
IBM Informix
Virtual-Index Interface
Programmer’s Guide
Version 9.4
March 2003
Part No. CT1TCNA

ii IBM Informix Virtual-I
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
ndex Interface Programmer’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Types of Users 3
Software Dependencies 3
Assumptions About Your Locale. 4
Demonstration Database 4

New Features . 5
New Features in Dynamic Server, Version 9.4 5
New Features in Dynamic Server, Version 9.3 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7
Syntax Conventions 8
Command-Line Conventions 12
Sample-Code Conventions 13

Additional Documentation 14
Related Reading 16
Compliance with Industry Standards 17
IBM Welcomes Your Comments 17

Chapter 1 What Is a Virtual-Index Access Method?
In This Chapter 1-3
Built-in Access Methods 1-3
User-defined Access Methods 1-4

Access to Storage Spaces 1-5
Seamless Use of SQL 1-5

Access-Method Components 1-6
Provided Components 1-7
Components That You Provide 1-13

iv IBM In
Access Method Flow 1-17
Locating Purpose Functions 1-17
Invoking Purpose Functions 1-19
Calling Functions From a Purpose Function 1-20
Improving An Access Method 1-22

Chapter 2 Developing an Access Method
In This Chapter 2-3
Choosing Features 2-4
Writing Purpose Functions 2-4

Starting and Ending Processing 2-7
Creating and Dropping Database Objects 2-7
Optimizing Queries 2-8
Inserting, Deleting, and Updating Data 2-10

Registering Purpose Functions 2-10
Registering the Access Method 2-11
Specifying an Operator Class 2-13

Writing or Choosing Strategy and Support Functions 2-14
Registering Strategy and Support Functions 2-14
Registering the Operator Class 2-16
Adding a Default Operator Class to the Access Method . . . 2-17

Testing the Access Method 2-17
Creating and Specifying Storage Spaces 2-18
Inserting, Querying, and Updating Data. 2-22
Checking Data Integrity 2-23

Dropping an Access Method 2-24

Chapter 3 Design Decisions
In This Chapter 3-3
Storing Data in Shared Memory 3-3

Functions that Allocate and Free Memory 3-3
Memory-Duration Options 3-4
Persistent User Data. 3-5

Accessing Database and System Catalog Tables 3-7
Handling the Unexpected 3-8

Using Callback Functions 3-8
Using Error Messages 3-10

Supporting Data Definition Statements 3-12
Interpreting the Table Descriptor 3-12
Managing Storage Spaces 3-12
formix Virtual-Index Interface Programmer’s Guide

Providing Configuration Keywords 3-19
Building New Indexes Efficiently. 3-20
Enabling Alternative Indexes 3-22

Supporting Multiple-Column Index Keys 3-25
Using FastPath 3-27

Obtaining the Routine Identifier 3-27
Reusing the Function Descriptor 3-28

Processing Queries 3-29
Interpreting the Scan Descriptor 3-29
Interpreting the Qualification Descriptor 3-30

Enhancing Performance 3-39
Executing in Parallel 3-39
Bypassing Table Scans 3-41
Buffering Multiple Results 3-42

Supporting Data Retrieval, Manipulation, and Return 3-44
Enforcing Unique-Index Constraints 3-44
Checking Isolation Levels 3-45
Converting to and from Row Format 3-47
Determining Transaction Success or Failure 3-48

Supplying Error Messages and a User Guide 3-49
Avoiding Database Server Exceptions 3-50
Notifying the User About Access-Method Constraints . . . 3-52
Documenting Nonstandard Features 3-53

Chapter 4 Purpose-Function Reference
In This Chapter 4-3
Purpose-Function Flow 4-3

ALTER FRAGMENT Statement Interface 4-4
CREATE Statement Interface 4-8
DROP Statement Interface 4-9
INSERT, DELETE, and UPDATE Statement Interface 4-9
SELECT...WHERE Statement Interface 4-12
oncheck Utility Interface. 4-12

Purpose-Function Syntax 4-13
am_beginscan 4-14
am_check 4-16
am_close 4-21
am_create 4-22
am_delete 4-24
am_drop 4-26
Table of Contents v

vi IBM In
am_endscan 4-27
am_getbyid. 4-28
am_getnext 4-30
am_insert 4-33
am_open 4-35
am_rescan 4-37
am_scancost 4-38
am_stats . 4-42
am_update 4-44

Chapter 5 Descriptor Function Reference
In This Chapter 5-5
Descriptors . 5-6

Key Descriptor 5-8
Qualification Descriptor 5-9
Row Descriptor 5-11
Row-ID Descriptor 5-12
Scan Descriptor 5-13
Statistics Descriptor 5-15
Table Descriptor 5-16
Include Files 5-18

Accessor Functions 5-19
mi_id_fragid() 5-20
mi_id_rowid() 5-21
mi_id_setfragid() 5-22
mi_id_setrowid() 5-23
mi_istats_setclust() 5-24
mi_istats_set2lval() 5-25
mi_istats_set2sval() 5-26
mi_istats_setnlevels() 5-27
mi_istats_setnleaves() 5-28
mi_istats_setnunique() 5-29
mi_key_funcid() 5-30
mi_key_nkeys() 5-32
mi_key_opclass() , mi_key_opclass_name(). 5-33
mi_key_opclass_nstrat() 5-35
mi_key_opclass_nsupt() 5-37
mi_key_opclass_strat() 5-39
mi_key_opclass_supt() 5-41
mi_qual_boolop() 5-43
mi_qual_column() 5-45
mi_qual_commuteargs() 5-47
formix Virtual-Index Interface Programmer’s Guide

mi_qual_constant() 5-48
mi_qual_constant_nohostvar() 5-50
mi_qual_constisnull(). 5-52
mi_qual_constisnull_nohostvar() 5-53
mi_qual_const_depends_hostvar() 5-55
mi_qual_const_depends_outer() 5-57
mi_qual_funcid() 5-58
mi_qual_funcname() 5-60
mi_qual_handlenull(). 5-61
mi_qual_issimple() 5-62
mi_qual_needoutput() 5-63
mi_qual_negate() 5-64
mi_qual_nquals() 5-65
mi_qual_qual() 5-66
mi_qual_setoutput() 5-67
mi_qual_setreopt(). 5-68
mi_qual_stratnum() 5-69
mi_scan_forupdate() 5-70
mi_scan_isolevel() 5-71
mi_scan_locktype() 5-73
mi_scan_nprojs() 5-74
mi_scan_newquals() 5-75
mi_scan_projs() 5-76
mi_scan_quals() 5-77
mi_scan_setuserdata() 5-78
mi_scan_table() 5-80
mi_scan_userdata() 5-81
mi_tab_amparam() 5-82
mi_tab_check_msg() 5-84
mi_tab_check_is_recheck() 5-87
mi_tab_check_set_ask() 5-89
mi_tab_createdate() 5-91
mi_tab_isindex() 5-92
mi_tab_isolevel() 5-93
mi_tab_keydesc() 5-95
mi_tab_mode() 5-96
mi_tab_name() 5-98
mi_tab_nextrow() 5-99
mi_tab_niorows() 5-101
mi_tab_nparam_exist() 5-102
mi_tab_numfrags() 5-103
mi_tab_owner() 5-104
Table of Contents vii

viii IBM
mi_tab_param_exist() 5-105
mi_tab_partnum() 5-106
mi_tab_rowdesc() 5-107
mi_tab_setnextrow() 5-108
mi_tab_setniorows(). 5-110
mi_tab_setuserdata() 5-112
mi_tab_spaceloc() 5-114
mi_tab_spacename() 5-115
mi_tab_spacetype() 5-117
mi_tab_unique() 5-118
mi_tab_update_stat_mode() 5-119
mi_tab_userdata() 5-120

Chapter 6 SQL Statements for Access Methods
In This Chapter 6-3

ALTER ACCESS_METHOD 6-4
CREATE ACCESS_METHOD 6-7
DROP ACCESS_METHOD 6-9
Purpose Options 6-11

Appendix A Notices

Index
 Informix Virtual-Index Interface Programmer’s Guide

Introduction
Introduction
In This Introduction 3

About This Manual 3
Types of Users 3
Software Dependencies 3
Assumptions About Your Locale 4
Demonstration Database 4

New Features . 5
New Features in Dynamic Server, Version 9.4 5
New Features in Dynamic Server, Version 9.3 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Feature, Product, and Platform Icons 7
Compliance Icons 8

Syntax Conventions 8
Elements That Can Appear on the Path 9
How to Read a Syntax Diagram 11

Command-Line Conventions 12
How to Read a Command-Line Diagram 13

Sample-Code Conventions 13

Additional Documentation 14

Related Reading . 16

Compliance with Industry Standards 17

IBM Welcomes Your Comments 17

2 IBM In
formix Virtual-Index Interface Programmer’s Guide

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This manual explains how to create a secondary access method with the
Virtual-Index Interface (VII) to extend the built-in indexing schemes of
IBM Informix Dynamic Server, typically with a DataBlade module.

Types of Users
This manual is written for experienced C programmers who develop
secondary access methods, including:

� Partners and third-party programmers who have index require-
ments that the B-tree and R-tree indexes do not accommodate

� Engineers who support Informix customers, partners, and third-
party developers

Before you develop an access method, you should be familiar with creating
user-defined routines and programming with the DataBlade API.

Software Dependencies
This manual assumes that you are using IBM Informix Dynamic Server,
Version 9.4, as your database server.
Introduction 3

Assumptions About Your Locale
Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets.
All culture-specific information is brought together in a single environment,
called a Global Language Support (GLS) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for date, time, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the IBM Informix GLS User’s
Guide.

Demonstration Database
The DB-Access utility, which is provided with the IBM Informix database
server products, includes one or more of the following demonstration
databases:

� The stores_demo database illustrates a relational schema with infor-
mation about a fictitious wholesale sporting-goods distributor.
Many examples in IBM Informix manuals are based on the
stores_demo database.

� The sales_demo database illustrates a dimensional schema for data-
warehousing applications. For conceptual information about
dimensional data modeling, see the IBM Informix Database Design and
Implementation Guide.

For information about how to create and populate the demonstration
databases, see the IBM Informix DB-Access User’s Guide. For descriptions of the
databases and their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.
4 IBM Informix Virtual-Index Interface Programmer’s Guide

New Features
New Features

New Features in Dynamic Server, Version 9.4
There are no new VII extensibility enhancements in IBM Informix Dynamic
Server, Version 9.4.

New Features in Dynamic Server, Version 9.3
This manual describes the following VII extensibility enhancements for
Version 9.3:

� A WHERE clause can specify criteria that involve multiple indexes.

� The IFX_VH_NOPIDXBLD environment variable forces creation of all
fragmented virtual indexes to occur serially, rather than in parallel.

For a comprehensive list of new features, see the Getting Started Guide, or see
the Release Notes for your IBM Informix product.

Documentation Conventions
This section describes the conventions that this manual uses. These
conventions make it easier to gather information from this and other volumes
in the documentation set.
Introduction 5

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of one or more product- or
platform-specific paragraphs.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.
6 IBM Informix Virtual-Index Interface Programmer’s Guide

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-specific, product-specific, or platform-specific information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that relates to the IBM Informix
Global Language Support (GLS) feature

Identifies information that is specific to UNIX platforms

Identifies information that is specific to the Windows
environment

GLS

UNIX

Windows
Introduction 7

Syntax Conventions
These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

This icon can apply to an entire section or to one or more paragraphs within
a section. If an icon appears next to a section heading, the information that
applies to the indicated feature, product, or platform ends at the next heading
at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Syntax Conventions
This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Icon Description

Identifies information that is an Informix extension to
ANSI SQL-92 entry-level standard SQL

+

Figure 1
Example of a Simple Syntax Diagram

OFF

SET EXPLAIN ON
8 IBM Informix Virtual-Index Interface Programmer’s Guide

Syntax Conventions
Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise. Unless
otherwise noted, at least one blank character separates syntax elements.

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; however, you can use
either uppercase or lowercase letters.

(. , ; @ + * - /) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

' ' Single quotes are literal symbols that you must enter
as shown.

variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram
at this point. When a page number is not specified, the
subdiagram appears on the same page.

A reference in a box in the upper-right corner of a
subdiagram refers to the next higher-level diagram of
which this subdiagram is a member.

(1 of 2)

ADD
Clause
p. 3-288

ADD Clause

Back to ADD Clause
p. 1-14
Introduction 9

Syntax Conventions
An icon is a warning that this path is valid only for
some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.

These icons might appear in a syntax diagram:

This path is valid only for DB-Access.

This path is valid only for IBM Informix
ESQL/C.

A shaded option is the default action.

Syntax within a pair of arrows is a subdiagram.

The vertical line terminates the syntax diagram.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

A set of multiple branches indicates that a choice
among more than two different paths is available.

A loop indicates a path that you can repeat.
Punctuation along the top of the loop indicates the
separator symbol for list items. If no symbol appears,
a blank space is the separator.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is
part of a larger loop. You can specify size no more than
three times within this statement segment.

Element Description

(2 of 2)

E/C

DB

E/C

ALL

NOT

NULLIS

ERROR

WARNING

NOT FOUND

statement

variable

,

size

,

3

3

10 IBM Informix Virtual-Index Interface Programmer’s Guide

Syntax Conventions
How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses most of the path elements that the
previous table lists.

To use this diagram to construct a statement, start at the top left with the
keyword DELETE FROM. Then follow the diagram to the right, proceeding
through the options that you want.

Figure 2 illustrates the following steps:

1. Type DELETE FROM.

2. You can delete a table, view, or synonym:

� Type the table name, view name, or synonym, as you desire.

� You can type WHERE to limit the rows to delete.

� If you type WHERE and you are using DB-Access or the SQL Editor,
you must include the Condition clause to specify a condition to
delete. To find the syntax for specifying a condition, go to the
“Condition” segment on the specified page.

� If you are using ESQL/C, you can include either the Condition
clause to delete a specific condition or the CURRENT OF cursor
clause to delete a row from the table.

3. Follow the diagram to the terminator.

Your DELETE statement is complete.

Figure 2
Example of a Syntax Diagram

Condition
p. 4-5

DELETE FROM

WHERE

CURRENT OF cursor

view

synonym

table

E/C
Introduction 11

Command-Line Conventions
Command-Line Conventions
This section defines and illustrates the format of commands that are available
in IBM Informix products. These commands have their own conventions,
which might include alternative forms of a command, required and optional
parts of the command, and so forth.

You might encounter one or more of the following elements on a command-
line path.

Element Description

command This required element is usually the product name or other short
word that invokes the product or calls the compiler or preprocessor
script for a compiled IBM Informix product. It might appear alone
or precede one or more options. You must spell a command exactly
as shown and use lowercase letters.

variable A word in italics represents a value that you must supply, such as a
database, file, or program name. A table following the diagram
explains the value.

-flag A flag is usually an abbreviation for a function, menu, or option
name, or for a compiler or preprocessor argument. You must enter
a flag exactly as shown, including the preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow a variable
that represents a filename. Type this extension exactly as shown,
immediately after the name of the file. The extension might be
optional in certain products.

(. , ; + * - /) Punctuation and mathematical notations are literal symbols that
you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter as shown.
12 IBM Informix Virtual-Index Interface Programmer’s Guide

Sample-Code Conventions
How to Read a Command-Line Diagram

Figure 3 shows a command-line diagram that uses some of the elements that
are listed in the previous table.

To construct a command correctly, start at the top left with the command.
Follow the diagram to the right, including the elements that you want. The
elements in the diagram are case sensitive.

Figure 3 illustrates the following steps:

1. Type setenv.

2. Type INFORMIXC.

3. Supply either a compiler name or a pathname.

After you choose compiler or pathname, you come to the terminator.
Your command is complete.

4. Press RETURN to execute the command.

Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed in the example, they are not delimited
by semicolons. For instance, you might see the code in the following
example:

CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

Figure 3
Example of a Command-Line Diagram

pathname

compilersetenv INFORMIXC
Introduction 13

Additional Documentation
To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access, you must delimit
multiple statements with semicolons. If you are using an SQL API, you must
use EXEC SQL at the start of each statement and a semicolon (or other appro-
priate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation
IBM Informix Dynamic Server documentation is provided in a variety of
formats:

� Online manuals. The documentation CD in your media pack allows
you to print the product documentation. You can obtain the same
online manuals at the IBM Informix Online Documentation site at
http://www-3.ibm.com/software/data/informix/pubs/library/.

� Online help. This facility provides context-sensitive help, an error
message reference, language syntax, and more.

� Documentation notes and release notes. Documentation notes,
which contain additions and corrections to the manuals, and release
notes are located in the directory where the product is installed.

Please examine these files because they contain vital information
about application and performance issues.

The following table describes these files.
14 IBM Informix Virtual-Index Interface Programmer’s Guide

Additional Documentation
On UNIX platforms, the following online files appear in the
$INFORMIXDIR/release/en_us/0333 directory.

Online File Purpose

ids_vii_docnotes_9.40.html The documentation notes file for your
version of this manual describes topics
that are not covered in the manual or that
were modified since publication.

ids_release_notes_9.40.html The release notes file describes feature
differences from earlier versions of
IBM Informix products and how these
differences might affect current products.
This file also contains information about
any known problems and their
workarounds.

ids_machine_notes_9.40.txt The machine notes file describes any
special actions that you must take to
configure and use IBM Informix products
on your computer. Machine notes are
named for the product described.

♦

UNIX
Introduction 15

Related Reading
The following items appear in the Informix folder. To display this
folder, choose Start�Programs�Informix� Documentation Notes
or Release Notes from the task bar.

Machine notes do not apply to Windows platforms. ♦
� Error message files. IBM Informix software products provide ASCII

files that contain all of the error messages and their corrective
actions. For a description of these error messages, see IBM Informix
Error Messages on the IBM Informix Online Documentation site at
http://www-3.ibm.com/software/data/informix/pubs/library/.

To read the error messages on UNIX, you can use the finderr com-
mand to display the error messages online. ♦
To read error messages and corrective actions on Windows, use the
Informix Error Messages utility. To display this utility, choose
Start�Programs�Informix from the task bar. ♦

Related Reading
For a list of publications that provide an introduction to database servers and
operating-system platforms, refer to your Getting Started Guide.

Program Group Item Description

Documentation Notes This item includes additions or corrections to
manuals with information about features that
might not be covered in the manuals or that
have been modified since publication.

Release Notes This item describes feature differences from
earlier versions of IBM Informix products and
how these differences might affect current
products. This file also contains information
about any known problems and their
workarounds.

Windows

UNIX

Windows
16 IBM Informix Virtual-Index Interface Programmer’s Guide

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.
Introduction 17

1
Chapter
What Is a Virtual-Index Access
Method?
In This Chapter . 1-3

Built-in Access Methods 1-3

User-defined Access Methods 1-4
Access to Storage Spaces 1-5
Seamless Use of SQL 1-5

Access-Method Components 1-6
Provided Components 1-7

Virtual-Index Interface 1-7
DataBlade API. 1-11
SQL Extensions 1-12
API Libraries 1-12

Components That You Provide 1-13
Purpose Functions 1-13
User-Defined Routines and Header Files. 1-15
Operator Class. 1-16
User Messages and Documentation 1-16

Access Method Flow 1-17
Locating Purpose Functions 1-17
Invoking Purpose Functions 1-19
Calling Functions From a Purpose Function 1-20
Improving An Access Method 1-22

1-2 IBM
 Informix Virtual-Index Interface Programmer’s Guide

In This Chapter
This chapter explains the following subjects:

� The term access method

� Why you create user-defined access methods

� How you create user-defined access methods

Warning: This manual is specifically for customers and DataBlade partners devel-
oping alternative access methods for Dynamic Server. The interface described in this
manual is being continually enhanced and modified. Customers and partners who
use this interface should work with an technical support representative to ensure that
they continue to receive the latest information and that they are prepared to change
their access method.

Built-in Access Methods
An access method consists of software routines that open files, retrieve data
into memory, and write data to permanent storage such as a disk.

A primary access method provides a relational-table interface for direct read
and write access. A primary access method reads directly from and writes
directly to source data. It provides a means of combining data from multiple
sources in a common relational format that the database server, users, and
application software can use.

A secondary access method provides a means of indexing data for alternate or
accelerated access. An index consists of entries, each of which contains one or
more key values, and a pointer to the row in a table that contains the corre-
sponding value or values. The secondary access method maintains the index
to coincide with inserts, deletes, and updates to the primary data.
Access Methods 1-3

User-defined Access Methods
Dynamic Server recognizes both built-in and user-defined access methods.
Although an index typically points to table rows, an index can point to values
within smart large objects or to records from external data sources.

The database server provides the following built-in access methods:

� The built-in primary access method scans, retrieves, and alters rows
in Informix relational tables.

By default, tables that you create with the CREATE TABLE statement
use the built-in primary access method.

� The built-in secondary access method is a generic B-tree index.

By default, indexes that you create with the CREATE INDEX state-
ment use this built-in secondary access method. For more
information about the built-in B-tree index, refer to the IBM Informix
Guide to SQL: Syntax.

Tip: The R-tree secondary access method is also provided. For more information, see
the “IBM Informix R-Tree Index User’s Guide.”

User-defined Access Methods
This manual explains how to create secondary access methods that provide
SQL access to non-relational and other data that does not conform to built-in
access methods. For example, a user-defined access method might retrieve
data from an external location or manipulate specific data within a smart
large object.

An access method can make any data appear to the end user as rows from an
internal relational table or keys in an index. With the help of an access
method, the end user can apply SQL statements to retrieve nonstandard data.
Because the access method creates rows from the data that it accesses,
external or smart-large-object data can join with other data from an internal
database.

This manual refers to the index that the access method presents to the end
user as a virtual index.
1-4 IBM Informix Virtual-Index Interface Programmer’s Guide

Access to Storage Spaces
Access to Storage Spaces
The database server allows a user-defined access-method access to either of
the following types of storage spaces:

� A smart large object, which resides in an sbspace

The database server can log, back up, and recover smart large
objects.

� An external index, which resides in an extspace

An extspace refers to a storage location that the Informix database
server does not manage. For example, an extspace might refer to a
path and filename that the operating system manages or another
database that a different database manager controls.

The database server does not provide transaction, backup, or recov-
ery services for data that resides in an extspace.

For more information about how to choose the storage spaces that the user-
defined access method will support, refer to “Managing Storage Spaces” on
page 3-12.

Seamless Use of SQL
With the aid of a user-defined secondary access method, an SQL statement
can use one or more indexes.

Further, with the aid of a user-defined secondary access method, indexes can
provide access to the following extended data:

� User-defined types

� Data inside a smart large object

� External data sources

� Nonrelational data

In addition, with the aid of a user-defined secondary access method, an index
can contain any of the following key types:

� Return values from a user-defined function

� Approximate values such as stem words for a full-text search
Access Methods 1-5

Access-Method Components
� Attributes of data such as length

� Relative position to other data in a hierarchy or area of space

The end user can use SQL to access both Informix data and virtual index data.
A virtual index requires a user-defined access method to make the data in the
index accessible to Dynamic Server. In Figure 1-1, a single application
processes Informix data as well as virtual data in an external location and
smart-large-object storage.

Access-Method Components
When you add an access method to Dynamic Server, you add, or register, a
collection of C user-defined routines (UDRs) in the system catalog. These
UDRs take advantage of an IBM Informix application programming interface,
the Virtual-Index Interface (VII).

Figure 1-1
An Application Using a Secondary Access Method

Dynamic Server

Virtual index

(Stored in an sbspace)

Informix tableB-tree index

Client program

SQL engine

User-defined secondary access-method

Built-in secondary access-method

Virtual index

(Stored in an extspace)

Informix table

Informix table
1-6 IBM Informix Virtual-Index Interface Programmer’s Guide

Provided Components
Provided Components
The following application program interface support is provided for the
development of user-defined access methods:

� Virtual-Index Interface

� DataBlade API

� Access-method specific SQL extensions

� Additional IBM Informix API libraries, as needed

Virtual-Index Interface

The Virtual-Index Interface (VII) consists of the following items:

� Purpose functions

� Descriptors

� Accessor functions

Purpose Functions

The database server calls user-defined purpose functions to pass SQL statement
specifications and state information to the access method. The following
special traits distinguish purpose functions from other user-defined routines
(UDRs):

� A purpose function conforms to a predefined syntax.

The purpose-function syntax describes the parameters and valid
return values, but the access method developer chooses a unique
function name.

� The database server calls a purpose function as the entry point into
the access method for a specific access-method task.

� Each SQL statement results in specific purpose-function calls.

� The sysams system catalog table contains the unique function name
for each purpose function.

� The database server substitutes calls to purpose functions for calls to
built-in access-method modules.
Access Methods 1-7

Provided Components
For example, when the database server encounters a CREATE INDEX
statement, it invokes an access-method function with the following required
parameter and return value types:

mi_integer am_create(MI_AM_TABLE_DESC *)

To determine which UDR provides the entry point for index creation in this
example, the database server looks for the function identifier in the
am_create column of the sysams system catalog. The database server then
calls that UDR and passes, by reference, an MI_AM_TABLE_DESC structure
that contains data-definition information.

The access-method developer provides the program code inside the purpose
function to create the new index structure. When the purpose function exits,
the access-method returns a prespecified value to indicate success or failure.

For information about the access-method developer’s contribution to
purpose functions, refer to “Components That You Provide” on page 1-13.
For the syntax and usage of each purpose function, refer to Chapter 4,
“Purpose-Function Reference.”

Descriptors

Descriptors are predefined opaque data types that the database server creates
to exchange information with a Datablade module or an access method. The
VII provides several descriptors in addition to those that the DataBlade API
provides. An access-method descriptor contains the specifications from an
SQL statement or oncheck request as well as relevant information from the
system catalog.

The database server passes descriptors by reference as arguments to purpose
functions. The following list highlights only a few access-method descriptors
to illustrate the type of information that the database server passes to an
access method. For detailed information about all the VII descriptors, refer to
the “Descriptors” on page 5-6.
1-8 IBM Informix Virtual-Index Interface Programmer’s Guide

Provided Components
Descriptor Name and
Structure Database Server Entries in the Descriptor

table descriptor

MI_AM_TABLE_DESC

The database server puts CREATE INDEX specifications in the table descriptor,
including the following items:

� Identification by index name, owner, storage space, and current fragment

� Structural details, such as the number of fragments in the whole index, column
names, and data types

� Optional user-supplied parameters

� Constraints such as read/write mode and unique keys

scan descriptor

MI_AM_SCAN_DESC

The database server puts SELECT statement specifications in the scan descriptor,
including the following items:

� Index-key columns

� Lock type and isolation level

� Pointers to the table descriptor and the qualification descriptor

qualification descriptor

MI_AM_QUAL_DESC

In the qualification descriptor, the database server describes the functions and
Boolean operators that a WHERE clause specifies.

A qualification function tests the value in a column against a constant or value
that an application supplies. The following examples test the value in the price
column against the constant value 80.

WHERE lessthan(price,80)
WHERE price < 80

The qualification descriptor for a function identifies the following items:

� Function name

� Arguments that the WHERE clause passes to the function

� Negation (NOT) operator, if any

A complex qualification combines the results of two previous qualifications with
an AND or OR operation, as the following example shows:

WHERE price < 80 AND cost > 60

A complex qualification descriptor contains each Boolean AND or OR operator
from the WHERE clause.

For examples, refer to “Interpreting the Qualification Descriptor” on page 3-30.
Access Methods 1-9

Provided Components
Descriptors reserve areas where the access method stores information. An
access method can also allocate user-data memory of a specified duration
and store a pointer to the user-data in a descriptor, as the following list
shows.

To allocate memory for a specific duration, the access method specifies a
duration keyword. For example, the following command allocates
PER_STATEMENT memory:

my_data = (my_data_t *) mi_dalloc(sizeof(my_data_t),
PER_STATEMENT)

Descriptor Name and
Structure Access Method Entries in the Descriptor

table descriptor

MI_AM_TABLE_DESC

To share state information among multiple purpose functions, the access
method can allocate user-data memory with a PER_STATEMENT duration and
store a pointer to the user data in the table descriptor. PER_STATEMENT
memory lasts for the duration of an SQL statement, for as long as the accessed
index is open.

For example, an access method might execute DataBlade API functions that
open smart large objects or files and store the values, or handles, that the
functions return in PER_STATEMENT memory.

scan descriptor

MI_AM_SCAN_DESC

To maintain state information during a scan, an access method can allocate user-
data memory with a PER_COMMAND duration and store a pointer to the user
data in the scan descriptor.

For example, as it scans an index, the access method can maintain a pointer in
PER_COMMAND memory to the address of the current index entry.

qualification descriptor

MI_AM_QUAL_DESC

As it processes each qualification against a single index entry, the access method
can set the following items in the qualification descriptor:

� A host-variable value for a function with an OUT argument

� The MI_VALUE_TRUE or MI_VALUE_FALSE to indicate the result that each
function or Boolean operator returns

� An indicator that forces the database server to reoptimize between scans for
a join or subquery
1-10 IBM Informix Virtual-Index Interface Programmer’s Guide

Provided Components
Accessor Functions

Unlike purpose functions, the VII supplies the full code for each accessor
function. Accessor functions obtain and set specific information in
descriptors. For example, the access method can perform the following
actions:

� Call the mi_tab_name() accessor function to obtain the name of the
index from the table descriptor.

� Store state information, such as a file handle or LO handle, in shared
memory, and then call the mi_tab_setuserdata() to place the pointer
to the handle in the table descriptor so that subsequent purpose
functions can retrieve the handle.

For the syntax and usage of each accessor function, refer to “Accessor
Functions” on page 5-19.

DataBlade API

The DataBlade application programming interface includes functions and
opaque data structures that enable an application to implement C-language
UDRs. The access method uses functions from the DataBlade API that allocate
shared memory, execute user-defined routines, handle exceptions, construct
rows, and report whether a transaction commits or rolls back.

The remainder of this manual contains information about the specific
DataBlade API functions that an access method calls. For more information
about the DataBlade API, refer to the IBM Informix DataBlade API Programmer’s
Guide.
Access Methods 1-11

Provided Components
SQL Extensions

The Informix extension to ANSI SQL-92 entry-level standard SQL includes
statements and keywords that specifically refer to user-defined access
methods.

Registering the Access Method in a Database

The CREATE SECONDARY ACCESS_METHOD statement registers a user-
defined access method. When you register an access method, the database
server puts information in the system catalog that identifies the purpose
functions and other properties of the access method.

ALTER ACCESS_METHOD changes the registration information in the system
catalog, and DROP ACCESS_METHOD removes the access-method entries
from the system catalog.

For more information about the SQL statements that register, alter, or drop the
access method, refer to Chapter 6, “SQL Statements for Access Methods.”

Specifying an Access Method for a Virtual Index

The user needs a way to specify a virtual index in an SQL statement.

To create a virtual index with the CREATE INDEX statement, a user specifies
the USING keyword followed by the access-method name and, optionally,
with additional access-method-specific keywords.

With the IN clause, the user can place the virtual index in an extspace or
sbspace.

For more information about the SQL extensions specific to virtual indexes,
refer to “Supporting Data Definition Statements” on page 3-12 and
“Supporting Data Retrieval, Manipulation, and Return” on page 3-44.

API Libraries

Global Language Support with the IBM Informix GLS provides functions that
access Informix locales and support multibyte character sets. Use this API to
allow the access method to interpret international alphabets. For more infor-
mation, refer to the IBM Informix GLS Programmer’s Manual. ♦

GLS
1-12 IBM Informix Virtual-Index Interface Programmer’s Guide

Components That You Provide
For information about the complete set of APIs for Dynamic Server, refer to
the Getting Started Guide.

Components That You Provide
As the developer of a user-defined access method, you design, write, and test
the following components:

� Purpose functions

� Additional UDRs that the purpose functions call

� Operator-class functions

� User messages and documentation

Purpose Functions

A purpose function is a UDR that can interpret the user-defined structure of a
virtual index. You implement purpose functions in C to build, connect,
populate, query, and update indexes. The interface requires a specific
purpose-function syntax for each of several specific tasks.

Tip: To discuss the function call for a given task, this manual uses a column name
from the sysams system catalog table as the generic purpose-function name. For
example, this manual refers to the UDR that builds a new index as am_create. The
am_create column in sysams contains the registered UDR name that the database
server calls to perform the work of am_create.

Figure 1-2 shows the task that each purpose function performs and the
reasons that the database server invokes that purpose function. In Figure 1-2,
the list groups the purpose functions as follows:

� Data-definition

� File or smart-large-object access

� Data changes

� Scans

� Structure and data-integrity verification
Access Methods 1-13

Components That You Provide
Figure 1-2
Purpose Functions

Generic Name Description Invoking Statement or Command

am_create Creates a new virtual index and registers
it in the system catalog

CREATE INDEX
ALTER FRAGMENT

am_drop Drops an existing virtual index and
removes it from the system catalog

DROP INDEX

am_open Opens the file or smart large object that
contains the virtual index

Typically, am_open allocates memory to
store handles and pointers.

CREATE INDEX
DROP INDEX
DROP DATABASE
ALTER FRAGMENT
DELETE, UPDATE, INSERT
SELECT

am_close Closes the file or smart large object that
contains the virtual index and releases
any remaining memory that the access
method allocated

CREATE INDEX
ALTER FRAGMENT
DELETE, UPDATE, INSERT
SELECT

am_insert Inserts a new entry into a virtual index CREATE INDEX
ALTER FRAGMENT
INSERT
UPDATE key

am_delete Deletes an existing entry from a virtual
index

DELETE, ALTER FRAGMENT
UPDATE key

am_update Modifies an existing entry in a virtual
index

UPDATE

am_stats Builds statistics information about the
virtual index

UPDATE STATISTICS

am_scancost Calculates the cost of a scan for qualified
data in a virtual index

SELECT
INSERT, UPDATE, DELETE WHERE...

am_beginscan Initializes pointers to a virtual index, and
possibly parses the query statement,
prior to a scan

SELECT
INSERT, UPDATE, DELETE WHERE...

am_getnext Scans for the next index entry that
satisfies a query

SELECT
INSERT, UPDATE, DELETE WHERE...,
ALTER FRAGMENT

(1 of 2)
1-14 IBM Informix Virtual-Index Interface Programmer’s Guide

Components That You Provide
For more information about purpose functions, refer to the following
chapters:

� Chapter 2, “Developing an Access Method,” helps you decide which
purpose functions to provide and explains how to register them in a
database.

� Chapter 3, “Design Decisions,” describes some of the functionality
that you program and provides examples of program code.

� Chapter 4, “Purpose-Function Reference,” specifies syntax and
usage.

User-Defined Routines and Header Files

The database server calls a purpose function to initiate a specific task. Often,
the purpose function calls other modules in the access-method library. For
example, the scanning, insert, and update purpose functions might all call
the same UDR to check for valid data type.

A complete access method provides modules that convert data formats,
detect and recover from errors, commit and roll back transactions, and
perform other tasks. You provide the additional UDRs and header files that
complete the access method.

am_rescan Scans for the next item from a previous
scan to complete a join or subquery

SELECT
INSERT, UPDATE, DELETE WHERE...

am_endscan Releases resources that am_beginscan
allocates

SELECT
INSERT, UPDATE, DELETE WHERE...

am_check Performs a check on the physical
integrity of a virtual index

oncheck utility

Generic Name Description Invoking Statement or Command

(2 of 2)
Access Methods 1-15

Components That You Provide
Operator Class

The functions that operate on index keys of a particular data type make up
an operator class. The operator class has two types of functions:

� Strategy functions, which are operators that appear in SQL statements

For example, the function equal(column, constant) or the operator
expression column = constant appears in the WHERE clause of an
SQL query.

� Support functions that the access method calls

For example, the function compare(column, constant) might return a
value that indicates whether each index key is less than, equal to, or
greater than the specified constant.

The unique operator-class name provides a way to associate different kinds
of operators with different secondary access methods.

You designate a default operator class for the access method. If a suitable
operator class exists in the database server, you can assign it as the default. If
not, you program and register your own strategy and support functions and
then register an operator class.

For more information about operator classes, strategy functions, and support
functions, refer to IBM Informix User-Defined Routines and Data Types
Developer’s Guide.

User Messages and Documentation

You provide messages and a user guide that help end users apply the access
method in SQL statements and interpret the results of the oncheck utility.

A user-defined access method alters some of the functionality that the
database server manuals describe. The documentation that you provide
details storage-area constraints, deviations from the Informix implemen-
tation of SQL, configuration options, data types, error messages, backup
procedures, and extended features that the IBM Informix documentation
library does not describe.

For samples of user documentation that you must provide, refer to
“Supplying Error Messages and a User Guide” on page 3-49.
1-16 IBM Informix Virtual-Index Interface Programmer’s Guide

Access Method Flow
Access Method Flow
To apply a user-defined access method, the database server must locate the
access-method components, particularly the purpose functions.

Locating Purpose Functions
The SQL statements that register a purpose function and an access method
create records in the system catalog, which the database server consults to
locate a purpose function.

As the access-method developer, you write the purpose functions and
register them with the CREATE FUNCTION statement. When you register a
purpose function, the database server puts a description of it in the
sysprocedures system catalog table.

For example, assume you write a get_next_record() function that performs
the tasks of the am_getnext purpose function. Assume that as user informix,
you register the get_next_record() function. Depending on the operating
system, you use one of the following statements to register the function:

CREATE FUNCTION get_next_record(pointer,pointer,pointer)
RETURNS int
WITH (NOT VARIANT)
EXTERNAL NAME "$INFORMIXDIR/extend/am_lib.bld(get_next_record)"
LANGUAGE C
♦

CREATE FUNCTION get_next_record (pointer,pointer,pointer)
RETURNS int
WITH (NOT VARIANT)
EXTERNAL NAME "%INFORMIXDIR%\extend\am_lib.bld(get_next_record)"
LANGUAGE C
♦

The get_next_record() declaration has three generic pointer arguments to
conform with the prototype of the am_getnext purpose function. For a
detailed explanation of the arguments and return value, refer to the
description of am_getnext on page 4-30.

As a result of the CREATE FUNCTION statement, the sysprocedures system
catalog table includes an entry with values that are similar to the example in
Figure 1-3.

UNIX

Windows
Access Methods 1-17

Locating Purpose Functions
Figure 1-3
Partial sysprocedures Entry

You then register the access method with a CREATE SECONDARY
ACCESS_METHOD statement to inform the database server what function
from sysprocedures to execute for each purpose.

The following example registers the super_access access method and
identifies get_next_record() as the am_getnext purpose function.

CREATE SECONDARY ACCESS_METHOD super_access
(AM_GETNEXT = get_next_record)

The super_access access method provides only one purpose function. If user
informix executes the CREATE SECONDARY ACCESS_METHOD, the sysams
system catalog table has an entry similar to Figure 1-4.

Column Name Value

procname get_next_record

owner informix

procid 163

numargs 3

externalname $INFORMIXDIR/extend/am_lib.bld(get_next_record)
(on UNIX)

langid 1 (Identifies C in the syslanguages system catalog table)

paramtypes pointer,pointer,pointer

variant f (Indicates false or nonvariant)
1-18 IBM Informix Virtual-Index Interface Programmer’s Guide

Invoking Purpose Functions
Figure 1-4
Partial sysams Entry

Invoking Purpose Functions
When an SQL statement or oncheck command specifies a virtual index, the
database server executes one or more access-method purpose functions. A
single SQL command might involve a combination of the following purposes:

� Open a connection, file, or smart large object

� Create an index

� Scan and select data

� Insert, delete, or update data

� Drop an index

� Close the connection, file, or smart large object

A single oncheck request requires at least the following actions:

� Open a connection, file, or smart large object

� Check the integrity of an index

� Close the connection, file, or smart large object

For information about which purpose functions the database server executes
for specific commands, refer to “Purpose-Function Flow” on page 4-3.

Column Name Value

am_name super_access

am_owner informix

am_id 100 (Unique identifier that the database server assigns)

am_type S

am_sptype A

am_getnext 163 (Matches the procid value in the sysprocedures system
catalog table entry for get_next_record())
Access Methods 1-19

Calling Functions From a Purpose Function
The example in Figure 1-4 on page 1-19 specifies only the am_getnext
purpose for the super_access access method. A SELECT statement on a
virtual-index that uses super_access initiates the following database server
actions:

1. Gets the function name for am_getnext that the super_access entry
in sysams specifies; in this case get_next_record()

2. Gets the external file name of the executable from the
get_next_record() entry in the sysprocedures catalog

The CREATE FUNCTION statement on page 1-17 assigns the execut-
able file as follows.

3. Allocates memory for the descriptors that the database server passes
by reference through get_next_record() to the access method

4. Executes the am_getnext purpose function, get_next_record()

Calling Functions From a Purpose Function
A query might proceed as follows for the super_access access method, which
has only an am_getnext purpose function:

1. The access method am_getnext purpose function, get_next_record(),
uses DataBlade API functions to the initiate callback functions for
error handling.

2. The database server prepares a table descriptor to identify the index
that the query specifies, a scan descriptor to describe the query
projection, and a qualification descriptor to describe the query
selection criteria.

Operating
System External Executable-File Name

UNIX $INFORMIXDIR/extend/am_lib.bld(get_next_record)

Windows %INFORMIXDIR%\extend\am_lib.bld(get_next_
record)
1-20 IBM Informix Virtual-Index Interface Programmer’s Guide

Calling Functions From a Purpose Function
3. The database server passes a pointer to the scan descriptor through
get_next_record() to the access method. The scan descriptor, in turn,
points to the table descriptor and qualification descriptor in shared
memory.

4. The access method get_next_record() function takes the following
actions:

a. Calls VII accessor functions to retrieve the index description and
then calls DataBlade API functions to open that index

b. Calls accessor functions to retrieve the query projection and
selection criteria from the scan and qualification descriptors

c. Calls the DataBlade API function (usually mi_dalloc()) to
allocate memory for a user-data structure to hold the current
virtual-index data

d. Begins its scan

5. Each time that the access method retrieves a qualifying record, it
stores the row and fragment identifiers in the row-id descriptor.

6. The database server executes get_next_record() to continue scanning
until get_next_record() returns MI_NO_MORE_RESULTS to indicate
to the database server that the access method has identified every
qualifying row.

7. The access method calls a DataBlade API function to close the index
and release any allocated memory.

8. The database server reports the results to the user or application that
initiated the query.

The steps in the preceding example illustrate the interaction between the
database server, the access method, and the DataBlade API.
Access Methods 1-21

Improving An Access Method
Improving An Access Method
The super_access access method in the example has no purpose functions to
open or close files or smart large objects. The get_next_record() function
must open and close any data as well as keep an indicator that notifies
get_next_record() to open only at the start of the scan and close only after it
completes the scan.

The incomplete super_access access method example does not create a
virtual index because the example does not include an am_create purpose
function or add, delete, or update index entries.

To enable INSERT, DELETE, and UPDATE statements to execute, the access
method must provide registered UDRs for the am_open, am_close,
am_insert, am_delete, and am_update purpose functions.

For the access method to support nondefault character sets, the purpose
functions must also call the appropriate IBM Informix GLS routines. For more
information, refer to the IBM Informix GLS Programmer’s Manual. ♦

GLS
1-22 IBM Informix Virtual-Index Interface Programmer’s Guide

2
Chapter
Developing an Access Method
In This Chapter . 2-3

Choosing Features 2-4

Writing Purpose Functions 2-4
Starting and Ending Processing 2-7
Creating and Dropping Database Objects 2-7
Optimizing Queries 2-8

Providing Optimizer Information 2-8
Splitting a Scan 2-9

Inserting, Deleting, and Updating Data 2-10

Registering Purpose Functions 2-10

Registering the Access Method. 2-11

Specifying an Operator Class 2-13
Writing or Choosing Strategy and Support Functions 2-14
Registering Strategy and Support Functions 2-14

Making a Function Nonvariant 2-15
Granting Privileges 2-16

Registering the Operator Class 2-16
Adding a Default Operator Class to the Access Method 2-17

Testing the Access Method 2-17
Creating and Specifying Storage Spaces 2-18

Using Internal Storage 2-18
Using External Storage 2-19
Using Fragments 2-21
Avoiding Storage-Space Errors 2-22

2-2 IBM
Inserting, Querying, and Updating Data 2-22
Checking Data Integrity 2-23

Dropping an Access Method. 2-24
 Informix Virtual-Index Interface Programmer’s Guide

In This Chapter
This chapter describes the steps that you take to implement a user-defined
access method with the Virtual-Index Interface (VII).

To provide an access method

1. Choose the optional features that the access method supports.

2. Program and compile the C header files and purpose functions as
well as the modules that the purpose functions call.

3. Execute the CREATE FUNCTION statement to register each purpose
function in the sysprocedures system catalog table.

4. Execute the CREATE SECONDARY ACCESS_METHOD statement to
register the user-defined access method in the sysams system catalog
table.

5. If necessary, create support and strategy functions for an operator
class and then execute the CREATE FUNCTION to register the
functions in the sysprocedures system catalog table.

6. Execute the CREATE OPERATOR CLASS statement to register the
operator class in the sysopclasses system catalog table.

7. Test the access method in an end-user environment.

The rest of this chapter describes the preceding steps in more detail.
Developing an Access Method 2-3

Choosing Features
Choosing Features
The VII provides many optional features. Choose the features that you need
to fulfill the access-method specifications.

The following optional features support data definition:

� Data in extspaces, sbspaces, or both

� Fragmentation

� Unique indexes

� Alternative indexes on the same columns

� Multiple-column index keys

Support for the following optional features can contribute to access-method
performance:

� Clustered data

� Parallel-function execution

� More than one row returned per scan-function call

� More than one index entry inserted per insert-function call

� Key scan, which creates rows from index keys

� Complex qualifications

For more information about any of these optional features, refer to Chapter 3,
“Design Decisions.”

Writing Purpose Functions
The VII specifies the parameters and return values for a limited set of UDRs,
called purpose functions, that correspond to one or more SQL statements. For
most SQL statements, the database server attempts to invoke a sequence of
task-specific purpose functions to process the statement. You choose the tasks
and SQL statements that the access method supports and then write the
appropriate purpose functions for those tasks. For more information about
the specific purpose functions that the database server executes for specific
statements, refer to “Purpose-Function Flow” on page 4-3.
2-4 IBM Informix Virtual-Index Interface Programmer’s Guide

Writing Purpose Functions
Figure 2-1 shows purpose-function prototypes for access-method tasks and
one or more corresponding SQL statements. Figure 2-1 includes the purpose
function prototype that the database server calls to process the oncheck
utility.

Figure 2-1
Statements and Their Purpose Functions

Invoking Statement or Command Purpose-Function Prototype

All

If you do not supply am_open and
am_close, open and close the data
source in am_getnext.

am_open(MI_AM_TABLE_DESC *)
am_close(MI_AM_TABLE_DESC *)

CREATE INDEX am_create(MI_AM_TABLE_DESC *)
am_insert(MI_AM_TABLE_DESC *, MI_ROW *,
MI_AM_ROWID_DESC *)

DROP INDEX am_drop(MI_AM_TABLE_DESC *)

INSERT am_insert(MI_AM_TABLE_DESC *, MI_ROW *,
MI_AM_ROWID_DESC *)

DELETE am_delete(MI_AM_TABLE_DESC *,
MI_ROW *, MI_AM_ROWID_DESC *)

SELECT
INSERT, UPDATE, DELETE WHERE...

am_scancost(MI_AM_TABLE_DESC *, MI_AM_QUAL_DESC *)
am_beginscan(MI_AM_SCAN_DESC *)
am_getnext(MI_AM_SCAN_DESC *, MI_ROW **,
MI_AM_ROWID_DESC *)
am_endscan(MI_AM_SCAN_DESC *)

SELECT with join am_rescan(MI_AM_SCAN_DESC *)

UPDATE am_update(MI_AM_TABLE_DESC *, MI_ROW *,
MI_AM_ROWID_DESC *, MI_ROW *,MI_AM_ROWID_DESC *

UPDATE STATISTICS am_stats(MI_AM_TABLE_DESC *,MI_AM_ISTATS_DESC *)

oncheck utility am_check(MI_AM_TABLE_DESC *, mi_integer)
Developing an Access Method 2-5

Writing Purpose Functions
Important: Do not use the purpose label (am_open, am_create, am_getnext) as
the actual name of a user-defined purpose function. Avoid names such as vii_open,
vii_create, vii_*. Assign unique names, such as image_open, docfile_open, and
getnext_record. To prevent potential name-space collision, follow the instructions
for registering and using an object prefix in the “DataBlade Developers Kit User’s
Guide.”

When the database server calls a purpose function, it passes the appropriate
parameters for the current database server activity. Most parameters
reference the opaque descriptor data structures. The database server creates
and passes descriptors to describe the state of the index and the current SQL
statement or oncheck command. For an overview of descriptors, refer to
“Descriptors” on page 1-8, and for detailed information, refer to
“Descriptors” on page 5-6.

As you write the purpose functions, adhere to the syntax provided for each
in “Purpose-Function Syntax” on page 4-13.

At a minimum, you must supply one purpose function, the am_getnext
purpose function, to scan data. To determine which other purpose functions
to provide, decide if the access method should support the following tasks:

� Opening and initializing files or smart large objects, as well as
closing them again at the end of processing

� Creating new indexes

� Inserting, updating, or deleting data

� Running the oncheck utility

� Optimizing queries

Warning: The database server issues an error if a user or application tries to execute
an SQL statement and the access method does not include a purpose function to
support that statement.

The following sections name the functions that the database server calls for
the specific purposes in the previous list. The access-method library might
contain a separate function for each of several purpose-function prototypes
or supply only an am_getnext purpose function as the entry point for all the
essential access-method processing. For a detailed description of each
purpose function, refer to Chapter 4, “Purpose-Function Reference.”
2-6 IBM Informix Virtual-Index Interface Programmer’s Guide

Starting and Ending Processing
Starting and Ending Processing
Most SQL statements cause the database server to execute the function that
you register for am_open. To fulfill the am_open tasks, the function can open
a connection, store file- or smart-large-object handles, allocate user memory,
and set the number of entries that am_getnext returns.

At the end of processing, the database server calls the function that you
register for am_close. This close of access-method processing reverses the
actions of the am_open purpose function. It deallocates memory and can
write smart-large-object data to disk.

Creating and Dropping Database Objects
In response to a CREATE INDEX statement, the database server executes the
function that you register for am_create. If the database server does not find
a function name associated with am_create, it simply updates the appro-
priate system catalog tables to reflect the attributes of the index that CREATE
INDEX specifies.

The am_insert purpose function also pertains to CREATE INDEX. The
database server scans the table to read key values and then passes each key
value to am_insert.

If you supply a function for am_create, consider the necessity of also
providing a function to drop an index that the access method creates. The
database server executes the function that you register for am_drop in
response to a DROP TABLE, DROP INDEX, or DROP DATABASE statement. If
you do not provide a function to drop a virtual index, the database server
simply deletes any system catalog information that describes the dropped
object.
Developing an Access Method 2-7

Optimizing Queries
Optimizing Queries
To provide the optimum performance with an access method, perform the
following actions:

� Provide am_scancost and am_stats purpose functions.

� Split scan processing into am_beginscan, am_getnext, am_rescan,
and am_endscan purpose functions.

� Return more than one row from am_getnext or am_rescan, as
“Buffering Multiple Results” on page 3-42 describes.

� Register purpose functions as parallelizable, as “Executing in
Parallel” on page 3-39 describes.

Providing Optimizer Information

In response to a SELECT statement, the query optimizer compares the cost of
alternative query paths. To determine the cost for the access method to scan
the virtual index that it manages, the optimizer relies on two sources of
information:

� The cost of a scan that the access method performs on its virtual
index

The am_scancost purpose function calculates and returns this cost to
the optimizer. If you do not provide an am_scancost purpose func-
tion, the optimizer cannot analyze those query paths that involve a
scan of data by the access method.

� The distribution statistics that the am_stats purpose function sets

This purpose function takes the place of the type of distribution
analysis that the database server performs for an UPDATE STATISTICS
statement.
2-8 IBM Informix Virtual-Index Interface Programmer’s Guide

Optimizing Queries
Splitting a Scan

The way in which you split a scan influences the ability of the access method
to optimize performance during queries. You can choose to provide separate
functions for each of the following purpose-function prototypes:

� am_beginscan

In this purpose function, identify the columns to project and the
strategy function to execute for each WHERE clause qualification. The
database server calls the function for am_beginscan only once per
query.

� am_getnext

In this purpose function, scan through the index to find a qualifying
entry and return it. The database server calls this function as often as
necessary to exhaust the qualified entries in the index.

� am_rescan

In this purpose function, reuse the information from am_beginscan
and data from am_getnext to perform any subsequent scans for a
join or subquery.

� am_endscan

In this purpose function, deallocate any memory that am_beginscan
allocates. The database server calls this function only once.

If you provide only an am_getnext purpose function, that one purpose
function (and any UDRs that it calls) analyzes the query, scans, rescans, and
performs end-of-query cleanup.
Developing an Access Method 2-9

Inserting, Deleting, and Updating Data
Inserting, Deleting, and Updating Data
The following optional purpose functions support the data-manipulation
statements shown in the table.

If you do support insert, delete, and update transactions for data in
extspaces, you might need to write and call routines for transaction
management from the purpose functions that create transactions. The
database server has no mechanism to roll back external data if an error
prevents the database server from committing a complete set of transactions
to the corresponding virtual index. For more information, refer to “Deter-
mining Transaction Success or Failure” on page 3-48.

Warning: If you do not supply functions for am_insert, am_update, or am_delete,
the database server cannot process the corresponding SQL statement and issues an
error.

Registering Purpose Functions
To register user-defined purpose functions with the database server, issue a
CREATE FUNCTION statement for each one.

By convention, you package access-method functions in a DataBlade
module. Install the software in $INFORMIXDIR/extend/DataBlade_name for
UNIX or %INFORMIXDIR%\extend\DataBlade_name for Windows.

For example, assume you create an open_virtual function that has a table
descriptor as its only argument, as the following declaration shows:

mi_integer open_virtual(MI_AM_TAB_DESC *)

Purpose Function Statement

am_insert INSERT

am_delete DELETE

am_update UPDATE
2-10 IBM Informix Virtual-Index Interface Programmer’s Guide

Registering the Access Method
Because the database server always passes descriptors by reference as
generic pointers to the access method, you register the purpose functions
with an argument of type pointer for each descriptor. The following example
registers the function open_virtual() function on a UNIX system. The path
suggests that the function belongs to a DataBlade module named amBlade.

CREATE FUNCTION open_virtual(pointer)
RETURNING integer
[WITH (PARALLELIZABLE)]
EXTERNAL NAME

'$INFORMIXDIR/extend/amBlade/my_virtual.bld(open_virtual)'
LANGUAGE C

The PARALLELIZABLE routine modifier indicates that you have designed the
function to execute safely in parallel. Parallel execution can dramatically
speed the throughput of data. By itself, the routine modifier does not
guarantee parallel processing. For more information about parallel execution
of functions that belong to an access method, refer to “Executing in Parallel”
on page 3-39.

Important: You must have the Resource or DBA privilege to use the CREATE
FUNCTION statement and the Usage privilege on C to use the LANGUAGE C clause.

For the complete syntax of the CREATE FUNCTION statement, refer to the
IBM Informix Guide to SQL: Syntax. For information about privileges, refer to
the GRANT statement in the IBM Informix Guide to SQL: Syntax.

Important: The CREATE FUNCTION statement adds a function to a database but not
to an access method. To enable the database server to recognize a registered function
as a purpose function in an access method, you register the access method.

Registering the Access Method
The CREATE FUNCTION statement identifies a function as part of a database,
but not necessarily as part of an access method. To register the access method,
issue the CREATE SECONDARY ACCESS_METHOD statement, which sets
values in the sysams system catalog table, such as:

� The unique name of each purpose function

� A storage-type (extspaces or sbspaces) indicator

� Flags that activate optional features, such as key scans or clustering
Developing an Access Method 2-11

Registering the Access Method
The sample statement in Figure 2-2 assigns registered function names to
some purpose functions. It specifies that the access method should use
sbspaces, and it enables clustering.

Figure 2-3 shows the resulting sysams system catalog entry for the new
access method.

CREATE SECONDARY ACCESS_METHOD my_virtual
(AM_OPEN = open_virtual,

AM_CLOSE = close_virtual,
AM_CREATE = create_virtual,
AM_DROP = drop_virtual,
AM_BEGINSCAN = beginscan_virtual,
AM_GETNEXT = getnext_virtual,
AM_ENDSCAN = endscan_virtual,
AM_INSERT = insert_virtual,
AM_DELETE = delete_virtual,
AM_UPDATE = update_virtual,
AM_SPTYPE = S,
AM_CLUSTER)

Figure 2-2
Registering a

Primary Access
Method

am_name my_virtual
am_owner informix
am_id 101
am_type S
am_sptype S
am_defopclass 0
am_keyscan 0
am_unique 0
am_cluster 1
am_parallel 0
am_costfactor 1.000000000000
am_create 162
am_drop 163
am_open 164
am_close 165
am_insert 166
am_delete 167
am_update 168
am_stats 0
am_scancost 0
am_check 0
am_beginscan 169
am_endscan 170
am_rescan 0
am_getnext 171

Figure 2-3
Registering a

Secondary Access
Method
2-12 IBM Informix Virtual-Index Interface Programmer’s Guide

Specifying an Operator Class
The statement in Figure 2-2 does not name a purpose function for am_stats,
am_scancost, or am_check, or set the am_keyscan or am_unique flag, as the
0 values in Figure 2-3 indicate. The database server sets a 0 value for
am_parallel because none of the CREATE FUNCTION statements for the
purpose functions included the PARALLELIZATION routine modifier.

Warning: Even if you supply and register a purpose function with the CREATE
FUNCTION statement, the database server assumes that a purpose function does not
exist if the purpose-function name in the sysams system catalog table is missing or
misspelled.

For syntax and a list of available purpose settings, refer to Chapter 6, “SQL
Statements for Access Methods.”

Specifying an Operator Class
An operator class identifies the functions that a secondary access method
needs to build, scan, and maintain the entries in an index.

You can associate an access method with multiple operator classes, particu-
larly if the indexes that use the access method involve multiple data types.
For example, the following indexes might require multiple operator classes:

CREATE TABLE sheet_music (col1 beat, col2 timbre, col3 chord)
CREATE INDEX tone ON music(timbre, chord) USING music_am
CREATE INDEX rhythm ON music(beat) USING music_am

Use a different function to compare values of data type chord from that
which you use to compare values of data type timbre.

To supply an operator class for a secondary access method

1. Write support and strategy functions for the operator class if no
existing functions suit the data types that the access method indexes.

2. Register each new support and strategy function with the CREATE
FUNCTION statement that includes the NONVARIANT modifier.

3. Assign the strategy and support functions to operator classes with
the CREATE OPCLASS statement.

4. Assign an operator class as default to the secondary access method
with the ALTER ACCESS_METHOD statement.
Developing an Access Method 2-13

Writing or Choosing Strategy and Support Functions
Writing or Choosing Strategy and Support Functions
In a query, the WHERE clause might specify a strategy function to qualify or
filter rows. The following clauses represent the same strategy function, which
compares the index key cost to a constant:

WHERE equal(cost, 100)
WHERE cost = 100

Support functions build and scan the index and can perform any of the
following tasks for a secondary access method:

� Build an index

� Search for specific key values

� Add and delete index entries

� Reorganize the index to accommodate new entries

The access method can call the same support function to perform multiple
tasks. For example, an access method might call a between() support
function to retrieve keys for the WHERE clause to test and locate the entries
immediately greater than and less than a new index entry for an INSERT
command.

Tip: If possible, use the built-in B-tree operators or the operator class that a registered
DataBlade module provides. Write new functions only if necessary to fit the data
types that the secondary access method indexes.

Registering Strategy and Support Functions
Issue a separate CREATE FUNCTION statement for each operator-class
function. Do not issue the CREATE FUNCTION statement for any built-in
function or user-defined function that is already registered in the
sysprocedures system catalog table.

Warning: Include the NOT VARIANT routine modifier for each operator-class
function, or the optimizer might ignore the virtual index and scan the underlying
table sequentially instead.
2-14 IBM Informix Virtual-Index Interface Programmer’s Guide

Registering Strategy and Support Functions
Making a Function Nonvariant

A nonvariant UDR exhibits the following characteristics:

� The function always returns the same result when invoked with the
same arguments.

� In the sysprocedures system catalog table entry for the UDR, the
variant column contains the value f (for false).

The CREATE FUNCTION statement inserts a description of the strat-
egy function in the sysprocedures system catalog table. By default,
the variant column of the sysprocedures system catalog table con-
tains a t (for true), even if that function invariably returns equivalent
results. When you create a function with the NOT VARIANT routine
modifier, the database server sets the sysprocedures variant indica-
tor for that function too.

If you do write strategy or support functions, specify the NOT VARIANT
routine modifier in the CREATE FUNCTION statement and ensure that the
database server recognizes them as nonvariant.

Tip: Create the UDR as NOT VARIANT only if it really is not variant.

By contrast, a variant UDR exhibits the following characteristics:

� In the sysprocedures system catalog table entry for the UDR, the
variant column contains the value t (for true).

Because the CREATE FUNCTION statement for the function did not
specify the NOT VARIANT routine modifier, the variant column con-
tains the default value.

� Each execution of a variant function with the same arguments can
return a different result.

Warning: Always specify the NOT VARIANT routine modifier in the CREATE
FUNCTION statement for an operator-class strategy function. If the variant column
for a strategy function contains a t, the optimizer does not invoke the access method
to scan the index keys. Instead, the database server performs a full table scan.
Developing an Access Method 2-15

Registering the Operator Class
In the following example, the FileToCLOB() function returns variable results.
Therefore, the optimizer examines every smart large object that the reports
file references:

SELECT * FROM reports WHERE
contains(abstract, ROW("IFX_CLOB",
FileToCLOB("/data/clues/clue1.txt","server")

::lld_lob,NULL::LVARCHAR),

Granting Privileges

By default, the database server grants Execution privilege to the generic user
public when you register a UDR. However, if the NODEFAC environment
variable overrides default privileges in a database, you must explicitly grant
Execution privilege to SQL users of that database. The following statement
grants Execution privilege to all potential end users:

GRANT EXECUTE ON FUNCTION strategy_function TO PUBLIC

For more information, about Execution privileges, refer to the CREATE
FUNCTION and GRANT statements in the IBM Informix Guide to SQL: Syntax.
For more information about environment variables, refer to the IBM Informix
Guide to SQL: Reference.

Registering the Operator Class
The following statement syntax associates operators with an access method
and places an entry in the sysopclasses system catalog table for the operator
class:

CREATE OPCLASS music_ops FOR music_am
STRATEGIES(higher(note, note), lower(note, note))
SUPPORT(compare_octave(note, note), ...)

You must specify one or more strategy functions in the CREATE OPCLASS
statement, but you can omit the support function if the access method
includes code to build and maintain indexes. The following example
specifies none instead of a support-function name:

CREATE OPCLASS special_operators FOR virtual_am
STRATEGIES (LessThan, LessThanOrEqual,

Equal, GreaterThanOrEqual, GreaterThan)
SUPPORT (none)
2-16 IBM Informix Virtual-Index Interface Programmer’s Guide

Adding a Default Operator Class to the Access Method
Warning: When an SQL statement requires the access method to build or scan an
index, the database server passes the support function names in the relative order in
which you name them in the CREATE OPCLASS statement. List support functions in
the correct order for the access method to retrieve and execute support tasks. For more
information, refer to “Using FastPath” on page 3-27 and the description of accessor
functions mi_key_opclass_nsupt() and mi_key_opclass_supt() in Chapter 5,
“Descriptor Function Reference.”

Adding a Default Operator Class to the Access Method
Every access method must have at least one operator class so that the query
optimizer knows which strategy and support functions apply to the index.

You assign a default operator class so that the database server can locate the
strategy and support functions for an index if the CREATE INDEX statement
does not specify them. To add an operator-class name as the default for the
access method, set the am_defopclass purpose value in the sysams system
catalog table. The following example shows how to set the am_defopclass
purpose value:

ALTER ACCESS_METHOD my_virtual
ADD AM_DEFOPCLASS = 'special_operators'

For more information, see “ALTER ACCESS_METHOD” on page 6-4. For more
information about operator classes, as well as strategy and support functions,
refer to IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Testing the Access Method
To test the access method, take the same actions that users of the access
method take to create and access virtual data:

To test the access method

1. Create one or more storage spaces.

2. Use the access method to create indexes in your storage spaces.

3. Run SQL statements to insert, query, and alter data.

4. Use the oncheck utility, which executes am_check, to check the
integrity of the data structures that the access method writes to disk.
Developing an Access Method 2-17

Creating and Specifying Storage Spaces
Typically, a database system administrator who is responsible for the config-
uration of the database server performs steps 1 and 4. A database
administrator performs step 2. Anyone with the appropriate SQL privileges
to access or update the index that uses the access method performs step 3.

Creating and Specifying Storage Spaces
A storage space is a physical area where the index data is stored. To test how
the access method builds new indexes, you create a new physical storage
space before you create the index.

This section describes how to establish storage spaces.

Using Internal Storage

An sbspace holds smart large objects for the database server. This space is
physically included in the database server configuration. It is recommended
that you store indexes in smart-large objects because the database server
protects transaction integrity in sbspaces with rollback and recovery.

To test the access method with an sbspace

1. Create an sbspace with the onspaces utility.

2. Optionally, set the default sbspace for the database server.

3. Create a virtual index with the CREATE INDEX statement.

Creating an Sbspace

An sbspace must exist before you can create a virtual index in it. Before you
can test the ability of the access method to create an index that does not yet
exist, you must run the onspaces utility to create a smart-large-object storage
space. The onspaces command associates a logical name with a physical area
of a specified size in a database server partition.
2-18 IBM Informix Virtual-Index Interface Programmer’s Guide

Creating and Specifying Storage Spaces
The following onspaces command creates an sbspace named vspace1:

onspaces -c -S vspace1 -g 2 -p /home/informix/chunk2
-o 0 -s 20000

♦

onspaces -c -S vspace1 -g 2 -p \home\informix\chunk2
-o 0 -s 20000

♦

Specifying the Logical Sbspace Name

The following example creates a virtual index in the previously created
vspace1:

CREATE INDEX ix1 ON tab1(col1)
IN vspace1
USING your_access_method

If you do not intend to specify an sbspace explicitly in the CREATE INDEX
statement, specify a default sbspace. To find out how to create a default
dbspace, see “Creating a Default Sbspace” on page 3-14.

The following example also creates a virtual index in the sbspace that
SBSPACENAME specifies:

CREATE INDEX ix1 ON tab1(col1)
USING your_access_method

Using External Storage

An extspace lies outside the disk storage that is configured for the database
server. To create a physical extspace, you might use an operating system
command or use a data management software system. An extspace can have
a location other than a path or filename because the database server does not
interpret the location. Only the access method uses the location information.

Important: The use of external storage for secondary access methods is discouraged
because you must provide transaction integrity, rollback, and recovery for indexes
that reside in external storage spaces. If the access method requires external-space
support, follow the guidelines in this section.

WINUNIX

Windows
Developing an Access Method 2-19

Creating and Specifying Storage Spaces
To store virtual data in an extspace, take one of the following actions:

� Create logical names for existing external storage with the onspaces
utility and then specify the reserved name or names when you create
a virtual index with the CREATE INDEX statement.

� Directly specify an existing physical external storage location as a
quoted string in the CREATE INDEX statement.

� Provide a default physical external storage location, such as a disk
file, in the access-method code.

Specifying a Logical Name

The onspaces command creates an entry in the system catalog that associates
a name with an existing extspace. To create a logical extspace name, use the
following command-line syntax:

onspaces -c -x exspace_name -l "location_specifier"

The following example assigns the logical name disk_file to a path and
filename for a physical disk:

onspaces -c -x disk_file -l "/home/database/datacache"

The following example specifies a tape device:

onspaces -c -x tape_dev -l "/dev/rmt/0 "

♦

The following example assigns the logical name disk_file to a physical disk
path and filename:

onspaces -c -x disk_file -l "\home\database\datacache"

♦

If you assign a name with onspaces, refer to it by its logical name in the SQL
statement that creates the index, as in the following example:

CREATE INDEX ix1 ON tab1(col1)
IN disk_file
USING your_access_method

WINUNIX

Windows
2-20 IBM Informix Virtual-Index Interface Programmer’s Guide

Creating and Specifying Storage Spaces
Specifying the Physical Location

As an alternative to the extspace name, a CREATE INDEX statement can
directly specify a quoted string that contains the external location.

CREATE INDEX ix1 ON tab1(col1)
IN "location_specifier"
USING your_access_method

Providing a Default Extspace

If you do not intend to specify an extspace explicitly in the CREATE INDEX
statement, the access method can create a default extspace. For an example
that creates an extspace directly in the access-method code, refer to Figure 3-4
on page 3-15.

Using Fragments

If you want to test the access method for fragmentation support, specify a
different storage space for each fragment.

The following example shows the creation of an index with two fragments.
Each fragment corresponds to a separate extspace. The database server alter-
nates between the fragments to store new data.

CREATE INDEX index_name ON table(keys)
FRAGMENT BY ROUNDROBIN IN "location_specifier1",

"location_specifier2"
USING access_method_name

To fragment an index in smart-large-object storage, create a separate sbspace
for each fragment before you create the index. Use the onspaces command,
as the following example shows:

onspaces -c -S fragspace1 -g 2 -p location_specifier1 -o 0 -s 20000
onspaces -c -S fragspace2 -g 2 -p location_specifier2 -o 0 -s 20000

CREATE INDEX progress on catalog (status pages)
USING catalog_am
FRAGMENT BY EXPRESSION

pages > 15 IN fragspace2,
REMAINDER IN fragspace1
Developing an Access Method 2-21

Inserting, Querying, and Updating Data
Avoiding Storage-Space Errors

An SQL error occurs if you include an IN clause with the CREATE INDEX
statement and one of the following conditions is true:

� The IN clause specifies an extspace or sbspace that does not exist.

� The IN clause specifies an sbspace but the am_sptype purpose value
is set to X.

� The IN clause specifies an extspace but the am_sptype purpose value
is set to S.

An SQL error occurs if the CREATE INDEX statement contains no IN clause
and one of the following conditions is true:

� The am_sptype purpose value is set to A, no default SBSPACENAME
exists, and the access method does not create an extspace.

� The am_sptype purpose value is set to S, and no default
SBSPACENAME exists.

� The am_sptype purpose value is set to X, and the access method
does not create an extspace.

An SQL error occurs if one of the following conditions is true:

� The am_sptype purpose value is set to D.

� The IN clause with the CREATE INDEX statement specifies a dbspace,
even if the am_sptype purpose value is set to A.

Inserting, Querying, and Updating Data
If you want to test fragmented indexes, use the SQL syntax in “Supporting
Fragmentation” on page 3-18. You can provide support in the access method
for CREATE INDEX statement keywords that effect transaction processing. If
a CREATE INDEX statement specifies the LOCK MODE clause, the access
method must impose and manage locks during data retrieval and update. To
determine the state of an index during transaction processing, the access
method calls VII functions to determine the lock mode, data-entry
constraints, referential constraints, and other state information.
2-22 IBM Informix Virtual-Index Interface Programmer’s Guide

Checking Data Integrity
A user sets the isolation level with commands such as SET ISOLATION and SET
TRANSACTION or with configuration settings in the ONCONFIG file. It is
recommended that you document the isolation levels that the access method
supports, as “mi_scan_isolevel()” on page 5-71 describes. For information
about setting isolation levels, refer to the IBM Informix Guide to SQL: Syntax
and the IBM Informix Guide to SQL: Tutorial.

A database server administrator can use the ONCONFIG file to set defaults for
such things as isolation level, locking, logging, and sbspace name. For infor-
mation about defaults that you can set for the test-environment ONCONFIG
file, refer to the Administrator’s Guide.

For information about SQL statements and keywords that your access
method can support, refer to the IBM Informix Guide to SQL: Syntax. For infor-
mation about the VII functions that determine which statements and
keywords the user specifies, refer to Chapter 5, “Descriptor Function
Reference.”

Checking Data Integrity
If you implement the oncheck command with the am_check access method,
you can execute the oncheck command with appropriate options on a
command line. The access method can issue messages that describe any
problems in the test data.

For more information about how to implement the oncheck processing, refer
to the description of am_check on page 4-16. For more information about
how to specify options on the command line for oncheck, refer to the Admin-
istrator’s Reference.
Developing an Access Method 2-23

Dropping an Access Method
Dropping an Access Method
To drop an access method, execute the DROP ACCESS_METHOD statement, as
the following example shows:

DROP ACCESS_METHOD my_virtual RESTRICT

Warning: Do not drop an access method if database objects exist that rely on the
specified access method. For example, if you create an index using my_virtual_am,
you need to drop the index so my_virtual_am can process the DROP INDEX
statement before you can execute DROP ACCESS_METHOD.

For more information, refer to “DROP ACCESS_METHOD” on page 6-9.
2-24 IBM Informix Virtual-Index Interface Programmer’s Guide

3
Chapter
Design Decisions
In This Chapter . 3-3

Storing Data in Shared Memory 3-3
Functions that Allocate and Free Memory 3-3
Memory-Duration Options 3-4
Persistent User Data 3-5

Accessing Database and System Catalog Tables 3-7

Handling the Unexpected 3-8
Using Callback Functions 3-8
Using Error Messages 3-10

Supporting Data Definition Statements 3-12
Interpreting the Table Descriptor. 3-12
Managing Storage Spaces 3-12

Choosing DataBlade API Functions 3-13
Setting the am_sptype Value 3-13
Creating a Default Storage Space 3-14
Ensuring Data Integrity 3-16
Checking Storage-Space Type 3-17
Supporting Fragmentation 3-18

Providing Configuration Keywords. 3-19
Building New Indexes Efficiently 3-20
Enabling Alternative Indexes 3-22

Supporting Multiple-Column Index Keys 3-25

Using FastPath . 3-27
Obtaining the Routine Identifier 3-27
Reusing the Function Descriptor 3-28

3-2 IBM
Processing Queries 3-29
Interpreting the Scan Descriptor 3-29
Interpreting the Qualification Descriptor 3-30

Simple Functions 3-31
Runtime Values as Arguments 3-32
Negation . 3-33
Complex Boolean Expressions 3-34
Qualifying Data 3-35
Supporting Query Plan Evaluation 3-37

Enhancing Performance 3-39
Executing in Parallel 3-39
Bypassing Table Scans 3-41
Buffering Multiple Results 3-42

Supporting Data Retrieval, Manipulation, and Return 3-44
Enforcing Unique-Index Constraints 3-44
Checking Isolation Levels 3-45
Converting to and from Row Format 3-47
Determining Transaction Success or Failure 3-48

Supplying Error Messages and a User Guide 3-49
Avoiding Database Server Exceptions 3-50

Statements That the Access Method Does Not Support 3-50
Keywords That the Access Method Does Not Support 3-51
Storage Spaces and Fragmentation 3-51
Features That the VII Does Not Support 3-52

Notifying the User About Access-Method Constraints 3-52
Data Integrity Limitations 3-52
WHERE Clause Limitations 3-53

Documenting Nonstandard Features 3-53
 Informix Virtual-Index Interface Programmer’s Guide

In This Chapter
This chapter begins with several topics that discuss how the access method
uses DataBlade API functions. It continues with topics that discuss alter-
native ways to accomplish SQL tasks. The chapter ends with guidelines for
helping end users and application developers use the access method in
“Supplying Error Messages and a User Guide” on page 3-49.

In particular, this chapter presents the choices that you make to optimize the
performance and flexibility of your access method.

Storing Data in Shared Memory
The access method can allocate areas in shared memory to preserve infor-
mation between purpose-function calls. To allocate memory, you decide:

� Which function to call

� What duration to assign

Functions that Allocate and Free Memory
The DataBlade API provides two categories of memory-allocation functions:

� Public functions allocate memory that is local to one database server
thread.

� Semipublic functions allocate named, global memory that multiple
threads might share.

For either unnamed and named memory, you can specify a duration that
reserves the memory for access method use beyond the life of a particular
purpose function.
Design Decisions 3-3

Memory-Duration Options
For most purposes, UDRs, including access methods, can allocate shared
memory with the public DataBlade API memory-management functions,
mi_alloc(), mi_dalloc(), or mi_zalloc(). UDRs share access to memory that a
public function allocates with the pointer that the allocation function returns.
For an example of a UDR that allocates memory and stores a pointer, refer to
“Persistent User Data” on page 3-5. The public mi_free() function frees the
memory that a public function allocates.

The memory that you allocate with public functions is available only to UDRs
that execute during a single-thread index operation. Access-method UDRs
might execute across multiple threads to manipulate multiple fragments or
span multiple queries. UDRs that execute in multiple threads can share
named memory.

The semipublic DataBlade API mi_named_alloc() or mi_named_zalloc()
memory-management functions allocate named memory, the
mi_named_get() function retrieves named memory, and the
mi_named_free() function releases the named memory. Related semipublic
functions provide for locking on named memory.

Warning: Do not call malloc() because the memory that malloc() allocates disap-
pears after a virtual processor (VP) switch. The access method might not properly
deallocate memory that malloc() provides, especially during exception handling.

Memory-Duration Options
When a UDR calls a DataBlade API memory-allocation function, the memory
exists until the duration assigned to that memory expires. The database
server stores memory in pools by duration. By default, memory-allocation
functions assign a PER_ROUTINE duration to memory. The database server
automatically frees PER_ROUTINE memory after the UDR that allocates the
memory completes.

An SQL statement typically invokes many UDRs to perform an index task.
Memory that stores state information must persist across all the UDR calls
that the statement requires. The default PER_ROUTINE duration does not
allow memory to persist for an entire SQL statement.
3-4 IBM Informix Virtual-Index Interface Programmer’s Guide

Persistent User Data
Use the mi_dalloc() function to specify a memory duration for a particular
new memory allocation. If you do not specify a duration, the default duration
applies. You can change the default from PER_ROUTINE to a different
duration with the mi_switch_mem_duration() function. The following list
describes memory durations that an access method typically specifies:

� Use PER_COMMAND for the memory that you allocate to scan-
descriptor user data, which must persist from the am_beginscan
thorough the am_endscan functions.

� Use PER_STATEMENT for the memory that you allocate for table-
descriptor user data, which must persist from the am_open through
the am_close functions.

You must store a pointer to the PER_COMMAND or PER_STATEMENT memory
so that multiple UDRs that execute during the command or statement can
retrieve and reference the pointer to access the memory.

For detailed information about the following, refer to the IBM Informix
DataBlade API Programmer’s Guide:

� Functions that allocate public memory

� Duration keywords

For more information about semipublic functions and named memory, see
the indexing information on the IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix. Look for the following
titles from the list of tech notes:

� Memory Allocation for C UDRs

� Semi-Public Functions for DataBlade Module Development

Persistent User Data
The term user data refers to information that a purpose function saves in
shared memory. The access method defines a user-data type and then
allocates an area of memory with the appropriate size and duration. In the
following example, the user data stores the information that the access
method needs for a PER_STATEMENT duration.
Design Decisions 3-5

Persistent User Data
Figure 3-2 shows accessor functions that the VII provides to store and retrieve
user data.

Figure 3-2
Storing and Retrieving User-Data Pointers

The following example shows how to retrieve the pointer from the table
descriptor that the mi_tab_setuserdata() function set in Figure 3-1:

my_data=(my_data_t *)mi_tab_userdata(tableDesc);

MI_AM_TAB_DESC * tableDesc; /* Pointer to table descriptor */
typedef enum my_col_types
{

MY_INT = 1,
MY_CHAR

} my_col_type;

typedef struct my_row
{

mi_integer rowid;
mi_integer fragid;
char data[500];
struct my_row *next;

} my_row_t;

typedef struct statement_data
{

MI_DATUM *retrow;/*Points to data in memory*/
my_col_type col_type[10]; /*Data types of index keys*/
mi_boolean is_null[10]; /*Array of true and false indicators*/
my_row_t *current index entry;
MI_CONNECTION *conn;
MI_CALLBACK_HANDLE *error_cback;

} statement_data_t;

/*Allocate memory*/
my_data = (statement_data_t *)

mi_dalloc(sizeof(statement_data_t),PER_STATEMENT);

mi_tab_setuserdata(tableDesc, (void *) my_data); /*Store pointer*/

Figure 3-1
Allocating User-Data

Memory

Descriptor User-Data Duration Stores Pointer to User Data Retrieves Pointer to User Data

Table descriptor PER STATEMENT mi_tab_setuserdata() mi_tab_userdata()

Scan descriptor PER COMMAND mi_scan_setuserdata() mi_scan_userdata()
3-6 IBM Informix Virtual-Index Interface Programmer’s Guide

Accessing Database and System Catalog Tables
For more information about mi_tab_setuserdata(), mi_tab_userdata(),
mi_scan_setuserdata(), and mi_scan_userdata(), refer to Chapter 5,
“Descriptor Function Reference.”

Accessing Database and System Catalog Tables
Although the VII does not provide its own function for querying tables, you
can execute an SQL statement with DataBlade API functions mi_exec(),
mi_prepare(), or mi_execute_prepared_statement(). SQL provides data
directly from the system catalog tables and enables the access method to
create tables to hold user data on the database server.

The following example queries the system catalog table for previous
statistics:

MI_CONNECTION *conn;
conn = mi_open(NULL, NULL, NULL);
/* Query system tables */
mi_exec(conn, "select tabname, nrows from systables ",

MI_QUERY_NORMAL);

For more information on querying database tables, consult the IBM Informix
DataBlade API Programmer’s Guide.

Warning: A parallelizable UDR must not call mi_exec(), mi_prepare(),
mi_execute_prepared_statement(), or a UDR that calls these functions. A
database server exception results if a parallelizable UDR calls any UDR that prepares
or executes SQL. For more information about parallelizable access-method functions,
refer to “Executing in Parallel” on page 3-39.
Design Decisions 3-7

Handling the Unexpected
Handling the Unexpected
The access method can respond to events that the database server initiates, as
well as to errors in requests for access-method features that the database
server cannot detect.

Using Callback Functions
Database server events include the following types.

To have the access method handle an error or a transaction rollback, use the
DataBlade API mechanism of callback functions. A callback function automat-
ically executes when the database server indicates that the event of a
particular type has occurred.

To register an access-method callback function, pass the function name and
the type of event that invokes the function to mi_register_callback(), as the
example in Figure 3-3 shows.

Event Type Description

MI_Exception Exceptions with the following severity:

� Warnings

� Runtime errors

MI_EVENT_END_XACT End-of-transaction state transition

MI_EVENT_END_STMT End-of-statement state transition

MI_EVENT_END_SESSION End-of-session state transition
3-8 IBM Informix Virtual-Index Interface Programmer’s Guide

Using Callback Functions
The example in Figure 3-3 accomplishes the following actions:

� Registers the error_callback() function as a callback function to
handle the MI_Exception event

� Stores the callback handle that mi_register_callback() returns in
error_cback field of the my_data memory

For more information about detecting whether a transaction commits or rolls
back, refer to “Checking Isolation Levels” on page 3-45.

By default, the database server aborts the execution of the access-method
UDR if any of the following actions by the access method fails:

� Allocating memory

� Using the FastPath feature to execute a UDR

� Obtaining a handle for a file or smart large object

� Obtaining a connection

� Reading or writing to storage media, such as a disk

If you want to avoid an unexpected exit from the access method, register a
callback function for any exception that you can anticipate. The callback
function can roll back transactions and free memory before it returns control
to the database server, or it can tell the database server to resume access-
method processing.

typedef struct statement_data
{
...
...

MI_CALLBACK_HANDLE *error_cback;
} statement_data_t;

/*Allocate memory*/
my_data = (statement_data_t *)

mi_dalloc(sizeof(statement_data_t),PER_STATEMENT);

my_data.error_cback=
mi_register_callback(connection,

MI_Exception, error_callback, NULL, NULL)

Figure 3-3
Registering a

Callback Function
Design Decisions 3-9

Using Error Messages
For a complete discussion of callback processing and the DataBlade API
mi_register_callback() function, refer to the IBM Informix DataBlade API
Programmer’s Guide. For code samples, see the indexing information on the
IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix.

Using Error Messages
The database server cannot validate specifications for features that the access
method adds. If the access method includes a feature that the database server
cannot detect, the access method must explicitly handle syntax errors in
requests for that feature. To handle errors that the database server cannot
detect, call the DataBlade API mi_db_error_raise() function.

The following example shows how an access method might avoid an
unexpected exit due to a user error that the database server cannot detect.
The CREATE INDEX statement in this example specifies configuration
parameters.

CREATE INDEX fuzzy ON text(keywords)
USING search_text(searchmode='string', wildcard='yes');

The access method must notify a user if a statement specifies an invalid
parameter. To determine the parameters that a CREATE INDEX statement
specifies, the access method calls the accessor function mi_tab_amparam().
To notify a user of an invalid parameter, the access method raises an
exception, as the following example shows:

switch (mi_tab_amparam(tableDesc)
case 'searchmode')
...
case ‘wildcard’
...
 default:

mi_db_error_raise(connection, MI_EXCEPTION,
"Invalid keywordin the USING clause.");

The uppercase MI_EXCEPTION alerts the database server that an exception
has occurred but does not necessarily halt execution. In contrast, the
following call, which also raises an exception, assumes that a callback
function exists for MI_Exception:

mi_db_error_raise(connection, MI_Exception, "Invalid...");
3-10 IBM Informix Virtual-Index Interface Programmer’s Guide

Using Error Messages
If the function that calls mi_db_error_raise() did not register a callback
function for MI_Exception (upper and lowercase), execution aborts after the
Invalid... error message appears.

The database server cannot always determine that the access method does
not support a feature that a user specifies. The access method can test for the
presence of specifications and either provide the feature or raise an exception
for those features that it cannot provide.

For example, the database server does not know if the access method can
handle lock types, isolation levels, referential constraints, or fragmentation
that an SQL statement specifies. To retrieve the settings for mode, isolation
level, and lock, the access method calls the following accessor functions.

For more information, refer to the following sections:

� “Checking Isolation Levels” on page 3-45

� “Notifying the User About Access-Method Constraints” on
page 3-52

� “Accessor Functions” on page 5-19

Function Purpose

mi_tab_mode() The input/output mode (read-only, read and write, write
only, and log transactions)

mi_tab_isolevel() The isolation level

mi_scan_locktype() The lock type for the scan

mi_scan_isolevel() The isolation level in force
Design Decisions 3-11

Supporting Data Definition Statements
Supporting Data Definition Statements
The data definition statement CREATE INDEX names the index and specifies
the owner, column names and data types, fragmentation method, storage
space, and other structural characteristics. Other data definition statements
alter the structure from the original specifications in the CREATE INDEX
statement. This section discusses design considerations for CREATE INDEX,
ALTER INDEX, and ALTER FRAGMENT.

Interpreting the Table Descriptor
A table descriptor contains data definition specifications, such as owner,
column names and data types, and storage space, that the CREATE INDEX,
ALTER INDEX, and ALTER FRAGMENT statements specify for the virtual
index. A table descriptor describes a single index fragment, so that the
storage space and fragment identifier (part number) change in each of
multiple table descriptors that the database server constructs for a
fragmented index.

For a complete description, refer to “Table Descriptor” on page 5-16.

Managing Storage Spaces
A user-defined access method stores data in sbspaces, extspaces, or both. To
access data in smart large objects, the access method must support sbspaces.
To access legacy data in disk files or within another database management
system, the access method supports extspaces.

Important: Your access method cannot directly create, open, or manipulate an index
in a dbspace.

The following sections describe how the access method supports sbspaces,
extspaces, or both:

� Choosing DataBlade API Functions

� Setting the am_sptype Value

� Creating a Default Storage Space

� Ensuring Data Integrity
3-12 IBM Informix Virtual-Index Interface Programmer’s Guide

Managing Storage Spaces
� Checking Storage-Space Type

� Supporting Fragmentation

Choosing DataBlade API Functions

The type of storage space determines whether you use mi_file_*() functions
or mi_lo_*() functions to open, close, read from, and write to data.

To have the access method store data in an sbspace, use the smart-large-object
interface of the DataBlade API. The names of most functions of the smart-
large-object interface begin with the mi_lo_ prefix. For example, you open a
a smart large object in an sbspace with mi_lo_open() or one of the smart-
large-object creation functions: mi_lo_copy(), mi_lo_create(),
mi_lo_expand(), or mi_lo_from_file().

If the access method stores data on devices that the operating system man-
ages, use the DataBlade API file-access functions. Most file-access functions
begin with the mi_file_ prefix. For example, the am_open purpose function
might open a disk file with mi_file_open().

Important: Do not use operating-system commands to access data in an extspace.

For more information about smart-large-object functions and file-access
functions, refer to the IBM Informix DataBlade API Programmer’s Guide.

Setting the am_sptype Value

Set the am_sptype value to S if the access method reads and writes to
sbspaces but not to extspaces. Set the am_sptype value to X if the access
method reads and writes only to extspaces but not to sbspaces.

To set the am_sptype purpose value, use the CREATE SECONDARY
ACCESS_METHOD or ALTER ACCESS_METHOD statement, as Chapter 6,
“SQL Statements for Access Methods” describes.

If you do not set the am_sptype storage option, the default value A means
that a user can create a virtual index in either extspaces or sbspaces. The
access method must be able to read and write to both types of storage spaces.
Design Decisions 3-13

Managing Storage Spaces
For an example of a demonstration secondary access method that provides
for both extspaces and sbspaces, see the indexing information on the
IBM Informix Developer Zone at www.ibm.com/software/data/devel-
oper/informix.

Warning: In the access-method user guide, notify users whether the access method
supports sbspaces, extspaces, or both, and describe default behavior. The database
server issues an SQL error if the user or application attempts to use a storage space
that the access method does not support.

Creating a Default Storage Space

A default storage space of the appropriate type prevents an exception from
occurring if the user does not specify a storage-space name in the CREATE
INDEX statement.

Creating a Default Sbspace

If the access method supports sbspaces, the user, typically the database
server administrator, can create a default sbspace.

To create a default sbspace

1. Create a named sbspace with the onspaces utility.

When you create the default sbspace, you can turn on transaction
logging.

2. Assign that name as the default sbspace in SBSPACENAME parameter
of the ONCONFIG file.

3. Initialize the database server with the oninit utility.

For example, you create a default sbspace named vspace with the following
steps.
3-14 IBM Informix Virtual-Index Interface Programmer’s Guide

Managing Storage Spaces
To create a default sbspace named vspace

1. From the command line, create the sbspace with logging turned on:
onspaces -c -S vspace -p path -o offset -s size -Df "LOGGING=ON"

2. Edit the ONCONFIG file to insert the following line:
SBSPACENAME vspace # Default sbspace name

3. Take the database server offline and then bring it online again to
initialize memory with the updated configuration.

onmode -ky
oninit

For more information about the configuration file parameters and the
onspaces, onmode, and oninit utilities, refer to the Administrator’s Reference.

Creating a Default Extspace

The ONCONFIG file does not provide a parameter that specifies default
extspace name. The access method might do one of the following if the CRE-
ATE INDEX statement does not specify an extspace:

� Raise an error.

� Specify an external storage space.

The example in Figure 3-4 specifies a directory path as the default
extspace on a UNIX system.

mi_integer external_create(td)
MI_AM_TABLE_DESC *td;
{
...
/* Did the CREATE statement specify a named extspace? **/
dirname = mi_tab_spaceloc(td);
if (!dirname || !*dirname)
{

/* No. Put the table in /tmp */
dirname = (mi_string *)mi_alloc(5);
strcpy(dirname, "/tmp");

}
sprintf(name,"%s/%s-%d", dirname, mi_tab_name(td),

mi_tab_partnum(td));

out = mi_file_open(name,O_WRONLY|O_TRUNC|O_CREAT,0600);

Figure 3-4
Creating a Default

Extspace
Design Decisions 3-15

Managing Storage Spaces
Ensuring Data Integrity

The access method might provide any of the following features to ensure that
source data matches virtual data:

� Locks

� Logging

� Backup and recovery

� Transaction management

Activating Automatic Controls in Sbspaces

The following advantages apply to data that resides in sbspaces:

� A database server administrator can back up and restore sbspaces
with standard Informix utilities.

� The database server automatically provides for locking.

� If a transaction fails, the database server automatically rolls back
sbspace metadata activity.

If logging is turned on for the smart large object, the database server does the
following:

� Logs transaction activity

� Rolls back uncommitted activity if a transaction fails

You can either advise the end user to set logging on with the onspaces utility
or call the appropriate DataBlade API functions to set logging.

Important: To provide transaction integrity, it is recommended that the access
method requires transaction logging in sbspaces. It is also recommended that the
access method raises an error if an end user attempts to create a virtual index in an
unlogged sbspace.

In the access-method user guide, provide the appropriate information to
describe transaction logging using the access method. If the access method
does not turn on transaction logging, the user guide should explain how to
turn on logging for a virtual index in an sbspace.
3-16 IBM Informix Virtual-Index Interface Programmer’s Guide

Managing Storage Spaces
To enable logging, the access method sets the MI_LO_ATTR_LOG create-time
constant with the DataBlade API mi_lo_create() or mi_lo_alter() function.
The following example attempts to set the constant that turns on logging and
verifies that the setting succeeded:

mi_integer status;.
status = mi_lo_specset_flags(lo_spec_p, MI_LO_ATTR_LOG);
if(status == MI_ERROR)
{

mi_db_error_raise(NULL,MI_EXCEPTION,
"Unable to activate transaction logging.");

return MI_ERROR;
}

Tip: To save log space, temporarily turn off transaction logging at the start of the
am_create purpose function. After the access method builds the new index, turn
logging on. The following statement explicitly turns off transaction logging:

mi_lo_specset_flags(lo_spec_p, MI_LO_ATTR_NO_LOG)

For more information about metadata logging and transaction logging, refer
to the Administrator’s Guide.

Adding Controls for Extspaces

Because the database server cannot safeguard operations on extspace data,
include UDRs for any of the following features that you want the access
method to provide:

� Locks

� Logging and recovery

� Transaction commit and rollback management (described in
“Checking Isolation Levels” on page 3-45)

Checking Storage-Space Type

The database server issues an error if the CREATE INDEX statement specifies
an inappropriate storage type. To determine the storage space (if any) that the
CREATE INDEX statement specifies, the access method calls the
mi_tab_spacetype() function. For details, refer to the description of
mi_tab_spacetype() on page 5-117.
Design Decisions 3-17

Managing Storage Spaces
For more information about errors that occur from inappropriate storage-
space type, refer to “Avoiding Storage-Space Errors” on page 2-22. For more
information about documenting potential errors and intercepting error
events, refer to “Supplying Error Messages and a User Guide” on page 3-49.

Supporting Fragmentation

A fragmented index has multiple physical locations, called fragments. The
user specifies the criteria by which the database server distributes infor-
mation into the available fragments. For examples of how a user creates
fragments, refer to “Using Fragments” on page 2-21. For a detailed
discussion about the benefits of and approaches to fragmentation, refer to the
IBM Informix Database Design and Implementation Guide.

When the secondary access method indexes a fragmented table, a single
index might point to multiple table fragments. To obtain or set the fragment
identifier for a row in an indexed table, the access method uses functions such
as “Row-ID Descriptor” on page 5-12 describes.

When the index is fragmented, each call to the access method involves a
single fragment rather than the whole index. An SQL statement such as
CREATE INDEX can result in a set of purpose-function calls from am_open
through am_close for each fragment.

The database server can process fragments in parallel. For each fragment
identifier, the database server starts a new access-method thread. To obtain
the fragment identifier for the index, call the mi_tab_partnum() function.

An end user might change the way in which values are distributed among
fragments after data already exists in the index. Because some index entries
might move to a different fragment, an ALTER FRAGMENT statement requires
a scan, delete, and insert for each moved index entry. For information about
how the database server uses the access method to redefine fragments, refer
to “ALTER FRAGMENT Statement Interface” on page 4-4.

Tip: For an ALTER FRAGMENT statement, the database server creates a scan
descriptor, but not a qualification descriptor. The mi_scan_quals() function returns
a NULL-valued pointer to indicate that the secondary access method must return key
values as well as the row identifier information for each index entry. For more infor-
mation, refer to the description of mi_scan_quals() on page 5-77.
3-18 IBM Informix Virtual-Index Interface Programmer’s Guide

Providing Configuration Keywords
For information about the FRAGMENT BY clause, refer to the IBM Informix
Guide to SQL: Syntax.

Providing Configuration Keywords
You can provide configuration keywords that the access method interrogates
to tailor its behavior. The user specifies one or more parameter choices in the
USING clause of the CREATE INDEX statement. The access method calls the
mi_tab_amparam() accessor function to retrieve the configuration keywords
and values.

In the following example, the access method checks the keyword value to
determine if the user wants mode set to the number of index entries to store
in a shared memory buffer. The CREATE INDEX statement specifies the
configuration keyword and value between parentheses.

CREATE INDEX ...
IN sbspace
USING sbspace_access_method ("setbuffer=10")

In the preceding statement, the mi_tab_amparam() function returns
setbuffer=10. Figure 3-5 shows how the access method determines the
value that the user specifies and applies it to create the sbspace.

mi_integer my_beginscan (sd)
 MI_AM_SCAN_DESC *sd;

{
MI_AM_TABLE_DESC *td;
mi_ineger nrows;
...
td=mi_scan_table(sd); /*Get table descriptor. */
/*Check for parameter.
** Do what the user specifies.
If (mi_tab_amparam(td) != NULL)
{

/* Extract number of rows from string.
** Set nrows to that number. (not shown.)
*/
mi_tab_setniorows(nrows);

}
...

}

Figure 3-5
Checking a

Configuration
Parameter Value
Design Decisions 3-19

Building New Indexes Efficiently
Important: If the access method accepts parameters, describe them in the user guide
for the access method. For example, a description of the action in Figure 3-5 would
explain how to set a value in the parameter string setbuffer= and describe how a
buffer might improve performance.

A user can specify multiple configuration parameters separated by commas,
as the following syntax shows:

CREATE INDEX ...
USING access_method_name (keyword='string', keyword='string' ...)

Building New Indexes Efficiently
By default, the database server places one entry in shared memory per call to
the am_insert() purpose function for a CREATE INDEX statement. The
purpose function inserts the single entry and then returns control to the
database server, which executes am_insert again until no more entries
remain to insert.

Figure 3-6 shows how the am_insert purpose function writes multiple new
index entries.
3-20 IBM Informix Virtual-Index Interface Programmer’s Guide

Building New Indexes Efficiently
Figure 3-6
Processing Multiple Index Entries

mi_integer my_am_open(MI_AM_TABLE_DESC *td)
{
...

mi_tab_setniorows(td, 512);
}

mi_integer my_am_insert(MI_AM_TABLE_DESC *td, MI_ROW *newrow,
MI_AM_ROWID_DESC *rid)

{
mi_integernrows;
mi_integerrowid;
mi_integerfragid;

nrows = mi_tab_niorows(td);
if (nrows > 0)
{

for (row = 0; row < nrows; ++row)
{

 mi_tab_nextrow(td, &newrow, &rowid, &fragid)
/*Write new entry. (Not shown.)*/

} /* End get new entries from shared memory */
}
else
{/* Shared memory contains only one entry per call to am_insert.*/

rowid = mi_id_rowid(rid);
fragid = mi_id_fragid(rid);
 /*Write new entry. (Not shown.)*/

}/* End write one index entry. */
/* Return either MI_OK or MI_ERROR, as required.
** (This example does not show error or exception-processing.) */

}

Design Decisions 3-21

Enabling Alternative Indexes
In Figure 3-6, the access method performs the following steps:

1. The am_open purpose function calls mi_tab_setniorows() to specify
the number of index entries that the database server can store in
shared memory for am_insert.

2. At the start of am_insert, the purpose function calls
mi_tab_niorows() to find out how many rows to retrieve from
shared memory.

The number of rows that shared memory actually contains might not
equal the number of rows that mi_tab_setniorows() set.

3. The server loops through mi_tab_setnextrow() in am_insert to
retrieve each new entry from shared memory.

For more information about mi_tab_setniorows(), mi_tab_niorows(), and
mi_tab_nextrow(), refer to Chapter 5, “Descriptor Function Reference.”

Enabling Alternative Indexes
A CREATE INDEX statement specifies one or more column names, or keys,
from the table that the index references. A user-defined secondary access
method can support alternative concurrent indexes that reference identical
keys.

Typically, a user wants alternative indexes to provide a variety of search
algorithms. The access method can test for predefined parameter values to
determine how the user wants the index searched.

Consider the following example that enables two methods of search through
a document for a character string:

� Look for whole words only.

� Use wildcard characters, such as *, to match any character.

The user specifies parameter keywords and values to distinguish between
whole word and wildcard indexes on the same keywords column. This
example uses a registered secondary access method named search_text.

CREATE TABLE text(keywords lvarchar,)
CREATE INDEX word ON text(keywords)

USING search_text(searchmode='wholeword',wildcard='no');
CREATE INDEX pattern ON text(keywords)

USING search_text(searchmode='string', wildcard='yes');
3-22 IBM Informix Virtual-Index Interface Programmer’s Guide

Enabling Alternative Indexes
The access method allows both word and pattern indexes because they
specify different parameter values. However, the access method issues an
error for the following duplicate index:

CREATE INDEX fuzzy ON text(keywords)
USING search_text(searchmode='string', wildcard='yes');

To determine if a user attempts to create a duplicate index, the search_text
access method calls the following functions:

� The mi_tab_amparam() function returns the string
searchmode=string, wildcard=yes from the CREATE INDEX
statement.

� The mi_tab_nparam_exist() function indicates the number of
indexes that already exist on column keywords (in this case, two).

� The mi_tab_param_exist() function returns the searchmode= and
wildcard= values for each index on column keywords.

On the second call, mi_tab_param_exist() returns a string that matches the
return string value from mi_tab_amparam(), so the access method alerts the
user that it cannot create index fuzzy.
Design Decisions 3-23

Enabling Alternative Indexes
Figure 3-7 shows how the am_create purpose function tests for duplicate
indexes.

For more information about mi_tab_nparam_exist(), mi_tab_param_exist(),
and mi_tab_amparam(), refer to Chapter 5, “Descriptor Function Reference.”

MI_AM_TABLE_DESC *td;
mi_string *index_param, *other_param;
mi_integer i;

/* 1- Get user-defined parameters for the proposed index */
index_param = mi_tab_amparam(td);

/* 2- Get user-defined parameters for any other indexes
** that already exist on the same column(s).*/
for (i = 0; i < mi_tab_nparam_exist(td); i++)

{
other_param = mi_tab_param_exist(td,i);

/* No configuration keywords distinguish the newindex
** from the existing index.
** Reject the request to create a new, duplicate index. */
if ((index_param == other_param) == NULL))

|| ((index_param == other_param) == ‘\0’))
mi_db_error_raise(NULL, MI_EXCEPTION,
"Duplicate index.");

/* The user specifies identical keywords and values for a
** new index as those that apply to an existing index
** Reject the request to create a new, duplicate index.*/

if (strcmp(index_param, other_param) == 0)
mi_db_error_raise(NULL, MI_EXCEPTION,
"Duplicate index.");

}

/* The new index has unique keyword values.
** Extract them and create the new index. (Not shown) */

Figure 3-7
Avoiding Duplicate

Indexes
3-24 IBM Informix Virtual-Index Interface Programmer’s Guide

Supporting Multiple-Column Index Keys
Supporting Multiple-Column Index Keys
The key descriptor contains information about an index key. If the index
contains more than one key column, the access method might provide for
following operator-class considerations:

� The index might require multiple operator classes.

Each key column corresponds to an operator class.

� The operator class for a particular key column determines the
number and names of support functions for that single key column.

� The operator class determines the number and name of strategy
functions for the single key column.

The key descriptor contains operator-class information on a per-column
basis.

To access support functions for a multiple-column key

1. Call the mi_key_nkeys() accessor function to determine the number
of columns in the key.

2. Call the mi_key_opclass_nsupt() function to determine the number
of support functions for a single key column.

If the access method needs every column in the key, use the return
value from mi_key_nkeys() as the number of times to execute
mi_key_opclass_nsupt(). For example, the am_create purpose func-
tion, which builds the index, might need support functions for every
column.

3. Call the mi_key_opclass_supt() accessor function to extract one
support function name.

Use the return value from mi_key_opclass_nsupt() as the number of
times to execute mi_key_opclass_supt().
Design Decisions 3-25

Supporting Multiple-Column Index Keys
The sample syntax retrieves all the support functions.

The access method might need information about all the strategy functions
for a particular key. For example, the access method might use the key
descriptor rather than the qualification descriptor to identify strategy
functions.

To access strategy functions for a multiple-column key

1. Call the mi_key_nkeys() accessor function to determine the number
of columns in the key.

2. Call the mi_key_opclass_nstrat() function to determine the number
of support functions for a single key column.

If the access method needs every column in the key, use the return
value from mi_key_nkeys() as the number of times to execute
mi_key_opclass_nstrat().

3. Call the mi_key_opclass_strat() accessor function to extract one
support function name.

Use the return value from mi_key_opclass_nstrat() as the number of
times to execute mi_key_opclass_strat().

MI_KEY_DESC * keyDesc;
mi_integer keyNum;
mi_integer sfunctNum;
mi_string sfunctName;

keynum = mi_key_nkeys(keyDesc);

for (k=0; k<= keyNum; k++)
{

sfunctNum = mi_key_opclass_nsupt(keyDesc, keyNum);

for (i=0; i<=sfunctNum; i++)
{

sfunctName =
mi_key_opclass_supt(keyDesc,

keyNum, sfunctNum);
/*
** Use the function name
** or store it in user data. (Not shown.)
*/

} /* End get sfunctName */
} /* End get sfunctNum */

} /* End get keynum */

Figure 3-8
Extracting Support

Functions for a
Multiple-Column

Index Key
3-26 IBM Informix Virtual-Index Interface Programmer’s Guide

Using FastPath
To retrieve all the strategy functions, substitute mi_key_opclass_nstrat() for
mi_key_opclass_nsupt() and mi_key_opclass_strat() for
mi_key_opclass_supt() in Figure 3-8 on page 3-26.

Using FastPath
The access method can use a DataBlade API facility called FastPath to execute
registered UDRs that do not reside in the same shared-object module as the
access-method functions. To use the FastPath facility, the access method
performs the following general steps:

1. Obtains a routine identifier for the desired UDR.

To find out how to obtain the routine identifier, refer to the section,
“Obtaining the Routine Identifier,” following.

2. Passes the routine identifier to the DataBlade API
mi_func_desc_by_typeid() function, which returns the function
descriptor.

3. Passes the function descriptor to the DataBlade API
mi_routine_exec() function, which executes the function in a virtual
processor.

For complete information about FastPath functions and the function
descriptor (MI_FUNC_DESC), see the IBM Informix DataBlade API Programmer’s
Guide.

Warning: A database server exception results if a parallelizable function attempts to
execute a routine that is not parallelizable. Use mi_func_desc_by_typeid() and
mi_routine_exec() from a parallelizable access method only if you can guarantee
that these functions look up or execute a parallelizable routine.

Obtaining the Routine Identifier
You can obtain the routine identifier for a strategy function directly from the
qualification descriptor that the database server passes to the access method.
Call mi_qual_funcid(). Because the database server does not provide the
routine identifier for a support function directly in a descriptor, use the
following procedure to identify the support function for FastPath execution.
Design Decisions 3-27

Reusing the Function Descriptor
To obtain the routine identifier for a support function

1. Use mi_tab_keydesc() to extract the key descriptor from the table
descriptor.

2. Use mi_key_opclass_nsupt() to determine the number of support
functions that the access method must look up.

3. Use mi_key_opclass_supt() to determine each support-function
name and then assemble a function prototype with a statement
similar to the following example:

sprintf(prototype, "%s(%s,%s)",
function_name, key_data_type, key_data_type);

4. Use DataBlade API FastPath function mi_routine_get() to look up
the function descriptor.

For an example of a secondary access method that includes dynamic
support-function execution, see the indexing information on the
IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix.

Reusing the Function Descriptor
The access method can store the function descriptor in user-data memory for
use in multiple executions of the same UDR. For example, the access method
stores the function descriptor so that it can repeat a WHERE-clause function
on each index entry.

Important: The database server assigns a PER_COMMAND duration to the function
descriptor. The access method cannot change the duration of the original function
descriptor, but can store a copy of it as part of the PER_STATEMENT user data to
which the table descriptor points. Any access-method purpose function can obtain the
function descriptor because they all have access to the table descriptor.

If the access method uses FastPath to execute support functions, the
am_open purpose function can store the function descriptor in
PER_STATEMENT memory. For example, a CREATE INDEX statement causes
the database server to call the am_insert purpose function iteratively. To
execute the support function or functions that build an index, each iteration
of am_insert can retrieve the support-function descriptor from the table
descriptor.
3-28 IBM Informix Virtual-Index Interface Programmer’s Guide

Processing Queries
For information about user data, refer to “Storing Data in Shared Memory”
on page 3-3.

Processing Queries
This section describes various options for processing a SELECT statement, or
query, that involves a virtual index. An SQL query requests that the database
server fetch and assemble stored data into rows. A SELECT statement often
includes a WHERE clause that specifies the values that a row must have to
qualify for selection.

Query processing involves the following actions:

� Interpreting the scan and qualification descriptors

� Scanning the index to select index entries

� Optionally returning rows that satisfy the query

� Maintaining cost and distribution information for the optimizer

Interpreting the Scan Descriptor
The database server constructs a scan descriptor in response to a SELECT-
statement. The scan descriptor provides information about the key data
types, as well as the locks and isolation levels that apply to the data that the
query specifies.

As one of its primary functions, the scan descriptor stores a pointer to another
opaque structure, the qualification descriptor that contains WHERE-clause
information. To access the qualification descriptor, use the pointer that the
mi_scan_quals() function returns. A NULL-valued pointer indicates that the
database server did not construct a qualification descriptor.

Important: If mi_scan_quals() returns a NULL-valued pointer, the access method
must format and return all possible index keys.

For more information about the information that scan descriptor provides,
refer to “Scan Descriptor” on page 5-13 and the scan-descriptor accessor
functions that begin on page 5-70.
Design Decisions 3-29

Interpreting the Qualification Descriptor
Interpreting the Qualification Descriptor
A qualification descriptor contains the individual qualifications that the
WHERE clause specifies. A qualification, or filter, tests a value from a key
against a constant value. Each branch or level of a WHERE clause specifies one
of the following operations:

� A function

� A Boolean expression

The WHERE clause might include negation indicators, each of which
reverses the result of a particular function.

The access method executes VII accessor functions to extract individual quali-
fications from a qualification descriptor. The following table lists frequently
used accessor functions.

For a complete list of access functions for the qualification descriptor, refer to
“Qualification Descriptor” on page 5-9.

Accessor Function Purpose

mi_qual_nquals() Determines the number of simple functions and Boolean
operators in a complex qualification

mi_qual_qual() Points to one qualification in a complex qualification
descriptor or to the only qualification

mi_qual_issimple()

mi_qual_boolop()

Determine which of the following qualifications the
descriptor describes:

� A simple function

� A complex AND or OR expression

mi_qual_funcid() or
mi_qual_funcname()

Identifies a simple function by function identifier or
function name

mi_qual_column() Identifies the column argument of a function

mi_qual_constant() Extracts the value from the constant argument of a function

mi_qual_negate() MI_TRUE if the qualification includes the operator NOT
3-30 IBM Informix Virtual-Index Interface Programmer’s Guide

Interpreting the Qualification Descriptor
Simple Functions

The smallest element of a qualification is a function that tests the contents of
a column against a specified value. For example, in the following SELECT
statement, the function tests whether the value in the lname column is the
character string SMITH:

SELECT lname, fname, customer_num from customer
WHERE lname = "SMITH"

In the preceding example, the equal operator (=) represents the function
equal() and has two arguments, a column name and a string constant. The
following formats apply to simple qualification functions.

Figure 3-9
Generic Function Prototypes

Generic Prototype Description

function(column_name) Evaluates the contents of the named column

function(column_name, constant)
function(constant, column_name)

Evaluates the contents of the named column
and the explicit value of the constant argument

In a commuted argument list, the constant value
precedes the column name.

function(column ?) Evaluates the value in the specified column of
the current row and a value, called a host
variable, that a client program supplies

function(column, slv #) Evaluates the value in the specified column of
the current row and a value, called a statement-
local variable (SLV), that the UDR supplies

function(column, constant, slv #)
function(constant, column, slv #)

Evaluates the value in the specified column of
the current row, an explicit constant argument,
and an SLV
Design Decisions 3-31

Interpreting the Qualification Descriptor
Runtime Values as Arguments

The following types of arguments supply values as the function executes:

� A statement-local variable (SLV)

� A host variable

Statement-Local Variables

The parameter list of a UDR can include an OUT keyword that the UDR uses
to pass information back to its caller. The following example shows a CREATE
FUNCTION statement with an OUT parameter:

CREATE FUNCTION stem(column LVARCHAR, OUT y CHAR)...

In an SQL statement, the argument that corresponds to the OUT parameter is
called a statement-local variable, or SLV. The SLV argument appears as a
variable name and pound sign (#), as the following example shows:

SELECT...WHERE stem(lname, y # CHAR)

The VII includes functions to determine whether a qualification function
includes an SLV argument and to manage its value. For more information
about how the access method intercepts and sets SLVs, refer to the descrip-
tions of the mi_qual_needoutput() function on page 5-63 and the
mi_qual_setoutput() function on page 5-67.

For more information about output parameters, the OUT keyword, and SLVs,
refer to IBM Informix User-Defined Routines and Data Types Developer’s Guide.

Host Variables

While a client application executes, it can calculate values and pass them to a
function as an input parameter. Another name for the input parameter is host
variable. In the SQL statement, a question mark (?) represents the host
variable, as the following example shows:

SELECT...WHERE equal(lname, ?)

The SET parameter in the following example contains both explicit values
and a host variable:

SELECT...WHERE in(SET{‘Smith’, ‘Smythe’, ?}, lname)
3-32 IBM Informix Virtual-Index Interface Programmer’s Guide

Interpreting the Qualification Descriptor
Because the value of a host variable applies to every entry in the index, the
access method treats the host variable as a constant. However, the constant
that the client application supplies might change during additional scans of
the same index. The access method can request that the optimizer reevaluate
the requirements of the qualification between scans.

For more information about how the access method provides for a host
variable, refer to the description of mi_qual_const_depends_hostvar() and
mi_qual_setreopt() in Chapter 5, “Descriptor Function Reference.”

For more information about the following topics, refer to the manual
indicated in the table.

Negation

The NOT operator reverses, or negates, the meaning of a qualification. In the
following example, the access method returns only rows with an lname value
other than SMITH:

WHERE NOT lname = "SMITH"

NOT can also reverse the result of a Boolean expression. In the next example,
the access method rejects rows that have southwest or northwest in the
region column:

WHERE NOT (region = "southwest" OR region = “northwest”)

Topic Manual

Setting values for host variables in client
applications

IBM Informix ESQL/C Programmer’s
Manual

Using DataBlade API functions from client
applications

IBM Informix DataBlade API
Programmer’s Guide

Using host variables in SQL statements IBM Informix Guide to SQL: Syntax
Design Decisions 3-33

Interpreting the Qualification Descriptor
Complex Boolean Expressions

In a complex WHERE clause, Boolean operators combine multiple conditions.
The following example combines a function with a complex qualification:

WHERE year > 95 AND (quarter = 1 OR quarter = 3)

The OR operator combines two functions, equal(quarter,1) and
equal(quarter,3). If either is true, the combination is true. The AND
operator combines the result of the greaterthan(year,95) with the result
of the Boolean OR operator.

If a WHERE clause contains multiple conditions, the database server
constructs a qualification descriptor that contains multiple, nested qualifi-
cation descriptors.

Figure 3-10 shows a complex WHERE clause that contains multiple levels of
qualifications. At each level, a Boolean operator combines results from two
previous qualifications.

Figure 3-11 and Figure 3-12 represent the structure of the qualification
descriptor that corresponds to the WHERE clause in Figure 3-10.

The qualification descriptors for the preceding expression have a hierarchical
relationship, as the following figure shows.

WHERE region = "southwest" AND
(balance < 90 OR aged <= 30)

Figure 3-10
Complex WHERE

Clause

AND(equal(region,'southwest'),
OR(lessthan(balance,90), lessthanequal(aged,30)))

Figure 3-11
Function Nesting

Figure 3-12
Qualification-

Descriptor
Hierarchy for a

Three-Key Index

Q5: Q4 = = MI_TRUE AND Q3= = MI_TRUE

Q4: region = "southwest"

Q3: Q1 = = MI_TRUE OR Q2 = = MI_TRUE

Q1:balance < 90 Q2: aged <= 30
3-34 IBM Informix Virtual-Index Interface Programmer’s Guide

Interpreting the Qualification Descriptor
For a detailed description of the functions that the access method uses to
extract the WHERE clause conditions from the qualification descriptor, refer
to “Qualification Descriptor” on page 5-9.

Qualifying Data

To qualify table rows, a secondary access method applies the functions and
Boolean operators from the qualification descriptor to key columns. The
access method actually retrieves the contents of the keys from an index rather
than from the table. If the index keys qualify, the secondary access method
returns identifiers that enable the database server to locate the whole row
that includes those key values.

Executing Qualification Functions

This section describes the following alternative ways to process a simple
function:

� To execute a function in a database server thread, use the routine
identifier.

� To enable the access method or external software to execute an equiv-
alent function, use the function name.

Using the Routine Identifier

The access method uses a routine identifier to execute a UDR with the
DataBlade API FastPath facility. A qualification specifies a strategy UDR to
evaluate index keys. To complete the qualification, the access method might
also execute support UDRs. For information about FastPath and how to use it
to execute strategy and support UDRs, refer to “Using FastPath” on
page 3-27.

Tip: You can obtain the function descriptor in the am_beginscan purpose function,
store the function descriptor in the PER_COMMAND user data, and call
mi_scan_setuserdata() to store a pointer to the user data. In the am_getnext
purpose function, call mi_scan_userdata() to retrieve the pointer, access the
function descriptor, and execute the function with mi_routine_exec(). For
examples, see the indexing information on the IBM Informix Developer Zone at
www.ibm.com/software/data/developer/informix.
Design Decisions 3-35

Interpreting the Qualification Descriptor
Using the Function Name

To extract the function name from the qualification descriptor, the access
method calls the mi_qual_funcname() accessor function.

You can use mi_qual_funcname() to identify the function in a qualification,
then directly call a local routine that implements it. For example, if the access
method contains a local equal() function, it might include the following
condition:

/* Compare function name to string.*/
if (strcmp("equal", mi_qual_funcname(qd)) == 0)
{ /* Execute equal() locally. */ }

Processing Complex Qualifications

In Figure 3-13 on page 3-36, the am_getnext purpose function attempts to
disqualify index keys. It sets the row identifier and fragment identifier in the
row-ID descriptor and signals the database server to retrieve the row
information.

For more examples, see the indexing information on the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix.

mi_integer sample_getnext(sd,retrow,retrowid)
MI_AM_SCAN_DESC *sd;
MI_ROW **retrow
MI_AM_ROWID_DESC *retrowid; /* Store rowid. */

{
my_data_t *my_data;
MI_ROW_DESC *rd;
MI_AM_TABLE_DESC *td;
MI_AM_QUAL_DESC *qd;
td = mi_scan_table(sd); /* Get table descriptor. */
rd = mi_tab_rowdesc(td); /* Get key column data types. */
my_data = (my_data_t *)mi_tab_userdata(td); /* Get pointer to user data.*/
/* Evaluate keys until one qualifies for return to caller.. */
for (;;)
{

if (! my_data) return MI_NO_MORE_RESULTS;
if (eval_qual(sd, qd, my_data))== MI_TRUE)
{

mi_id_setrowid(retrowid, current->rowid);
mi_id_setfragid(retrowid, current->fragid);
return MI_ROWS;

}

my_data->rowptr++;
} /*End loop.*/

}/* End getnext.*/

Figure 3-13
Sample am_getnext

Purpose Function
3-36 IBM Informix Virtual-Index Interface Programmer’s Guide

Interpreting the Qualification Descriptor
Supporting Query Plan Evaluation

At the start of a SELECT statement, the database server initiates query
planning. A query plan specifies the steps that the database server takes to
fulfill a query with optimal efficiency. The database server includes an
optimizer, which compares various combinations of operations and chooses
the query plan from among alternative approaches. To help the optimizer
select the best query plan, provide reliable information about the cost of
using the access method to select data.

Calculating Statement-Specific Costs

The optimizer compares the cost in time and memory to perform such tasks
as the following:

� Locating an index entry or table row on disk

� Retrieving the entry or row into memory

� Sorting and joining data

� Applying WHERE clause qualifications

� Retrieving rows from a primary table, if the optimizer uses an index

For more information about query plans, refer to the Performance Guide.

If the query involves a user-defined access method, the database server
executes the am_scancost purpose function to request cost information from
the access method. For a description of the factors that am_scancost calcu-
lates, refer to page 4-38.

To avoid error messages, the access method can use the am_scancost purpose
function to notify the optimizer when it does not support all the requirements
specified in a query. If necessary, am_scancost can return a negative cost so
that the optimizer excludes this access method from the query plan. For an
example, refer to Figure 4-15 on page 4-40.
Design Decisions 3-37

Interpreting the Qualification Descriptor
Updating Statistics

The UPDATE STATISTICS statement stores statistics about the distribution of
rows on physical storage media for use by the optimizer. The database server
updates data-distribution statistics for internal, relational indexes; the access
method updates data-distribution statistics for virtual indexes. When a user
issues an UPDATE STATISTICS statement that requires the access method to
determine the distribution of data in an index, the database server calls the
am_stats purpose function.

The access method can call mi_tab_update_stat_mode() to determine if the
UPDATE STATISTICS statement includes the keyword HIGH or MEDIUM, each
of which influences the percentage of rows that the access method should
sample and the particular statistics that it should supply.

To store statistics in the statistics descriptor, the am_stats purpose function
calls the various accessor functions with the name prefix mi_istats_set. The
database server copies the information from the statistics descriptor in the
appropriate system catalog tables. For information about these functions,
refer to Chapter 5, “Descriptor Function Reference.”

The database server does not use the information in the statistics descriptor
to evaluate query costs. The access method can, however, use these statistics
during the am_scancost purpose function to compute the cost for a given
query. For information about how to access the system catalog tables or to
maintain tables in an Informix database, refer to “Accessing Database and
System Catalog Tables” on page 3-7.
3-38 IBM Informix Virtual-Index Interface Programmer’s Guide

Enhancing Performance
Enhancing Performance
The access method can take advantage of the following performance
enhancements:

� Executing parallel scans, inserts, deletes, and updates

� Bypassing table scans

� Buffering multiple rows

Executing in Parallel
Parallelizable routines can execute in parallel across multiple processors.

To make a UDR parallelizable, apply the following rules:

� Follow the guidelines for well-behaved user-defined routines.

� Avoid any DataBlade API routine that involves query processing
(mi_exec(), mi_exec_prepared_statement()), collections
(mi_collection_*), row types, or save sets (mi_save_set_*).

� Do not create rows that contain any complex types including another
row type as one of the columns. Do not use the mi_row_create() or
mi_value() functions with complex types or row types.

� Avoid DataBlade API FastPath functions (mi_routine_*,
mi_func_desc_by_typeid()) if the access method might pass them
routine identifiers for nonparallelizable routines.

� Specify the PARALLELIZABLE routine modifier in the CREATE
FUNCTION or CREATE PROCEDURE statement for the UDR.

For more information about the following topics, refer to the IBM Informix
DataBlade API Programmer’s Guide:

� Guidelines for well-behaved user-defined routines

� A complete list of nonparallelizable functions

� FastPath function syntax, usage, and examples
Design Decisions 3-39

Executing in Parallel
For more information about the PARALLELIZABLE (and other) routine
modifiers, refer to the Routine Modifier segment in the IBM Informix Guide to
SQL: Syntax. For more information about parallelizable UDRs, refer to
IBM Informix User-Defined Routines and Data Types Developer’s Guide.

To make an access method parallelizable

1. Create a basic set of parallelizable purpose functions.

The basic set, which enables a SELECT statement to execute in paral-
lel, includes the following purpose functions: am_open, am_close,
am_beginscan, am_endscan, am_getnext, and am_rescan.

An access method might not supply all of the purpose functions that
define a basic parallelizable set. As long as you make all the basic
purpose functions that you provide parallelizable, a SELECT state-
ment that uses the access method can execute in parallel.

2. Add a parallelizable purpose function to the basic set for any of the
following actions that you want the database server to execute in
parallel.

Important: A parallelizable purpose function must call only routines that are also
parallelizable. All the strategy and support functions for the operator class that the
index uses must also be parallelizable.

The database server sets an am_parallel purpose value in the sysams system
catalog table to indicate which access-method actions can occur in parallel.
For more information, refer to “Purpose Options” on page 6-11.

Parallel SQL Statement Parallelizable Purpose Function

INSERT (in a SELECT) am_insert

SELECT INTO TEMP am_insert

DELETE am_delete

UPDATE am_update
3-40 IBM Informix Virtual-Index Interface Programmer’s Guide

Bypassing Table Scans
Bypassing Table Scans
The secondary access method always returns row identifiers so that the
database server can locate table rows. The access method can additionally
format and return rows from the key columns that the scan descriptor
specifies.

Set the am_keyscan purpose flag (with the CREATE SECONDARY
ACCESS_METHOD or ALTER ACCESS_METHOD statement) to alert the
database server that the am_getnext purpose function returns key values.
When am_keyscan is set, the database server knows that am_getnext creates
a row in shared memory from the key values in a qualified index entry. If the
query selects only the columns in the key, the database server returns rows of
index keys to the query. It does not retrieve the physical table row or extract
the selected columns from the row.

Important: The access method cannot determine whether an individual query
projects key columns. Before you decide to set the am_keyscan purpose flag,
determine whether key columns satisfy queries with sufficient frequency for the
access method to format rows, which requires a function call to the database server.

Warning: Do not set am_keyscan or format rows if users of the access method might
index user-defined types (UDTs).

For more information about am_keyscan, refer to “Purpose Options” on
page 6-11.
Design Decisions 3-41

Buffering Multiple Results
Buffering Multiple Results
The am_getnext purpose function can find and store several qualified index
entries in shared memory before it returns control to the database server. The
following steps set up and fill a multiple-index entry buffer in shared
memory:

To set up and fill a multiple-index entry buffer in shared memory

1. Call mi_tab_setniorows() in am_open or am_beginscan to set the
number of index entries that the access method can return in one
scan.

2. Call mi_tab_niorows() at the start of am_getnext to find out how
many index entries to return.

3. Loop through mi_tab_setnextrow() in am_getnext until the number
of qualifying index entries matches the return value of
mi_tab_niorows() or until no more qualifying rows remain.
3-42 IBM Informix Virtual-Index Interface Programmer’s Guide

Buffering Multiple Results
Figure 3-14 shows the preceding steps. For more information about these
functions, refer to Chapter 5, “Descriptor Function Reference.”

Typically, a secondary access method does not create rows from key data.
However, if you intend to set the am_keyscan purpose flag for a secondary
access method, the access method must create an MI_ROW structure that
contains key values in the appropriate order and of the appropriate data type
to match the query specifications for a projected row.

Warning: Although a user can index UDTs, the database server issues an exception
if the secondary access method creates and returns a row from index keys that contain
UDTs.

For information about am_keyscan, refer to “Bypassing Table Scans” on
page 3-41.

mi_integer sample_beginscan(MI_AM_SCAN_DESC *sd)
{

mi_integer nrows = 512;
MI_AM_TABLE_DESC *td=mi_scan_table(sd);
mi_tab_setniorows(td, nrows);

}

mi_integer sample_getnext(MI_AM_SCAN_DESC *sd, MI_ROW **retrow,

MI_AM_ROWID_DESC *ridDesc)
{

mi_integer nrows, row, nextrowid, nextfragid;
MI_ROW *nextrow=NULL; /* MI_ROW structure is not typically used.*/

MI_AM_TABLE_DESC *td =mi_scan_table(sd);
nrows = mi_tab_niorows(td);

if (nrows > 0)
{/*Store qualified results in shared memory.buffer.*/

for (row = 0; row < nrows; ++row)
{ /* Evaluate rows until we get one to return to caller. */

find_good_row(sd, &nextrow, &nextrowid, &fragid);
mi_tab_setnextrow(td, nextrow, nextrowid, nextfragid);

} /* End of loop for nrows times to fill shared memory.*/
}/*End (nrows > 0). */
else
{/*Only one result per call to am_getnext. */

find_good_row(sd, &nextrow, &nextrowid, &nextfragid);

mi_id_setrowid(ridDesc, nextrowid);
mi_id_setfragid(ridDesc, nextfragid);

}
/* When reach the end of data, return MI_NO_MORE_RESULTS, else return

MI_ROWS. */
}

Figure 3-14
Storing Multiple

Results In a Buffer
Design Decisions 3-43

Supporting Data Retrieval, Manipulation, and Return
Supporting Data Retrieval, Manipulation, and
Return
The following concepts affect the design of am_getnext, am_insert,
am_delete, and am_update:

� Enforcing unique-index constraints

� Checking isolation levels

� Converting data to and from Informix row format

� Detecting transaction success or failure

Enforcing Unique-Index Constraints
The UNIQUE or DISTINCT keyword in a CREATE INDEX or INSERT statement
specifies that a secondary access method cannot insert multiple occurrences
of a key value. The UNIQUE or DISTINCT keyword in a SELECT statement
specifies that the access method must return only one occurrence of a key
value.

To provide support for unique keys

1. Program the am_insert purpose function to scan an index before it
inserts each new entry and raise an exception for a key value that the
index already contains.

2. Program the am_getnext to return only one occurrence of a key.

3. Set the am_unique purpose flag, as described in“Setting Purpose
Functions, Flags, and Values” on page 6-13.
3-44 IBM Informix Virtual-Index Interface Programmer’s Guide

Checking Isolation Levels
Checking Isolation Levels
The isolation level affects the concurrency between sessions that access the
same set of data. The following tables show the types of phenomena that can
occur without appropriate isolation-level controls.

� A Dirty Read occurs because transaction 2 sees the uncommitted
results of transaction 1.

� A Nonrepeatable Read occurs if transaction 1 retrieves a different result
from the each read.

� A Phantom Read occurs if transaction 1 obtains a different result from
each SELECT for the same criteria.

To determine which of the following isolation levels the user or application
specifies, the access method can call either the mi_tab_isolevel() or
mi_scan_isolevel() function.

Transaction 1 Write(a) Roll Back

Transaction 2 Read(a)

Transaction 1 Read(a) Read(a)

Transaction 2 Write/Delete(a) Commit

Transaction 1 Select(criteria) Select(criteria)

Transaction 2 Update/Create
(match to criteria)

Commit

Isolation Level Type of Read Prevented

Serializable Dirty Read, Nonrepeatable Read, Phantom Read

Repeatable read or
Cursor Stability

Dirty Read, Nonrepeatable Read

(1 of 2)
Design Decisions 3-45

Checking Isolation Levels
For more information about how applications use isolation levels, consult the
IBM Informix Guide to SQL: Reference, IBM Informix Guide to SQL: Syntax, and
IBM Informix Guide to SQL: Tutorial. For information about determining
isolation level, refer to mi_scan_isolevel() or mi_tab_isolevel() in Chapter 5,
“Descriptor Function Reference.”

The database server automatically enforces Repeatable Read isolation under
the following conditions:

� The virtual index and all the table data that it accesses reside in
sbspaces.

� User-data logging is turned on for the smart large objects that
contain the data.

To find out how to turn on user-data logging with the access method,
refer to “Activating Automatic Controls in Sbspaces” on page 3-16.
To find out how to provide for logging with ONCONFIG parameters,
refer to your Administrator’s Guide.

The access method must provide the code to enforce isolation levels if users
require Serializable isolation. The database server does not provide support
for full Serializable isolation.

Important: You must document the isolation level that the access method supports in
a user guide. For an example of how to word the isolation-level notice, refer to
Figure 3-15 on page 3-52.

Read Committed Dirty Read

Read Uncommitted None

Isolation Level Type of Read Prevented

(2 of 2)
3-46 IBM Informix Virtual-Index Interface Programmer’s Guide

Converting to and from Row Format
Converting to and from Row Format
Before the access method can return key values to a query, the access method
must convert source data to data types that the database server recognizes.

To create a row

1. Call mi_tab_rowdesc() to retrieve the row descriptor.

2. Call the appropriate DataBlade API row-descriptor accessor
functions to obtain the information for each column.

For a list of available row-descriptor accessor functions, refer to the
description of MI_ROW_DESC in the IBM Informix DataBlade API Pro-
grammer’s Guide.

3. If necessary, convert external data types to types that the database
server recognizes.

4. Set the value of the columns that the query does not need to NULL.

5. Call the DataBlade API mi_row_create() function to create a row
from the converted source data.

Tip: The mi_row_create() function can affect performance because it requires
database server resources. Use it only if you set the am_keyscan purpose flag for the
access method.

The database server passes an MI_ROW structure to the am_insert and
am_update purpose functions. To extract the values to insert or update, call
mi_value() or mi_value_by_name(). For more information about these
functions, refer to the IBM Informix DataBlade API Programmer’s Guide.
Design Decisions 3-47

Determining Transaction Success or Failure
Determining Transaction Success or Failure
The access method can register an end-of-transaction callback function to
handle the MI_EVENT_END_XACT event, which the database server raises at
the end of a transaction. In that callback function, test the return value of the
DataBlade API mi_transition_type() function to determine the state of the
transaction, as follows.

Warning: Uniform commit or rollback (called two-phase-commit protocol) with data
in an external database server is not assured. If a transaction partially commits and
then aborts, inconsistencies can occur between the database server and external data.

As long as a transaction is in progress, the access method should save each
original source record value before it executes a delete or update. For trans-
actions that include both internal and external objects, the access method can
include either an end-of-transaction or end-of-statement callback function to
ensure the correct end-of-transaction action. Depending on the value that
mi_transition_type() returns, the callback function either commits or rolls
back (if possible) the operations on the external objects.

If an external transaction does not completely commit, the access method
must notify the database server to roll back any effects of the transaction on
state of the virtual index.

For detailed information about the following subjects, refer to the
IBM Informix DataBlade API Programmer’s Guide:

� Handling state-transitions in a UDR

� End-of-transaction callback functions

� End-of-statement callback functions

Return Value for
mi_transition_type() Transaction State

MI_NORMAL_END Successful transaction completion

The database server can commit the data.

MI_ABORT_END Unsuccessful transaction completion

The database server must roll back the index to its state
before the transaction began.
3-48 IBM Informix Virtual-Index Interface Programmer’s Guide

Supplying Error Messages and a User Guide
For an example of a secondary access method that provides a state-transition
callback function, see the indexing information on the IBM Informix
Developer Zone at www.ibm.com/software/data/developer/informix.

Supplying Error Messages and a User Guide
As you plan access-method purpose functions, familiarize yourself with the
following information:

� The SQL statement syntax in the IBM Informix Guide to SQL: Syntax

� The IBM Informix Guide to SQL: Tutorial

� The IBM Informix Database Design and Implementation Guide

These documents include examples of Informix SQL statements and expected
results, which the SQL user consults.

The user of your access method will expect the SQL statements and keywords
to behave as documented in the database server documentation. If the access
method causes an SQL statement to behave differently, you must provide
access-method documentation and messages to alert the user to these
differences.

In the access-method user guide, list all SQL statements, keywords, and
options that raise an exception if an end user attempts to execute them.
Describe any features that the access method supports in addition to the
standard SQL statements and keywords.

Create callback functions to respond to database server exceptions, as
“Handling the Unexpected” on page 3-8 describes. Raise access-method
exceptions for conditions that the database server cannot detect. Use the
following sections as a checklist of items for which you supply user-guide
information, callback functions, and messages.
Design Decisions 3-49

Avoiding Database Server Exceptions
Avoiding Database Server Exceptions
When an SQL statement involves the access method, the database server
checks the purpose settings in the sysams system catalog table to determine
whether the access method supports the statement and the keywords within
that statement.

The database server issues an exception and an error message if the purpose
settings indicate that the access method does not support a requested SQL
statement or keyword. If a user inadvertently specifies a feature that the
access-method design purposely omits and the SQL syntax conforms to the
IBM Informix Guide to SQL: Syntax, the documentation does not provide a
solution.

Specify access-method support for the following items in the sysams system
catalog table with a CREATE SECONDARY ACCESS_METHOD or ALTER
ACCESS_METHOD statement:

� Statements

� Keywords

� Storage space type

Statements That the Access Method Does Not Support

The user can receive an SQL error for statements that require a purpose
function that you did not supply. The access-method user guide must advise
users which statements to avoid.

If the access method does not supply one or more of the following purpose
functions, the access-method user guide must advise users not to use any of
the following corresponding statements.

Without this purpose function Avoid this SQL statement

am_insert INSERT, ALTER FRAGMENT

am_delete DELETE, ALTER FRAGMENT

am_update UPDATE

am_stats UPDATE STATISTICS
3-50 IBM Informix Virtual-Index Interface Programmer’s Guide

Avoiding Database Server Exceptions
Keywords That the Access Method Does Not Support

You must set a purpose flag to indicate the existence of code within the access
method to support certain keywords. If a purpose flag is not set, the database
server assumes that the access method does not support the corresponding
keyword and issues an error if an SQL statement specifies that keyword.

For example, unless you set the am_unique purpose flag in the sysams
system catalog table, an SQL statement with the UNIQUE keyword fails. If the
access method does not support unique indexes, the access-method user
guide must advise users not to use the UNIQUE or DISTINCT keyword.

Storage Spaces and Fragmentation

An SQL statement fails if it specifies a storage space that does not agree with
the am_sptype purpose value in the sysams system catalog table. In the user
guide, specify whether the access method supports sbspaces, extspaces, or
both. Advise the user how to do the following:

� Create sbspace or extspace names with the onspaces command.

� Specify a default sbspace if the access method supports sbspaces.

� Locate the default extspace if the access method creates one.

� Specify an IN clause in a CREATE INDEX or ALTER FRAGMENT
statement.

For more information about specifying storage spaces, refer to “Creating and
Specifying Storage Spaces” on page 2-18.

If the access method supports fragmentation in sbspaces, advise the user to
create multiple sbspaces with onspaces before issuing an SQL statement that
creates fragments. For an example, refer to “Using Fragments” on page 2-21.
Design Decisions 3-51

Notifying the User About Access-Method Constraints
Features That the VII Does Not Support

The database server also raises exceptions due to restrictions that the VII
imposes on SQL. A user cannot specify a dbspace in a CREATE INDEX or
ALTER FRAGMENT statement. The VII does not support the following activ-
ities for virtual indexes:

� The FILLFACTOR clause in a CREATE INDEX statement

� ATTACH or DETACH in an ALTER FRAGMENT statement

� ASC or DESC keywords

Notifying the User About Access-Method Constraints
The database server cannot detect unsupported or restricted features for
which the sysams system catalog table has no setting.

Data Integrity Limitations

Specify any precautions that an application might require for isolation levels,
lock types, and logging.

Advise users whether the access method handles logging and data recovery.
Notify users about parameters that they might set to turn logging on. For an
example, refer to Figure 3-5 on page 3-19.

Provide the precise wording for the isolation levels that the access method
supports. It is recommended that you use standard wording for isolation
level. The following example shows the language to define the ways in which
the qualifying data set might change in the transaction.

The access method fully supports the ANSI Repeatable Read level of
isolation. The user need not account for dirty reads or
nonrepeatable reads. It is recommended that you take precautions
against phantom reads.

Figure 3-15
Sample Language to

Describe Isolation
Level
3-52 IBM Informix Virtual-Index Interface Programmer’s Guide

Documenting Nonstandard Features
WHERE Clause Limitations

The sysams system catalog table has no indicator to inform the database
server that a secondary access method cannot process complex qualifications.
If the access method does not process the Boolean operators in a WHERE
clause, perform the following actions:

� Provide examples in the user guide of UNION and subqueries that
replace AND or OR operators in a WHERE clause, as the following
example demonstrates.

� In the am_scancost purpose function, call the mi_qual_issimple() or
mi_qual_boolop() accessor function to detect a Boolean operator.

If mi_qual_issimple() returns MI_FALSE, for example, return a value
that forces the optimizer to ignore this access method for the partic-
ular query. For an example, refer to Figure 4-15 on page 4-40.

� Raise an error if mi_qual_issimple() returns MI_FALSE to the
am_getnext purpose function.

Documenting Nonstandard Features
Provide instructions and examples for any feature that aids the user in
applying the access method. For example, provide information and examples
about the following items:

� Parameter keywords

For more information, refer to “Enabling Alternative Indexes” on
page 3-22.

� Output from the oncheck utility

For more information about the options that the oncheck provides,
refer to the Administrator’s Reference. For more information about
providing oncheck functionality, refer to the description of the
am_check purpose function on page 4-16.

Query Using Boolean Operator Query using UNION

SELECT * FROM videos

WHERE title = 'Hamlet'

OR year > 1980;

SELECT * FROM videos WHERE title = 'Hamlet

UNION

SELECT * FROM videos WHERE year > 1980;
Design Decisions 3-53

4
Chapter
Purpose-Function Reference
In This Chapter . 4-3

Purpose-Function Flow 4-3
ALTER FRAGMENT Statement Interface 4-4
CREATE Statement Interface 4-8
DROP Statement Interface 4-9
INSERT, DELETE, and UPDATE Statement Interface 4-9
SELECT...WHERE Statement Interface 4-12
oncheck Utility Interface 4-12

Purpose-Function Syntax. 4-13
am_beginscan 4-14
am_check . 4-16
am_close . 4-21
am_create. 4-22
am_delete. 4-24
am_drop . 4-26
am_endscan . 4-27
am_getbyid . 4-28
am_getnext . 4-30
am_insert . 4-33
am_open . 4-35
am_rescan . 4-37
am_scancost . 4-38
am_stats . 4-42
am_update . 4-44

4-2 IBM
 Informix Virtual-Index Interface Programmer’s Guide

In This Chapter
This chapter describes the purpose functions that the access-method
developer provides. This chapter consists of two major parts:

� “Purpose-Function Flow” illustrates the sequence in which the
database server calls purpose functions.

� “Purpose-Function Syntax” on page 4-13 specifies the predefined
function-call syntax and suggests usage for each purpose function.

Purpose-Function Flow
The diagrams in this section show, for each SQL statement, which purpose
functions the database server executes. Use the diagrams to determine which
purpose functions to implement in the access method.

The complexity of the purpose-function flow for each statement determines
the order in which the statement appears in this section. This section
describes the purpose-function interface for the following SQL statements:

� ALTER FRAGMENT Statement Interface

� CREATE Statement Interface

� DROP Statement Interface

� INSERT, DELETE, and UPDATE Statement Interface

� SELECT...WHERE Statement Interface

This section also describes the “oncheck Utility Interface” on page 4-12.
Purpose-Function Reference 4-3

ALTER FRAGMENT Statement Interface
Tip: The database server invokes the am_open and am_close purpose functions
once per fragment for the first SQL statement that references a new virtual table.
After the initial calls to am_open and am_close, the database server resumes the
normal purpose function flow for the active SQL statement.

The following statements result in an additional call to am_open and
am_close before the INSERT statement:

CREATE TABLE newtab (...) USING myvti
INSERT INTO newtab VALUES (....)

ALTER FRAGMENT Statement Interface
When the database server executes an ALTER FRAGMENT statement, the
database server moves data between existing fragments and also creates a
new fragment.

The statement in Figure 4-1 creates and fragments a jobsx tableindex.

The statement in Figure 4-2 changes the fragment expression for jobsx,
which redistributes the tableindex entries.

For each fragment that the ALTER FRAGMENT statement specifies, the
database server performs the following actions:

1. Executes an access-method scan

2. Evaluates the returned rows to determine which ones must move to
a different fragment

CREATE TABLEINDEX jobsx on jobs (sstatus file_ops)
FRAGMENT BY EXPRESSION

sstatus > 15 IN fragspace2,
REMAINDER IN fragspace1

USING file_am

Figure 4-1
SQL to Create the

Fragmented Jobsx
TableIndex

ALTER FRAGMENT ON TABLEINDEX jobsx
MODIFY fragspace1 TO (sstatus <= 5) IN fragspace1,
MODIFY fragspace2 TO

(sstatus > 5 AND sstatus <= 10) IN fragspace2,
REMAINDER IN fragspace3

Figure 4-2
SQL to Alter the Jobsx

Fragments
4-4 IBM Informix Virtual-Index Interface Programmer’s Guide

ALTER FRAGMENT Statement Interface
3. Executes the access method to create a new fragment for the target
fragment that does not yet exist

4. Executes the access method to delete rows from one fragment and
insert them in another

Figures 4-3 through Figure 4-6 show the separate sequences of purpose
functions that create the fragments and distribute the data for the SQL ALTER
FRAGMENT statement in Figure 4-2. The database server performs steps 1, 2,
and 3 to move fragments from fragspace1 to fragspace2 and then performs
steps 1 through 3 to move fragments from fragspace2 to fragspace3.

Figure 4-3 shows the sequential scan in step 1, which returns all rows from
the fragment because the scan descriptor contains a NULL-valued pointer
instead of a pointer to a qualification descriptor.

Figure 4-3
Getting All the

RowsEntries in
Fragment 1

am_open fragspace1

MI_ROWS

MI_NO_MORE_RESULTS

am_close fragspace1

am_beginscan

am_getnext

am_endscan
Purpose-Function Reference 4-5

ALTER FRAGMENT Statement Interface
In Figure 4-4, the database server returns the row identifiers that the access
method should delete from fragspace1 and insert in fragspace2.

Figure 4-5 again shows the sequential scan in step 1. This scan returns all the
rows from fragment2.

Figure 4-4
Moving

RowsEntries
Between Fragments

Figure 4-5
Getting All the

RowsEntries in
Fragment 2

am_close fragspace2

am_insert rowentry

am_close fragspace1

am_delete rowentry

sstatus > 5 and <= 10

am_open fragspace1

am_open fragspace2

am_open fragspace2

MI_NO_MORE_RESULTS

am_close fragspace2

am_beginscan

am_getnext

am_endscan

MI_ROWS
4-6 IBM Informix Virtual-Index Interface Programmer’s Guide

ALTER FRAGMENT Statement Interface
Figure 4-6 shows steps 3 and 4. The database server returns the row identi-
fiers that the access method should delete from fragspace2 and insert in
fragspace3. The database server does not have fragspace3, so it executes
am_create to have the access method create a fragment before it executes
am_insert.

For more information about fragments that a VII-based access method
manages, refer to “Supporting Fragmentation” on page 3-18.

Figure 4-6
Adding and Filling a

Fragmentsstatus > 10

am_open fragspace2

am_close fragspace2

am_insert rowentry

am_close fragspace3

am_open fragspace3

am_delete rowentry

fragspace3 exist? am_create fragspace3

Yes

No
Purpose-Function Reference 4-7

CREATE Statement Interface
CREATE Statement Interface
Figure 4-7 and Figure 4-8 show the order in which the database server
executes purpose functions for a CREATE TABLEINDEX statement. If the IN
clause specifies multiple storage spaces to fragment the tableindex, the
database server repeats the sequence of purpose functions that Figure 4-7
and Figure 4-8 show for each storage space.

For more information about implementing the CREATE TABLEINDEX
statement in the access method, refer to “Supporting Data Definition State-
ments” on page 3-12.

Figure 4-7
Processing a

CREATE TABLE
Statement

Figure 4-8
Processing a

CREATE INDEX
Statement

am_create

am_open

am_close

Yes

No

am_insert key

am_open

am_create

am_close

More rows?
4-8 IBM Informix Virtual-Index Interface Programmer’s Guide

DROP Statement Interface
DROP Statement Interface
Figure 4-9 shows the processing for each fragment of a DROP TABLEINDEX or
DROP DATABASE statement.

INSERT, DELETE, and UPDATE Statement Interface
Figure 4-10 shows the order in which the database server executes purpose
functions to insert, delete, or update a row at a specific physical address. The
physical address consists of fragment identifiers and row identifiers.

Figure 4-9
Processing a DROP

Statement

Figure 4-10
INSERT, DELETE, or

UPDATE by Row
Address

am_open

am_drop

am_open fragment

am_close fragment

am_insert row,
am_delete row,

or am_update row
Purpose-Function Reference 4-9

INSERT, DELETE, and UPDATE Statement Interface
Figure 4-11 shows the order in which the database server executes purpose
functions if the insert, delete, or in-place update has an associated WHERE
clause.

Figure 4-11
INSERT, DELETE, or

UPDATE in a
Subquery

MI_ROWS

am_beginscan

am_getnext

am_open

am_scancost

am_insert,
am_delete,

or am_update
MI_NO_MORE_RESULTS

am_close

am_endscan
4-10 IBM Informix Virtual-Index Interface Programmer’s Guide

INSERT, DELETE, and UPDATE Statement Interface
Figure 4-12 shows the more complicated case in which am_getnext returns
multiple rows to the database server. In either case, the database server calls
am_insert, am_delete, or am_update once per row.

For more information about implementing INSERT, DELETE, and UPDATE
statements, refer to “Supporting Data Retrieval, Manipulation, and Return”
on page 3-44.

Figure 4-12
Returning Multiple
Rows That Qualify

for INSERT,
DELETE, or

UPDATE

nextrow = norows?
Yes

No

MI_ROWS

am_beginscan

am_getnext

am_open

am_scancost

am_insert,
am_delete,

or am_update
MI_NO_MORE_RESULTS

am_close

am_endscan
Purpose-Function Reference 4-11

SELECT...WHERE Statement Interface
SELECT...WHERE Statement Interface
Figure 4-13 shows the order in which the database server executes purpose
functions for a SELECT statement with a WHERE clause. For information
about how to process the scan and qualifications, refer to “Processing
Queries” on page 3-29.

oncheck Utility Interface
The oncheck utility reports on the state of an index and provides a means for
a database system administrator to check on the state of objects in a database.
You, as an access-method developer, can also use oncheck to verify that the
access method creates and maintains appropriate indexes.

As Figure 4-14 shows, the database server calls only one access-method
function for the oncheck utility. If necessary, the am_check purpose function
can call am_open and am_close or can itself contain the appropriate logic to
obtain handles, allocate memory, and release memory.

Figure 4-13
Processing a

SELECT Statement
Scan

Figure 4-14
Processing the
oncheck Utility

am_open

MI_NO_MORE_RESULTS

am_close

am_beginscan

am_getnext

am_endscan

am_scancost

MI_ROWS

am_check
4-12 IBM Informix Virtual-Index Interface Programmer’s Guide

Purpose-Function Syntax
Purpose-Function Syntax
The database server expects a particular prototype for each purpose function.
As the access-method developer, you program the actions of a purpose
function, but must use the parameters and return values that the VII proto-
types specify. This section lists purpose-function prototypes in alphabetical
order.

For each purpose function that your access method provides, use the
prototype that this chapter shows, but change the prototype-function name
to a unique name. For example, you might save your version of am_open
with the name vtable_open()vindex_open(). To associate the unique
purpose-function names to the corresponding prototype names, use the
CREATE PRIMARYSECONDARY ACCESS_METHOD statement, as “CREATE
ACCESS_METHOD” on page 6-7 specifies.

The parameter list for each purpose function includes (by reference) one or
more descriptor data structures that describe the SQL statement keywords or
oncheck options and the specified tableindex that requires the access
method. For detailed information about each descriptor, refer to
“Descriptors” on page 5-6.

Purpose functions are simply entry points from which the access method
calls other routines from the access-method library, DataBlade API functions,
and the VII functions that “Accessor Functions” on page 5-19 describes.
Purpose-Function Reference 4-13

am_beginscan
am_beginscan
The database server calls am_beginscan to start a scan on a virtual
tableindex. This function initializes the scan.

Syntax
mi_integer am_beginscan(MI_AM_SCAN_DESC *scanDesc)

Usage
The functions that the access method supplies for am_beginscan,
am_getnext, and am_endscan compose the main scan-management routines.
In its turn, the am_beginscan purpose function might perform the following
operations:

� Obtains the qualification descriptor from the scan descriptor

� Parses the criteria in the qualification descriptor

For a more detailed discussion, refer to “Processing Queries” on
page 3-29.

� Determines the need for data type conversions to process qualifi-
cation expressions

� Calls the necessary accessor functions to retrieve the index operator
class from the system catalog

The am_beginscan purpose function can obtain and store the func-
tion descriptor for strategy and support functions. For more
information, refer to “Executing Qualification Functions” on
page 3-35 and “Using FastPath” on page 3-27.

� Initiates a search for data that fulfills the qualification, based on the
information in the qualification descriptor

� Allocates PER_COMMAND memory to build user data and then
stores the user data in the scan descriptor for the am_getnext
function

For more information about memory allocation, refer to “Storing
Data in Shared Memory” on page 3-3.

scanDesc points to the scan descriptor.
4-14 IBM Informix Virtual-Index Interface Programmer’s Guide

am_beginscan
You can also choose to defer any processing of qualifications until the
am_getnext function.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose functions am_endscan, am_getnext, and am_rescan

� “Optimizing Queries” on page 2-8
Purpose-Function Reference 4-15

am_check
am_check
If a user executes the oncheck utility for a virtual tableindex, the database
server calls am_check.

Syntax
mi_integer am_check(MI_AM_TABLE_DESC *tableDesc,

mi_integer option)

Usage
A user, generally a system administrator or operator, runs the oncheck utility
to verify physical data structures. The options that follow the oncheck
command indicate the kind of checking to perform. The additional -y or -n
option specifies that the user wants oncheck to repair any damage to an
index. For information about oncheck options, refer to the Administrator’s
Reference.

In response to an oncheck command, the database server calls the am_check
purpose function, which checks the internal consistency of the tableindex
and returns a success or failure indicator. If appropriate, am_check can call
the am_open and am_close purpose functions.

tableDesc points to the table descriptor of the tableindex that the current
oncheck command specifies.

option contains an encoded version of the current command-line option
string for the oncheck utility.
4-16 IBM Informix Virtual-Index Interface Programmer’s Guide

am_check
Interpreting Options

To determine the exact contents of the command line, pass the option
argument to the following VII macros. Each macro returns a value of
MI_TRUE if the option includes the particular -c or -p qualifier that the
following table shows.

Macro Option oncheck Action

MI_CHECK_DATA()
MI_DISPLAY_DATA()

-cd
-pd

Check and display data
rows, but not simple or
smart large objects

MI_CHECK_DATA_BLOBS()
MI_DISPLAY_DATA_BLOBS()

-cD
-pD

Check and display data
rows, simple large objects,
and smart-large-object
metadata

MI_CHECK_EXTENTS()
MI_DISPLAY_EXTENTS()

-ce
-pe

Check and display chunks
and extents, including
sbspaces

MI_DISPLAY_TPAGES() -pp Check and display pages
by table or fragment

MI_DISPLAY_CPAGES() -pP Check and display pages
by chunk

MI_DISPLAY_SPACE() -pt Check and display space
usage

MI_CHECK_IDXKEYS()
MI_DISPLAY_IDXKEYS()

-ci
-pk

Check and display index
key values

MI_CHECK_IDXKEYS_ROWIDS()
MI_DISPLAY_IDXKEYS_ROWIDS()

-cI
-pK

Check and display index
keys and rowids

MI_DISPLAY_IDXKEYLEAVES() -pl Check and display leaf key
values

MI_DISPLAY_IDXKEYLEAVES_ROWIDS () -pL Check and display leaf key
values and row identifiers

(1 of 2)
Purpose-Function Reference 4-17

am_check
The am_check purpose function executes each macro that it needs until one
of them returns MI_TRUE. For example, the following syntax tests for
oncheck option -cD demonstrate:

if (MI_CHECK_EXTENTS(option) == MI_TRUE)
{

/* Check rows and smart-large-object metadata
 * If problem exists, issue message. */

}

Checking and Displaying TableIndex State

The access method can call accessor function mi_tab_spacetype() to
determine whether the specified tableindex resides in an sbspace or extspace.
If the data resides in an sbspace, the am_check purpose function can
duplicate the expected behavior of the oncheck utility. For information about
the behavior for each oncheck option, refer to the Administrator’s Reference.

For an extspace, such as a file that the operating system manages, am_check
performs tasks that correspond to the command-line option.

To provide detailed information about the state of the tableindex, am_check
can call the mi_tab_check_msg() function.

MI_DISPLAY_IDXSPACE() -pT Check and display index
space usage

MI_CHECK_NO_TO_ALL -n Do not attempt to repair
inconsistencies

MI_CHECK_YES_TO_ALL -y Automatically repair an
index

Macro Option oncheck Action

(2 of 2)
4-18 IBM Informix Virtual-Index Interface Programmer’s Guide

am_check
Handling Index Problems

An access method can contain the logic to repair an index and execute
additional macros to determine whether it should repair a problem that
am_check detects. The following table shows the oncheck options that
enable or disable repair and the am_check macro that detects each option.

If a user does not specify -y or -n with an oncheck command, the database
server displays a prompt that asks whether the user wants the index
repaired. Similarly, when both MI_CHECK_YES_TO_ALL() and
MI_CHECK_NO_TO_ALL() return MI_FALSE, am_check can call accessor
function mi_tab_check_set_ask(), which causes the database server to ask if
the user wants the index repaired. If the user answers yes or y, the database
server adds -y to the option argument and executes am_check a second time.

Tip: Store any information that am_check needs to repair the index in
PER_STATEMENT memory. Call mi_tab_check_is_recheck() to determine if the
am_check can use previous PER_STATEMENT information that it stored in the
preceding execution. If mi_tab_check_is_recheck() returns MI_TRUE, call
mi_tab_userdata() to access the problem description.

If either the MI_CHECK_YES_TO_ALL() macro or mi_tab_check_is_recheck()
accessor function returns MI_TRUE, am_check should attempt to repair an
index.

Important: Indicate in the access-method user guide whether the access method
supports index repair. Issue an exception if the user specifies a repair that am_check
cannot make.

Return Values
MI_OK validates the tableindex structure as error free.

MI_ERROR indicates the access method could not validate the tableindex
structure as error free.

Option Meaning Macro

-y Automatically repair any problem. MI_CHECK_YES_TO_ALL

-n Do not repair any problem. MI_CHECK_NO_TO_ALL
Purpose-Function Reference 4-19

am_check
Related Topics
See the descriptions of:

� Purpose functions am_open and am_close

� Accessor functions mi_tab_check_msg(), mi_tab_check_set_ask(),
and mi_tab_check_is_recheck() in Chapter 5, “Descriptor Function
Reference”
4-20 IBM Informix Virtual-Index Interface Programmer’s Guide

am_close
am_close
The database server calls am_close when the processing of a single SQL
statement (SELECT, UPDATE, INSERT, DELETE) completes.

Syntax
mi_integer am_close(MI_AM_TABLE_DESC *tableDesc)

Usage
The am_close function:

� Deallocates user-data memory that am_open allocated with a
PER_STATEMENT duration

� Calls mi_file_close(), mi_lo_close(), or one of the DataBlade API
functions that copies smart-large-object data to a file

Important: Do not call the DataBlade API mi_close() function to free a database
connection handle that you open (in the am_open purpose function) with
mi_open(). Because the database connection has a PER_COMMAND duration, the
database server frees the handle before it calls the am_close purpose function.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the description of:

� Purpose function am_open

� DataBlade API functions, such as mi_file_close() or mi_lo_close(), in
the IBM Informix DataBlade API Programmer’s Guide

� “Starting and Ending Processing” on page 2-7

tableDesc points to the tableindex descriptor.
Purpose-Function Reference 4-21

am_create
am_create
The database server calls am_create to process a CREATE TABLE statement.

The database server calls am_create to process a CREATE INDEX statement.
The am_create function creates the index, based on the information in the
table descriptor, which describes the keys in an index.

Syntax
mi_integer am_create(MI_AM_TABLE_DESC *tableDesc)

Usage
Even if the access method does not provide an am_create function, the
database server automatically adds the created object to the system catalog
tables, such as systablessysindexes. For example, a user might issue the
CREATE TABLEINDEX command to register an existing, external tableindex in
the database server system catalog.

The am_create function typically:

� Calls accessor functions to extract tableindex specifications from the
table descriptor, including a pointer to the row descriptor

� Calls DataBlade API functions to extract column attributes from the
row descriptor

� Verifies that the access method can provide all the requirements that
the CREATE TABLEINDEX specifies

� Validates CREATE INDEX statements that specify identical keys, as
described in “Enabling Alternative Indexes” on page 3-22

� Calls the appropriate DataBlade API functions to create a smart large
object or interact with the operating system for file creation, as
described in “Managing Storage Spaces” on page 3-12

 tableDesc points to the table descriptor.

 tableDesc points to the index descriptor.
4-22 IBM Informix Virtual-Index Interface Programmer’s Guide

am_create
� Executes support functions that build the index

The access method might supply the support functions or execute
UDRs from outside the access-method shared-object library. For more
information, refer to “Using FastPath” on page 3-27.

Important: By default, transaction logging is disabled in sbspaces. To find out how
to turn logging on, refer to “Ensuring Data Integrity” on page 3-16.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
In this manual, see the description of:

� Purpose function am_drop

� “Creating and Dropping Database Objects” on page 2-7

In the IBM Informix DataBlade API Programmer’s Guide, see the descriptions of:

� DataBlade API functions, such as mi_lo_create(), and create-time
constants

� DataBlade API accessor functions for the row descriptor
Purpose-Function Reference 4-23

am_delete
am_delete
The database server calls am_delete for:

� A DELETE statement

� An UPDATE statement that requires a change in physical location

� An ALTER FRAGMENT statement that moves a row to a different
fragment

Syntax
mi_integer am_delete(MI_AM_TABLE_DESC *tableDesc,

mi_integer rowID))

mi_integer am_delete(MI_AM_TABLE_DESC *tableDesc,
MI_ROW *row, MI_AM_ROWID_DESC *ridDesc)

Usage
The am_delete purpose function deletes one rowindex key in the virtual
tableindex. Additionally, the function passes (by reference) the row-ID
descriptor, which contains the location of the underlying table row to delete.

In response to a DELETE statement, the database server first calls the appro-
priate purpose functions to scan for the tableindex entry or entries that
qualify for deletion and then executes am_delete separately for each quali-
fying entry.

The access method identifies and executes support functions to adjust the
index structure after the delete. For more information, refer to “Using
FastPath” on page 3-27.

tableDesc points to the table descriptor.

rowID is the identifier of the row to delete.

tableDesc points to the index descriptor.

row points to a row structure that contains the key value to delete.

ridDesc points to the row-ID descriptor.
4-24 IBM Informix Virtual-Index Interface Programmer’s Guide

am_delete
Important: The database server does not call the am_delete purpose function unless
you set both the am_rowids and am_readwrite purpose flags. For more infor-
mation about setting purpose flags, refer to Chapter 6, “SQL Statements for Access
Methods.”

Warning: If the access method does not supply an am_delete purpose function, but
an SQL statement requires it, the database server raises an error. For more infor-
mation on how to handle this error, refer to “Supplying Error Messages and a User
Guide” on page 3-49.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose functions am_insert and am_update

� Purpose flags am_rowids and am_readwrite in “Setting Purpose
Functions, Flags, and Values” on page 6-13

� “Inserting, Deleting, and Updating Data” on page 2-10
Purpose-Function Reference 4-25

am_drop
am_drop
The database server calls am_drop for a DROP TABLE INDEX or DROP
DATABASE statement.

Syntax
mi_integer am_drop(MI_AM_TABLE_DESC *tableDesc)

Usage
Even if the access method provides no am_drop purpose function, the
database server automatically removes the dropped object from the system
catalog tables. The database server no longer recognizes the name of the
dropped object.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topic
See the descriptions of:

� Purpose function am_create

� “Creating and Dropping Database Objects” on page 2-7

tableDesc points to the indextable descriptor.
4-26 IBM Informix Virtual-Index Interface Programmer’s Guide

am_endscan
am_endscan
The database server calls am_endscan when am_getnext finds no more rows.

Syntax
mi_integer am_endscan(MI_AM_SCAN_DESC *scanDesc)

Usage
The am_endscan purpose function:

� Deallocates the PER_COMMAND user-data memory that the
am_beginscan purpose function allocates and stores in the scan
descriptor

For more information on PER_COMMAND memory and memory
deallocation, refer to “Storing Data in Shared Memory” on page 3-3.

� Checks for transaction commit or rollback

Call the appropriate DataBlade API functions to determine if the
transaction succeeds. Disregard the copy of old values if the transac-
tion commits or reapply old values if the transaction rolls back.

For more information about transaction processing, see “Determin-
ing Transaction Success or Failure” on page 3-48.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose functions am_beginscan, am_getnext, and am_rescan

� “Optimizing Queries” on page 2-8

scanDesc points to the scan descriptor.
Purpose-Function Reference 4-27

am_getbyid
am_getbyid
The database server calls am_getbyid instead of am_getnext to pass the row
identifier, rather than a scan descriptor. For example, the database server
might obtain the row identifier from an index on the virtual table.

Syntax
mi_integer am_getbyid(MI_AM_TABLE_DESC *tableDesc,

MI_ROW **retrow, mi_integer rowID)

Usage
The am_getbyid purpose function does not scan a table to find a qualifying
row.

Possible row identifiers that rowID might point to include:

� The sequence of this row within the fragment

� An offset to an LO handle

� A value that an external data manager assigns

� A value that the access method assigns

Like am_getnext, am_getbyid first fetches the specified row and then passes
the retrow pointer to mi_row_create() to build the composite MI_ROW value
from fetched data.

Important: The database server does not call am_getbyid unless you set the
am_rowids purpose flag. For more information about setting purpose flags, refer to
Chapter 6, “SQL Statements for Access Methods.”

tableDesc points to the table descriptor.

retrow points to the location where the function should place
a row structure that contains the fetched data.

rowID is the row identifier or physical address of the row to
fetch.
4-28 IBM Informix Virtual-Index Interface Programmer’s Guide

am_getbyid
Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose flag am_rowids in “Setting Purpose Functions, Flags, and
Values” on page 6-13

� DataBlade API function mi_row_create() in the IBM Informix
DataBlade API Programmer’s Guide

� Purpose function am_getnext
Purpose-Function Reference 4-29

am_getnext
am_getnext
The am_getnext purpose function identifies rows that meet query criteria.

Syntax
mi_integer
am_getnext(MI_AM_SCAN_DESC *scanDesc,

MI_ROW **row, mi_integer *rowid);MI_AM_ROWID_DESC
*ridDesc)

Usage
Every access method must provide an am_getnext purpose function. This
required function typically reads source data and returns query results.

If a statement includes a WHERE clause, either am_beginscan or am_getnext
can parse the qualification descriptor. For each rowindex entry, an
am_getnext purpose function can:

� Read sourceindex data into user data

� Execute strategy functions in the qualification descriptor

� Save the results in the qualification descriptor

� Call mi_eval_am_qual() to complete a complex qualification
expression

scanDesc points to the scan descriptor.

row points to the location where the access method creates rows from
source records that satisfy the query.

rowid points to the returned row identifier.

row points to the location where an access method can create a row
structure that contains the index keys.

Most secondary access methods fill the row location with NULL
values and do not create rows. Create a row only if the access
method supports the am_keyscan purpose flag.

ridDesc points to the returned row-ID descriptor.
4-30 IBM Informix Virtual-Index Interface Programmer’s Guide

am_getnext
� Build a row from the fetched data that matches the projection speci-
fications in the query

To find out how to create a row, refer to “Converting to and from
Row Format” on page 3-47.

� Call mi_id_setrowid() and mi_id_setfragid() to give the location of
the table row to the database server

Typically, the database server uses the information that the access method
sets in the row-ID descriptor to access a row from the indexed table. The
access method can build a row from the key values if you set the am_keyscan
purpose flag to indicate that the access method returns keys to the query, as
“Bypassing Table Scans” on page 3-41 describes.

To find out how to create a row, refer to “Converting to and from Row
Format” on page 3-47.

The am_getnext purpose function can loop to fill a shared-memory buffer
with multiple rowsindex entries. For more information about buffering, see
“Buffering Multiple Results” on page 3-42 and the example of an am_getnext
loop in “Buffering Multiple Results” on page 3-42.

The database server calls the am_getnext purpose function until that
function returns MI_NO_MORE_RESULTS. Then the database server calls the
am_endscan purpose function, if any, that the access method supplies.

If the access method does not provide an am_rescan purpose function,
am_getnext stores interim data for subsequent scans in memory that persists
between executions of the access method. For more information on memory
duration, refer to “Storing Data in Shared Memory” on page 3-3.

Return Values
MI_ROWS indicates the return of a row-ID descriptor for a qualified row.

MI_NO_MORE_RESULTS indicates the end of the scan.

MI_ERROR indicates failure.
Purpose-Function Reference 4-31

am_getnext
Related Topics
See the descriptions of:

� Purpose functions am_getnext, am_endscan, and am_rescan

� Accessor functions mi_scan_quals(), mi_tab_niorows(), and
mi_tab_setnextrow() in Chapter 5, “Descriptor Function Reference”

� The am_keyscan purpose flag in “Purpose Options” on page 6-11

� DataBlade API function mi_row_create() in the IBM Informix
DataBlade API Programmer’s Guide

� “Executing Qualification Functions” on page 3-35 and “Using
FastPath” on page 3-27

� “Optimizing Queries” on page 2-8
4-32 IBM Informix Virtual-Index Interface Programmer’s Guide

am_insert
am_insert
The database server calls am_insert for:

� An INSERT or UPDATE statement

� An ALTER FRAGMENT statement that moves a row to a different
fragment

� A CREATE INDEX statement that builds an index on preexisting data

Syntax
mi_integer
am_insert(MI_AM_TABLE_DESC *tableDesc,

MI_ROW *row, mi_integer *rid)MI_AM_ROWID_DESC *ridDesc)

Usage
If row and ridDesc are 0, am_insert calls mi_tab_niorows() to determine the
maximum number of new index entries to expect. For each entry up to the
maximum number passed, the am_insert function calls mi_tab_nextrow().
For a complete example, see “mi_tab_nextrow()” on page 5-99.

Possible row identifiers include:

� The sequence of this row within the fragment

� An offset to an LO handle

� A value that an external data manager assigns

� A value that the access method assigns

tableDesc points to the tableindex descriptor.

row points to a row structure in shared memory that contains the val-
ues for the access method to insert.

rid points to the row identifier of the new row.

ridDesc points to the row-ID descriptor, which contains the row identifier
and fragment identifier for the new row that corresponds to the
new index entry.
Purpose-Function Reference 4-33

am_insert
For each new entry, am_insert:

� Restructures and converts the data in the MI_ROW data structure as
necessary to conform to the source tableindex

� Manipulates the index structure to make room for the new entry

� Stores the new data in the appropriate sbspace or extspace

If the data is in an extspace, the access method stores the rowID value
for use in retrieving the new record in the future.

To manipulate the index structure, am_insert executes support functions,
either with a call to an access-method function or with the DataBlade API
FastPath facility. For more information, refer to “Using FastPath” on
page 3-27. Call mi_tab_userdata() to retrieve the pointer to PER_STATEMENT
user data. Call mi_routine_exec() to execute the support function.

Important: The database server does not call am_insert unless the am_readwrite
purpose flag is set. If you do not set the am_rowids purpose flag, the database server
ignores any row identifier that the access method provides. For more information
about setting purpose flags, refer to Chapter 6, “SQL Statements for Access
Methods.”

Warning: If the access method does not supply am_insert, but an SQL statement
requires it, the database server raises an error. For more information on how to handle
this error, refer to “Supplying Error Messages and a User Guide” on page 3-49.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose functions am_delete and am_update

� Purpose flags am_readwrite and am_rowid in “Setting Purpose
Functions, Flags, and Values” on page 6-13

� “Using FastPath” on page 3-27 and information about the DataBlade
API FastPath facility in the IBM Informix DataBlade API Programmer’s
Guide

� “Inserting, Deleting, and Updating Data” on page 2-10
4-34 IBM Informix Virtual-Index Interface Programmer’s Guide

am_open
am_open
The database server calls am_open to initialize input or output prior to
processing an SQL statement.

Syntax
mi_integer am_open(MI_AM_TABLE_DESC *tableDesc)

Usage
As part of the initialization, am_open:

� Determines the reason, or mode, for the open, as described in
“mi_tab_mode()” on page 5-96

� Allocates PER_STATEMENT memory for a user-data structure as
described in “Persistent User Data” on page 3-5

� Opens a database connection with the DataBlade API mi_open()
function

To enable subsequent purpose functions to use the database,
am_open can copy the connection handle that mi_open() returns
into the user-data structure.

� Registers callback functions to handle exceptions, as described in
“Handling the Unexpected” on page 3-8

� Calls the appropriate DataBlade API functions to obtain a file handle
for an extspace or an LO handle for a smart large object

� Calls mi_setniorows() to set the number of entries for which the
database server should allocate memory

For more information, refer to “Building New Indexes Efficiently” on
page 3-20.

Return Value
MI_OK indicates success. MI_ERROR indicates failure.

tableDesc points to the tableindex descriptor.
Purpose-Function Reference 4-35

am_open
Related Topics
See the descriptions of:

� Purpose function am_close

� Memory allocation, callback functions, and the functions to open
files or smart large objects in the IBM Informix DataBlade API
Programmer’s Guide

� mi_tab_mode() and mi_tab_setniorows() in Chapter 5, “Descriptor
Function Reference”

� “Starting and Ending Processing” on page 2-7
4-36 IBM Informix Virtual-Index Interface Programmer’s Guide

am_rescan
am_rescan
The database server typically calls am_rescan to process a join or subquery
that requires multiple scans on the same tableindex.

Syntax
mi_integer am_rescan(MI_AM_SCAN_DESC *scanDesc)

Usage
Although am_rescan is an optional purpose function, the access method can
enhance efficiency by supplying am_rescan for applications that involve
joins, subqueries, and other multiple-pass scan processes. The am_rescan
purpose function ends the previous scan in an appropriate manner and
begins a new scan on the same open tableindex.

Without an am_rescan purpose function, the database server calls the
am_endscan function and then am_beginscan, if the access method provides
these functions.

Tip: To determine if an outer join might cause a constant value to change, call
mi_qual_const_depends_outer(). To determine the need to reevaluate the qualifi-
cation descriptor, call mi_scan_newquals() from am_rescan.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose function am_getnext

� Accessor functions mi_qual_const_depends_outer() and
mi_scan_newquals() in Chapter 5, “Descriptor Function Reference”

� “Optimizing Queries” on page 2-8

scanDesc points to the scan descriptor.
Purpose-Function Reference 4-37

am_scancost
am_scancost
The query optimizer calls am_scancost during a SELECT statement, before it
calls am_open.

Syntax
mi_real * am_scancost(MI_AM_TABLE_DESC *tableDesc,

MI_AM_QUAL_DESC *qualDesc)

Usage
The am_scancost purpose function estimates the cost to fetch and qualify
data for the current query. The optimizer relies on the am_scancost return
value to evaluate a query path for a scan that involves the access method.

Warning: If the access method does not have an am_scancost purpose function, the
database server estimates the cost of a scan or bypasses the virtual index, which can
diminish the optimal nature of the query plan.

Calculating Cost

The following types of information influence cost:

� Distribution of values across storage media

❑ Is the data clustered?

❑ Are fragments spread across different physical volumes?

❑ Does any one fragment contain a large or a narrow range of
values for a column that the query specifies?

tableDesc points to the tableindex descriptor.

qualDesc points to the qualification descriptor, which specifies the criteria
that a table rowindex key must satisfy to qualify for retrieval.
4-38 IBM Informix Virtual-Index Interface Programmer’s Guide

am_scancost
� Information about the tables, columns, and indexes in the queried
database

❑ Does the query contain a subquery?

❑ Does it require a place in memory to store aggregations?

❑ Does a qualification require casting or conversion of data types?

❑ Does the query involve multiple tables or inner joins?

❑ Do indexes exist for the appropriate key columns?

❑ Are keys unique?

To calculate a cost, am_scancost considers the following factors:

� Disk access

Add 1 to the cost for every disk access required to access the data.

� Memory access

Add .15 to the cost for every row accessed in memory.

� The cost of evaluating the qualification criteria

Compute the cost of retrieving only those tableindex entries that qualify. If
retrieving an index entry does not supply the columns that the SELECT
statement projects, the scan cost includes both of the following:

� Number of disk accesses to fetch the entry from the index

� Number of disk accesses to fetch the entry from the table

Important: Because a function cannot return an mi_real data type by value, you
must allocate memory to store the scan cost value and return a pointer to that
memory from the am_scancost purpose function.

Factoring Cost

To adjust the result of am_scancost, set the am_costfactor purpose value. The
database server multiplies the cost that am_scancost returns by the value of
am_costfactor, which defaults to 1 if you do not set it. To find out how to set
purpose values, refer to Chapter 6, “SQL Statements for Access Methods.”
Purpose-Function Reference 4-39

am_scancost
Forcing Reoptimization

The optimizer might need a new scan cost for subsequent scans of the same
tableindex, for example because of a join. To execute am_scancost before each
rescan, call the mi_qual_setreopt() function. For a list of VII accessor
functions that am_scancost can call to help evaluate cost and the need to
reoptimize, refer to “Related Topics.”

Returning a Negative Cost

If the query specifies a feature that the access method does not support,
return a value from am_scancost that forces the optimizer to pursue another
path. In Figure 4-15, an access method that does not process Boolean
operators checks the qualification descriptor for Boolean operators and
returns a negative value if it finds one.

The database server might respond to a negative scan-cost value in one of the
following ways:

� Use another index, if available

� Perform a sequential table scan

Warning: The database server has no means to detect if a secondary access method
does not set values for complex expressions. If an access method has no code to
evaluate AND or OR, call accessor function mi_qual_boolop() or
mi_qual_issimple() to determine if the qualification descriptor contains a Boolean
operator.

Return Value
This function returns a pointer to an mi_real data type that contains the cost
value.

mi_real * my_scan_cost(td, qd)
MI_AM_QUAL_DESC *qd;
MI_AM_TABLE_DESC *td;

{......
for (i = 0; i < mi_qual_nquals(qd); i++)

if (mi_qual_issimple(qd, i) == MI_FALSE) /* Boolean Operator found. */
return -1;

}

Figure 4-15
Forcing a Table Scan
4-40 IBM Informix Virtual-Index Interface Programmer’s Guide

am_scancost
Related Topics
See the descriptions of:

� Purpose function am_stats

� Purpose flag am_scancost in “Setting Purpose Functions, Flags, and
Values” on page 6-13

� Accessor functions mi_qual_const_depends_hostvar(),
mi_qual_constisnull_nohostvar(), mi_qual_constant_nohostvar(),
mi_qual_boolop(), mi_qual_issimple(), and mi_qual_setreopt() in
Chapter 5, “Descriptor Function Reference”
Purpose-Function Reference 4-41

am_stats
am_stats
The database server calls am_stats to process an UPDATE STATISTICS
statement.

Syntax
mi_integer am_stats(MI_AM_TABLE_DESC *tableDesc,

MI_AM_TSTATS_DESC *tstatsDesc);MI_AM_ISTATS_DESC
*istatsDesc)

Usage
To influence the am_stats sampling rate, an UPDATE STATISTICS statement
might include an optional distribution-level keyword: LOW, MEDIUM, or
HIGH. If the UPDATE STISTISTICS statement does not include one of these
keywords, the default LOW distribution level applies.

Adjust the sampling rate in your version of the am_stats purpose function
according to the distribution-level keyword that the user specifies in the
UPDATE STATISTICS statement. To determine which keyword—LOW,
MEDIUM, or HIGH—an UPDATE STATISTICS statement specifies, call the
mi_tab_update_stat_mode() function. For detailed information about the
sampling rates that each keyword implies, refer to the description of UPDATE
STATISTICS in the IBM Informix Guide to SQL: Syntax.

The am_stats purpose function calls the various VII accessor functions that
set values in the statistics descriptors for the database server. The database
server places the statistics descriptor results in the systables, syscolumns,
and sysindexes system catalog tables. The am_stats function can also save
any additional values in a location that am_scancost can access, such as a file
in the extspace or a table in sbspace.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

tableDesc points to the tableindex descriptor.

tstatsDescistatsDesc points to the statistics descriptor.
4-42 IBM Informix Virtual-Index Interface Programmer’s Guide

am_stats
Related Topics
See the descriptions of:

� The am_scancost purpose function

� Accessor functions mi_tab_update_stat_mode() and
mi_tstats_*mi_istats_* in Chapter 5, “Descriptor Function
Reference”

� The “Statistics Descriptor” on page 5-15

� “Updating Statistics” on page 3-38
Purpose-Function Reference 4-43

am_update
am_update
The database server calls am_update to process an UPDATE statement if the
update affects the key rows or results in changing the physical location of the
row.

Syntax
mi_integer am_update(MI_AM_TABLE_DESC *tableDesc,

MI_ROW *row, mi_integer rowid);

mi_integer
am_update(MI_AM_TABLE_DESC *tableDesc, MI_ROW *oldrow,

MI_AM_ROWID_DESC *oldridDesc, MI_ROW *newrow,
MI_AM_ROWID_DESC *newridDesc)

Usage
The am_update function modifies the contents of an existing rowindex entry.

The access method stores the row identifier and fragment identifier for the
updated table row in newridDesc. To alter the contents of a component in the
key, am_update:

� Deletes the old key

� Adjusts the key data format in newrow to conform to the source data

tableDesc points to the table descriptor.

row points to the row structure that contains the updated values.

rowid indicates where to write the updated values.

tableDesc points to the index descriptor.

oldrow points to the row structure that contains the before-update val-
ues.

oldridDesc points to the row-ID descriptor for the row before the update.

newrow points to the row structure that contains the updated values.

newridDesc points to the row-ID descriptor for the updated row.
4-44 IBM Informix Virtual-Index Interface Programmer’s Guide

am_update
� Calls the appropriate support functions to make room for the new
entry

� Stores the new entry

If the access method needs to move the updated row, am_update can take the
following actions:

� Deletes the old row

� Adjusts the data format in row to conform to the source data

� Stores the updated source-data record

� Stores the updated row identifier

Important: The database server does not call am_update unless both the
am_rowids and am_readwrite purpose flags are set. For more information about
setting purpose flags, refer to Chapter 6, “SQL Statements for Access Methods.”

Warning: If the access method does not supply am_update, but an SQL statement
requires it, the database server raises an error. For more information on how to handle
this error, refer to “Supplying Error Messages and a User Guide” on page 3-49.

Return Values
MI_OK indicates success. MI_ERROR indicates failure.

Related Topics
See the descriptions of:

� Purpose functions am_delete and am_insert

� Purpose flags am_rowids and am_readwrite in “Setting Purpose
Functions, Flags, and Values” on page 6-13

� “Using FastPath” on page 3-27 and information about the DataBlade
API Fastpath facility in the IBM Informix DataBlade API Programmer’s
Guide

� “Inserting, Deleting, and Updating Data” on page 2-10
Purpose-Function Reference 4-45

5
Chapter
Descriptor Function Reference
In This Chapter . 5-5

Descriptors . 5-6
Key Descriptor 5-8
Qualification Descriptor 5-9
Row Descriptor. 5-11
Row-ID Descriptor 5-12
Scan Descriptor. 5-13
Statistics Descriptor 5-15
Table Descriptor 5-16
Include Files . 5-18

Accessor Functions 5-19
mi_id_fragid() 5-20
mi_id_rowid() 5-21
mi_id_setfragid() 5-22
mi_id_setrowid() 5-23
mi_istats_setclust() 5-24
mi_istats_set2lval() 5-25
mi_istats_set2sval() 5-26
mi_istats_setnlevels() 5-27
mi_istats_setnleaves() 5-28
mi_istats_setnunique() 5-29
mi_key_funcid() 5-30
mi_key_nkeys(). 5-32
mi_key_opclass() ; mi_key_opclass_name() 5-33
mi_key_opclass_nstrat() 5-35
mi_key_opclass_nsupt() 5-37
mi_key_opclass_strat() 5-39

5-2 IBM
mi_key_opclass_supt() 5-41
mi_qual_boolop() 5-43
mi_qual_column() 5-45
mi_qual_commuteargs() 5-47
mi_qual_constant() 5-48
mi_qual_constant_nohostvar() 5-50
mi_qual_constisnull() 5-52
mi_qual_constisnull_nohostvar() 5-53
mi_qual_const_depends_hostvar() 5-55
mi_qual_const_depends_outer() 5-57
mi_qual_funcid() 5-58
mi_qual_funcname() 5-60
mi_qual_handlenull() 5-61
mi_qual_issimple() 5-62
mi_qual_needoutput() 5-63
mi_qual_negate() 5-64
mi_qual_nquals() 5-65
mi_qual_qual() 5-66
mi_qual_setoutput() 5-67
mi_qual_setreopt() 5-68
mi_qual_stratnum() 5-69
mi_scan_forupdate() 5-70
mi_scan_isolevel() 5-71
mi_scan_locktype() 5-73
mi_scan_nprojs() 5-74
mi_scan_newquals() 5-75
mi_scan_projs() 5-76
mi_scan_quals(). 5-77
mi_scan_setuserdata() 5-78
mi_scan_table() 5-80
mi_scan_userdata() 5-81
mi_tab_amparam() 5-82
mi_tab_check_msg() 5-84
mi_tab_check_is_recheck() 5-87
mi_tab_check_set_ask() 5-89
mi_tab_createdate() 5-91
 Informix Virtual-Index Interface Programmer’s Guide

mi_tab_isindex() 5-92
mi_tab_isolevel() 5-93
mi_tab_keydesc() 5-95
mi_tab_mode() 5-96
mi_tab_name() 5-98
mi_tab_nextrow() 5-99
mi_tab_niorows(). 5-101
mi_tab_nparam_exist() 5-102
mi_tab_numfrags() 5-103
mi_tab_owner() 5-104
mi_tab_param_exist() 5-105
mi_tab_partnum() 5-106
mi_tab_rowdesc() 5-107
mi_tab_setnextrow(). 5-108
mi_tab_setniorows(). 5-110
mi_tab_setuserdata() 5-112
mi_tab_spaceloc() 5-114
mi_tab_spacename(). 5-115
mi_tab_spacetype() 5-117
mi_tab_unique() 5-118
mi_tab_update_stat_mode() 5-119
mi_tab_userdata() 5-120
Descriptor Function Reference 5-3

5-4 IBM
 Informix Virtual-Index Interface Programmer’s Guide

In This Chapter
This chapter provides syntax and usage for the functions that the Informix
database server supplies to access-method developers. This chapter consists
of the following information:

� “Descriptors,” following, describes the predefined data structures
through which the database server and access method pass
information.

� “Include Files” on page 5-18 lists the header files with descriptor and
function declarations that the access method must include.

� “Accessor Functions” on page 5-19 lists every function that the
Informix database server provides specifically for use with the VII.

The information in this chapter is organized in alphabetical order by
descriptor and function name.

Purpose functions use the functions and data structures that this chapter
describes to communicate with the database server. For details about the
purpose functions, refer to Chapter 4, “Purpose-Function Reference.”
Descriptor Function Reference 5-5

Descriptors
Descriptors
The application programming interface (API) that is provided with the VII
consists primarily of the following components:

� Opaque data structures, called descriptors, that the database server
passes by reference to purpose functions

� Accessor functions that store and retrieve descriptor values

The VII provides the following descriptors and accessor functions.

Each of the following sections describes the contents of a descriptor and the
name of the accessor function that retrieves each descriptor field. For
complete syntax, including the parameters and return type of each accessor
function, refer to “Accessor Functions” on page 5-19.

 Descriptor Describes
 Accessor-
Function Prefix Reference

key descriptor
(MI_AM_KEY_DESC)

Index keys, strategy
functions, and support
functions

mi_key_ “Key Descriptor” on
page 5-8

qualification descriptor
(MI_AM_QUAL_DESC)

WHERE clause criteria mi_qual_ “Qualification Descriptor”
on page 5-9

row descriptor
(MI_ROW)

Order and data types of
projected columns

Various
DataBlade API
functions

IBM Informix DataBlade
API Programmer’s Guide

row-id descriptor
(MI_AM_ROWID_DESC)

Indexed table row location mi_id_ “Row-ID Descriptor” on
page 5-12

scan descriptor
(MI_AM_SCAN_DESC)

SELECT clause projection mi_scan_ “Scan Descriptor” on
page 5-13

statistics descriptor
(MI_AM_ISTATS_DESC)

Distribution of values mi_istats_ “Statistics Descriptor” on
page 5-15

table descriptor
(MI_AM_TABLE_DESC)

Index location and attributes mi_tab_ “Table Descriptor” on
page 5-16
5-6 IBM Informix Virtual-Index Interface Programmer’s Guide

Descriptors
Important: Because the internal structure of any VII descriptor might change, they
are declared as opaque structures. To make a portable access method, always use the
access functions to extract or set descriptor values. Do not access descriptor fields
directly.
Descriptor Function Reference 5-7

Key Descriptor
Key Descriptor
The key descriptor, or MI_AM_KEY_DESC structure, identifies the keys and
operator class for an index. The following functions extract information from
the key descriptor.

Accessor Function Return Value

mi_key_funcid() The routine identifier of the UDR that determines the
value of a specified key in a functional index

mi_key_nkeys() The number of columns in an index key

mi_key_opclass()
mi_key_opclass_name()

The identifier or name of the operator class for a
specified column of the index key

mi_key_opclass_strat() The name of one strategy function

Typically, an access method calls the mi_qual_funcid()
function to obtain the routine identifier and does not
use mi_key_opclass_strat().

mi_key_opclass_nsupt() The number of support functions

mi_key_opclass_supt() The name of one support function

For an example of how to use the function names to
execute the function, see “Obtaining the Routine
Identifier” on page 3-27.
5-8 IBM Informix Virtual-Index Interface Programmer’s Guide

Qualification Descriptor
Qualification Descriptor
A qualification descriptor, or MI_AM_QUAL_DESC, structure, describes the
conditions in the WHERE clause of an SQL statement. For a detailed
description of qualification processing, including examples, refer to
“Processing Queries” on page 3-29.

Use the VII mi_scan_quals() function to obtain a pointer to the qualification
descriptor from the scan descriptor.

The following accessor functions extract information from a qualification
descriptor.

Accessor Function Return Value

mi_qual_boolop() The operator type (AND or OR) of a qualifi-
cation that is a complex expression

mi_qual_column() The position that the column argument to a
strategy function occupies within an index
entry

mi_qual_commuteargs() MI_TRUE if the argument list begins with a
constant rather than a column value

mi_qual_const_depends_hostvar() MI_TRUE if a constant argument to a qualifi-
cation function acquires a value at runtime
from a host variable

mi_qual_const_depends_outer() MI_TRUE if the value of a particular constant
argument can change each rescan

mi_qual_constant() The runtime value of the constant argument
to a strategy function

mi_qual_constant_nohostvar() The value specified in the WHERE clause for
the constant argument to a qualification
function

mi_qual_constisnull() MI_ TRUE if the value of a constant
argument to a qualification function is NULL

(1 of 2)
Descriptor Function Reference 5-9

Qualification Descriptor
The following accessor functions set values in the descriptor.

mi_qual_constisnull_nohostvar() MI_ TRUE if the WHERE clause specifies a
NULL value as the constant argument to a
qualification function

mi_qual_funcid() The routine identifier of a strategy function

mi_qual_funcname() The name of a strategy function

mi_qual_handlenull() MI_TRUE if the strategy function accepts
null arguments

mi_qual_issimple() MI_TRUE if the qualification contains one
function rather than a complex expression

mi_qual_needoutput() MI_TRUE if the qualification function
supplies an output parameter value

Obtain and set a pointer to the output-
parameter value with mi_qual_setoutput().

mi_qual_negate() MI_TRUE if the qualification includes the
operator NOT

mi_qual_nquals() The number of nested qualifications in a
complex expression, or 0 for a simple qualifi-
cation that contains no Boolean operators

mi_qual_qual() Pointer to one qualification in a complex
qualification descriptor or to the only
qualification

mi_qual_stratnum() The ordinal number of the operator-class
strategy function

Accessor Function Value Set

mi_qual_setoutput() A host-variable value

mi_qual_setreopt() An indicator to force reoptimization between
rescans

Accessor Function Return Value

(2 of 2)
5-10 IBM Informix Virtual-Index Interface Programmer’s Guide

Row Descriptor
Row Descriptor
A row descriptor, or MI_ROW_DESC structure, typically describes the
columns that the CREATE INDEX statement establishes for an index. A row
descriptor can also describe a single row-type column. The DataBlade API
defines the row descriptor that the access-method API uses.

The table descriptor contains a pointer to the row descriptor.

The accessor functions for the row descriptor (mi_column_*) provide infor-
mation about each column, including the column name, floating-point
precision and scale, alignment, and a pointer to a type descriptor. For infor-
mation about the accessor functions for the row descriptor, refer to the
IBM Informix DataBlade API Programmer’s Guide.
Descriptor Function Reference 5-11

Row-ID Descriptor
Row-ID Descriptor
A particular row identifier can appear in multiple fragments. For example,
row 1 in fragment A describes a different customer than row 1 in fragment B.
The unique fragment identifier enables the database server or access method
to locate the correct row 1.

A secondary access method sets these values in a row-ID descriptor, or
MI_AM_ROWID_DESC structure, during an index scan. The following
functions set data in the row-ID descriptor.

The database server fills the row-ID descriptor when it calls:

� am_insert or am_delete to add or delete a table row

� am_insert to build a new index

� am_insert and am_delete in response to an ALTER FRAGEMENT
command

The following accessor functions extract information from the descriptor.

The following system catalog information describes a fragment identifier:

� The partnum attribute in the systables system catalog table

� The partn attribute in the sysfragments system catalog table

For detailed information about system catalog tables, refer to the
IBM Informix Guide to SQL: Reference.

Accessor Function Value Set

mi_id_setrowid() The row identifier

mi_id_setfragid() The fragment identifier

Accessor Function Return Value

mi_id_rowid() The row identifier

mi_id_fragid() The fragment identifier
5-12 IBM Informix Virtual-Index Interface Programmer’s Guide

Scan Descriptor
Scan Descriptor
The scan descriptor, or MI_AM_SCAN_DESC structure, contains the specifica-
tions of an SQL query, including the following items:

� A pointer to selection criteria from the WHERE clause

� Isolation and locking information

� A pointer to where the access method can store scanned data

The database server passes the scan descriptor to the access-method scanning
purpose functions: am_beginscan, am_endscan, am_rescan, and
am_getnext.

The following functions extract information from the scan descriptor.

Accessor Function Return Value

mi_scan_forupdate() MI_TRUE if a SELECT statement includes a FOR UPDATE
clause.

mi_scan_isolevel() The isolation level for the index

mi_scan_locktype() The lock type for the scan

mi_scan_newquals() MI_TRUE if the qualification descriptor changes after the
first scan for a join or subquery

mi_scan_nprojs() The number of columns in the projected row that the access
method returns to the query

mi_scan_projs() A pointer to an array that identifies which columns from
the row descriptor make up the projected row that the
query returns

mi_scan_quals() A pointer to the qualification descriptor or a NULL-valued
pointer if the database server does not create a qualification
descriptor

mi_scan_table() A pointer to the table descriptor for the index that the
access method scans

mi_scan_userdata() A pointer to the user-data area of memory
Descriptor Function Reference 5-13

Scan Descriptor
The following accessor function sets data in the qualification descriptor.

Accessor Function Value Set

mi_scan_setuserdata() The pointer to user data that a subsequent function will
need
5-14 IBM Informix Virtual-Index Interface Programmer’s Guide

Statistics Descriptor
Statistics Descriptor
An access method returns statistics to the UPDATE STATISTICS statement in a
statistics descriptor, or MI_AM_ISTATS_DESC structure. The database server
copies the separate values from the statistics descriptor to pertinent tables in
the system catalog.

The following accessor functions set information in the statistics descriptor.

Accessor Function Value Set

mi_istats_set2lval() A pointer to the second largest key value in the index

mi_istats_set2sval() A pointer to the second smallest key value in the index

mi_istats_setclust() The degree of clustering

A low number indicates fewer clusters and a high degree
of clustering.

mi_istats_setnleaves() The number of leaves in the index

mi_istats_setnlevels() The number of levels in the index

mi_istats_setnunique() The number of unique keys in the index
Descriptor Function Reference 5-15

Table Descriptor
Table Descriptor
The table descriptor, or MI_AM_TABLE_DESC structure, provides information
about the index, particularly the data definition from the CREATE INDEX
statement that created the object.

The following accessor functions extract information from, or set values in,
the table descriptor.

Accessor Function Return Value

mi_tab_amparam() Parameter values from the USING clause of the
CREATE INDEX statement

mi_tab_check_is_recheck() MI_TRUE if the database server invokes am_check
to recheck and possibly repair an index

mi_tab_createdate() The date that the index was created

mi_tab_isindex() MI_TRUE for a secondary access method

mi_tab_isolevel() The isolation level

mi_tab_keydesc() A pointer to the key descriptor

mi_tab_mode() The input/output mode (read-only, read and write,
write-only, and log transactions)

mi_tab_name() The index name

mi_tab_nextrow() One entry from shared memory to insert in a new
index

mi_tab_niorows() The number of rows that mi_tab_setniorows() sets

mi_tab_nparam_exist() The number of indexes that are defined for the
same combination of table key columns

mi_tab_numfrags() The number of fragments in the index or 1 for a
nonfragmented index

mi_tab_owner() The index owner

(1 of 2)
5-16 IBM Informix Virtual-Index Interface Programmer’s Guide

Table Descriptor
The following accessor functions set values in the table descriptor.

mi_tab_param_exist() Configuration parameters and values for one of
multiple indexes that pertain to the same table and
composite key

mi_tab_partnum() The unique partition number, or fragment
identifier, of this index or fragment

mi_tab_rowdesc() A pointer to a row descriptor that describes the
columns in the composite index key

mi_tab_spaceloc() The extspace location of the index fragment

mi_tab_spacename() The storage space name for the fragment from the
CREATE INDEX statement IN clause

mi_tab_spacetype() The type of space used for the index: X for an
extspace or S for an sbspace

Any other value means that neither an IN clause
nor the sysams system catalog table specifies the
type of storage space.

mi_tab_unique() MI_TRUE if this index should enforce unique keys

mi_tab_update_stat_mode() The level of statistics that an UPDATE STATISTICS
statement generates: LOW, MEDIUM, or HIGH

mi_tab_userdata() A pointer to the user-data area of memory

Accessor Function Value Set

mi_tab_check_set_ask() An indicator that am_check detects a problem in an
index

mi_tab_setniorows() The number of rows that shared memory can store
from a scan for a new index

mi_tab_setnextrow() One row of the number that mi_tab_setniorows()
allows

mi_tab_setuserdata() A pointer in the user-data area of memory

Accessor Function Return Value

(2 of 2)
Descriptor Function Reference 5-17

Include Files
Include Files
Several files contain definitions that the access method references. Include
the following files in your access-method build:

� The mi.h file defines the DataBlade API descriptors, other opaque
data structures, and function prototypes.

� The miami.h file defines the descriptors and prototypes for the VII.

� If your access method alters the default memory duration, include
the memdur.h and minmdur.h files.

� To call GLS routines for internationalization, include ifxgls.h. ♦GLS
5-18 IBM Informix Virtual-Index Interface Programmer’s Guide

Accessor Functions
Accessor Functions
The VII library contains functions that primarily access selected fields from
the various descriptors.

For a description of any descriptor in this section, refer to “Descriptors” on
page 5-6.

This chapter lists detailed information about specific VII accessor functions in
alphabetical order by function name. To find the accessor functions for a
particular descriptor, look for the corresponding function-name prefix at the
top of each page.

 Descriptor Accessor- Function Prefix Descriptor Accessor-Function Prefix

Key mi_key_*() Row ID mi_id_*()

Qualification mi_qual_*()

mi_eval_am_qual()

mi_init_am_qual()

Scan

Statistics

Table

mi_scan_*()

mi_istats_*()

mi_tab_*()
Descriptor Function Reference 5-19

mi_id_fragid()
mi_id_fragid()
The mi_id_fragid() function retrieves the fragment identifier from the row-
ID descriptor.

Syntax
mi_integer mi_id_fragid(MI_AM_ROWID_DESC *rowidDesc)

Usage
The am_insert purpose function calls mi_id_fragid() to obtain a value and
add it to the index entry with the key.

Return Values
The integer identifies the fragment that contains the row this key indexes.

Related Topic
See the description of functions mi_id_setfragid(), mi_id_rowid(), and
mi_id_setrowid().

rowidDesc points to the row-ID descriptor.
5-20 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_id_rowid()
mi_id_rowid()
The mi_id_rowid() function retrieves the row identifier from the row-ID
descriptor.

Syntax
mi_integer mi_id_rowid(MI_AM_ROWID_DESC *rowidDesc)

Usage
The am_insert purpose function calls mi_id_rowid() to obtain a value and
add it to the index entry with the key.

Return Values
The integer identifies the row that this key indexes. For example, the row
identifier might offset a fragment identifier to complete the location of the
row.

Related Topic
See the description of accessor functions mi_id_setrowid(), mi_id_fragid(),
and mi_id_setfragid().

rowidDesc points to the row-ID descriptor.
Descriptor Function Reference 5-21

mi_id_setfragid()
mi_id_setfragid()
The mi_id_setfragid() function sets the fragment identifier for the row.

Syntax
void mi_id_setfragid(MI_AM_ROWID_DESC *rowidDesc,

mi_integer fragid)

Usage
The am_getnext purpose function calls mi_id_setfragid() to provide the
fragment location for the indexed primary data.

Return Values
None

Related Topic
See the description of functions mi_id_fragid(), mi_id_rowid(), and
mi_id_setrowid().

rowidDesc points to the row-ID descriptor.

fragid provides the fragment identifier.
5-22 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_id_setrowid()
mi_id_setrowid()
The mi_id_setrowid() function sets the row identifier for the row.

Syntax
void mi_id_setrowid(MI_AM_ROWID_DESC *rowidDesc,

mi_integer rowid)

Usage
The am_getnext purpose function calls mi_id_setrowid() so that the
database server has the physical location of the indexed primary data.

Return Values
None

Related Topic
See the description of functions mi_id_setrowid() and mi_id_rowid().

rowidDesc points to the row-ID descriptor.

rowid provides the row identifier.
Descriptor Function Reference 5-23

mi_istats_setclust()
mi_istats_setclust()
The mi_istats_setclust() function stores the degree of clustering for an index
in the statistics descriptor.

Syntax
void mi_istats_setclust(MI_AM_ISTATS_DESC *istatsDesc,

mi_integer clustering)

Usage
Call this function from am_stats. The database server places the value that
this function sets in the clust column of the sysindices system catalog table.

Clustering specifies the degree to which the rows are in the same order as the
index. For example, if the index references a table that resides in page-size
areas, such as in a dbspace or sbspace, you can estimate clustering as follows:

� The lowest possible clustering value equals the number of pages that
data occupies, or one cluster per page.

� The highest possible value (and least amount of clustering) equals
the number of rows, or one cluster per entry.

Return Values
None

istatsDesc points to the statistics descriptor.

clustering specifies the degree of clustering, from number of pages to
number of rows.
5-24 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_istats_set2lval()
mi_istats_set2lval()
The mi_istats_set2lval() function stores the second-largest index-key value
in the statistics descriptor.

Syntax
void mi_istats_set2lval(MI_AM_ISTATS_DESC *istatsDesc,

void *2lval)

Usage
To determine the maximum value for an index key while it evaluates a query
plan, the optimizer looks at the colmax value for the key column in the
syscolumns system catalog table. The colmax column holds a 4-byte integer
that represents the second-largest key value in the index. The optimizer
assesses the second-largest key value to avoid the distortion that an excessive
value can cause to the data distribution.

The am_stats purpose function can provide the second-largest value for each
key. After storing the value in memory, pass it by reference with the
mi_istats_set2lval() function. The database server places the first four bytes
that begin at address 2lval as an integer value in the colmax column.

Return Values
None

Related Topic
See the description of function mi_istats_set2sval().

istatsDesc points to the statistics descriptor.

2lval points to the second-largest key value in the index.
Descriptor Function Reference 5-25

mi_istats_set2sval()
mi_istats_set2sval()
The mi_istats_set2sval() function stores the second-smallest index-key value
in the statistics descriptor.

Syntax
void mi_istats_set2sval(MI_AM_ISTATS_DESC *istatsDesc,

void *2sval)

Usage
To determine the minimum value for an index key while it evaluates a query
plan, the optimizer looks at the colmin value for the key column in the
syscolumns system catalog table. The colmin column holds a 4-byte integer
that represents the second-smallest key value in the index. The optimizer
assesses the second-smallest key value to avoid the distortion that an abnor-
mally low value can cause to the data distribution.

The am_stats purpose function can provide the second-largest value for each
key. After storing the value in memory, pass it by reference with the
mi_istats_set2sval() function. The database server places the first four bytes
that begin at address 2sval as an integer value in the colmin column.

Return Values
None

Related Topic
See the description of function mi_istats_set2lval().

IstatsDesc points to the statistics descriptor.

2sval points to the second-smallest key value in the index.
5-26 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_istats_setnlevels()
mi_istats_setnlevels()
The mi_istats_setnlevels() function stores the number of index levels in the
statistics descriptor.

Syntax
void mi_istats_setnlevels(MI_AM_ISTATS_DESC *istatsDesc,

mi_integer nlevels)

Usage
Call this function from am_stats. The database server places the value that
this function sets in the levels column of the sysindices system catalog table.

Return Values
None

istatsDesc points to the statistics descriptor.

nlevels provides the number of levels in the index.
Descriptor Function Reference 5-27

mi_istats_setnleaves()
mi_istats_setnleaves()
The mi_istats_setnleaves() function stores the number of index leaf nodes in
the statistics descriptor.

Syntax
void mi_istats_setnleaves(MI_AM_ISTATS_DESC *istatsDesc,

mi_integer nleaves)

Usage
Call this function from am_stats. The database server places the value that
this function sets in the leaves entry of the sysindices system catalog table.

Return Values
None

istatsDesc points to the statistics descriptor.

nleaves provides the number of leaf nodes in the index.
5-28 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_istats_setnunique()
mi_istats_setnunique()
The mi_istats_setnunique() function stores the number of unique index keys
in the statistics descriptor.

Syntax
void mi_istats_setnunique(MI_AM_ISTATS_DESC *istatsDesc,

mi_integer nunique)

Usage
Call this function from am_stats. The database server places the value that
this function sets in the nunique entry of the sysindices system catalog table.

Return Values
None

istatsDesc points to the statistics descriptor.

nunique indicates the number of unique keys in the index.
Descriptor Function Reference 5-29

mi_key_funcid()
mi_key_funcid()
The mi_key_funcid() function retrieves the identifier of the function that
computes the key values in a functional index.

Syntax
mi_integer mi_key_funcid(MI_AM_KEY_DESC *keyDesc,

mi_integer keyNum)

Usage
A UDR returns the values that make up a functional index. For example, the
following statement creates an index from the values that the box() function
returns:

CREATE INDEX box_func_idx ON zones (box(x1,y1,x2,y2)) USING map_am;

Use the DataBlade API FastPath facility to obtain values for function-based
index keys.

To execute a function on a key column

1. Call mi_key_funcid() to extract the routine identifier from the quali-
fication descriptor.

2. Pass the routine identifier to the DataBlade API
mi_func_desc_by_typeid() function, which returns the function
descriptor.

3. Pass the function descriptor to the DataBlade API mi_routine_exec()
function, which executes the function in a virtual processor.

keyDesc points to the key descriptor.

keyNum specifies the column number of the index-based key or 0 for a
single-key index.

For the first (or only) key, pass 0 as keyNum. Increment keyNum
by one for each subsequent key in a composite index.
5-30 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_key_funcid()
Return Values
A positive integer identifies the function that creates the values in the keyNum
position of a composite-key index.

A return value of 0 indicates that the specified keyNum contains column
values and does not belong to a functional index.

A negative value indicates that the CREATE INDEX statement specifies an
unknown function to create the key.

Related Topics
See the discussions of:

� Fastpath functions in the IBM Informix DataBlade API Programmer’s
Guide, including functions mi_func_desc_by_typeid() and
mi_routine_exec().

� CREATE INDEX in the IBM Informix Guide to SQL: Syntax, particularly
functional index information.
Descriptor Function Reference 5-31

mi_key_nkeys()
mi_key_nkeys()
The mi_key_nkeys() function returns the number of columns in the index
key.

Syntax
mi_integer mi_key_nkeys(MI_AM_KEY_DESC *keyDesc)

Return Values
The integer indicates the number of keys in the index.

keyDesc points to the key descriptor.
5-32 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_key_opclass() mi_key_opclass_name()
mi_key_opclass()
mi_key_opclass_name()
Identify the mi_key_opclass() and mi_key_opclass_name() functions by
identifier number or name, the operator class that provides the support, and
strategy functions for a specified column in a key.

Syntax
mi_integer
mi_key_opclass(MI_AM_KEY_DESC *keyDesc, mi_integer keyNum)
mi_string *
mi_key_opclass_name(

MI_AM_KEY_DESC *keyDesc, mi_integer keyNum)

Usage
An operator class consists of the strategy and support functions with which
the access method manages a particular data type. To determine which
operator class to use for a particular key, identify the key as an argument to
mi_key_opclass() or mi_key_opclass_name(). To obtain the operator class
identifier number, call mi_key_opclass(). To obtain the operator class name,
call mi_key_opclass_name().

Identifying the Key

The integer argument keyNum identifies the column number in the index
entry. A one-column index contains only keyNum 0. A two-column key
contains keyNum 0 and 1. To determine the number of columns in a key, call
mi_key_nkeys().

keyDesc points to the key descriptor.

keyNum specifies the column number of a key in a composite-key index
or 0 for a single-key index.
Descriptor Function Reference 5-33

mi_key_opclass() mi_key_opclass_name()
Identifying the Operator Class

The access method can execute mi_key_opclass() or mi_key_opclss_name()
for each column in a multiple-column key because the columns do not neces-
sarily all use the same operator class. A CREATE INDEX statement can assign
different operator classes to individual columns in a multiple-column key.
The following example defines an index with multiple operator classes:

CREATE OPCLASS str_ops FOR video_am
STRATEGIES (lessthan(char, char), lessthanorequal(char, char),

equal(char, char),
greaterthanorequal(char, char), greaterthan(char, char))

SUPPORT(compare)
CREATE OPCLASS int_ops FOR video_am

STRATEGIES (lessthan(int, int), lessthanorequal(int, int),
equal(int, int),
greaterthanorequal(int, int), greaterthan(int,int))

SUPPORT(compare)

CREATE TABLE videos (title char(50), year int, copies int)
CREATE INDEX vidx ON videos (title str_ops, year int_ops) USING video_am

As the access-method creator, you must assign a default operator class for the
access method. To assign a default operator class, set the am_defopclass
purpose value with the ALTER ACCESS_METHOD statement. If the CREATE
INDEX statement does not specify the operator class to use, the
mi_key_opclass() or mi_key_opclass_name() function specifies the default
operator class.

Return Values
For mi_key_opclass(), a positive return value identifies the operator class in
the sysopclass system catalog table. A return value of -1 indicates that the
function passed an invalid keyNum value.

For mi_key_opclass_name(), a non-NULL pointer identifies the name of the
operator class. A return value of null indicates that the function passed an
invalid keyNum value.

Related Topics
See the description of:

� The am_defopclass purpose value in “Setting Purpose Functions,
Flags, and Values” on page 6-13

� Accessor function mi_key_nkeys()
5-34 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_key_opclass_nstrat()
mi_key_opclass_nstrat()
The mi_key_opclass_nstrat() function retrieves the number of strategy
functions in the operator class associated with the key.

Syntax
mi_integer mi_key_opclass_nstrat(MI_AM_KEY_DESC *keyDesc,

 mi_integer keyNum)

Usage
The access method can use either the function name or routine identifier to
execute a strategy function. Use mi_key_opclass_nstrat() if the access
method needs strategy-function names. The mi_key_opclass_nstrat()
returns the number of function names to retrieve for a single key-column
with the mi_key_opclass_strat() function.

For a multiple-column key, mi_key_opclass_nstrat() might return different
values for each column. The integer argument keyNum specifies a column by
sequential position in the index key. A one-column index contains only
keyNum 0. A two-column composite key contains keyNum 0 and 1. To deter-
mine the maximum keyNum value, call mi_key_nkeys(). If mi_key_nkeys()
returns a value of 1 or greater, the index contains multiple key columns.

Return Values
A positive integer indicates the number of strategy functions that the key
descriptor contains for the specified column in the key.

A value of -1 indicates that keyNum specifies an invalid column number for
the key.

keyDesc points to the key descriptor.

keyNum specifies the column number of a key in a composite-key index
or 0 for a single-key index.

For the first (or only) key, pass 0 as keyNum. Increment keyNum
by 1 for each subsequent key in a composite index.
Descriptor Function Reference 5-35

mi_key_opclass_nstrat()
Related Topic
See the descriptions of:

� Functions mi_key_opclass_strat(), mi_key_nkeys(), and
mi_key_opclass() mi_key_opclass_name()

� “Supporting Multiple-Column Index Keys” on page 3-25
5-36 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_key_opclass_nsupt()
mi_key_opclass_nsupt()
The mi_key_opclass_nsupt() function retrieves the number of support
functions in the operator class associated with the key.

Syntax
mi_integer mi_key_opclass_nsupt(MI_AM_KEY_DESC *keyDesc,

mi_integer keyNum)

Usage
The mi_key_opclass_nsupt() function returns the number of operator class
support functions for a column in the index. It can be used to obtain the
function names with the mi_key_opclass_supt() function.

For a multiple-column key, mi_key_opclass_nsupt() might return different
values for each column. The integer argument keyNum specifies a column by
sequential position the index key. A one-column index contains only keyNum
0. A two-column composite key contains keyNum 0 and 1. To determine the
maximum keyNum value, call mi_key_nkeys(). If mi_key_nkeys() returns a
value of 1 or greater, the index contains multiple key columns.

Return Values
A positive integer indicates the number of support functions that the key
descriptor contains for the specified key column.

A value of -1 indicates that keyNum specifies an invalid column number for
the key.

keyDesc points to the key descriptor.

keyNum specifies the column number of a key in a composite-key index
or 0 for a single-key index.

For the first (or only) key, pass 0 as keyNum. Increment keyNum
by 1 for each subsequent key in a composite index.
Descriptor Function Reference 5-37

mi_key_opclass_nsupt()
Related Topic
See the descriptions of:

� Functions mi_key_opclass_supt(), mi_key_nkeys(), and
mi_key_opclass() mi_key_opclass_name()

� “Supporting Multiple-Column Index Keys” on page 3-25
5-38 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_key_opclass_strat()
mi_key_opclass_strat()
The mi_key_opclass_strat() function retrieves the name of an operator-class
strategy function.

Syntax
mi_string* mi_key_opclass_strat(MI_AM_KEY_DESC *keyDesc,

mi_integer keyNum,
mi_integer strategyNum)

Usage
Each call to mi_key_opclass_strat() returns the name of one strategy function
for one key column.

The strategyNum value for the first support function is 0. To determine the
number of strategy functions that mi_key_opclass_strat() can return for a
particular key column, call mi_key_opclass_nstrat(). To determine the
maximum keyNum value, first call mi_key_nkeys().

The mi_key_opclass_strat() returns strategy function names in the order that
the CREATE OPCLASS statement names them.

To obtain the name of a strategy function in a WHERE clause, the access
method can call the mi_qual_funcname() access function instead of
mi_key_opclass_strat().

Return Values
The string contains the strategy function name.

A NULL-valued pointer indicates that the function arguments contain an
invalid value for either keyNum or strategyNum.

keyDesc points to the key descriptor.

keyNum specifies the column number of a key in a composite-key index
or 0 for a single-key index.

strategyNum identifies the strategy function.
Descriptor Function Reference 5-39

mi_key_opclass_strat()
Related Topics
See the descriptions of:

� Functions mi_key_opclass_nstrat(), mi_key_nkeys(),
mi_key_opclass() mi_key_opclass_name(), and
mi_qual_funcname()

� “Supporting Multiple-Column Index Keys” on page 3-25
5-40 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_key_opclass_supt()
mi_key_opclass_supt()
The mi_key_opclass_supt() function returns the name of an operator-class
support function.

Syntax
mi_string* mi_key_opclass_supt(MI_AM_KEY_DESC *keyDesc,

mi_integer keyNum,
mi_integer supportNum)

Usage
Each call to mi_key_opclass_supt() returns the name of one support function
for one key column.

The supportNum value for the first support function is 0. To determine the
number of support functions that mi_key_opclass_supt() can return for a
particular key column, call mi_key_opclass_nsupt(). To determine the
maximum keyNum value, first call mi_key_nkeys(). For an example of how
to use these functions together, refer to Figure 3-8 on page 3-26.

The mi_key_opclass_supt() returns support function names in the order that
the CREATE OPCLASS statement names them.

The access method can optionally use the support function name to get the
function descriptor that the DataBlade API FastPath facility uses to execute
the support function. For more information, refer to “Using FastPath” on
page 3-27, particularly “Obtaining the Routine Identifier” on page 3-27.

keyDesc points to the key descriptor.

keyNum specifies the column number of a key in a composite-key index
or 0 for a single-key index.

For the first (or only) key, pass 0 as keyNum. Increment keyNum
by 1 for each subsequent key in a composite index.

supportNum identifies this support function.
Descriptor Function Reference 5-41

mi_key_opclass_supt()
Return Values
The string contains the support-function name.

A NULL-valued pointer indicates an invalid value for either the keyNum or
strategyNum argument.

Related Topics
See the descriptions of:

� Functions mi_key_opclass_nsupt(), mi_key_nkeys(), and
mi_key_opclass() mi_key_opclass_name()

� “Supporting Multiple-Column Index Keys” on page 3-25
5-42 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_boolop()
mi_qual_boolop()
The mi_qual_boolop() function retrieves the Boolean operator that combines
two qualifications in a complex expression.

Syntax
MI_AM_BOOLOP mi_qual_boolop(MI_AM_QUAL_DESC *qualDesc);

Usage
The access method first obtains results for the simple functions in a complex
qualification. To determine how to combine the results that the access
method has so far, it can call the mi_qual_boolop() function.

Warning: The database server has no means to detect if a secondary access method
does not set values for complex expressions.

If the access method has no code to evaluate AND or OR, the am_scancost
purpose function can take the following precautions:

1. Call mi_qual_boolop().

2. If mi_qual_boolop() indicates the presence of an AND or OR
operator, return a negative value from am_scancost to ensure that
the optimizer does not use the access method to process the query.

Return Values
MI_BOOLOP_NONE indicates that the current qualification does not contain a
Boolean operator.

MI_BOOLOP_AND indicates that the current qualification contains a Boolean
AND operator.

MI_BOOLOP_OR indicates that the current qualification contains a Boolean
OR operator.

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-43

mi_qual_boolop()
Related Topic
See the descriptions of:

� Function mi_qual_issimple()

� “Qualifying Data” on page 3-35
5-44 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_column()
mi_qual_column()
The mi_qual_column() function identifies the key-column argument to a
strategy function.

Syntax
mi_smallint mi_qual_column(MI_AM_QUAL_DESC *qualDesc);

Usage
A qualification identifies a column by a number that locates the column in the
row descriptor. The mi_qual_column() function returns the number 0 for the
first column specified in the row descriptor and adds 1 for each subsequent
column.

For example, assume the WHERE clause contains the function
equal(name,'harry') and that name is the second column in the row. The
mi_qual_column() function returns the value 1.

The access method might need to identify the column by name, for example,
to assemble a query for an external database manager. To retrieve the column
name, pass the return value of mi_qual_column() and the row descriptor to
the DataBlade API mi_column_name() function as in the following example:

rowDesc = mi_tab_rowdesc(tableDesc);
colnum=mi_qual_column(qualDesc);
colname=mi_column_name(rowDesc,colnum);

Return Values
The integer identifies the column argument by its position in the table row.

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-45

mi_qual_column()
Related Topics
See the descriptions of:

� Functions mi_qual_constant() and mi_tab_rowdesc()

� DataBlade API row-descriptor accessor functions in the IBM Informix
DataBlade API Programmer’s Guide
5-46 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_commuteargs()
mi_qual_commuteargs()
The mi_qual_commuteargs() function determines if the constant precedes
the column in a strategy-function argument list.

Syntax
mi_boolean mi_qual_commuteargs(MI_AM_QUAL_DESC *qualDesc);

Return Values
MI_TRUE indicates that constant precedes column in the argument list, for
example, function(constant, column).

MI_FALSE indicates that column precedes constant in the argument list, for
example function(column, constant).

Related Topics
See the description of accessor function mi_qual_issimple().

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-47

mi_qual_constant()
mi_qual_constant()
The mi_qual_constant() function retrieves the constant value that the
WHERE clause specifies as a strategy-function argument.

Syntax
MI_DATUM mi_qual_constant(MI_AM_QUAL_DESC *qualDesc);

Usage
To retrieve the constant value from the argument lists of a strategy function,
call mi_qual_constant() from the am_beginscan or am_getnext purpose
function.

Strategy functions evaluate the contents of a column against some criteria,
such as a supplied constant value.

If a strategy function does not involve a host variable, mi_qual_constant()
retrieves the explicit constant argument. For example, mi_qual_constant()
retrieves the string harry from the arguments to the following function:

WHERE equal(name,'harry')

If a strategy function involves a host variable but no explicit value,
mi_qual_constant() retrieves the runtime constant value that is associated
with the host variable. For example, mi_qual_constant() retrieves the
runtime value that replaces the ? in the following function:

WHERE equal(name,?)

Important: Because the value that an application binds to host variables can change
between scans, the results of mi_qual_constant() might change between calls to
am_getnext.

qualDesc points to the qualification descriptor.
5-48 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_constant()
To determine if a function involves a host variable argument, execute
mi_qual_const_depends_hostvar() in the am_scancost purpose function. If
mi_qual_const_depends_hostvar() returns MI_TRUE, call
mi_qual_constant() from am_getnext to retrieve the most recent value for
the host variable and do not save the value from mi_qual_constant() in user
data for subsequent scans.

Return Values
The MI_DATUM structure contains the value of the constant argument.

Related Topics
See the descriptions of:

� Functions mi_qual_column(), mi_qual_constisnull(), and
mi_qual_const_depends_hostvar()

� Generic functions in Figure 3-9 on page 3-31

� MI_DATUM in the IBM Informix DataBlade API Programmer’s Guide
Descriptor Function Reference 5-49

mi_qual_constant_nohostvar()
mi_qual_constant_nohostvar()
The mi_qual_constant_nohostvar() function returns an explicit constant
value, if any, from the strategy-function arguments.

Syntax
MI_DATUM
mi_qual_constant_nohostvar(MI_AM_QUAL_DESC *qualDesc);

Usage
To help calculate the cost of a qualification function, the am_scancost
purpose function can extract the constant and column arguments and
evaluate the distribution of the specified constant value in the specified
column. Function arguments can include constants from two sources:

� A value that the WHERE clause explicitly supplies

� A dynamic value, or host variable, that the access method or a client
application might supply

In the WHERE clause, the function argument list contains a place-
holder, such as a question mark (?) for the host variable.

The following function involves both an explicit value (200) and a host
variable (?) as constant arguments, rather than an explicit value:

WHERE range(cost, 200, ?)

In the following example, a WHERE clause specifies two constant values in a
row that holds three values. A client program supplies the remaining value.

WHERE equal(prices, row(10, ?, 20))

For the preceding qualification, the mi_qual_constant_nohostvar() function
returns row(10, NULL, 20).

qualDesc points to the qualification descriptor.
5-50 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_constant_nohostvar()
Because the am_scancost purpose function cannot predict the value of a host
variable, it can only evaluate the cost of scanning for constants that the
WHERE clause explicitly specifies. Call the mi_qual_constant_nohostvar()
function to obtain any argument value that is available to am_scancost. The
mi_qual_constant_nohostvar() function ignores host variables if the qualifi-
cation supplies an explicit constant value.

By the time the database server invokes the am_beginscan or am_getnext
purpose function, the qualification descriptor contains a value for any host-
variable argument. To execute the function, obtain the constant value with
the mi_qual_constant() function.

Return Value
If the argument list of a function includes a specified constant value,
mi_qual_constant_nohostvar() returns that value in an MI_DATUM
structure.

If the specified constant contains multiple values, this function returns all
provided values and substitutes a NULL for each host variable.

If the function arguments do not explicitly specify a constant value, this
function returns a NULL value.

Related Topics
See the descriptions of:

� Accessor functions mi_qual_constisnull_nohostvar() and
mi_qual_constant()

� “Runtime Values as Arguments” on page 3-32

� MI_DATUM in the IBM Informix DataBlade API Programmer’s Guide

� Host variables in the IBM Informix DataBlade API Programmer’s Guide,
IBM Informix User-Defined Routines and Data Types Developer’s Guide,
and the IBM Informix ESQL/C Programmer’s Manual
Descriptor Function Reference 5-51

mi_qual_constisnull()
mi_qual_constisnull()
The mi_qual_constisnull() function determines whether the arguments to a
strategy function include a NULL constant.

Syntax
mi_boolean mi_qual_constisnull(MI_AM_QUAL_DESC *qualDesc);

Usage
The Return Value column shows the results of the mi_qual_constisnull()
function for various constant arguments.

The form function(column,?) should not occur because the qualification
descriptor that the database server passes to the am_beginscan or
am_getnext purpose function contains values for any host-variable
argument.

Do not call this function from the am_scancost purpose function. Use
mi_qual_constisnull_nohostvar() instead.

Return Values
MI_TRUE indicates that the arguments include an explicit NULL-valued
constant.

qualDesc points to the qualification descriptor.

Sample Function Description Return Value

function(column, 10) The arguments specify the explicit non-
NULL constant value 10.

MI_FALSE

function(column, NULL) The arguments specify an explicit NULL
value.

MI_TRUE
5-52 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_constisnull_nohostvar()
mi_qual_constisnull_nohostvar()
The mi_qual_constisnull_nohostvar() function determines whether a
strategy-function argument list contains an explicit NULL value.

Syntax
mi_boolean
mi_qual_constisnull_nohostvar(MI_AM_QUAL_DESC *qualDesc);

Usage
The mi_qual_constisnull_nohostvar() function evaluates the explicit value,
if any, that the WHERE clause specifies in the function argument list. This
function does not evaluate host variables. Call this function from the
am_scancost purpose function.

The following functions compare a column that contains a row to a row
constant. Each function depends on a client application to provide part or all
of the constant value. The Return Value column shows the results of the
mi_qual_constisnull_nohostvar() function.

qualDesc points to the qualification descriptor.

Sample Function Description
Return
Value

function(column, ROW(10,?,20)) The row contains the explicit constant values 10 and
20. The unknown value that replaces ? does not
influence the return value of
mi_qual_constisnull_nohostvar().

MI_FALSE

function(column, ROW(NULL,?,20)) The first field in the row constant specifies an explicit
NULL value.

MI_TRUE

function(column,?) The arguments to the function contain no explicit
values. The qualification descriptor contains a NULL
in place of the missing explicit value.

MI_TRUE
Descriptor Function Reference 5-53

mi_qual_constisnull_nohostvar()
Return Values
MI_TRUE indicates one of the following conditions in the argument list:

� An explicit NULL-valued constant

� No explicit values

MI_FALSE indicates that the constant argument is not NULL-valued.

Related Topics
See the descriptions of:

� Accessor function mi_qual_constisnull()

� “Runtime Values as Arguments” on page 3-32

� Host variables in the IBM Informix DataBlade API Programmer’s Guide,
IBM Informix User-Defined Routines and Data Types Developer’s Guide,
and the IBM Informix ESQL/C Programmer’s Manual
5-54 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_const_depends_hostvar()
mi_qual_const_depends_hostvar()
The mi_qual_const_depends_hostvar() function indicates whether the value
of a host variable influences the evaluation of a qualification.

Syntax
mi_boolean
mi_qual_const_depends_hostvar(MI_AM_QUAL_DESC *qualDesc)

Usage
Call mi_qual_const_depends_hostvar() in the am_scancost purpose
function to determine whether a strategy function contains a host variable
but no explicit constant value.

Because the database server executes am_scancost before the application
binds the host variable to a value, the qualification descriptor cannot provide
a value in time to evaluate the cost of the scan.

If mi_qual_const_depends_hostvar() returns MI_TRUE, am_scancost can call
mi_qual_setreopt(), which tells the database server to reoptimize before it
executes the scan.

Return Values
MI_TRUE indicates that a host variable provides values when the function
executes. MI_FALSE indicates that the qualification descriptor supplies the
constant value.

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-55

mi_qual_const_depends_hostvar()
Related Topics
See the descriptions of:

� Accessor functions mi_qual_needoutput() and mi_qual_setreopt()

� “Runtime Values as Arguments” on page 3-32

� Host variables in the IBM Informix DataBlade API Programmer’s Guide,
IBM Informix User-Defined Routines and Data Types Developer’s Guide,
and IBM Informix ESQL/C Programmer’s Manual
5-56 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_const_depends_outer()
mi_qual_const_depends_outer()
The mi_qual_const_depends_outer() function indicates that an outer join
provides the constant in a qualification.

Syntax
mi_boolean
mi_qual_const_depends_outer(MI_AM_QUAL_DESC *qualDesc)

Usage
If this mi_qual_const_depends_outer() evaluates to MI_TRUE, the join or
subquery can produce a different constant value for each rescan.

Call mi_qual_const_depends_outer() in am_rescan. If your access method
has no am_rescan purpose function, call mi_qual_const_depends_outer() in
am_beginscan.

Return Values
MI_TRUE indicates that the constant depends on an outer join. MI_FALSE
indicates that the constant remains the same on a rescan.

Related Topics
See the description of accessor function mi_qual_constant().

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-57

mi_qual_funcid()
mi_qual_funcid()
The mi_qual_funcid() function returns the routine identifier of a strategy
function.

Syntax
mi_integer mi_qual_funcid(MI_AM_QUAL_DESC *qualDesc);

Usage
To execute a registered UDR or an internal function with DataBlade API
Fastpath facility, the access method needs a valid routine identifier. The
mi_qual_funcid() function provides a routine identifier, if available, for the
strategy function.

If mi_qual_funcid() returns a positive number, the routine identifier exists in
the sysprocedures system catalog table, and the database server can execute
the function. A negative return value from the mi_qual_funcid() function
can indicate a valid function if the database server loads an internal function
in shared memory but does not describe the function in sysprocedures.

Warning: A negative return value might indicate that the SQL WHERE clause
specified an invalid function.

Return Values
A positive integer is the routine identifier by which the database server
recognizes a function.

A negative return value indicates that the sysprocedures system catalog
table does not have a routine identifier for the function.

qualDesc points to the qualification descriptor.
5-58 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_funcid()
Related Topics
In this book, see the descriptions of:

� Accessor function mi_qual_funcname()

� “Using the Routine Identifier” on page 3-35

� “Using FastPath” on page 3-27

In the IBM Informix DataBlade API Programmer’s Guide, see the descriptions of:

� The function descriptor (MI_FUNC_DESC data structure) and its
accessor functions

� Fastpath function execution, including DataBlade API functions
mi_func_desc_by_typeid() and mi_routine_exec()
Descriptor Function Reference 5-59

mi_qual_funcname()
mi_qual_funcname()
The mi_qual_funcname() function returns the name of a strategy function.

Syntax
mi_string * mi_qual_funcname(MI_AM_QUAL_DESC *qualDesc)

Usage
If mi_qual_funcid() returns a negative value instead of a valid routine
identifier, the qualification function is not registered in the database. The
access method might call the strategy function by name from the access-
method library or send the function name and arguments to external
software. For examples, refer to “Using the Function Name” on page 3-36.

Return Value
The return string contains the name of a simple function in the qualification.

qualDesc points to the qualification descriptor.
5-60 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_handlenull()
mi_qual_handlenull()
The mi_qual_handlenull() function determines if the strategy function can
accept NULL arguments.

Syntax
mi_boolean mi_qual_handlenull(MI_AM_QUAL_DESC *qualDesc)

Usage
The database server indicates that a UDR can accept NULL-valued arguments
if the CREATE FUNCTION statement specified the HANDLESNULLS routine
modifier.

Return Values
MI_TRUE indicates that the function handles NULL values. MI_FALSE
indicates that the function does not handle NULL values.

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-61

mi_qual_issimple()
mi_qual_issimple()
The mi_qual_issimple() function determines whether a qualification is a
function. A function has one of the formats that Figure 3-9 on page 3-31
shows, with no AND or OR operators.

Syntax
mi_boolean mi_qual_issimple(MI_AM_QUAL_DESC *qualDesc);

Usage
Call mi_qual_issimple() to determine where to process the current qualifi-
cation. If mi_qual_issimple() returns MI_TRUE, call the access method
routine that executes the strategy-function execution.

For an example that uses mi_qual_issimple() to find the functions in a
complex WHERE clause, refer to “Processing Complex Qualifications” on
page 3-36.

If mi_qual_issimple() returns MI_FALSE, the current qualification is a
Boolean operator rather than a function. For more information about the
Boolean operator, call the mi_qual_boolop() accessor function.

Return Values
MI_TRUE indicates that the qualification is a function. MI_FALSE indicates
that the qualification is not a function.

Related Topic
See the description of:

� Accessor function mi_qual_boolop()

� “Simple Functions” on page 3-31

qualDesc points to the qualification descriptor.
5-62 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_needoutput()
mi_qual_needoutput()
The mi_qual_needoutput() function determines if the access method must
set the value for an OUT argument in a UDR.

Syntax
mi_boolean mi_qual_needoutput(MI_AM_QUAL_DESC *qualDesc,

mi_integer n);

Usage
If a UDR declaration includes an OUT parameter, the function call in the
WHERE clause includes a corresponding placeholder, called a statement-local
variable (SLV). If the mi_qual_needoutput() function detects the presence of
an SLV, the access method calls the mi_qual_setoutput() function to set a
constant value for that SLV.

For examples of OUT parameters and SLVs, refer to “Runtime Values as
Arguments” on page 3-32.

Return Values
MI_TRUE indicates that the strategy function involves an SLV argument.
MI_FALSE indicates that the strategy function does not specify an SLV
argument.

Related Topic
See the description of accessor function mi_qual_setoutput().

qualDesc points to the qualification descriptor.

n is always set to 0 to indicate the first and only argument that
needs a value.
Descriptor Function Reference 5-63

mi_qual_negate()
mi_qual_negate()
The mi_qual_negate() function indicates whether the NOT Boolean operator
applies to the results of the specified qualification. The NOT operator can
negate the return value of a function or a Boolean expression.

Syntax
mi_boolean mi_qual_negate(MI_AM_QUAL_DESC *qualDesc);

Return Values
MI_TRUE indicates that the strategy function should be negated. MI_FALSE
indicates that the strategy function should not be negated.

Related Topic
See the description of “Negation” on page 3-33.

qualDesc points to the qualification descriptor.
5-64 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_nquals()
mi_qual_nquals()
The mi_qual_nquals() function retrieves the number of qualifications in an
AND or OR qualification expression.

Syntax
mi_integer mi_qual_nquals(MI_AM_QUAL_DESC *qualDesc);

Return Values
The return integer indicates the number of qualifications in an AND or OR
qualification expression. A return value of 0 indicates that the qualification
contains one simple function and no Boolean operators.

Related Topic
See the description of “Complex Boolean Expressions” on page 3-34.

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-65

mi_qual_qual()
mi_qual_qual()
The mi_qual_qual() function points to one function or Boolean expression in
a complex qualification.

Syntax
MI_AM_QUAL_DESC* mi_qual_qual(MI_AM_QUAL_DESC *qualDesc,

mi_integer n);

Usage
To determine the number of qualifications in an expression and thus the
number of iterations through mi_qual_qual(), first call the mi_qual_nquals()
accessor function. If mi_qual_nquals() returns 0, the access method does not
call mi_qual_qual() because the access method already knows the address of
the qualification descriptor. For a simple qualification, mi_qual_qual()
points to the same qualification descriptor as mi_scan_quals().

If mi_qual_nquals() returns a non-zero value, the qualification descriptor
combines nested qualifications in a complex expression. The access method
can loop through mi_qual_qual() to process each qualification from those
that AND or OR combine. For an example, refer to “Processing Complex
Qualifications” on page 3-36.

Return Values
The pointer that this function returns provides the beginning address of the
next qualification from a complex WHERE clause.

qualDesc points to the qualification descriptor.

n identifies which qualification to retrieve in the expression.

Set n to 0 to retrieve the first qualification descriptor in the
array of qualification descriptors. Set n to 1 to retrieve the sec-
ond qualification descriptor in the array. Increment n by 1 to
retrieve each subsequent qualification.
5-66 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_setoutput()
mi_qual_setoutput()
The mi_qual_setoutput() function sets a constant-argument value for a UDR.

Syntax
void
mi_qual_setoutput(MI_AM_QUAL_DESC *qualDesc, mi_integer n,

MI_DATUM value, mi_boolean nullflag);

Usage
If a function declaration includes an OUT parameter, the function call in the
WHERE clause includes a corresponding placeholder, called a statement-local
variable (SLV). If the mi_qual_needoutput() function detects the presence of
an SLV, the access method calls the mi_qual_setoutput() function to set a
constant value for that SLV.

For examples of OUT parameters and SLVs, refer to “Runtime Values as
Arguments” on page 3-32.

Return Values
None

Related Topic
See the description of accessor function mi_qual_needoutput().

qualDesc points to the qualification descriptor.

n is always set to 0 to indicate the first and only argument that
needs a value.

value passes the output value in a MI_DATUM data structure.

null_flag is MI_TRUE if value is NULL.
Descriptor Function Reference 5-67

mi_qual_setreopt()
mi_qual_setreopt()
The mi_qual_setreopt() function sets an indicator in the qualification
descriptor to force reoptimization.

Syntax
void mi_qual_setreopt(MI_AM_QUAL_DESC *qualDesc)

Usage
The am_scancost purpose function can call the mi_qual_setreopt() to
indicate that the optimizer should reevaluate the query path between scans.
For example, if either the mi_qual_const_depends_hostvar() or
mi_qual_const_depends_outer() function returns MI_TRUE, the access
method can call mi_qual_setreopt() to alert the optimizer that the constant-
argument value in a qualification descriptor might change between scans on
the same index.

If the access method sets mi_qual_setreopt(), the database server invokes the
am_scancost purpose function before the next scan.

Return Values
None

Related Topics
See the descriptions of:

� Accessor functions mi_qual_const_depends_hostvar() and
mi_qual_const_depends_outer()

� Purpose function am_scancost

qualDesc points to the qualification descriptor.
5-68 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_qual_stratnum()
mi_qual_stratnum()
The mi_qual_stratnum() function locates a strategy function that a WHERE
clause specifies in the list of strategy functions for the corresponding operator
class.

Syntax
mi_integer mi_qual_stratnum(MI_AM_QUAL_DESC *qualDesc)

Usage
The return value from mi_qual_stratnum() provides an offset to retrieve the
strategy function name from the key descriptor. To obtain the strategy-
function name, the access method can pass the return value from
mi_qual_stratnum() to the mi_key_opclass_strat() function.

Tip: The access method can alternatively use the mi_qual_funcname() function to
obtain the name of a particular strategy function that the WHERE clause specifies
from the qualification descriptor.

Return Values
The return integer indicates the order in which the strategy function name
occurs in the key descriptor. The mi_qual_stratnum() returns 0 for the first
strategy function and 1 for the second strategy function name. For each
subsequent strategy function, the return value increments by 1.

Related Topics
See the descriptions of functions mi_key_opclass_strat() and
mi_qual_funcname().

qualDesc points to the qualification descriptor.
Descriptor Function Reference 5-69

mi_scan_forupdate()
mi_scan_forupdate()
The mi_scan_forupdate() function determines if the SELECT query includes
a FOR UPDATE clause.

Syntax
mi_boolean mi_scan_forupdate(MI_AM_SCAN_DESC *scanDesc);

Usage
The access method should protect data with the appropriate lock level for
update transactions and possibly store user data for the am_update or
am_delete purpose function.

To determine the lock level, call the mi_scan_locktype() access function.

Return Values
MI_TRUE indicates that the query includes a FOR UPDATE clause.

MI_FALSE indicates that the query does not include a FOR UPDATE clause.

Related Topic
See the description of accessor functions mi_scan_locktype() and
mi_tab_mode().

scanDesc points to the scan descriptor.
5-70 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_scan_isolevel()
mi_scan_isolevel()
The mi_scan_isolevel() function retrieves the isolation level that the
database server expects for the table that am_getnext scans.

Syntax
MI_ISOLATION_LEVEL mi_scan_isolevel(MI_AM_SCAN_DESC *scanDesc);

Usage
If the access method supports isolation levels, it can call mi_scan_isolevel()
from am_beginscan to determine the appropriate isolation level. For a
detailed description of isolation levels, see “Checking Isolation Levels” on
page 3-45.

Call mi_scan_isolevel() to validate that the isolation level requested by the
application does not surpass the isolation level that the access method
supports. If the access method supports Serializable, it does not call
mi_scan_isolevel() because Serializable includes the capabilities of all the
other levels.

Return Values
MI_ISO_NOTRANSACTION indicates that no transaction is in progress.

MI_ISO_READUNCOMMITTED indicates Dirty Read.

MI_ISO_READCOMMITTED indicates Read Committed.

MI_ISO_CURSORSTABILITY indicates Cursor Stability.

MI_ISO_REPEATABLEREAD indicates Repeatable Read.

MI_ISO_SERIALIZABLE indicates Serializable.

scanDesc points to the scan descriptor.
Descriptor Function Reference 5-71

mi_scan_isolevel()
Related Topics
See the descriptions of:

� Functions mi_scan_locktype() and mi_tab_isolevel()

� Isolation levels in “Checking Isolation Levels” on page 3-45

� Sample isolation-level language for access-method documentation
(Figure 3-15 on page 3-52)
5-72 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_scan_locktype()
mi_scan_locktype()
The mi_scan_locktype() function retrieves the lock type that the database
server expects for the table that am_getnext scans.

Syntax
MI_LOCK_TYPE mi_scan_locktype(MI_AM_SCAN_DESC *scanDesc);

Usage
If the access method supports locking, use the return value from this function
to determine whether you need to lock an object during am_getnext.

Return Values
MI_LCK_S indicates a shared lock on the table.

MI_LCK_X indicates an exclusive lock on the table.

MI_LCK_IS_S indicates an intent-shared lock on the table and shared lock on
the row.

MI_LCK_IX_X indicates intent-exclusive lock on the table and exclusive lock
on the row.

MI_LCK_SIX_X indicates an intent-shared exclusive lock on the table and an
exclusive lock on the row.

Related Topics
See the descriptions of:

� Functions mi_scan_isolevel() and mi_scan_forupdate()

� Locks in the Performance Guide

scanDesc points to the scan descriptor.
Descriptor Function Reference 5-73

mi_scan_nprojs()
mi_scan_nprojs()
The mi_scan_nprojs() function returns a value that is 1 less than the number
of key columns.

Syntax
mi_integer mi_scan_nprojs(MI_AM_SCAN_DESC *scanDesc)

Usage
Use the return value from this function to determine the number of times to
loop through the related mi_scan_projs() function.

Return Values
The integer return value indicates the number of key columns in an index
entry.

Related Topic
See the description of accessor function mi_scan_projs().

scanDesc points to the scan descriptor.
5-74 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_scan_newquals()
mi_scan_newquals()
The mi_scan_newquals() function indicates whether the qualification
descriptor includes changes between multiple scans for the same query
statement.

Syntax
mi_boolean mi_scan_newquals(MI_AM_SCAN_DESC *scanDesc);

Usage
This function pertains to multiple-scan queries, such as a join or subquery. If
the access method provides a function for the am_rescan purpose, that rescan
function calls mi_scan_newquals().

If this function returns MI_TRUE, retrieve information from the qualification
descriptor and obtain function descriptors. If it returns MI_FALSE, retrieve
state information that the previous scan stored in user data.

Return Values
MI_TRUE indicates that the qualifications have changed since the start of the
scan (am_beginscan). MI_FALSE indicates that the qualifications have not
changed.

scanDesc points to the scan descriptor.
Descriptor Function Reference 5-75

mi_scan_projs()
mi_scan_projs()
The mi_scan_projs() function identifies each key column.

Syntax
mi_smallint * mi_scan_projs(MI_AM_SCAN_DESC *scanDesc)

Usage
Use the return value from mi_scan_nprojs() to determine the number of
times to execute mi_scan_projs().

Return Values
Each of the small integers in the array that this function returns identifies a
column by the position of that column in the row descriptor.

Related Topics
See the descriptions of:

� Accessor functions mi_scan_nprojs(), mi_scan_table(), and
mi_tab_rowdesc()

� The mi_column_* group of DataBlade API functions and the row
descriptor (MI_ROW_DESC data structure) in the IBM Informix
DataBlade API Programmer’s Guide

scanDesc points to the scan descriptor.
5-76 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_scan_quals()
mi_scan_quals()
The mi_scan_quals() function returns the qualification descriptor, which
describes the conditions that an entry must satisfy to qualify for selection.

Syntax
MI_AM_QUAL_DESC* mi_scan_quals(MI_AM_SCAN_DESC *scanDesc);

Usage
The am_getnext purpose function calls mi_scan_quals() to obtain the
starting point from which it evaluates a row of index keys and then passes
the return value (a pointer) from this function to all the qualification-
descriptor accessor functions.

Important: If this function returns a NULL-valued pointer, the access method
sequentially scans the index and returns all index entries.

Return Values
A valid pointer indicates the start of the qualification descriptor for this scan.
A NULL-valued pointer indicates that the access method should return all
index entries.

Related Topics
See the description of the accessor functions in “Qualification Descriptor” on
page 5-9.

scanDesc points to the scan descriptor.
Descriptor Function Reference 5-77

mi_scan_setuserdata()
mi_scan_setuserdata()
The mi_scan_setuserdata() function stores a pointer to user data in the scan
descriptor.

Syntax
void mi_scan_setuserdata(MI_AM_SCAN_DESC *scanDesc, void
*userdata);

Usage
The access method can create a user-data structure in shared memory to store
reusable information, such as function descriptors for qualifications, and to
maintain a row pointer for each execution of the am_getnext purpose
function. To retain user data in memory during the scan (starting when
am_beginscan is called and ending when am_endscan is called), follow
these steps:

To retain user data in memory during the scan

1. In the am_beginscan purpose function, call the appropriate
DataBlade API function to allocate memory for the user-data
structure.

Allocate the user-data memory with a duration of PER_COMMAND.

2. In am_getnext, populate the user-data structure with scan-state
information.

3. Before am_getnext exits, call mi_scan_setuserdata() to store a
pointer to the user-data structure in the scan descriptor.

4. In the am_endscan purpose function, call the appropriate DataBlade
API function to deallocate the user-data memory.

scanDesc points to the scan descriptor.

user_data points to the user data.
5-78 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_scan_setuserdata()
Return Values
None

Related Topics
See the descriptions of:

� Function mi_scan_userdata()

� DataBlade API functions for memory allocation and duration in
“Storing Data in Shared Memory” on page 3-3
Descriptor Function Reference 5-79

mi_scan_table()
mi_scan_table()
The mi_scan_table() function retrieves a pointer to the table descriptor for
the index that the access method scans.

Syntax
MI_AM_TABLE_DESC* mi_scan_table(MI_AM_SCAN_DESC *scanDesc);

Usage
The table descriptor points to the row descriptor. The row descriptor contains
the column data types that define an index entry.

The table descriptor also typically contains PER_STATEMENT user data that
remains in memory until the completion of the current SQL statement.

Return Values
This function returns a pointer to the table descriptor that is associated with
this scan.

Related Topics
See the descriptions of:

� Accessor functions in “Table Descriptor” on page 5-16

� Accessor functions for the row descriptor in the IBM Informix
DataBlade API Programmer’s Guide

scanDesc points to the scan descriptor.
5-80 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_scan_userdata()
mi_scan_userdata()
The mi_scan_userdata() function retrieves the pointer from the scan
descriptor that points to a user data structure.

Syntax
void* mi_scan_userdata(MI_AM_SCAN_DESC *scanDesc);

Usage
If the access method allocates user-data memory to hold scan-state infor-
mation, it places a pointer to that user data in the scan descriptor. Use the
mi_scan_userdata() function to retrieve the pointer for access to the user
data.

For example, the am_getnext might maintain a row pointer to keep track of
its progress through the index during a scan. Each time am_getnext prepares
to exit, it stores the address or row identifier of the row that it just processed.
The next execution of am_getnext retrieves and increments the address to
fetch the next entry in the index.

Return Values
This function returns a pointer to a user-data structure that the access method
creates during the scan.

Related Topic
See the description of:

� Function mi_scan_setuserdata()

� “Storing Data in Shared Memory” on page 3-3

scanDesc points to the scan descriptor.
Descriptor Function Reference 5-81

mi_tab_amparam()
mi_tab_amparam()
The mi_tab_amparam() function retrieves any user-defined configuration
values for the index.

Syntax
mi_string* mi_tab_amparam(MI_AM_TABLE_DESC *tableDesc);

Usage
If the access method supports configuration keywords, the USING access-
method clause of the CREATE TABLE statement can specify values for those
keywords. A user or application can apply values to adjust the way in which
the access method behaves.

To support multiple indexes on the same key column or composite of
columns, use the configuration keywords as the example in “Enabling Alter-
native Indexes” on page 3-22 demonstrates.

To ensure that a CREATE INDEX statement does not duplicate the definition
of another index, use the functions mi_tab_param_exist() and
mi_tab_nparam_exist() as Figure 3-7 on page 3-24 shows.

Return Values
The pointer accesses a string that contains user-specified keywords and
values. A NULL-valued pointer indicates that the CREATE INDEX statement
specified no configuration keywords.

Related Topics
See the descriptions of:

� Functions mi_tab_param_exist() and mi_tab_nparam_exist()

� “Enabling Alternative Indexes” on page 3-22

tableDesc points to the index descriptor.
5-82 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_amparam()
� “Providing Configuration Keywords” on page 3-19

� The USING clause of the CREATE INDEX statement in the IBM Informix
Guide to SQL: Syntax
Descriptor Function Reference 5-83

mi_tab_check_msg()
mi_tab_check_msg()
The mi_tab_check_msg() function sends messages to the oncheck utility.

Syntax
mi_integer mi_tab_check_msg(MI_AM_TABLE_DESC *tableDesc,

mi_integer msg_type,
char *msg[, marker_1, ..., marker_n])

When a user initiates the oncheck utility, the database server invokes the
am_check purpose function, which checks the structure and integrity of
virtual indexes. To report state information to the oncheck utility, am_check
can call the mi_tab_check_msg() function.

The syserrors system catalog table can contain user-defined error and
warning messages. A five-character SQLSTATE value identifies each
message.

tableDesc points to the descriptor for the index that the oncheck com-
mand line specifies.

msg_type indicates where oncheck should look for the message.

If msg_type is MI_SQL, an error occurred. The syserrors system
catalog table contains the message.

If msg_type is MI_MESSAGE, the pointer in the msg argument
contains the address of an information-only message string.

msg points to a message string of up to 400 bytes if msg_type is
MI_MESSAGE.

If msg_type is MI_SQL, msg points to a 5-character SQLSTATE
value. The value identifies an error or warning in the syserrors
system catalog table.

marker_n specifies a marker name in the syserrors system catalog table
and a value to substitute for that marker.
5-84 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_check_msg()
The text of an error or warning message can include markers that the access
method replaces with state-specific information. To insert state-specific infor-
mation in the message, the access method passes values for each marker to
mi_tab_check_msg().

To raise an exception whose message text is stored in syserrors, provide the
following information to the mi_tab_check_msg() function:

� A message type of MI_SQL

� The value of the SQLSTATE variable that identifies the custom
exception

� Optionally, values specified in parameter pairs that replace markers
in the custom exception message

The access method can allocate memory for messages or create automatic
variables that keep their values for the duration of the mi_tab_check_msg()
function.

The DataBlade API mi_db_error_raise() function works similarly to
mi_tab_check_msg(). For examples that show how to create messages, refer
to the description of mi_db_error_raise() in the IBM Informix DataBlade API
Programmer’s Guide.

Important: Do not use msg_type values MI_FATAL or MI_EXCEPTION with
mi_tab_check_msg(). These message types are reserved for the DataBlade API
function mi_db_error_raise().

Return Values
None

Related Topics
See the descriptions of:

� Purpose function am_check on page 4-16

� Accessor functions mi_tab_check_is_recheck() and
mi_tab_check_set_ask()
Descriptor Function Reference 5-85

mi_tab_check_msg()
� DataBlade API function mi_db_error_raise() in the IBM Informix
DataBlade API Programmer’s Guide, particularly the information about
raising custom messages

� oncheck in the Administrator’s Reference
5-86 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_check_is_recheck()
mi_tab_check_is_recheck()
The mi_tab_check_is_recheck() function indicates whether the current
execution of the am_check purpose function should repair a specific problem
that the previous execution detected.

Syntax
mi_boolean mi_tab_check_is_recheck(MI_AM_TABLE_DESC *tableDesc)

Usage
Call this function in am_check purpose function to determine if the following
sequence of events occurred:

1. A user issued an oncheck request but did not include -y or -n in the
option arguments.

2. In response to an oncheck request, the database server invoked the
am_check purpose function.

3. During the first execution of am_check, the purpose function
detected a problem with the index, called mi_tab_check_set_ask() to
alert the database server, and exited.

4. The database server prompted the user to indicate if the access
method should repair the index.

5. The user answered y or yes to the prompt, and the database server
executed am_check again for the same index with -y appended to the
original options.

tableDesc points to the table descriptor of the index that the current
oncheck command specifies.
Descriptor Function Reference 5-87

mi_tab_check_is_recheck()
In addition to mi_tab_check_is_recheck(), the access method should do the
following to support index repair during oncheck:

� Store a description of the problem in PER_STATEMENT memory and
call mi_tab_setuserdata() to place a pointer to the PER_STATEMENT
memory in the table descriptor.

� Contain the logic required to repair the index.

� If mi_tab_check_is_recheck() returns MI_TRUE, execute the logic
that repairs the index.

Return Values
MI_TRUE indicates that this execution of am_check is a recheck and should
attempt to repair the index. MI_FALSE indicates that this is the first execution
of am_check for a new oncheck request.

Related Topics
See the descriptions of:

� Purpose function am_check

� Accessor functions mi_tab_check_msg() and
mi_tab_check_set_ask()
5-88 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_check_set_ask()
mi_tab_check_set_ask()
The mi_tab_check_set_ask() function sets a flag in the table descriptor to
indicate that am_check detects a repairable problem in the index.

Syntax
mi_integer mi_tab_check_set_ask(MI_AM_TABLE_DESC *tableDesc,

mi_integer option)

Usage
Call this function from the am_check purpose function to alert the database
server of the following conditions:

� The access method detects a structural problem or data-integrity
problem in an index.

� The access method contains appropriate logic to repair the problem.

� The user does not specify -y or -n with an oncheck command.

A user includes a -y option to indicate that the oncheck utility should repair
any index problems that it detects. To indicate that oncheck should report
problems but not repair them, the user includes a -n option with oncheck.

The am_check purpose function can check for the -y option with the
MI_CHECK_YES_TO_ALL() macro and for -n with MI_CHECK_NO_TO_ALL().
If both MI_CHECK_YES_TO_ALL() and MI_CHECK_NO_TO_ALL() return
MI_FALSE, the user did not specify a preference to repair or not repair
problems. Because it does not know how to proceed, am_check can call
accessor function mi_tab_check_set_ask(), which causes the database server
to ask if the user wants the index repaired.

tableDesc points to the table descriptor of the index that the current
oncheck command specifies.

option contains an encoded version of the current command-line option
string for the oncheck utility.
Descriptor Function Reference 5-89

mi_tab_check_set_ask()
Return Values
MI_OK validates the index structure as error free.

MI_ERROR indicates the access method could not validate the index structure
as error free.

Related Topics
See the descriptions of:

� Purpose function am_check

� Accessor functions mi_tab_check_msg() and
mi_tab_check_is_recheck()
5-90 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_createdate()
mi_tab_createdate()
The mi_tab_createdate() function returns the date that the index was created.

Syntax
mi_date * mi_tab_createdate(MI_AM_TABLE_DESC *tableDesc);

Return Value
The date indicates when the CREATE INDEX statement was issued.

tableDesc points to the index descriptor.
Descriptor Function Reference 5-91

mi_tab_isindex()
mi_tab_isindex()
The mi_tab_isindex() function indicates whether the table descriptor
describes an index.

Syntax
mi_boolean mi_tab_isindex(MI_AM_TABLE_DESC *tableDesc)

Usage
If the access method shares source files with a primary access method, use
this function to verify that the table descriptor pertains to the secondary
access method.

Return Values
MI_TRUE verifies that the table descriptor actually describes an index.
MI_FALSE indicates that it describes a table.

tableDesc points to the index descriptor.
5-92 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_isolevel()
mi_tab_isolevel()
The mi_tab_isolevel() function retrieves the isolation level that the SET
ISOLATION or SET TRANSACTION statement applies.

Syntax
MI_ISOLATION_LEVEL mi_tab_isolevel(MI_AM_TAB_DESC *tableDesc);

Usage
If the access method supports isolation levels, it can call mi_tab_isolevel() to
validate that the isolation level requested by the application does not surpass
the isolation level that the access method supports. If the access method
supports serializable, it does not call mi_tab_isolevel() because Serializable
includes the capabilities of all the other levels.

Return Values
MI_ISO_NOTRANSACTION indicates that no transaction is in progress.

MI_ISO_READUNCOMMITTED indicates Dirty Read.

MI_ISO_READCOMMITTED indicates read Committed.

MI_ISO_CURSORSTABILITY indicates Cursor Stability.

MI_ISO_REPEATABLEREAD indicates Repeatable Read.

MI_ISO_SERIALIZABLE indicates Serializable.

tableDesc points to the table descriptor.
Descriptor Function Reference 5-93

mi_tab_isolevel()
Related Topics
See the descriptions of:

� Functions mi_scan_locktype() and mi_scan_isolevel()

� Isolation levels in “Checking Isolation Levels” on page 3-45

� Sample isolation-level language for access-method documentation
(Figure 3-15 on page 3-52)
5-94 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_keydesc()
mi_tab_keydesc()
The mi_tab_keydesc() function returns a pointer to the key descriptor.

Syntax
MI_AM_KEY_DESC* mi_tab_keydesc(MI_AM_TABLE_DESC *tableDesc)

Usage
The mi_tab_keydesc() function describes the individual key columns in an
index entry. After the access method obtains the pointer, it can pass it to the
accessor functions that extract information from the key descriptor.

Return Value
The pointer enables the access method to locate the active key descriptor.

Related Topics
See the description of accessor functions in “Key Descriptor” on page 5-8.

tableDesc points to the index descriptor.
Descriptor Function Reference 5-95

mi_tab_mode()
mi_tab_mode()
The mi_tab_mode() function retrieves the I/O mode of the index from the
table descriptor.

Syntax
mi_unsigned_integer
mi_tab_tab_mode(MI_AM_TABLE_DESC *tableDesc)

Usage
The I/O mode refers to the operations expected subsequent to the opening of
a table.

To determine the input and output requirements of the current statement

1. Call mi_tab_mode() to obtain an input/output indicator.

2. Pass the value that mi_tab_mode() returns to the macros in
Figure 5-1 for interpretation.

Each macro returns either MI_TRUE or MI_FALSE.

Figure 5-1
Macro Modes

tableDesc points to the index descriptor.

Macro Mode Verified

MI_INPUT() Open for input only, usually in the case of a SELECT statement

MI_OUTPUT() Open for output only, usually in the case of an INSERT
statement

MI_INOUT() Open for input and output, usually in the case of an UPDATE
statement

MI_NOLOG() No logging required
5-96 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_mode()
In the following example, the access method calls mi_tab_mode() to verify
that a query is read-only. If MI_INOUT() returns MI_FALSE, the access method
requests a multiple-row buffer because the access method can return several
rows without interruption by an update:

if (MI_INOUT(tableDesc) == MI_FALSE)
mi_tab_setniorows(tableDesc, 10);

If MI_INOUT() returns MI_TRUE, the access method can process only one row
identifier with each call to am_getnext.

The am_open purpose function can use the MI_OUTPUT() macro to verify
that a CREATE INDEX statement is in progress. If MI_OUTPUT() returns
MI_TRUE, the access method can call mi_tab_setniorows() to set the number
of index entries for am_insert to process.

Return Values
The integer indicates whether an input or output request is active.

To interpret the returned integer, use the macros that Figure 5-1 on page 5-96
describes.

Related Topics
See the descriptions of

� “Buffering Multiple Results” on page 3-42

� Purpose functions am_beginscan and am_getnext

� “Building New Indexes Efficiently” on page 3-20

� Purpose functions am_open and am_insert

� Setting logging preferences in Figure 3-5 on page 3-19
Descriptor Function Reference 5-97

mi_tab_name()
mi_tab_name()
The mi_tab_name() function retrieves the index name that the active SQL
statement or oncheck command specifies.

Syntax
mi_string* mi_tab_name(MI_AM_TABLE_DESC *tableDesc)

Return Values
The string specifies the name of the index to access.

tableDesc points to the index descriptor.
5-98 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_nextrow()
mi_tab_nextrow()
The mi_tab_nextrow() function fetches the next index entry from several that
the database server stores in shared memory.

Syntax
mi_integer
mi_tab_nextrow(MI_AM_TABLE_DESC *tableDesc,

MI_ROW **row,
mi_integer *rowid,
mi_integer *fragid)

Usage
Use this function from the am_insert purpose function if am_insert can
insert more than one new index entry. The values in row, rowid, and fragid
replace the new row and row-ID descriptor that the database server passes to
am_insert if shared memory holds only one new index entry.

The mi_tab_nextrow() function works together with the following related
accessor functions:

� The mi_tab_setniorows() function sets a number of rows to pass to
am_insert.

� The mi_tab_niorows() function gets the number of rows to expect.

For an example of how these three functions work together, refer to
Figure 3-6 on page 3-21.

tableDesc points to the index descriptor.

row points to the address of a row structure. The row structure con-
tains the index entry that the access method reformats, if nec-
essary, and inserts into the virtual index.

rowid points to the row identifier of the associated table row.

fragid points to the fragment identifier of the associated table row.
Descriptor Function Reference 5-99

mi_tab_nextrow()
Return Values
The return value increments for each call to am_insert. The first call to
mi_tab_nextrow() returns 0, the second returns 1, and so forth. A negative
return value indicates an error.

Related Topics
See the descriptions of:

� Purpose function am_insert

� Accessor functions mi_tab_setniorows() and mi_tab_niorows()

� “Building New Indexes Efficiently” on page 3-20
5-100 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_niorows()
mi_tab_niorows()
The mi_tab_niorows() function retrieves the number of rows that the
database server expects to process in am_getnext or am_insert.

Syntax
mi_integer
mi_tab_niorows(MI_AM_TABLE_DESC *tableDesc)

Usage
Call this function from am_getnext and then loop through the scan as often
as necessary to fill the reserved number of rows or until no more rows qualify.
See mi_tab_setnextrow() for an example.

Call this function from am_insert and then use the return value to determine
how many times to loop through shared memory to get the next row.

Return Values
The integer specifies the actual number of rows that the database server has
placed in shared memory for am_insert to insert in a new index or the
maximum number of rows that am_getnext can place in shared memory.

A return value of 0 indicates that am_open or am_beginscan did not call the
mi_tab_setniorows() function or that mi_tab_setniorows() returned an
error. Thus, the database server did not reserve memory for multiple rows,
and the access method must process only one row.

A negative return value indicates an error.

Related Topics
See the descriptions of functions mi_tab_nextrow(), mi_tab_setniorows(),
and mi_tab_setnextrow().

tableDesc points to the index descriptor.
Descriptor Function Reference 5-101

mi_tab_nparam_exist()
mi_tab_nparam_exist()
The mi_tab_nparam_exist() function returns the number of virtual indexes
that contain identical key columns.

Syntax
mi_integer mi_tab_nparam_exist(MI_AM_TABLE_DESC *tableDesc)

Usage
Call this function to determine how many alternative configuration-
parameter entries the table descriptor contains. The return value is the array
position of the last parameter entry in the table descriptor. Thus, this function
returns 0 for the first and only parameter entry. If two parameter entries exist,
this function returns 1, and so forth. Use the return value from this function
to extract parameter entries from the array with the mi_tab_param_exist()
function.

Return Values
The integer indicates the number of configuration-parameter specifications,
and therefore indexes, on identical columns. A value of 0 indicates one index
on a group of columns. A value of n indicates the existence of n+1 indexes.

Related Topics
See the descriptions of:

� Functions mi_tab_param_exist() and mi_tab_amparam()

� “Enabling Alternative Indexes” on page 3-22

tableDesc points to the index descriptor.
5-102 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_numfrags()
mi_tab_numfrags()
The mi_tab_numfrags() function retrieves the number of fragments in the
index.

Syntax
mi_integer mi_tab_numfrags(MI_AM_TABLE_DESC *tableDesc)

Return Values
The integer specifies the number of fragments in the table from the table
descriptor. If the table is not fragmented, mi_tab_numfrags() returns 1.

tableDesc points to the index descriptor.
Descriptor Function Reference 5-103

mi_tab_owner()
mi_tab_owner()
The mi_tab_owner() function retrieves the owner of the table.

Syntax
mi_string* mi_tab_owner(MI_AM_TABLE_DESC *tableDesc)

Usage
The user who creates a table owns that table. The database server identifies
the owner by user ID, which it stores in the systables system catalog table. In
some environments, user ID of the table owner must precede the table name
as follows:

SELECT * from owner.table_name

Return Values
The string contains the user ID of the table owner.

Related Topic
See the description of the Owner Name segment in the IBM Informix Guide to
SQL: Syntax.

tableDesc points to the index descriptor.
5-104 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_param_exist()
mi_tab_param_exist()
The mi_tab_param_exist() function retrieves the index-configuration param-
eters that are available for one of multiple indexes that consist of the same
key columns.

Syntax
mi_string * mi_tab_param_exists(MI_AM_TABLE_DESC *tableDescr,

mi_integer n)

Usage
To support multiple search schemes for the same set of columns, the VII
enables the user to identify each search scheme with a set of keyword param-
eters. The user specifies these parameters in the CREATE INDEX statements
for these indexes.The access method uses the related functions together to
determine if CREATE INDEX statements specify new or duplicate keyword
values.

For an example, refer to “Enabling Alternative Indexes” on page 3-22.

Return Values
The string lists keywords and their values from the amparam column of the
sysindexes system catalog table for index n.

Related Topics
See the descriptions of functions mi_tab_nparam_exist() and
mi_tab_amparam().

tableDesc points to the index descriptor.

n specifies a particular index from among multiple indexes on
equivalent columns.

The first CREATE INDEX statement for those columns creates
index 0. To select that index, set n to 0. To select the second
index created on the same columns, set n to 1.
Descriptor Function Reference 5-105

mi_tab_partnum()
mi_tab_partnum()
The mi_tab_partnum() function retrieves the fragment identifier for the
index.

Syntax
mi_integer mi_tab_partnum(MI_AM_TABLE_DESC *tableDesc)

Usage
If a CREATE INDEX or ALTER FRAGMENT statement specifies fragmentation,
use this function to determine the current fragment identifier (also called a
partition number). Each fragment occupies one named sbspace or extspace.

Return Values
The integer specifies physical address of the fragment.

For a fragmented index, the return value corresponds to the fragment
identifier and the partn value in the sysfragments system catalog table.

tableDesc points to the index descriptor.
5-106 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_rowdesc()
mi_tab_rowdesc()
The mi_tab_rowdesc() function retrieves the row descriptor, which describes
the columns that belong to the index that the table descriptor identifies.

Syntax
MI_ROW_DESC* mi_tab_rowdesc(MI_AM_TABLE_DESC *tableDesc)

Usage
To access information in the row descriptor, pass the pointer in this column
to the DataBlade API row-descriptor accessor functions. A row descriptor
describes the columns that make up the index.

The order of the columns in the row descriptor corresponds to the order of
the columns in the CREATE INDEX statement. Another accessor function,
such as mi_scan_projs(), can obtain information about a specific column by
passing the position of the column in the row descriptor.

Return Values
The pointer enables the access method to locate the row descriptor, which
describes the columns in this table.

Related Topics
Refer to the IBM Informix DataBlade API Programmer’s Guide for the descrip-
tions of:

� DataBlade API row-descriptor accessor functions
mi_column_bound(), mi_column_count(), mi_column_id(),
mi_column_name(), mi_column_nullable(), mi_column_scale(),
mi_column_type_id(), and mi_column_typedesc()

� The row descriptor (MI_ROW_DESC data structure)

tableDesc points to the index descriptor.
Descriptor Function Reference 5-107

mi_tab_setnextrow()
mi_tab_setnextrow()
The am_getnext purpose function calls mi_tab_setnextrow() to store the next
entry that qualifies for selection.

Syntax
mi_integer
mi_tab_setnextrow(MI_AM_TABLE_DESC *tableDesc,

MI_ROW **row,
mi_integer *rowid,
mi_integer *fragid)

Usage
Use this function in the am_getnext purpose function if the access method
can fetch multiple rows into shared memory. The values in row, rowid, fragid
replace arguments that the database server passes to am_getnext if shared
memory accommodates only one fetched index entry.

The mi_tab_setnextrow() function works together with the following other
accessor functions:

� The mi_tab_setniorows() function sets a number of rows to pass to
am_getnext.

� The mi_tab_niorows() function gets the number of rows to expect.

tableDesc points to the index descriptor.

row points to the address of a row structure that contains fetched
data under the following conditions:

� The query projects only index-key columns.

� The am_keyscan purpose flag is set.

Otherwise, row might not exist.

rowid points to the row identifier of the table row that contains the key
values.

fragid points to the fragment identifier of the associated table row.
5-108 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_setnextrow()
For an example that shows how these three functions work together, refer to
Figure 3-14 on page 3-43.

Return Values
The integer indicates which row in shared memory to fill. The first call to
mi_tab_setnextrow() returns 0. Each subsequent call adds 1 to the previous
return value. The maximum rows available depends on the value that
mi_tab_niorows() returns.

A negative return value indicates an error.

Related Topics
See the descriptions of:

� Functions mi_tab_setniorows() and mi_tab_niorows()

� “Buffering Multiple Results” on page 3-42
Descriptor Function Reference 5-109

mi_tab_setniorows()
mi_tab_setniorows()
The mi_tab_setniorows() function indicates:

� The access method can handle more than one row per call

� The number of rows for which the database server should allocate
memory

Syntax
mi_integer mi_tab_setniorows(MI_AM_TABLE_DESC *tableDesc,

mi_integer nrows)

Usage
The access method must call this function in either am_open or
am_beginscan. Multiple calls to mi_tab_setniorows() during the execution
of a single statement cause an error.

A secondary access method can set up a multiple-row area in shared memory
for use in one or both of the following purpose functions:

� The database server can place multiple entries in shared memory
that the am_insert purpose function retrieves and writes to disk.

� The am_getnext purpose function can fetch multiple rows into
shared memory in response to a query.

Return Values
The integer indicates the actual number of rows for which the database
server allocates memory. Currently, the return value equals nrows. A zero or
negative return value indicates an error.

tableDesc points to the index descriptor.

nrows specifies the maximum number of rows that am_getnext or
am_insert processes.
5-110 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_setniorows()
Related Topics
See the descriptions of functions mi_tab_niorows(), mi_tab_nextrow(), and
mi_tab_setnextrow().
Descriptor Function Reference 5-111

mi_tab_setuserdata()
mi_tab_setuserdata()
The mi_tab_setuserdata() function stores a pointer to user data in the table
descriptor.

Syntax
void mi_tab_setuserdata(MI_AM_TABLE_DESC *tableDesc,

void *userdata)

Usage
The access method stores state information from one purpose function so that
another purpose function can use it.

To save table-state information as user data

1. Call the appropriate DataBlade API memory-management function
to allocate PER_STATEMENT memory for the user-data structure.

2. Populate the user-data structure with the state information.

3. Call the mi_tab_setuserdata() function to store the pointer that the
memory-allocation function returns in the table descriptor.

Pass the pointer as the user_data argument.

Typically, an access method performs the preceding procedure in the
am_open purpose function and deallocates the user-data memory in the
am_close purpose function. To have the table descriptor retain the pointer to
the user data as long as the table remains open, specify a memory duration
of PER_STATEMENT, as “Memory-Duration Options” on page 3-4 and
“Persistent User Data” on page 3-5 describe.

To retrieve the pointer from the table descriptor to access the table-state user
data, call the mi_tab_userdata() function in any purpose function between
am_open and am_close.

tableDesc points to the index descriptor.

user_data points to a data structure that the access method creates.
5-112 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_setuserdata()
Return Values
None

Related Topics
See the descriptions of:

� Function mi_tab_userdata()

� Purpose functions am_open and am_close

� DataBlade API functions for memory allocation and duration in
“Storing Data in Shared Memory” on page 3-3
Descriptor Function Reference 5-113

mi_tab_spaceloc()
mi_tab_spaceloc()
The mi_tab_spaceloc() function retrieves the location of the extspace in
which the index resides.

Syntax
mi_string* mi_tab_spaceloc(MI_AM_TABLE_DESC *tableDesc)

Usage
A user, usually a database system administrator, can assign a short name to
an extspace with the onspaces utility. When a user creates an index, the
CREATE INDEX statement can include an IN clause to specify one of the
following:

� The name that is assigned with the onspaces utility

� A string that contains the actual location

To find out the string that the user specifies as the storage space, call the
mi_tab_spaceloc() function.

For example, the mi_tab_spaceloc() function returns the string
host=dcserver,port=39 for a storage space that the following commands
specify:

onspaces -c -x dc39 -l "host=dcserver,port=39"
CREATE INDEX idx_remote on TABLE remote...

IN dc39
USING access_method

Return Values
A string identifies the extspace.

If the index resides in an sbspace, this function returns a NULL-valued
pointer.

tableDesc points to the index descriptor.
5-114 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_spacename()
mi_tab_spacename()
The mi_tab_spacename() function retrieves the name of the storage space
where the virtual index resides.

Syntax
mi_string* mi_tab_spacename(MI_AM_TABLE_DESC *tableDesc)

Usage
Call the mi_tab_spacename() function to determine the storage space
identifier from one of the following sources:

� An IN clause specification

� The SBSPACENAME value in the database ONCONFIG file

IN Clause

When a user creates an index, the CREATE INDEX statement can include an IN
clause that specifies one of the following:

� The name that is assigned with the onspaces utility

� A string that contains the actual location

For example, the mi_tab_spacename() function returns the string dc39 for a
storage space that the following commands specify:

onspaces -c -x dc39 -l "host=dcserver,port=39"
CREATE INDEX idx_remote on TABLE remote...

IN dc39
USING access_method

tableDesc points to the index descriptor.
Descriptor Function Reference 5-115

mi_tab_spacename()
The statement that creates the index can specify the physical storage location
rather than a logical name that the onspaces utility associates with the
storage space. In the following UNIX example, mi_tab_spacename() returns
the physical path, /tmp:

CREATE INDEX idx_remote on TABLE remote...
IN '/tmp'
USING access_method

If the IN clause specifies multiple storage spaces, each makes up a fragment
of the index and the table descriptor pertains to only the fragment that the
return value for the mi_tab_spacename() function names.

SBSPACENAME Value

An optional SBSPACENAME parameter in the ONCONFIG file indicates the
name of an existing sbspace as the default location to create a new smart large
object or virtual index. The database server assigns the default sbspace to a
virtual index under the following circumstances:

� A CREATE INDEX statement does not include an IN clause.

� The database server determines (from the am_sptype purpose value
in the sysams system catalog table) that the access method supports
sbspaces.

� The ONCONFIG file contains a value for the SBSPACENAME
parameter.

� The onspaces command created an sbspace with the name that
SBSPACENAME specifies.

� The default sbspace does not contain an index due to a previous SQL
statement.

For more information, refer to “Creating a Default Storage Space” on
page 3-14.

Return Values
A string identifies the sbspace or extspace that the CREATE INDEX statement
associates with the index. A NULL-valued pointer indicates that the index
does not reside in a named storage space.
5-116 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_spacetype()
mi_tab_spacetype()
The mi_tab_spacetype() function retrieves the type of storage space in which
the virtual index resides.

Syntax
mi_char1 mi_tab_spacetype(MI_AM_TABLE_DESC *tableDesc)

Return Values
The letter S indicates that the index resides in an sbspace. The letter X
indicates that the index resides in an extspace. The letter D indicates that the
index resides in a dbspace and is reserved for Informix use only.

Important: A user-defined access method cannot create indexes in dbspaces.

tableDesc points to the index descriptor.
Descriptor Function Reference 5-117

mi_tab_unique()
mi_tab_unique()
The mi_tab_unique() function determines if a CREATE INDEX statement
specifies that the index contains only unique keys.

Syntax
mi_boolean mi_tab_unique(MI_AM_TABLE_DESC *tableDesc)

Usage
The access method can call this function from the am_create or am_insert
purpose function. As the access method builds an index, it checks for unique
key values if the mi_tab_unique() function returns MI_TRUE.

Return Values
MI_TRUE indicates that the secondary access method must enforce unique
keys for this index. MI_FALSE indicates that the secondary access method
should not enforce unique keys for this index.

tableDesc points to the index descriptor.
5-118 IBM Informix Virtual-Index Interface Programmer’s Guide

mi_tab_update_stat_mode()
mi_tab_update_stat_mode()
The mi_tab_update_stat_mode() function indicates whether an UPDATE
STATISTICS function includes a LOW, MEDIUM, or HIGH mode keyword.

Syntax
MI_UPDATE_STAT_MODE
mi_tab_update_stat_mode(MI_AM_TABLE_DESC *tableDesc))

Usage
To extract the distribution-level keyword that an UPDATE STATISTICS
statement specifies, the am_stats purpose function calls the
mi_tab_update_stat_mode() function. Three keywords describe distribution
level, HIGH, MEDIUM, and the default LOW.

If a purpose function other than am_stats calls mi_tab_update_stat_mode(),
the return value indicates that UPDATE STATISTICS is not running.

Return Values
MI_US_LOW indicates that the UPDATE STATISTICS statement specifies the
LOW keyword or that LOW is in effect by default. MI_US_MED or
MI_US_HIGH indicates that the UPDATE STATISTICS specifies the MEDIUM or
the HIGH keyword, respectively. MI_US_NOT_RUNNING indicates that no
UPDATE STATISTICS statement is executing. MI_US_ERROR indicates an error.

Related Topics
See the descriptions of:

� Purpose function am_stats on page 4-42

� UPDATE STATISTICS in the IBM Informix Guide to SQL: Syntax and the
Performance Guide

tableDesc points to the index descriptor.
Descriptor Function Reference 5-119

mi_tab_userdata()
mi_tab_userdata()
The mi_tab_userdata() function retrieves, from the table descriptor, a pointer
to a user-data structure that the access method maintains in shared memory.

Syntax
void* mi_tab_userdata(MI_AM_TABLE_DESC *tableDesc)

Usage
During the am_open purpose function, the access method can create and
populate a user-data structure in shared memory. The table descriptor user
data generally holds state information about the index for use by other
purpose functions. To ensure that the user data remains in memory until
am_close executes, the access method allocates the memory with a duration
of PER_STATEMENT.

To store the pointer in that structure in the table descriptor, am_open calls
mi_tab_setuserdata(). Any other purpose function can call
mi_tab_userdata() to retrieve the pointer for access to the state information.

Return Values
The pointer indicates the location of a user-data structure in shared memory.

Related Topic
See the descriptions of:

� Function mi_tab_setuserdata()

� “Storing Data in Shared Memory” on page 3-3

tableDesc points to the index descriptor.
5-120 IBM Informix Virtual-Index Interface Programmer’s Guide

6
Chapter
SQL Statements for Access
Methods
In This Chapter . 6-3
ALTER ACCESS_METHOD 6-4
CREATE ACCESS_METHOD 6-7
DROP ACCESS_METHOD. 6-9
Purpose Options 6-11

6-2 IBM
 Informix Virtual-Index Interface Programmer’s Guide

In This Chapter
This chapter describes the syntax and usage of the following SQL statements,
which insert, change, or delete entries in the sysams system catalog table:

� ALTER ACCESS_METHOD

� CREATE PRIMARYSECONDARY ACCESS_METHOD

� DROP ACCESS_METHOD

For information about how to interpret the syntax diagrams in this chapter,
refer to “Syntax Conventions” on page 8 of the Introduction.

This chapter also provides the valid purpose-function, purpose-flag, and
purpose-value settings.
SQL Statements for Access Methods 6-3

ALTER ACCESS_METHOD
ALTER ACCESS_METHOD
The ALTER ACCESS_METHOD statement changes the attributes of a user-
defined access method in the sysams system catalog table.

Syntax

+

Element Purpose Restrictions Syntax
access-
method
name

The access method to alter A previous CREATE PRIMARYSEC-
ONDARY ACCESS_METHOD
statement must register the access
method in the database.

Database Object
Name segment; see
IBM Informix Guide to
SQL: Syntax.

purpose
name

A keyword that indicates
which purpose function,
purpose value, or purpose flag
to drop

A previous statement must associate
the purpose name with this access
method.

“Purpose-Name
Keyword” on
page 6-14.

Purpose Option,
p. 6-11

ALTER ACCESS_METHOD access-method name

,

MODIFY

ADD

DROP purpose name
6-4 IBM Informix Virtual-Index Interface Programmer’s Guide

ALTER ACCESS_METHOD
Usage
Use ALTER ACCESS_METHOD to modify the definition of a user-defined
access-method. You must be the owner of the access method or have DBA
privileges to alter an access method.

When you alter an access method, you change the purpose-option specifica-
tions (purpose functions, purpose flags, or purpose values) that define the
access method. For example, you alter an access method to assign a new
purpose-function name or provide a multiplier for the scan cost. For detailed
information about how to set purpose-option specifications, refer to
“Purpose Options” on page 6-11.

If a transaction is in progress, the database server waits to alter the access
method until the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

Sample Statements
The following statement alters the remote access method.

The preceding example:

� Adds an am_insert purpose function

� Drops the am_check purpose function

� Sets (adds) the am_readwriteam_unique flag

� Modifies the am_sptype purpose value

ALTER ACCESS_METHOD remote
ADD AM_INSERT=ins_remote,
ADD AM_READWRITEAM_UNIQUE,
DROP AM_CHECK,
MODIFY AM_SPTYPE = ' SX');

Figure 6-1
Sample ALTER

ACCESS_METHOD
Statement
SQL Statements for Access Methods 6-5

ALTER ACCESS_METHOD
References
See the descriptions of:

� CREATE ACCESS_METHOD statement and purpose options in this
chapter

� Privileges in the IBM Informix Database Design and Implementation
Guide or the GRANT statement in the IBM Informix Guide to SQL: Syntax
6-6 IBM Informix Virtual-Index Interface Programmer’s Guide

CREATE ACCESS_METHOD
CREATE ACCESS_METHOD
Use the CREATE PRIMARYSECONDARY ACCESS_METHOD statement to
register a new secondary access method. When you register an access
method, the database server places an entry in the sysams system catalog
table.

Syntax

Usage
The CREATE PRIMARYSECONDARY ACCESS_METHOD statement adds a user-
defined access method to a database. When you create an access method, you
specify purpose functions, purpose flags, or purpose values as attributes of
the access method. To set purpose options, refer to “Purpose Options” on
page 6-11.

You must have the DBA or Resource privilege to create an access method. For
information about privileges, refer to the IBM Informix Database Design and
Implementation Guide or the GRANT statement in the IBM Informix Guide to SQL:
Syntax.

+

Element Purpose Restrictions Syntax
access-
method
name

The access method to add The access method must have a unique
name in the sysams system catalog
table.

Database Object Name
segment; see
IBM Informix Guide to
SQL: Syntax.

()

,

Purpose Option,
p. 6-13

access-method
nameACCESS_METHODCREATE PRIMARY

SECONDARY
SQL Statements for Access Methods 6-7

CREATE ACCESS_METHOD
Sample Statements

The following statement creates a secondary access method named T-tree
that resides in an sbspace. The am_getnext purpose function is assigned to a
function name that already exists. The T_tree access method supports unique
keys and clustering.

References
See the descriptions of:

� ALTER ACCESS_METHOD and DROP ACCESS_METHOD state-
ments, as well as purpose options, in this chapter

� Privileges in the IBM Informix Database Design and Implementation
Guide or the GRANT statement in the IBM Informix Guide to SQL: Syntax

CREATE SECONDARY ACCESS_METHOD T_tree(
AM_GETNEXT = ttree_getnext,
AM_UNIQUE,
AM_CLUSTER,
AM_SPTYPE = ' S ');

Figure 6-2
Sample CREATE

SECONDARY
ACCESS_METHOD

Statement
6-8 IBM Informix Virtual-Index Interface Programmer’s Guide

DROP ACCESS_METHOD
DROP ACCESS_METHOD
Use the DROP ACCESS_METHOD statement to remove a previously defined
access method from the database.

Syntax

Usage
The RESTRICT keyword is required. You cannot drop an access method if
tablesindexes exist that use that access method.

If a transaction is in progress, the database server waits to drop the access
method until the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

You must own the access method or have the DBA privilege to use the DROP
ACCESS_METHOD statement.

+

Element Purpose Restrictions Syntax
access-method
name

The access method to drop The access method must be registered
in the sysams system catalog table
with a previous CREATE
ACCESS_METHOD statement.

Database Object
Name segment; see
IBM Informix Guide to
SQL: Syntax.

DROP ACCESS_METHOD RESTRICTaccess-method
name
SQL Statements for Access Methods 6-9

DROP ACCESS_METHOD
References
See the descriptions of:

� CREATE ACCESS_METHOD and ALTER ACCESS_METHOD statements
in this chapter

� Keyword RESTRICT in the IBM Informix Guide to SQL: Syntax

� Privileges in the IBM Informix Database Design and Implementation
Guide or the GRANT statement in the IBM Informix Guide to SQL: Syntax
6-10 IBM Informix Virtual-Index Interface Programmer’s Guide

Purpose Options
Purpose Options
The database server recognizes a registered access method as a set of
attributes, including the access-method name and options called purposes.
The CREATE PRIMARYSECONDARY ACCESS_METHOD and ALTER
ACCESS_METHOD statements specify purpose attributes with the following
syntax.

Syntax

Element Purpose Restrictions Syntax
purpose
function

A keyword that specifies a task
and the corresponding
access-method function

The interface specifies the
predefined purpose-function
keywords to which you can assign
UDR names. You cannot name a
UDR with the same name as the
keyword.

Function purpose
category; see Figure 6-3
on page 6-14.

purpose
value

A keyword that identifies
configuration information

The interface specifies the
predefined configuration keywords
to which you can assign values.

Value purpose category;
see Figure 6-3 on
page 6-14.

purpose
flag

A keyword that indicates
which feature a flag enables

The interface specifies flag names. Flag purpose category;
see Figure 6-3 on
page 6-14.

(1 of 2)

string value

Back to CREATE ACCESS_METHOD, p. 6-7
Back to ALTER ACCESS_METHOD, p. 6-4

function namepurpose function

purpose value

numeric value

purpose flag

=

=

Purpose Option
SQL Statements for Access Methods 6-11

Purpose Options
Usage
Each purpose-name keyword corresponds to a column name in the sysams
system catalog table. The database server uses the following types of purpose
attributes:

� Purpose functions

A purpose-function attribute maps the name of a user-defined func-
tion to one of the prototype purpose functions that Figure 1-2 on
page 1-14 describes.

� Purpose flags

Each flag indicates whether an access method supports a particular
SQL statement or keyword.

� Purpose values

These string, character, or numeric values provide configuration
information that a flag cannot supply.

You specify purpose options when you create an access method with the
CREATE PRIMARYSECONDARY ACCESS_METHOD statement. To change the
purpose options of an access method, use the ALTER ACCESS_METHOD
statement.

function
name

The user-defined function that
performs the tasks of the
specified purpose function

A CREATE FUNCTION statement
must register the function in the
database.

Database Object Name
segment; see
IBM Informix Guide to
SQL: Syntax.

string
value

An indicator that is expressed
as one or more characters

None Quoted String segment;
see IBM Informix Guide
to SQL: Syntax.

numeric
value

A value that can be used in
computations

None A numeric literal

Element Purpose Restrictions Syntax

(2 of 2)
6-12 IBM Informix Virtual-Index Interface Programmer’s Guide

Purpose Options
To enable a purpose function

1. Register the access-method function that performs the appropriate
tasks with a CREATE FUNCTION statement.

2. Set the purpose-function name equal to a registered UDR name.

For example, Figure 6-2 on page 6-8 sets the am_getnext purpose-
function name to the UDR name ttree_getnexttextfile_getnext. This
example creates a new access method.

The example in Figure 6-1 on page 6-5 adds a purpose function to an
existing access method.

To enable a purpose flag, specify the purpose name without a corresponding
value.

To clear a purpose-option setting in the sysams system catalog table, use the
DROP clause of the ALTER ACCESS_METHOD statement.

Setting Purpose Functions, Flags, and Values
Figure 6-3 describes the possible settings for the sysams columns that contain
purpose-function names, purpose flags, and purpose values. The items in
Figure 6-3 appear in the same order as the corresponding sysams columns.
SQL Statements for Access Methods 6-13

Purpose Options
Figure 6-3
Purpose Functions, Purpose Flags, and Purpose Values

Purpose-Name
Keyword Explanation

Purpose
category

Default
Setting

am_sptype A character that specifies what type of
storage space the access method supports

For a user-defined access method,
am_sptype can have any of the following
settings:

� X indicates that the access method
accesses only extspaces

� S indicates that the access method
accesses only sbspaces

� A indicates that the access method can
provide data from extspaces and
sbspaces

You can specify am_sptype only for a new
access method. You cannot change or add
an am_sptype value with ALTER
ACCESS_METHOD.

Do not set am_sptype to D or attempt to
store a virtual tableindex in a dbspace.

 Value A

am_defopclass The name of the default operator class for
this access method

Because the access method must exist
before you can define an operator class for
it, you set this purpose with the ALTER
ACCESS_METHOD statement.

 Value None

am_keyscan A flag that, if set indicates that am_getnext
returns rows of index keys

If query selects only the columns in the
index key, the database server uses the row
of index keys that the secondary access
method puts in shared memory, without
reading the table.

 Flag Not set

am_unique A flag that you set if the secondary access
method checks for unique keys

 Flag Not set

(1 of 4)
6-14 IBM Informix Virtual-Index Interface Programmer’s Guide

Purpose Options
am_cluster A flag that you set if the access method
supports clustering of tables

 Flag Not set

am_rowids A flag that you set if the primary access
method can retrieve a row from a specified
address

 Flag Not set

am_readwrite A flag that you set if the access method
supports data changes

The default setting for this flag, not set,
indicates that the virtual data is read-only.
Unless you set this flag, an attempt to write
data can cause the following problems:

� An INSERT, DELETE, UPDATE, or
ALTER FRAGMENT statement causes an
SQL error.

� The database server does not execute
am_insert, am_delete, or am_update.

 Flag Not set

am_parallel A flag that the database server sets to
indicate which purpose functions can
execute in parallel

If set, the hexadecimal am_parallel flag
contains one or more of the following bit
settings:

� The 1 bit is set for parallelizable scan.

� The 2 bit is set for parallelizable delete.

� The 4 bit is set for parallelizable update.

� The 8 bit is set for parallelizable insert.

 Flag Not set

am_costfactor A value by which the database server
multiplies the cost that the am_scancost
purpose function returns

An am_costfactor value from 0.1 to 0.9
reduces the cost to a fraction of the value
that am_scancost calculates. An
am_costfactor value of 1.1 or greater
increases the am_scancost value.

Value 1.0

Purpose-Name
Keyword Explanation

Purpose
category

Default
Setting

(2 of 4)
SQL Statements for Access Methods 6-15

Purpose Options
am_create The name of a user-defined function that
adds a virtual tableindex to the database

Function None

am_drop The name of a user-defined function that
drops a virtual tableindex

Function None

am_open The name of a user-defined function that
makes a fragment, extspace, or sbspace
available

Function None

am_close The name of a user-defined function that
reverses the initialization that am_open
performs

Function None

am_insert The name of a user-defined function that
inserts a rowindex entry

Function None

am_delete The name of a user-defined function that
deletes a rowindex entry

Function None

am_update The name of a user-defined function that
changes the values in a rowkey

Function None

am_stats The name of a user-defined function that
builds statistics based on the distribution of
values in storage spaces

Function None

am_scancost The name of a user-defined function that
calculates the cost of qualifying and
retrieving data

Function None

am_check The name of a user-defined function that
performs an integrity check on an index

Function None

am_beginscan The name of a user-defined function that
sets up a scan

Function None

am_endscan The name of a user-defined function that
reverses the setup that AM_BEGINSCAN
initializes

Function None

am_rescan The name of a user-defined function that
scans for the next item from a previous scan
to complete a join or subquery

Function None

Purpose-Name
Keyword Explanation

Purpose
category

Default
Setting

(3 of 4)
6-16 IBM Informix Virtual-Index Interface Programmer’s Guide

Purpose Options
The following rules apply to the purpose-option specifications in the CREATE
PRIMARYSECONDARY ACCESS_METHOD and ALTER ACCESS_METHOD
statements:

� To specify multiple purpose options in one statement, separate them
with commas.

� The CREATE PRIMARYSECONDARY ACCESS_METHOD statement
must specify a routine name for the am_getnext purpose function.

The ALTER ACCESS_METHOD statement cannot drop am_getnext
but can modify it.

� The ALTER ACCESS_METHOD statement cannot add, drop, or modify
the am_sptype value.

� You can specify the am_defopclass value only with the ALTER
ACCESS_METHOD statement.

You must first register an access method with the CREATE SECOND-
ARY ACCESS_METHOD statement before you can assign a default
operator class.

References
In this manual, see the following topics:

� “Managing Storage Spaces” on page 3-12

� “Executing in Parallel” on page 3-39

� “Registering Purpose Functions” on page 2-10 and “Registering the
Access Method” on page 2-11

� “Specifying an Operator Class” on page 2-13

am_getbyid The name of a user-defined function that
fetches data from a specific physical
address

Function None

am_getnext The name of the required user-defined
function that scans for the next item that
satisfies the query

Function None

Purpose-Name
Keyword Explanation

Purpose
category

Default
Setting

(4 of 4)
SQL Statements for Access Methods 6-17

Purpose Options
� “Enforcing Unique-Index Constraints” on page 3-44

� “Calculating Statement-Specific Costs” on page 3-37

� “Bypassing Table Scans” on page 3-41

� Chapter 4, “Purpose-Function Reference”

In the IBM Informix Guide to SQL: Syntax, see the descriptions of:

� Database Object Name segment (for a routine name), Quoted String
segment, and Literal Number segment.

� CREATE FUNCTION statement.

� CREATE OPERATOR CLASS statement.
6-18 IBM Informix Virtual-Index Interface Programmer’s Guide

A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 IBM Informix Virtual-Index Interface Programmer’s Guide

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices A-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 IBM Informix Virtual-Index Interface Programmer’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Access method

attributes 6-11
choosing features 2-4
configuring 6-11
default operator class,

assigning 2-17, 6-14
defined 6-11
developing, steps in 2-3
documenting 3-49
dropping 2-24
privileges needed

to alter 6-5
to drop 6-9
to register 6-7

purpose functions. See Purpose
functions.

purpose options 6-11
registering 2-11, 6-7
sysams system catalog table

settings 6-12
testing and using 2-17

ALTER ACCESS_METHOD
statement

default operator class syntax 2-17
privileges needed 6-5
syntax 6-4

ALTER FRAGMENT statement
access-method support for 3-12
am_delete purpose function 4-24
am_insert purpose function 4-33
am_readwrite purpose flag 6-15
purpose-function flow 4-4

am_beginscan purpose function
allocating memory 3-5
buffer setup 3-42, 5-110

syntax 4-14
usage 2-9

am_check purpose function
creating output 5-84
macros 4-17
syntax 4-16

am_close purpose function,
syntax 4-21

am_cluster purpose flag
description 6-15

am_costfactor purpose value
setting 6-15
usage 4-39

am_create purpose function
syntax 4-22
usage 2-7
with fragments 4-8

am_defopclass purpose value
description 6-14
example 2-17

am_delete purpose function
design decisions 3-44
parallel execution 3-40
purpose flags required for 4-25
syntax 4-24
usage 2-10

am_drop purpose function
syntax 4-26
usage 2-7

am_endscan purpose function
syntax 4-27
usage 2-9

am_getbyid purpose function
purpose flag required for 4-28
syntax 4-28

am_getnext purpose function
design decisions 3-44

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
mi_tab_setnext() function 5-108
number of rows to fetch 5-101
parallel execution 3-40
returning keys as rows 3-41
syntax 4-30
unique keys only 3-44
usage 2-9

am_insert purpose function
design decisions 3-44
multiple-entry buffering 3-22
parallel execution of 3-40
purpose flags required for 4-34
syntax 4-33
unique keys only 3-44
zeroes as arguments 4-33

am_keyscan purpose flag
affects 3-41
description 6-14

am_open purpose function
allocating memory 3-5
buffer setup 3-42, 5-110
buffered index-build

example 3-22
syntax 4-35
usage 2-7

am_parallel purpose flag,
description 6-15

am_readwrite purpose flag
description 6-15
purpose functions that

require 4-25, 4-28, 4-34, 4-45
am_rescan purpose function

detecting qualification
changes 5-75

syntax 4-37
usage 2-9

am_rowids purpose flag
description 6-15
purpose functions that

require 4-45
am_scancost purpose function

factors to calculate 4-39
functions to call 5-50, 5-68
syntax 4-38
usage 2-8, 3-37

am_sptype purpose value
description 6-14
error related to 2-22

am_stats purpose function
syntax 4-42
usage 2-8, 3-38

am_unique purpose flag
description 6-14
usage 3-44

am_update purpose function
design decisions 3-44
parallel execution of 3-40
purpose flags required for 4-45
syntax 4-44
usage 2-10

ANSI compliance
level Intro-17

API, defined 1-7
Application programming

interface. See API.

B
Backup and restore in

sbspaces 3-16
Boldface type Intro-6
Buffering multiple results

filling buffer with
mi_tab_setnextrow()
function 5-108

specifying number to return 3-42

C
Callback function

defined 3-8
for end-of-transaction 3-48
for unsupported features 3-49
registering 3-8

Callback handle 3-9
Clustering

degree of 5-24
specifying support for 6-15

Code, sample, conventions
for Intro-13

Command-line conventions
elements of Intro-12
example diagram Intro-13

Comment icons Intro-7
Compliance

icons Intro-8

with industry standards Intro-17
Configuration parameters

documenting 3-53
retrieving 5-82
usage 3-19

Contact information Intro-17
Conventions,

documentation Intro-5
Converting data type 4-14
CREATE FUNCTION statement

NOT VARIANT routine modifier
requirement 2-14

PARALLELIZABLE routine
modifier in 2-11

privileges needed 2-11
registering purpose

functions 2-10
registering strategy and support

functions 2-14
CREATE INDEX statement

access-method support for 3-12
buffer setup for 3-22
example 2-20
fragmentation example 2-21
multiple-entry buffer,

example 3-22
purpose functions for 4-22, 4-33
purpose-function flow 4-8

CREATE OPCLASS statement 2-16
CREATE PRIMARY

ACCESS_METHOD statement
syntax 6-7

CREATE SECONDARY
ACCESS_METHOD statement

syntax 6-7
usage 2-11

CREATE TABLE statement
purpose functions for 4-22

Customization 3-19

D
Data definition statements 3-12
Data distribution 4-38
DataBlade API functions

for callback 3-8
for end-of-transaction 3-48
for error messages 3-10
2 IBM Informix Virtual-Index Interface Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
for FastPath UDR execution 3-27
Data-type conversion 4-14
Default locale Intro-4
DELETE statement

am_delete purpose function 4-24
parallel execution of 3-40
purpose-function flow 4-9

Dependencies, software Intro-3
Descriptor

See individual descriptor names.
Development process 2-3
Disk file, extspace for 2-20
DISTINCT keyword,

enforcing 3-44
Documentation notes Intro-15
Documentation notes, program

item Intro-16
Documentation, types of Intro-14

documentation notes Intro-15
machine notes Intro-15
release notes Intro-15

DROP ACCESS_METHOD
statement

privileges needed 6-9
syntax 6-9
usage 2-24

DROP DATABASE or INDEX
statement

purpose function for 4-26
purpose-function flow 4-9

DROP DATABASE or TABLE
statement

purpose function for 4-26
purpose-function flow 4-9

E
Environment variables Intro-6
en_us.8859-1 locale Intro-4
Error messages

creating 3-10
from oncheck utility 5-84

Event-handling 3-8
Extension, to SQL, symbol

for Intro-8
extspace

adding to system catalog
tables 4-22

creating 2-19
defined 2-19
determining location 5-17
determining name 5-115
fragments 2-21

extspace-only access method,
specifying 3-13

F
FastPath, defined 3-27
Feature icons Intro-7
finderr utility Intro-16
Fragment

defined 3-18
partnum (fragment

identifier) 5-17, 5-106
Fragmentation

testing for 3-10
usage 2-21

Fragments, number of 5-103
Function descriptor 3-27
Functional index 5-8
Functional index key 5-30

G
Global Language Support

(GLS) Intro-4

H
Help Intro-14

I
Icons

compliance Intro-8
feature Intro-7
Important Intro-7
platform Intro-7
product Intro-7
syntax diagram Intro-10
Tip Intro-7
Warning Intro-7

ifxgls.h 5-18

Important paragraphs, icon
for Intro-7

In 3-36
IN clause

determining space type 5-17
errors from 2-22
specifying storage space 2-20

Include files 5-18
Index

checking for duplicate 3-22
keys in 5-32
leaf nodes in 5-28
levels of 5-27
multiple, on identical keys

example 3-22
number of 5-102

operator class for 5-33
repairing 4-19
resolving function for key 5-30
unique keys

checking requirement for 5-118
number of 5-29
specifying support for 6-14

various data types in 2-13
Index-key range 5-25, 5-26
Industry standards, compliance

with Intro-17
INFORMIXDIR/bin

directory Intro-4
INSERT statement

am_insert purpose function 4-33
parallel execution of 3-40
purpose-function flow 4-9

internationalization 5-18
ISO 8859-1 code set Intro-4
Isolation level

definitions of each 3-45
determining 3-11, 5-13, 5-16
documenting 3-52
retrieving 5-71, 5-93

J
Join, purpose function for 4-37
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
K
Key descriptor

description 5-8
retrieving pointer to 5-95

L
Locale Intro-4
Locks

for extspaces 3-17
for sbspaces 3-16
retrieving type 3-11, 5-13, 5-73

Logging
checking for 3-11, 5-16
enabling for sbspaces 3-16
extspaces 3-17
sbspaces 3-16

M
Machine notes Intro-15
memdur.h 5-18
Memory allocation

for user data 4-35, 5-112
functions for 3-3

Memory deallocation 4-27
Memory duration

changing 3-5
keywords for specifying 3-4

Message file for error
messages Intro-16

miami.h 5-18
mi.h 5-18
MI_AM_ISTATS_DESC

structure 5-15
MI_AM_KEY_DESC structure 5-8

retrieving 5-95
MI_AM_QUAL_DESC

structure 5-9
MI_AM_ROWID_DESC

structure 5-12
MI_AM_SCAN_DESC

structure 5-13
MI_AM_TABLE_DESC

structure 5-16
mi_dalloc() function 3-5
mi_db_error_raise() function 3-10

mi_eval_am_qual()
function,usage 4-30

MI_EVENT_END_XACT
event 3-48

MI_Exception event
callback function 3-9

mi_file_* functions 3-13
MI_FUNC_DESC structure 3-27
mi_id_fragid() function,

syntax 5-20
mi_id_rowid() function,

syntax 5-21
mi_id_setfragid() function,

syntax 5-22
mi_id_setrowid() function,

syntax 5-23
mi_istats_set2lval() function,

syntax 5-25
mi_istats_set2sval() function,

syntax 5-26
mi_istats_setclust() function,

syntax 5-30
mi_istats_setnleaves() function,

syntax 5-28
mi_istats_setnlevels() function,

syntax 5-27
mi_istats_setnunique() function,

syntax 5-29
mi_key_funcid() function,

syntax 5-30
mi_key_nkeys() function

example 5-33
syntax 5-32
usage 5-35, 5-37

mi_key_opclass() function,
syntax 5-33

mi_key_opclass_name() function,
syntax 5-33

mi_key_opclass_nstrat() function,
syntax 5-35

mi_key_opclass_nsupt() function,
syntax 5-37

mi_key_opclass_strat() function,
syntax 5-39

mi_key_opclass_supt() function,
syntax 5-41

MI_LO_ATTR_LOG flag 3-17
mi_lo_* functions 3-13

MI_NO_MORE_RESULTS return
value 4-31

mi_qual_column() function,
syntax 5-45

mi_qual_commuteargs() function,
syntax 5-47

mi_qual_constant() function,
syntax 5-48

mi_qual_constant_nohostvar()
function, syntax 5-50

mi_qual_constisnull() function,
syntax 5-52

mi_qual_constisnull_nohostvar()
function, syntax 5-53

mi_qual_const_depends_hostvar()
function, syntax 5-55

mi_qual_const_depends_outer()
function, syntax 5-57

mi_qual_depends_hostvar()
function, syntax 5-55

mi_qual_funcid() function,
syntax 5-58

mi_qual_funcname() function
example 3-36
syntax 5-60

mi_qual_handlenull() function,
syntax 5-61

mi_qual_issimple() function
syntax 5-62

mi_qual_needoutput() function,
syntax 5-63

mi_qual_negate() function,
syntax 5-64

mi_qual_nquals() function
syntax 5-65
usage 5-66

mi_qual_qual() function,
syntax 5-66

mi_qual_setoutput() function,
syntax 5-67

mi_qual_setreopt() function,
syntax 5-68

mi_qual_stratnum() function,
syntax 5-69

mi_register_callback() function 3-8
mi_routine_exec() function 3-27
mi_row_create() function 3-47, 4-28
MI_ROW_DESC structure 5-11
4 IBM Informix Virtual-Index Interface Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
mi_scan_forupdate() function,
syntax 5-70

mi_scan_isolevel() function
syntax 5-71
usage 3-11

mi_scan_locktype() function
syntax 5-73
usage 3-11

mi_scan_nprojs() function
syntax 5-74, 5-76
usage 5-76

mi_scan_projs() function,
syntax 5-76

mi_scan_quals() function,
syntax 5-77

mi_scan_setuserdata() function
syntax 5-78
usage 3-6

mi_scan_table() function,
syntax 5-80

mi_scan_userdata() function
syntax 5-81
usage 3-6

MI_SQL exception level 5-85
mi_switch_mem_duration()

function 3-5
mi_tab_amparam() function

example 3-23
syntax 5-82

mi_tab_check_is_recheck() function
syntax 5-87
usage 4-19

mi_tab_check_msg() function,
syntax 5-84

mi_tab_check_set_ask() function
syntax 5-89
usage 4-19

mi_tab_id() function, syntax 5-92
mi_tab_isindex() function,

syntax 5-92
mi_tab_isolevel() function

syntax 5-93
usage 3-11

mi_tab_keydesc() function
example 3-28
syntax 5-95

mi_tab_mode() function
syntax 5-95
usage 3-11

mi_tab_name() function,
syntax 5-98

mi_tab_nextrow() function,
syntax 5-99

mi_tab_niorows() function
syntax 5-101
usage 3-22, 3-42

mi_tab_nparam_exist() function
example 3-23
syntax 5-99, 5-102

mi_tab_numfrags() function
syntax 5-103
using to catch SQL error 3-10

mi_tab_owner() function,
syntax 5-104

mi_tab_param_exist() function
example 3-23
syntax 5-105

mi_tab_partnum() function,
syntax 5-106

mi_tab_rowdesc() function,
syntax 5-107

mi_tab_setnextrow() function,
syntax 5-108

mi_tab_setniorows() function
syntax 5-110
usage 3-22, 3-42

mi_tab_setuserdata() function
syntax 5-112
usage 3-6

mi_tab_spaceloc() function,
syntax 5-114

mi_tab_spacename() function,
syntax 5-115

mi_tab_spacetype() function
syntax 5-117
usage 3-17

mi_tab_update_stat_mode()
function, syntax 5-119

mi_tab_userdata() function
syntax 5-120
usage 3-6

mi_transition_type() function 3-48
Multiple indexes, example 5-82
Multiple-row read-write

example 3-21, 3-43
get next row for 5-108
number in memory 5-101
setup 3-22, 3-42, 5-110

N
NOT VARIANT routine modifier,

requirement for 2-15

O
oncheck utility

documenting output from 3-53
implementing 4-16
options 4-17
output for 5-84
purpose-function flow 4-12
repairing an index 4-19

ONCONFIG file setting for
sbspace 3-15

Online help Intro-14
Online manuals Intro-14
onspaces utility

creating storage spaces with 2-18,
2-20

extspace creation 2-20
required for sbspace

fragments 3-51
sbspace creation 2-19

Operator class
creating functions for 2-13
default 2-17, 6-14
defined 1-13, 1-16, 2-13
for index key 5-33
NOT VARIANT

requirement 2-15
parallel execution with 3-40
privilege needed 2-16
strategy function 2-14
support function 2-14

Optimization 3-37
OUT keyword

defined 3-32
setting 5-63

P
Parallel execution 2-11
Parallelizable purpose

functions 3-40
Parallelizable purpose functions,

requirements for 3-40
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
PARALLELIZABLE routine
modifier 2-11, 3-39

Parallelizable UDR
defined 3-39
restrictions on 3-7

Performance considerations
building indexes efficiently 3-20
creating parallelizable UDRs 2-11
optimizing queries 2-8
returning keys as rows 3-41
returning multiple rows 3-42

PER_COMMAND memory 3-5
PER_ROUTINE memory 3-4
PER_STATEMENT memory 3-5
Platform icons Intro-7
Product icons Intro-7
Program group

Documentation notes Intro-16
Release notes Intro-16

Purpose flags
adding and deleting 6-5
list of 6-13

Purpose functions
adding, changing, and

dropping 6-5
characteristics of 1-7
choosing and writing 2-4
defined 1-13
flow diagrams 4-3
for SQL statements 4-3
naming 4-13
parallel execution 3-40
parallel-execution indicator 6-15
registering 2-10
registering as parallelizable 2-11
setting names for 6-16
SQL errors from 3-50
syntax reference 4-13

Purpose values
adding, changing, and

dropping 6-5
valid settings 6-13

Purpose, defined 6-11

Q
Qualification

Boolean 5-43

column number in 5-45
constant value in 5-48
defined 3-30
host variable needed 5-55
NOT operator in 5-64
NULL constant in 5-52, 5-53
OUT value needed 5-55, 5-63,

5-67
OUT value, setting 5-67
outer join in 5-57
routine identifier for 5-58
simple predicate 5-62

Qualification descriptor
accessor functions 5-9
array size 5-65
changed for rescan 5-75
complex 3-30
defined 3-30
nested structure 3-30
NULL-valued pointer to 5-77
retrieving 5-77
retrieving pointer to 5-77

Query
complex examples 3-36
privilege to execute function

in 2-16
Query plan

components 4-38
cost 4-38
defined 3-37

R
Release notes Intro-15
Release notes, program

item Intro-16
Reoptimize 5-68
Row descriptor

description 5-11
retrieving 5-107

Row-ID descriptor 5-12
Rowids, specifying support

for 6-15
Row, creating from source

data 3-47, 4-28

S
SBSPACENAME parameter 3-14
sbspaces

creating 2-18
creating a default 3-14
creating for fragmentation 2-21
enabling logging 3-16
in fragmented index 3-51
retrieving the name 5-115
using the default 2-19

Scan
cleanup 4-27
fetch routine 4-30
isolation level for 3-11, 5-13
lock type for 3-11, 5-13
setup 4-14

Scan descriptor
accessor functions for 5-13
NULL-valued pointer in 5-77
relationship to SELECT

clause 3-29
user data 3-5

SELECT statement
defined 3-29
INTO TEMP clause 3-40
parallel execution 3-40
purpose functions for 4-14, 4-27,

4-30, 4-38
purpose-function flow 4-12

Simple predicate, defined 3-31
Software dependencies Intro-3
SQL errors

avoiding 2-22
causes of 3-50
missing purpose function 4-25,

4-34, 4-45
unsupported storage space 3-14

SQL statements
executing inside access

method 3-7
extensions 1-12
for data definition 3-12
for data retrieval and

manipulation 3-44
See also entry for a keyword.

SQLSTATE status value 5-84
Statistics descriptor, accessor

functions for 5-15
6 IBM Informix Virtual-Index Interface Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Storage-space type
access-method support for 3-12
retrieving 5-117

stores_demo database Intro-4
Strategy functions. See Operator

class.
Structured Query Language (SQL).

See SQL statements.
Subquery, purpose function

for 4-37
Support functions. See Operator

class.
Syntax conventions

description of Intro-8
example diagram Intro-11
icons used in Intro-10

Syntax diagrams, elements
in Intro-9

sysams system catalog table
columns in 6-12
setting values in 6-3

sysindexes system catalog table
statistics for 4-42

sysindices system catalog table
adding an index 4-22
deleting an index 4-26
setting clust value 5-24
setting leaves value 5-28
setting levels value 5-27
setting nunique 5-29

systables system catalog table
adding a table 4-22
deleting a table 4-26
statistics for 4-42

System catalog tables
querying 3-7
See also individual table names.

System requirements
database Intro-3
software Intro-3

T
Table

mode, determining 5-96
owner 5-104

Table descriptor
accessor functions for 5-16

defined 3-12
retrieving a pointer to 5-80

Tape-device extspace 2-20
Testing 2-17
Tip icons Intro-7
Transaction management

determining commit success 3-48
for sbspaces 3-16

U
UDR

defined 1-7
executing 3-27

UNIQUE keyword, enforcing 3-44
UPDATE statement

am_delete purpose function 4-24
am_insert purpose function 4-33
am_update purpose

function 4-44
parallel execution of 3-40
purpose-function flow 4-9
specifying support for 6-15

UPDATE STATISTICS statement
described 3-38
purpose function for 4-42

User data
declaring structure for 3-5
defined 3-5
for scan

retrieving 5-81
storing 5-78

for statement
retrieving 5-120
storing 5-112

table-state memory 5-112
User guide 3-49
Users, types of Intro-3
USING clause

configuration parameters in 3-20,
5-16

specifying access method 2-20
specifying alternative index 3-22

V
Variant function, defined 2-15

W
Warning icons Intro-7
WHERE clause

defined 3-29
qualifications in 3-30, 3-34
See also Qualification.

X
X/Open compliance level Intro-17
Index 7

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	New Features
	New Features in Dynamic Server, Version 9.4
	New Features in Dynamic Server, Version 9.3

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons
	Compliance Icons

	Syntax Conventions
	Elements That Can Appear on the Path
	How to Read a Syntax Diagram

	Command-Line Conventions
	How to Read a Command-Line Diagram

	Sample-Code Conventions

	Additional Documentation
	Related Reading
	Compliance with Industry Standards
	IBM Welcomes Your Comments

	What Is a Virtual-Index Access Method?
	In This Chapter
	Built-in Access Methods
	User-defined Access Methods
	Access to Storage Spaces
	Seamless Use of SQL

	Access-Method Components
	Provided Components
	Virtual-Index Interface
	DataBlade API
	SQL Extensions
	API Libraries

	Components That You Provide
	Purpose Functions
	User-Defined Routines and Header Files
	Operator Class
	User Messages and Documentation

	Access Method Flow
	Locating Purpose Functions
	Invoking Purpose Functions
	Calling Functions From a Purpose Function
	Improving An Access Method

	Developing an Access Method
	In This Chapter
	Choosing Features
	Writing Purpose Functions
	Starting and Ending Processing
	Creating and Dropping Database Objects
	Optimizing Queries
	Providing Optimizer Information
	Splitting a Scan

	Inserting, Deleting, and Updating Data

	Registering Purpose Functions
	Registering the Access Method
	Specifying an Operator Class
	Writing or Choosing Strategy and Support Functions
	Registering Strategy and Support Functions
	Making a Function Nonvariant
	Granting Privileges

	Registering the Operator Class
	Adding a Default Operator Class to the Access Method

	Testing the Access Method
	Creating and Specifying Storage Spaces
	Using Internal Storage
	Using External Storage
	Using Fragments
	Avoiding Storage-Space Errors

	Inserting, Querying, and Updating Data
	Checking Data Integrity

	Dropping an Access Method

	Design Decisions
	In This Chapter
	Storing Data in Shared Memory
	Functions that Allocate and Free Memory
	Memory-Duration Options
	Persistent User Data

	Accessing Database and System Catalog Tables
	Handling the Unexpected
	Using Callback Functions
	Using Error Messages

	Supporting Data Definition Statements
	Interpreting the Table Descriptor
	Managing Storage Spaces
	Choosing DataBlade API Functions
	Setting the am_sptype Value
	Creating a Default Storage Space
	Ensuring Data Integrity
	Checking Storage-Space Type
	Supporting Fragmentation

	Providing Configuration Keywords
	Building New Indexes Efficiently
	Enabling Alternative Indexes

	Supporting Multiple-Column Index Keys
	Using FastPath
	Obtaining the Routine Identifier
	Reusing the Function Descriptor

	Processing Queries
	Interpreting the Scan Descriptor
	Interpreting the Qualification Descriptor
	Simple Functions
	Runtime Values as Arguments
	Negation
	Complex Boolean Expressions
	Qualifying Data
	Supporting Query Plan Evaluation

	Enhancing Performance
	Executing in Parallel
	Bypassing Table Scans
	Buffering Multiple Results

	Supporting Data Retrieval, Manipulation, and Return
	Enforcing Unique-Index Constraints
	Checking Isolation Levels
	Converting to and from Row Format
	Determining Transaction Success or Failure

	Supplying Error Messages and a User Guide
	Avoiding Database Server Exceptions
	Statements That the Access Method Does Not Support
	Keywords That the Access Method Does Not Support
	Storage Spaces and Fragmentation
	Features That the VII Does Not Support

	Notifying the User About Access-Method Constraints
	Data Integrity Limitations
	WHERE Clause Limitations

	Documenting Nonstandard Features

	Purpose-Function Reference
	In This Chapter
	Purpose-Function Flow
	ALTER FRAGMENT Statement Interface
	CREATE Statement Interface
	DROP Statement Interface
	INSERT, DELETE, and UPDATE Statement Interface
	SELECT...WHERE Statement Interface
	oncheck Utility Interface

	Purpose-Function Syntax
	am_beginscan
	am_check
	am_close
	am_create
	am_delete
	am_drop
	am_endscan
	am_getbyid
	am_getnext
	am_insert
	am_open
	am_rescan
	am_scancost
	am_stats
	am_update

	Descriptor Function Reference
	In This Chapter
	Descriptors
	Key Descriptor
	Qualification Descriptor
	Row Descriptor
	Row-ID Descriptor
	Scan Descriptor
	Statistics Descriptor
	Table Descriptor
	Include Files

	Accessor Functions
	mi_id_fragid()
	mi_id_rowid()
	mi_id_setfragid()
	mi_id_setrowid()
	mi_istats_setclust()
	mi_istats_set2lval()
	mi_istats_set2sval()
	mi_istats_setnlevels()
	mi_istats_setnleaves()
	mi_istats_setnunique()
	mi_key_funcid()
	mi_key_nkeys()
	mi_key_opclass() mi_key_opclass_name()
	mi_key_opclass_nstrat()
	mi_key_opclass_nsupt()
	mi_key_opclass_strat()
	mi_key_opclass_supt()
	mi_qual_boolop()
	mi_qual_column()
	mi_qual_commuteargs()
	mi_qual_constant()
	mi_qual_constant_nohostvar()
	mi_qual_constisnull()
	mi_qual_constisnull_nohostvar()
	mi_qual_const_depends_hostvar()
	mi_qual_const_depends_outer()
	mi_qual_funcid()
	mi_qual_funcname()
	mi_qual_handlenull()
	mi_qual_issimple()
	mi_qual_needoutput()
	mi_qual_negate()
	mi_qual_nquals()
	mi_qual_qual()
	mi_qual_setoutput()
	mi_qual_setreopt()
	mi_qual_stratnum()
	mi_scan_forupdate()
	mi_scan_isolevel()
	mi_scan_locktype()
	mi_scan_nprojs()
	mi_scan_newquals()
	mi_scan_projs()
	mi_scan_quals()
	mi_scan_setuserdata()
	mi_scan_table()
	mi_scan_userdata()
	mi_tab_amparam()
	mi_tab_check_msg()
	mi_tab_check_is_recheck()
	mi_tab_check_set_ask()
	mi_tab_createdate()
	mi_tab_isindex()
	mi_tab_isolevel()
	mi_tab_keydesc()
	mi_tab_mode()
	mi_tab_name()
	mi_tab_nextrow()
	mi_tab_niorows()
	mi_tab_nparam_exist()
	mi_tab_numfrags()
	mi_tab_owner()
	mi_tab_param_exist()
	mi_tab_partnum()
	mi_tab_rowdesc()
	mi_tab_setnextrow()
	mi_tab_setniorows()
	mi_tab_setuserdata()
	mi_tab_spaceloc()
	mi_tab_spacename()
	mi_tab_spacetype()
	mi_tab_unique()
	mi_tab_update_stat_mode()
	mi_tab_userdata()

	SQL Statements for Access Methods
	In This Chapter
	ALTER ACCESS_METHOD
	CREATE ACCESS_METHOD
	DROP ACCESS_METHOD
	Purpose Options

	Notices
	Index

