as a strategy function) in the WHERE clause of

the query statement. Operator classes and strategy functions are described in

more detail in “About Operator Classes” on page 1-12.

The R-tree secondary access method uses the bounding box of the search

object to guide the search. The access method begins a search at the root of

the R-tree index structure. The access method compares the bounding box of

the search object to the bounding boxes stored in the index entries of the root

page. All subtrees whose bounding boxes overlap the search bounding box

must be searched, because they might contain qualifying data. Any number of

subtrees might need to be searched. The access method then recursively

applies the same process to each qualifying subtree. Subtrees whose bounding

boxes do not overlap are skipped; this is where the R-tree access method

1-8 IBM Informix R-Tree Index User’s Guide

saves search time and work. The access method uses the appropriate strategy

function to test for overlap of bounding box entries in branch index pages.

When the search encounters a leaf page, it applies the appropriate strategy

function to each key on the leaf page. The strategy function tests for bounding

box overlap between the search object’s bounding box and the key’s bounding

box. If this test passes, the strategy function then applies an exact overlap test

between the actual search object and the actual key. Keys that qualify

according to the strategy function satisfy the query restriction being tested

because of this final exact test and result in the set of rows that are returned

from the original query.

Nearest-Neighbor Searching

The R-tree access method provides support for nearest-neighbor searches, that

is, querying for objects in a spatial database that are closest to a specified

object or location. Traditionally, without nearest-neighbor support, these kinds

of searches are awkward to perform and involve several iterative stages.

To perform nearest-neighbor searches, the DataBlade module you are using

must be set up for it. For example, the IBM Informix Geodetic DataBlade

module and the IBM Informix Spatial DataBlade module both provide

nearest-neighbor search support.

“Performing Nearest-Neighbor Searches” on page 2-14 explains how to

perform nearest-neighbor searches using a DataBlade module that provides

this feature.

“Setting Up Nearest-Neighbor Searching” on page 3-41 explains how to add

nearest-neighbor support to a DataBlade module.

In this release, nearest-neighbor search is not supported with fragmented

indexes.

Inserting into an R-Tree Index

When data is inserted into an R-tree indexed table column, the R-tree index

must also be updated with the new information. Insertion into an R-tree index

is similar to insertion into a B-tree index in that new index records are added

to the leaves, nodes that overflow are split, and splits propagate up the tree.

First, the R-tree secondary access method calculates a bounding box for the

new data object. The access method then searches for a leaf page whose

existing entries form the tightest group with the new data object. The access

method searches down the tree from the root page, looking for data objects

whose bounding box best fits the new data object. Then it descends into that

subtree, repeating the selection process at each internal page until it reaches a

leaf page.

Chapter 1. R-Tree Secondary Access Method Concepts 1-9

As the R-tree access method searches down the tree, it looks for bounding

boxes that will be enlarged the least to accommodate the new data object. The

access method might also use internal criteria other than the bounding box

being enlarged by the smallest amount when it chooses the best leaf page.

Once the access method finds the best leaf page, and there is space on the

corresponding disk page, the access method adds a new index entry that

consists of a copy of the new data object. The bounding boxes of the parent

index pages all the way up to the root page might also need to be enlarged.

If no space is left on the leaf page for the new data object, the leaf page is

split into two pages. This means that a new page is allocated and the contents

of the old page, plus the new data object, are divided between the old and the

new pages. If the parent page is full, it might also need to split, and so on up

to the root page. If the root page splits, the tree becomes one level deeper.

When an index page splits, the index entries in the original page must be

divided between the two new pages. The division is done in a way that

makes it as unlikely as possible that both new pages will need to be examined

on subsequent searches. Because the decision to visit a page is based on

whether the bounding box of the search object overlaps the bounding boxes of

the index entries, the total area of the two new bounding boxes should be as

small as possible. Figure 1-2 illustrates this point by comparing efficient and

inefficient ways to divide five items into two groups.

Figure 1-3 compares a page split in which the resulting pages overlap each

other with a split where the resulting pages do not overlap each other. The

split with overlapping pages is more efficient because the total area of the

Inefficient split Efficient split

Figure 1-2. Simple Page-Splitting Example

1-10 IBM Informix R-Tree Index User’s Guide

bounding boxes of the two overlapping pages is smaller than that of the

nonoverlapping pages.

The preceding example shows that avoiding overlap is not necessarily the

best, and definitely not the only, criterion for dividing index entries between

the two resulting pages of a page split.

The R-tree index is initially created by starting with an empty root page and

inserting index entries one by one.

R-Link Trees and Concurrency

The basic R-tree index structure described in the previous sections works well

in a single-user environment but might run into problems if multiple users

search and update the index concurrently. R-tree indexes require a particular

type of locking during page splits to preserve the integrity of the index

structure and ensure correct results from queries. For example, while a page is

being split, it is necessary to hold locks on all pages up to and including the

root page. This locking behavior is problematic in a concurrent environment.

To solve this problem, Informix uses a modified structure called an R-link tree

instead of the basic R-tree.

R-link trees are similar to the R-tree structure described in the preceding

sections, with the following two key differences:

v All the pages at the same level in the index structure contain a pointer to

their right sibling (except for the rightmost page, which has a null pointer).

This creates a single list of right-pointing links that includes every page in a

particular level.

When a page splits and a new page is created, the new page is inserted into

the list of right-pointing links directly to the right of the old page.

Inefficient split Efficient split

Figure 1-3. Complex Page-Splitting Example

Chapter 1. R-Tree Secondary Access Method Concepts 1-11

This sibling relationship between pages has no semantic or spatial meaning

and is not used in a search of the index. It is only used to keep the index

structure consistent and to maintain the correct functioning of the index

while it allows concurrent access and updates.

v Each page in the index is assigned a sequence number that is unique within

the tree. Each index entry in a root or branch page includes the expected

sequence number of its child page, in addition to the information listed in

“Hierarchical Index Structure” on page 1-7.

When a page splits, the new right sibling page is assigned the old page’s

sequence number, and the old page receives a new sequence number.

The R-link structure allows the R-tree access method to perform index

operations without holding locks on pages that might be needed again later.

The combination of right-pointing links and sequence numbers lets the R-tree

access method detect page splits made by other users and correctly find all

the needed pages.

About Operator Classes

Although an R-tree index might exist on a table column, it might not always

be possible for the query optimizer to use it when you execute a query, even

if the WHERE clause of the query specifies the indexed column.

For example, a query might search for polygons whose area is greater than a

specified number. An R-tree index will not likely be of use in this type of

query because the access method uses the bounding box of the polygons, and

not the area, to create the index. However, a query that searches for polygons

that overlap a specified polygon will likely use the R-tree index.

An operator class helps the query optimizer determine whether a secondary

access method can be used in a query. It also defines how to access and

modify the index if it is used in a query. An operator class specifies a group of

functions that work with a new data type and an access method. It links each

function to the role it will play in the access method operations.

An operator class defines a way to organize the functions that are

implemented in a DataBlade module and defines how to make them known

to the query optimizer and the access method. It identifies the functions that

fill particular roles that fall into the following two categories:

v Strategy functions

Strategy functions include all the functions whose evaluation can be

assisted by an R-tree index. If a strategy function is specified in the WHERE

clause of a query, the R-tree index can be used to evaluate the query.

1-12 IBM Informix R-Tree Index User’s Guide

Strategy functions are used both directly by end users in the WHERE clause

of SQL queries and internally by the R-tree access method to search the

index.

An example of a strategy function is the Overlap function, which

determines whether two bounding boxes have any points in common.

v Support functions

The access method uses the support functions of a secondary access method

to build, update, and maintain the index. These functions are not called

directly by end users.

An example of a support function is the Size function, which calculates the

size of a bounding box.

The R-tree access method, similar to all secondary access methods, has specific

operator class requirements for the type and number of strategy and support

functions that must be defined. By creating a new operator class, DataBlade

developers attach names of actual functions to the placeholders for required

functions in the operator class structure, which completes the information the

database server needs.

A secondary access method usually has a default operator class associated

with it. The default operator class for the R-tree access method is called

rtree_ops.

The rtree_ops operator class is generally only used for generic R-tree access

method testing and as an example of how to create a new operator class for

use with the R-tree access method. It is almost never used directly to create an

R-tree index. The rtree_ops operator class has a fixed set of four strategy

functions, and it cannot be extended. For this reason, and others described in

Chapter 3, “Developing DataBlade Modules That Use the R-Tree Secondary

Access Method,” on page 3-1, DataBlade developers should always create a

new operator class to use the R-tree access method to index the new data

types or to extend the types of queries that use the access method.

Chapter 3 describes in detail how to create an operator class and how to set

up the necessary strategy and support functions.

R-Tree Functionality That IBM Provides

R-tree access method functionality is provided in the following products:

v IBM Informix Dynamic Server

v R-Tree Secondary Access Method DataBlade Module

The following sections describe the parts of the R-tree functionality that each

product provides.

Chapter 1. R-Tree Secondary Access Method Concepts 1-13

IBM Informix Dynamic Server

IBM Informix Dynamic Server includes the definition of the R-tree access

method and the definition of its default operator class, rtree_ops. However,

the support and strategy functions that perform the indexing work are not

included; they must be implemented outside the database server, usually as

part of a DataBlade module. The rtree_ops operator class is intended to be

used for generic R-tree testing. While you can reuse it, it is recommended that

you create a new operator class for each new data type that is to be indexed

with an R-tree index.

Newly created Informix databases include only standard data types, such as

INTEGER, DATETIME, and VARCHAR. Columns of these data types cannot

be indexed with R-tree indexes. Therefore, to create and use an R-tree index,

you must add the following objects to your database:

v One or more user-defined data types that can be indexed with an R-tree

index

v A new operator class for the R-tree access method so that you can create

R-tree indexes on the user-defined data type

v The strategy and support functions required by the operator class

You must supply the function code in the form of a shared-object library.

To add new data types to an Informix database, you register a DataBlade

module that includes the definition of the data types. The DataBlade module

might also include a new operator class so you can index the user-defined

data type with an R-tree index. For a list of IBM Informix DataBlade modules

that include new data types, support and strategy functions, and operator

classes, refer to “IBM Informix DataBlade Modules That Use the R-Tree Access

Method” on page 1-16.

If you are developing a new DataBlade module, read Chapter 3, “Developing

DataBlade Modules That Use the R-Tree Secondary Access Method,” on page

3-1. It describes in detail how to create the required strategy and support

functions in order to create a new operator class. The chapter also describes

the issues you should be aware of when you design the user-defined data

type that will be indexed with the R-tree index.

R-Tree Secondary Access Method DataBlade Module

The IBM Informix R-Tree Secondary Access Method DataBlade module is

automatically installed at the time you install Dynamic Server.

UNIX Only

On UNIX, the IBM Informix R-Tree Secondary Access Method DataBlade

module is installed in the directory $INFORMIXDIR/extend/ifxrltree. version,

where version refers to the latest version number of the DataBlade module

1-14 IBM Informix R-Tree Index User’s Guide

installed on your computer.

End of UNIX Only

Windows Only

On Windows, the IBM Informix R-Tree Secondary Access Method DataBlade

module is installed in the directory

%INFORMIXDIR%\extend\ifxrltree. version, where version refers to the latest

version number of the DataBlade module installed on your computer.

End of Windows Only

Contents of the DataBlade Module

The IBM Informix R-Tree Secondary Access Method DataBlade module

consists of:

v A list of error messages that the R-tree access method uses

v A BladeSmith interface object ifxrltree1 that the DataBlade modules that

depend on the IBM Informix R-Tree Secondary Access Method DataBlade

module use

For more information on how to use this interface object, refer to Chapter 3,

“Developing DataBlade Modules That Use the R-Tree Secondary Access

Method,” on page 3-1.

As the preceding section describes, the R-tree access method itself is built into

Dynamic Server. The error messages that the access method uses, however, are

only available if the IBM Informix R-Tree Secondary Access Method

DataBlade module is registered in a database.

The R-tree error messages contained in this DataBlade module have error

codes of the form RTRnn, where:

v RTR is the three-character prefix for all IBM Informix R-Tree Secondary

Access Method DataBlade module error codes.

v nn are two characters (0 to 9 or A to Z) that uniquely identify each error

code.

DataBlade Module Registration

You must register the IBM Informix R-Tree Secondary Access Method

DataBlade module in each database in which you plan to use it. To register

DataBlade modules, use BladeManager.

This registration normally occurs when you register a dependent DataBlade

module, that is, one that can only be registered if the IBM Informix R-Tree

Secondary Access Method DataBlade module has been previously registered.

The dependent DataBlade module first signals to BladeManager that it

Chapter 1. R-Tree Secondary Access Method Concepts 1-15

depends on the IBM Informix R-Tree Secondary Access Method DataBlade

module. BladeManager then registers the IBM Informix R-Tree Secondary

Access Method DataBlade module before it registers the dependent DataBlade

module.

The dependent DataBlade module usually contains the definition of the

user-defined data type the R-tree access method can index.

For more information about BladeManager, refer to the IBM Informix:

DataBlade Module Installation and Registration Guide.

IBM Informix DataBlade Modules That Use the R-Tree Access Method

The following IBM Informix DataBlade modules use the R-tree access method:

v IBM Informix Geodetic DataBlade module

This DataBlade module is designed to manage spatio-temporal data with

global content, such as metadata associated with satellite images.

The DataBlade module creates a variety of data types, such as GeoPoint

and GeoObject, as well as a variety of functions that operate on the data

types, such as Intersects and Outside . It also provides an operator class,
called GeoObject_ops, so you can create R-tree indexes on columns of data

type GeoObject, and the Nearest function to allow you to perform

nearest-neighbor searches.

v IBM Informix Spatial DataBlade module

This DataBlade module also manages spatio-temporal data. It treats the

earth as a flat map and uses planimetric (flat-plane) geometry. The Spatial

DataBlade module is best used for regional data sets and applications.

The DataBlade module creates a variety of data types, such as

ST_LineString and ST_Polygon, as well as a variety of functions that

operate on the data types, such as ST_Distance and ST_Overlaps. It also

provides an operator class, called ST_Geometry_Ops, so you can create

R-tree indexes on columns of spatial data types, and the SE_Nearest and

SE_NearestBBox functions to allow you to perform nearest-neighbor

searches.

v IBM Informix Video Foundation DataBlade module

This DataBlade module is designed to store, manage, and manipulate video

data and its metadata.

The DataBlade module creates a variety of data types, such as MedChunk,

as well as a variety of functions that operate on the data types, such as

Within and Overlap . It also provides an operator class, called

MedChunk_ops , so you can create R-tree indexes on columns of type

MedChunk.

1-16 IBM Informix R-Tree Index User’s Guide

Appendix A describes the Shapes3 sample DataBlade module that defines four

spatial data types and an operator class to allow you to create an R-tree index

on columns of these data types. The sample module is not an IBM Informix

product, but is provided as an example of creating an operator class.

Chapter 1. R-Tree Secondary Access Method Concepts 1-17

1-18 IBM Informix R-Tree Index User’s Guide

Chapter 2. Using the R-Tree Secondary Access Method

Before You Begin . 2-1

Creating R-Tree Indexes . 2-2

Syntax . 2-3

R-Tree Index Parameters . 2-4

Bottom-Up Building of R-Tree Indexes . 2-7

Using the NO_SORT Index Parameter . 2-8

R-Tree Index Options . 2-9

Using the FRAGMENT Clause . 2-9

Using the IN Clause . 2-9

Examples of Creating R-Tree Indexes . 2-9

When Does the Query Optimizer Use an R-Tree Index? 2-11

Complex Qualifications . 2-13

R-Tree Indexes and Null Values . 2-13

How an R-Tree Index Internally Handles Null Values 2-13

How Strategy Functions Handle Null Values 2-13

Performing Nearest-Neighbor Searches . 2-14

Limitations . 2-15

Example . 2-15

Database Isolation Levels and R-Tree Indexes 2-16

Functional R-Tree Indexes . 2-16

In This Chapter

This chapter describes how to use the R-tree access method. It is written for

application developers and schema designers who use R-tree indexes to index

existing tables or design schemas that contain tables indexed by R-tree

indexes. The chapter includes the following topics:

v Before You Begin

v Creating R-Tree Indexes

v When Does the Query Optimizer Use an R-Tree Index?

v R-Tree Indexes and Null Values

v Performing Nearest-Neighbor Searches

v Database Isolation Levels and R-Tree Indexes

v Functional R-Tree Indexes

Before You Begin

You can create an R-tree index on a table after you complete the following

tasks:

© Copyright IBM Corp. 1996, 2004 2-1

1. Install a DataBlade module on your database server that includes the

following objects:

v A user-defined data type that can be indexed with an R-tree index

v An operator class that specifies the functions to be used with the R-tree

index

v The support and strategy functions required by the operator class

Examples of DataBlade modules that use the R-tree access method are the

IBM Informix Geodetic DataBlade module and the IBM Informix Video

Foundation DataBlade module.

For more information on these modules, refer to “IBM Informix DataBlade

Modules That Use the R-Tree Access Method” on page 1-16.

2. Create a database.

3. Register the IBM Informix R-Tree Secondary Access Method DataBlade

module into your database using BladeManager.

If the DataBlade module described in step 1 defines a dependency on the

IBM Informix R-Tree Secondary Access Method DataBlade module, you

can skip this step, because BladeManager automatically prompts you to

register the IBM Informix R-Tree Secondary Access Method DataBlade

module when you register the DataBlade module described in step 1.

For more information on the IBM Informix R-Tree Secondary Access

Method DataBlade module, refer to “R-Tree Secondary Access Method

DataBlade Module” on page 1-14.

4. Register the DataBlade module described in step 1 into your database

using BladeManager.

5. Create a table that contains one or more columns of the user-defined data

type that can be indexed with the R-tree access method.

For information on how to install and register DataBlade modules, refer to the

IBM Informix: DataBlade Module Installation and Registration Guide and to the

release notes of your DataBlade module.

Important: The examples of this chapter use objects defined in the sample

Shapes3 DataBlade module that Appendix A describes. These

objects include the data type MyShape and the operator class

MyShape_ops. Columns of data type MyShape can store points,

boxes, and circles.

Creating R-Tree Indexes

To use the R-tree secondary access method, you must first create an R-tree

index on a column whose data type can be indexed by the R-tree access

method.

2-2 IBM Informix R-Tree Index User’s Guide

Important: R-tree indexes must be created in dbspaces with the default page

size.

You can create an R-tree index either before or after you insert data into the

table. However, if you are loading large amounts of data into the table, you

should create the R-tree index after you load the data. When you create an

R-tree index on a loaded table, the generation of log records is suppressed, so

you do not run out of log space. If, however, you create the index first and

then load large amounts of data in a single transaction, you might run out of

log space, which causes the transaction to abort.

In addition, if you use the bottom-up build method, described later in this

chapter, to create the R-tree index after you have loaded the data, the size of

the index is typically about two-thirds the size of the index built with a

slower method. The R-tree access method uses bottom-up building when

creating an R-tree index only when data currently exists in the table.

Syntax

The basic syntax for creating an R-tree index is:

CREATE INDEX index_name

ON table_name (column_name op_class)

USING RTREE (parameters)

index_options ;

The parameters and index_options arguments are optional.

Important: The ONLINE keyword of the CREATE INDEX and DROP INDEX

statements is not supported for R-Tree indexes.

The arguments are described in the following table.

 Arguments Purpose Restrictions

index_name The name you want to give

your index

The name must be unique in the database.

table_name The name of the table that

contains the column you want

to index

The table must already exist.

column_name The name of the column you

want to index For example,

you can create an R-tree index

on columns of data type

MyShape, defined in the

sample DataBlade module.

You can create an R-tree index on a single column

only; you cannot create a single R-tree index on

multiple columns. The data type of this column

must support R-tree indexes. For more information

on the data types that support R-tree indexes, check

the DataBlade module user’s guide.

Chapter 2. Using the R-Tree Secondary Access Method 2-3

Arguments Purpose Restrictions

op_class The name of the operator class

For example, to index columns

of data type MyShape, defined

in the sample DataBlade

module, you must specify the

MyShape_ops operator class.

If you have registered in your database a DataBlade

module that supplies its own operator class, you

must specify it when you create an R-tree index.

If you do not specify an operator class, or if you

specify the default rtree_ops operator class without

knowingly setting up your data type and functions

to use it, the R-tree index might appear to work

correctly but will function unpredictably. Check the

DataBlade module user’s guide for more

information on which operator class you must

specify when you create an R-tree index.

You must run the UPDATE STATISTICS statement

after you create the index or the query optimizer

might not choose to use the index at appropriate

times.

parameters The parameters that specify

how an R-tree index is built

These parameters only affect

the building of the index, not

the subsequent use of the

index.

You can specify the following index parameters:

BOTTOM_UP_BUILD, BOUNDING_BOX_INDEX,

NO_SORT, SORT_MEMORY, FILLFACTOR. For

detailed information about each index parameter

and when you should use it, refer to “R-Tree Index

Parameters” on page 2-4.

index_options The fragmentation and storage

options of the index, described

in detail in the section “R-Tree

Index Options” on page 2-9

The options available for R-tree indexes are

FRAGMENT BY and IN. The options CLUSTER,

UNIQUE, DISTINCT, ASC, DESC, and

FILLFACTOR are not supported.

For more information on the CREATE INDEX statement, refer to the

IBM Informix: Guide to SQL Syntax.

R-Tree Index Parameters

You use index parameters to specify how the R-tree access method builds an

R-tree index on a table column. The index parameters only affect the creation

of the index; they do not affect subsequent use of the index.

Each index parameter is set to a value in single quotes. For example, if you

want to specify a fill factor of 80, you specify the index parameter as

FILLFACTOR=•80•. For detailed examples of using index parameters, refer to

“Examples of Creating R-Tree Indexes” on page 2-9.

The following table describes each R-tree index parameter in detail.

2-4 IBM Informix R-Tree Index User’s Guide

Index Parameter Description Default Value

BOTTOM_UP_BUILD Specifies whether to use bottom-up building

when creating an R-tree index By default, the

R-tree secondary access method builds an

R-tree index by using an algorithm that bulk

loads data very quickly into the index. This is

also called bottom-up building. To use

bottom-up building, you must create a

temporary dbspace. You can set this index

parameter to NO (do not use bottom-up

building to build the R-tree index) or YES. For

detailed information on bottom-up building of

R-tree indexes, refer to “Bottom-Up Building of

R-Tree Indexes” on page 2-7.

Yes

SORT_MEMORY Specifies the amount of shared memory in

kilobytes (per index fragment) that the R-tree

secondary access method uses for sorting when

it creates an R-tree index with the bottom-up

building method. This index parameter only

applies if BOTTOM_UP_BUILD is also

specified. Increase the value of

SORT_MEMORY to speed up the R-tree index

creation. The minimum value you can set this

index parameter to is 8. The maximum value is

determined by the amount of shared memory

available on your computer.You can also

specify the shared memory the R-tree access

method uses for sorting by setting the

ONCONFIG parameters DS_TOTAL_MEMORY

and DS_MAX_QUERIES, as described in the

Default Value column.

The value of the

ONCONFIG parameter

DS_TOTAL_MEMORY

divided by the value of the

ONCONFIG parameter

DS_MAX_QUERIES If the

two ONCONFIG

parameters are not

specified in the

ONCONFIG file, then the

default values of the two

ONCONFIG parameters are

used. The default value for

DS_TOTAL_MEMORY is

256 KB and the default

value for

DS_MAX_QUERIES is 2.

Chapter 2. Using the R-Tree Secondary Access Method 2-5

Index Parameter Description Default Value

FILLFACTOR Specifies what percentage of an index page

should be filled with entries as the R-tree

access method creates the R-tree index The

unfilled part of an index page is then available

for future growth of the index. This index

parameter only applies if

BOTTOM_UP_BUILD is also specified. If you

specify a low value, the index will be larger,

but there will be more space on each index

page to accommodate future entries in the

index. Although it is not necessary to leave

space for future entries, if the pages are too

full, the first few new entries will cause many

page splits and thus slow performance. If you

specify a high value, the R-tree index will be

smaller, but new additions to the index might

cause more page splits. This index parameter is

similar to that for B-tree indexes. You can set

this index parameter to an integer between 1

and 100.

100

This means that all index

pages will be completely

filled.

NO_SORT Speeds up the creation of R-tree indexes on

already-sorted tables

The NO_SORT index parameter is only valid

with R-tree indexes that support bottom-up

build. The DataBlade module you are using

must provide a function that returns a numeric

spatial key given an object of the data type

that is being indexed. The procedure shown

in“Using the NO_SORT Index Parameter” on

page 2-8 explains how to first sort a table and

then create an R-tree index using the

NO_SORT index parameter.

NO

2-6 IBM Informix R-Tree Index User’s Guide

Index Parameter Description Default Value

BOUNDING_BOX_

INDEX

When set to NO, creates an R-tree index that

stores copies of the data objects themselves in

the leaf pages (instead of just their bounding

boxes) During an R-tree index scan, if the

index is a bounding-box-only index (the

default), the table is accessed for the final exact

geometry check. For this reason, many more

additional page reads might occur during a

scan if the row size of the table is large due to

large columns. In this case, to improve

performance, you might want to create your

R-tree index so that copies of the data objects

are stored in the leaf pages. Specify

BOUNDING_BOX_INDEX=’NO’ in the

CREATE INDEX statement, as the following

example shows:

CREATE INDEX circle_tab_index5

ON circle_tab (circles MyShape_ops)

USING RTREE

(BOUNDING_BOX_INDEX=•NO•);

YES

Bottom-Up Building of R-Tree Indexes

When you create an R-tree index, by default, the access method builds the

index using a fast bulk-loading algorithm, called bottom-up building. You can

set BOTTOM_UP_BUILD=’NO’ to not use bottom-up building to build the

R-tree index.

The algorithm assumes that the four bulk-loading support functions (SFCbits,

ObjectLength , SFCvalue, and SetUnion) exist and are defined by the

operator class specified in the CREATE INDEX statement. The section Support

Functions in “Creating a New Operator Class” on page 3-10 explains what

these functions do, if they are supplied by the DataBlade module you are

using. For example, the SFCvalue function returns a spatial key, which you

can use to sort input data. If the four bulk-loading functions do not exist, the

access method builds the R-tree index using a slower algorithm.

You must also have previously created a temporary dbspace for the access

method to use bottom-up building when you create an R-tree index. If a

temporary dbspace does not exist, or it is too small, then the access method

builds the R-tree index using a slower algorithm.

Use the following expression to calculate the minimum size, in bytes, of the

temporary dbspace you need to create an R-tree index with a 4-byte spatial

key:

numrows * (24 + L)

Chapter 2. Using the R-Tree Secondary Access Method 2-7

The numrows variable is the number of rows in the table, and L is the

maximum size of the data objects being indexed.

Use the following expression to calculate the minimum size, in bytes, of the

temporary dbspace you need to create an R-tree index with an 8-byte spatial

key:

numrows * (30 + L)

The default value of the SORT_MEMORY index parameter, specified in

“R-Tree Index Parameters” on page 2-4, is too small for most R-tree indexes.

For this reason, you should specify a larger value when you create the index.

Using the NO_SORT Index Parameter

If the DataBlade module that you are using provides a function that returns a

numeric spatial key given an object of the data type that is being indexed, you

can use this function to create a statically clustered table according to a

functional B-tree index. Then, when you create an R-tree index on the

resulting clustered table, the R-tree secondary access method does not need to

sort the data as it builds an index from the bottom up, because the table is

already sorted according to the same criterion that the R-tree bottom-up build

would use.

 To first sort a table and then create an R-tree index using the NO_SORT

index parameter:

1. Check your DataBlade module documentation for a function that returns a

spatial key given an object of the data type that is being indexed.

For this procedure, assume this function is called SpatKey() .

2. Create a clustered functional B-tree index on your table using the

SpatKey() function, as in:

CREATE CLUSTER INDEX btree_func_index on

 table1 (SpatKey(column1));

btree_func_index is the name of the clustered functional B-tree index,

table1 is the name of the table, and column1 is the name of the column

that contains the spatial data.

3. Create the R-tree index on the spatial_column_name column, specifying the

NO_SORT=’YES’ index parameter:

CREATE INDEX rtree_index ON table1 (column1 my_ops)
 USING RTREE (NO_SORT = •YES•);

In the example, rtree_index is the name of the R-tree index and my_ops is

the name of the operator class associated with the data type of column

column1 .

4. Because the R-tree index does not use the clustered functional B-tree index,

you can drop the B-tree index if you want:

DROP INDEX btree_func_index;

2-8 IBM Informix R-Tree Index User’s Guide

R-Tree Index Options

This section discusses the options to the CREATE INDEX command that

R-tree indexes support.

Using the FRAGMENT Clause

R-tree indexes can be fragmented by expression. You cannot, however,

fragment R-tree indexes on the multidimensional column they index.

For example, if you create an R-tree index on a column of type MyShape, you

cannot specify this column in the fragment clause. You must fragment the

R-tree index on another column of a standard data type, such as INTEGER or

VARCHAR.

If you create an R-tree index on a fragmented table in a dbspace with the

default page size, the R-tree index is also fragmented by default. The index

fragments are automatically stored in the same dbspace as the table

fragments. You cannot create an R-tree index on a fragmented table in a

dbspace with a non-default page size.

The next section describes where you can store R-tree indexes or fragments of

R-tree indexes.

Using the IN Clause

R-tree indexes are stored in dbspaces. If you do not specify an IN clause when

you create an R-tree index, the index is stored in the same dbspace or

dbspaces as the table on which it is built and inherits the distribution scheme

of the table.

You cannot store R-tree indexes in sbspaces. If you specify an sbspace in the

IN clause of the CREATE INDEX statement, the index is actually stored in the

same dbspace or dbspaces as the table.

Examples of Creating R-Tree Indexes

The following example shows how to create a table called circle_tab that

contains a column of data type MyCircle and an R-tree index called

circle_tab_index on the circles column:

CREATE TABLE circle_tab

(

 id INTEGER,

 circles MyCircle

);

CREATE INDEX circle_tab_index

ON circle_tab (circles MyShape_ops)

USING RTREE;

Chapter 2. Using the R-Tree Secondary Access Method 2-9

The following example shows how to create a similar R-tree index that is

stored in the dbsp1 dbspace instead of the dbspace in which the circle_tab

table is stored:

CREATE INDEX circle_tab_index2

ON circle_tab (circles MyShape_ops)

USING RTREE

IN dbsp1;

The following example shows how to create a fragmented R-tree index on the

circle_tab table:

CREATE INDEX circle_tab_index3

ON circle_tab (circles MyShape_ops)

USING RTREE

FRAGMENT BY EXPRESSION

id < 100 IN dbsp1,

id >= 100 IN dbsp2;

All shapes with id less than 100 are stored in the dbsp1 dbspace, and the

remainder are stored in the dbsp2 dbspace.

The following example shows how to create a fragmented table called

circle_tab_frag and then an R-tree index on the table called circle_tab_index4 :

CREATE TABLE circle_tab_frag

(

 id INTEGER,

 circles MyCircle

)

FRAGMENT BY EXPRESSION

id < 100 IN dbsp1,

id >= 100 IN dbsp2;

CREATE INDEX circle_tab_index4

ON circle_tab_frag (circles MyShape_ops)

USING RTREE;

All shapes with id less than 100 are stored in the dbsp1 dbspace, and the

remainder are stored in the dbsp2 dbspace.

The following example shows how to create a fragmented table called

circle_tab_frag and then an R-tree index on the table called circle_tab_index4 :

CREATE TABLE circle_tab_frag

(

 id INTEGER,

 circles MyCircle

)

FRAGMENT BY EXPRESSION

id < 100 IN dbsp1,

id >= 100 IN dbsp2;

2-10 IBM Informix R-Tree Index User’s Guide

CREATE INDEX circle_tab_index4

ON circle_tab_frag (circles MyShape_ops)

USING RTREE;

Although the R-tree index is not explicitly created with fragmentation, it is

fragmented by default because the table it is indexing, circle_tab_frag , is

fragmented.

The following example shows how to specify index parameters when you

create an R-tree index:

CREATE INDEX circle_tab_index5

ON circle_tab (circles MyShape_ops)

USING RTREE (BOTTOM_UP_BUILD=•YES•, FILLFACTOR=•80•, SORT_MEMORY=•320•);

The parameters specify that the R-tree index should be built using fast bulk

loading, that the fillfactor is 80, and that the R-tree access method has 320 KB

of shared memory available for sorting.

The following example shows how to drop an R-tree index:

DROP INDEX circle_tab_index;

When Does the Query Optimizer Use an R-Tree Index?

The query optimizer can choose to use an R-tree index when it evaluates a

query if the following statements are true:

v A strategy function of the operator class is used in the WHERE clause of

the query.

v One or more arguments of the strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are table columns with

R-tree indexes associated with the operator class.

v The data type of

 strategy function are

class.associatedassociatedstrategy494F588tE5/F1 Tf
0.0028 0 0 0.0028 357.6172 9831 0 8.2278 5749.951ah .78 1078 322.0616 245.745.m1 2407soci0E9780j
/t8pS471 49002136807 Tm
(strategy494F588tE5/F1 T078 8.478 10Tj
/F8 1 Tf
9.978 0 0 9.978 385.291-t2(assz0 042(assTj
465 40 19
71 245.745.m1 2407()Tj
/F8 1 Tf8 1078 322.0616 245.745.m1 2407s 0 0 0.0028 116257.328 345.3411 245.7071 Tm
()Tj
/F10()7071 Tm
(operat 24028 2orategy494F588tE5/F1 Tf
0.0028 010()7071 Tm
(with)Tj
/F2 1 Tf
0.0028 0 0 0.0028 260.4572 24578 1gy494F588tE5/F10 1 Tf
9.97/F8 1 T848918.4/78 (wi
()Tj
T*
()Tj
/F8 1 Tf
9.978 0 0 9.978 12061u54/
(07 T9104F588tE5/F1 Tf
0.0028 010()70712.478 10Tj
/F8 1 Tf
9.978 0 0 9.978 81 Tf3.6f
9.978 0 0 9.978 322.0616 245.745.m1 24007s0e 245.745.m1 244/he).w8()Tj
/F8 1 Tf
9.978 0 0 9.978 Tf
9.978 0 0 9.978 12061u54/
(0870eTj
/F2 19.97e O6808a.m18 19.951ah)Tj
/F2 1 Tf
0.p01a0 0 0.4ate978 0 0 9.978 Tf
9.978 0 0 9.978 12061u54/
(0870e6071 48 235.6807 Tm
716Tj
/u50/F85e
0 0 9.978 322.45.745.m1 244/he).w8()Tj
5i7121 Tsz0 042(assTj
465 40 19
71 245.745.m1 2407()Tj
/70/F14/F2 19.97e O6808a.m18 19.951ah)Tj
/F2 1 Tf
0.p01a78 0 0 9.978 240.1712 245.7071 Ts9n 9.978 426.6756 257.6807 Tm
(wit3F2 19.97e O6808a.m18 19.951ah)Tj
3 245.7071 Tm Tm
(wit3F2 190 0 3F8
/F)Tj6u 1 Tf3.68 Tf
F8 1 Tf
9.978 6172)Tj<5.7071 8o978 167.2211 230.7402 Tm
(type)Tj
/F2 1 Tf
21 12061u54/
(0870eTj
/F2 19.97e 5071 48 235.6807 Tm
716Tj
/u50/F8857.6172 9831 0 8.2278 5749.951ah)Tj
/F2 1 Tf
0.p01<8 6172)Tj<5.7071 Tm
()Tj2 1 Tf44028 2orategy494F588tE5/F1 Tf
0.0028 010a4af4.7394 245.7071 Tm
()Tj
/F8 1 Tf
9.978 0 0 98O6808a.m18 19.951ah)Tj
/F2 1 Tf
0.p01a700208a.m18 19.951ah)Tj
3 245.7071 T9.951ah)Tj
/F2(1a00e520028 0 0 0.00/F2 245.7071 T9.9t951a8g4to5.7d.4/380.p01a700208a.m18 19.951ah)Tj
3 245.7071 T9.958071 Tm
()Tj2 1 Tf44028 2orateg 1 Tf3.68 Tf
oci1389.978 0 0 98O6808a.m18 19.951ah 0870eTj
/F2 19.97e 5071 48 235.6807 Tm
7110
(The)Tj
/F2 1 Tf
0.0028 0 0 0.023n8tE5/F1 Tf
0.0028 010a4af4.7394 265 4a007s0e 28 0 28 0 3n8828 0 0 0.0028 300.4515 257.6807 19.951ah strat7 19.951ahas8i.95
[(aT14.953 245.7071 T9.95S0 f
0.p01a78 0 0q095
[(aT14.953 2)Tj<5.7071 461 Tf
0.0028 0 0 0.0.740778 j
3j2*1e6071 48 235.680797834
/F)Tj<5.7071 Tm3449ue Tf
0.p01a78 0 0 9.978 240.1712 245.7071 Ts92268 322.0616 245.7m50/F8857.6172 9831 0 8.2278 5749.951ah 08704d465m84
/F

Importing the ifxrltree Interface Object . 3-44

In This Chapter

This chapter provides information for DataBlade developers who might want

to use the R-tree secondary access method to index a new data type by

creating a new operator class. It discusses the following topics:

v Overview of DataBlade Module Development

v Deciding Whether to Use the R-Tree Access Method

v Designing a User-Defined Data Type

v Creating a New Operator Class

v Setting Up Nearest-Neighbor Searching

v Creating Registration Scripts for Dependent DataBlade Modules

Overview of DataBlade Module Development

A DataBlade module is a software package that extends the functionality of

Dynamic Server. It adds new database objects, such as data types and

routines, that extend the SQL syntax and commands you can use with

Dynamic Server.

Use the DataBlade Developers Kit (DBDK) to create and package DataBlade

modules. With the DBDK, you define the new database objects that will be

included in your DataBlade module, import objects from other modules, and

generate the source code, SQL scripts, and installation scripts that make up

your DataBlade module.

For example, you can use the DBDK to create a DataBlade module that

contains spatial data types, such as polygons and circles. The module will

probably also include a set of routines that operate on the data types, such as

Area and Circumference .

Your DataBlade module might also include the required routines and operator

class to enable users to create R-tree indexes on columns of the user-defined

data type. This chapter describes how to add this functionality to your

DataBlade module.

The DBDK automatically generates some of the C code and SQL scripts that

make up a DataBlade module. This means that most DataBlade module

developers do not need to write most of the SQL commands described in this

chapter. The commands are provided, however, to better explain the concepts.

For more information on how to design and create DataBlade modules with

the DBDK, refer to the IBM Informix: DataBlade Developer’s Kit User's Guide.

3-2 IBM Informix R-Tree Index User’s Guide

Important: The examples in this chapter are taken from the definition of the

objects of the Shapes3 sample DataBlade module, described in

Appendix A. The appendix provides both a description of the

DataBlade module and the C code used to create the functions of

the operator class.

Deciding Whether to Use the R-Tree Access Method

The R-tree secondary access method is specifically designed to index data

with the following two special properties:

v The data is multidimensional.

v On a given dimension, a data object spans some width. That is, it

corresponds to an interval or range, not a point.

Examples of these types of data include:

v Two-dimensional spatial objects, such as points, lines, and polygons

v Geographic mapping information, defined in terms of latitude and

longitude, that includes pointlike objects, such as cities; linelike objects,

such as roads and rivers; and regionlike objects, such as counties, states,
and land masses

v Video or audio clips, each with a start and stop time

If you create a time range user-defined data type, you can search for

overlapping clips more efficiently with an R-tree index than with a B-tree

index.

v Color information that includes hue, brightness, and saturation

v Multidimensional views of standard relational quantitative data, such as

age, salary, sales commission, hire date, and so on

An R-tree index works on data with only one of these properties

(multi-dimensional points or ranges along a single dimension) but data

corresponding to points on a single dimension is better indexed with a B-tree

index.

Unlike other data structures, such as a grid-file and a quad-tree, the R-tree

access method does not require that data values be in a known bounded area.

If you are developing a DataBlade module that includes a user-defined data

type of a multidimensional or interval nature, you might want to use the

R-tree access method to index columns of this data type.

The type of data most suited to B-tree indexes (the other indexing method

included in Dynamic Server) is ordered numeric values in one dimension. Do

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-3

not use B-tree indexes to index range or interval data. The following types of

data are suited to being indexed with the B-tree access method and not the

R-tree access method:

v Numerical data, such as employee IDs

v Character data, such as last names and product names

After you decide to use the R-tree access method to index a user-defined data

type, you must create a new operator class. “Creating a New Operator Class”

on page 3-10 describes this process. The next section describes issues you

should be aware of when you design the user-defined data type.

Designing a User-Defined Data Type

This section contains the topics you should consider when you design a

user-defined data type.

Important: This section does not discuss how to create a user-defined data

type. For detailed instructions on how to create a new data type,

refer to IBM Informix: User-Defined Routines and Data Types

Developer's Guide .

Data Objects and Bounding Boxes

As discussed in Chapter 1, “R-Tree Secondary Access Method Concepts,” on

page 1-1, R-tree indexes store both the bounding boxes of data objects in the

indexed table and copies of the data objects in the table. This means that the

support and strategy functions that maintain the R-tree index must also

operate on both bounding boxes and data objects.

The data type of the parameters to the support and strategy functions is the

user-defined data type of the indexed column. Therefore, the user-defined

data type of the indexed column must be able to be referred to as both a

bounding box and the data object itself. For example, the bounding box

information can be hidden inside the object, such as in a header, with the

actual object data.

The R-tree access method code never operates directly on the data inside the

objects in the indexed column. Instead, it passes the complete objects to the

user-defined support and strategy functions, which can use the bounding box

information or the full data object description, as appropriate. It is therefore

up to the designer of user-defined support and strategy functions to decide

when to use the bounding box and when to use the data object in a

calculation.

3-4 IBM Informix R-Tree Index User’s Guide

The next two sections describe when the support and strategy functions

operate on data objects and when they operate on the bounding boxes of the

data objects. Use these descriptions to correctly design your own support and

strategy functions.

Operations on Data Objects

When a user creates a table with a user-defined data type column and inserts

a new row, the user-defined data type’s input functions operate on the actual

data object to physically create the new object and insert the row into the

table.

If an R-tree index exists on the column, the R-tree access method calls the

appropriate support and strategy functions to expand the R-tree index. The

functions use the bounding box of the new data object to decide where the

copy of the data object, with its bounding box, should be placed in the R-tree

index.

Searches can also operate on the actual data object. The search function used

in the WHERE clause of a query, such as Contains , must be evaluated on the

actual data object when a qualifying leaf entry in the R-tree index is found. In

other words, true geometry on the actual data object must be used to find a

real match. If a user does not create an R-tree index on the column, then the

search function is evaluated for every data object according to its true

geometry. If an R-tree index exists on a column, but the query optimizer

decides not to use it, then the search function again operates on all data

objects and not on the keys stored in the R-tree index.

Operations on Bounding Boxes

Once a table contains enough rows so that the R-tree index has split into more

than one level, the support and strategy functions use a combination of

bounding boxes and data objects in their internal calculations when a new

row is inserted in the table. The functions generate a new bounding box for

the affected pages based on existing key information already stored in the

R-tree index and the data object itself, and they calculate where the new key

should be placed in the R-tree index. The affected pages are the leaf page on

which the new key is stored and the parent pages whose bounding boxes

need to be enlarged.

If the query optimizer decides to use an R-tree index in a search, the R-tree

index begins its search at the root, and searches the tree as described in

“Searching with an R-Tree Index” on page 1-8. Because searches of R-tree

indexes involve both the bounding boxes and data objects, the support and

strategy functions in this case also use both the bounding boxes and data

objects in their internal calculations.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-5

Internal C Structure for the User-Defined Data Type

In summary, although the internal C structure for the user-defined data type

can be anything the developer wants it to be, the following two rules must be

true if columns of this data type are to be indexed with the R-tree access

method:

v The data structure must support both the actual data object and its

bounding box.

v Only one C data structure can be defined for the internal representation of

the user-defined data.

The same data structure must be passed to all functions that accept the

user-defined data type as an argument. Examples of such functions are the

support and strategy functions that maintain the R-tree index.

Data Type Hierarchies

If you are designing two or more similar data types, you should consider

implementing your own data type hierarchy to avoid writing strategy and

support functions for every possible combination of data type signatures.

 To implement your own data type hierarchy:

1. Design a single supertype to which the strategy functions apply.

2. Create implicit casts in SQL from all the subtypes to the supertype.

3. Create implicit casts in SQL from the built-in data types LVARCHAR,

SENDRECV, IMPEXP, and IMPEXPBIN to the supertype and all subtypes.

This is part of the normal opaque user-defined data type creation. For

more information about how to create these implicit casts, refer to

IBM Informix: User-Defined Routines and Data Types Developer's Guide.

4. Create the required strategy functions in SQL for just the supertype.

You do not need to create strategy functions for the subtypes because casts

from the subtype to the supertype exist.

5. In SQL, create support functions for the supertype and all the subtypes.

All of these SQL functions, however, can usually be mapped to the same C

code; thus only one C function needs to be written.

If the query optimizer is unable to find a function for a particular subtype

when it is executing a query, the query optimizer implicitly casts the subtype

to the supertype and uses the function defined for the supertype.

The support or strategy function that is defined for the supertype must

internally determine what actual data type it is operating on, and then it must

execute the code that applies for that particular data type. This means that the

internal C code for a function defined for the supertype also contains the C

code that applies to all subtypes.

3-6 IBM Informix R-Tree Index User’s Guide

Example Data Type Hierarchy

Assume you are designing three data types: MyPoint, MyBox, and MyCircle.

Because they are all two-dimensional spatial data types, a supertype called

MyShape could also be defined. This type hierarchy is described in Figure 3-1.

Using SQL, create casts between the three subtypes (MyPoint, MyBox, and

MyCircle) and the supertype, MyShape.

The following two sections describe how to create the strategy and support

functions.

Strategy Functions in a Data Type Hierarchy

When you create the strategy functions, such as Overlaps , only one function

needs to be created in SQL: Overlaps (MyShape, MyShape). The internal C

code for this Overlaps function first checks to see what actual data type it is

operating on (either MyPoint, MyBox, or MyCircle), and then calls the

appropriate code for that data type. For example, if the function call in the

query was actually Overlaps (MyCircle, MyCircle) , the appropriate code for

the overlap between two MyCircle data types is executed.

If a query contains the expression Overlaps (MyCircle, MyCircle) , the query

optimizer first looks for a function with the same signature. It will not find

one, because none has been defined. It does, however, find a cast from

MyCircle to MyShape, so it searches for an Overlaps function that applies to

the MyShape data type. Because this function does exist, the query optimizer

executes it after implicitly casting MyCircle to MyShape.

By taking advantage of type hierarchies and casting, you avoid having to

explicitly create the various combinations of Overlaps functions within SQL,

such as Overlaps(MyPoint, MyPoint), Overlaps(MyBox, MyCircle) , and so on.

The preceding discussion about type hierarchies and strategy functions is true

for all strategy functions, not just for the Overlaps function.

MyCircleMyBoxMyPoint

MyShape

Figure 3-1. Data Type Hierarchy

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-7

Union Support Function in a Data Type Hierarchy

When you create the Union support function, you must create separate SQL

functions for each indexable column type. For example, you must create the

following SQL Union functions:

Union (MyPoint, MyPoint, MyPoint)

Union (MyBox, MyBox, MyBox)
Union (MyCircle, MyCircle, MyCircle)

Union (MyShape, MyShape, MyShape)

All these Union support functions, however, can be mapped to the same C

code. Similar to strategy functions, the internal C code that the Union

functions map to first checks to see what actual data type it is operating on

(either MyPoint, MyBox, or MyCircle) and then calls the appropriate code for

that data type. For example, if the function call is Union (MyCircle,

MyCircle, MyCircle) , it executes the appropriate code for the union of two

MyCircle data types.

The preceding discussion is true only for the Union support function and not

for the other support functions.

Maximum Size of the User-Defined Data Type

A copy of the data object is stored as part of the key in the leaf pages of an

R-tree index. Each index page is a database disk page. R-tree index entries,

however, cannot span disk pages as table rows can.

Therefore, the maximum size of a data object that is stored in a table, and

thus the maximum size of its user-defined data type, is governed by the

R-tree disk page size of 2 KB. After allowing for R-tree index overhead, about

1960 bytes, minus the size in bytes of the bounding box of the data object, are

available.

Furthermore, R-tree indexes should always fit at least two keys on a single

leaf page. Although the R-tree index works correctly with just one key per leaf

page, the index performs better when two or more keys fit on single page.

This means that the maximum size, in bytes, of a user-defined data type that

is to be indexed with an R-tree index should optimally be:

(2000 - B - (K * 20)) / K

In the formula, B refers to the size, in bytes, of the bounding box of the data

object, and K refers to the number of keys you want to fit on a page. For

example, if you want to fit three keys on a single page, then the maximum

size of the data type is:

(1940 - B) / 3

Although this maximum size might be sufficient to store simple boxes and

circles, it is probably not sufficient to store very large polygons. DataBlade

3-8 IBM Informix R-Tree Index User’s Guide

modules that create user-defined data types that store very large values must

implement them as either smart large objects or multirepresentational data

types. Multirepresentational user-defined data types store a value in the table

if it is smaller than the maximum size of the user-defined data type, or in a

smart large object otherwise. There is no size limitation on smart large objects

or multirepresentational data types.

Loose Bounding Box Calculations

In an R-tree index, bounding boxes are used to conservatively identify data

that might qualify during a search. A more accurate check is always applied

as a second step. For this reason, one might think that the bounding box of an

object could be loose, or not an exact fit, without causing anything worse than

a few initial false hits. It is often difficult to calculate an exact bounding box

for some objects, such as great circle arcs on the surface of the earth, so there

is a compelling reason to use an approximation.

However, there is a possibility you might get inaccurate results when you use

loose bounding boxes. For example, assume the bounding box for data object

A is looser than the bounding box for data object B. Even if data object A is

within data object B, A’s bounding box might extend beyond B’s, due to its

looseness. The Within strategy function, if written to rely on a preliminary

bounding box check, might return FALSE when it should return TRUE. As a

result, the R-tree access method code that called the Within function might

miss some qualifying data.

There are two solutions to this problem:

v Calculate exact bounding boxes for all data objects.

v Add a compensating factor, the maximum looseness, to the size of one of

the arguments before comparing bounding boxes. You program this

compensating factor in the bounding box portion of the strategy function

code.

In the example in the preceding paragraph, add X to the size of B’s

bounding box, where X is the maximum looseness of A’s bounding box,

before comparing A and B’s bounding boxes.

The R-tree access method code might call a different strategy function when it

processes internal pages. For example, the access method uses the Contains

strategy function for internal pages when it processes a query that specifies

the Equal function. The bounding box logic must be correct in all cases.

Other User-Defined Data Type Design Considerations

When you design a new user-defined data type to store multidimensional

data, include all the dimensions likely to be used in a query. For example,

suppose you are designing a user-defined data type to store information on

beach resorts for a travel application. Because queries for resorts often include

a time element, such as when are the high and low season rates for a

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-9

particular resort, you might want to include a time dimension in the resort

data type, as well as the usual location. When you create an R-tree index on a

column of this data type, the time dimension is built into the index, and

queries that specify time might execute faster.

Include dimensions that are also selective. This means that the values in a

particular dimension effectively separate desired data from undesired data.

For example, latitude and longitude spans are probably selective in a database

of satellite photos because they can separate out just the few pictures in an

area of interest from many other pictures scattered over the earth.

Creating a New Operator Class

DataBlade modules usually supply their own operator class when

implementing the R-tree access method. For example, the IBM Informix

Geodetic DataBlade module adds the GeoObject_ops operator class. This

section describes how to create a new operator class.

Although the R-tree access method includes a default operator class called

rtree_ops, it is recommended that you always create a new operator class if

you are developing a DataBlade module that uses the R-tree access method.

The rtree_ops operator class is provided primarily for generic R-tree testing

and as an example of how to create a new operator class. The rtree_ops

operator class includes only the four required strategy functions: Overlap ,

Equal , Contains , and Within . If you want to create more than these four

strategy functions, you must create your own operator class.

The rtree_ops operator class also restricts the number of support functions to

the three required ones: Union , Size, and Inter . Because bottom-up building

of R-tree indexes requires that you also create the SFCbits, ObjectLength ,

SFCvalue, and SetUnion functions, the rtree_ops operator class does not

support bottom-up building.

 To create a new operator class:

1. Create the required support functions.

This step includes writing the C code using the DataBlade API to

implement the required support functions and defining in BladeSmith the

SQL statements to register the function with the database server.

This step is described in “Support Functions” on page 3-11.

2. Create the required strategy functions. Similar to support functions, this

step includes writing the C code using the DataBlade API to implement

the required strategy functions and defining in BladeSmith the SQL

statements to register the function with the database server.

This step is described in “Strategy Functions” on page 3-26.

3-10 IBM Informix R-Tree Index User’s Guide

3. Create the operator class by creating custom SQL in BladeSmith to register

the operator class with the database server.

This step is described in “Syntax for Creating a New Operator Class” on

page 3-39.

Each access method has different requirements for the support and strategy

functions. The following sections describe the support and strategy functions

that the R-tree access method requires and examples of how to create them.

When you use the DBDK to create an operator class, you do not have to

create the SQL statements to register the support and strategy functions with

the database server because the DBDK automatically generates the necessary

scripts. You do, however, need to write the C code that actually implements

the support and strategy functions.

The DBDK does not automatically generate the SQL statement to create an

operator class. Instead, you must create custom SQL files from BladeSmith by

choosing Edit > Insert > SQL Files.

For more information about DBDK and BladeSmith, refer to the IBM Informix:

DataBlade Developer’s Kit User's Guide.

For more information on the DataBlade API, refer to the IBM Informix:

DataBlade API Programmer's Guide.

Important: The R-tree access method requires that all support and strategy

functions be nonvariant or that they always return the same

results when invoked with the same arguments. To define a

nonvariant function, specify NOT VARIANT in the WITH clause of

the CREATE FUNCTION statement.

If you use the DBDK to create the data type that is to be indexed

by an R-tree index and specify that the R-tree support and

strategy functions be automatically generated, the NOT VARIANT

clause is included automatically in the CREATE FUNCTION

statement. If, however, you create the support and strategy

functions yourself, the function is VARIANT by default.

Support Functions

Support functions are user-defined functions that the Informix database server

uses to construct and maintain an R-tree index. They are never explicitly

executed by end users.

The R-tree access method uses support functions to determine the leaf page

on which an index key belongs and to create the special bounding-box-only

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-11

keys used internally by the R-tree index. For more information on bounding

boxes, refer to “Bounding Boxes” on page 1-4.

The R-tree access method requires that you create the following three support

functions:

v Union

v Size

v Inter

If you plan to support bounding-box-only R-tree indexes (described in

“Bounding-Box-Only R-Tree Indexes” on page 1-6), which are the default

R-tree indexes created by Version 9.21.UC1 or later of the database server, or

you plan to support nearest-neighbor searches, you must also implement the

RtreeInfo support function with the operation strat_func_substitutions .

Important: To support bounding-box-only indexes or nearest-neighbor

searches, you might also need to redesign your strategy functions

that occupy slots 5 and up, if you want them to behave differently

at nonleaf pages. This is because you cannot distinguish between

leaf and nonleaf items in a bounding-box-only index. For more

information, see “The RtreeInfo Function” on page 3-17.

You must list the Union , Size, and Inter support functions in the order shown

when you execute the CREATE OPCLASS statement to register the operator

class with the database server. In other words, you must list the Union , Size,

and Inter support functions as the first, second, and third support functions,

respectively, in the CREATE OPCLASS statement. This SQL statement is

described in “Syntax for Creating a New Operator Class” on page 3-39.

In addition to the required support functions, the R-tree access method also

recognizes the following four optional support functions that it uses to

enhance the performance of the statement that creates the R-tree index:

v SFCbits

v ObjectLength

v SFCvalue

v SetUnion

You are not required to include these support functions in your operator class.
However, since these functions are specifically designed to improve the

performance of the creation of R-tree indexes, it is highly recommended that

you include them in your operator class.

If you decide to include these optional support functions in your operator

class, you must list them after the required support functions, in the order

3-12 IBM Informix R-Tree Index User’s Guide

shown, when you execute the CREATE OPCLASS statement to register the

operator class with the database server. In other words, you must list the

SFCbits, ObjectLength , SFCvalue, and SetUnion support functions as the

fourth, fifth, sixth, and seventh support functions, respectively, in the CREATE

OPCLASS statement. This SQL statement is described in “Syntax for Creating

a New Operator Class” on page 3-39.

You must list the RtreeInfo support function in the eighth position, after

Union , Size, and Inter , and the four optional bulk-loading support functions.

If you do not provide the four optional bulk-loading support functions in

your DataBlade module, specify NULL in the fourth, fifth, sixth, and seventh

positions in the CREATE OPCLASS statement.

The following sections describe how the R-tree access method uses the

support functions and how you should write each function, and provide an

example of an SQL statement used to create the Union function. Examples of

the SQL statements to create the Size, Inter , SFCbits, ObjectLength ,

SFCvalue, and SetUnion functions are not provided because they are similar

to the Union example.

Tip: It is useful to name support functions in a way that describes what they

do. For example, it makes sense to name a function that calculates the

size of a bounding box Size. For convenience, this guide uses the names

Union , Size, and Inter when it describes the three required support

functions. These are also the names that the default operator class

rtree_ops uses for its support functions.

Internal Uses of the Support Functions

The R-tree access method uses the required support functions in combination

when it maintains the R-tree index. For example, when the access method is

deciding into which subtree to place a new entry, it uses the Union and Size

functions to determine how much each bounding box needs to expand if the

new entry were added to that subtree. After a page splits, the access method

uses the Union function to calculate a new bounding box for all entries on a

page.

The RtreeInfo support function determines, for a given strategy function,

which strategy function should actually be called when the R-tree access

method is working on an internal nonleaf page. It also provides support for

nearest-neighbor searches. You must define the RtreeInfo function if your

DataBlade module is going to support bounding-box-only R-tree indexes or

nearest-neighbor searches.

The R-tree access method uses the four optional support functions (SFCbits,

ObjectLength , SFCvalue, and SetUnion) to increase the performance of initial

R-tree index creation by performing fast bulk loading of data into the index

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-13

from a populated table. First, the R-tree access method groups together the

rows that belong to the same page. At the same time, the access method

identifies the neighbors of each page. Once this process is completed, the

R-tree access method stores all the rows in a singly linked list of leaf pages,

filled as compactly as possible. As the leaf pages become full, the access

method recursively builds the pages at the higher levels. The R-tree access

method repeats this process until all the rows are written into the leaf pages.

The R-tree access method uses this method of building R-tree indexes only if

you specify the optional support functions in the appropriate operator class. If

you do not specify these support functions, then the R-tree access method

uses a slower method to create the R-tree index.

Important: Support functions can be executed many times during the creation

of an R-tree index. For this reason, it is recommended that the

corresponding C code for the support function be as fast and

efficient as possible. Examples of increasing speed and efficiency

in C code are to not allocate memory, not open and close database

connections, and so on.

The Union Function

The R-tree access method uses the Union function to find a new all-inclusive

bounding box for the index entries on an index page when a new entry is

added. The union of the old bounding box and the bounding box of the new

entry is the new, possibly enlarged, bounding box for the entire index page.

The R-tree access method also uses the Union function when it calculates onto

which index page it should put a new index entry. In conjunction with the

Size function, the Union function shows how much the old bounding box

must be enlarged to include the new index entry. In other words, the Union

function tells the R-tree access method the data size of a bounding box.

The access method also uses the Union function after a page split to calculate

the bounding box for the new page and to evaluate the new groupings

between the old and new pages.

The SQL signature of the Union support function must be:

Union (UDT, UDT, UDT) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

Write the Union function to calculate the overall bounding box of the

bounding boxes of the objects in the first two parameters and to store the

result in the third parameter.

3-14 IBM Informix R-Tree Index User’s Guide

The return value of the Union function is not used by the R-tree access

method. The Union function should call the mi_db_error_raise() DataBlade

API function to return errors.

For variable UDTs, the third parameter of the Union function is not

initialized; it contains a valid mi_lvarchar data type with a conservatively

large amount of memory allocated to it. Be sure you set the size in the

function to the size, in bytes, of the largest possible result.

The result returned in the third parameter of the Union function must be a

fixed size and not a large object. Set its size large enough for any return value.

The R-tree access method implementation assumes that the size returned from

the first call to the Union function is the size of all internal index keys.

Therefore, when you write the code for the Union function, pick a maximum

size for any internal index keys of an R-tree index and set the size of the

union to that value.

For sample C code of the Union function, see “Union Support Function” on

page A-13. C code uses the DataBlade API to interact with the database

server.

The Size Function

The R-tree access method uses the Size function to evaluate different ways to

group objects by comparing the sizes of bounding boxes around objects or

groups of objects. It does this when it decides where to place a new data

object and when it splits a page. Ideally, a disk page is divided into two pages

whose overall bounding boxes are as compact and small as possible.

For sample C code of the Size function, see “Size Support Function” on page

A-14. C code uses the DataBlade API to interact with the database server.

Signature of the Size Function: The SQL signature of the Size support

function must be:

Size (UDT, DOUBLE PRECISION) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

Write the Size function to calculate the relative size of the bounding box of

the object in the first parameter and to store the result in the second

parameter as a double-precision value.

The return value of the Size function is not used by the R-tree access method.

The Size function should call the mi_db_error_raise() DataBlade API function

to return errors.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-15

Calculating the Size of a Bounding Box: Write the Size function to always

return a different value as a bounding box expands or shrinks by the addition

or removal of objects inside it. This means that you should add a

compensating factor when calculating the size to take care of degenerate

bounding boxes. A degenerate bounding box is one that has one or more sides of

0 length.

Assume your data is in a two-dimensional space and you decide to use a

simple length times width calculation to compute the size of a bounding box. If

the width of the bounding box subsequently shrinks to 0, then the size of the

bounding box is 0. However, if it was the length of the original bounding box

that shrunk to 0, then the size would also be 0, breaking the rule that different

bounding boxes return different sizes. Figure 3-2 describes this situation.

In this situation, a better formula for calculating the size of a bounding box

would be:

(length times width) plus (length plus width)

This formula for the Size function always returns a larger value if the box

changes by the inclusion of a new item and returns a smaller value if it

shrinks because something inside was removed.

The Inter Function

The SQL signature of the Inter support function must be:

Inter (UDT, UDT, UDT) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

Write the Inter function to calculate the intersection of the bounding boxes of

the objects in the first two parameters and to store the result in the third

Figure 3-2. Size Calculation of Degenerate Bounding Boxes

3-16 IBM Informix R-Tree Index User’s Guide

parameter. The R-tree access method uses the resulting bounding box in a

subsequent call to the Size function to find out how much two bounding

boxes overlap.

The return value of the Inter function is not used by the R-tree access method.

The Inter function should call the mi_db_error_raise() DataBlade API function

to return errors.

For variable length UDTs, the third argument of the Inter function is not

initialized; it contains a valid mi_lvarchar data type. You must set the size in

the function to the size, in bytes, of the largest possible result.

For sample C code of the Inter function, see “Inter Support Function” on page

A-15. C code uses the DataBlade API to interact with the database server.

The RtreeInfo Function

The RtreeInfo support function defines the switching semantics for the

strategy functions in your DataBlade module. The R-tree access method calls

the RtreeInfo function, if it exists, to determine, for a given strategy function,

which strategy function it should actually call when working on an internal

nonleaf page.

Earlier versions of the R-tree access method required DataBlade module

strategy functions to test whether a page stored a bounding box or not to

determine if that page was a leaf page or an internal page (only internal pages

used to store bounding boxes). In the current version of the R-tree access

method, if your DataBlade module implements the RtreeInfo function with

the strat_func_substitutions operation, by default, indexes are created as

bounding-box-only R-tree indexes; leaf pages store only bounding boxes (and

not data objects).

For this version of the R-tree access method, if you are supporting

bounding-box-only indexes, you must use a different method to specify how

strategy functions behave when called on an internal nonleaf page or on a leaf

page. To better understand why you might want your strategy function to

behave differently on an internal nonleaf page or on a leaf page, see the

following example and “Internal Uses of the Strategy Functions” on page 3-27.

This section describes why each of the four required strategy functions

sometimes uses different strategy functions on internal nonleaf pages and

which function is actually used on the internal nonleaf pages. If necessary,
you must redesign your strategy functions if you want them to behave

differently for leaf and nonleaf pages. This is because you cannot distinguish

between leaf and nonleaf items in a bounding-box-only index.

For example, suppose you have a strategy function in slot 5 named MyEqual ,

which is a variation on the Equal function. When this function is called on a

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-17

nonleaf page, you want it to behave like Contains ; you cannot eliminate

nonleaf items by testing their bounding boxes for equality, because the test is

too stringent. But when MyEqual is called on a leaf page, you do want it to

test for equality. If the leaf pages contain the complete objects (the index is not

a bounding-box-only index), you can implement this behavior switch yourself

in the MyEqual function by checking to see if one or both operands are

bounding boxes. However, with a bounding-box-only index, the leaf pages

hold only the objects’ bounding boxes. In this case, an implementation of

MyEqual, which performs a Contains check whenever it is called with

bounding boxes, would be inefficient because it would force the R-tree access

method to make the extra step of retrieving a complete object from the table.

Instead, a candidate data object could be eliminated immediately by

performing an equality check on its leaf page bounding box.

To detect whether the operands are leaf or nonleaf data, and switch behavior

accordingly, use the RtreeInfo support function, as described in this section,

or design your own strategy functions to make this determination.

Important: If you create an RtreeInfo support function that defines the

switching semantics of your strategy functions, you must modify

your DataBlade module code to ensure that the strategy functions

in slots 5 and up do not try to determine whether they are being

executed on an internal or leaf page based on whether the input is

a bounding box.

Important: If the R-tree access method detects an RtreeInfo support function

that implements the strat_func_substitutions operation, the R-tree

access method sets the default mode of index creation to

“bounding-box-only.”

The R-tree access method checks for the RtreeInfo function when it creates an

R-tree index and updates the root page with the information. This means that

if you create an RtreeInfo support function that defines the switching

semantics of your strategy functions, you must update existing R-tree indexes

so they know about it.

Use the oncheck utility to update any existing indexes, using the following

syntax:

oncheck -ci -u "info_anchor_update"

{database[:[owner.]table[,fragdbs|#index]]}

Arguments of the RtreeInfo Support Function: Write the RtreeInfo support

function to take four arguments.

3-18 IBM Informix R-Tree Index User’s Guide

Argument Signature Description

First mi_lvarchar *dummy_obj Should be NULL.

Second mi_lvarchar *operation_ptr A pointer to an MI_LVARCHAR structure that contains a

string that represents the information needed from the

DataBlade module. When writing the RtreeInfo function to

return the internal-page equivalents of strategy functions,

the string is strat_func_substitutions .

Third mi_lvarchar *opclass_ptr This argument points to an MI_LVARCHAR structure that

contains a string that represents the name of the operator

class.

Fourth mi_lvarchar *answer_ptr This argument points to an MI_LVARCHAR structure that

contains a pointer to the structure that returns information

to the R-tree access method. If answer_ptr is NULL, then the

R-tree access method calls the RtreeInfo function to

determine if a particular operation is supported by your

DataBlade module. If the operation is not supported, set the

return value of the function to RLT_OP_UNSUPPORTED. If

the operation is supported, set the return value of the

function to MI_OK. If answer_ptr is not NULL, fill in the

array of integers with the slot numbers of the internal-page

equivalent strategy functions. (This array is allocated by the

R-tree access method). Then set the return value of the

function to MI_OK.

SQL Definition of the RtreeInfo Support Function: Use the following

CREATE FUNCTION SQL statement template to create the RtreeInfo support

function after you write and compile the code:

CREATE FUNCTION rtreeInfo(UDT, pointer, pointer, pointer)

 RETURNS INT WITH (NOT VARIANT, PARALLELIZABLE)

 EXTERNAL NAME •$INFORMIXDIR/extend/bladedir / xxx.bld(funcname)

 LANGUAGE C;

In the statement template, the text UDT refers to user-defined type or the data

type you want to index with the R-tree access method; bladedir refers to the

name of your DataBlade module under the extend directory; xxx refers to the

name of the shared object that contains the code for your DataBlade module;

and funcname refers to the name of the function within the shared object that

contains the code for the RtreeInfo function.

When you create the operator class with the CREATE OPCLASS statement,

include the RtreeInfo support function in the eighth position, after the three

required support functions Union , Size, and Inter , and the four optional

bulk-loading support functions SFCbits, ObjectLength , SFCvalue, and

SetUnion . If you do not provide the four optional bulk-loading support

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-19

functions in your DataBlade module, specify NULL in the fourth, fifth, sixth,

and seventh positions in the CREATE OPCLASS statement.

C Code Example for the RtreeInfo Support Function: You can use the

following sample C code to help write your own RtreeInfo function.

/**

* Description: Example of new support function used to return *

* requested Information to R-tree. *

* *

* Arguments: *

* *

* dummy_obj - (is NULL) *

* *

* operation_ptr - ptr to string that represents the operation. *

* *

* opclass_ptr - ptr to string that represents the opclass name. *

* *

* answer_ptr - pointer to the pointer to the structure used to *

* return information to R-tree. *

* answer_ptr is a "pointer to a pointer" to make *

* the interface generic to support later *

* operations to implement which the blade might *

* need to allocate memory and return its address *

* to R-tree. For the operation *

* "strat_func_substitutions", memory is allocated *

* by R-tree. *

* *

* *

* Support function slot no: 8 *

* *

* Return values: MI_OK - Success, operation supported. *

* MI_ERROR - Error. *

* RLT_OP_UNSUPPORTED - operation not supported. *

* *

*/

 #define RLT_OP_UNSUPPORTED 1

 mi_integer

 rtreeInfo (mi_lvarchar *dummy_obj, mi_lvarchar *operation_ptr,

 mi_lvarchar *opclass_ptr, mi_lvarchar *answer_ptr)

 {

 mi_integer status = MI_OK;

 mi_string *operation = NULL, *opclassname = NULL;
 /* opclassname may be used if required */

 operation = mi_lvarchar_to_string(operation_ptr);

 if (operation == NULL)
 {

 status = MI_ERROR;

 goto bad;

 }

 opclassname = mi_lvarchar_to_string(opclass_ptr);

 if (opclassname == NULL)
 {

 status = MI_ERROR;

 goto bad;

 }

 if (!strcmp(operation,"strat_func_substitutions"))

3-20 IBM Informix R-Tree Index User’s Guide

{

 mi_integer *answer = NULL;

 if (answer_ptr == NULL)
 {

 status = MI_OK;

 goto done;

 }/* Option is supported */

 /* For operation "strat_func_substitutions" memory

 * for 64 slots is allocated by R-tree. For later

 * operations, we might need to allocate the return

 * structure and set its address.

 */

 answer =(mi_integer*)

 mi_get_vardata((mi_lvarchar*)

 (mi_get_vardata(answer_ptr)));

 if (answer == NULL)
 {

 status = MI_ERROR;

 goto bad;

 }

 /* Provide mapping for strategy functions to be used at

 * internal nodes.

 * If the mapping changes for the opclasses I support,

 * use the opclassname

 */

 if (!strcmp(opclass,"my_opclass1"))

 {

 answer[0] = 0;

 answer[1] = 2;

 answer[2] = 2;

 answer[3] = 0;

 answer[4] = 4;

 answer[5] = 4;

 /* as many slots as strategy functions. max is 64 */

 }

 else if (!strcmp(opclass,"my_opclass2")) {

 answer[0] = 0;

 answer[1] = 2;

 answer[2] = 2;

 answer[3] = 0;

 answer[4] = 4;

 }

 else /* for all other opclasses that I support */

 {

 answer[0] = 0;

 answer[1] = 2;

 answer[2] = 2;

 answer[3] = 0;

 }

 status = MI_OK;

 }

 else

 status = RLT_OP_UNSUPPORTED;

 /* Only "strat_func_substitutions" is

 * supported, as yet. */

 done:

 bad:

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-21

if (opclassname)

 mi_free(opclassname);

 if (operation)

 mi_free(operation);

 return status;

 }

The SFCbits Function

The R-tree secondary access method uses the SFCbits function to determine

the number of bits required by the internal space-filling curve (SFC) algorithm

to represent the spatial key. An example of a space-filling curve is the Hilbert

function.

The SFCbits support function is optional. If you create it and specify it in the

operator class with the other optional support functions, the R-tree secondary

access method uses a fast bulk-loading algorithm to initially create an R-tree

index. If you have not specified this function in the operator class, then the

access method uses a slower method to create R-tree indexes.

The SQL signature of the SFCbits support function must be:

SFCbits (UDT, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The sample C signature of the SFCbits function for a variable length UDT is:

mi_integer SFCbits(mi_lvarchar *object, mi_integer *bits)

Write the SFCbits function to return, in the second parameter, the number of

bits required to build a spatial key on the data type you want to index. This

value must be either 32 or 64.

The return value of the SFCbits function is not used by the R-tree access

method. The SFCbits function should call the mi_db_error_raise() DataBlade

API function to return errors.

For sample C code of the SFCbits function, see SFCbits Support Function in

Appendix A. C code uses the DataBlade API to interact with the database

server.

The ObjectLength Function

The R-tree secondary access method uses the ObjectLength function to

determine the maximum size, in bytes, of the objects stored in the column that

is being indexed with an R-tree index.

The ObjectLength support function is optional. If you create it and specify it

in the operator class with the other optional support functions, the R-tree

3-22 IBM Informix R-Tree Index User’s Guide

secondary access method uses a fast bulk-loading algorithm to initially create

an R-tree index. If you have not specified this function in the operator class,
then the access method uses a slower method to create R-tree indexes.

The SQL signature of the ObjectLength support function must be:

ObjectLength (UDT, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The sample C signature of the ObjectLength function is:

mi_integer ObjectLength(mi_lvarchar *object, mi_integer *obj_max_length)

The first parameter of the ObjectLength function contains the name of the

data type to be indexed; it does not contain a row value. For example, if the

data type to be indexed is MyPoint , the parameter contains the string

MyPoint.

Write the ObjectLength function to return, in the second parameter, the

maximum possible size, in bytes, of the objects in the column to be indexed.

The return value of the ObjectLength function is not used by the R-tree

access method. The ObjectLength function should call the

mi_db_error_raise() DataBlade API function to return errors.

For sample C code of the ObjectLength function, see ObjectLength Support

Function in Appendix A. C code uses the DataBlade API to interact with the

database server.

The SFCvalue Function

The R-tree secondary access method uses the SFCvalue function to determine

the sort values of an array of objects of the data type of the column that is

being indexed with an R-tree index.

The SFCvalue support function is optional. If you create it and specify it in

the operator class with the other optional support functions, the R-tree

secondary access method uses a fast bulk-loading algorithm to initially create

an R-tree index. If you have not specified this function in the operator class,
then the access method uses a slower method to create R-tree indexes.

The SQL signature of the SFCvalue support function must be:

SFCvalue (UDT, INTEGER, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-23

The sample C signature of the SFCvalue function is:

mi_integer SFCvalue(mi_lvarchar *objects, mi_integer array_size,

 void *spatialKey)

Write the SFCvalue function to store an array of mi_lvarchar pointers in the

data portion of the first parameter. Each mi_lvarchar pointer points to a data

object in the table for which the R-tree access method needs to compute a sort

value.

The second parameter is the number of elements in the array.

The third output parameter is an array of either 32-bit or 64-bit values,

depending on the number of bits specified in the corresponding SFCbits

function. This array stores a spatial key for each data object. The number of

elements in this array is always the same as the number of elements in the

array of the first parameter. The R-tree secondary access method automatically

allocates enough space for the array of the third parameter.

The return value of the SFCvalue function is not used by the R-tree access

method. The SFCvalue function should call the mi_db_error_raise()

DataBlade API function to return errors.

For sample C code of the SFCvalue function, see “SFCValue Support

Function” on page A-19. C code uses the DataBlade API to interact with the

database server.

The SetUnion Function

The R-tree secondary access method uses the SetUnion function to determine

the union of all the elements in an array of objects of the data type of the

column that is being indexed with an R-tree index.

The SetUnion support function is optional. If you create it and specify it in

the operator class with the other optional support functions, the R-tree

secondary access method uses a fast bulk-loading algorithm to initially create

an R-tree index. If you have not specified this function in the operator class,
then the access method uses a slower method to create R-tree indexes.

The SQL signature of the SetUnion support function must be:

SetUnion (UDT, INTEGER, POINTER) RETURNS INTEGER

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The sample C signature of the SetUnion function is:

mi_integer SetUnion (mi_lvarchar *objects, mi_integer array_size,

 void *UnionObject)

3-24 IBM Informix R-Tree Index User’s Guide

Write the SetUnion function to store an array of mi_lvarchar pointers in the

data portion of the first parameter. Each mi_lvarchar pointer points to objects

in the table for which the R-tree access method needs to compute the union.

Each of the objects is either a data object or a bounding box.

The second parameter is the number of elements in the array.

The third output parameter is a single object that contains the union of all the

objects in the input array of the first parameter. The R-tree secondary access

method uses the Union support function to automatically allocate enough

space for the output value.

The return value of the SetUnion function is not used by the R-tree access

method. The SetUnion function should call the mi_db_error_raise()

DataBlade API function to return errors.

For sample C code of the SetUnion function, see “SetUnion Support

Function” on page A-20. C code uses the DataBlade API to interact with the

database server.

Implicit Casts

The database server automatically resolves internal function signatures for a

subtype that inherits a function from a supertype in the following two cases:

v Distinct types. The database server automatically creates casts between the

distinct type and source type.

v Opaque types. You must create the casts to support a type hierarchy.

You must first create a cast with the CREATE IMPLICIT CAST statement for it

to be used implicitly during the execution of a query. The query optimizer

tries to find implicit casts when it tries to make arguments fit support and

strategy function signatures.

Example of Creating a Support Function

This example describes the SQL statement that registers the Union support

function with the database server. The example is based on the objects of the

sample DataBlade module, described in Appendix A.

The SQL statements to register the Size, Inter , SFCbits, ObjectLength ,

SFCvalue, and SetUnion support functions with the database server are

similar to the SQL statement to register the Union function.

Tip: The DataBlade Developer's Kit automatically generates the SQL

statement to create the function.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-25

The following SQL statement shows how to register the Union support

function with the database server:

CREATE FUNCTION Union (MyShape, MyShape, MyShape)

RETURNS INTEGER

WITH

(

 NOT VARIANT

)

EXTERNAL NAME "$INFORMIXDIR/extend/shapes.3.0/shapes.bld (MyShapeUnion)"
LANGUAGE C;

The three parameters of the function are all of data type MyShape. The C

function MyShapeUnion , found in the shared object file

$INFORMIXDIR/extend/Shapes.3.6/Shapes.bld , contains the actual C code

that calculates the union of two objects of type MyShape.

For the sample C code of the MyShapeUnion function, see “Union Support

Function” on page A-13. C code uses the DataBlade API to interact with the

database server. Sample C code to implement the Size and Inter functions is

also provided in that appendix.

For more information on the DataBlade API, refer to the IBM Informix:

DataBlade API Programmer's Guide.

For more information and examples on how to create user-defined functions,

refer to IBM Informix: User-Defined Routines and Data Types Developer's Guide.

Strategy Functions

Strategy functions are user-defined functions that can be used in queries to

select data. Registering them as strategy functions with the CREATE

OPCLASS statement lets the optimizer know that an associated R-tree index

can be used to execute a query that contains one of those functions.

For example, assume there is an R-tree index on a column called boxes, and

Overlap is defined as a strategy function. If a query contains the qualification

WHERE Overlap (boxes, region) , the query optimizer considers using the

R-tree index to evaluate the query.

You can include up to 64 strategy functions when you create a new operator

class for the R-tree access method. You must, however, include the following

four strategy functions:

v Overlap

v Equal

v Contains

v Within

3-26 IBM Informix R-Tree Index User’s Guide

You must list these functions first, in the order shown, when you execute the

CREATE OPCLASS statement to register the operator class with the database

server. This SQL statement is described in “Syntax for Creating a New

Operator Class” on page 3-39.

The four required strategy functions are defined in detail in later sections of

this chapter, with an example of creating the Contains strategy function.

Tip: It is useful to name strategy functions in a way that describes what they

do. For example, it makes sense to name a function that calculates

whether one object overlaps another Overlap . For convenience, this

guide uses the names Overlap , Equal , Contains , and Within when it

describes the four required strategy functions. These are also the names

that the default operator class rtree_ops uses for its strategy functions.

Internal Uses of the Strategy Functions

The main purpose of the strategy functions is to tell the query optimizer

when it should consider using an R-tree index, as described in the preceding

section. However, the R-tree access method also uses the strategy functions

internally to search in the R-tree index, to delete entries from the index, and

to optimize the performance of updates to the index.

Searches: The R-tree access method uses the four required strategy functions

in a variety of combinations when searching in an R-tree index, as the

following table shows.

Slot

Number Strategy Function Commutator Function

Function Called on an

Index Key in a

Nonleaf Page

1 Overlap Overlap Overlap

2 Equal Equal Contains

3 Contains Within Contains

4 Within Contains Overlap

5 Available for use Same function Same function

...

64 Available for use Same function Same function

You can use the

RtreeInfo function to

redefine these

switching semantics.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-27

The first column of the table refers to the position in the CREATE OPCLASS

statement of the strategy function. The four required strategy functions must

be listed first, in the order shown in the second column.

The third column specifies the function that the R-tree access method uses as

the commutator of a particular strategy function. The Within and Contains

functions are commutators of each other. Other functions, including those

numbered 5 and up, are assumed to be their own commutators. This means

that the R-tree access method assumes that when it calls the function, the

access method can reverse the order of the arguments without changing the

results of the function. Strategy functions should be implemented with these

commutator substitutions in mind.

In certain cases, the query optimizer uses the commutator functions as

substitute functions. For example, suppose a query has the predicate

Within(A, B) in its WHERE clause, where A is a constant search object and B

is a table column with an R-tree index defined on it. Predicate functions in

WHERE clauses are written to work with an index on the first argument, so

the Within function cannot be used in this case, because the R-tree index is on

the second argument. The commutator information allows the optimizer to

substitute Contains(B, A), which allows the R-tree index on B to be used in

the execution of the query.

The strategy functions in slots 5 through 64 can have commutator functions

specified by the COMMUTATOR = FUNCTION modifier of the CREATE

FUNCTION statements used to register the functions in SQL. If you do not

specify a commutator function, the query optimizer does not attempt to

change the order of the arguments in order to get an indexed column as the

first argument. The following example registers the Contains strategy function

and specifies that the Within function is its commutator:

CREATE FUNCTION Contains (MyShape, MyShape)

RETURNS BOOLEAN

WITH

(

 COMMUTATOR = Within,

 NOT VARIANT

)

EXTERNAL NAME "$INFORMIXDIR/extend/shapes.3.0/shapes.bld (MyShapeContains)"

LANGUAGE C;

The strategy functions in slots 5 through 64 can also have negator functions

specified by the NEGATOR = FUNCTION modifier of the CREATE

FUNCTION statements used to register the functions in SQL. The R-tree

access method cannot process queries with a negated strategy function, such

as NOT Separated(A,B) . However, if the Separated strategy function declares

3-28 IBM Informix R-Tree Index User’s Guide

the Overlap function as its negator, the query optimizer is able to substitute

the predicate Overlap(A,B) for the NOT Separated(A,B) , which allows the use

of an R-tree index on column A.

The fourth column specifies the function that the R-tree access method uses

when searching for an index key in a nonleaf page. The following paragraph

explains why the entry for Within is Overlap , and the entry for Equal is

Contains .

Suppose a query has the predicate Within(A, B) in its WHERE clause, where

B is a constant search object and A is a table column with an R-tree index

defined on it. When a leaf page of the index is searched, the index entries are

true candidates to match the query, so the Within function is used directly for

each index entry. The search of a branch page tests to see if there exists an

entry in the subtree below the branch page that is within the search object B.

In this case, the search does not test whether the bounding box of the subtree

is within B, but whether the bounding box of the subtree overlaps B. This is

because a small entry within the subtree, in the overlapping portion of the

bounding box, could be completely within B. Therefore, an index search that

uses the Within function must substitute the Overlap function for nonleaf

(branch) index pages.

Similarly, an index search that uses the Contains function must substitute the

Equal function for nonleaf index pages because a qualifying index entry could

be in any subtree whose bounding box contains the search object.

Tip: The RtreeInfo function allows you to specify which function you want

the R-tree access method to call for nonleaf data.

Deletes and Updates: The access method uses the Contains function for

index scans that search for leaf objects that must be deleted from the R-tree

index after their associated row in the table is deleted.

The access method uses the Equal function to optimize the performance of

updates to the R-tree index. When a row in a table is updated, any R-tree

index on the table might also need to be updated. Updates usually mean

deleting the old entry and inserting the new entry. First, however, the access

method uses the Equal strategy function to check whether the new entry is

different from the old entry. If they are both equal, the access method does

not perform the update.

The Overlap Function

The Overlap function returns a Boolean value that indicates whether two

objects overlap or have at least one point in common.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-29

Figure 3-3 shows a circle that overlaps a triangle. The circle, however, does not

overlap the box, because the circle does not have any points in common with

the box.

The signature of the Overlap function must be:

Overlap (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The Overlap function returns TRUE if the object in the first parameter overlaps

or intersects the object in the second parameter and FALSE otherwise.

When you design the Overlaps function, you might want to first test if the

bounding boxes of the two data objects overlap; and if they do, then test if the

data objects overlap. The first test is a relatively quick and easy calculation

and might eliminate many candidates before the second, more complicated

test.

For example, Figure 3-4 shows that the first bounding box test eliminates the

box-circle overlap immediately, but the second data object test is required to

find out if the triangle and circle overlap. In this case, they do not.

y

x

Figure 3-3. Example of a Circle That Overlaps a Triangle

3-30 IBM Informix R-Tree Index User’s Guide

Appendix A contains sample C code to create an Overlap function that takes

the MyShape data type as its two parameters.

The Equal Function

The Equal function returns a Boolean value that indicates whether two objects

are equal. For example, in two-dimensional space, two points that have the

same coordinates might be equal, as are two circles that have the same center

and radius.

Important: The meaning of “equality” between two spatial objects is often

unclear, especially when floating point numbers are used. Bit-wise

equality might be useful for eliminating duplicate data, but not

much else. Application and data type designers need to define

carefully what they mean when they say two spatial objects are

equal. SQL requires that you define an Equal function for your

data type so that SELECT UNIQUE queries can execute

successfully.

The signature of the Equal function must be:

Equal (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The Equal function returns TRUE if the two objects contained in the two

parameters are equal and FALSE otherwise. It is up to the application or data

type designer to define what equal means for the user-defined data type.

Appendix A contains sample C code to create an Equal function that takes the

MyShape data type as its two parameters.

y

x

Figure 3-4. Bounding Box Example of the Overlap Function

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-31

The Contains Function

The Contains function returns a Boolean value that indicates whether an

object entirely contains another object.

Figure 3-5 shows a circle that contains a box. The circle, however, does not

contain the triangle, because part of the triangle lies outside the circle.

The signature of the Contains function must be:

Contains (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The Contains function returns TRUE if the object in the first parameter

completely contains the object in the second parameter and FALSE otherwise.

When you design the Contains function, you might want to first test if the

bounding box of the first object contains the bounding object of the second

object; and if it does, then test if the first data object contains the second data

object. The first test is a relatively quick and easy calculation and might

eliminate many candidates before the second, more complicated test.

For example, Figure 3-6 shows that the first bounding box test eliminates the

box-circle containment immediately, but the second data object test is required

to find out if the circle contains the triangle. In this case, it does not.

y

x

Figure 3-5. Example of a Circle That Contains a Box

3-32 IBM Informix R-Tree Index User’s Guide

If you allow loose, or inexact, bounding boxes, be careful when you calculate

the containment of bounding boxes. For example, Figure 3-7 shows that

although the exact bounding box of the rectangle does not contain the loose

bounding box of the circle, the rectangle still contains the circle.

In this case, a preliminary test for bounding box containment returns

inaccurate results unless you used a compensating factor to account for the

circle’s loose bounding box. For more information on loose bounding boxes,

refer to “Loose Bounding Box Calculations” on page 3-9.

Tip: The Within strategy function is the commutator of the Contains strategy

function. Remember to specify the Within function in the

COMMUTATOR clause in the CREATE FUNCTION command when you

create the Contains function, and vice versa. For an example of how to

specify a commutator when you create a function, see “Example of

Creating a Strategy Function” on page 3-36.

y

x

Figure 3-6. Bounding Box Example of the Contains Function

y

x

Figure 3-7. Containment and Loose Bounding Boxes

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-33

Appendix A contains sample C code to create a Contains function that takes

the MyShape data type as its two parameters.

The Within Function

The Within function returns a Boolean value that indicates whether an object

is contained by another object. It is similar to the Contains function, but the

order of the two parameters is switched.

Figure 3-8 shows a box that is within, or contained by, a circle. The triangle,

however, is not within either the circle or the box, because all or part of the

triangle lies outside both the circle and the box.

The signature of the Within function must be:

Within (UDT, UDT) RETURNS BOOLEAN

UDT refers to user-defined type, or the data type you want to index with the

R-tree access method.

The Within function returns TRUE if the object in the first parameter is within,

or completely contained in, the object in the second parameter and FALSE
otherwise.

When you design the Within function, you might want to first test if the

bounding box of the first object is contained in the bounding object of the

second object; and if it is, then test if the first data object is contained in the

second data object. The first test is a relatively quick and easy calculation and

might eliminate many candidates before the second, more complicated test.

y

x

Figure 3-8. Example of a Box That is Within a Circle

3-34 IBM Informix R-Tree Index User’s Guide

For example, Figure 3-9 shows that the first bounding box test eliminates the

box-circle containment immediately, but the second data object test is required

to find out if the triangle is within the circle. In this case, it is not.

If you allow loose, or inexact, bounding boxes, be careful when you calculate

the containment of bounding boxes. For example, Figure 3-10 shows that

although the loose bounding box of the circle is not within the exact bounding

box of the rectangle, the circle is still within the rectangle.

For more information on loose bounding boxes, refer to “Loose Bounding Box

Calculations” on page 3-9.

Tip: The Contains function is the commutator of the Within function.

Remember to specify the Contains function in the COMMUTATOR

clause in the CREATE FUNCTION command when you create the

y

x

Figure 3-9. Bounding Box Example of the Within Function

y

x

Figure 3-10. Containment and Loose Bounding Boxes

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-35

Within function. For an example of how to specify a commutator when

you create a function, see “Example of Creating a Strategy Function” on

page 3-36.

Appendix A contains sample C code to create a Within function that takes the

MyShape data type as its two parameters.

Other Strategy Functions

You can create up to 60 nonrequired strategy functions for an operator class.
This means that together with the four required functions, you can have a

total of 64 strategy functions defined for a particular operator class.

For example, you might want to create a function that calculates whether one

object is outside a second object. You create the Outside function in the same

way you create the other required functions, except that the C code to

implement the function is quite different. When you create the operator class

with the CREATE OPCLASS statement, you list the Outside function as the

fifth strategy function, right after the four required strategy functions.

Other types of strategy functions you might want to create include specialized

Overlap and Within functions. For example, these functions could implement

whether two objects overlap a lot, overlap a little , or interlock but do not touch.

The CREATE OPCLASS statement is described in “Syntax for Creating a New

Operator Class” on page 3-39.

Example of Creating a Strategy Function

This example describes the SQL statement that registers the Contains strategy

function with the database server. The sample C code to create the function is

provided in Appendix A; the example is based on the objects of the sample

DataBlade module, described in that appendix.

The SQL statements to register the Overlap, Equal, and Within strategy

functions with the database server are similar to the SQL statement to register

the Contains function.

Tip: The DBDK automatically generates the SQL statement to create the

function.

The following SQL statement shows how to register the Contains strategy

function with the database server:

CREATE FUNCTION Contains (MyShape, MyShape)

RETURNS BOOLEAN

WITH

(

 COMMUTATOR = Within,

3-36 IBM Informix R-Tree Index User’s Guide

NOT VARIANT

)

EXTERNAL NAME "$INFORMIXDIR/extend/shapes.3.0/shapes.bld (MyShapeContains)"

LANGUAGE C;

The two parameters of the function are both of data type MyShape. The C

function MyShapeContains , found in the shared object file

$INFORMIXDIR/extend/Shapes.3.6/Shapes.bld , contains the actual C code

that calculates whether the first object contains the second object. The

statement specifies that the commutator of the Contains function is the

Within function.

For the sample C code of the MyShapeContains function, see “Contains

Strategy Function” on page A-9. C code uses the DataBlade API to interact

with the database server. Sample C code to implement the Overlap , Equal ,

and Within functions is also provided in that appendix.

For more information on the DataBlade API, refer to the IBM Informix:

DataBlade API Programmer's Guide.

For more information and examples on how to create user-defined functions,

refer to IBM Informix: User-Defined Routines and Data Types Developer's Guide.

Selectivity and Cost Functions

For the optimizer to accurately assess the cost of using an R-Tree index, your

DataBlade module must provide selectivity and per-row cost functions. If

these functions are not present, or only one of the functions is present, the

cost of using an R-Tree index defaults to 50, except when the nearest neighbor

strategy function is used. When the nearest neighbor strategy function is used,

the server always uses the R-tree index.

Selectivity is defined as the number of rows in the result set divided by the

total number of rows in the table queried (and must be between 0.0 and 1.0):

The per-row cost function calculates the cost of evaluating the predicate of the

query for each row (and must be greater than or equal to 0).

For information about how to write selectivity and cost functions, see the

IBM Informix: DataBlade API Programmer's Guide, which describes how to

create selectivity and cost functions for an expensive UDR. For a general

description of how the query optimizer uses cost and selectivity for UDRs, see

IBM Informix: User-Defined Routines and Data Types Developer's Guide.

The paper, Accurate Estimation of the Cost of Spatial Selections by A. Aboulnaga

and J. F. Naughton, may also provide useful information. It is available in the

proceedings of the IEEE International Conference on Data Engineering, San

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-37

Diego, California, 2000 (at the time of going to press, at the following web

site: http://citeseer.nj.nec.com/aboulnaga00accurate.html).

The cost of using the R-tree index is calculated when you run UPDATE

STATISTICS. See “Updating Statistics” on page 4-2 for more information about

how statistics are gathered.

You register the selectivity and per-row cost functions when you register the

strategy functions for the R-tree index. For example:

-- The selectivity function for the strategy function equal

CREATE FUNCTION GeoObjectEqualSelectivity(pointer, pointer)

RETURNS float

WITH (not variant, parallelizable) EXTERNAL NAME

•$INFORMIXDIR/extend/GEO/geodetic.bld(GeoObjectEqualSelectivity)• LANGUAGE

c;

-- The per-row cost function for the strategy function equal

CREATE FUNCTION GeoObjectEqualCost(pointer, pointer)

RETURNS int

WITH (not variant, parallelizable) EXTERNAL NAME

•$INFORMIXDIR/extend/GEO/geodetic.bld(GeoObjectEqualCost)• LANGUAGE c;

--Register the selectivity and per-row cost functions as

--you register the strategy function equal

CREATE FUNCTION equal(GeoObject, GeoObject) RETURNS Boolean

WITH (not variant, parallelizable,

selfunc=GeoObjectEqualSelectivity,

costfunc=GeoObjectEqualCost)

EXTERNAL NAME

•$INFORMIXDIR/extend/GEO/geodetic.bld(GeoObjectEqual)• LANGUAGE c;

It is recommended that you specify the selectivity and per-row cost functions

with each strategy function that you register. If you have already registered a

strategy function and you want to add the selectivity and per-row cost

functions, use the ALTER FUNCTION statement as shown in the following

example:

ALTER FUNCTION Contains(GeoObject, GeoObject) WITH

(ADD selfunc= GeoObjectContainsSelectivity);

ALTER FUNCTION Contains(GeoObject, GeoObject) WITH

(ADD costfunc= GeoObjectContainsCost);

Important: Do not set the selectivity or per-row cost at a constant value; this

will cause the cost of using an R-tree index to be set at 50. (If

required, you can set your selectivity and per-row cost functions

to return a constant value.)

3-38 IBM Informix R-Tree Index User’s Guide

Syntax for Creating a New Operator Class

After you create all the required support and strategy functions, you are ready

to create the operator class.

The following syntax creates an operator class for use with the R-tree access

method:

CREATE OPCLASS opclass

FOR RTREE

STRATEGIES (strategy , strategy , strategy , strategy [, strategy])

SUPPORT (support , support , support

 {, support, support, support, support {,support}});

The FOR RTREE clause indicates to the database server that the operator class

is for use with the R-tree access method.

The parameters are described in the following table.

 Arguments Purpose Restrictions

opclass The name you want to give

your operator class

The name must be unique in the

database.

strategy The names of the strategy

functions you previously created

Four strategy functions are

required; any others are

optional.

You can list a maximum of 64

functions. You must include the

following four strategy functions:

Overlap , Equal , Contains , and

Within . You can name them whatever

you choose, but they must be listed

as the first, second, third, and fourth

functions, respectively.

support The names of the three required

support functions you

previously created; the four

support functions for

bulk-loading are optional. The

support function RtreeInfo is

also optional but must be in the

eighth position if specified.

You must include the following three

support functions: Union , Size, and

Inter . You can name them whatever

you choose, but they must be listed

as the first, second, and third

functions, respectively. You can

optionally include the four

bulk-loading support functions:

SFCbits, ObjectLength , SFCvalue,

and SetUnion . You can name them

whatever you choose, but they must

be listed as the fourth, fifth, sixth,

and seventh functions, respectively. If

you do not specify the four optional

bulk-loading support functions and

you do specify RtreeInfo , put NULL

in positions four, five, six, and seven.

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-39

If you use the DBDK to create an operator class, you do not have to create the

SQL statements to register the support and strategy functions with the

database server because the DBDK automatically generates the necessary

scripts. However, the DBDK does not automatically generate the SQL

statement to create an operator class. Instead, you must create custom SQL

files from BladeSmith by choosing Edit > Insert > SQL Files.

The following example shows how to create the MyShape_ops1 operator

class:
CREATE OPCLASS MyShape_ops1

FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter);

The strategy functions are called Overlap , Equal , Contains , and Within . The

support functions are called Union , Size, and Inter .

The following example shows how to create an operator class that also

supports bulk loading:

CREATE OPCLASS MyShape_ops2

FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter, SFCbits, ObjectLength, SFCvalue, SetUnion);

Note the additional optional bulk-loading support functions SFCbits,

ObjectLength , SFCvalue, and SetUnion .

The following example shows how to create an operator class that does not

support bulk loading but does include the RtreeInfo support function:

CREATE OPCLASS MyShape_ops3

FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter, NULL, NULL, NULL, NULL, RtreeInfo);

Important: You cannot alter an existing operator class that has only the

Union , Size, and Inter support functions defined to add the

bulk-loading support functions. Instead, you must create a new

operator class to use these support functions for bottom-up

building of R-tree indexes.

For more information on the CREATE OPCLASS statement, refer to the

IBM Informix: Guide to SQL Syntax.

For more information on the DBDK and BladeSmith, refer to the

IBM Informix: DataBlade Developer’s Kit User's Guide.

3-40 IBM Informix R-Tree Index User’s Guide

Setting Up Nearest-Neighbor Searching

To enable users of a datablade module to perform nearest-neighbor searches,

your datablade module must provide one or more strategy functions in your

R-tree operator class, which are set up as nearest-neighbor functions.

You need to provide documentation to your users that explains how to

perform nearest-neighbor searches.

Setting Up a Strategy Function for Nearest-Neighbor Searching

For each nearest-neighbor strategy function, there must exist a separate

distance-measuring function of the same name but with a different signature.

The R-tree access method calls only the distance-measuring function associated

with the strategy function; the strategy function itself should not be called

directly. The appearance of the strategy function in a query allows the query

planner to set up a scan using the related R-tree index. You must raise an

error if a user calls the strategy function directly, with a message such as, “An

attempt was made to use the nearest-neighbor function name as a filter during

a non-index table scan. Nearest-neighbor queries require an index scan.”

You must also set up the RtreeInfo support function (described in “Support

Functions” on page 3-11) to indicate that the strategy function is for

nearest-neighbor searches, as “Setting RtreeInfo to Indicate Nearest-Neighbor

Functions” on page 3-42 shows.

The Distance-Measuring Function

The distance measuring function is not itself a part of the operator class.

The first and second arguments of the distance function must be the same as

the first and second arguments of the strategy function. The third argument

must be INTEGER and the return value DOUBLE PRECISION. For example,

for the strategy function Nearest, created by the following SQL statement:

CREATE FUNCTION Nearest(UDT, UDT)

 RETURNS BOOLEAN

 WITH (NOT VARIANT);

The associated distance function, Nearest, looks like this:

CREATE FUNCTION Nearest(UDT, UDT, INTEGER)

 RETURNS DOUBLE PRECISION

 WITH (NOT VARIANT);

where UDT is a user-defined data type, such as the point data type, ST_Point ,

from the IBM Informix Spatial DataBlade module.

In C, the distance function declaration looks like this:

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-41

mi_double_precision *Nearest(UDT *x1,

 UDT *x2,

 mi_integer flags,

 MI_FPARAM *fp);

The first two arguments are the objects or locations between which the

function calculates the distance (or the bounding-boxes of the objects, as

“Distance Function: Using Bounding Boxes” on page 3-42 describes).

The third argument is not used in this version of the R-tree access method.

The DOUBLE PRECISION return value is not interpreted by the R-tree access

method.

Distance Function: Using Bounding Boxes

Optionally, you can provide a distance function (paired with a strategy

function) that calculates distances between bounding boxes rather than exact

distances between objects. The distances calculated this way are imprecise, but

the function runs more quickly. For example, the IBM Informix Spatial

DataBlade module provides the SE_Nearest and SE_NearestBBox functions so

that the users can choose whether to run searches using precise or estimated

distances.

In this case, set the RtreeInfo support function to match the strategy function

with the operation key bbox_only_distance as the following section, Setting

RtreeInfo to Indicate Nearest-Neighbor Functions shows.

Setting RtreeInfo to Indicate Nearest-Neighbor Functions

This C code fragment shows how to set the RtreeInfo support function to

indicate that a strategy function is a nearest-neighbor function, and that a

nearest-neighbor function exists that makes approximate distance calculations.

To do this, use the operation keys (operation_ptr arguments),

nearest_neighbor_functions , and bbox_only_distance , respectively. You can

combine this fragment with the example shown in “C Code Example for the

RtreeInfo Support Function” on page 3-20.

For each operation (nearest_neighbor_functions and bbox_only_distance), if

the answer_ptr argument is NULL, the function should return either MI_OK or

RLT_OP_UNSUPPORTED, depending whether that operation is supported.

If the answer_ptr argument is not NULL, it is a pointer to a pointer to an

MI_LVARCHAR containing an array of 64 MI_BOOLEANS, one for each

strategy function slot (allocated by the caller). For the

nearest_neighbor_functions operation, the RtreeInfo function should fill in

either MI_TRUE or MI_FALSE for each entry corresponding to a

nearest-neighbor strategy function. For the bbox_only_distance operation, the

RtreeInfo function should fill in MI_TRUE to indicate that the distance

3-42 IBM Informix R-Tree Index User’s Guide

function uses bounding-box measurements only or MI_FALSE to indicate that

exact calculation distance calculations are required. If the bbox_only_distance

operation is not supported, the R-tree access method assumes that exact

distance calculations are required.

...

else if (matches(operation, •nearest_neighbor_functionsŽ))

 {

 /*

 ** Indicate which strategy functions are nearest-neighbor

 ** functions. In this case, the 6th strategy function.

 */

 mi_boolean *answer = NULL;

 if (answer_ptr == NULL)
 goto done; /* Operation is supported */

 /* Memory for 64 booleans is allocated by R-tree */

 answer = (mi_boolean*) mi_get_vardata((mi_lvarchar*)

 mi_get_vardata(answer_ptr));

 answer[0] = MI_FALSE; /* intersect */

 answer[1] = MI_FALSE; /* equal */

 answer[2] = MI_FALSE; /* contains */

 answer[3] = MI_FALSE; /* inside */

 answer[4] = MI_FALSE; /* outside */

 answer[5] = MI_TRUE; /* nearest */

 }

else if (matches(operation, •bbox_only_distanceŽ))

 {

 /*

 ** Indicate which nearest-neighbor distance functions

 ** do their calculation using only bounding box information,

 ** giving an approximate distance. In this case, the 7th

 ** strategy function.

 */

 mi_boolean *answer = NULL;

 if (answer_ptr == NULL)
 goto done; /* Operation is supported */

 /* Memory for 64 booleans is allocated by R-tree */

 answer = (mi_boolean*) mi_get_vardata((mi_lvarchar*)

 (mi_get_vardata(answer_ptr));

 if (answer == NULL)
 {

 status = MI_ERROR;

 goto bad;

 }

 answer[0] = MI_FALSE; /* intersect */

 answer[1] = MI_FALSE; /* equal */

Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method 3-43

answer[2] = MI_FALSE; /* contains */

 answer[3] = MI_FALSE; /* inside */

 answer[4] = MI_FALSE; /* outside */

 answer[5] = MI_FALSE; /* nearest */

 answer[6] = MI_TRUE; /* nearest_bbox*/

 }

Creating Registration Scripts for Dependent DataBlade Modules

After you create one or more user-defined data types, an operator class, and

other objects, use the DBDK to package all the objects into an installable

module.

All R-tree error messages are contained in the IBM Informix R-Tree Secondary

Access Method DataBlade module. Therefore, you must always register the

IBM Informix R-Tree Secondary Access Method DataBlade module into your

database if you use the R-tree access method so that the correct error message

is returned if you

Syntax

The syntax of the rtreeRootBB() function is:

execute function rtreeRootBB (index_name, spatial_datatype);

The arguments are described in the following table.

 Arguments Purpose

index_name The name of the R-tree index for which you want to find the

coordinates of the root bounding box

spatial_datatype The spatial data type of the column that is indexed with the R-tree

index named index_name

If the R-tree index is fragmented, then the rtreeRootBB() function returns the

union of the root bounding box for each index fragment.

The format of the return value of the rtreeRootBB() function is defined by the

output function of the specified data type. The output function of the spatial

data type is a user-defined routine that specifies how to convert between the

internal representation of the data type to its external representation. This

output function must be able to display the bounding box of the

corresponding data type as well as the data type itself.

Example

Assume the table circle_tab contains a column of data type MyCircle indexed

with an R-tree index called circle_tab_index5 . To return the coordinates of the

root bounding box, execute the following statement:

EXECUTE FUNCTION rtreeRootBB (•circle_tab_index5• , •MyCircle•);

Estimating the Size of an R-Tree Index

There are two ways to estimate the size of an R-tree index:

v “Calculating Index Size Based on Number of Rows” on page 4-7 shows

how to estimate index size by performing a series of calculations.

v “Using the oncheck Utility to Calculate Index Size” on page 4-9 shows how

to use the oncheck utility to estimate index size.

Calculating Index Size Based on Number of Rows

You can estimate the size of an R-tree index in pages by performing a series

of calculations based on the number of rows in the table.

The following procedure estimates only the number of leaf pages in the R-tree

index; it does not calculate the number of branch pages. This is because

almost all of the space in an R-tree index is usually taken up by leaf pages,

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-7

due to the wide shape of the tree. Therefore, calculating the number of leaf

pages is usually adequate for a rough estimate of the total number of disk

pages that make up the R-tree index.

 To estimate the size of an R-tree index in disk pages:

1. Determine the size, in bytes, of the key value for the data type being

indexed. This value is referred to in this section as colsize.

Entries of this size appear in index leaf pages.

If you are indexing a user-defined data type, the size of the key value is

the value of the INTERNALLENGTH variable of the CREATE OPAQUE

TYPE statement.

2. Determine the size, in bytes, of each index entry in the leaf page with the

following formula that incorporates the overhead:

leafentrysize = colsize + 16 bytes

3. Determine the pagesize in bytes of the database server that you use. To

obtain the page size, run the following command and look for the value

next to Page Size:

oncheck -pr

4. Estimate the number of entries per index-leaf page with the following

formula:

leafpagents = trunc (pagefree / leafentrysize) * 60%

where

pagefree = pagesize - 88

The value leafpagents is multiplied by 60 percent because index leaf pages

are usually just over half full.

The trunc() function notation indicates you should round down to the

nearest integer value.

5. Estimate the number of leaf pages with the following formula:

leaves = rows / leafpagents

Use the SQL statement SELECT COUNT(*) FROM table to calculate the number

of rows in the table.

The number of leaf pages that make up the R-tree index is close to the total

number of disk pages that make up the index.

Important: As rows are deleted from the table, and new ones are inserted, the

number of index entries can vary within a page. The calculation

described in this section yields an estimate for an R-tree index

whose leaf pages are 60 percent full. Your R-tree index might be

smaller or larger depending on the activity within the table and

the data that you store.

4-8 IBM Informix R-Tree Index User’s Guide

Using the oncheck Utility to Calculate Index Size

You can also use the -pT option of the oncheck utility to estimate the size of

an existing R-tree index. The syntax is as follows:

oncheck -pT dbname: tablename

The -pT option of the oncheck utility prints out space allocation information

for the specified table and all the indexes that exist on the table, including

R-tree indexes. For example, to display space allocation information for the

circle_tab table in the shapes database, run the following command as user

informix at the UNIX shell or Windows command prompt:

oncheck -pT shapes:circle_tab

For more information on the oncheck utility, refer to your IBM Informix:

Administrator's Guide.

R-Tree Index and Logging

The R-tree secondary access method uses the extensible log manager of the

Informix database server to perform logical logging of its operations. These

logical-log records can be used to recover an R-tree index after a database

server failure or to abort the R-tree operations after a rollback.

The R-tree secondary access method creates its own logical-log records for

only some of the R-tree index operations, in particular:

v Insertion of an item into a leaf page

v Deletion of an item from a leaf page

The R-tree secondary access method does not create its own logical-log

records for the following operations; instead, the access method allows the

extensible log manager to create the logical-log records:

v Insertion of an item into or deletion from an internal branch page

v Creation of a new page due to split of a page

v Update of the bounding box or other metadata in a page

v Update of the child page of an internal branch page

v Update of the root page number in the root page when a new root page is

created

The following R-tree operations are not logged at all:

v CREATE INDEX statement to create an R-tree index

v Any operation on an R-tree index of a temporary table

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-9

Description of the R-Tree-Specific Logical-Log Records

As described in the preceding section, the R-tree secondary access method

creates its own logical-log records for only two types of R-tree operations:

insertion of an item into a leaf page and deletion of an item from a leaf page.

For all other logged R-tree operations, the R-tree secondary access method

allows the extensible log manager to create the logical-log record. This section

describes the format of the two logical-log records created by the R-tree

secondary access method.

The first six columns of the R-tree-specific logical-log records are the standard

columns displayed for all logical-log records. You can identify these log

records as R-tree log records because the third column always has a value of

RTREE. The R-tree-specific information is contained in the seventh column of

the log record. An eighth column is also displayed, although its value is

always 0.

For detailed information about the standard first six columns of logical-log

records, refer to the IBM Informix: Administrator's Guide for your database

server.

Logical-Log Records of Insertions of Items into a Leaf Page

The format of the seventh column of the logical-log record of an insertion into

an R-tree leaf page is as follows:

LEAFINST [page number, base table rowid, base table fragid, delete flag]

The following example shows an actual log record of this type displayed with

the onlog utility:

c104 192 RTREE 8 0 c040 LEAFINST [9,257,1048960,0] 0

Logical-Log Records of Deletions of Items from a Leaf Page

The format of the seventh column of the logical-log record of a deletion from

an R-tree leaf page is as follows:

LEAFDEL [page number, base table rowid, base table fragid, delete flag]

The following example shows an actual log record of this type displayed with

the onlog utility:

288 192 RTREE 8 0 1c4 LEAFDEL [39,258,1048960,0] 0

Using the onlog Utility to View R-Tree Logical-Log Records

This section describes how you can use the onlog utility to view R-tree

logical-log records. The following procedure first shows how to force the log

manager to start using a new logical log file; this is done for ease of searching

the logical log file for R-tree-specific records.

 To use the onlog utility to view R-tree log records:

4-10 IBM Informix R-Tree Index User’s Guide

1. Log in as the informix user.

2. Execute the following utility at the operating system prompt:

onmode -l

This utility forces the log manager to switch to the next available logical

log.

3. Execute the following utility to find the unique identifier of the logical log

file that the log manager will next use:

onstat -l

In the output of the onstat utility, look under the Logical Logging heading

for the list of logical log files currently in use. Find the log file that has a

value of 0 in the used column.

The following sample onstat output shows that the logical file with a

unique identifier of 11 will be the next logical log file that the log manager

uses:
address number flags uniqid begin size used %used

a13a6a4 1 U-B---- 7 100a03 10000 655 6.55

a13a6c0 2 U-B---- 8 103113 10000 62 0.62

a13a6dc 3 U-B---- 9 105823 10000 500 5.00

a13a6f8 4 U-B---L 10 107f33 10000 197 1.97

a13a714 5 U---C-- 11 10a643 10000 0 0.00

a13a730 6 U-B---- 6 10cd53 10000 57 0.57

4. Execute SQL commands that manipulate an R-tree index. For example,

create a table with a column of a spatial data type and then create an

R-tree index on the column.

5. Execute the onlog utility, specifying a particular log file with the -n option

so you can search for R-tree entries.

For example, the following sample use of the onlog utility shows how to

view the log file whose unique id is 11 and pipe the output to the UNIX

grep command to search for the term RTREE:
onlog -n 11 | grep RTREE

The following sample output shows both log records made by the

extensible log manager and log entries made by the R-tree access method:
addr len type xid id link

5680 436 HINSERT 6 0 5328 600002 102 391

6050 372 BLDCL 6 0 5680 700002 6 6 2056 0 polyidx

61c4 36 CHALLOC 6 0 6050 800035 6

61e8 40 PTEXTEND 6 0 61c4 700002 5 800035

e4a4 64 HUPDAT 6 0 e460 100056 80e 0 94

94 2

e4e4 36 COMMIT 6 0 e4a4 07/23/1999 21:08:30

f018 40 BEGIN 6 2 0 07/23/1999 21:08:30 12 rk

f040 932 HINSERT 6 0 f018 100085 101 888

f3e4 72 HUPDAT 6 0 f040 600002 101 0 812

812 3

f42c 140 HINSERT 6 0 f3e4 600002 801 96

10018 928 RTREE 6 0 f42c LEAFINS [802,880,257,1048709 0]

10074 116 HUPDAT 6 0 f4b8 600002 801 0 96

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-11

96 2

100e8 932 HINSERT 6 0 10074 100085 102 888

11018 928 RTREE 6 0 100e8 LEAFINS [803,880,258,1048709 0]

11048 84 HUPDAT 6 0 1048c 600002 801 0 96

96 3

1109c 932 HINSERT 6 0 11048 100085 201 888

11440 72 HUPDAT 6 0 1109c 700002 101 0 812

812 3

11488 140 HINSERT 6 0 11440 700002 801 96

12018 928 RTREE 6 0 11488 LEAFINS [802,880,513,1048709 0]

120d0 116 HUPDAT 6 0 11514 700002 801 0 96

96 2

12144 36 COMMIT 6 0 120d0 07/23/1999 21:08:30

System Catalogs

The R-tree access method is table driven. This means that information about

the R-tree access method is stored in system catalogs, which the database

server queries when it uses the R-tree access method.

The principal system catalogs that contain access method information are

sysams, sysopclasses, and sysindices.

sysams

When the R-tree access method is initially created, information about the

access method is stored in the sysams system catalog. The database server

uses this information to dynamically load support for the access method and

call the correct user-defined function for a given task. These tasks include

creating an R-tree index, scanning the index, inserting into the index, and

updating the index.

Some of the columns of the sysams table include:

v am_name, the internal name of the access method. For the R-tree access

method, the value of this column is rtree .

v am_type, the type of the index: primary (P) or secondary (S). R-tree is a

secondary (S) index.

v am_sptype, the storage type of the index: dbspace (D), external to the

database (X), sbspace (S), or any (A). R-tree indexes are stored in dbspaces

(D).

v am_defopclass, the unique identifier of the default operator class. The

unique identifier for the R-tree access method is 2, which corresponds to

the row for rtree_ops in the sysopclasses system catalog.

The following query returns values for the am_name, am_owner, am_id,

am_sptype, and am_defopclass columns of the sysams system catalog for the

rtree entry:

SELECT am_name, am_owner, am_id, am_type, am_sptype, am_defopclass

FROM sysams

WHERE am_name = •rtree•;

4-12 IBM Informix R-Tree Index User’s Guide

am_name rtree

am_owner informix

am_id 2

am_type S

am_sptype D

am_defopclass 2

The query shows that the internal name of the R-tree access method is rtree ,

which is the name you specify in the USING clause of the CREATE INDEX

statement when you create an R-tree index. The am_sptype column shows

that R-tree indexes are stored in dbspaces, often in the same dbspace the

indexed table is stored. The identifier for the default operator class, shown by

the am_defopclass column, is 2. A query of the sysopclasses system catalog

would show that rtree_ops has a unique identifier of 2 and is thus the default

operator class for the R-tree access method.

For a complete description of the columns of the sysams system table, refer to

the IBM Informix: Guide to SQL Reference.

sysopclasses

The sysopclasses system catalog stores information about operator classes.

Each time a new operator class is created with the CREATE OPCLASS

statement, a row is added to this table.

Some of the columns of the sysopclasses table include:

v opclassname, the internal name of the operator class.

v amid , the unique identifier of the access method that uses the operator

class.

v ops, the list of strategy functions defined for the operator class. Information

about the strategy function is stored in the sysprocedures system table.

v support , the list of support functions defined for the operator class.
Information about the support function is stored in the sysprocedures

system table.

The following query returns all columns of the sysopclasses system catalog

for the MyShape_ops operator class:
SELECT *

FROM sysopclasses

WHERE opclassname = •myshape_ops•;

opclassname myshape_ops

owner informix

amid 2

opclassid 100

ops overlap;equal;contains;within;

support union;size;inter;sfcbits;objectlength;sfcvalue;setunion;

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-13

Tip: Because Informix always converts object names to lowercase when

updating system catalogs, the preceding query searches for the

myshape_ops operator class instead of the MyShape_ops operator class.

The query shows that the strategy functions for the MyShape_ops operator

class are Overlap , Equal , Contains , and Within . The support functions are

Union , Size, and Inter , as required. The MyShape_ops operator class also

defines the bottom-up building support functions SFCbits, ObjectLength ,

SFCvalue, and SetUnion .

The following query of the sysprocedures table returns information about the

available Within strategy functions, such as their signatures and connections

to the shared library:

SELECT paramtypes, externalname

FROM sysprocedures

WHERE procname = •within•;

paramtypes myshape,myshape

externalname

$INFORMIXDIR/extend/shapes.3.0/shapes.bld(MyShapeWithin)

The result shows that a Within function exists in the database for the

MyShape data type.

To determine the operator classes that are already available in your database

for the R-tree access method, execute the following query:

SELECT opclassname, opclassid

FROM sysopclasses, sysams

WHERE sysopclasses.amid = sysams.am_id AND

 sysams.am_name = •rtree•;

opclassname rtree_ops

opclassid 2

opclassname myshape_ops

opclassid 100

The result shows that the database contains two operator classes that can be

used with the R-tree access method: rtree_ops and myshape_ops.

Important: If you have registered a DataBlade module that supplies its own

operator class, you must specify it when you create an R-tree

index. Do not specify the default rtree_ops operator class.

For a complete description of the columns of the sysopclasses system table,

refer to the IBM Informix: Guide to SQL Reference.

4-14 IBM Informix R-Tree Index User’s Guide

sysindices

The sysindices system catalog stores information about indexes, including

R-tree indexes.

Some of the columns of the sysindices table include:

v idxname , the name of the index.

v tabid , the unique identifier of the indexed table.

v amid , the unique identifier of the access method used to create the index.

This is a join column with the sysams table.

Because DB–Access provides information about the indexes that exist for a

particular table, you do not have to query the sysindices table directly.

Checking R-Tree Indexes with the oncheck Utility

The oncheck utility is a database server utility that checks and displays

information about database server disk structures. You can use all the default

options of the oncheck utility to check R-tree indexes.

For R-tree indexes, you can use the default oncheck options to check that the

bounding boxes for each item on a given page are contained in the master

bounding box for the page. You can also check for possible incomplete splits,

which can be detected by the oncheck utility by comparing some internal

information between pages. You can also use the oncheck utility to check that

the bounding box of a parent entry on a given page matches the bounding

box of the child page. Finally, you can check that all leaf pages that have a

right sibling contain a right-pointing link that points to the correct leaf page.

When you check an R-tree index with the default options of the oncheck

utility, the database server takes a shared lock on the index fragment currently

being checked.

Important: If you specify the -u “rtree_cleanup” option, described later in

this chapter, the database server takes an exclusive lock on the

index fragment currently being cleaned up.

The following oncheck options check and display information for an R-tree

index.

Option Purpose

-ci, -cI Performs standard index checking with minimal output

 Both options display the same output.

-pT Performs some index checking and displays only index

summary information

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-15

-pk, -pK Performs index checking of each page in the index

 Primarily displays internal page information about the root

and branch pages, although it also displays minimal

information about the leaf pages.

 Both options display the same output.

-pl, -pL Similar to -pk and -pK except that it displays additional

information about leaf pages

 Both options display the same output.

-u parameter Depending on the parameter you specify, restricts the checking

of an R-tree index to specified levels and pages or performs a

cleanup of an R-tree index

 This option applies to R-tree indexes only. You cannot use this

option to check other types of indexes.

 For information about the exact syntax of oncheck options, refer to the

IBM Informix: Administrator's Guide for your database server.

Checking Pages with the -ci and -cI Options

The -ci and -cI options tell the oncheck utility to walk through the R-tree

structure, checking that the bounding box in the parent page matches the

master bounding box on the child page for all nonleaf pages. In addition, the

utility checks that the master bounding box on each page contains all of the

bounding boxes for items on the page. Finally, the utility checks that the

right-pointing links point to a valid R-tree page.

The following example shows how to use the -ci and -cI options:

oncheck -cI rtree_db:polygons

In the example, the oncheck utility is checking any R-tree indexes that exist

on the polygons table in the rtree_db database.

Checking Pages with the -pT Option

The -pT option performs standard R-tree index checks and prints out a

summary of information about the index for each index fragment. In addition,

this option also displays information about the indexed table.

The following example shows how to use the -pT option:

oncheck -pT rtree_db:polygons

The following example shows the type of output that oncheck -pT displays:

Tree Depth: 3

Internal Pages: 11

Leaf Pages: 125

4-16 IBM Informix R-Tree Index User’s Guide

Empty Pages: 0

Total Pages: 136

Root page items: 10

Leaf Page Tuples: 1000

Internal Page Tuples: 135

Avg. Leaf Page Tuples per Leaf Page: 8.0

Space utilization:

Total Space: 278528

Free Space: 82880

Total Page Overhead: 59028

User Data Space: 136620

User Free Space: 119380

User Page Overhead: 36500

Total: user data: 49.1%, free 29.8%, overhead 21.2%

User Pages Only: data 53.4%, free 42.9%, overhead 14.3%

Checking Pages with the -pk and -pK Options

The -pk and -pK options display detailed information about the root and

branch pages in an R-tree index. These options also display minimal

information about the leaf pages.

The -pk and -pK options of the oncheck utility display the following type of

information about root and branch pages:

v Level . The level of the page within the R-tree structure

The root page is at level 0.

v Pagenum. Unique identifier of the page

v Usage. The percent of the total space on the page that is currently in use

v Number of children . The number of entries on the page

v Right . The page number of the right sibling

If the page does not have a right sibling, then this value is -1.

v Bounding box. The global bounding box on the page (root page only)

v Children. A list of the page’s children

The following example shows how to use the -pK option:

oncheck -pK rtree_db:polygons

The following partial example shows the type of output that oncheck -pK

displays:

Node: Level 0, Pagenum 31, Usage 51.2%, No. of Children 10, right -1

X(2.49752E-05,1) Y(-1,1) Z(-1,1) A(any) T(any)

Child 10, Fullness 0x0

X(0.000161568,1) Y(-1,1) Z(-1,1) A(any) T(any)

.

.

.

Node: Level 1, Pagenum 136, Usage 37.7%, No. of Children 7, right -1

Child 104, Fullness 0x0

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-17

X(0.0547637,0.73305) Y(-1,-0.670752) Z(-0.583419,0.588895) A(any) T(any)

.

.

.

The example shows output for a root page (level 0) and a branch page (level

1).

The example displays only one child for each page; the output for the

remaining children is similar.

Checking Pages with the -pl and -pL Options

The -pl and -pL options display similar information about the root and branch

pages as the -pk and -pK options. In addition, the -pl and -pL options also

display detailed information about the leaf pages in an R-tree index followed

by information about the data objects on the leaf page.

The -pl and -pL options of the oncheck utility display the same information

listed in “Checking Pages with the -pk and -pK Options” on page 4-17 about

the root, branch, and leaf pages. In addition, for each data object on a leaf

page, the following information is displayed:

v size. The size of the data object in bytes

v rowid . The row ID of the data object in the indexed table

v The bounding box of the data object

The following example shows how to use the -pL option:

oncheck -pL rtree_db:polygons

The following example shows the type of output about leaf pages that

oncheck -pL displays:

Node: Level 2, Pagenum 143, Usage 44.3%, No. of Children 5, right -1

Data record on page 143: size 136, rowid 1048992/30467

X(0.893479,1) Y(-0.176591,0.267366) Z(-0.0306181,0.388314) A(any) T(any)

Data record on page 143: size 136, rowid 1048992/16386

X(0.916716,1) Y(-0.399292,0.126833) Z(0.00581815,0.025057) A(any) T(any)

The example displays only two of the five children of the leaf page; the

output for the remaining children is similar.

Other Options with -u

Use the -u option of the oncheck utility to restrict the checking of an R-tree

index to specific levels or pages. You can also use this option to perform a

cleanup of the index. Unlike the other default options of the oncheck utility,

the -u option always takes at least one parameter, enclosed in double quotes.

The available parameters are described later on in this section.

4-18 IBM Informix R-Tree Index User’s Guide

You must use the -u option of the oncheck utility in combination with one of

the default options (-pk , -pK , -pl , -pL, -ci, or -cI).

The -u option applies to R-tree indexes only. You cannot use this option to

check other types of indexes, such as B-tree.

The following table describes the parameters you can specify with the -u

option of the oncheck utility.

Parameter Description

slevel(N) Starts checking at the level in the R-tree structure specified by

the value of N

 By default, the oncheck utility starts checking at level 0 or at

the root page.

elevel(M) Stops checking the R-tree structure after you check level M

 By default, the oncheck utility stops checking at the last level

of the R-tree structure.

spage(pg) Starts checking only when a page number matches pg

 By default, the oncheck utility starts checking at the root

page.

rtree_cleanup Cleans up an R-tree index

 Cleaning up an index includes freeing unused pages,

tightening bounding boxes, and merging almost-unused

pages.

 If you specify this parameter, the database server takes an

exclusive lock on the index fragment currently being cleaned

up.

 You cannot specify any of the other -u parameters with the

rtree_cleanup parameter.

 The preceding parameters apply to each fragment. For example, if you specify

-u "spage(5) � , each fragment is checked starting at page 5, assuming it exists

in the fragment.

The following example shows how to use the -pk option in combination with

the -u option to check only those pages in levels 2 or higher in all the R-tree

indexes that exist on the polygons table in the rtree_db database:
oncheck -pk -u "slevel(2)" rtree_db:polygons

Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method 4-19

The following example shows how to combine two parameters in the -u

option to specify where the oncheck utility should start and stop checking the

R-tree index:

oncheck -pk -u "slevel(2),elevel(5)" rtree_db:polygons

The following example shows how to perform a cleanup of all R-tree indexes

on the polygons table:

oncheck -pk -u "rtree_cleanup" rtree_db:polygons

4-20 IBM Informix R-Tree Index User’s Guide

Appendix A. Shapes3 Sample DataBlade Module

This appendix describes the Shapes3 sample DataBlade module used in the

examples in this guide.

Sample DataBlade modules are provided as downloadable examples as part of

the IBM Informix Developer Zone at http://www.ibm.com/developerworks/

db2/zones/informix/library/samples/db_downloads.html.

The downloadable example provides instructions on how to install the

DataBlade module on your database server. It includes the C code used to

create the data types and functions that make up the DataBlade module and a

description of how the module works. It also provides all the SQL scripts

needed to register the DataBlade module in your database.

The first section of this appendix, “Description of the Sample DataBlade

Module” on page A-1, describes the data types and operators the sample

DataBlade module provides. The second section, “Sample C Code” on page

A-3, provides the C code to create the strategy and support functions defined

in the operator class. The header file shape.h that describes common elements

is also included at the end of this appendix.

Description of the Sample DataBlade Module

This section describes the data types, operators, and operator class that make

up the sample DataBlade module.

Data Types

The sample DataBlade module defines four spatial data types that allow you

to create table columns that contain two-dimensional objects such as points,

circles, and boxes. The four new data types are called MyShape, MyPoint,

MyCircle, and MyBox. The MyShape data type is the supertype in the type

hierarchy and the MyPoint, MyCircle, and MyBox data types are the subtypes.

The following example creates a table called box_tab that has a column called

boxes of data type MyBox:

CREATE TABLE box_tab

(

 id INTEGER,

 boxes MyBox
);

© Copyright IBM Corp. 1996, 2004 A-1

http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html
http://www.ibm.com/developerworks/db2/zones/informix/library/samples/db_downloads.html

The following INSERT statements show how to insert two different boxes into

the box_tab table:

INSERT INTO box_tab

VALUES (1, •box(10,10,40,40)•);

INSERT INTO box_tab

VALUES (2, •box(-10,-20,5,9)•);

A box is described by its lower-left and upper-right coordinates. For example,

the first INSERT statement inserts a box whose lower-left coordinate is

(10,10) and upper-right coordinate is (40,40) .

Similarly, the following examples show how to create and insert into tables

that have MyCircle and MyPoint columns:

CREATE TABLE circle_point_tab

(

 id INTEGER,

 circles MyCircle,

 points MyPoint

);

INSERT INTO circle_point_tab

VALUES (1, •circle(20,30,15)•, •point(10,15)•);

INSERT INTO circle_point_tab

VALUES (2, •circle(-30,-10,25)•, •point(-20,-5)•);

Operators

The sample DataBlade module defines the following four operators that can

be used on columns of data type MyShape, MyBox, MyCircle, and MyPoint in

the WHERE clause of a query:

v Overlap returns a Boolean value to indicate whether two shapes intersect

or overlap.

v Equal returns a Boolean value to indicate whether two shapes are the same

or occupy the same space.

v Contains returns a Boolean value to indicate whether the first shape

contains the second shape.

v Within returns a Boolean value to indicate whether the first shape is within

or is contained by the second shape.

These operators, of course, are also the strategy functions defined by the

operator class.

The following example uses the Overlap operator to return all the boxes in

the box_tab table that overlap a box whose lower-left coordinate is (30,20)

and upper-right coordinate is (60,50) :

SELECT * FROM box_tab

WHERE Overlap (boxes, •box(30,20,60,50)•);

A-2 IBM Informix R-Tree Index User’s Guide

id 1

boxes box(10,10,40,40)

The following example uses the Contains operator to return all the boxes in

the box_tab table that contain a box whose lower-left coordinate is (-5,-10)

and upper-right coordinate is (2,5) :

SELECT * FROM box_tab

WHERE Contains (boxes, •box(-5,-10,2,5)•);

id 2

boxes box(-10,-20,5,9)

Operator Class

The sample DataBlade module defines the MyShape_ops operator class that

you should use when you create R-tree indexes on columns of data type

MyBox, MyCircle, and MyPoint.

The sample DataBlade module defines the MyShape_ops operator class as

follows:

CREATE OPCLASS MyShape_ops FOR RTREE

STRATEGIES (Overlap, Equal, Contains, Within)

SUPPORT (Union, Size, Inter, SFCbits, ObjectLength, SFCvalue, SetUnion);

The operator class specifies the four required strategy functions (Overlap ,

Equal , Contains , and Within), the three required support functions (Union ,

Size, and Inter), as well as the four optional bulk-loading support functions

(SFCbits, ObjectLength , SFCValue, and SetUnion .)

The following example shows how to specify the MyShape_ops operator class

when you create an R-tree index:

CREATE INDEX box_tab_index

ON box_tab (boxes MyShape_ops)

USING RTREE;

Sample C Code

The sample DataBlade module includes four data types: MyShape, MyBox,

MyCircle, and MyPoint.

The MyShape data type implements the behavior of all four types. The

MyPoint, MyCircle, and MyBox data types delegate to the MyShape data type

for their functionality. This means that the C code that implements the

functions of MyShape also implements the same function for the subtypes

MyPoint, MyCircle, and MyBox.

This section includes C code for the following objects:

v shape.h Header File

Appendix A. Shapes3 Sample DataBlade Module A-3

v Overlap Strategy Function

v Equal Strategy Function

v Contains Strategy Function

v Within Strategy Function

v Union Support Function

v Size Support Function

v Inter Support Function

v SFCbits Support Function

v ObjectLength Support Function

v SFCValue Support Function

v SetUnion Support Function

shape.h Header File

#ifndef SHAPES_BLADE_H

#define SHAPES_BLADE_H

/***

**

** Project:

**

** Shapes.3.0 DataBlade

**

** File:

**

** shape.h

**

** Description:

**

** This is the header file for the Shapes DataBlade.

** It contains constants, structure definitions, and function

** prototypes.

**

***/

#include <mi.h>

/*

 * Convenience typedefs. Saves typing!

 */

typedef mi_double_precision mi_double;

typedef mi_unsigned_char1 mi_uchar;

/*

 * Datablade version. This string is returned by the ShapeRelease UDR.

 */

#define BLADE_VERSION •Shapes DataBlade version 3.0Ž

/*

 * Data structure version. Also serves as a magic number.

 */

#define SHAPE_VERSION 0x53687033 /* •Shp3• in ascii hex */

/*

 * Subtype tag definitions.

 */

A-4 IBM Informix R-Tree Index User’s Guide

#define MyPointTag 1

#define MyCircleTag 2

#define MyBoxTag 3

#define MyHeaderTag 4

#define LastTag 4

/*

 * Size of spatial key generated by SFCvalue routine.

 */

#define SPATIAL_KEY_BITS 32

/*

 * Mathematical constants

 */

#define MyEpsilon 0.000001

#define Pi 3.14159265358979323846

/*

 * Tracing-related macros

 */

#define TRACE_CLASS •ShapesŽ

#define TRACE_LEVEL 20

#define SHAPE_TRACE_ENTER(fn) DPRINTF(TRACE_CLASS, TRACE_LEVEL, (•Enter • #fn))

#define SHAPE_TRACE_EXIT(fn) DPRINTF(TRACE_CLASS, TRACE_LEVEL, (•Exit • #fn))

#define SHAPE_TRACE(args) DPRINTF(TRACE_CLASS, TRACE_LEVEL, args)

/*

 * UDREXPORT is normally used to export a function from the DataBlade when

 * linking on NT. UNIX source files should maintain this define in source

 * for use when porting back to NT.

 */

#ifndef UDREXPORT

#define UDREXPORT

#endif

/*

 * Data structures.

 */

/*

 * The data structures for the supertype (MyShape) and its subtypes

 * (MyPoint, MyBox, MyCircle) all share a common header, called

 * MyShapeHdr. This contains a version number, a tag which indicates

 * what the subtype is, and a bounding box. This structure is also

 * what gets stored in R-Tree internal-node pages, with the tag field

 * set to MyHeaderTag.

 */

typedef struct

{

 mi_integer version;

 mi_integer tag; /* type of this object */

 mi_double xmin, ymin; /* bounding box */

 mi_double xmax, ymax;

}

MyShapeHdr;

/*

 * Data structures for each subtype•s actual geometry data.

 */

typedef struct

{

Appendix A. Shapes3 Sample DataBlade Module A-5

mi_double x;

 mi_double y;

}

MyPointData;

typedef struct

{

 MyPointData ll; /* coordinates of lower left corner */

 MyPointData ur; /* coordinates of upper right corner */

}

MyBoxData;

typedef struct

{

 MyPointData c; /* center */

 mi_double r; /* radius */

}

MyCircleData;

/*

 * MyShape is the structure which contains both the header information

 * and the geometry data; it is the full definition of a shape object.

 */

typedef struct

{

 MyShapeHdr hdr;

 mi_char data[8]; /* start of subtype geometry data */

}

MyShape;

/*

 * Typedefs for the function dispatch tables.

 */

typedef mi_boolean (*operatorFunction) (MyShape*, MyShape*);
typedef operatorFunction* functionTable;

/*

 * Function prototypes for the functions in the function dispatch tables.

 */

mi_boolean CircleIBox (MyShape *obj1, MyShape *obj2);

mi_boolean CircleICircle (MyShape *obj1, MyShape *obj2);

mi_boolean CircleXBox (MyShape *obj1, MyShape *obj2);

mi_boolean CircleXCircle (MyShape *obj1, MyShape *obj2);

mi_boolean BoxICircle (MyShape *obj1, MyShape *obj2);

mi_boolean BoxIBox (MyShape *obj1, MyShape *obj2);

mi_boolean BoxXBox (MyShape *obj1, MyShape *obj2);

mi_boolean PointXBox (MyShape *obj1, MyShape *obj2);

mi_boolean PointXCircle (MyShape *obj1, MyShape *obj2);

mi_boolean PointXPoint (MyShape *obj1, MyShape *obj2);

mi_boolean Dispatch (functionTable tab,

 mi_boolean commutative,

 MyShape *obj1,

 MyShape *obj2);

/*

 * Function dispatch tables.

 * These are essentially NxN matrices (where N is the number of subtypes),

 * with only the upper diagonal of each matrix filled in.

A-6 IBM Informix R-Tree Index User’s Guide

*/

static operatorFunction intersectTable[] =

{

 /* PointT = 1 */

 PointXPoint, /* PointT = 1 */

 PointXCircle, /* CircleT = 2 */

 PointXBox, /* BoxT = 3 */

 /* CircleT = 2 */

 NULL,
 CircleXCircle, /* CircleT = 2 */

 CircleXBox, /* BoxT = 3 */

 /* BoxT = 3 */

 NULL,
 NULL,
 BoxXBox /* BoxT = 3 */

};

static operatorFunction insideTable[] =

{

 /* PointT = 1 */

 NULL, /* PointT = 1 */

 PointXCircle, /* CircleT = 2 */

 PointXBox, /* BoxT = 3 */

 /* CircleT = 2 */

 NULL, /* PointT = 1 */

 CircleICircle, /* CircleT = 2 */

 CircleIBox, /* BoxT = 3 */

 /* BoxT = 3 */

 NULL, /* PointT = 1 */

 BoxICircle, /* CircleT = 2 */

 BoxIBox /* BoxT = 3 */

};

/*

 * Miscellaneous internal subroutines

 */

mi_lvarchar *MyShapeInCommon (mi_integer tag,

 mi_lvarchar *text,

 MI_FPARAM *fp);

mi_lvarchar *MyShapeRecvCommon (mi_integer tag,

 mi_sendrecv *recv_data,

 MI_FPARAM *fp);

void CheckVersion (mi_integer v);

#endif

Overlap Strategy Function

/***

**

** Function name:
**

** MyShapeOverlap

**

** Description:

**

** Entrypoint for the SQL routine "Overlap (MyShape,MyShape)

Appendix A. Shapes3 Sample DataBlade Module A-7

** returns boolean". This is an Rtree strategy function.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be spatially compared.
** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean True if the two shapes overlap.

**

***/

UDREXPORT mi_boolean

MyShapeOverlap (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

 mi_boolean bbox_overlap;

 mi_boolean retval;

 MyShape *s1 = (MyShape *) mi_get_vardata (shape1);

 MyShape *s2 = (MyShape *) mi_get_vardata (shape2);

 SHAPE_TRACE_ENTER (MyShapeOverlap);

 CheckVersion (s1->hdr.version);

 CheckVersion (s2->hdr.version);

 /*

 * First check if bounding boxes overlap.

 */

 bbox_overlap = (s1->hdr.xmin <= s2->hdr.xmax && s2->hdr.xmin <= s1->hdr.xmax &&

 s1->hdr.ymin <= s2->hdr.ymax && s2->hdr.ymin <= s1->hdr.ymax);

 /*

 * If bounding boxes do not overlap then it is not possible for

 * the actual shapes to overlap.

 */

 if (!bbox_overlap)

 {

 retval = MI_FALSE;

 goto OverlapDone;

 }

 /*

 * If bounding boxes overlap and one or both of the objects are

 * R-Tree internal nodes there are no actual geometries to test.

 */

 if (s1->hdr.tag == MyHeaderTag || s2->hdr.tag == MyHeaderTag)

 {

 retval = MI_TRUE;

 goto OverlapDone;

 }

 /*

 * Both objects are •real• objects or objects on R-Tree leaf nodes.

A-8 IBM Informix R-Tree Index User’s Guide

*/

 retval = Dispatch (intersectTable, MI_TRUE, s1, s2);

OverlapDone:

 SHAPE_TRACE_EXIT (MyShapeOverlap);

 return retval;

}

Equal Strategy Function

/***

**

** Function name:
**

** MyShapeEqual

**

** Description:

**

** Determine if one UDT value is equal to another.

**

** Special Comments:

**

** Compares two variable-length opaque types for equality

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be compared.
** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean The comparison result.

**

**/

UDREXPORT mi_boolean

MyShapeEqual (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

 /* Call Compare to perform the comparison. */

 return (mi_boolean) (0 == MyShapeCompare (shape1, shape2, fp));

}

Contains Strategy Function

/***

**

** Function name:
**

** MyShapeContains

**

** Description:

**

** Entrypoint for the SQL routine "Contains (MyShape,MyShape) returns

** boolean". This is an Rtree strategy function.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

Appendix A. Shapes3 Sample DataBlade Module A-9

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be spatially compared.
** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean True if shape2 is completely inside

** shape1. If shape1 is a non-region

** subtype (e.g. a point), returns NULL.
**

***/

UDREXPORT mi_boolean

MyShapeContains (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

 mi_boolean bbox_overlap;

 mi_boolean retval;

 MyShape *s1 = (MyShape *) mi_get_vardata (shape1);

 MyShape *s2 = (MyShape *) mi_get_vardata (shape2);

 SHAPE_TRACE_ENTER (MyShapeContains);

 CheckVersion (s1->hdr.version);

 CheckVersion (s2->hdr.version);

 /*

 * If shape1 is a non-region shape (e.g. point) it is not

 * possible for shape1 to contain shape2 so return NULL.
 */

 switch (s1->hdr.tag)

 {

 case MyHeaderTag:

 case MyBoxTag:

 case MyCircleTag:

 break;

 case MyPointTag:

 default:

 mi_fp_setreturnisnull((fp), 0, MI_TRUE);

 retval = MI_FALSE;

 goto ContainsDone;

 }

 bbox_overlap = (s1->hdr.xmin <= s2->hdr.xmax &&

 s2->hdr.xmin <= s1->hdr.xmax &&

 s1->hdr.ymin <= s2->hdr.ymax &&

 s2->hdr.ymin <= s1->hdr.ymax);

 /*

 * If bounding boxes do not overlap then it is not possible for

 * shape1 to contain shape2.

 */

 if (!bbox_overlap)

 {

 retval = MI_FALSE;

 goto ContainsDone;

A-10 IBM Informix R-Tree Index User’s Guide

}

 /*

 * If bounding boxes overlap, and one or both objects are internal

 * index nodes, we cannot rule out the possibility that objects

 * in the subtree below this node satisfy the spatial test,

 * so return true.

 */

 if (s1->hdr.tag == MyHeaderTag || s2->hdr.tag == MyHeaderTag)

 {

 retval = MI_TRUE;

 goto ContainsDone;

 }

 /*

 * Both objects are actual shapes so perform an exact geometric test.

 * Note operand order is reversed so we can simply use the insideTable.

 */

 retval = Dispatch(insideTable, MI_FALSE, s2, s1);

ContainsDone:

 SHAPE_TRACE_EXIT (MyShapeContains);

 return retval;

}

Within Strategy Function

/***

**

** Function name:
**

** MyShapeWithin
**

** Description:

**

** Entrypoint for the SQL routine "Within (MyShape,MyShape)

** returns integer". This is an Rtree strategy function.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be spatially compared.
** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_boolean True if

**

***/

UDREXPORT mi_boolean

MyShapeWithin (mi_lvarchar *shape1,

 mi_lvarchar *shape2,

 MI_FPARAM *fp)

{

Appendix A. Shapes3 Sample DataBlade Module A-11

mi_boolean bbox_overlap;

 mi_boolean retval;

 MyShape *s1 = (MyShape *) mi_get_vardata (shape1);

 MyShape *s2 = (MyShape *) mi_get_vardata (shape2);

 SHAPE_TRACE_ENTER (MyShapeWithin);

 CheckVersion (s1->hdr.version);

 CheckVersion (s2->hdr.version);

 /*

 * If shape2 is a non-region shape (e.g. point) it is not

 * possible for shape1 to be within shape2 so return NULL.
 */

 switch (s2->hdr.tag)

 {

 case MyHeaderTag:

 case MyBoxTag:

 case MyCircleTag:

 break;

 case MyPointTag:

 default:

 mi_fp_setreturnisnull((fp), 0, MI_TRUE);

 return MI_FALSE;

 }

 bbox_overlap = (s1->hdr.xmin <= s2->hdr.xmax &&

 s2->hdr.xmin <= s1->hdr.xmax &&

 s1->hdr.ymin <= s2->hdr.ymax &&

 s2->hdr.ymin <= s1->hdr.ymax);

 /*

 * If bounding boxes do not overlap then it is not possible for

 * shape1 to be within shape2.

 */

 if (!bbox_overlap)

 {

 retval = MI_FALSE;

 goto WithinDone;

 }

 /*

 * If bounding boxes overlap, and one or both objects are internal

 * index nodes, we cannot rule out the possibility that objects

 * in the subtree below this node satisfy the spatial test,

 * so return true.

 */

 if (s1->hdr.tag == MyHeaderTag || s2->hdr.tag == MyHeaderTag)

 {

 retval = MI_TRUE;

 goto WithinDone;

 }

 /*

 * Both objects are actual shapes so perform an exact geometric test.

 */

 retval = Dispatch (insideTable, MI_FALSE, s1, s2);

WithinDone:

A-12 IBM Informix R-Tree Index User’s Guide

SHAPE_TRACE_EXIT (MyShapeWithin);

 return retval;

}

Union Support Function

/***

**

** Function name:
**

** MyShapeUnion

**

** Description:

**

** This is an R-Tree support function which enables

** the server to maintain an R-Tree index. It computes the

** union of two objects• bounding boxes.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be unioned together.

** mi_lvarchar *out Resulting union.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeUnion (mi_lvarchar *shape_in1,

 mi_lvarchar *shape_in2,

 mi_lvarchar *shape_out,

 MI_FPARAM *fp)

{

 MyShapeHdr *h1;

 MyShapeHdr *h2;

 MyShapeHdr *h3;

 SHAPE_TRACE_ENTER (MyShapeUnion);

 h1 = (MyShapeHdr *) mi_get_vardata (shape_in1);

 h2 = (MyShapeHdr *) mi_get_vardata (shape_in2);

 h3 = (MyShapeHdr *) mi_get_vardata (shape_out);

 CheckVersion (h1->version);

 CheckVersion (h2->version);

 if (h1 == h2)

 {

 /*

 * This is a •self-union•, which is how the R-Tree determines how

 * big your header structure is. This situation will occur just

 * once, on the first index insert operation.

 */

Appendix A. Shapes3 Sample DataBlade Module A-13

h3->version = SHAPE_VERSION;

 h3->tag = MyHeaderTag;

 h3->xmin = h1->xmin;

 h3->ymin = h1->ymin;

 h3->xmax = h1->xmax;

 h3->ymax = h1->ymax;

 }

 else

 {

 /*

 * CAUTION! h1 and h3 may both reference the same structure!

 * Likewise, h2 and h3 may both reference the same structure!

 * This is because the R-Tree reuses variables to save memory.

 * This means we have to be careful not to prematurely overwrite

 * any elements of h1 or h2 as we assign values to h3.

 * The following algorithm is safe in this regard.

 */

 h3->version = SHAPE_VERSION;

 h3->tag = MyHeaderTag;

 h3->xmin = (h1->xmin < h2->xmin) ? h1->xmin : h2->xmin;

 h3->ymin = (h1->ymin < h2->ymin) ? h1->ymin : h2->ymin;

 h3->xmax = (h1->xmax > h2->xmax) ? h1->xmax : h2->xmax;

 h3->ymax = (h1->ymax > h2->ymax) ? h1->ymax : h2->ymax;

 }

 /*

 * Set the size of the mi_lvarchar to tell the R-Tree how

 * big each element to be stored on internal node pages will be.

 * IMPORTANT NOTE: You must do this in every Union() call,

 * not just the first one (where h1 == h2).

 */

 mi_set_varlen (shape_out, sizeof(MyShapeHdr));

 SHAPE_TRACE_EXIT (MyShapeUnion);

 return MI_OK;

}

Size Support Function

/***

**

** Function name:
**

** MyShapeSize

**

** Description:

**

** This is an R-Tree support function which enables

** the server to maintain an R-Tree index. It computes the

** size of an object•s bounding box.

**

** Special Comments:

**

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instance is passed in from the server

** wrapped in an mi_lvarchar.

**

** Parameters:

**

** mi_lvarchar *shape MyShape UDT whose bbox size is to be computed.

** mi_double *bbox_size Return value, size of UDT•s bbox.

** MI_FPARAM *fp UDR function parameter & state info.

A-14 IBM Informix R-Tree Index User’s Guide

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSize (mi_lvarchar *shape,

 mi_double *bbox_size,

 MI_FPARAM *fp)

{

 mi_double length;

 mi_double width;

 MyShapeHdr *hdr = (MyShapeHdr *) mi_get_vardata (shape);

 SHAPE_TRACE_ENTER (MyShapeSize);

 length = hdr->xmax - hdr->xmin;

 width = hdr->ymax - hdr->ymin;

 if (length < 0 && width < 0)

 {

 /*

 * No intersection case.

 * R-Tree preceded this Size() call with an Inter() call that

 * detected no intersection between two bounding boxes.

 */

 *bbox_size = 0;

 }

 else

 {

 /*

 * Normal case.

 * Take care to always return a different value as a bounding box

 * expands or shrinks. The following algorithm (area + extent) will

 * correctly account for zero-width or zero-height bounding boxes.

 */

 *bbox_size = (length * width) + (length + width);

 }

 SHAPE_TRACE_EXIT (MyShapeSize);

 return MI_OK;

}

Inter Support Function

/***

**

** Function name:
**

** MyShapeInter

**

** Description:

**

** This is an R-Tree support function which enables

** the server to maintain an R-Tree index. It computes

** the intersection of two objects• bounding boxes.

**

** Special Comments:

**

Appendix A. Shapes3 Sample DataBlade Module A-15

** Because MyShape and its subtypes are variable length opaque

** datatypes, the UDT instances are passed in from the server

** wrapped in mi_lvarchars.

**

** Parameters:

**

** mi_lvarchar *in1, *in2 UDT instances to be intersected.

** mi_lvarchar *out Resulting intersection.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeInter (mi_lvarchar *shape_in1,

 mi_lvarchar *shape_in2,

 mi_lvarchar *shape_out,

 MI_FPARAM *fp)

{

 MyShapeHdr *h1;

 MyShapeHdr *h2;

 MyShapeHdr *h3;

 SHAPE_TRACE_ENTER (MyShapeInter);

 h1 = (MyShapeHdr *) mi_get_vardata (shape_in1);

 h2 = (MyShapeHdr *) mi_get_vardata (shape_in2);

 h3 = (MyShapeHdr *) mi_get_vardata (shape_out);

 CheckVersion (h1->version);

 CheckVersion (h2->version);

 h3->version = SHAPE_VERSION;

 h3->tag = MyHeaderTag;

 if (!((h1->xmin <= h2->xmax) &&

 (h1->xmax >= h2->xmin) &&

 (h1->ymin <= h2->ymax) &&

 (h1->ymax >= h2->ymin)))

 {

 /*

 * Bounding boxes of the two shapes do not intersect.

 * Indicate this by swapping xmin & xmax and ymin & ymax.

 * R-Tree will follow this Inter() call with a Size() call;

 * at that time we will return zero to indicate no intersection.

 * PROGRAMMING TIP: There are several ways to indicate no

 * intersection. You might also consider using a flag in

 * the header structure.

 */

 mi_double temp;

 temp = h1->xmax;

 h3->xmax = h1->xmin;

 h3->xmin = temp;

 temp = h1->ymax;

 h3->ymax = h1->ymin;

 h3->ymin = temp;

 }

 else

 {

 /*

A-16 IBM Informix R-Tree Index User’s Guide

* Bounding boxes of the two shapes do intersect.

 * Like MyShapeUnion, h1 and h3 may both reference the same

 * structure, or h2 and h3 may both reference the same structure.

 * This means we have to be careful not to prematurely overwrite

 * any elements of h1 or h2 as we assign values to h3.

 * The following algorithm is safe in this regard.

 */

 h3->xmin = (h1->xmin > h2->xmin) ? h1->xmin : h2->xmin;

 h3->ymin = (h1->ymin > h2->ymin) ? h1->ymin : h2->ymin;

 h3->xmax = (h1->xmax < h2->xmax) ? h1->xmax : h2->xmax;

 h3->ymax = (h1->ymax < h2->ymax) ? h1->ymax : h2->ymax;

 }

 SHAPE_TRACE_EXIT (MyShapeInter);

 return MI_OK;

}

SFCbits Support Function

/***

**

** Function name:
**

** MyShapeSFCbits

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** "SFCbits (UDT, pointer)". This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate SFCbits function for

** each subtype in that can participate in the opclass.

**

** The second argument is declared to be an SQL pointer (i.e. void *);

** in reality it is a pointer to an integer. You must not allocate

** space for this returned value; the server will allocate it for you.

**

** Parameters:

**

** mi_lvarchar *udt UDT instance

** mi_integer *bits Returned value, size of spatial key.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSFCbits (mi_lvarchar *shape,

 mi_integer *bits,

 MI_FPARAM *fp)

{

 SHAPE_TRACE_ENTER (MyShapeSFCbits);

Appendix A. Shapes3 Sample DataBlade Module A-17

*bits = SPATIAL_KEY_BITS;

 SHAPE_TRACE_EXIT (MyShapeSFCbits);

 return MI_OK;

}

ObjectLength Support Function

/***

**

** Function name:
**

** MyShapeObjectLength

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** "ObjectLength (UDT, pointer)". This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate ObjectLength function

** for each subtype in that can participate in the opclass. In reality

** the server will pass an lvarchar containing the subtype name,
** and it will be lower case.

**

** The second argument is declared to be an SQL pointer (i.e. void *);

** in reality it is a pointer to an integer. You must not allocate

** space for this returned value; the server will allocate it for you.

**

** Parameters:

**

** mi_lvarchar *typename Type name of this UDT (e.g. •MyShape•)

** mi_integer *maxlen Returned value, max length of object

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeObjectLength (mi_lvarchar *typename,

 mi_integer *maxlen,

 MI_FPARAM *fp)

{

 mi_char *col_type_name;

 SHAPE_TRACE_ENTER (MyShapeObjectLength);

 col_type_name = mi_lvarchar_to_string (typename);

 if (strcmp (col_type_name, "myshape") == 0)

 {

 /*

 * This is a supertype column. It could contain any

 * combination of points, boxes, or circles, so return

A-18 IBM Informix R-Tree Index User’s Guide

* the size of the largest possible subtype.

 */

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyBoxData);

 }

 else if (strcmp (col_type_name, "mypoint") == 0)

 {

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyPointData);

 }

 else if (strcmp (col_type_name, "mybox") == 0)

 {

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyBoxData);

 }

 else if (strcmp (col_type_name, "mycircle") == 0)

 {

 *maxlen = sizeof(MyShapeHdr) + sizeof(MyCircleData);

 }

 else

 {

 mi_db_error_raise (NULL, MI_EXCEPTION,

 "unknown column type name", (mi_char *) 0);

 }

 SHAPE_TRACE_EXIT (MyShapeObjectLength);

 return MI_OK;

}

SFCValue Support Function

/***

**

** Function name:
**

** MyShapeSFCvalue

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** •SFCvalue (UDT, integer, pointer)Ž. This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate ObjectLength function

** for each subtype in that can participate in the opclass. In reality

** the server will pass an lvarchar containing an array of UDTs.
**

** The second argument is an integer containing the size of the

** arrays in the first and third arguments.

**

** The third argument is declared to be an SQL pointer (i.e. void *);

** in reality it is a pointer to an array of spatial keys. This

** array is allocated for you by the server. The array element size

** will be the size that you returned in the SFCbits support function.

**

** Parameters:

**

** mi_lvarchar *objects Array of UDTs, wrapped in an mi_lvarchar.

** mi_integer *array_size Size of arrays.

** void *keys Array of spatial keys to be computed.

Appendix A. Shapes3 Sample DataBlade Module A-19

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSFCvalue (mi_lvarchar *objects,

 mi_integer array_size,

 void *keys,

 MI_FPARAM *fp)

{

 mi_unsigned_integer *key_ptr = (mi_unsigned_integer *) keys;

 mi_lvarchar **shape_array = (mi_lvarchar **) mi_get_vardata (objects);

 mi_integer i;

 SHAPE_TRACE_ENTER (MyShapeSFCvalue);

 for (i = 0; i < array_size; i++)

 {

#ifdef USE_HILBERT_KEY

 Compute32BitHilbertKey (shape_array[i], &key_ptr[i]);

#else

 Compute32BitMortonKey (shape_array[i], &key_ptr[i]);

#endif

 }

 SHAPE_TRACE_EXIT (MyShapeSFCvalue);

 return MI_OK;

}

SetUnion Support Function

/***

**

** Function name:
**

** MyShapeSetUnion

**

** Description:

**

** This is an R-Tree support function which enables the

** server to use a fast method of building an R-Tree index.

**

** Special Comments:

**

** The SQL function signature for this function is

** "SetUnion (UDT, integer, pointer)". This requires an explanation:

**

** The purpose of the first argument is to provide function signature

** uniqueness, since you must declare a separate ObjectLength function

** for each subtype in that can participate in the opclass. In reality

** the server will pass an lvarchar containing an array of UDTs.
**

** The second argument is an integer containing the size of the

** array in the first arguments

**

** The third argument is declared to be an SQL pointer (i.e. void *);

** in reality it is an instance of a •header• subtype. A •header•

** subtype is the data structure that contains just a bounding box;

A-20 IBM Informix R-Tree Index User’s Guide

** it is the same thing as the 3rd argument of the Union support

** function. If your UDTs are variable length, this UDT instance

** will be wrapped in an mi_lvarchar. If your UDTs are fixed length

** you will get a pointer to the structure itself. In both cases

** the server allocates memory for the structure for you.

**

** Parameters:

**

** mi_lvarchar *objects Array of UDTs, wrapped in an mi_lvarchar

** mi_integer *array_size Size of array.

** void *union Pointer to resultant union shape.

** MI_FPARAM *fp UDR function parameter & state info.

**

** Return value:

**

** mi_integer MI_OK if success, MI_ERROR if problems.

**

***/

UDREXPORT mi_integer

MyShapeSetUnion (mi_lvarchar *objects,

 mi_integer array_size,

 mi_lvarchar *union_shape,

 MI_FPARAM *fp)

{

 mi_lvarchar **shape_array = (mi_lvarchar **) mi_get_vardata (objects);

 mi_integer i;

 SHAPE_TRACE_ENTER (MyShapeSetUnion);

 MyShapeUnion (shape_array[0], shape_array[0], union_shape, fp);

 for (i = 1; i < array_size; i++)

 {

 MyShapeUnion (shape_array[i], union_shape, union_shape, fp);

 }

 SHAPE_TRACE_EXIT (MyShapeSetUnion);

 return MI_OK;

}

Appendix A. Shapes3 Sample DataBlade Module A-21

A-22 IBM Informix R-Tree Index User’s Guide

Appendix B. Accessibility

The syntax diagrams in the HTML version of this manual are available in

dotted decimal syntax format, which is an accessible format that is available

only if you are using a screen reader.

Dotted Decimal Syntax Diagrams

In dotted decimal format, each syntax element is written on a separate line. If

two or more syntax elements are always present together (or always absent

together), the elements can appear on the same line, because they can be

considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1 .

To hear these numbers correctly, make sure that your screen reader is set to

read punctuation. All syntax elements that have the same dotted decimal

number (for example, all syntax elements that have the number 3.1) are

mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1

SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example,

if a syntax element with dotted decimal number 3 is followed by a series of

syntax elements with dotted decimal number 3.1, all the syntax elements

numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to

add information about the syntax elements. Occasionally, these words and

symbols might occur at the beginning of the element itself. For ease of

identification, if the word or symbol is a part of the syntax element, the word

or symbol is preceded by the backslash (\) character. The * symbol can be

used next to a dotted decimal number to indicate that the syntax element

repeats. For example, syntax element *FILE with dotted decimal number 3 is

read as 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats.

Format 3* * FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax

elements, are shown in the syntax just before the items they separate. These

characters can appear on the same line as each item, or on a separate line

with the same dotted decimal number as the relevant items. The line can also

show another symbol that provides information about the syntax elements.

For example, the lines 5.1* , 5.1 LASTRUN, and 5.1 DELETE mean that if you

use more than one of the LASTRUN and DELETE syntax elements, the elements

© Copyright IBM Corp. 1996, 2004 B-1

must be separated by a comma. If no separator is given, assume that you use

a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, this identifies a reference that

is defined elsewhere. The string following the % symbol is the name of a

syntax fragment rather than a literal. For example, the line 2.1 %OP1 means

that you should refer to a separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal

numbers:

? Specifies an optional syntax element. A dotted decimal number

followed by the ? symbol indicates that all the syntax elements with a

corresponding dotted decimal number, and any subordinate syntax

elements, are optional. If there is only one syntax element with a

dotted decimal number, the ? symbol is displayed on the same line as

the syntax element (for example, 5? NOTIFY). If there is more than one

syntax element with a dotted decimal number, the ? symbol is

displayed on a line by itself, followed by the syntax elements that are

optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5

UPDATE, you know that syntax elements NOTIFY and UPDATE are

optional; that is, you can choose one or none of them. The ? symbol is

equivalent to a bypass line in a railroad diagram.

! Specifies a default syntax element. A dotted decimal number followed

by the ! symbol and a syntax element indicates that the syntax

element is the default option for all syntax elements that share the

same dotted decimal number. Only one of the syntax elements that

share the same dotted decimal number can specify a ! symbol. For

example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1

(DELETE), you know that (KEEP) is the default option for the FILE

keyword. In this example, if you include the FILE keyword but do not

specify an option, default option KEEP is applied. A default option also

applies to the next higher dotted decimal number. In this example, if

the FILE keyword is omitted, default FILE(KEEP) is used. However, if

you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE),

the default option KEEP only applies to the next higher dotted

decimal number, 2.1 (which does not have an associated keyword),

and does not apply to 2? FILE. Nothing is used if the keyword FILE is

omitted.

* Specifies a syntax element that can be repeated zero or more times. A

dotted decimal number followed by the * symbol indicates that this

syntax element can be used zero or more times; that is, it is optional

and can be repeated. For example, if you hear the line 5.1*

data-area , you know that you can include more than one data area or

B-2 IBM Informix R-Tree Index User’s Guide

you can include none. If you hear the lines 3*, 3 HOST, and 3 STATE,

you know that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there

is only one item with that dotted decimal number, you can repeat

that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several

items have that dotted decimal number, you can use more than

one item from the list, but you cannot use the items more than

once each. In the previous example, you could write HOST STATE,

but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax

diagram.

+ Specifies a syntax element that must be included one or more times. A

dotted decimal number followed by the + symbol indicates that this

syntax element must be included one or more times. For example, if

you hear the line 6.1+ data-area , you must include at least one data

area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you

must include HOST, STATE, or both. As for the * symbol, you can only

repeat a particular item if it is the only item with that dotted decimal

number. The + symbol, like the * symbol, is equivalent to a loop-back

line in a railroad syntax diagram.

Appendix B. Accessibility B-3

B-4 IBM Informix R-Tree Index User’s Guide

Glossary

access method. A set of server routines that the

database server uses to store and access the data

in an index or a table. B-tree is the default

secondary access method. Some DataBlade

modules have their own access methods, with

routines defined by the module.

 See also primary access method, secondary access

method.

B-tree index. A type of index that uses a

balanced tree structure for efficient record

retrieval. B-tree indexes store key data in

ascending or descending order.

bounding box. A rectilinear shape that

completely contains the bounded object or

objects. Bounding boxes are usually stored as a

set of coordinates of the same dimensionality as

the bounded object or objects.

bottom-up build. The default method that the

R-tree access method uses when creating an

R-tree index. This method uses a fast

bulk-loading algorithm to create the index.

branch page. A location on a tree structure that

has at least one page below and one page above

it. In an R-tree index, branch pages are located in

the intermediate levels, between the root page

and leaf pages.

commutator function. A Boolean function that

accepts the same two arguments, in reverse

order, as another Boolean function, and returns

the same result. The query optimizer might

choose the commutator function if it executes

more quickly in a given query than the specified

function.

 See also negator function.

complex qualification. A WHERE clause in a

query in which two or more logical operators are

used on the same column on which the R-tree

index is defined.

concurrency. The ability of two or more

processes to access the same database

simultaneously.

data object. The data that is stored in an R-tree

indexed column of a table and in the R-tree

index itself.

dbspace. A logical collection of one or more

chunks within which you store databases and

tables. Because chunks represent specific regions

of disk space, the creators of databases and

tables can control where their data is physically

located by placing databases or tables in specific

dbspaces.

 See also sbspace.

degenerate bounding box. A bounding box in

which one or more sides has a length of 0.

expression based fragmentation. A method of

partitioning a table or index into fragments in

which the result of an expression determines the

fragment in which a row will reside. You

fragment tables to logically distribute data and

thereby improve performance of queries that use

the expression in their WHERE clause.

fillfactor. An index parameter that specifies the

percentage of an R-tree index page that should

be filled with entries when the R-tree access

method creates an R-tree index using the

bottom-up build method.

functional index. An index that stores the result

of executing a specified function on a table

column.

INFORMIXDIR. The Informix environment

variable that specifies the directory in which

IBM Informix products are installed.

interface. In the DataBlade Developers Kit, a

way to refer to a DataBlade module within

another DataBlade module. Because an interface

creates a dependency on another module,

© Copyright IBM Corp. 1996, 2004 C-1

BladeManager ensures that the originating

module is registered before the module that

contains the interface.

key. A unique identifier. A key is a column or

combination of columns whose value is unique

for each row. Among the various keys available

are primary keys and foreign keys.

leaf page. A location on a tree structure that has

at least one page above it and no pages below it.

In an R-tree index, leaf pages are located in the

final levels and contain data objects and row IDs.

locking. The process of temporarily limiting

access to an object (database, table, page, or row)

to prevent conflicting interactions among

concurrent processes. Locking helps ensure data

integrity. The database server guarantees that, as

long as the data is locked, no other program can

modify it.

logical log. An allocation of disk space

managed by the database server that contains

records of all changes that were performed on a

database during the period the log was active.

The logical log is used to roll back transactions,

recover from system failures, and restore

databases from backups.

loose bounding box. A bounding box that is

intentionally larger than its data object.

multi-representational data type. A data type

whose storage location varies depending on the

size of the data.

negator function. A Boolean function that

accepts the same arguments in the same order as

another Boolean function, but returns the

Boolean complement. The query optimizer might

choose the negator function if it executes more

quickly in a given query than the specified

function.

 See also commutator function.

operator class. The set of operators that the

database server associates with a secondary

access method. When an index is created, it is

associated with a particular operator class.

primary access method. A set of routines that

perform table operations such as inserting,

deleting, updating, and searching data. The

database server provides a virtual table interface

(VTI), with which advanced users can create

primary access methods for virtual tables.

purpose function. One of a set of functions that

an access method uses to create, search, and drop

indexes, and to insert entries into an index,

delete from an index, and so on.

query optimizer. A server facility that estimates

the most efficient plan for executing a query in

the database server. The optimizer considers the

CPU cost and the I/O cost of executing a plan.

registration. The process of executing SQL

statements to create DataBlade module objects or

individual user-defined routines in a database

and giving the database server the location of the

associated shared object file. Registration makes

a DataBlade module available for use by client

applications that open that database.

root page. The topmost level in a tree structure.

In an R-tree index, the root page can have zero

or more branch pages or leaf pages below it,

depending on the size of the R-tree index.

round-robin fragmentation. A method of

partitioning a table or index into fragments in

which the database server balances the number

of rows in each fragment. As more rows are

inserted, the database server determines the

fragment in which they should reside.

routine signature. The information that the

database server uses to identify a routine. The

signature of a routine includes the type of the

routine (function or procedure), the routine

name, the number of parameters, the data types

of the parameters, and the order of the

parameters.

row ID. An integer that defines the physical

location of a row. The database server assigns a

unique row ID to each row in a nonfragmented

table. If you want to access data in a fragmented

table by row ID, you must create a row ID

column.

C-2 IBM Informix R-Tree Index User’s Guide

R-tree index. A type of index that uses a tree

structure based on overlapping bounding

rectangles to speed access to spatial and

multidimensional data types.

sbspace. A logical storage area that contains one

or more chunks that store only smart large-object

data.

secondary access method. A set of server

functions that build, access, and manipulate an

index structure: for example, a B-tree, an R-tree,

or an index structure that a DataBlade module

provides. Typically, a secondary access method

speeds up the retrieval of data.

 When an SQL query uses an index created using

a secondary access method, it accesses the index

using the functions defined in the operator class

belonging to that access method.

 See also operator class.

selectivity. The characteristic of a query that

determines the fraction of the total number of

rows that the query returns. The more selective

the query, the smaller the fraction.

signature. See routine signature.

strategy functions. The functions for which the

query optimizer can use an index scan in a

query. You specify these functions in the operator

class with which the index is created.

support functions. The functions that an access

method uses internally to build and maintain an

index structure. They are not available for use in

SQL queries.

system catalog. A group of database tables that

contain information about the database itself,

such as the names of tables or columns in the

database, the number of rows in a table, the

information about indexes and database

privileges, and so on.

temporary dbspace. A dbspace used to store

temporary tables or other data that need not be

saved between sessions.

user-defined data type. A data type that is not

built-in, namely, a collection data type, row data

type, opaque data type, or distinct data type.

user-defined routine. A routine, written in one

of the languages that Dynamic Server supports,

that provides added functionality for data types

or encapsulates application logic.

variant routine. A routine that can return

different values when it is invoked with the

same arguments.

Glossary C-3

C-4 IBM Informix R-Tree Index User’s Guide

Notices

IBM may not offer the products, services, or features discussed in this

document in all countries. Consult your local IBM representative for

information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or

imply that only that IBM product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe

any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the

IBM Intellectual Property Department in your country or send inquiries, in

writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any

other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY

OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore,

this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will

be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1996, 2004 D-1

improvements and/or changes in the product(s) and/or the program(s)

described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual

use of the information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer

Agreement, IBM International Program License Agreement, or any equivalent

agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments

may vary significantly. Some measurements may have been made on

development-level systems and there is no guarantee that these measurements

will be the same on generally available systems. Furthermore, some

measurements may have been estimated through extrapolation. Actual results

may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available

sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be

addressed to the suppliers of those products.

D-2 IBM Informix R-Tree Index User’s Guide

All statements regarding IBM’s future direction or intent are subject to change

or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are

subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include

the names of individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source language,

which illustrate programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the application programming

interface for the operating platform for which the sample programs are

written. These examples have not been thoroughly tested under all conditions.

IBM, therefore, cannot guarantee or imply reliability, serviceability, or function

of these programs. You may copy, modify, and distribute these sample

programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs

conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,

must include a copyright notice as follows:

 © (your company name) (year). Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. (enter the year or years).

All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Notices D-3

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database

Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ®;

C-ISAM ®; Foundation.2000™; IBM Informix

® 4GL; IBM

Informix ®DataBlade®Module; Client SDK™; Cloudscape™; Cloudsync™; IBM

Informix ®Connect; IBM Informix ®Driver for JDBC; Dynamic Connect™; IBM

Informix ®Dynamic Scalable Architecture ™(DSA); IBM Informix ®Dynamic

Server™; IBM Informix ®Enterprise Gateway Manager (Enterprise Gateway

Manager); IBM Informix ®Extended Parallel Server™; i.Financial Services™;

J/Foundation ™; MaxConnect™; Object Translator™; Red Brick™; IBM

Informix ® SE; IBM Informix ® SQL; InformiXML ™; RedBack®; SystemBuilder™;

U2™; UniData ®; UniVerse®; wintegrate ®are trademarks or registered

trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other

countries.

UNIX is a registered trademark in the United States and other countries

licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be

trademarks or service marks of others.

D-4 IBM Informix R-Tree Index User’s Guide

Index

A
Access methods, general 1-2

See also R-tree access method.

B-tree 1-2, 3-3

Informix Dynamic Server provides 1-2

primary 1-2

secondary 1-2

Accessibility xix

dotted decimal format of syntax diagrams B-1

syntax diagrams, reading in a screen reader B-1

B
B-tree access method 1-2, 2-12, 3-3

B-tree index vs R-tree 2-12

bbox_only_distance operation key 3-42

BladeManager 1-15, 2-2

BladeSmith 1-15, 3-10, 3-44

Boldface type x

BOTTOM_UP_BUILD index parameter 2-4, 2-5

Bottom-up build 1-6, 2-6

Bounding boxes
checking with the oncheck utility 4-16

discussion of 1-4, 3-4, 3-5

effectiveness of 4-4

finding coordinates of root bounding box 1-7, 4-6

loose 3-9, 3-33, 3-35

strategy function switching semantics 3-17

with Contains strategy function 3-32

with Overlap strategy function 3-30

with Within strategy function 3-34

BOUNDING_BOX_INDEX index parameter 1-6, 2-7

Bounding-box-only indexes 1-6, 2-7, 3-17

Branch page 1-7

Bulk-loading data support functions 3-12

Bulk-loading of data 2-4, 2-5

C
Casts, implicit 3-6, 3-25

Cleaning up an R-tree index 4-19

Clustering spatial data on the disk 4-5

Code, sample, conventions for xv

Command-line conventions
how to read xiii

sample diagram xiii

COMMITTED READ isolation level 2-16

Commutator functions 3-28, 3-33, 3-35

Compliance
with industry standards xxii

Concurrency using R-link trees 1-11

Contact information xxiii

Contains strategy function 2-11, 3-5, 3-26, 3-32

Conventions
command-line xiii

documentation x

sample-code xv

syntax diagrams xi

syntax notation xi

typographical x

Cost functions 3-37

Cost, using R-tree index 2-12, 4-3

CREATE OPCLASS statement 3-19

Creating operator classes 3-10

Creating R-tree indexes 2-2

Creating registration scripts for dependent DataBlade

modules 3-44

CURSOR STABILITY isolation level 2-16

D
Data objects 1-6, 1-7, 3-4, 3-5

Data type hierarchies 3-6

Data-access cost 4-3

DataBlade API 3-10, 3-15, 3-26, 3-37

DataBlade Developers Kit (DBDK) 1-15, 2-2, 3-2, 3-25,

3-36, 3-40, 3-44

DataBlade module development 1-14, 3-2, 3-3, 3-44

DataBlade modules
that use R-tree 1-16

Default locale ix

Default R-tree operator class, rtree_ops 1-13, 1-14, 2-4,

3-10

Dependencies, software viii

Designing user-defined data types 3-4, 3-9

DIRTY READ isolation level 2-16

Disabilities, visual
reading syntax diagrams B-1

Distance-measuring function 3-41

Documentation conventions x

Documentation Notes xvii

Documentation set of all manuals xix

Documentation, types of xvi

machine notes xvii

online manuals xix

printed manuals xix

Dotted decimal format of syntax diagrams B-1

Dropping R-tree indexes 2-11

DS_MAX_QUERIES ONCONFIG parameter 2-5

DS_TOTAL_MEMORY ONCONFIG parameter 2-5

© Copyright IBM Corp. 1996, 2004 X-1

E
en_us.8859-1 locale ix

Environment variables x

Equal strategy function 3-26, 3-31

Error messages xviii

Error messages of the

 8

 14NoTm
(8t.D 8i6F8 5Tj
/F8 1 TtTs65ie5o1 14.D 8i6F8 5Tj
/F8 1 TtTs65ie5o1 14.D 8i6Fi7 538.56 Tm
(8o
()Tj56 Tm
()Tj
/8foi7 538.56 Tm
(824 14 07 538.56 Tm
()Tj
/F8 1 Tf
7.9824 0 0 7p
()Tj
/F8 1 Tf
7.Tf
7.24 0 0 7p
()Tj
1 Tf
7.9824 0 0 7p
()Tj
/F8 1 T5.8 12t)Tj.985o1 14.D 8i6Fi7 538.56 Tm
(8o
()Tj56 T)5 0 0 7.9824 141Tm
)Tj
/F8 0 7p
()Tj
1 Tf
7.9824 0 0 7p
()Tj4.D3[8.Tm
)Tj
/F8 0 7p
()Tj
1 Tf
7.982434 0.9824 0 0 7.5 0 0 7.9824 141Tm

8

t

.

D

8

i

1

2

1

T

f

7

.

9

8

2

4

3

4

0

.

9

8

2

4

0

0

7

.

5

0

0

7

.

5

6

T

4

1

4

1

2

T

m

(

)

T

j

/

F

8

1

0

d

3

8

2

4

1

4

0

7

7

6

8

8

1

7

0

1

6

a

1

T

f

7

.

9

8

2

4

0

5

7

4

1

F

5

j

/

F

8

1

0

d

3

8

2

4

1

4

0

7

7

6

8

8

1

7

0

1

6

a

7

5

3

8

.

5

6

T

m

(

e

E

T

m

8

o

6

k

5

6

C

7

.

9

s

.

S

1

T

m

8

5

3

n

7

7

4

1

4

8

2

4

1

4

0

7

7

6

8

8

1

7

0

1

6

a

1

T

f

7

.

9

8

2

4

0

8

2

4

o

9

8

2

E

R

c

n

9

8

)

T

j

/

8

s

2

E

(

)

T

j

/

4

1

c

4

8

7

0

1

6

a

1

T

f

7

.

9

8

2

4

0

8

2

4

o

9

8

2

E

R

c

n

9

8

2

l

T

4

1

4

1

2

T

m

(

)

T

j

/

F

8

1

0

d

3

8

2

4

1

4

1

8

2

E

R

c

8

4

0

8

2

4

o

9

8

2

E

l

T

4

1

(

6

8

8

0

7

o

3

1

5

O

0

7

p

(

)

T

j

/

F

r

O

t

.

t

1

T

f

7

.

8

.

5

0

9

5

5

3

8

.

5

c

1

7

.

9

8

2

4

1

4

0

7

7

6

8

8

1

7

2

N

i

(

)

7

p

1

2

o

5

2

1

l

8

/

F

8

e

1

4

0

7

7

6

8

8

1

7

0

1

6

a

1

T

f

7

.

9

8

2

4

0

8

2

/

4

8

5

/

F

8

1

3

.

d

3

8

2

4

1

4

1

8

2

E

R

c

8

4

0

8

2

4

m

9

8

2

4

H

1

a

8

2

4

1

4

0

.

5

6

c

s

1

0

7

8

T

m

(

)

T

j

/

F

8

1

T

f

7

.

9

8

2

4

o

9

8

2

E

R

c

n

9

8

)

T

j

/

8

s

2

E

(

)

T

j

8

2

4

0

0

7

.

9

8

2

4

3

8

8

4

o

0

7

.

7

.

9

8

2

4

6

1

4

f

7

.

9

8

2

4

m

.

2

4

1

4

0

7

5

3

8

.

5

6

T

m

(

)

7

.

9

3

3

2

4

2

7

.

7

p

f

5

7

.

y

t

5

g

T

f

.

9

8

2

6

1

4

<

0

6

4

u

3

6

5

s

	Informix Documentation Website
	IDS 10.0 Documentation Website
	Master Index Enterprise Edition
	Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Documentation Conventions
	Typographical Conventions
	Feature, Product, and Platform
	Syntax Diagrams
	How to Read a Command-Line Syntax Diagram
	Keywords and Punctuation
	Identifiers and Names

	Example Code Conventions

	Additional Documentation
	Installation Guides
	Online Notes
	Locating Online Notes
	Online Notes Filenames

	Informix Error Messages
	Manuals
	Online Manuals
	Printed Manuals

	Online Help

	Accessibility
	IBM Informix Dynamic Server Version 10.0 and CSDK Version 2.90 Documentation Set
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	Chapter 1. R-Tree Secondary Access Method Concepts
	About Access Methods
	The R-Tree Secondary Access Method
	R-Tree Index Structure
	Bounding Boxes
	Bounding-Box-Only R-Tree Indexes
	Hierarchical Index Structure

	Searching with an R-Tree Index
	Nearest-Neighbor Searching
	Inserting into an R-Tree Index
	R-Link Trees and Concurrency

	About Operator Classes
	R-Tree Functionality That IBM Provides
	IBM Informix Dynamic Server
	R-Tree Secondary Access Method DataBlade Module
	Contents of the DataBlade Module
	DataBlade Module Registration

	IBM Informix DataBlade Modules That Use the R-Tree Access Method

	Chapter 2. Using the R-Tree Secondary Access Method
	Before You Begin
	Creating R-Tree Indexes
	Syntax
	R-Tree Index Parameters
	Bottom-Up Building of R-Tree Indexes
	Using the NO_SORT Index Parameter
	R-Tree Index Options
	Using the FRAGMENT Clause
	Using the IN Clause

	Examples of Creating R-Tree Indexes

	When Does the Query Optimizer Use an R-Tree Index?
	Complex Qualifications

	R-Tree Indexes and Null Values
	How an R-Tree Index Internally Handles Null Values
	How Strategy Functions Handle Null Values

	Performing Nearest-Neighbor Searches
	Limitations
	Example

	Database Isolation Levels and R-Tree Indexes
	Functional R-Tree Indexes

	Chapter 3. Developing DataBlade Modules That Use the R-Tree Secondary Access Method
	Overview of DataBlade Module Development
	Deciding Whether to Use the R-Tree Access Method
	Designing a User-Defined Data Type
	Data Objects and Bounding Boxes
	Operations on Data Objects
	Operations on Bounding Boxes
	Internal C Structure for the User-Defined Data Type

	Data Type Hierarchies
	Example Data Type Hierarchy
	Strategy Functions in a Data Type Hierarchy
	Union Support Function in a Data Type Hierarchy

	Maximum Size of the User-Defined Data Type
	Loose Bounding Box Calculations
	Other User-Defined Data Type Design Considerations

	Creating a New Operator Class
	Support Functions
	Internal Uses of the Support Functions
	The Union Function
	The Size Function
	The Inter Function
	The RtreeInfo Function
	The SFCbits Function
	The ObjectLength Function
	The SFCvalue Function
	The SetUnion Function
	Implicit Casts
	Example of Creating a Support Function

	Strategy Functions
	Internal Uses of the Strategy Functions
	The Overlap Function
	The Equal Function
	The Contains Function
	The Within Function
	Other Strategy Functions
	Example of Creating a Strategy Function

	Selectivity and Cost Functions
	Syntax for Creating a New Operator Class

	Setting Up Nearest-Neighbor Searching
	Setting Up a Strategy Function for Nearest-Neighbor Searching
	The Distance-Measuring Function
	Distance Function: Using Bounding Boxes
	Setting RtreeInfo to Indicate Nearest-Neighbor Functions

	Creating Registration Scripts for Dependent DataBlade Modules
	Importing the ifxrltree Interface Object

	Chapter 4. Managing Databases That Use the R-Tree Secondary Access Method
	Performance Tips
	Updating Statistics
	Deletions
	Effectiveness of Bounding Box Representation
	Clustering Spatial Data on the Disk

	Returning the Coordinates of the Root Bounding Box
	Syntax

	Estimating the Size of an R-Tree Index
	Calculating Index Size Based on Number of Rows
	Using the oncheck Utility to Calculate Index Size

	R-Tree Index and Logging
	Description of the R-Tree-Specific Logical-Log Records
	Logical-Log Records of Insertions of Items into a Leaf Page
	Logical-Log Records of Deletions of Items from a Leaf Page

	Using the onlog Utility to View R-Tree Logical-Log Records

	System Catalogs
	sysams
	sysopclasses
	sysindices

	Checking R-Tree Indexes with the oncheck Utility
	Checking Pages with the -ci and -cI Options
	Checking Pages with the -pT Option
	Checking Pages with the -pk and -pK Options
	Checking Pages with the -pl and -pL Options
	Other Options with -u

	Appendix A. Shapes3 Sample DataBlade Module
	Appendix B. Accessibility
	Glossary
	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

