
IBM Informix
Large Object Locator
DataBlade Module
User’s Guide
Version 1.2A
March 2003
Part No. CT1V1NA



ii IBM Informix Large O
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2003. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
bject Locator DataBlade Module User’s Guide



Table of Contents

Table of
Contents
Introduction
In This Introduction . . . . . . . . . . . . . . . . . 3
About This Guide . . . . . . . . . . . . . . . . . . 3

Organization of This Guide . . . . . . . . . . . . . 3
Types of Users . . . . . . . . . . . . . . . . . . 4

Conventions . . . . . . . . . . . . . . . . . . . . 4
Typographical Conventions . . . . . . . . . . . . . 5
Comment Icon Conventions . . . . . . . . . . . . . 6

Additional Documentation . . . . . . . . . . . . . . . 6
Online Manual . . . . . . . . . . . . . . . . . . 6
Other Online Documentation . . . . . . . . . . . . . 7
Related Reading . . . . . . . . . . . . . . . . . 7

IBM Welcomes Your Comments . . . . . . . . . . . . . 8

Chapter 1 About Large Object Locator
In This Chapter . . . . . . . . . . . . . . . . . . . 1-3
Using Large Object Locator . . . . . . . . . . . . . . . 1-4

Large Object Locator Data Types. . . . . . . . . . . . 1-4
Large Object Locator Functions . . . . . . . . . . . . 1-5
Limitations . . . . . . . . . . . . . . . . . . . 1-6

Installation and Registration . . . . . . . . . . . . . . 1-7

Chapter 2 Data Types
In This Chapter . . . . . . . . . . . . . . . . . . . 2-3
lld_locator . . . . . . . . . . . . . . . . . . . . . 2-3
lld_lob . . . . . . . . . . . . . . . . . . . . . . 2-5



iv IBM In
Chapter 3 Functions
In This Chapter . . . . . . . . . . . . . . . . . . . 3-3
Interfaces . . . . . . . . . . . . . . . . . . . . . 3-3

API Library. . . . . . . . . . . . . . . . . . . 3-4
ESQL/C Library . . . . . . . . . . . . . . . . . 3-4
SQL Interface . . . . . . . . . . . . . . . . . . 3-4

Working with Large Objects . . . . . . . . . . . . . . 3-5
lld_close() . . . . . . . . . . . . . . . . . . . 3-7
lld_copy() . . . . . . . . . . . . . . . . . . . 3-9
lld_create() . . . . . . . . . . . . . . . . . . . 3-12
lld_delete . . . . . . . . . . . . . . . . . . . 3-15
lld_open() . . . . . . . . . . . . . . . . . . . 3-17
lld_read() . . . . . . . . . . . . . . . . . . . 3-20
lld_seek() . . . . . . . . . . . . . . . . . . . 3-22
lld_tell() . . . . . . . . . . . . . . . . . . . . 3-25
lld_write() . . . . . . . . . . . . . . . . . . . 3-27

Client File Support . . . . . . . . . . . . . . . . . 3-29
lld_create_client() . . . . . . . . . . . . . . . . 3-30
lld_delete_client() . . . . . . . . . . . . . . . . 3-32
lld_from_client() . . . . . . . . . . . . . . . . . 3-34
lld_open_client() . . . . . . . . . . . . . . . . . 3-37
lld_to_client() . . . . . . . . . . . . . . . . . . 3-40

Error Utility Functions . . . . . . . . . . . . . . . . 3-41
lld_error_raise() . . . . . . . . . . . . . . . . . 3-42
lld_sqlstate() . . . . . . . . . . . . . . . . . . 3-43

Smart Large Object Functions . . . . . . . . . . . . . . 3-43
LOCopy . . . . . . . . . . . . . . . . . . . . 3-44
LOToFile. . . . . . . . . . . . . . . . . . . . 3-46
LLD_LobType . . . . . . . . . . . . . . . . . . 3-47

Chapter 4 Sample Code
In This Chapter . . . . . . . . . . . . . . . . . . . 4-3
Using the SQL Interface . . . . . . . . . . . . . . . . 4-3

Using the lld_lob Type . . . . . . . . . . . . . . . 4-3
Using the lld_locator Type . . . . . . . . . . . . . 4-6

Using the API . . . . . . . . . . . . . . . . . . . 4-11
Creating the lld_copy_subset Function . . . . . . . . . 4-11
Using the lld_copy_subset Routine . . . . . . . . . . 4-15
formix Large Object Locator DataBlade Module User’s Guide



Chapter 5 Error Handling
In This Chapter . . . . . . . . . . . . . . . . . . 5-3
Handling Large Object Locator Errors . . . . . . . . . . 5-3
Handling Exceptions . . . . . . . . . . . . . . . . 5-4
Error Codes . . . . . . . . . . . . . . . . . . . 5-4

Appendix A Notices

Index
Table of Contents v





Introduction
Introduction
In This Introduction . . . . . . . . . . . . . . . . . . 3

About This Guide . . . . . . . . . . . . . . . . . . . 3
Organization of This Guide . . . . . . . . . . . . . . 3
Types of Users . . . . . . . . . . . . . . . . . . . 4

Conventions . . . . . . . . . . . . . . . . . . . . . 4
Typographical Conventions . . . . . . . . . . . . . . 5
Comment Icon Conventions . . . . . . . . . . . . . . 6

Additional Documentation . . . . . . . . . . . . . . . . 6
Online Manual . . . . . . . . . . . . . . . . . . . 6
Other Online Documentation . . . . . . . . . . . . . . 7

Documentation Notes and Release Notes . . . . . . . . 7
Related Reading . . . . . . . . . . . . . . . . . . 7

IBM Welcomes Your Comments . . . . . . . . . . . . . . 8



2 IBM In
formix Large Object Locator DataBlade Module User’s Guide



In This Introduction
This chapter introduces the IBM Informix Large Object Locator DataBlade Module
User’s Guide. Read this chapter for an overview of the information provided in
this manual and for an understanding of the conventions used throughout.

About This Guide
This guide explains how to use the IBM Informix Large Object Locator
DataBlade module to consistently manage large objects outside the database
and large object data within the database.

Organization of This Guide
The IBM Informix Large Object Locator DataBlade Module User’s Guide includes the
following chapters:

� This introduction provides an overview of the contents of the guide,
describes documentation conventions used, and lists additional
books to supplement the information in the IBM Informix Large Object
Locator DataBlade Module User’s Guide.

� Chapter 1, “About Large Object Locator,” explains the basic concepts
and operations of the IBM Informix Large Object Locator DataBlade
module.

� Chapter 2, “Data Types,” describes the Large Object Locator data
types.

� Chapter 3, “Functions,” provides a complete reference to the Large
Object Locator functions.
Introduction 3



Types of Users
� Chapter 4, “Sample Code,” provides sample code that explains how
to use the Large Object Locator functions and data types.

� Chapter 5, “Error Handling,” describes how to handle errors that can
be returned when using the Large Object Locator functions.

Types of Users
Large Object Locator is intended for database administrators who want to
add Large Object Locator functionality to their databases and for developers
who want to add Large Object Locator functionality to their applications.

Conventions
This section describes the conventions used in this guide. By becoming
familiar with these conventions, you can more easily gather information
from this guide.

The following conventions are discussed:

� Typographical conventions

� Comment icon conventions
4 IBM Informix Large Object Locator DataBlade Module User’s Guide



Typographical Conventions
Typographical Conventions
The IBM Informix Large Object Locator DataBlade Module User’s Guide uses a
standard set of typographical conventions to introduce new terms, illustrate
screen displays, and so forth. The following typographical conventions are
used throughout this guide.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

� This symbol indicates a menu item. For example, “Choose
Tools�Options” means choose the Options item from the
Tools menu.
Introduction 5



Comment Icon Conventions
Comment Icon Conventions
Throughout this guide, comment icons identify three types of information, as
described in the following table.

The information in these paragraphs is always displayed in italic text.

Additional Documentation
The Large Object Locator documentation set includes an online manual and
online material.

This section describes the following parts of the documentation set:

� Online manual

� Other online documentation

� Related reading

Online Manual
The IBM Informix Large Object Locator DataBlade Module User’s Guide describes
Large Object Locator, providing an overview to its use and a complete
reference to its data types and functions. This manual also contains examples
and error messages. It is available at the IBM Informix Online Documentation
site: http://www-3.ibm.com/software/data/informix/pubs/library/.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described
6 IBM Informix Large Object Locator DataBlade Module User’s Guide



Other Online Documentation
Other Online Documentation
In addition to the maual, other documentation is available, namely,
documentation notes and release notes.

Documentation Notes and Release Notes

The following online files, located in the $INFORMIXDIR/release directory,
supplement the information in this manual.

Please examine these files because they contain vital information about
application and performance issues.

Related Reading
For additional information on large objects, consult the following books:

� IBM Informix Guide to SQL: Reference

� IBM Informix Guide to SQL: Syntax

� IBM Informix Guide to SQL: Tutorial

For information on server functions, consult the following book:

� IBM Informix DataBlade API Programmer’s Guide

For information on using the ESQL/C interface, consult the following book:

� IBM Informix ESQL/C Programmer’s Manual

Online File Purpose

Documentation
notes

Describes features that are not covered in the manuals or that
have been modified since publication.

Release notes Describes feature differences from earlier versions of
IBM Informix products and how these differences might affect
current products. This file also contains information about any
known problems and their workarounds.
Introduction 7



IBM Welcomes Your Comments
For information about developing DataBlade modules, consult the following
book:

� IBM Informix DataBlade Developer’s Kit User’s Guide

IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.
8 IBM Informix Large Object Locator DataBlade Module User’s Guide



1
Chapter
About Large Object Locator
In This Chapter . . . . . . . . . . . . . . . . . . . . 1-3

Using Large Object Locator . . . . . . . . . . . . . . . . 1-4
Large Object Locator Data Types . . . . . . . . . . . . . 1-4
Large Object Locator Functions . . . . . . . . . . . . . 1-5
Limitations . . . . . . . . . . . . . . . . . . . . 1-6

Transaction Rollback . . . . . . . . . . . . . . . 1-6
Concurrent Access . . . . . . . . . . . . . . . . 1-6

Installation and Registration . . . . . . . . . . . . . . . 1-7



1-2 IBM
 Informix Large Object Locator DataBlade Module User’s Guide



In This Chapter
This chapter provides an overview of the IBM Informix Large Object Locator
DataBlade module.

Large Object Locator enables you to create a single consistent interface to
large objects. It extends the concept of large objects to include data stored
outside the database.

IBM Informix Dynamic Server stores large object data (data that exceeds a
length of 255 bytes or contains non-ASCII characters) in columns in the
database. You can access this data using standard SQL statements. The server
also provides functions for copying data between large object columns and
files. See IBM Informix Guide to SQL: Syntax and IBM Informix Guide to SQL:
Tutorial for more information.

With Large Object Locator you create a reference to a large object and store
the reference as a row in the database. The object itself can reside outside the
database: for example, on a file system (or it could be a BLOB or CLOB type
column in the database). The reference identifies the type, or access protocol,
of the object and points to its storage location. For example, you could
identify an object as a file and provide a pathname to it or identify it as a
binary or character smart large object stored in the database. Smart large
objects are a category of large objects, including BLOB and CLOB, that store
text and images, are stored and retrieved in pieces, and have database
properties such as crash recovery and transaction rollback.

You access a large object by passing its reference to a Large Object Locator
function. For example, to open a large object for reading or writing, you pass
the object’s reference to the lld_open() function. This function uses the
reference to find the location of the object and to identify its type. Based on
the type, it calls the appropriate underlying function to open the object. For
example, if the object is stored on a UNIX file system, lld_open() calls a UNIX
function to open the object.
About Large Object Locator 1-3



Using Large Object Locator
Important: In theory, you could use Large Object Locator to reference any type of
large object in any storage location. In practice, access protocols must be built into
Large Object Locator for each type of supported object. Because support for new types
can be added at any time, be sure to read the release notes accompanying this
manual—not the manual itself—to see the types of large objects Large Object Locator
currently supports.

Using Large Object Locator
Large Object Locator is implemented through two data types and a set of
functions, described next.

Large Object Locator Data Types
Large Object Locator defines two data types, lld_locator and lld_lob.

You use the lld_locator type to identify the access protocol for a large object
and to point to its location. This type is a row type, stored as a row in the
database. You can insert, select, delete, and update instances of lld_locator
rows in the database using standard SQL INSERT, SELECT, DELETE, and
UPDATE statements.

You can also pass an lld_locator row to various Large Object Locator
functions. For example, to create, delete, or copy a large object, and to open a
large object for reading or writing, you pass an lld_locator row to the appro-
priate Large Object Locator function. See “lld_locator” on page 2-3 for a
detailed description of this data type.

The lld_lob type enables Large Object Locator to reference smart large
objects, which are stored as BLOB or CLOB data in the database. The lld_lob
type is identical to the BLOB and CLOB types except that, in addition to
pointing to the data, it tracks whether the underlying smart large object
contains binary or character data.

See “lld_lob” on page 2-5 for a complete description of this data type.
1-4 IBM Informix Large Object Locator DataBlade Module User’s Guide



Large Object Locator Functions
Large Object Locator Functions
Large Object Locator provides a set of functions similar to UNIX I/O functions
for manipulating large objects. You use the same functions regardless of how
or where the underlying large object is stored.

The Large Object Locator functions can be divided into four main categories:

� Basic functions for creating, opening, closing, deleting, and reading
from and writing to large objects.

� Client functions for creating, opening, and deleting client files and
for copying large objects to and from client files. After you open a
client file, you can use the basic functions to read from and write to
the file.

� Utility functions for raising errors and converting errors to their
SQL state equivalents.

� Smart large object functions for copying smart large objects to files
and to other smart large objects.

There are three interfaces to the Large Object Locator functions:

� An API library

� An ESQL/C library

� An SQL interface

All Large Object Locator functions are implemented as API library functions.
You can call Large Object Locator functions from user-defined routines
within an application you build.

All Large Object Locator functions, except lld_error_raise(), are imple-
mented as ESQL/C functions. You can use the Large Object Locator functions
to build ESQL/C applications.

A limited set of the Large Object Locator functions are implemented as user-
defined routines that you can execute within SQL statements. See “SQL
Interface” on page 3-4 for a list of the Large Object Locator functions that you
can execute directly in SQL statements.

Chapter 3, “Functions,” describes all the Large Object Locator functions and
the three interfaces in detail.
About Large Object Locator 1-5



Limitations
Limitations
Certain limitations are inherent in using large objects with a database,
because the objects themselves, except for smart large objects, are not stored
in the database and are not subject to direct control by the server. Two specific
areas of concern are transaction rollback and concurrency control.

Transaction Rollback

Because large objects, other than smart large objects, are stored outside the
database, any changes to them take place outside the server’s control and
cannot be rolled back if a transaction is aborted. For example, when you
execute lld_create(), it calls an operating system routine to create the large
object itself. If you roll back the transaction containing the call to lld_create(),
the server has no way of deleting the object that you have just created.

Therefore, you are responsible for cleaning up any resources you have
allocated if an error occurs. For example, if you create a large object and the
transaction in which you create it is aborted, you should delete the object you
have created. Likewise, if you have opened a large object and the transaction
is aborted (or is committed), you should close the large object.

Concurrent Access

For the same reason, Large Object Locator provides no direct way of
controlling concurrent access to large objects. If you open a large object for
writing, it is possible to have two separate processes or users simultaneously
alter the large object. You must provide a means, such as locking a row, to
guarantee that multiple users cannot access a large object simultaneously for
writing.
1-6 IBM Informix Large Object Locator DataBlade Module User’s Guide



Installation and Registration
Installation and Registration
Large Object Locator is distributed with IBM Informix Dynamic Server. To use
the Large Object Locator functions, you must use BladeManager to register
the functions and data types with each database for which you want Large
Object Locator functionality. See the IBM Informix DataBlade Module Instal-
lation and Registration Guide for more information. This guide also contains
some information about installing DataBlade modules.
About Large Object Locator 1-7





2
Chapter
Data Types
In This Chapter . . . . . . . . . . . . . . . . . . . . 2-3

lld_locator . . . . . . . . . . . . . . . . . . . . . . 2-3

lld_lob . . . . . . . . . . . . . . . . . . . . . . . 2-5



2-2 IBM
 Informix Large Object Locator DataBlade Module User’s Guide



In This Chapter
This chapter describes the Large Object Locator data types, lld_locator and
lld_lob.

lld_locator
The lld_locator data type identifies a large object. It specifies the kind of large
object and provides a pointer to its location. lld_locator is a row type and is
defined as follows:

create row type informix.lld_locator
{
lo_protocol char(18)
lo_pointer informix.lld_lob
lo_location informix.lvarchar
}

lo_protocol identifies the kind of large object.

lo_pointer is a pointer to a smart large object, or is NULL if the large object
is any kind of large object other than a smart large object.

lo_location is a pointer to the large object, if it is not a smart large object.
Set to NULL if it is a smart large object.
Data Types 2-3



lld_locator
In the lo_protocol field, specify the kind of large object to create. The kind of
large object you specify determines the values of the other two fields:

� If you specify a smart large object:

❑ use the lo_pointer field to point to it.

❑ specify NULL for the lo_location field.

� If you specify any other kind of large object:

❑ specify NULL for the lo_pointer field.

❑ use the lo_location field to point to it.

The lo_pointer field uses the lld_lob data type, which is defined by Large
Object Locator. This data type allows you to point to a smart large object and
specify whether it is of type BLOB or type CLOB. See the description of lld_lob
on page 2-5 for more information.

The lo_location field uses an lvarchar data type, which is a varying-length
character type.

Figure 2-1 lists the current protocols and summarizes the values for the other
fields based on the protocol that you specify. Be sure to check the release
notes shipped with this manual to see if Large Object Locator supports
additional protocols not listed here.

Tip: Although the lld_locator type is not currently extensible, it might become so
later. To avoid future name space collisions, the protocols established by Large Object
Locator all have an IFX prefix.

Figure 2-1
Fields of lld_locator Data Type

Important: The lo_protocol field is case insensitive. It is shown in uppercase letters
for display purposes only.

lo_protocol lo_pointer lo_location Description

IFX_BLOB Pointer to a smart large object NULL Smart large object

IFX_CLOB Pointer to a smart large object NULL Smart large object

IFX_FILE NULL pathname File accessible on server
2-4 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_lob
The lld_locator type is an instance of a row type. You can insert a row into the
database using an SQL INSERT statement, or you can obtain a row by calling
the DataBlade API mi_row_create() function. See the IBM Informix ESQL/C
Programmer’s Manual for information on row types. See the IBM Informix
DataBlade API Programmer’s Guide for information on the mi_row_create()
function.

To reference an existing large object, you can insert an lld_locator row
directly into a table in the database.

To create a large object, and a reference to it, you can call the lld_create()
function and pass an lld_locator row.

You can pass an lld_locator type to these Large Object Locator functions,
described in Chapter 3, “Functions”:

� lld_copy(), page 3-9

� lld_create(), page 3-12

� lld_delete, page 3-15

� lld_open(), page 3-17

� lld_from_client(), page 3-34

� lld_to_client(), page 3-40

lld_lob
The lld_lob data type is a user-defined type. You can use it to specify the
location of a smart large object and to specify whether the object contains
binary or character data.

The lld_lob data type is defined for use with the API as follows:

typedef struct
{
MI_LO_HANDLE lo;
mi_integer type;
} lld_lob_t;
Data Types 2-5



lld_lob
It is defined for ESQL/C as follows:

typedef struct
{
ifx_lo_t lo;
int type;
} lld_lob_t;

The lld_lob type is equivalent to the CLOB or BLOB type in that it points to the
location of a smart large object. In addition, it specifies whether the object
contains binary or character data. You can pass the lld_lob type as the
lo_pointer field of an lld_locator row. You should set the lld_lob_t.type field to
LLD_BLOB for binary data and to LLD_CLOB for character data.

See “Using the lld_lob Type” on page 4-3 for sample code that uses that
features the lld_lob type.

LOB Locator provides explicit casts from:

� a CLOB type to an lld_lob type.

� a BLOB type to an lld_lob type.

� an lld_lob type to the appropriate BLOB or CLOB type.

Tip: If you attempt to cast an lld_lob type containing binary data into a CLOB type
or an lld_lob type containing character data into a BLOB, type, Large Object Locator
returns an error message.

You can pass an lld_lob type to these functions, described in Chapter 3,
“Functions”:

� LOCopy, page 3-44

� LOToFile, page 3-46

� LLD_LobType, page 3-47

Note that LOCopy and LOToFile are overloaded versions of built-in server
functions. The only difference is that you pass an lld_lob to the Large Object
Locator versions of these functions and a BLOB or CLOB type to the built-in
versions.

lo is a pointer to the location of the smart large object.

type is the type of the object. For an object containing binary data,
set type to LLD_BLOB; for an object containing character data,
set type to LLD_CLOB.
2-6 IBM Informix Large Object Locator DataBlade Module User’s Guide



3
Chapter
Functions
In This Chapter . . . . . . . . . . . . . . . . . . . . 3-3

Interfaces . . . . . . . . . . . . . . . . . . . . . . 3-3
API Library . . . . . . . . . . . . . . . . . . . . 3-4
ESQL/C Library . . . . . . . . . . . . . . . . . . 3-4
SQL Interface . . . . . . . . . . . . . . . . . . . 3-4

Working with Large Objects . . . . . . . . . . . . . . . . 3-5
lld_close(). . . . . . . . . . . . . . . . . . . . . 3-7
lld_copy(). . . . . . . . . . . . . . . . . . . . . 3-9
lld_create() . . . . . . . . . . . . . . . . . . . . 3-12
lld_delete . . . . . . . . . . . . . . . . . . . . . 3-15
lld_open(). . . . . . . . . . . . . . . . . . . . . 3-17
lld_read() . . . . . . . . . . . . . . . . . . . . . 3-20
lld_seek() . . . . . . . . . . . . . . . . . . . . . 3-22
lld_tell() . . . . . . . . . . . . . . . . . . . . . 3-25
lld_write() . . . . . . . . . . . . . . . . . . . . 3-27

Client File Support . . . . . . . . . . . . . . . . . . . 3-29
lld_create_client() . . . . . . . . . . . . . . . . . . 3-30
lld_delete_client() . . . . . . . . . . . . . . . . . . 3-32
lld_from_client() . . . . . . . . . . . . . . . . . . 3-34
lld_open_client() . . . . . . . . . . . . . . . . . . 3-37
lld_to_client() . . . . . . . . . . . . . . . . . . . 3-40

Error Utility Functions . . . . . . . . . . . . . . . . . 3-41
lld_error_raise() . . . . . . . . . . . . . . . . . . 3-42
lld_sqlstate() . . . . . . . . . . . . . . . . . . . . 3-43



3-2 IBM
Smart Large Object Functions . . . . . . . . . . . . . . . 3-43
LOCopy . . . . . . . . . . . . . . . . . . . . . 3-44
LOToFile . . . . . . . . . . . . . . . . . . . . . 3-46
LLD_LobType . . . . . . . . . . . . . . . . . . . 3-47
 Informix Large Object Locator DataBlade Module User’s Guide



In This Chapter
This chapter briefly describes the three interfaces to Large Object Locator and
describes in detail all the Large Object Locator functions.

Interfaces
Large Object Locator functions are available through three interfaces:

� An API library

� An ESQL/C library

� An SQL interface

If the syntax for a function depends on the interface, each syntax appears
under a separate subheading. Because there are few differences between
parameters and usage in the different interfaces, there is a single parameter
description and one “Usage,” “Return,” and “Related Topics” section for
each function. Where there are differences between the interfaces, these
differences are described.

The naming convention for the SQL interface is different from that for the
ESQL/C and API interfaces. For example, the SQL client copy function is
called LLD_ToClient(), whereas the API and ESQL/C client copy functions
are called lld_to_client(). This manual uses the API and ESQL/C naming
convention unless referring specifically to an SQL function.
Functions 3-3



API Library
API Library
All Large Object Locator functions except the smart large object functions are
implemented as API functions defined in header and library files (lldsapi.h
and lldsapi.a).

You can call the Large Object Locator API functions from your own user-
defined routines. You execute Large Object Locator API functions just as you
do functions provided by the IBM Informix DataBlade API. See the
IBM Informix DataBlade API Programmer’s Guide for more information.

See “Using the API” on page 4-11 for an example of a user-defined routine
that calls Large Object Locator API functions to copy part of a large object to
another large object.

ESQL/C Library
All Large Object Locator functions except lld_error_raise() and the smart
large object functions are implemented as ESQL/C functions, defined in
header and library files (lldesql.h and lldesql.so).

Wherever possible, the ESQL/C versions of the Large Object Locator
functions avoid server interaction by directly accessing the underlying large
object.

See the IBM Informix ESQL/C Programmer’s Manual for more information on
using the ESQL/C interface to execute Large Object Locator functions.

SQL Interface
The following Large Object Locator functions are implemented as user-
defined routines that you can execute within SQL statements:

� LLD_LobType()

� LLD_Create()

� LLD_Delete()

� LLD_Copy()

� LLD_FromClient()

� LLD_ToClient()
3-4 IBM Informix Large Object Locator DataBlade Module User’s Guide



Working with Large Objects
� LOCopy()

� LOToFile()

See the following three-volume set for further information about the
Informix SQL interface:

� IBM Informix Guide to SQL: Reference

� IBM Informix Guide to SQL: Syntax

� IBM Informix Guide to SQL: Tutorial

Working with Large Objects
This section describes functions that allow you to:

� create large objects.

� open, close, and delete large objects.

� return and change the current position within a large object.

� read from and write to large objects.

� copy a large object.

Generally, you use the functions described in this section in the following
order.

1. You use lld_create() to create a large object. It returns a pointer to an
lld_locator row that points to the large object.

If the large object already exists, you can insert an lld_locator row
into a table in the database to point to the object without calling
lld_create().

2. You can pass the lld_locator type to the lld_open() function to open
the large object you created. This function returns an LLD_IO
structure that you can pass to various Large Object Locator functions
to manipulate data in the open object (see Step 3).

You can also pass the lld_locator type to the lld_copy(),
lld_from_client(), or lld_to_client() functions to copy the large
object.
Functions 3-5



Working with Large Objects
3. After you open a large object, you can pass the LLD_IO structure to:

� lld_tell() to return the current position within the large object.

� lld_seek() to change the current position within the object.

� lld_read() to read from large object.

� lld_write() to write to the large object.

� lld_close() to close an object. You should close a large object if
the transaction in which you open it is aborted or committed.

Tip: To delete a large object, you can pass the lld_locator row to lld_delete() any
time after you create it. For example, if the transaction in which you created the object
is aborted and the object is not a smart large object, you should delete the object
because the server’s rollback on the transaction cannot delete an object outside the
database.

The functions within this section are presented in alphabetical order, not in
the order in which you might use them.
3-6 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_close()
lld_close()
This function closes the specified large object.

Syntax

API

mi_integer lld_close (conn, io, error)
MI_CONNECTION* conn;
LLD_IO* io;
mi_integer* error;

ESQL/C

int lld_close (LLD_IO* io, int* error);

Usage
The lld_close() function closes the open large object and frees the memory
allocated for the LLD_IO structure, which you cannot use again after this
call.

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C version of this
function, you must already be connected to a server.

io is a pointer to an LLD_IO structure created with a previous
call to the lld_open() function.

error is an output parameter in which the function returns an error
code.
Functions 3-7



Returns
Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if it fails.

Related Topics
lld_open(), page 3-17
3-8 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_copy()
lld_copy()
This function copies the specified large object.

Syntax

API

MI_ROW* lld_copy(conn, src, dest, error);
MI_CONNECTION* conn,
MI_ROW* src,
MI_ROW* dest,
mi_integer* error

ESQL/C

ifx_collection_t* lld_copy (src, dest, error);
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER ROW src;
PARAMETER ROW dest;

EXEC SQL END DECLARE SECTION;
int* error;

SQL

CREATE FUNCTION LLD_Copy (src LLD_Locator, dest LLD_Locator)
RETURNS LLD_Locator;

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() function. This parame-
ter is for the API interface only. In the ESQL/C and SQL versions
of this function, you must already be connected to a server.

src is a pointer to the lld_locator row, identifying the source object.

dest is a pointer to an lld_locator row, identifying the destination
object. If the destination object itself does not exist, it is created.

error is an output parameter in which the function returns an error
code. The SQL version of this function does not have an error
parameter.
Functions 3-9



Usage
Usage
This function copies an existing large object.

If the destination object exists, pass a pointer to its lld_locator row as the dest
parameter.

If the destination object does not exist, pass an lld_locator row with the
following values as the dest parameter to lld_copy():

In the lo_protocol field, specify the type of large object to create.

If you are copying to any type of large object other than a smart large object:

� specify NULL for the lo_pointer field.

� point to the location of the new object in the lo_location field.

The lld_copy() function creates the type of large object that you specify,
copies the source object to it, and returns the row you passed, unaltered.

If you are copying to a smart large object, specify NULL for the lo_pointer and
lo_location fields of the lld_locator row that you pass as the dest parameter.
The lld_copy() function returns an lld_locator row with a pointer to the new
smart large object in the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there
are no disk references to it and if it is closed. Therefore, after copying to a
newly created smart large object, either open it or insert it into a table.

If lld_copy() creates a new smart large object, it uses system defaults for
required storage parameters such as sbspace. If you want to override these
parameters, you can use the server large object interface to create the smart
large object and specify the parameters you want in an MI_LO_SPEC
structure. You can then call lld_copy() and set the lo_pointer field of the
lld_locator row to point to the new smart large object.

Likewise, if protocols are added to Large Object Locator for new types of
large objects, these objects might require creation attributes or parameters for
which Large Object Locator supplies predefined default values. As with
smart large objects, you can create the object with lld_copy() and accept the
default values, or you can use the creation routines specific to the new
protocol and supply your own attributes and parameters. After you create
the object, you can call lld_copy() and pass it an lld_locator row that points
to the new object.
3-10 IBM Informix Large Object Locator DataBlade Module User’s Guide



Returns
Returns
On success, this function returns a pointer to an lld_locator row, specifying
the location of the copy of the large object. If the destination object already
exists, lld_copy() returns a pointer to the unaltered lld_locator row you
passed in the dest parameter. If the destination object does not already exist,
lld_copy() returns a pointer to an lld_locator row, pointing to the new object
it creates.

On failure, this function returns NULL.

Related Topics
lld_from_client(), page 3-34

lld_to_client(), page 3-40
Functions 3-11



lld_create()
lld_create()
This function creates a new large object with the protocol and location you
specify.

Syntax

API

MI_ROW* lld_create(conn, lob, error)
MI_CONNECTION* conn
MI_ROW* lob;
mi_integer* error;

ESQL/C

ifx_collection_t* lld_create (lob, error);
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER ROW lob;
EXEC SQL END DECLARE SECTION;
int* error;

SQL

CREATE FUNCTION LLD_Create (lob LLD_Locator)
RETURNS LLD_Locator;

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This
parameter is for the API interface only. In the ESQL/C and
SQL versions of this function, you must already be connected
to a server.

lob is a pointer to an lld_locator row, identifying the object to
create.

error is an output parameter in which the function returns an error
code. The SQL version of this function does not have an error
parameter.
3-12 IBM Informix Large Object Locator DataBlade Module User’s Guide



Usage
Usage
You pass an lld_locator row, with the following values, as the lob parameter
to lld_create():

In the lo_protocol field, specify the type of large object to create.

For any type of large object other than a smart large object:

� specify NULL for the lo_pointer field.

� point to the location of the new object in the lo_location field.

The lld_create() function returns the row you passed, unaltered.

If you are creating a smart large object, specify NULL for the lo_pointer and
lo_location fields of the lld_locator row. The lld_create() function returns an
lld_locator row with a pointer to the new smart large object in the lo_pointer
field.

The server deletes a new smart large object at the end of a transaction if there
are no disk references to it and if it is closed. Therefore, after creating a smart
large object, either open it or insert it into a table.

Large Object Locator does not directly support transaction rollback, except
for smart large objects. Therefore, if the transaction in which you call
lld_create() is aborted, you should call lld_delete() to delete the object and
reclaim any allocated resources.

See “Transaction Rollback” on page 1-6 for more information.

When you create a smart large object, lld_create() uses system defaults for
required storage parameters such as sbspace. If you want to override these
parameters, you can use the server large object interface to create the smart
large object and specify the parameters you want in an MI_LO_SPEC
structure. You can then call lld_create() and set the lo_pointer field of the
lld_locator row to point to the new smart large object.
Functions 3-13



Returns
Likewise, if protocols are added to Large Object Locator for new types of
large objects, these objects might require creation attributes or parameters for
which Large Object Locator supplies predefined default values. As with
smart large objects, you can create the object with lld_create() and accept the
default values, or you can use the creation routines specific to the new
protocol and supply your own attributes and parameters. After you create
the object, you can call lld_create() and pass it an lld_locator row that points
to the new object.

Returns
On success, this function returns a pointer to an lld_locator row specifying
the location of the new large object. For a smart large object, lld_create()
returns a pointer to the location of the new object in the lo_pointer field of the
lld_locator row. For all other objects, it returns a pointer to the unaltered
lld_locator row you passed in the lob parameter.

The lld_open function can use the lld_locator row that lld_create() returns.

On failure, this function returns NULL.

Related Topics
lld_delete, page 3-15

lld_open(), page 3-17
3-14 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_delete
lld_delete
This function deletes the specified large object.

Syntax

API

mi_integer lld_delete(conn, lob, error)
MI_CONNECTION* conn;
LLD_Locator lob;
mi_integer* error;

ESQL/C

int lld_delete (lob, error);
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER ROW lob;
EXEC SQL END DECLARE SECTION;

int* error;

SQL

CREATE FUNCTION LLD_Delete (lob LLD_Locator)
RETURNS BOOLEAN;

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C and SQL ver-
sions of this function, you must already be connected to a
server.

lob is a pointer to an lld_locator row, identifying the object to
delete.

error is an output parameter in which the function returns an error
code. The SQL version of this function does not have an error
parameter.
Functions 3-15



Usage
Usage
For large objects other than smart large objects, this function deletes the large
object itself, not just the lld_locator row referencing it. For smart large objects,
this function does nothing.

To delete a smart large object, delete all references to it, including the
lld_locator row referencing it.

Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the
function fails.
3-16 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_open()
lld_open()
This function opens the specified large object.

Syntax

API

LLD_IO* lld_open(conn, lob, flags, error)
MI_CONNECTION* conn;
MI_ROW* lob;
mi_integer flags,
mi_integer* error);

ESQL/C

LLD_IO* lld_open(lob, flags, error);
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER ROW lob;
EXEC SQL END DECLARE SECTION;

int flags;int* error;

conn is the connection descriptor established by a previ-
ous call to the mi_open() or mi_server_connect()
functions. This parameter is for the API interface
only. In the ESQL/C version of this function, you
must already be connected to a server.

lob is a pointer to an lld_locator row, identifying the
object to open.

flags is a set of flags that you can set to specify attributes
of the large object after it is opened. The flags are as
follows:

LLD_RDONLY opens the large object for reading only. You cannot
use the lld_write function to write to the specified
large object when this flag is set.

LLD_WRONLY opens the large object for writing only. You cannot
use the lld_read() function to read from the specified
large object when this flag is set.
Functions 3-17



Usage
Usage
In the lob parameter, you pass an lld_locator row to identify the large object
to open. In the lo_protocol field of this row, you specify the type of the large
object to open. The lld_open() function calls an appropriate open routine
based on the type you specify. For example, for a file, lld_open() uses an
operating system file function to open the file, whereas, for a smart large
object, it calls the server’s mi_lo_open() routine.

Large Object Locator does not directly support two fundamental database
features, transaction rollback and concurrency control. Therefore, if the trans-
action in which you call lld_open() is aborted, you should call lld_close() to
close the object and reclaim any allocated resources.

Your application should also provide some means, such as locking a row, to
guarantee that multiple users cannot write to a large object simultaneously.

See “Limitations” on page 1-6 for more information about transaction
rollback and concurrency control.

LLD_RDWR opens the large object for both reading and writing.

LLD_TRUNC clears the contents of the large object after opening.

LLD_APPEND seeks to the end of the large object for writing. When
the object is opened, the file pointer is positioned at
the beginning of the object. If you have opened the
object for reading or reading and writing, you can
seek anywhere in the file and read. However, any
time you call lld_write() to write to the object, the
pointer moves to the end of the object to guarantee
that you do not overwrite any data.

LLD_SEQ opens the large object for sequential access only. You
cannot use the lld_seek() function with the specified
large object when this flag is set.

error is an output parameter in which the function returns
an error code.
3-18 IBM Informix Large Object Locator DataBlade Module User’s Guide



Returns
Returns
On success, this function returns a pointer to an LLD_IO structure it
allocates. The LLD_IO structure is private, and you should not directly
access it or modify its contents. Instead, you can pass the LLD_IO structure’s
pointer to Large Object Locator routines such as lld_write(), lld_read(), and
so on, that access open large objects.

A large object remains open until you explicitly close it with the lld_close()
function. Therefore, if you encounter error conditions after opening a large
object, you are responsible for reclaiming resources by closing it.

On failure, this function returns NULL.

Related Topics
lld_close(), page 3-7

lld_create(), page 3-12

lld_read(), page 3-20

lld_seek(), page 3-22

lld_tell(), page 3-25

lld_write(),page 3-27
Functions 3-19



lld_read()
lld_read()
This function reads from a large object, starting at the current position.

Syntax

API

mi_integer lld_read (io, buffer, bytes, error)
LLD_IO* io,
void* buffer,
mi_integer bytes,
mi_integer* error);

ESQL/C

int lld_read (LLD_IO* io,
void* buffer, int bytes,
int* error);

Usage
Before calling this function, you must open the large object with a call to
lld_open() and set the LLD_RDONLY or LLD_RDWR flag. The lld_read()
function begins reading from the current position. By default, when you open
a large object, the current position is the beginning of the object. You can call
lld_seek() to change the current position.

io is a pointer to an LLD_IO structure created with a previous
call to the lld_open() function.

buffer is a pointer to a buffer into which to read the data. The buffer
must be at least as large as the number of bytes specified in the
bytes parameter.

bytes is the number of bytes to read.

error is an output parameter in which the function returns an error
code.
3-20 IBM Informix Large Object Locator DataBlade Module User’s Guide



Returns
Returns
On success, the lld_read() function returns the number of bytes that it has
read from the large object.

On failure, for an API function, it returns MI_ERROR; for an ESQL/C function,
it returns -1.

Related Topics
lld_open(), page 3-17

lld_seek(), page 3-22

lld_tell(), page 3-25
Functions 3-21



lld_seek()
lld_seek()
This function sets the position for the next read or write operation to or from
a large object that is open for reading or writing.

Syntax

API

mi_integer lld_seek(conn, io, offset, whence, new_offset, error)
MI_CONNECTION*conn
LLD_IO* io;
mi_int8* offset;
mi_integer whence;
mi_int8* new_offset;
mi_integer* error;

ESQL/C

int lld_seek(io,offset, whence, new_offset, error)
LLD_IO* io;

EXEC SQL BEGIN DECLARE SECTION;
PARAMETER int8* offset;

EXEC SQL END DECLARE SECTION;
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER int8* new_offset;
EXEC SQL END DECLARE SECTION;

int whence;
int* error;

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. The ESQL/C version of this
function is based on the assumption that you are already con-
nected to a server.

io is a pointer to an LLD_IO structure created with a previous
call to the lld_open() function.
3-22 IBM Informix Large Object Locator DataBlade Module User’s Guide



Usage
Usage
Before calling this function, you must open the large object with a call to
lld_open().

Although this function takes an 8-byte offset, this offset is converted to the
appropriate size for the underlying large object storage system. For example,
if the large object is stored in a 32-bit file system, the 8-byte offset is converted
to a 4-byte offset, and any attempt to seek past 4 GB generates an error.

Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the
function fails.

offset is a pointer to the offset. It describes where to seek in the object.
Its value depends on the value of the whence parameter.

� If whence is LLD_SEEK_SET, the offset is measured
relative to the beginning of the object.

� If whence is LLD_SEEK_CUR, the offset is relative to the
current position in the object.

� If whence is LLD_SEEK_END, the offset is relative to the
end of the file.

whence determines how the offset is interpreted.

new_offset is a pointer to an int8 that you allocate. The function returns
the new offset in this int8.

error is an output parameter in which the function returns an error
code.
Functions 3-23



Related Topics
Related Topics
lld_open(), page 3-17

lld_read(), page 3-20

lld_tell(), page 3-25

lld_write(), page 3-27
3-24 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_tell()
lld_tell()
This function returns the offset for the next read or write operation on an
open large object.

Syntax

API

mi_integer lld_tell(conn, io, offset, error)
MI_CONNECTION* conn;
LLD_IO* io,
mi_int8* offset;
mi_integer* error;

ESQL/C

int lld_tell (io, offset, error);
LLD_IO* io;

EXEC SQL BEGIN DECLARE SECTION;
PARAMETER int8* offset;

EXEC SQL END DECLARE SECTION;
int* error;

Usage
Before calling this function, you must open the large object with a call to
lld_open().

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C version of this
function, you must already be connected to a server.

io is a pointer to an LLD_IO structure created with a previous
call to the lld_open() function.

offset is a pointer to an int8 that you allocate. The function returns
the offset in this int8.

error is an output parameter in which the function returns an error
code.
Functions 3-25



Returns
Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the
function fails.

Related Topics
lld_open(), page 3-17

lld_read(), page 3-20

lld_seek(), page 3-22

lld_write(), page 3-27
3-26 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_write()
lld_write()
This function writes data to an open large object, starting at the current
position.

Syntax

API

mi_integer lld_write (conn, io, buffer, bytes, error)
MI_CONNECTION* conn;
LLD_IO* io;
void* buffer;
mi_integer bytes;
mi_integer* error;

ESQL/C

int lld_write (LLD_IO* io, void* buffer,
int bytes, int* error);

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C version of this
function, you must already be connected to a server.

io is a pointer to an LLD_IO structure created with a previous
call to the lld_open() function.

buffer is a pointer to a buffer from which to write the data. The buffer
must be at least as large as the number of bytes specified in the
bytes parameter.

bytes is the number of bytes to write.

error is an output parameter in which the function returns an error
code.
Functions 3-27



Usage
Usage
Before calling this function, you must open the large object with a call to
lld_open() and set the LLD_WRONLY or LLD_RDWR flag. The lld_write()
function begins writing from the current position. By default, when you open
a large object, the current position is the beginning of the object. You can call
lld_seek() to change the current position.

If you want to append data to the object, specify the LLD_APPEND flag when
you open the object to set the current position to the end of the object. If you
have done so and have opened the object for reading and writing, you can
still use lld_seek to move around in the object and read from different places.
However, as soon as you begin to write, the current position is moved to the
end of the object to guarantee that you do not overwrite any existing data.

Returns
On success, the lld_write() function returns the number of bytes that it has
written.

On failure, for an API function it returns MI_ERROR; for an ESQL/C function,
it returns -1.

Related Topics
lld_open(), page 3-17

lld_seek(), page 3-22

lld_tell(), page 3-25
3-28 IBM Informix Large Object Locator DataBlade Module User’s Guide



Client File Support
Client File Support
This section describes the Large Object Locator functions that provide client
file support. These functions allow you to create, open, and delete client files
and to copy large objects to and from client files.

The client functions make it easier to code user-defined routines that input or
output data. These user-defined routines, in many cases, operate on large
objects. They also input data from or output data to client files. Developers
can create two versions of a user-defined routine: one for client files, which
calls lld_open_client(), and one for large objects, which calls lld_open().
After the large object or client file is open, you can use any of the Large Object
Locator functions that operate on open objects, such as lld_read(), lld_seek(),
and so on. Thus, the remaining code of the user-defined function can be the
same for both versions.

You should use the Large Object Locator client functions with care. You can
only access client files if you are using the client machine on which the files
are stored. If you change client machines, you can no longer access files
stored on the original client machine. Thus, an application that stores client
filenames in the database might find at a later date that the files are
inaccessible.
Functions 3-29



lld_create_client()
lld_create_client()
This function creates a new client file.

Syntax

API

mi_integer lld_create_client(conn, path, error);
MI_CONNECTION* conn
mi_string* path;
mi_integer* error;

ESQL/C

int lld_create_client (char* path, int* error);

Usage
This function creates a file on your client machine. Use the lld_open_client()
function to open the file for reading or writing and pass it the same pathname
as you passed to lld_create_client().

Large Object Locator does not directly support transaction rollback, except
for smart large objects. Therefore, if the transaction in which you call
lld_create_client() is aborted, you should call lld_delete_client() to delete
the object and reclaim any allocated resources.

See “Transaction Rollback” on page 1-6 for more information.

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C version of this
function, you must already be connected to a server.

path is a pointer to the pathname of the client file.

error is an output parameter in which the function returns an error
code.
3-30 IBM Informix Large Object Locator DataBlade Module User’s Guide



Related Topics
Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the
function fails.

Related Topics
lld_delete_client(), page 3-32
Functions 3-31



lld_delete_client()
lld_delete_client()
This function deletes the specified client file.

Syntax

API

mi_integer lld_delete_client(conn, path, error)
MI_CONNECTION* conn;
mi_string* path;
mi_integer* error;

ESQL/C

int lld_delete_client (char* path,int* error);

Usage
This function deletes the specified client file and reclaims any allocated
resources.

Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the
function fails.

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C version of this
function, you must already be connected to a server.

path is a pointer to the pathname of the client file.

error is an output parameter in which the function returns an error
code.
3-32 IBM Informix Large Object Locator DataBlade Module User’s Guide



Related Topics
Related Topics
lld_create_client(), page 3-30
Functions 3-33



lld_from_client()
lld_from_client()
This function copies a client file to a large object.

Syntax

API

MI_ROW* lld_from_client(conn, src, dest, error);
MI_CONNECTION* conn,
mi_string* src,
MI_ROW* dest,
mi_integer* error

ESQL/C

ifx_collection_t* lld_from_client (src, dest, error);
char* src;
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER ROW dest;
EXEC SQL END DECLARE SECTION;
int* error;

SQL

CREATE FUNCTION LLD_FromClient(src LVARCHAR,
dest LLD_Locator)

RETURNS LLD_Locator;

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C and SQL
versions of this function, you must already be connected to a
server.

src is a pointer to the source pathname.

dest is a pointer to the destination lld_locator row. If the destination
object itself does not exist, it is created.

error is an output parameter in which the function returns an error
code. The SQL version of this function does not have an error
parameter.
3-34 IBM Informix Large Object Locator DataBlade Module User’s Guide



Usage
Usage
This function copies an existing large object.

If the destination object exists, pass a pointer to its lld_locator row as the dest
parameter.

If the destination object does not exist, pass an lld_locator row with the
following values as the dest parameter to lld_from_client().

In the lo_protocol field, specify the type of large object to create.

If you are copying to any type of large object other than a smart large object:

� specify NULL for the lo_pointer field.

� point to the location of the new object in the lo_location field.

The lld_from_client() function creates the type of large object that you
specify, copies the source file to it, and returns the row you passed, unaltered.

If you are copying to a smart large object, specify NULL for the lo_pointer and
lo_location fields of the lld_locator row that you pass as the dest parameter.
The lld_from_client() function returns an lld_locator row with a pointer to
the new smart large object in the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there
are no disk references to it and if it is closed. Therefore, after you copy to a
newly created smart large object, either open it or insert it into a table.

If lld_from_client() creates a new smart large object, it uses system defaults
for required storage parameters such as sbspace. If you want to override these
parameters, you can use the server large object interface to create the smart
large object and specify the parameters you want in an MI_LO_SPEC
structure. You can then call lld_from_client() and set the lo_pointer field of
the lld_locator row to point to the new smart large object.

Likewise, if protocols are added to Large Object Locator for new types of
large objects, these objects might require creation attributes or parameters for
which Large Object Locator supplies predefined default values. As with
smart large objects, you can create the object with lld_from_client() and
accept the default values, or you can use the creation routines specific to the
new protocol and supply your own attributes and parameters. After you
create the object, you can call lld_from_client() and pass it an lld_locator row
that points to the new object.
Functions 3-35



Returns
Returns
On success, returns a pointer to an lld_locator row that specifies the location
of the copy of the large object. If the destination object already exists,
lld_from_client() returns a pointer to the unaltered lld_locator row that you
created and passed in the dest parameter. If the destination object does not
already exist, lld_from_client() returns an lld_locator row that points to the
new object it creates.

On failure, this function returns NULL.

Related Topics
lld_create_client(), page 3-30

lld_open_client(), page 3-37
3-36 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_open_client()
lld_open_client()
This function opens a client file.

Syntax

API

LLD_IO* lld_open_client(conn, path, flags, error);
MI_CONNECTION* conn
mi_string* path;
mi_integer flags;
mi_integer* error;

ESQL/C

LLD_IO* lld_open_client(MI_CONNECTION* conn,mi_string*
path,mi_integer flags,mi_integer* error);

conn is the connection descriptor established by a previ-
ous call to the mi_open() or mi_server_connect()
functions. This parameter is for the API interface
only. In the ESQL/C version of this function, you
must already be connected to a server.

path is a pointer to the path of the client file to open.

flags is a set of flags that you can set to specify attributes
of the large object after it is opened. The flags are as
follows:

LLD_RDONLY opens the client file for reading only. You cannot use
the lld_write function to write to the specified client
file when this flag is set.

LLD_WRONLY opens the client file for writing only. You cannot use
the lld_read() function to read from the specified cli-
ent file when this flag is set.

LLD_RDWR opens the client file for both reading and writing.

LLD_TRUNC clears the contents of the client file after opening.
Functions 3-37



Usage
Usage
This function opens an existing client file. After the file is open, you can use
any of the Large Object Locator functions, such as lld_read(), lld_write(), and
so on, that operate on open large objects.

Large Object Locator does not directly support two fundamental database
features, transaction rollback and concurrency control. Therefore, if the trans-
action in which you call lld_open_client() is aborted, you should call
lld_close() to close the object and reclaim any allocated resources.

Your application should also provide some means, such as locking a row, to
guarantee that multiple users cannot write to a large object simultaneously.

See “Limitations” on page 1-6 for more information about transaction
rollback and concurrency control.

Returns
On success, this function returns a pointer to an LLD_IO structure that it
allocates. The LLD_IO structure is private, and you should not directly
access it or modify its contents. Instead, you should pass its pointer to Large
Object Locator routines such as lld_write(), lld_read(), and so on, that access
open client files.

LLD_APPEND seeks to the end of the large object for writing. When
the object is opened, the file pointer is positioned at
the beginning of the object. If you have opened the
object for reading or reading and writing, you can
seek anywhere in the file and read. However, any
time you call lld_write() to write to the object, the
pointer moves to the end of the object to guarantee
that you do not overwrite any data.

LLD_SEQ opens the client file for sequential access only. You
cannot use the lld_seek() function with the specified
client file when this flag is set.

error is an output parameter in which the function returns
an error code.
3-38 IBM Informix Large Object Locator DataBlade Module User’s Guide



Related Topics
A client file remains open until you explicitly close it with the lld_close()
function. Therefore, if you encounter error conditions after opening a client
file, you are responsible for reclaiming resources by closing it.

On failure, this function returns NULL.

Related Topics
lld_close(), page 3-7

lld_read(), page 3-20

lld_seek(), page 3-22

lld_tell(), page 3-25

lld_write(),page 3-27

lld_create_client(), page 3-30
Functions 3-39



lld_to_client()
lld_to_client()
This function copies a large object to a client file.

Syntax

API

MI_ROW* lld_to_client(conn, src, dest, error);
MI_CONNECTION* conn,
MI_ROW* src,
mi_string* dest,
mi_integer* error

ESQL/C

ifx_collection_t* lld_to_client (src, dest, error);
EXEC SQL BEGIN DECLARE SECTION;

PARAMETER ROW src;
EXEC SQL END DECLARE SECTION;
char* dest;
int* error;

SQL

LLD_ToClient (src LLD_Locator, dest LVARCHAR)
RETURNS BOOLEAN;

conn is the connection descriptor established by a previous call to
the mi_open() or mi_server_connect() functions. This param-
eter is for the API interface only. In the ESQL/C and SQL ver-
sions of this function, you must already be connected to a
server.

src is a pointer to the lld_locator row that identifies the source
large object.

dest is a pointer to the destination pathname. If the destination file
does not exist, it is created.

error is an error code. The SQL version of this function does not have
an error parameter.
3-40 IBM Informix Large Object Locator DataBlade Module User’s Guide



Usage
Usage
This function copies an existing large object to a client file. It creates the client
file if it does not already exist.

Returns
For an API function, returns MI_OK if the function succeeds and MI_ERROR if
it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the
function fails.

Related Topics
lld_open_client(), page 3-37

Error Utility Functions
The two functions described in this section allow you to:

� raise error exceptions.

� convert error codes to their SQL state equivalent.
Functions 3-41



lld_error_raise()
lld_error_raise()
This function generates an exception for the specified error.

Syntax

API

mi_integer lld_error_raise (error);
mi_integer error

Usage
This function calls the server mi_db_error_raise function to generate an
exception for the specified Large Object Locator error.

Returns
On success, this function does not return a value unless the exception is
handled by a callback function. If the exception is handled by the callback
and control returns to lld_error_raise(), it returns MI_ERROR.

On failure, it also returns MI_ERROR.

error is an error code that you specify.
3-42 IBM Informix Large Object Locator DataBlade Module User’s Guide



lld_sqlstate()
lld_sqlstate()
This function translates integer error codes into their corresponding SQL
states.

Syntax

API

mi_string* lld_sqlstate (error);
mi_integer error

ESQL/C

int* lld_sqlstate (int error);

Returns
On success, this function returns the SQL state value corresponding to the
error code. On failure, returns NULL.

Important: This function returns a pointer to a constant, not to an allocated memory
location.

Smart Large Object Functions
The functions described in this section allow you to copy a smart large object
to a file and to copy a smart large object to another smart large object. There
is also a function that tells you whether the data in an lld_lob column is
binary or character data.

error is an error code.
Functions 3-43



LOCopy
LOCopy
This function creates a copy of a smart large object.

Syntax

SQL

CREATE FUNCTION LOCopy (lob LLD_Lob)
RETURNS LLD_Lob ;

CREATE FUNCTION LOCopy (lob, LLD_Lob, table_name, CHAR(18),
column_name, CHAR(18))

RETURNS LLD_Lob;

;

Usage
This function is an overloaded version of the LOCopy built-in server
function. This function is identical to the built-in version of the function,
except the first parameter is an lld_lob type rather than a BLOB or CLOB type.

The table_name and column_name parameters are optional. If you specify a
table_name and column_name, LOCopy uses the storage characteristics from
the specified column_name for the new smart large object that it creates.

If you omit table_name and column_name, LOCopy creates a smart large object
with system-specified storage defaults.

See the description of the LOCopy function in the IBM Informix Guide to SQL:
Syntax for complete information about this function.

lob is a pointer to the smart large object to copy.

table_name is a table name. This parameter is optional.

column_name is a column name. This parameter is optional.
3-44 IBM Informix Large Object Locator DataBlade Module User’s Guide



Returns
Returns
This function returns a pointer to the new lld_lob value.

Related Topics
LOCopy in the IBM Informix Guide to SQL: Syntax
Functions 3-45



LOToFile
LOToFile
Copies a smart large object to a file.

Syntax

SQL

CREATE FUNCTION LOToFile(lob LLD_Lob, pathname LVARCHAR,
file_dest CHAR(6)

RETURNS LVARCHAR;

Usage
This function is an overloaded version of the LOToFile built-in server
function. This function is identical to the built-in version of the function,
except the first parameter is an lld_lob type rather than a BLOB or CLOB type.

See the description of the LOToFile function in the IBM Informix Guide to SQL:
Syntax for complete information about this function.

Returns
This function returns the value of the new filename.

Related Topics
LOToFile in the IBM Informix Guide to SQL: Syntax

lob is a pointer to the smart large object.

pathname is a directory path and name of the file to create.

file_dest is the computer on which the file resides. Specify either
server or client.
3-46 IBM Informix Large Object Locator DataBlade Module User’s Guide



LLD_LobType
LLD_LobType
Returns the type of data in an lld_lob column.

Syntax

SQL

CREATE FUNCTION LLD_LobType(lob LLD_Lob)
RETURNS CHAR(4);

Usage
An lld_lob column can contain either binary or character data. You pass an
lld_lob type to the LLD_LobType function to determine the type of data that
the column contains.

Returns
This function returns blob if the specified lld_lob contains binary data and
clob if it contains character data.

lob is a pointer to the smart large object
Functions 3-47





4
Chapter
Sample Code
In This Chapter . . . . . . . . . . . . . . . . . . . . 4-3

Using the SQL Interface . . . . . . . . . . . . . . . . . 4-3
Using the lld_lob Type . . . . . . . . . . . . . . . . 4-3

Using Implicit lld_lob Casts . . . . . . . . . . . . . 4-3
Using Explicit lld_lob Casts . . . . . . . . . . . . . 4-5
Using the LLD_LobType Function . . . . . . . . . . . 4-5

Using the lld_locator Type . . . . . . . . . . . . . . . 4-6
Inserting an lld_locator Row into a Table . . . . . . . . 4-7
Creating a Smart Large Object . . . . . . . . . . . . 4-7
Copying a Client File to a Large Object . . . . . . . . . 4-8
Copying a Large Object to a Large Object . . . . . . . . 4-9
Copying Large Object Data to a Client File . . . . . . . . 4-9
Creating and Deleting a Server File . . . . . . . . . . 4-10

Using the API. . . . . . . . . . . . . . . . . . . . . 4-11
Creating the lld_copy_subset Function. . . . . . . . . . . 4-11
Using the lld_copy_subset Routine . . . . . . . . . . . . 4-15



4-2 IBM
 Informix Large Object Locator DataBlade Module User’s Guide



In This Chapter
This chapter provides sample code that shows how to use some of the Large
Object Locator functions together. It shows how to use all three of the Large
Object Locator interfaces: SQL, server, and ESQL/C.

Using the SQL Interface
The examples in this section show how to use the SQL interface to Large
Object Locator.

Using the lld_lob Type
The lld_lob is a user-defined type that you can use to specify the location of
a smart large object and to specify whether the object contains binary or
character data. The following subsections show how to use the lld_lob data
type.

Using Implicit lld_lob Casts

This section shows how to insert binary and character data into an lld_lob
type column of a table. The following sample makes use of implicit casts from
BLOB and CLOB types to the lld_lob type.
Sample Code 4-3



Using the lld_lob Type
Figure 4-1
Implicit lld_lob Casts

create table slobs (key int primary key, slo lld_lob);

--Insert binary and text large objects into an lld_lob field
--Implicitly cast from blob/clob to lld_lob
insert into slobs values (1, filetoblob ('logo.gif', 'client'));

insert into slobs values (2, filetoclob ('quote1.txt', 'client'));

select * from slobs;

key  1
slo
blob:00608460a6b7c8d900000002000000030000000200000018000000000001000000608

460736c6f000010029a2a6c92070000000000006c000af0cdd900000080006082500af0c9d
     e

key  2
slo
clob:00608460a6b7c8d900000002000000030000000300000019000000000001000000608

460736c6f000010029a2a6c930d0000000000006c000af0cdd900000016000000010af0c9d
     e

The slobs table, created in this example, contains the slo column, which is of
type lld_lob. The first INSERT statement uses the filetoblob function to copy
a binary large object to a smart large object. There exists an implicit cast from
a BLOB type to an lld_lob type, so the INSERT statement can insert the BLOB
type large object into an lld_lob type column.

Likewise, there is an implicit cast from a CLOB type to an lld_lob type, so the
second INSERT statement can insert a CLOB type large object into the slo
column of the slobs table.

The SELECT statement returns the lld_lob types that identify the two smart
large objects stored in the slobs table.

The slo column for key 1 contains an instance of an lld_lob type that identifies
the data as BLOB data and contains a hexadecimal number that points to the
location of the data.

The slo column for key 2 identifies the data as CLOB data and contains a
hexadecimal number that points to the location of the data.
4-4 IBM Informix Large Object Locator DataBlade Module User’s Guide



Using the lld_lob Type
Using Explicit lld_lob Casts

This example shows how to select large objects of type BLOB and CLOB from
a table and how to copy them to a file.

This example uses the slobs table created in Figure 4-1 on page 4-4.

Figure 4-2
Explicit lld_lob Casts

--Explicitly cast from lld_lob to blob/clob
select slo::blob from slobs where key = 1;

(expression)  <SBlob Data>

select slo::clob from slobs where key = 2;

(expression)
Ask not what your country can do for you,
but what you can do for your country.

The first SELECT statement retrieves the data in the slo column associated
with key 1 and casts it as BLOB type data. The second SELECT statement
retrieves the data in the slo column associated with key 2 and casts it as CLOB
type data.

Using the LLD_LobType Function

This section shows how to use the LLD_LobType function to obtain the type
of data—BLOB or CLOB—that an lld_lob column contains.

The slobs table in this example is the same one created in Figure 4-1 on
page 4-4. That example created the table and inserted a BLOB type large
object for key 1 and a CLOB type large object for key 2.
Sample Code 4-5



Using the lld_locator Type
Figure 4-3
Using LLD_LobType Function

-- LLD_LobType UDR
select key, lld_lobtype(slo) from slobs;

        key (expression)

          1 blob
          2 clob

select slo::clob from slobs where lld_lobtype(slo) = 'clob';

(expression)
Ask not what your country can do for you,
but what you can do for your country.

The first SELECT statement returns:

1 blob
2 clob

indicating that the data associated with key 1 is of type BLOB and the data
associated with key 2 is of type CLOB.

The second SELECT statement uses LLD_LobType to retrieve the columns
containing CLOB type data. The second SELECT statement casts the slo
column (which is of type lld_lob) to retrieve CLOB type data.

Using the lld_locator Type
The lld_locator type defines a large object. It identifies the type of large object
and points to its location. It contains three fields:

lo_protocol identifies the kind of large object.

lo_pointer is a pointer to a smart large object or is NULL if the large object
is any kind of large object other than a smart large object.

lo_location is a pointer to the large object, if it is not a smart large object.
Set to NULL if it is a smart large object.
4-6 IBM Informix Large Object Locator DataBlade Module User’s Guide



Using the lld_locator Type
The examples in this section show how to:

� insert an lld_locator row for an existing server file into a table.

� create a smart large object.

� copy a client file to a large object.

� copy a large object to another large object.

� copy a large object to a client file.

� create and delete a server file.

Inserting an lld_locator Row into a Table

This example creates a table with an lld_locator row and shows how to insert
a large object into the row.

Figure 4-4
Inserting an lld_locator Row Into a Table

--Create lobs table
create table lobs (key int primary key, lo lld_locator);

-- Create an lld_locator for an existing server file
insert into lobs
    values (1, "row('ifx_file',null,'/tmp/quote1.txt')");

The INSERT statement inserts an instance of an lld_locator row into the lobs
table. The protocol in the first field, IFX_FILE, identifies the large object as a
server file. The second field, lo_pointer, is used to point to a smart large object.
Because the object is a server file, this field is NULL. The third field identifies
the server file as quote1.txt.

Creating a Smart Large Object

This example creates a smart large object containing CLOB type data. The
lld_create function in Figure 4-5 creates a smart large object. The first
parameter to lld_create uses the IFX_CLOB protocol to specify CLOB as the
type of object to create. The other two arguments are NULL.

The lld_create function creates the CLOB type large object and returns an
lld_locator row that identifies it.
Sample Code 4-7



Using the lld_locator Type
The insert statement inserts in the lobs table the lld_locator row returned by
lld_create.

Figure 4-5
Using lld_create

--Create a new clob using lld_create
insert into lobs
    values (2, lld_create
("row('ifx_clob',null,null)"::lld_locator));

Copying a Client File to a Large Object

This example uses the lobs table created in Figure 4-5.

In Figure 4-6, the lld_fromclient function in the first SELECT statement,
copies the client file, quote2.txt, to an lld_locator row in the lobs table.

Figure 4-6
Copying a Client File to a Large Object

-- Copy a client file to an lld_locator
select lld_fromclient ('quote2.txt', lo) from lobs where key = 2;

(expression)  ROW('IFX_CLOB ','clob:ffffffffa6b7c8d9000000020000000300
0000090000001a0000000000010000000000000ad3c3dc000000000b06eec8000
00000005c4e6000607fdc000000000000000000000000',NULL)

select lo.lo_pointer::clob from lobs where key = 2;

(expression)
To be or not to be,
that is the question.

The lld_fromclient function returns a pointer to the lld_locator row that
identifies the data copied from the large object. The first SELECT statement
returns this lld_locator row.

The next SELECT statement selects the lo_pointer field of the lld_locator row,
lo.lo_pointer, and casts it to CLOB type data. The result is the data itself.
4-8 IBM Informix Large Object Locator DataBlade Module User’s Guide



Using the lld_locator Type
Copying a Large Object to a Large Object

This example uses the lobs table created in Figure 4-4 on page 4-7.

The lld_copy function in Figure 4-7 copies large object data from one
lld_locator type row to another.

Figure 4-7
Copying a Large Object to a Large Object

-- Copy an lld_locator to an lld_locator
select lld_copy (S.lo, D.lo) from lobs S, lobs D where S.key = 1 and D.key
= 2;

(expression)  ROW('IFX_CLOB ','clob:ffffffffa6b7c8d9000000020000000300
0000090000001a0000000000010000000000000ad3c3dc000000000b06eec8000
00000005c4e6000607fdc000000000000000000000000',NULL)

select lo.lo_pointer::clob from lobs where key = 2;

(expression)
Ask not what your country can do for you,
but what you can do for your country.

The second SELECT statement casts lo.lo_pointer to a CLOB type to display
the data in the column.

Copying Large Object Data to a Client File

This example uses the lobs table created in Figure 4-4 on page 4-7. The
lld_toclient function in Figure 4-8 on page 4-10 copies large object data to the
output.txt client file. This function returns twhen the function succeeds. The
SELECT statement returns t, or true, indicating that the function returned
successfully.
Sample Code 4-9



Using the lld_locator Type
Figure 4-8
Copying a Large Object to a Client File

-- Copy an lld_locator to a client file
select lld_toclient (lo, 'output.txt') from lobs where key = 2;

(expression)

           t

Creating and Deleting a Server File

This example shows how to create a server file and then delete it.

The lld_copy function copies a large object to another large object. The
lld_locator rows for the source and destination objects use the IFX_FILE
protocol to specify a server file as the type of large object. The lld_copy
function returns an lld_locator row that identifies the copy of the large object.

The INSERT statement inserts this row into the lobs table using 3 as the key.

Figure 4-9
Creating and Deleting a Server File

-- Create and delete a new server file
insert into lobs
    values (3, lld_copy (
        "row('ifx_file',null,'/tmp/quote2.txt')"::lld_locator,
        "row('ifx_file',null,'/tmp/tmp3')"::lld_locator));

select lo from lobs where key = 3;

lo  ROW('IFX_FILE          ',NULL,'/tmp/tmp3')

select lld_delete (lo) from lobs where key = 3;

(expression)

           t

delete from lobs where key = 3;

The first SELECT statement returns the lld_locator row identifying the large
object.

The lld_delete function deletes the large object itself. The DELETE statement
deletes the lld_locator row that referenced the large object.
4-10 IBM Informix Large Object Locator DataBlade Module User’s Guide



Using the API
Using the API
This section contains one example that shows how to use the Large Object
Locator functions to create a user-defined routine. This routine copies part of
a large object to another large object.

Creating the lld_copy_subset Function
Figure 4-10 shows the code for the lld_copy_subset user-defined routine.
This routine copies a portion of a large object and appends it to another large
object.
Sample Code 4-11



Creating the lld_copy_subset Function
Figure 4-10
The lld_copy_subset Function

/* LLD SAPI interface example */

#include <mi.h>
#include <lldsapi.h>

/* append a (small) subset of a large object to another large object */

MI_ROW*
lld_copy_subset (MI_ROW* src,           /* source LLD_Locator */
                 MI_ROW* dest,          /* destination LLD_Locator */
                 mi_int8* offset,       /* offset to begin copy at */
                 mi_integer nbytes,     /* number of bytes to copy */
                 MI_FPARAM* fp)
{
    MI_ROW*        new_dest;       /* return value */
    MI_CONNECTION* conn;           /* database server connection */
    mi_string*     buffer;         /* I/O buffer */
    LLD_IO*        io;             /* open large object descriptor */
    mi_int8        new_offset;     /* offset after seek */
    mi_integer     bytes_read;     /* actual number of bytes copied */
    mi_integer     error;          /* error argument */
    mi_integer     _error;         /* extra error argument */
    mi_boolean     created_dest;   /* did we create the dest large object?
*/

    /* initialize variables */
    new_dest = NULL;
    conn = NULL;
    buffer = NULL;
    io = NULL;
    error = LLD_E_OK;
    created_dest = MI_FALSE;

    /* open a connection to the database server */
    conn = mi_open (NULL, NULL, NULL);
    if (conn == NULL)
        goto bad;

    /* allocate memory for I/O */
    buffer = mi_alloc (nbytes);
    if (buffer == NULL)
        goto bad;

    /* read from the source large object */
    io = lld_open (conn, src, LLD_RDONLY, &error);
    if (error != LLD_E_OK)
        goto bad;

    lld_seek (conn, io, offset, LLD_SEEK_SET, &new_offset, &error);
    if (error != LLD_E_OK)
        goto bad;

    bytes_read = lld_read (conn, io, buffer, nbytes, &error);
    if (error != LLD_E_OK)
        goto bad;
4-12 IBM Informix Large Object Locator DataBlade Module User’s Guide



Creating the lld_copy_subset Function
    lld_close (conn, io, &error);
    if (error != LLD_E_OK)
        goto bad;

    /* write to the destination large object */
    new_dest = lld_create (conn, dest, &error);
    if (error == LLD_E_OK)
        created_dest = MI_TRUE;
    else if (error != LLD_E_EXISTS)
        goto bad;

    io = lld_open (conn, new_dest, LLD_WRONLY | LLD_APPEND | LLD_SEQ,
&error);
    if (error != LLD_E_OK)
        goto bad;

    lld_write (conn, io, buffer, bytes_read, &error);
    if (error != LLD_E_OK)
        goto bad;

    lld_close (conn, io, &error);
    if (error != LLD_E_OK)
        goto bad;

    /* free memory */
    mi_free (buffer);

    /* close the database server connection */
    mi_close (conn);

    return new_dest;

    /* error clean up */
bad:
    if (io != NULL)
        lld_close (conn, io, &_error);
    if (created_dest)
        lld_delete (conn, new_dest, &_error);
    if (buffer != NULL)
        mi_free (buffer);
    if (conn != NULL)
        mi_close (conn);
    lld_error_raise (conn, error);
    mi_fp_setreturnisnull (fp, 0, MI_TRUE);
    return NULL;
}

The lld_copy_subset function defines four parameters:

� A source large object (lld_locator type)

� A destination large object (lld_locator type)

� The byte offset to begin copying

� The number of bytes to copy

It returns an lld_locator, identifying the object being appended.
Sample Code 4-13



Creating the lld_copy_subset Function
The mi_open function opens a connection to the database. A buffer is
allocated for I/O.

The following Large Object Locator functions are called for the source object:

� lld_open, to open the source object

� lld_seek, to seek to the specified byte offset in the object

� lld_read, to read the specified number of bytes from the object

� lld_close, to close the object

The following Large Object Locator functions are called for the destination
object:

� lld_open, to open the destination object

� lld_write, to write the bytes read from the source into the destination
object

� lld_close, to close the destination object

The mi_close function closes the database connection.

This function also contains error-handling code. If the database connection
cannot be made, if memory cannot be allocated, or if any of the Large Object
Locator functions returns an error, the error code is invoked.

The error code handling code (bad) does one or more of the following actions,
if necessary:

� Closes the source file

� Deletes the destination file

� Frees the buffer

� Closes the database connection

� Raises an error

Although this sample code, in the interest of simplicity and clarity, does not
establish a callback for exceptions, you should do so. See the IBM Informix
DataBlade API Programmer’s Guide for more information.
4-14 IBM Informix Large Object Locator DataBlade Module User’s Guide



Using the lld_copy_subset Routine
Using the lld_copy_subset Routine
This section shows how to use the lld_copy_subset user-defined routine
defined in the previous section.

Figure 4-11
Using the lld_copy_subset Routine

-- Using the lld_copy_subset function

create function lld_copy_subset (lld_locator, lld_locator, int8, int)
    returns lld_locator
    external name '/tmp/sapidemo.so'
    language c;

insert into lobs
    values (5, lld_copy_subset (
        "row('ifx_file',null,'/tmp/quote3.txt')"::lld_locator,

"row('ifx_clob',null,null)"::lld_locator, 20, 70));

select lo from lobs where key = 5;
select lo.lo_pointer::clob from lobs where key = 5;

The lld_copy_subset function copies 70 bytes, beginning at offset 20 from the
quote3.txt file, and appends them to a CLOB object. The INSERT statement
inserts this data into the lobs table.

The first SELECT statement returns the lld_locator that identifies the newly
copied CLOB data. The second SELECT statement returns the data itself.
Sample Code 4-15





5
Chapter
Error Handling
In This Chapter . . . . . . . . . . . . . . . . . . . . 5-3

Handling Large Object Locator Errors . . . . . . . . . . . . 5-3

Handling Exceptions . . . . . . . . . . . . . . . . . . 5-4

Error Codes . . . . . . . . . . . . . . . . . . . . . 5-4



5-2 IBM
 Informix Large Object Locator DataBlade Module User’s Guide



In This Chapter
This chapter describes how to handle errors when calling Large Object
Locator functions. It also lists and describes specific Large Object Locator
errors.

There are two methods by which Large Object Locator returns errors to you:

� Through the error argument of a Large Object Locator function

� Through an exception

Both the API and ESQL/C versions of Large Object Locator functions use the
error argument. Exceptions are returned only to the API functions.

Handling Large Object Locator Errors
All Large Object Locator functions use the return value to indicate failure.
Functions that return a pointer return NULL in the event of failure. Functions
that return an integer return -1.

Large Object Locator functions also provide an error code argument that you
can test for specific errors. You can pass this error code to lld_error_raise()—
which calls mi_db_error_raise if necessary to generate an MI_EXCEPTION—
and propagate the error up the calling chain.

For ESQL/C functions, the LLD_E_SQL error indicates that an SQL error
occurred. You can check the SQLSTATE variable to determine the nature of the
error.

When an error occurs, Large Object Locator functions attempt to reclaim any
outstanding resources. You should close any open large objects and delete
any objects you have created that have not been inserted into a table.
Error Handling 5-3



Handling Exceptions
A user-defined routine that directly or indirectly calls a Large Object Locator
function (API version) can register a callback function. If this function catches
and handles an exception and returns control to the Large Object Locator
function, Large Object Locator returns the LLD_E_EXCEPTION error. You can
handle this error as you would any other: close open objects and delete
objects not inserted in a table.

Handling Exceptions
You should register a callback function to catch exceptions generated by
underlying DataBlade API functions called by Large Object Locator
functions. For example, if you call lld_read() to open a smart large object,
Large Object Locator calls the DataBlade API mi_lo_read() function. If this
function returns an error and generates an exception, you must catch the
exception and close the object you have open for reading.

Use the mi_register_callback() function to register your callback function.
The callback function should track all open large objects, and in the event of
an exception, close them. You can track open large objects by creating a data
structure with pointers to LLD_IO structures, the structure that the
lld_open() function returns when it opens an object. Use the lld_close()
function to close open large objects.

Error Codes
This section lists and describes the Large Object Locator error codes.

Error Code SQL State  Description

LLD_E_INTERNAL ULLD0 Internal Large Object Locator error. If you receive this
error, call Informix Technical Support.

LLD_E_OK N.A. No error.

LLD_E_EXCEPTION N.A. MI_EXCEPTION raised and handled. Applies to API only.

(1 of 2)
5-4 IBM Informix Large Object Locator DataBlade Module User’s Guide



Error Codes
LLD_E_SQL N.A. SQL error code in SQLSTATE/SQLCODE. Applies to
ESQL/C interface only.

LLD_E_ERRNO ULLD1 OS (UNIX/POSIX)

LLD_E_ROW ULLD2 Passed an invalid MI_ROW type. The type should be
lld_locator. This is an API error only.

LLD_E_PROTOCOL ULLD3 Passed an invalid or unsupported lo_protocol value.

LLD_E_LOCATION ULLD4 Passed an invalid lo_location value.

LLD_E_EXISTS ULLD5 Attempted to (re)create an existing large object.

LLD_E_NOTEXIST ULLD6 Attempted to open a nonexistent large object.

LLD_E_FLAGS ULLD7 Used invalid flag combination when opening a large
object.

LLD_E_LLDIO ULLD8 Passed a corrupted LLD_IO structure.

LLD_E_RDONLY ULLD9 Attempted to write to a large object that is open for read-
only access.

LLD_E_WRONLY ULLDA Attempted to read from a large object that is open for
write-only access.

LLD_E_SEQ ULLDB Attempted to seek in a large object that is open for sequen-
tial access only.

LLD_E_WHENCE ULLDC Invalid whence (seek) value.

LLD_E_OFFSET ULLDD Attempted to seek to an invalid offset.

N.A. ULLDO Specified an invalid lld_lob input string.

N.A. ULLDP Specified an invalid lld_lob type.

N.A. ULLDQ Attempted an invalid cast of an lld_lob type into a BLOB or
CLOB type.

N.A. ULLDR Used an invalid import file specification with the lld_lob
type.

Error Code SQL State  Description

(2 of 2)
Error Handling 5-5





A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan



The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 IBM Informix Large Object Locator DataBlade Module User’s Guide



Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.
Notices A-3



Trademarks
Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 IBM Informix Large Object Locator DataBlade Module User’s Guide



@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
API interface

about 3-4
using 4-11 to 4-14

Attribute flags
client files, setting for 3-37
large objects, setting for 3-17

B
Binary data

determining for lld_lob data
type 3-47, 4-5

inserting into a table 4-3
specifying with lld_lob data

type 2-5
BladeManager, using to register

Large Object Locator 1-7
BLOB data type, casting to lld_lob

data type
about 2-6
explicitly 4-5
implictly 4-3

Boldface type Intro-5

C
Callback functions, registering 5-4
Casting

BLOB data type to lld_lob data
type

about 2-6
explicitly 4-5
implicitly 4-3

CLOB data type to lld_lob data
type

about 2-6
explicitly 4-5
implicitly 4-3

lld_lob data type to BLOB and
CLOB data types 2-6, 4-3, 4-5

Character data
determining for lld_lob data

type 3-47, 4-5
inserting into a table 4-3
specifying with lld_lob data

type 2-5
Client file functions 3-29 to 3-41
Client files

attribute flags of 3-37
copying

large objects to 3-40
large objects to, example of 4-9
to a large object 3-34 to 3-36
to a large object, example of 4-8

creating 3-30
deleting 3-32
opening 3-37 to 3-39

CLOB data type, casting to lld_lob
data type

about 2-6
explicitly 4-5
implicitly 4-3

Concurrent access, how to limit 1-6
Contact information Intro-8
Conventions

functions, naming for 3-3
typographical and icon Intro-4



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
D
Data types

lld_lob
casting to BLOB and CLOB data

types 2-6, 4-3, 4-5
defined 2-5
determining type of data

in 3-47, 4-5
inserting binary and character

data into a table with 4-3
introduced 1-4
using 4-3 to 4-6

lld_locator
defined 2-3
inserting a row into a table

with 4-6
introduced 1-4
referencing a smart large object

with, example of 4-7
using 4-6 to 4-10

E
Environment variables Intro-5
Error code argument 5-3
Errors

callback functions, registering
for 5-4

codes listed 5-4
error code argument for 5-3
exceptions, generating for 3-42
exceptions, handling for 5-4
functions for

handling 3-41 to 3-43
handling

about 5-3
example of 4-14

SQL 5-3
status of, and function return

value 5-3
translating to SQL states 3-43

ESQL/C interface 3-4
Exceptions

generating 3-42
handling 5-4

F
Files

client. See Client files
copying smart large objects

to 3-46
creating, example of 4-10
deleting, example of 4-10

Functions
basic large object 3-5 to 3-28
client file support 3-29 to 3-41
error code argument of 5-3
error utility 3-41 to 3-43
introduced 1-5
lld_close()

about 3-7
using 4-11 to 4-14

lld_copy()
about 3-9 to 3-11
using 4-9, 4-10

lld_create
about 3-12 to 3-14
using 4-7

lld_create_client() 3-30
lld_delete() 3-15
lld_delete_client() 3-32
lld_error_raise() 3-42
lld_from_client()

about 3-34 to 3-36
using 4-8

LLD_LobType
about 3-47
using 4-5

lld_open()
about 3-17 to 3-19
using 4-11 to 4-14

lld_open_client 3-37 to 3-39
lld_read()

about 3-20, 3-21
using 4-11 to 4-14

lld_seek
using 4-11 to 4-14

lld_seek()
about 3-22 to 3-24

lld_sqlstate 3-43
lld_tell() 3-25
lld_to_client()

about 3-40
using 4-9

lld_write()
about 3-27 to 3-28
using 4-11 to 4-14

LOCopy 3-44
LOToFile 3-46
naming conventions for 3-3
return value and error status

for 5-3
smart large object

copy 3-43 to 3-45

I
Icons

Important Intro-6
Tip Intro-6
Warning Intro-6

Important paragraphs, icon
for Intro-6

Installing Large Object Locator 1-7
Interfaces

about 3-3
API

about 3-4
using 4-11 to 4-14

ESQL/C 3-4
naming conventions 3-3
SQL

about 3-4
using 4-3 to 4-11

L
Large Object Locator

about Intro-4, 1-3
Installing 1-7
registering 1-7

Large Object Locator functions. See
Functions or individual function
name.

Large objects
accessing 1-3
appending data to 3-28
attribute flags of 3-17
basic functions for 3-5 to 3-28
closing 3-7
copying

client files to 3-34 to 3-36
2 IBM Informix Large Object Locator DataBlade Module User’s Guide



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
function for 3-9 to 3-11
to client files 3-40
to large objects, example of 4-9

copying to client files, example
of 4-9

creating 3-12 to 3-14
defined 1-3
deleting 3-15
limiting concurrent access to 1-6
offset

returning for 3-25
setting in 3-23

opening 3-17 to 3-19
protocols, list of 2-4
reading from 3-20, 3-21
referencing 2-3
seeking in 3-22 to 3-24
setting read and write position

in 3-22 to 3-24
tracking open 5-4
writing to 3-27 to 3-28

Libraries
API 3-4
ESQL/C 3-4
SQL 3-4

lld_close() function
about 3-7
using 4-11 to 4-14

lld_copy() function
about 3-9 to 3-11
using 4-9, 4-10

lld_create() function
about 3-12 to 3-14
using 4-7

lld_create_client() function 3-30
lld_delete() function 3-15
lld_delete_client() function 3-32
lld_error_raise() function 3-42
lld_from_client() function

about 3-34 to 3-36
using 4-8

LLD_IO structure 3-19, 3-38
lld_lob data type

casting to BLOB and CLOB data
types 4-3

about 2-6
explicitly 4-5

defined 2-5

determining type of data in 3-47,
4-5

inserting binary data into a table
with 4-3

inserting character data into a
table with 4-3

introduced 1-4
using 4-3 to 4-6

LLD_LobType function
about 3-47
using 4-5

lld_locator data type
defined 2-3
inserting a row into a table

with 4-6
introduced 1-4
referencing a smart large object

with 4-7
using 4-6 to 4-10

lld_open() function
about 3-17 to 3-19
attribute flags 3-17
flags 3-17
using 4-11 to 4-14

lld_open_client() function
about 3-37 to 3-39
attribute flags 3-37

lld_read() function
about 3-20, 3-21
using 4-11 to 4-14

lld_seek() function
about 3-22 to 3-24
using

4-11 to 4-14
lld_sqlstate() function 3-43
lld_tell() function 3-25
lld_to_client() function

about 3-40
using 4-9

lld_write() function
about 3-27 to 3-28
using 4-11 to 4-14

LOCopy function 3-44
LOToFile function 3-46

N
Naming conventions 3-3

O
Offsets in large objects

returning 3-25
setting 3-23

Online help Intro-7

P
Protocols, list of for large

objects 2-4

R
Registering Large Object

Locator 1-7
Resources

cleaning up 1-6
reclaiming client file 3-30

Rollback, limits on with Large
Object Locator 1-6

Routines. See Functions.

S
sbspace storage parameter,

specifying for smart large
objects 3-13, 3-35

Smart large objects
copying client files to 3-35
copying to 3-10
copying to a file 3-46
copying to a smart large

object 3-44
creating 3-13
creating with lld_copy()

function 3-10
creating, example of 4-7
deleting 3-16
functions for copying 3-43 to 3-45
referencing with lld_lob data

type 2-5
referencing, example of 4-3
storage parameter defaults

for 3-13, 3-35
SQL

errors 5-3
Index 3



@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
interface
about 3-4
using 4-3 to 4-11

states, translating from error
codes 3-43

Storage parameters, specifying for
smart large objects 3-13, 3-35

T
Tip icons Intro-6
Transaction rollback

creating client files and 3-30
creating large objects and 3-13
limits on with Large Object

Locator 1-6
Types. See Data types
Typographical conventions Intro-5

U
User-defined routines

calling API functions from 3-4
example of 4-11 to 4-15

W
Warning icons Intro-6
4 IBM Informix Large Object Locator DataBlade Module User’s Guide


	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Guide
	Organization of This Guide
	Types of Users

	Conventions
	Typographical Conventions
	Comment Icon Conventions

	Additional Documentation
	Online Manual
	Other Online Documentation
	Documentation Notes and Release Notes

	Related Reading

	IBM Welcomes Your Comments

	About Large Object Locator
	In This Chapter
	Using Large Object Locator
	Large Object Locator Data Types
	Large Object Locator Functions
	Limitations
	Transaction Rollback
	Concurrent Access


	Installation and Registration

	Data Types
	In This Chapter
	lld_locator
	lld_lob

	Functions
	In This Chapter
	Interfaces
	API Library
	ESQL/C Library
	SQL Interface

	Working with Large Objects
	lld_close()
	lld_copy()
	lld_create()
	lld_delete
	lld_open()
	lld_read()
	lld_seek()
	lld_tell()
	lld_write()

	Client File Support
	lld_create_client()
	lld_delete_client()
	lld_from_client()
	lld_open_client()
	lld_to_client()

	Error Utility Functions
	lld_error_raise()
	lld_sqlstate()

	Smart Large Object Functions
	LOCopy
	LOToFile
	LLD_LobType


	Sample Code
	In This Chapter
	Using the SQL Interface
	Using the lld_lob Type
	Using Implicit lld_lob Casts
	Using Explicit lld_lob Casts
	Using the LLD_LobType Function

	Using the lld_locator Type
	Inserting an lld_locator Row into a Table
	Creating a Smart Large Object
	Copying a Client File to a Large Object
	Copying a Large Object to a Large Object
	Copying Large Object Data to a Client File
	Creating and Deleting a Server File


	Using the API
	Creating the lld_copy_subset Function
	Using the lld_copy_subset Routine


	Error Handling
	In This Chapter
	Handling Large Object Locator Errors
	Handling Exceptions
	Error Codes

	Notices
	Index

