
INFORMIX®-4GL

Concepts and Use

Version 6.0
March 1994
Part No. 000-7610

ii
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries,
registered in the United States of America as indicated by an “®,” and in numerous other
countries worldwide:

INFORMIX® and C-ISAM®.

The following are worldwide trademarks of the indicated owners or their subsidiaries,
registered in the United States of America as indicated by an “®,” and in numerous other
countries worldwide:

X/OpenCompany Ltd.: UNIX®; X/Open®

Adobe Systems Incorporated: Post Script®

Microsoft: Windows™
The Open Software Foundation: Motif™, OSF/Motif™

Some of the products or services mentioned in this document are provided by companies other
than Informix. These products or services are identified by the trademark or servicemark of the
appropriate company. If you have a question about one of those products or services, please call
the company in question directly.

ACKNOWLEDGMENTS

The following people contributed to this version of INFORMIX-4GL Concepts and Use:
Kaye Bonney, Diana Boyd, Lisa Braz, Patrick Brown, Tom Houston, Todd Katz, and Liz Knittel

Copyright © 1981-1994 by Informix Software, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form
or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems—without permission of the publisher.

RESTRICTED RIGHTS LEGEND

Software and accompanying materials acquired with United States Federal Government funds
or intended for use within or for any United States federal agency are provided with “Restricted
Rights” as defined in DFARS 252.227-7013(c)(1)(ii) or FAR 52.227-19.

Preface

This book describes INFORMIX-4GL at three levels:

What? Part I covers the main features of 4GL, describes the kind of work
it is meant to do, and the ways it is normally used.

Read Part I for a conceptual overview.

Why? Part II covers the fundamental ideas behind the design of 4GL so
you will know its parts and how they fit together.

Read Part II to understand 4GL as a programming language and
for orientation before you begin using it.

How? Part III explores 4GL in depth, using examples and discussion to
show how its statements are used together to build an application.

Read Part III to gain a framework that links together the very
detailed topics of the INFORMIX-4GL Reference.

This book has a companion, the INFORMIX-4GL Reference. It shows every
part of the language in great detail. This book does not cover every feature of
every statement, but after reading it you will have the vocabulary you need
to understand the topics in the INFORMIX-4GL Reference, and you will know
which topics of that book you need to read for any situation.

To run your 4GL programs, you also must have access to a database server
(INFORMIX-OnLine Dynamic Server or INFORMIX-SE). The database server
either must be installed on your machine or on another machine to which
your machine is connected over a network.
Preface iii

Summary of Chapters
Summary of Chapters
INFORMIX-4GL Concepts and Use is divided into these parts and chapters:

• This Preface provides general information about this book and lists
additional reference materials that might contribute to your understand-
ing of relational database management and program design.

• The Introduction tells how 4GL fits into the Informix family of products
and manuals, style conventions in the manual, and information about
useful on-line files.

Part I – Overview

Chapters 1 through 3 contain a survey of the language at a high level. It
describes the most important language features and the kinds of applications
it is meant to build.

• Chapter 1, “Introducing INFORMIX-4GL,” provides some basic informa-
tion on 4GL, what it includes, what it is used for, and where the program
can be run.

• Chapter 2, “Interfaces of INFORMIX-4GL,” considers 4GL as a tool that
provides the necessary connectivity so that interactive forms, SQL data-
bases, sequential files, and reports can work together to provide users
with the ability to rapidly access and modify information.

• Chapter 3, “The INFORMIX-4GL Language,” introduces the structured
procedural and non-procedural aspects of the language.

Part II – Concepts

Chapters 4 through 6 cover the ideas that are basic to the design of the
language. It emphasizes the programming tasks and problems that 4GL is
meant to solve and how the features of the language are designed to solve
them. Some partial coding examples are used to illustrate the main points.

• Chapter 4, “Parts of an Application,” offers an overview of the
components of a 4GL application.

• Chapter 5, “The Procedural Language,” describes three basic 4GL
language features: data definition, decisions and loops, and handling
error conditions.

• Chapter 6, “Database Access and Reports,” examines the relationship
between the data in a SQL database and 4GL reports.
iv Preface

Informix Welcomes Your Comments
Part III – Usage

Chapters 7 through 12 are more specific, covering the statements of the
language in groups, discussing how specific statements work with others
to solve common programming tasks. Many short samples of code are
used for illustration.

• Chapter 7, “The User Interface,” reviews the major components of
an interactive 4GL application.

• Chapter 8, “Using the Language,” details the data types available in 4GL,
variables, data structures and use of arrays, and other, similar topics.

• Chapter 9, “Using Database Cursors,” overviews nonprocedural,
row-by-row, and dynamic methods of accessing an SQL database from
a 4GL application.

• Chapter 10, “Creating Reports,” shows how to design 4GL report drivers
and report formatters.

• Chapter 11, “Using the Screen and Keyboard,” takes a detailed look at
the methods of specifying a screen form and managing 4GL windows.

• Chapter 12, “Handling Exceptions,” looks at the problem of handling
anticipated and unanticipated situations when running a 4GL
application.

Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Please include the following infor-
mation:

• The name and version of the manual that you are using

• Any comments that you have about the manual

• Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
[TETC Technical Publications Department]
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your feedback.
Preface v

Related Reading
Related Reading
If you have no prior experience with database management, you should refer
to the Informix Guide to SQL: Tutorial. This manual is provided with all
Informix database servers.

For additional technical information on database management, consult the
following texts by C. J. Date:

• Database: A Primer (Addison-Wesley Publishing, 1983)

• An Introduction to Database Systems, Volume I (Addison-Wesley Publishing,
1990)

• An Introduction to Database Systems, Volume II (Addison-Wesley
Publishing, 1983)

This guide assumes that you are familiar with the UNIX operating system. If
you have limited UNIX experience, you might want to look at your operating
system manual or a good introductory text before you read this manual.

Some suggested texts about UNIX systems follow:

• A Practical Guide to the UNIX System, Second Edition, by M. Sobell (Ben-
jamin/Cummings Publishing, 1989)

• A Practical Guide to UNIX System V by M. Sobell (Benjamin/Cummings
Publishing, 1985)

• Introducing the UNIX System by H. McGilton and R. Morgan (McGraw-Hill
Book Company, 1983)

• UNIX for People by P. Birns, P. Brown, and J. Muster (Prentice-Hall, 1985)

If you are interested in learning more about the SQL language, consider
the following text:

• Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)
vi Preface

Table of
Contents

INFORMIX-4GL
Concepts and Use

Preface iii

Introduction
Documentation Included with 4GL 3
Other Useful Documentation 4
How to Use this Manual 4

Typographical Conventions 5
Useful On-Line Files 5
On-Line Error Reference 6
The stores Demonstration Application and Database 6
New Features in 4GL 6

NLS Support 6
Improved Performance 7
Improved Quality 7

Compatibility and Migration 7

Chapter 1 Introducing INFORMIX-4GL
Overview 1-3
What is 4GL? 1-3
4GL Provides a Programmer’s Environment 1-3
4GL Works with Databases 1-4
4GL Runs in Different UNIX Environments 1-5
Two Versions of 4GL 1-5

Chapter 2 Interfaces of INFORMIX-4GL
Overview 2-3
Database Access 2-4
Access to Sequential Files 2-4
Report Output 2-4
User Access 2-5
Using Forms and Menus 2-6

Summary 2-7

Chapter 3 The INFORMIX-4GL Language
Overview 3-3
A Structured, Procedural Language 3-3
A Nonprocedural, Fourth-Generation Language 3-5

Database Access 3-5
Report Generation 3-6
User Interaction 3-7

Summary 3-8

Chapter 4 Parts of an Application
Overview 4-3
The Database Schema 4-4
Form Specifications and Form Files 4-6

Form Design 4-8
Field Entry Order 4-8

Program Source Files 4-8
Organization of a Program 4-9
The Globals File 4-10

Program Object Files 4-10
P-code Object Files 4-11
C Code Object Files 4-12

Example Programs 4-14

Chapter 5 The Procedural Language
Overview 5-3
Declaration of Variables 5-3

Data Typing 5-3
Automatic Data Conversion 5-4
Data Structures 5-6
Data Allocation 5-8
Scope of Reference 5-9

Decisions and Loops 5-9
Statement Blocks 5-10
Comments 5-10

Exceptions 5-11
Kinds of Exceptions 5-11
Why Exceptions Must Be Handled 5-11
How Exceptions Are Handled 5-12

Chapter 6 Database Access and Reports
Overview 6-3
Table of Contents viii

Using SQL in a 4GL Program 6-3
Creating 4GL Reports 6-4

The Report Driver 6-6
The Report Formatter 6-7

Chapter 7 The User Interface
Overview 7-3

Line-Mode Interaction 7-3
Formatted Mode Interaction 7-5

Formatted Mode Display 7-5
Screens and Windows 7-7

The Computer Screen and the 4GL Screen 7-7
The 4GL Window 7-7

How Menus Are Used 7-8
How Forms Are Used 7-11

Defining a Form 7-11
Displaying a Form 7-14
Reading User Input from a Form 7-14
Screen Records 7-15
Screen Arrays 7-16

How the Input Process Is Controlled 7-18
How Query by Example Is Done 7-19
How 4GL Windows Are Used 7-21

Alerts and Modal Dialogs 7-22
Information Displays 7-23

How the Help System Works 7-24

Chapter 8 Using the Language
Overview 8-3
Simple Data Types 8-3

Number Data Types 8-4
Time Data Types 8-5
Character and String Types 8-6

Variables and Data Structures 8-8
Declaring the Data Type 8-8
Creating Structured Datatypes 8-9
Declaring the Scope of a Variable 8-11
Using Global Variables 8-14
Initializing Variables 8-17

Expressions and Values 8-18
Literal Values 8-18
Values from Variables 8-19
Values from Function Calls 8-19
Table of Contents ix

Numeric Expressions 8-20
Relational and Boolean Expressions 8-20
Character Expressions 8-21
Null Values 8-22

Assignment and Data Conversion 8-23
Data Type Conversion 8-25
Conversion Errors 8-25

Decisions and Loops 8-26
Decisions Based on Null 8-28

Functions and Calls 8-29
Function Definition 8-29
Invoking Functions 8-30
Arguments and Local Variables 8-30

Working with Multiple Values 8-32
Assigning One Record to Another 8-32
Passing Records to Functions 8-33
Returning Records from Functions 8-34

Chapter 9 Using Database Cursors
Overview 9-3
The SQL Language 9-3
Nonprocedural SQL 9-4
Nonprocedural SELECT 9-5
Row-by-Row SQL 9-5

Updating the Cursor’s Current Row 9-8
Updating Through a Primary Key 9-8
Updating with a Second Cursor 9-9

Dynamic SQL 9-10

Chapter 10 Creating Reports
Overview 10-3
Designing the Report Driver 10-3

An Example Report Driver 10-4
Designing the Report Formatter 10-5

The REPORT Statement 10-7
The Report Declaration Section 10-8
The OUTPUT Section 10-8
The ORDER BY Section 10-10
One-Pass and Two-Pass Reports 10-11
The FORMAT Section 10-12
Contents of a Control Block 10-13
Formatting Reports 10-13
PAGE HEADER and TRAILER Control Blocks 10-14
x Table of Contents

ON EVERY ROW Control Block 10-15
ON LAST ROW Control Block 10-16
BEFORE GROUP and AFTER GROUP Control Blocks 10-16
Using Aggregate Functions 10-17

Chapter 11 Using the Screen and Keyboard
Overview 11-3
Specifying a Form 11-3

The DATABASE Section 11-4
The SCREEN Section 11-5
The TABLES Section 11-7
The ATTRIBUTES Section 11-8
The INSTRUCTIONS Section 11-11

Using Windows and Forms 11-13
Opening and Displaying a 4GL Window 11-14
Displaying a Menu 11-16
Opening and Displaying a Form 11-17
Displaying Data in a Form 11-19
Combining a Menu and a Form 11-20
Displaying a Scrolling Array 11-21
Taking Input Through a Form 11-23
Taking Input Through an Array 11-27

Screen and Keyboard Options 11-27
Reserved Screen Lines 11-28
Changing Screen Line Assignments 11-29
Run-Time Key Assignments 11-31

Chapter 12 Handling Exceptions
Overview 12-3
Exceptions 12-4

Run-Time Errors 12-4
SQL End of Data 12-5
SQL Warnings 12-5
Asynchronous Signals: Interrupt and Quit 12-6

Using the DEFER Statement 12-7
Interrupt with Interactive Statements 12-7

Using the WHENEVER Mechanism 12-10
What WHENEVER Does 12-10
Actions of WHENEVER 12-11
Errors Handled by WHENEVER 12-11
Using WHENEVER in a Program 12-12

Notifying the User 12-14
Table of Contents xi

Index
xii Table of Contents

Introduction
Introduction
Documentation Included with 4GL 3

Other Useful Documentation 4

How to Use this Manual 4
Typographical Conventions 5

Useful On-Line Files 5

On-Line Error Reference 6

The stores Demonstration Application and Database 6

New Features in 4GL 6
NLS Support 6
Improved Performance 7
Improved Quality 7

Compatibility and Migration 7

2 Introduction

INFORMIX-4GL consists of a suite of tools that allow you to efficiently
produce complex interactive database applications. Using the 4GL language,
you can quickly write sophisticated, portable, forms-driven, full-screen
applications for data entry, data lookup and display, and report generation.

The 4GL development environment provides all the tools necessary to design
screen forms, construct and manage program modules, and compile source
modules.

Documentation Included with 4GL
The 4GL documentation set includes the following manuals:

Manual Description

INFORMIX-4GL Concepts
and Use

Introduces 4GL and provides the context needed to
understand the other manuals in the documentation set.
It covers 4GL goals (what kinds of programming
the language is meant to facilitate), concepts and
nomenclature (parts of a program, ideas of database
access, screen form, and report generation), and
methods (how groups of language features are used
together to achieve particular effects).

INFORMIX-4GL Reference The day-to-day, keyboard-side companion for the 4GL
programmer. It describes the features and syntax of the
4GL language, including 4GL statements, forms, reports,
and the built-in functions and operators. Appendixes are
included that describe the demonstration database, the
application programming interface of 4GL with the C
language, and utility programs such as mkmessage and
upscol, among other topics.

INFORMIX-4GL by
Example

A collection of 30 annotated 4GL programs. Each is
introduced with an overview; then the program source
code is shown with line-by-line notes. The program
source files are distributed as text files with the product;
scripts that create the demonstration database and copy
the applications are also included.
Introduction 3

Other Useful Documentation
Other Useful Documentation
Depending on the database server that you are using, you or your
system administrator need either the INFORMIX-OnLine Administrator’s
Guide, Version 6.0 or the INFORMIX-SE Administrator’s Guide, Version 6.0.

How to Use this Manual
This manual assumes that you are using INFORMIX-OnLine Dynamic Server
as your database server. Features and behavior specific to INFORMIX-SE are
noted where appropriate.

The following section describes the typographical conventions used in
this manual.

INFORMIX-4GL Quick
Syntax

Contains the syntax diagrams from the INFORMIX-4GL
Reference, the Guide to the INFORMIX-4GL Interactive
Debugger, and the Informix Guide to SQL: Syntax,
Version 6.0.

Informix Guide to SQL:
Tutorial

Provides a tutorial on SQL as it is implemented by
Informix products, and describes the fundamental ideas
and terminology that are used when planning and
implementing a relational database. It also describes
how to retrieve information from a database, and how
to modify a database.

Informix Guide to SQL:
Reference

Provides full information on the structure and contents
of the demonstration database that is provided with
4GL. It includes details of the Informix system catalog
tables, describes Informix and common environment
variables that should be set, and describes the column
data types that are supported by Informix database
engines. It also provides a detailed description of all of
the SQL statements that Informix products support

Informix Guide to SQL:
Syntax

Contains syntax diagrams for all of the SQL statements
and statement segments that are supported by the 6.0
server.

Informix Error Messages,
Version 6.0

Lists all the error messages that can be generated by the
different Informix products. This document is organized
by error message number; it lists each error message and
describes the situation that causes the error to occur.

Manual Description
4 Introduction

Typographical Conventions
Typographical Conventions
Informix product manuals use a standard set of conventions to introduce
new terms, illustrate screen displays, describe command syntax, and so forth.
The following typographical conventions are used throughout this manual:

KEYWORD All keywords appear in UPPERCASE letters. (You can in
fact enter keywords in either uppercase or lowercase letters.)

italics New terms and emphasized words are printed in italics.
Italics also mark syntax terms for which you must specify
some valid identifier, expression, keyword, or statement.

boldface 4GL identifiers, SQL identifiers, filenames, database names,
table names, column names, utilities, command-line specifi-
cations, and similar names are printed in boldface.

monospace Output from 4GL, code examples, and information that
you or the user enters are printed in this typeface.

Additionally, when you are instructed to “enter” or “execute” text,
immediately press RETURN after the entry. When you are instructed to
“type” the text or “press” a key, pressing RETURN is not required.

Useful On-Line Files
In addition to the Informix set of manuals, the following on-line files,
located in the $INFORMIXDIR/release directory, may supplement
the information in this manual:

Documentation describe features not covered in the manuals or that
Notes have been modified since publication. The file containing

the documentation notes for 4GL is called 4GLDOC_6.0.

Release Notes describe feature differences from earlier versions of Informix
products and how these differences may affect current
products. The file containing the release notes for this
product is called TOOLS_6.0.

Please examine these files because they contain important information about
application and performance issues.

4GL provides on-line Help; invoke Help by pressing CONTROL-W.
Introduction 5

On-Line Error Reference
On-Line Error Reference
Use the finderr script to display a particular error message or messages
on your terminal screen. Use this script by typing finderr msg_num
where msg_num is the number of the message you want to look up.

The script is located in the $INFORMIXDIR/bin directory. For details
on using this script, see the introduction of INFORMIX-4GL Reference.

The stores Demonstration Application and Database
4GL includes several 4GL demonstration applications, along with a demon-
stration database called stores2 that contains information about a fictitious
wholesale sporting-goods distributor. You can create the stores2 database
in the current directory by entering one of the following commands.

• If you are using the INFORMIX-4GL C Compiler Version, type:

i4gldemo

• If you are using the Rapid Development System Version, type:

r4gldemo

Many (but not all) of the examples in the 4GL documentation set are based
on the stores2 database. This database is described in detail in Appendix A
of INFORMIX-4GL Reference.

New Features in 4GL
This version of 4GL provides support for developers working in European
countries, improved performance, and improved quality.

NLS Support
Native Language Support (NLS) is geared towards European countries.
This feature extends the ASCII character set from 128 to 256 characters.
These additional characters allow you to include characters such as Ö and ç
in the definition of your database and in 4GL programs. To use NLS, you need
to set some environment variables. You must set the environment variables
to the same values as the variables are set for the database (as set by the data-
base creator). NLS is described in detail in Appendix E of INFORMIX-4GL
Reference.
6 Introduction

Improved Performance
Improved Performance
The removal of the relay module in the 6.0 engine results in improved speed
in which data can be retrieved from and sent to a database. As a result, the
performance of your 4GL applications should improve.

Improved Quality
Over 200 bug fixes have been made to this version of the product. Also, the
documentation set has been completely reorganized, rewritten, and updated
to include all 6.0 4GL features.

Compatibility and Migration
You can easily use applications developed with an earlier version of 4GL,
such as version 4.0 or 4.1, with this 6.0 version of 4GL. Also, if you have 4GL
applications written for the Windows environment, you can compile and run
the applications in the UNIX environment. For complete information on
using a Windows application to the UNIX environment, see the INFORMIX-
4GL Starts Here manual in the Windows documentation set.
Introduction 7

Compatibility and Migration
8 Introduction

Chapter
1

Introducing
INFORMIX-4GL
Overview 3

What is 4GL? 3

4GL Provides a Programmer’s Environment 3

4GL Works with Databases 4

4GL Runs in Different UNIX Environments 5

Two Versions of 4GL 5

1-2 Introducing INFORMIX-4GL

Overview
This chapter contains a high-level overview of INFORMIX-4GL. Its aim is to
orient you to the capabilities and typical uses of the product, and to answer
general questions such as what kind of software 4GL is and what is it used for.

What is 4GL?
4GL is a full-featured, general-purpose, fourth-generation programming
language with special facilities for producing the following:

• Database query and database management using the Structured Query
Language (SQL).

• Reports from a database or other data.

• Form- and menu-based multi-user applications.

These special features make 4GL especially well-suited to developing large
database applications.

4GL Provides a Programmer’s Environment
4GL provides a Programmer’s Environment that makes it easy to create, com-
pile, and maintain large, multi-module programs. Within the Programmer’s
Environment, you can:

• Create new program modules and modify existing modules.

• Compile individual modules and entire applications.

• Create and compile forms used by the application.

• Run compiled applications.

• Use INFORMIX-SQL to interact with an Informix database.

• Get help at any time by using the on-line help feature.
Introducing INFORMIX-4GL 1-3

4GL Works with Databases
You can also manage your applications by using commands at the operating
system prompt rather than using the Programmer’s Environment.

4GL Works with Databases
Although it is a complete, general-purpose programming language, 4GL
was specifically designed to make certain kinds of programs especially easy
to write. Programs of these kinds, collectively “interactive database applica-
tions,” face some or all of the following special challenges:

• They retrieve data from a local or remote database and process it with
logic more complicated than SQL alone permits.

• They present data using screen forms and allow users to construct queries
against the database.

• They allow users to alter database records, often enforcing complex
requirements for data validation and security.

• They update a database with data processed from other databases or from
operating system files.

• They generate multi-page, multi-level reports based on data from a
database or other sources, often letting the user set the parameters of the
report and select the data for it.

With INFORMIX-4GL you can program applications of these kinds more
easily than with any other language.

In addition, 4GL has an open, readable syntax that encourages good
individual or group programming style. Programs written in 4GL are easily
enhanced and extended. This, with its development environment, makes it
easy for programmers to become productive quickly no matter what pro-
gramming languages they know.
1-4 Introducing INFORMIX-4GL

4GL Runs in Different UNIX Environments
4GL Runs in Different UNIX Environments
INFORMIX-4GL is the only multi-purpose programming language that offers
code- and display-compatibility across operating environments. Applica-
tions you develop are portable to the different platforms subject to simple
porting guidelines.

You can run this version of 4GL on the following types of computers:

• On UNIX character-based terminals provided by a wide variety of
hardware vendors

• On UNIX workstations

Informix also provides a Microsoft Windows version of 4GL.

Two Versions of 4GL
Informix provides two versions of 4GL:

• The INFORMIX-4GL C Compiler Version, which uses a preprocessor to
generate INFORMIX-ESQL/C source code. This code is preprocessed in
turn to produce C source code, which is then compiled and linked as object
code in an executable command file.

• The INFORMIX-4GL Rapid Development System, which uses a compiler
to produce pseudo-code (called “p-code”) in a single step. You then invoke
a “runner” to execute the p-code version of your application. (This
version is sometimes abbreviated as RDS.)

For details on the differences between the two versions, see Chapter 1
in INFORMIX-4GL Reference.
Introducing INFORMIX-4GL 1-5

Two Versions of 4GL
1-6 Introducing INFORMIX-4GL

Chapter
2
Interfaces of
INFORMIX-4GL
Overview 3

Database Access 4

Access to Sequential Files 4

Report Output 4

User Access 5

Using Forms and Menus 6

Summary 7

2-2 Interfaces of INFORMIX-4GL

Overview
Multi-user application programs you write using INFORMIX-4GL have
four primary interfaces to other software:

• Accessing a database through a database engine.

• Communicating with users through a terminal.

• Accessing sequential files through the host operating system.

• Generating reports that can then be sent to several destinations.

/// /// /// ////////////

/////////// ///////// ///
///////

////// /////// /////////
//////// //////

///////////

DatabaseInteractive users
of database

Common data files

Database reports

4GL Window

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
Interfaces of INFORMIX-4GL 2-3

Database Access
Database Access
Your 4GL programs can access SQL databases using the appropriate INFOR-
MIX-OnLine Dynamic Server and INFORMIX-SE database engines.

The database engine can be located on the same computer as the application
program, but this may not be the case.

Once network connections are properly established, database access is
transparent; you need not write any special code to make it happen. In fact,
the same 4GL program can work with a local database engine in the same
computer on one occasion, and over a network to an engine in another
computer on another occasion.

Access to Sequential Files
Your 4GL application can use standard sequential, or flat, data files in the
following ways:

• The UNLOAD statement writes selected rows of data to a specified file

• The LOAD statement reads a specified file and inserts its lines as rows in a
database table

• The START REPORT or the REPORT statements can send output from
a report to a specified sequential file or an operating system pipe

• The PRINT FILE statement can incorporate the contents of a specified
sequential file into the output of a 4GL report

• The DISPLAY statement can be used to write lines to the Application
window. Using the host operating system you can direct these lines to
a file or another program

Report Output
Your 4GL program can generate powerful and flexible reports. The output of
a report is a series of print lines. This output can be directed to any of several
destinations:

• A screen

• A printer

• A host system sequential file, specified by its pathname

• A UNIX operating system “pipe” to another process.
2-4 Interfaces of INFORMIX-4GL

User Access
The logic for generating reports is the same in all cases. The destination
can be coded into the program or selected at execution time.

Report programming is covered in more detail in Part II, with examples
in Part III of this book.

User Access
To provide for portability of code across different platforms, your program
interacts with the user through windows with a fixed number of rows and
character-width columns.

The user of your application may be using any of the following:

• A terminal-emulation program in a personal computer or workstation
that is connected to a UNIX network.

• A character-based terminal connected to a UNIX system.

The key point is that no matter what the display device, the 4GL user inter-
face is programmed in terms of fixed-size characters; that is, so many col-
umns across by so many rows down.

Forms are also portable across applications and platforms. You design screen
forms through which your program can display data; then you compile the
forms separately from the other parts of the program. Thus the compiled
forms can be used with different programs.

You display a form with one program statement and fill it with data in
another; you can prompt for user input from any or all fields with a third.
You can easily open additional display areas for alerts and other information.
Interaction through a hierarchical set of ring menus (horizontal menus)
is also fully supported.
Interfaces of INFORMIX-4GL 2-5

Using Forms and Menus
Using Forms and Menus
The typical 4GL program is designed around a hierarchy of screen forms and
menus. The program presents a main menu containing a list of major activi-
ties, for example query, insert, or update. The user makes a selection of one
activity and the program displays the form for that activity. When the activity
ends, the program redisplays the main menu.

Figure 2-1 High-level view of a program with three major forms

The key characteristic of a 4GL program is that the program chooses which
screen elements the user interacts with at any particular time. This predict-
ability leads to an easily maintained linear program structure and simple
program logic.

*MAIN MENU

//// ///////// /////// //////////////
////////// //////// /////////
//////// ////// ////////// /////////// ///////
///// ///////////// //////// ///// ///////
/////////// /////////// /////////
////// ////// ////////////

CUSTOMERS: /// /// ///

/////////// [] ///////// /// []
/////// []

[]
////// [] /////// [] ///////// []

//////// ////// [] []
/////////// []

ORDERS: /// /// /// /// ///

/////// ////// [] //////// /// []
///// /// [] ///// /// []
///// ///// /// //////////// ///// //// ///

[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []

////// //// []

MANUFACT MAINT

//////////// /////////// ///// ///
/// //// //// ////

[] [] []
[] [] []
[] [] []
[] [] []
[] [] []
2-6 Interfaces of INFORMIX-4GL

Summary
Summary
You use 4GL to write programs that connect key elements in the following
informational structure:

• The database

• The interactive users of the database

• Common data files

• Database reports

In dealing with the database, you use the industry-standard Structured
Query Language, that you can augment with custom programming logic.

As you will see in subsequent chapters, your programs have a simple method
for access to common sequential files, and a nonprocedural, task-oriented
method of getting information from a database and defining and producing
reports.

You can use 4GL to program elaborate user interactions based on forms and
menus. This user interface is character-oriented; that is, output is displayed
in a fixed number of evenly spaced lines, each of which contains a fixed num-
ber of monospace characters. This approach allows applications written in
4GL to run without modification on supported platforms.
Interfaces of INFORMIX-4GL 2-7

Summary
2-8 Interfaces of INFORMIX-4GL

Chapter
3

The INFORMIX-
4GL Language
Overview 3

A Structured, Procedural Language 3

A Nonprocedural, Fourth-Generation Language 5
Database Access 5
Report Generation 6
User Interaction 7

Summary 8

3-2 The INFORMIX-4GL Language

Overview
This chapter provides a brief tour of INFORMIX-4GL as a language. The
purpose is to give you an idea of what 4GL code looks like. There are many
short examples in the following chapters and several complete examples
supplied on-line with the product. (For additional details on the 4GL
programming language be sure to see Chapter 8, “Using the Language.”)

As a programming language, 4GL has several important features:

• It is a procedural language, with facilities for structured programming.

• It is a nonprocedural (“fourth-generation”) language with regard to:

o Database access

o Reports

o Form-based user interaction

• It is C-like in design, but much easier to read, write, and support.

A Structured, Procedural Language
4GL is a general-purpose programming language for creating structured
programs, the way you might use Pascal, C, COBOL, or PL/1. Like these
languages, 4GL offers statements you use to perform the following tasks:

• Declare variables of different types

• Calculate values and assign them into variables

• Declare functions

• Apply functions to data

• Display the contents of variables on the screen

Also like other languages, 4GL has control statements you use to define
choices, loops, and statement blocks of code.
The INFORMIX-4GL Language 3-3

A Structured, Procedural Language
Here is a short, complete program in 4GL. It prompts the user for a number
and displays the square, cube, and fourth power of the number.

4GL is not sensitive to the letter case of a source statement. The use of
all-capitals for language keywords such as DEFINE and MAIN is merely
a convention used in these manuals. You are free to write keywords in
lowercase, or any combination of capitals and lowercase you prefer.

The 4GL language supports structured programming. Its design encourages
you to build your program as a family of simple, reusable functions with
well-defined interfaces. The following function returns the lesser of two
integers.

Every program
has a MAIN

section where
execution begins.

What the user
types is converted
to a FLOAT and
stored in “given.”

Assignment
is done with

the verb LET. One of several
types of loop
statements.

Variables are declared by name and by type.

SLEEP keeps the
4GL window
open in Line
mode.

DEFINE given, product FLOAT , power INTEGER

MAIN

PROMPT "Enter a decimal number: " FOR given

LET product = given

DISPLAY " Exponent value"

FOR power = 2 TO 4

LET product = product * given

DISPLAY power, product

END FOR

SLEEP 5

END MAIN

FUNCTION smaller (a,b)

DEFINE a,b,z SMALLINT

LET z = a

IF z > b THEN

LET z = b

END IF

RETURN z

END FUNCTION

Function
arguments

Function
name

Variables local
to the function.

Compound
statements

are delimited
by END.
3-4 The INFORMIX-4GL Language

A Nonprocedural, Fourth-Generation Language
As described in the next chapter, 4GL also has features making it easy
to assemble large programs from many small source modules.

A Nonprocedural, Fourth-Generation Language
4GL is a nonprocedural, or “fourth generation” language in three important
areas:

• Database access

• Report generation

• User interaction

In these areas you specify what is to be done, while 4GL (or the database
engine) takes care of the actual sequence of events.

Database Access
4GL includes all Informix 4.1-level Structured Query Language (SQL)
statements as native statements of the language. The following function
applies a change in price to all the items in the stock table that are purchased
from a particular manufacturer. The function returns the number of rows
changed to the calling routine.

It is the nature of many SQL statements to be nonprocedural; that is, you
use the statements to specify what is to be done, and the database engine
determines how to do it.

FUNCTION markup(PctChg, manuf)

 DEFINE PctChg FLOAT ,

manuf CHAR(3)

 UPDATE stock

 SET unit_price = unit_price * (1+PctChg)

 WHERE manu_code = manuf

RETURN sqlca.sqlerrd[3]

 -- returns number of rows retrieved

END FUNCTION

UPDATE
statement is

standard SQL.

Program
variable
used in SQL
statement.

SQL communications
area is a global record.
The INFORMIX-4GL Language 3-5

Report Generation
However, using 4GL you can write code that applies sophisticated logic to
the results of the SQL statements. For example, the function in the preceding
example could contain statements to validate the argument before applying
the change, or to verify the authorization of the current user to perform such
a change.

Report Generation
A report is an organized display of data that has been extracted from the
database. Reports are often tabular in form, can be voluminous in size, and
designed for printing with page headings and footings. Frequently reports
are produced by noninteractive, “batch” programs, perhaps run at night.
Any 4GL program can produce a report.

4GL divides the task of producing a report into two parts. One part, which
may require procedural logic, is the production of the rows of data that go
into the report. The second part is the logic within the report itself: your deci-
sions as to how to format header and footer lines, detail lines, control breaks,
and display subtotals.

You write the logic of the report in a nonprocedural form, as a collection of
code blocks that are called automatically as needed. For example, your code
block for a group subtotal can be executed automatically on each change in
the value of the group control variable. Your code block for a page footer is
called automatically at the bottom of each page.

Thus, as you design and code the logic of a report, you think about each part
of the report in isolation. 4GL supplies the “glue” logic that invokes the report
sections as required.

Examples of reports are shown in subsequent chapters, particularly in
Chapter 10, “Creating Reports.” One key point: the part of the program that
produces the data rows does not need to arrange the rows. 4GL can automat-
ically collect generated rows and sort them before presenting them to the
report code, if that is necessary.
3-6 The INFORMIX-4GL Language

User Interaction
User Interaction

4GL contains extensive support for writing interactive programs. The
following illustration shows a typical screen form with a menu, together with
the pseudocode that would be used to display it. (Example 19 in INFORMIX-
4GL by Example contains the complete source code of this program.)

You describe a screen form in its own source file and compile it separately
from program code. Since forms are independent of 4GL programs, they are
easy to use with many different 4GL applications.

OPEN FORM f_cust FROM "f_cust"

DISPLAY FORM f_cust

MENU "New Customers"

COMMAND "Query"

CALL queryCust()

COMMAND "First"

CALL firstCust()

COMMAND "Next"

CALL nextCust()

COMMAND "Last"

CALL lastCust()

COMMAND "Exit" KEY(Escape,CONTROL-E)

EXIT MENU

END MENU

Gets precompiled form from disk
Displays form fields and labels

on screen

Displays menu choices and
specifies the code to execute when

each choice is selected
The INFORMIX-4GL Language 3-7

Summary
You can fill some or all of the fields of a form from program variables with
a single statement. With another statement you can open up form fields for
user input with the entered data returned to program variables. For detailed
validation, you can attach blocks of code to form fields. The code is executed
when the cursor leaves or enters a field.

You can open a 4GL window, optionally containing another form, over the top
of the current 4GL window, and then restore the original display. There is
support for scrolling lists of data both for display and editing. These features
are covered in subsequent chapters.

Summary
4GL has all the features of a standard, structured programming language.
It goes beyond such languages as Pascal or C in that it supports nonproce-
dural, task-oriented ways of programming database access, report genera-
tion, and user interaction.
3-8 The INFORMIX-4GL Language

Chapter
4

Parts of an
Application
Overview 3

The Database Schema 4

Form Specifications and Form Files 6
Form Design 8
Field Entry Order 8

Program Source Files 8
Organization of a Program 9
The Globals File 10

Program Object Files 10
P-code Object Files 11
C Code Object Files 12

Example Programs 14

4-2 Parts of an Application

Overview
You typically use INFORMIX-4GL to build an interactive database application,
a program that mediates between a user and a database. The database
schema that organizes data into relational tables gives shape to one side
of the program. The needs of your user shape the other side. You write the
program logic that bridges the gap between them.

Such a program has many parts that you prepare with the help of the 4GL
Programmer’s Environment. The main parts of an application are:

Form source files You specify the user interface to your application using
editable files that specify the appearance of a form on
the screen and the data types and attributes of the
fields in the form.

Form object files Your form specifications are compiled into a binary
form by using FORM4GL, the 4GL form compiler. These
are loaded by the program during execution.

Message source files You write the text of help messages and other messages
separately from your programs. You can use a common
set of messages for multiple programs, and you can
change these (for instance to support a different
language) independently of the programs.

Message object files Your messages are indexed for rapid access by
mkmessage, the 4GL message compiler. Like a form, a
compiled message file can be used by many different
programs.

Program source files You write your program as one or more files of 4GL
source code.

Program object files Your sources are compiled into C code or p-code
executable files, depending on the version of 4GL you
are using. (For a brief description of the two versions,
see “Two Versions of 4GL” on page 1-5.)
Parts of an Application 4-3

The Database Schema
Figure 4-1 Parts of a 4GL application

The Database Schema
In the structure of the database, either you or another person acting as the
Database Administrator (DBA), carefully design a representation of the real
world, or an important part of it.

This picture of the real world is expressed in the form of tables of information,
each containing categories of information, called columns. It is not simple to
make the proper choice of columns and to group them into tables so that the
data can be used efficiently and reliably as your needs change. In fact, many
books have been written on the subject of how best to design a database
structure, usually referred to as a schema.

4GL source files

Database schema

Form
specifications

Compiled
 form

Compiled 4GL code

______ ______
____ ________
________ ____
______ ______

| |
|
|
|

|
|

|

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.frm

______ ______
____ ________
________ ____
______ ______

| |
|
|
|

|
|

|

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Message files

Compiled
message files

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.4go

.iem

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

.msg

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /

/ / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / /

.per

______ ______
____ ________
________ ____
______ ______

| |
|
|
|

|
|

|

/ / / / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

.msg

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /
4-4 Parts of an Application

The Database Schema
The database schema affects your 4GL program in many ways:

• You can have program variables that have the same data types and names
as database columns. 4GL makes this easy by letting you declare a vari-
able as being LIKE a column in a table. When the program is compiled, the
compiler queries the database for the appropriate data type.

• Your program can contain SQL statements that refer to names of tables
and columns. Any change in the schema may require you to examine
these statements and possibly change them.

• The logic of your program may depend on the schema. For example,
if your program has to change the schema of several tables in performing
a certain operation, you may want to use explicit database transactions;
while if the data is arranged so that only a single table needs changing,
you can avoid this.

In general, before you start work on a large application, you should make
sure that the database schema is workable and that you and others who will
be using the database understand it well.
Parts of an Application 4-5

Form Specifications and Form Files
Form Specifications and Form Files
In many applications the user interface is defined by forms. A form is a fixed,
functionally organized arrangement of fields (areas where you can display
program data and the user can enter text) and labels (static, descriptive text).

Figure 4-2 A form containing labels, fields, additional text, and a screen array

The user of a program does not know about the database schema nor your
carefully-designed program logic. As the user sees it, the forms and the
menus that invoke them are the application. The arrangement of fields and
labels, and the behavior of the forms as the user presses different keys and
selects different menu options, create the personality of the program.

4GL form specification files are ASCII files. You can use an ASCII text editor
to design the labels and fields for your form. Here is a portion of the form
specification file used to create the preceding form:

Labels

Fields
4-6 Parts of an Application

Form Specifications and Form Files
SCREEN
{

Customer Number:[f000] Company Name:[f001]
Order No:[f002] Order Date:[f003] PO Number:[f004]
--
Item No. Stock No Manuf Description Quantity Price Total
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]

 Sub-Total: [f012]
 Tax Rate [f013]% [f014] Sales Tax: [f015]
--
 Order Total: [f016]
}
TABLES
customer orders items stock state
ATTRIBUTES
f000 = orders.customer_num;
f001 = customer.company;
...

To see the entire text of this example, see Example 11 in INFORMIX-4GL by
Example.

After specifying a form, you compile it with FORM4GL, the 4GL form com-
piler. The result is a portable binary file that can be opened and displayed
from any 4GL program on any platform supported by 4GL.

Figure 4-3 The form compilation process

Compiled forms are independent of the programs that use them, so you can
use the same forms in different applications for a consistent “look and feel.”

Since forms are so important to the users of your application, you should
consider designing the main forms before any other part of the program. You
can quickly prototype programs that display forms so your users can give
you their opinions.

Form compiler .frm

______ ______
____ ________
________ ____
______ ______

| |
|
|
|

|
|

|

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.per

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /
Parts of an Application 4-7

Form Design
Here is the text of the program that displayed the form on page 4-6:

MAIN
 OPEN FORM fx FROM "f_orders"
 DISPLAY FORM fx
 DISPLAY "2478" TO orders.customer_num
 DISPLAY "Overachievers, Inc" TO customer.company
 SLEEP 60
END MAIN

Form Design
Although user interface design is both an art and a science, most form
designers are neither scientists nor artists. Here are a few points to consider
when creating forms for your application:

• Is the purpose of the form clear from its title and the title of the menu
command that invokes it?

• Are fields in the form arranged in the same logical order that the user
typically follows in transcribing or describing the information?

• Is the same information always given the same label in every form in
which it appears?

• Are form labels consistent in style and content?

• Is the relationship between various forms as clear as possible?

• Is it obvious how to complete the form and what fields are required?

Field Entry Order
With 4GL you can constrain the user to entering fields in a preset order, or you
can permit entry into fields in any order desired by the user. Since application
and form requirements differ, you can control these factors on a form-by-
form basis.

Program Source Files
You express the logic of your application with 4GL statements in program
source files.
4-8 Parts of an Application

Organization of a Program
Organization of a Program
If you are using the C Compiler Version of 4GL, the files containing execut-
able 4GL statements require the file suffix .4gl (otherwise the program com-
piler cannot find them). However, if you are using the RDS version of 4GL,
you can omit the .4gl file suffix.

Executable statements are organized as program blocks. A function is a unit
of executable code that can be called by name. In a small program, you can
write all the functions used in the program in a single file. As programs grow
larger, you will usually want to group related functions into separate files,
or modules, with the declarations they use.

Each source file usually reflects a self-contained unit of program logic; source
files are sometimes called source modules.

Execution of any program begins with a special, required program block
named MAIN. The source module that contains MAIN is called the main
module. Here is a small but complete 4GL program:

MAIN
CALL sayIt()

END MAIN

FUNCTION sayIt()
DISPLAY "Hello, world!"

END FUNCTION

This single module contains the MAIN program block, delimited by the
statements MAIN and END MAIN, and one other function named sayIt().

A single function cannot be split across source modules. However, since the
program above has two functions it could be split into two source modules.
The first would look like:

The second module could contain the three lines of function sayIt() just as
shown above. It could also contain data or other functions related to sayIt(),
if there were any.

MAIN

CALL sayIt()

END MAIN

The MAIN
program block
Parts of an Application 4-9

The Globals File
Functions are available on a global basis. In other words, you can reference
any function in any source module of your program.

The Globals File
In 4GL programs, global variables (variables available to more than one
source module) are declared in a globals file and referenced through the
GLOBALS statement by each 4GL module that uses them. For more informa-
tion on local and global variables, see “Variables and Data Structures” on
page 8-8.

Program Object Files
The C Compiler Version and the Rapid Development System of 4GL each
provide its own source code compiler. These compilers generate distinct,
executable forms of the same program:

• c4gl, the C code compiler provided with the C Compiler Version, generates
code that can be executed directly by the hardware of the computer after
an executable program is created.

• fglpc, the p-code compiler provided with the Rapid Development System,
generates hardware independent code—code not directly executable by
the operating system or GUI—that is interpreted by the 4GL p-code runner.

Both can take the same 4GL source code as input. If the C code option is
selected, the output is a C language object file. When this file is linked with
other 4GL libraries and perhaps C object modules, an independent executable
program is produced.

Figure 4-4 The C object code generation process

C code compiler

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

4GL source file

Linkable .o file

.4gl

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /
4-10 Parts of an Application

P-code Object Files
If the p-code option is chosen, p-code intermediate object files are created that
are executable under the 4GL runner. P-code stands for pseudo-machine code.

Both types of compiled files are binary. That is, the file is not printable or edit-
able as text. All of the modules of an application have to be compiled to the
same form; that is, the executable version of your program cannot mix C code
and p-code units, although the p-code runner can be customized to call C
object modules.

For detailed coverage of the steps required to compile 4GL source files
of all types, as well as using C with 4GL, see Chapter 1 in INFORMIX-4GL
Reference.

P-code Object Files
You can use fglpc, the p-code compiler, to translate a source module into
p-code. The output of the p-code compiler will have the file suffix .4go.

Figure 4-5 The p-code object code generation process

When your application is in several source modules, you first compile each
separate module to p-code. Then you can concatenate the individual p-code
files using a utility (cat in UNIX environments) to make the executable .4gi
program file.

Note: When you use the Programmer’s Environment to build and maintain your
program, module linking is done automatically for you.

p-code compiler .4go

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.4gl

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /
Parts of an Application 4-11

C Code Object Files
Figure 4-6 Steps to creating an executable program under the p-code runner

To execute a .4gi file you call the 4GL p-code runner. Use fglgo to execute the
p-code instructions in the file, bringing your program to life, metaphorically
speaking.

Figure 4-7 Components of a runnable p-code application program1

C Code Object Files
You can use the Informix C code compiler, c4gl, to translate a source module
directly into machine code. This is done in three primary stages:

1. The module is translated to INFORMIX-ESQL/C source code.

2. The ESQL/C processor converts that to C source.

3. The compiler translates to C object code for your computer.

.4gi

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.4gi

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.4go

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.4go

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Concatenation utility
(cat on UNIX)

p-code compiler

.4gl

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /

p-code runner

.4gi

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

p-code

.4gi application
4-12 Parts of an Application

C Code Object Files
Figure 4-8 Steps to creating a C object file

From the operating system command line a single call to the c4gl command
performs all the steps, or all these steps can be automatically accomplished
through the Progammer’s Environment.

On UNIX systems the default extension is .4ge. However, it is not required.
You may name your executable applications anything you like.

The C file from a single source module is compiled to an .o file. Several .o files
for a multi-module application can be combined into a single executable file
through the Programmer’s Environment or using another concatenation
utility. In fact the c4gl command line accepts any combination of .4gl files,
.ec files, .c files, and .o files to produce a single .4ge executable file.

Figure 4-9 Steps to creating an independently executable 4GL program

C compiler
.o

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Native compiler

.c

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /

.4gl

/ / / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / /
/ / / / / / / / / / / / / /
/ / / / / / / / / / / /
/ / / / / / / / / / / / / / / /

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

Linker

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊
◊◊◊◊◊◊◊◊◊◊◊◊◊◊◊

.o

.4ge
Parts of an Application 4-13

Example Programs
Example Programs
Now that you know the parts of a 4GL program, you should look at a
few of them to see what they are like. A number of example programs are
distributed with 4GL. And, the companion volume INFORMIX-4GL by
Example contains 30 complete and annotated 4GL programs.
4-14 Parts of an Application

Chapter
5

The Procedural
Language
Overview 3

Declaration of Variables 3
Data Typing 3
Automatic Data Conversion 4
Data Structures 6

Records 6
Arrays 7

Data Allocation 8
Scope of Reference 9

Decisions and Loops 9
Statement Blocks 10
Comments 10

Exceptions 11
Kinds of Exceptions 11
Why Exceptions Must Be Handled 11
How Exceptions Are Handled 12

5-2 The Procedural Language

Overview
INFORMIX-4GL is a fourth-generation programming language. However,
it uses some concepts based on procedural languages (such as Pascal and C).

This chapter describes the concepts based on procedural programming;
in particular, it describes how to:

• Declare variables

• Organize statements for decisions and looping

• Handle exceptions

Declaration of Variables
4GL has a flexible mechanism for declaring program variables. You specify
a type for every variable, but there is automatic conversion between many
data types. Data can be organized as records or arrays. It can be allocated
statically or dynamically and can be declared at several scope levels.

Data Typing
4GL is a “strongly typed” language. That is, whenever you declare a program
variable you must specify its data type, for example, INTEGER or CHAR. The
compiler ensures that only data of that type can be stored in that variable.
Here is an example declaration of several types of variables:

DEFINE
aFloat FLOAT
oneInt, anotherInt INTEGER,
aString CHAR(20)

The data types supported by 4GL for program variables include all the data
types that are allowed in a column in a database except SERIAL. This includes
BYTE and TEXT, the Binary Large Object (blob) data types.
The Procedural Language 5-3

Automatic Data Conversion
An important point to note is that 4GL defines a specific NULL value for every
data type. Null means “unknown,” rather than 0, which is a precise value.
You can assign NULL to any variable, and you can test any variable for NULL
content. This is necessary to properly support database access, since NULL is
a distinct value (or, to be precise, non-value) in a database table.

Automatic Data Conversion
With some strongly-typed languages, it is an error to assign a value of one
type into a variable of a different type. By contrast, 4GL allows you to assign
any value into any variable provided that there is a reasonable way of con-
verting between the type of the value and the type of the variable.

LET aFLoat = 2.71828
LET oneInt = aFloat -- assigns integer 2

The LET statement is used for assignment. The first of the preceding LET
statements assigns a literal decimal number into a variable of type FLOAT.
(In the above code fragment, the names aFloat and oneInt were declared in
the example on page 5-3.)

In the second LET statement a FLOAT value—the contents of the variable
aFloat—is assigned to integer variable oneInt. 4GL converts the FLOAT value
into an integer to match the type of the receiving variable. To do so, the
fractional part of the floating point number is truncated.

One conversion that is often used is between a character value and almost
any other type.

LET aString = aFloat-- assigns "2.71828" to aString

The above statement assigns a FLOAT value to a variable whose type is CHAR
(character string). 4GL converts the numeric value to characters and assigns
that string value to aString.

4GL will also attempt to convert a character string back into a numeric or
other type. The following statement assigns a string of numeric characters
to a FLOAT variable:

LET aString = "3.141592"
LET aFloat = aString -- assigns 3.141592 into aFloat
5-4 The Procedural Language

Automatic Data Conversion
If the characters in the string can be interpreted as a literal value of the type
needed, the conversion is done. Most data types have a printable, character
representation, and 4GL converts automatically between the printable form
and the internal form.

Of course there are some cases when conversion is not allowed; for example,
the BYTE and TEXT data types cannot be converted into any other type. Such
errors are detected at compile time.

Some conversions can only be found to be impossible at execution time. The
following example fails in its attempt to convert a large floating-point num-
ber to integer.

LET aFloat = 2E12 -- about 100 times the maximum integer size
LET oneInt = aFloat -- this causes a runtime error

You can manage such errors by:

• Anticipating them and inserting programmed tests to avoid them

• Trapping the error at execution time

• Letting the run-time error terminate the program with an appropriate
message

See Chapter 3 in the INFORMIX-4GL Reference manual for a table that identi-
fies all the pairs of data types for which 4GL performs automatic conversion.
The Procedural Language 5-5

Data Structures
Data Structures
Besides simple typed variables, you can organize program data into records
and arrays (also known as data structures).

Records

A record is a group of variables that are treated as a unit. Each member
of a record has a name. The following code fragments defines a record:

DEFINE stockRow, saveStockRow RECORD
stock_num INTEGER ,
manu_code CHAR(3) ,
description CHAR(15) ,
unit_price MONEY(8,2) ,
unit CHAR(4) ,
unit_descr CHAR(15)

END RECORD

This statement defines two program variables. Their names are stockRow
and saveStockRow. Each variable is a record with six members.

The member named manu_code is a three-character string. You refer to
this member of the stockRow record as stockRow.manu_code. The parallel
member of the other record, saveStockRow, would be called
saveStockRow.manu_code.

The members of these records are all simple data types. However, a record
can contain members that are other records or arrays.

Another interesting aspect of the record is that it contains one member for
each column in the stock table of the stores demonstration database. Because
it is so common to define a record that matches one-for-one to the columns of
a database table, 4GL has an easier way of doing this.

DEFINE stockRow, saveStockRow RECORD LIKE stock.*

This statement causes the 4GL compiler to refer to the database, extracts the
names and types of all the columns, and inserts them in the program. In this
way, you can ensure that the program will always match the database
schema.
5-6 The Procedural Language

Data Structures
You can also fetch a row of a database table into such a record.

SELECT * INTO stockRow.* FROM stock
WHERE stock_num = 309 and manu_name = “HRO”

You can assign the contents of all the members of one record to another
record with a single statement.

LET saveStockRow.* = stockRow.*

You can do this even when the two records are not defined identically. The
assignment is done member-by-member. As long as the records have the
same number of members, and data from each member on the right can be
converted to the type needed by the corresponding member on the left, you
can assign the contents of one record to another.

Arrays

An array is an ordered set of elements all of the same data type. You can
create one-, two-, or three-dimensional arrays. The elements of the array
can be simple types or they can be records.

DEFINE stockTable ARRAY[200] OF RECORD LIKE stock.*

This array variable is named stockTable. It contains 200 elements each of
which is a record with as many members as there are columns in the stock
table in the database. One of those columns is named stock_num. You would
access the stock_num member of the 52nd element of the array by writing
stockTable[52].stock_num.

The first element of any array is indexed with subscript 1. (This differs from
the C language, where the first element is always number zero.) The sub-
script value that selects an element can be given as an expression. Expres-
sions are described in the section titled “Expressions and Values” on
page 8-18.
The Procedural Language 5-7

Data Allocation
Data Allocation
4GL supports the allocation of program variables either statically, as part of
the executable program file, or dynamically, at execution time. You choose
the method to use by the location of your DEFINE statement in the source
module.

The topics of data allocation, scope of reference, program blocks, and
functions are considered in detail in INFORMIX-4GL Reference. In summary:

• Variables that you declare outside of any function are at the module level
of the program. They are allocated statically, at compile time, and become
part of the program image. They may be referenced by any function in the
source file that follows the definition.

• Variables that you declare within a function are local to the function. New
copies of these variables are created each time the function is called. They
are discarded when the function exits.

DEFINE greeting CHAR(5)

DEFINE audience CHAR(5)

MAIN

LET greeting = "Hello"

LET audience = "world"

CALL sayIt()

END MAIN

FUNCTION sayIt()

DEFINE message CHAR(40)

LET message = greeting , " " , audience, "!"

DISPLAY message

END FUNCTION

Module-level variables
are allocated statically.

Local variables are
allocated dynamically
when the function is
entered.
5-8 The Procedural Language

Scope of Reference
Scope of Reference
The scope of a variable name is the range of program statements over which
it can be used. 4GL has several scope levels. In summary, the levels are:

local Names declared within a program block are local to the program
block. Their scope is from the point of declaration to the end of the
program block. The variables are created each time the function,
report, or MAIN statement is entered and cease to exist when the
program block terminates.

module Names declared outside of any program block are local to the
module. Their scope is from the point of declaration to the end
of the module.

global Variable names declared with the GLOBALS statement are global to
the program. The GLOBALS statement is also used to specify a file of
globally available variable declarations in each source module that
uses the global variables.

Decisions and Loops
4GL has statements for looping and decision-making comparable to other
computer languages. These statements are covered in “Decisions and Loops”
on page 8-26, and in the INFORMIX-4GL Reference. Here is a brief summary:

IF…THEN…ELSE Tests Boolean (yes/no) conditions

CASE Make multiple-choice decisions

WHILE Used for general loops controlled by a Boolean condition

FOR Used for loops that iterate over an array

There is also FOREACH, a special loop used for database access, covered
under “Row-by-Row SQL” on page 9-5. These control statements can be
nested one within the other to any depth. A key point is that their syntax is
very simple and regular:

• Every statement that can contain other statements is closed with its own
END statement (IF is closed with END IF, CASE with END CASE, and so on).

• Every looping statement has a specific optional early exit statement (you
leave a WHILE with an EXIT WHILE, a FOR with an EXIT FOR, and so on).

• No special punctuation is needed in 4GL code. You do not need to put
semicolons between statements as in C or Pascal (although you may
if you like). Nor do you need to write parentheses around a Boolean
condition as in C (but you may if you like).

4GL also supports GOTO...LABEL statements.
The Procedural Language 5-9

Statement Blocks
Statement Blocks
Many 4GL statements such as LET and CALL are atomic; that is, they contain
only themselves. Others are compound; that is, they can contain other state-
ments. The most common examples of compound statements are:

IF-THEN-ELSE THEN and ELSE each introduce a block of statements.
The ELSE block is optional.

FOR The body of a FOR loop is a block of statements.

WHILE The body of a WHILE loop is a block of statements.

CASE WHEN and OTHERWISE each introduce a block of
statements.

Statement blocks can be nested; that is, one compound statement can contain
another.

Here is a code fragment from Example 9, INFORMIX-4GL by Example, that
contains a nested IF statement block:

Comments
You can comment your 4GL code using double hyphens (--) or the pound
sign (#) for individual lines (see the previous code fragment) or curly braces
({ and }) for multiple contiguous lines of code.

IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2, 16)

IF au_flag = "U" THEN -- a compound statement

LET gr_customer.*= gr_workcust.*

DISPLAY BY NAME gr_customer.*

END IF

CALL msg("Customer input terminated.")

RETURN (FALSE)

END IF

The statement block
begins.
5-10 The Procedural Language

Exceptions
Exceptions
An exception—also known as an error condition—is an unplanned event that
interferes with normal execution of a program. Usually an exception is not
expected to occur in the normal course of events, and it requires special
action when it does occur.

Kinds of Exceptions
There are several kinds of exceptions; they can be categorized this way:

run-time errors Errors in program statements detected by 4GL at run time.
These errors are divided into groups based on the kind of
statement:

File I/O Errors using files managed by the host
operating system.

Display Errors using the screen.

Expression Errors in evaluating 4GL expressions; for
instance, a data conversion error or an invalid
array subscript.

SQL error Errors reported by the database engine.

SQL end of data Warnings that you have reached the end of a set of rows
being fetched through a cursor.

SQL warning A warning condition reported by the database engine.

external signals Events detected by the host operating system. An external
signal is usually not directly related to the program’s state-
ments. Two common external signals that 4GL can handle
are Interrupt (CONTROL-C) and Quit (CONTROL-\).

Why Exceptions Must Be Handled
Exceptions are unplanned in the sense that they are events of low probability.
Usually your program cannot predict or control when they will occur. This
does not mean that they are always unexpected. For example:

• You are certain that there will be an end to any selection of rows, it is just
that you do not always know which row will be the last.

• You are sure that some user will eventually try to cancel an operation,
but you do not know when.
The Procedural Language 5-11

How Exceptions Are Handled
Alas, even run-time exceptions must always be anticipated, no matter
how carefully you write your code.

Because program exceptions are sure to happen, you must design the
program to handle them in a rational manner. But because they are of low
probability, you want to handle them:

• Away from the main line of processing, so the code for the normal,
expected sequence of events is clear and readable.

• With a minimum of overhead at execution time.

How Exceptions Are Handled
Unless you establish some way of handling exceptions, 4GL takes
the following actions when one occurs:

run-time error the program is terminated

run-time warning execution continues

When a run-time error is encountered, any SQL transaction in progress is
automatically rolled back. Then 4GL writes a message to the error log, which
is by default the screen. (You can establish an error log file on disk if you
wish.)

Note: If your database is ANSI-compliant, then by default the program tries to
continue if a run-time error is encountered.

For many exceptions, the default response is correct; the program should be
terminated with a message. But there are other types of exceptions that you
can anticipate and handle with 4GL statements including:

DEFER establishes your program’s policy for handling
external signals that 4GL recognizes. The DEFER
statement can be used to instruct your executing
program to set built-in global variables—rather
than terminate the program—when an Interrupt or
Quit signal is generated by the user. By polling the
variable you can determine when the user is ready
to end a routine and respond accordingly and in an
orderly manner to the request.

WHENEVER ERROR establishes your program’s policy for handling
an execution error.

WHENEVER ANY ERROR tests for a response to an expression error.

WHENEVER WARNING tests for SQL warning flags.
5-12 The Procedural Language

How Exceptions Are Handled
WHENEVER NOT FOUND can be used to determine when an executing SQL
statement has encountered an “end of data”
condition.

For more information on exception handling, see INFORMIX-4GL Reference.
The Procedural Language 5-13

How Exceptions Are Handled
5-14 The Procedural Language

Chapter
6

Database Access
and Reports
Overview 3

Using SQL in a 4GL Program 3

Creating 4GL Reports 4
The Report Driver 6
The Report Formatter 7

6-2 Database Access and Reports

Overview
One of the main reasons to use INFORMIX-4GL is the ease with which you can
access and modify data in a database. SQL, the Structured Query Language
that is the international standard for relational database access, is an integral
part of the 4GL language. Another reason to use 4GL is the ease by which you
can design and generate reports.

Using SQL in a 4GL Program
There are three ways you can use SQL in a 4GL program:

1. Incorporate nonprocedural SQL statements as 4GL program statements.

Any SQL statement that does not return data to the program (for example,
ALTER, CREATE, UPDATE, or REVOKE among many), can be written
into the program for execution in sequence with other 4GL statements.
In many cases, you can use data from program variables as part of the
statement.

In addition, any SELECT statement that returns a single row of data can be
written into the program and used to get data from the database and
assign it to variables.

2. Use a database cursor to access a selected set of rows, one row at a time.

A cursor contains a SELECT statement that may return multiple rows
of data. You use an OPEN statement to start the selection. You use FETCH
statements to fetch one selected row at a time, assigning the column data
to variables. In this way, your program can scan a selection of rows, or
bring all or part of the selection into memory and store it in an array.

The FOREACH loop is another mechanism that can be used to open
a cursor and fetch rows in sequence.

3. Use dynamic SQL to prepare new statements at execution time.

You can assemble the text of an SQL statement from user input, then
pass it to the database engine for execution. In this way, you can write an
Database Access and Reports 6-3

Creating 4GL Reports
application that adapts to the schema of the database or to user-selection
criteria at execution time. SQL

The concepts behind all three of these methods are discussed in greater detail
in Chapter 9 and Chapter 10. Additional discussion and examples are pro-
vided in the Informix Guide to SQL: Tutorial.

Note: In this version of 4GL you can include any level-4.1 SQL statement. If
you want to include SQL statements introduced after version 4.1, you must prepare
the statement before including it in the program. (You prepare a statement by using
the PREPARE statement.) For a complete list of supported SQL statements and
information on preparing statements, see Chapter 3 in INFORMIX-4GL Reference.

Creating 4GL Reports
A report is a display of data. A well-designed report is arranged so that the
eye of the reader can easily pick out the important facts, such as column totals
or sub-totals. The data can be shown on a screen or written to a printer or file.

A report is meant to be viewed on the screen or on paper, so it needs to be
arranged in pages, often with a heading and a footer on each page, possibly
with page totals.

The most important technique for making data clear to the eye is logical
layout. The items in a report should almost always be arranged so that:

• The reader can quickly find an item.

• Related items are near each other.

• Groups of data with similar values fall together so that group totals
and sub-totals can be calculated and shown.
6-4 Database Access and Reports

Creating 4GL Reports
It is much easier to make a report when the program logic that produces the
report data is separate from the program logic that prepares the report itself.
In 4GL, this separation is a natural part of the language. Any program that
produces a report can be cleanly separated into the part that produces the
data, and a second part that formats the report.

Page Footer

Invoice Total

Report Header W E S T C O A S T W H O L E S A L E R S , I N C .

1400 Hanbonon Drive
Menlo Park, CA 94025

Tue. Apr 30, 1991

Invoice Number: 00000001029 Bill To: Customer Number 104
Invoice Date: Tue. Apr30,1991 Play Ball!
PO Number: ZZ99099 East Shopping Cntr.

422 Bay Road
Redwood City, CA 94026

Ship Date: Tue. Apr 30, 1991
Ship Weight: 32.00 lbs. ATTN: Anthony Higgins
Shipping Instructions: UPS Blue

--
Item Stock Manuf Unit Item
Number Number Code Description Qty Unit Price Total
------ ------ ---- --------------- --- ---- ------ -------
 1 000005 ANZ tennis racquet 3 each $19.80 $59.40
 2 000103 PRC frnt derailleur 2 each $20.00 $40.00
 3 000104 PRC rear derailleur 2 each $58.00 $116.00
 4 000009 ANZ volleyball net 1 each $20.00 $20.00
--

Sub-total: $235.40
Sales Tax (6.500%): $19.72

Shipping Charge: $48.00

Total: $371.12

Invoice 0000001029 Page 1
Database Access and Reports 6-5

The Report Driver
Figure 6-1 The report generation process

The Report Driver
The part of a program that generates the rows of report data (also known as
input records) is called the report driver. It consists of the parts of a program
that:

• Are concerned with the database and the user, not with the report format.

• Do not depend on the incidental features of a report, such as page length.

• May produce data for multiple reports simultaneously.

• May produce report data as a by-product of other operations, for instance
a report on user productivity could be a by-product of carrying out user
commands.

The key point is that the primary concern of the row-producing logic should
be the selection of rows of data, not their arrangement or formatting.

In 4GL, the actions of a report driver are as follows:

1. Use the START REPORT statement to initialize each report to be produced.

2. Whenever a row of report data is available, use OUTPUT TO REPORT to
send it to the report formatter.

3. When the last row has been sent, use FINISH REPORT to end the report.

From the standpoint of the row-producing side, these are the only statements
required to create a report. Multiple reports can be produced simultaneously.
Although data for a report usually comes from a database, it can come from
any source, including the user, calculations, or sequential files. Since the
report driver pays no attention to issues of page formatting, grouping, or
totalling, it produces report data as a by-product of other activities.

Report FormatterReport Driver

...
...

...

...

...

...

...
Database Report
6-6 Database Access and Reports

The Report Formatter
Your program is not required to produce rows in any special order. It is
generally more efficient to produce them in their proper sorted order when
possible (that is, by selecting database data in the desired order using the
ORDER BY directive). However, you can produce them in any order, and leave
the sorting to the report formatter.

The Report Formatter
You write the report formatter for each report in the same way as you write
a 4GL function. The code within a report program block consists of several
sections:

DEFINE section Here you define variables that are local to the report.
A report can have its own local variables for subtotals,
calculated results, and other uses.

OUTPUT section Here you declare the size and margins of the report page.
The OUTPUT section takes effect when the report is
started.

ORDER section Here you specify the required order for the data rows
and whether or not the rows are provided to the report
already ordered.

FORMAT section Here you describe what is to be done at a particular stage
of report generation.

The code blocks you write in the FORMAT section are the heart of the report
program block and contain all its intelligence. You can write statement blocks
to be executed for the following events:

• Top (header) of the first page of the report.

• Top (header) of every page after the first.

• Bottom (footer) of every page.

• Each new row as it arrives.

• The start of a group of rows (a group is one or more rows having equal
values in a particular column). This statement block is often used for
clearing totals and other accumulated values.

• The end of a group of rows. In this block, you typically print subtotals
and other aggregate data for the group that is ending. You can call on
aggregate functions like SUM and MAX for this information.

• After the last row has been processed.
Database Access and Reports 6-7

The Report Formatter
You can use most 4GL statements in the FORMAT section of a report; you
cannot, however, include any SQL statements. For example, you can call other
functions and interact with the user.

The key point is that 4GL invokes the sections and blocks within a report
program block non-procedurally, at the proper time, as determined by the
report data. You do not have to write code to calculate when a new page
should start, nor do you have to write comparisons to detect when a group
of rows has started or ended. All you have to write is the statements that are
appropriate to the situation, and 4GL supplies the “glue” to make them
work.
6-8 Database Access and Reports

Chapter
7

The User Interface
Overview 3

Line-Mode Interaction 3

Formatted Mode Interaction 5
Formatted Mode Display 5

Screens and Windows 7
The Computer Screen and the 4GL Screen 7
The 4GL Window 7

How Menus Are Used 8

How Forms Are Used 11
Defining a Form 11

DATABASE Section 12
SCREEN Section 12
TABLES Section 13
ATTRIBUTES Section 13
INSTRUCTIONS Section 14

Displaying a Form 14
Reading User Input from a Form 14
Screen Records 15
Screen Arrays 16

How the Input Process Is Controlled 18

How Query by Example Is Done 19

How 4GL Windows Are Used 21
Alerts and Modal Dialogs 22
Information Displays 23

How the Help System Works 24

7-2 The User Interface

Overview
Built into INFORMIX-4GL is a complete system of character-oriented user
interaction. Being character-oriented, the same 4GL applications can
run on supported graphical user interfaces (GUIs), on personal computers,
high-end workstations, and character-based terminals.

In all cases—character terminal, terminal emulation, and graphical—4GL lets
you create highly flexible, portable, interactive, multi-user applications using
screen forms and menus.

Note: Version 6.0 of 4GL is not available for the Windows or the Motif environment.
If you have an earlier version of 4GL that runs in one of these environments, see
“Compatibility and Migration” in the introduction for information on using your
existing forms and programs.

Line-Mode Interaction
A 4GL program can operate with its user interface in Line mode or Formatted
mode. Line mode is the same typewriter-like mode of interaction that is used
by UNIX shell scripts. You put the user interface in Line mode by executing a
DISPLAY statement that does not specify a screen location. Here is a simple
program that operates in Line mode.

MAIN
DEFINE centDeg, fahrDeg DECIMAL(5,2)
DEFINE keepOn CHAR(1)
LET keepOn = "y"
DISPLAY "Centigrade-to-fahrenheit conversion."
WHILE keepOn == "y"

PROMPT "Centigrade temp: " FOR centDeg
LET fahrDeg = (9*centDeg)/5 + 32
DISPLAY "old-fashioned equivalent: ", fahrDeg
PROMPT "More of this (y/n) ? " FOR CHAR keepOn

END WHILE
END MAIN
The User Interface 7-3

Line-Mode Interaction
Because the first DISPLAY statement does not give a screen row and column
for output, the screen is put in Line mode. Each line of display, and each
prompt displayed by PROMPT, scrolls up the screen in the manner of a
typewriter.

When you execute this program the interaction on the screen resembles
the following, in which user data entry has been underscored.

Centigrade-to-fahrenheit conversion.
Centigrade temp: 16

old-fashioned equivalent: 60.80
More of this (y/n) ? y

Centigrade temp: 28

old-fashioned equivalent: 82.40
More of this (y/n) ? n

You can use simple interactions of this kind for quick tests of algorithms. Line
mode also has the virtue that you can redirect Line mode output to disk from
the command line. The following program displays two columns from the
customer table using Line mode output.

DATABASE stores2
MAIN

DEFINE custno LIKE customer.customer_num,
company LIKE customer.company

DECLARE cust CURSOR FOR
SELECT customer_num, company FROM customer

FOREACH cust INTO custno, company
DISPLAY custno, company -- Line mode display

END FOREACH
END MAIN

You could execute this program from the command line, redirecting its
output into a file, with a statement like the following (assuming the program
has been compiled to 4GL p-code in a file named dump2col.4gi):

fglgo dump2col | custcols.dat

The data could also be “piped” into another command. However, there
is no equivalent input statement (PROMPT only accepts input from a real
keyboard, not from a pipeline or redirected disk file).
7-4 The User Interface

Formatted Mode Interaction
Formatted Mode Interaction
Normally, 4GL keeps the user interface in Formatted mode. That is,
the output of the program is automatically formatted for screen display.
The program’s output is positioned by rows and columns. On character
terminals, the initial 4GL window is the same size as the screen and is referred
to as the 4GL screen.

Here is a brief summary of the 4GL statements you use to manage the user
interface in Formatted mode.

These statements are covered in detail under “Screen and Keyboard Options”
on page 11-27 and in Chapter 3 of INFORMIX-4GL Reference.

Formatted Mode Display
In Formatted mode, certain lines of the two-dimensional screen are dedicated
to certain types of information. You can change the location of these lines, but
you cannot eliminate their special uses. Here are the reserved screen lines
with their default positions:

Statement Purpose
DISPLAY…AT Write data at specific rows and columns.
DISPLAY FORM Display the background of a prepared form.
DISPLAY…TO Write data into one or more fields of a form.
PROMPT Prompt the user for a single value or a one-character response.
INPUT Let user enter data into one or more fields or arrays of fields on

a form.
CONSTRUCT Let user enter search criteria into the fields of a form.
MESSAGE Display a short message of warning or confirmation.
ERROR Display a short message documenting a serious error to the screen.

Line Name Purpose
Default
Position Point of Reference

Prompt Output and input of PROMPT
statement.

FIRST 4GL window

Menu Ring menu display occupies two
lines.

FIRST 4GL window

Message Output of the MESSAGE statement. FIRST+1 4GL window
Form Top line of any form. FIRST+2 4GL window
Comment Explanatory comment for current

form field.
LAST 4GL window

Error Output of the ERROR statement. LAST 4GL screen
The User Interface 7-5

Formatted Mode Display
Here is how the screen is arranged when the default line assignments
are in effect.

To create this screen, a form was displayed using DISPLAY FORM; some data
was written into form fields using DISPLAY…TO; and then a MENU statement
was used to display a five option menu (the words “Query” through “Exit”).
The line of dashes with “Press CONTROL-W for Help” is literal text in the first
line of the form that was displayed.

This diagram makes the screen appear crowded with conflicting uses. In
reality, the dedicated lines are used at distinct times. For example, the Prompt
line is used by the PROMPT statement and the Menu line by the MENU state-
ment. The program cannot execute both PROMPT and MENU at the same
time, so no conflict is possible. By default, both lines are assigned to the first
4GL window line.

The assignment of specific rows to screen lines can be changed while
the program is running (see “Screen and Keyboard Options” on page 11-27).
The key point is that these lines exist and have assigned display positions.

Prompt line FIRST
Menu line FIRST

Menu help MENU+1
Message line FIRST+1

Form line FIRST+2

space for form

Comment line LAST
Error line LAST
7-6 The User Interface

Screens and Windows
In the following example, screen output is achieved using DISPLAY AT,
so the PROMPT statement uses only the current screen position (first line
of the window, by default). As a result, this dialog will not scroll but will
re-use the same two screen rows over and over.

MAIN
DEFINE centDeg, fahrDeg DECIMAL(5,2)
DEFINE keepOn CHAR(1)
LET keepOn = "y"
DISPLAY "Centigrade conversion" AT 12,1
WHILE keepOn == "y"

PROMPT "Centigrade temp: " FOR centDeg
LET fahrDeg = (9*centDeg)/5 + 32
DISPLAY centDeg, "C ==> ", fahrDeg, "F" AT 3,1
PROMPT "More of this (y/n) ? " FOR CHAR keepOn

END WHILE
END MAIN

Screens and Windows
In order to understand the way that forms and menus are used, you should
understand the distinction between the 4GL screen and a 4GL window.

The Computer Screen and the 4GL Screen
The computer screen is the physical surface on which your program writes
data. When 4GL program output is directed to the screen, it appears in the
4GL screen, also known as the logical screen.

If you are using a terminal, the entire computer screen is the 4GL screen.
If you are using a workstation, the window in which you are working is
considered the 4GL screen.

The 4GL Window
A 4GL window is a rectangular area within which your program can display
output. Initially, your program has one 4GL window that fills the 4GL screen.
Additional 4GL windows can be opened or closed as needed.

Each 4GL window is a new rectangular area on which 4GL can display
output. You can use a secondary or subordinate 4GL window the same way
you use the first one: to display messages and to prompt for input, and to
display menus and forms.
The User Interface 7-7

How Menus Are Used
All 4GL windows are contained inside the boundaries of the 4GL screen.
They can be the same size or smaller than the screen, but not larger. Any 4GL
window can overlap or completely obscure another 4GL window.

At any given time, a single 4GL window is current. This is the window
in which DISPLAY, MENU, and other interactive statements operate. Other
windows can be completely or partly visible, but only the current window
is active.

How Menus Are Used
The MENU statement allows you to offer the user a ring menu containing menu
options. 4GL displays the menu on the designated MENU line of the current
window. As the user presses the TAB or arrow keys or the Spacebar, 4GL
moves the cursor from menu option to menu option. The user presses the
RETURN key to select the current option. The user can also select a menu
option by pressing the activating character (usually, but not always, set
to be the first letter of the menu option) to select an option.

In your 4GL program, you supply the list of options and, for each option,
a block of statements. When the user selects an option, 4GL executes the block
of code corresponding to it. You can create as many levels of ring menus
as you like.

One common use of this technique is to create nested menus.

In the illustration, the initial menu offers at least three basic emotions. The
user can choose to enter the Amuse, Anger, or Make_sad ring menu or Exit,
to leave the program.

If the user chooses Amuse, the second tier ring menu replaces the first.

Amuse Anger Make_sad Exit

Jokes Laughter Smiles Exit

HaHa Chuckle Snicker Main Exit

Main:

Amusements:

Laughs:
7-8 The User Interface

How Menus Are Used
The Exit menu option moves you to the pervious menu or, if you are already
at the top tier of that menu, exits the program. Alternatively, you could create
a ring menu option that bypasses the natural hierarchial ring menu structure.
An example is shown in the third tier menu, which offers the ability to jump
back to the top tier by choosing Main.

There is no limit to the number of ring menu levels you can create.

Here is a simple menu-driven program. When it runs, the menu shown
below it will be seen by the user.

This program presents a menu containing four options: “Haha,” “Chuckle,”
“Snicker,” and “Enough.” The user selects a menu option by typing its initial
letter or by moving the cursor and pressing RETURN. You can also arrange for
an option to be selected using other keys; for example, the option “Enough”
can be chosen with the Escape key or the CONTROL-E key.

When the user selects a menu option, 4GL executes the block of code that
follows the COMMAND statement for that option. In this example, if the user
selects the third option, “Snicker,” the code CALL doLaugh(3) will be
executed. When all the code for that option has been executed—in this case,

MAIN

MENU "Laughter"

COMMAND "Haha" "A good laugh."

CALL doLaugh(1)

COMMAND "Chuckle" "A small laugh."

CALL doLaugh(2)

COMMAND "Snicker" "A smothered laugh."

CALL doLaugh(3)

COMMAND KEY("e",ESC,CONTROL-E) "Enough"

"Stop it, you’re killing me."

EXIT MENU

END MENU

 END MAIN

The code after
COMMAND
is executed when
that option is
selected.

Menu title displays
at left of Menu line.

An option can
respond to specific
keystrokes as well.

Menu help of current
option is displayed.

Each COMMAND
line presents one

option to the user.
The User Interface 7-9

How Menus Are Used
when the doLaugh() function returns—the MENU statement resumes
execution and the user can pick another option unless EXIT MENU is
encountered, as in the case of “Enough.”

Here is an implementation of doLaugh() and an example of the output
it produced when several menu options were selected:

After a command block completes, 4GL redraws the Menu line and Menu
help line, and waits for the user to choose another menu option. Program
control remains within the MENU statement until it executes an EXIT MENU
statement within some COMMAND block. The program on the previous page
executes EXIT MENU when the “Enough” option is chosen.

You can write any number of lines of code in a command block. The example
program shows a common style in which each command block contains a
single function call. However, you can use most 4GL statements in a com-
mand block. You can communicate with the user with MESSAGE, DISPLAY,
or PROMPT statements; open additional 4GL windows; or even start another
MENU statement.

Menu line
Menu help line

Other lines used
by DISPLAY

statement

CONSTANT firstLaff = 3, lastLaff = 24

VARIABLE haha INTEGER = firstLaff

FUNCTION doLaugh(laffnum INTEGER)

CASE laffnum

WHEN 1

DISPLAY "Ho ho ho hoo hoo ha hee ho. Hum." AT haha, 1

WHEN 2

DISPLAY "Tee hee hee hee hee! Scuse me." AT haha, 1

WHEN 3

DISPLAY "Snrt!snrt!snrt!mff!" AT haha, 1

END CASE

LET haha = haha + 1

IF haha > lastLaff THEN LET haha = firstLaff END IF

END FUNCTION
7-10 The User Interface

How Forms Are Used
You can change the appearance of a menu while the program is executing.
Within the menu, you can execute the HIDE and SHOW commands to hide
or display menu options. For example, you could test the user’s level of priv-
ilege in the current database, then either HIDE or SHOW a choice such as
“delete row,” depending on whether the user has Delete privilege.

All these features are covered in detail in the INFORMIX-4GL Reference.

How Forms Are Used
A form is a fixed arrangement of fields and labels. You design a form with
fields to hold the data items you want to display, and labels to describe the
fields to the user. Here is the form used in Example 11 in INFORMIX-4GL by
Example.

Figure 7-1 A sample screen form

Defining a Form
Two steps are involved in creating a form:

• Specify the contents of a form in a form specification file, an ASCII file
you create with any text editor capable of generating ASCII text. Form
specifications should be given the extension .per.

• Compile the form specification. Compiled forms are usually given
the extension .frm.

The FORM4GL utility program is used to create .frm files. Once compiled,
a 4GL form can be used by any 4GL program.

The form specification file has several sections. The DATABASE, SCREEN,
and ATTRIBUTES sections are required, while the TABLES and INSTRUC-
TIONS sections are optional. The order of appearance of the sections is fixed.
The sections of the form specification file are described next.
The User Interface 7-11

Defining a Form
After you have designed a form and compiled the specification, it is ready
for use by a program.

The form specification file that produces the form in Figure 7-1 on page 7-11
is considered in further detail beginning with “Specifying a Form” on
page 11-3. Special syntax and keywords of form files are discussed in
INFORMIX-4GL Reference, Chapter 5.

DATABASE Section

This section names a database from which column data types can be
determined when the form is compiled. Alternatively, you can use the
keyword FORMONLY to indicate that the form does not rely on a database.
For example, you can identify the stores2 database as follows:

DATABASE stores2

SCREEN Section

This section contains an ASCII version of the form, including text labels estab-
lishing the size and location of form fields. Here fields are labeled by field tags,
internal names that are not displayed when the form appears at run time.
This is also the SCREEN section of the form on page 7-11:

SCREEN
{

Customer Number:[f000] Company Name:[f001]
Order No:[f002] Order Date:[f003] PO Number:[f004]

Item No. Stock No Manuf Description Quantity Price Total
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]

}
END
7-12 The User Interface

Defining a Form
TABLES Section

This section lists the tables or table aliases in the default database specified
in the DATABASE section, or specified here by table qualifiers, from which
column data types will be taken. An alias is required if an owner or database
qualifier of the table name is needed. For example, you can identify tables
as follows:

TABLES
customer
orders
items
stock
catalog

ATTRIBUTES Section

Here you specify the characteristics of each field: the field name, the type
of data it will display, the editing rules applied during input, and any special
display attributes such as color. For example:

ATTRIBUTES
f000 = customer.customer_num ;
f001 = customer.company ;
f002 = orders.order_num ;
f003 = orders.order_date ;
f004 = orders.po_num ;
f005 = items.item_num , NOENTRY ;
f006 = items.stock_num ;
f007 = items.manu_code ;
f008 = stock.description , NOENTRY ;
f009 = items.quantity ;
f010 = stock.unit_price , NOENTRY ;
f010 = items.total_price, NOENTRY ;
END
The User Interface 7-13

Displaying a Form
INSTRUCTIONS Section

In this section you specify fields in order to group fields into screen records and
screen arrays. These records and arrays can be displayed and read as units.

INSTRUCTIONS
SCREEN RECORD s_items[4] (item_num , stock_num , manu_code ,

description , quantity, unit_price , total_price)
END

In the INSTRUCTIONS section, you can also change the default delimiters
of form fields on character-based systems.

Displaying a Form
Your program uses a form in several ways:

• With OPEN FORM or OPEN WINDOW ... WITH FORM, you load the
compiled form from disk into memory and make it ready for use.

You can open as many forms as needed, subject only to the limits
of memory and maximum number of open files on the platform you
are using.

• With DISPLAY FORM, you draw the contents of a form (its labels and the
outlines of its fields) in the current 4GL window. The picture of the form
replaces any previous data in that window.

You can display a form as many times as necessary. You can display the
same form into different 4GL windows. (The use of additional windows
is covered in “How 4GL Windows Are Used” on page 7-21.)

• With DISPLAY…TO, you fill the fields with data from program variables.

You can also use the CLEAR FORM statement to empty the fields of data.

Reading User Input from a Form
With the INPUT statement, your program waits for the user to supply data for
specific fields of the form in the current 4GL window. In the INPUT statement
you list:

• The program variables that are to receive data from the form.

• The corresponding form fields that the user will use to supply the data.
7-14 The User Interface

Screen Records
When invoked, the INPUT statement enables the specified fields. The user
moves the cursor from field to field and types new values. Each time the
cursor leaves a field, the value typed into that field is deposited into the
corresponding program variable. Other fields on the form are deactivated.
The INPUT statement ends when the user does one of the following:

• Presses Accept (by default, ESCAPE) to resume execution and examine
and process the values the user has entered.

• Presses Cancel (by default, CONTROL-C) to resume execution and ignore
any changes made to the form.

• Completes entry of the last field, when field order is set to CONSTRAINED.
This is the same as Accept. See “Field Order Constrained and Uncon-
strained” on page 11-26 as well as Chapters 3 and 5 of the INFORMIX-
4GL Reference.

Screen Records
In the form file you can specify a group of fields as a logical screen record.
During input, your program can associate a program record with a screen
record, automatically filling the RECORD variable in memory with data from
the form.

The main use of screen records is to make your program shorter and easier to
read. You can use asterisk (wildcard) notation when referring to all the fields
of the program record or the screen record. Suppose that your program
defines a record variable as:

DEFINE itemRow RECORD LIKE items.*

This creates a record variable with one member for each column of the
items table. Now suppose that in the current form there are four fields that
correspond to the last four columns of the items table (the schema for the
stores demonstration database used in the following discussion is described
in Appendix A of INFORMIX-4GL Reference).

In the form file, these fields are grouped into a screen record with the
following line in the INSTRUCTIONS section:

INSTRUCTIONS
SCREEN RECORD itemDetail(stock_num, manu_code, quantity,

total_price)
The User Interface 7-15

Screen Arrays
The program could take input from the four fields by specifying the fields
and the corresponding record members individually:

INPUT itemRow.stock_num, itemRow.manu_code,
item_row.quantity, itemRow.total_price

FROM stock_num, manu_code, quantity, total_price

Or you can specify the last four members of the program record using THRU
notation and all the fields of the screen record using an asterisk:

INPUT itemRow.stock_num THRU itemRow.total_price
FROM itemDetail.*

But since the names of the members in the program record are the same as
the names of the form fields, this can be further shortened to:

INPUT BY NAME itemRow.stock_num THRU itemRow.total_price

Screen Arrays
In the form specification, you can also specify a group of screen records as a
screen array. During input you can associate a program array of records with an
array of form fields on the screen.

Typically the program array has many more rows of data than will fit on the
screen.

Screen record of 7 fields.

Screen array
of 4 records.
7-16 The User Interface

Screen Arrays
Figure 7-2 The typical screen array is part of a much larger program array

4GL lets the user scroll the array on the screen through the rows of the
program array. The user can change the display using the 4GL PageUp
and PageDown logical keys or scroll through the array one line at a time
using the arrow keys.

To add a record, the user can press the logical Insert key, and 4GL will open
the display to create an empty screen record. When the user has filled this
record, 4GL inserts the data into the program array.

To delete data, the user can press the logical Delete key, and 4GL will delete
the current record from the display and from the program array, and redraw
the screen array so that deleted records will no longer be shown. Depending
on how your program is written, you can also programmatically remove the
record from the database. For a complete list of logical key assignments, see
the description of the OPTIONS statement in INFORMIX-4GL Reference or
see the INFORMIX-4GL Quick Syntax.

Screen array
displays a few

records from
array in memory.

ARRAY [many]
OF RECORD
in memory.

/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////

/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
/////// //// ///////// //// ///////////
The User Interface 7-17

How the Input Process Is Controlled
How the Input Process Is Controlled
Your program stops in the INPUT statement and waits while the user enters
data. However, you can write blocks of code that are automatically called
by 4GL during input, so that you can monitor and control the actions of
your user within this statement. You can use the following statements in con-
junction with INPUT:

BEFORE INPUT Just as the INPUT operation is starting, this block of code
can display initial or default values, clear totals, and gener-
ally prepare the screen and program variables.

BEFORE FIELD As the cursor is entering the specified field, this block can
initialize the field contents based on values in other fields.

AFTER FIELD When input in the specified field is complete, this block can
validate the user’s input, or can initialize other fields based
on the value just entered.

ON KEY When the user presses any of a list of keys you specify, this
block can give the user special assistance, for example, dis-
playing a list of common values for the current field.

BEFORE ROW When the cursor is about to enter a new row of a screen
array, this block can update other fields on the screen to
reflect the row being entered.

AFTER ROW When the cursor is leaving a row of a screen array, this
block can update the screen or the database to account
for changes made in the fields of the row.

BEFORE INSERT When the user has requested creation of a new row in
a screen array, this block can initialize the new row with
default values.

AFTER INSERT When the cursor is about to leave a newly-inserted row
of a screen array, this block can update totals based on the
new data, and can insert the new row into the database.

AFTER INPUT When the input operation is ending, this block can validate
the entered data, check for required fields that may be
missing, and erase any special usage messages.

You write these blocks as part of the INPUT statement. When the INPUT
statement is executed, 4GL enables the screen for input and awaits user
keystrokes. When the user presses a key that creates one of the situations
above, 4GL automatically calls your block of code.
7-18 The User Interface

How Query by Example Is Done
You can use any 4GL statements in these blocks, as well as two special
statements that can control the display.

NEXT FIELD Used in an AFTER FIELD or ON KEY block to direct the
cursor to a specified next field, or back to the same field
to correct an error in data entry.

NEXT ROW Used in an AFTER ROW or ON KEY block to move the
cursor to a particular row of a screen array. 4GL scrolls the
array as necessary to show the specified row.

NEXT FIELD and NEXT ROW should only be used in situations where
the program controls the order that fields are visited by the user. Please see
“Field Order Constrained and Unconstrained” on page 11-26 for additional
information on programming this type of user interaction.

How Query by Example Is Done
4GL lets you take input from a form in another way: instead of literal values
for the program to process, your user can enter relational tests for a query.
The process is known as Query by Example. The user enters a value or a range
of values for one or several form fields. Then your program looks up the data-
base rows that satisfy the requirements.

The 4GL statement that makes Query by Example possible is CONSTRUCT.

The CONSTRUCT statement operates very much like INPUT. In it you list
names of database columns and names of fields in the current form that
correspond to those columns.

CONSTRUCT boolExpStr

ON customer_num, fname, lname

FROM cust_num, first_name, last_name

Names of database
columns that can be tested.

Names of form fields
associated with those columns.

Program variable to receive
the selection criteria.
The User Interface 7-19

How Query by Example Is Done
You provide a single program variable to hold the result of the query. When
the CONSTRUCT statement executes, 4GL enables the form fields listed in this
CONSTRUCT statement for input. The user can enter either specific values,
or requirements such as >5 (meaning any value greater than 5) or
="Sm[iy]th*" (meaning any value beginning with “Smith” or “Smyth”).

When the user presses Accept, 4GL converts the input into a Boolean
expression suitable for use in the WHERE clause of a SELECT statement. This
character string is returned to the program variable. When the CONSTRUCT
statement shown in the previous illustration has completed, the following
character string might be stored in the program variable boolExpStr:

customer_num > 5 AND lname MATCHES "Sm[iy]th*"

Now it is up to your program to use the Boolean expression to fetch the
database row, or rows, that the user wants to see. The steps include:

• Combine the Boolean expression string with other text to form a complete
SELECT statement.

LET fullStmt = "SELECT * FROM customer WHERE " , boolExpStr

• Prepare the SELECT statement for execution.

PREPARE qbeSel FROM fullStmt

• Associate the prepared statement with a database cursor.

DECLARE qbeCur CURSOR FOR qbeSel

• Open the cursor and fetch the row(s) it has selected.

What you do with the rows depends on the specific application. Often the
reason for the CONSTRUCT is to select rows to be viewed by the user. In such
a case, the program could display each row individually in a form or grouped
in a screen array. Or you might choose a set of rows for a report, or a set of
rows to be deleted or updated, and so forth.

The CONSTRUCT statement supports the same features of BEFORE FIELD and
AFTER FIELD program blocks and ON KEY blocks as the INPUT statement.
7-20 The User Interface

How 4GL Windows Are Used
How 4GL Windows Are Used
Each 4GL program begins with a 4GL window that fills and covers the entire
4GL screen. This screen area may be:

• A terminal-emulation window on a workstation

• The physical screen of a terminal

Additional 4GL windows can be created and further manipulated with
the following statements:

Only the current 4GL window has keyboard focus. This means that any
interaction initiated by the user through the keyboard goes to the current
4GL window.

The statements listed on page 7-5 all operate upon the current 4GL window.

Statement Purpose

OPEN WINDOW Create a new window and make it the current window.
You specify its size and location in relation to the upper-left
corner of the screen.

CLOSE WINDOW Close and discard a window by name.
CLEAR WINDOW Empty the contents of a window, erasing anything

displayed on it.
CURRENT WINDOW Bring a window to the front if necessary, and make it

current.
The User Interface 7-21

Alerts and Modal Dialogs
Alerts and Modal Dialogs
One frequent use of a 4GL window is to display an error message or a dialog
box that the user must respond to. With a few statements you can:

• Open a 4GL window.

• Conduct a dialog with the user.

• Close the 4GL window.

Here is what an alert window might look like:

The code that presented this window follows:

FUNCTION domodal()
DEFINE ansr CHAR(1)
OPEN WINDOW modal AT 4,6

WITH 3 ROWS, 64 COLUMNS
ATTRIBUTE(BORDER, PROMPT LINE 2)

PROMPT "Is this getting too silly (y/n)? " FOR CHAR ansr
CLOSE WINDOW modal
RETURN (“Y” = UPSHIFT(ansr))

END FUNCTION

The domodal() function opens a subordinate 4GL window, prompts the
user for a single-letter response, closes the window, and returns either TRUE
or FALSE depending on whether the response was the letter “Y” or not.
A function like this can be used at almost any point within a program.

Main 4GL
window being

used by MENU
and DISPLAY.

Subordinate 4GL
window being used

for dialog via
PROMPT.
7-22 The User Interface

Information Displays
Information Displays
Another common use for a 4GL window is to display helpful information
to the user during input. In the following illustration you see a larger
window containing a form, partly covered by another 4GL window.

The user is to enter a customer number in a field of the form. The user pressed
a designated key to ask for help. Within the INPUT statement, in the ON KEY
block for that key, the program has called a function that does the following:

• Opened a 4GL window.

• Displayed a form in that 4GL window.

• Used DISPLAY ARRAY to show a scrolling list of rows from the customer
table, using the form in the current 4GL window.

When the user presses Accept, the function will note the customer number in
the last-current row. This will be returned as the result of the function. Before
the function returns, it will close the 4GL window it opened. That makes the
larger 4GL window current again.

The ON KEY block will display the returned customer number into the form
field, so the user will not have to enter it.

4GL window filled
by form for order

search.

Subordinate window
being used for

DISPLAY ARRAY.
The User Interface 7-23

How the Help System Works
How the Help System Works
4GL supports a simple and effective system of providing help to users
in the form of help messages associated with interactive statements in your
program. The purpose of a help message is to guide the user when it may not
be clear how you meant the program to be used.

Here are the typical steps you might take in creating a useful help facility
for an application:

• Think of each situation where the user might need detailed guidance, and
write a message explaining what to do at that point.

The text can be as long as you wish. Only printable characters, spaces,
and tabs are allowed.

• Assign to each message a unique positive integer number between 1 and
32700.

• Put the message texts with their numbers and optional comments into
a text file.

• Compile the text file using the 4GL message compiler utility mkmessage.

• In your program source file, specify the name of the file of compiled help
messages in an OPTIONS HELP FILE statement.

• In each interactive statement, specify the HELP number clause to name
the help message number that you designed for that statement.

If the user presses the Help key (CONTROL-W by default) while the
interactive statement is executing, 4GL displays the message whose number
you specified.

The display takes up the full current window, hiding the main and
subordinate windows.
7-24 The User Interface

How the Help System Works
Figure 7-3 A source module, an ASCII help file, and a help window

Like a form file, a message file can be used with more than one program. You
can use more than one message file within a program; executing the OPTIONS
HELP FILE statement changes the active file at any time.

You can write a HELP number clause in any statement that requests input from
the user: PROMPT, INPUT, or CONSTRUCT. You can specify a different help
message number for each option of a MENU statement. In addition, you can
start the help display from anywhere in the program by calling the library
function showhelp(n). Using this function you can start a help display from,
for example, an ON KEY block of a DISPLAY statement.

MAIN

OPTIONS HELP FILE "haha.iem"

MENU "Laughter"

COMMAND "Haha" "A good laugh." HELP 1

OPTIONS
statement names

help file.

Message
displayed when
Help key used.

 # option Haha
 .1

 This choice produces a line of output describing a
 full, rotund, Saint Nicholas or Falstaff sort of a laugh,
 suitable for informal occasions especially the aftermath
 of a large, convivial meal.

HELP clause specifies
a numbered message
in the file.
The User Interface 7-25

How the Help System Works
7-26 The User Interface

Chapter
8

Using the Language
Overview 3

Simple Data Types 3
Number Data Types 4

Differences Between DECIMAL and MONEY Data
Types 4

Numeric Precision 4
Time Data Types 5
Character and String Types 6

CHAR and VARCHAR Compared 7
Binary Large Objects 7

Variables and Data Structures 8
Declaring the Data Type 8
Creating Structured Datatypes 9

Declaring an Array 9
Declaring a Record 10

Declaring the Scope of a Variable 11
Scope of Variable Reference 12
Time of Variable Allocation 13

Using Global Variables 14
Global Variable Declaration 15
Using GLOBALS Within a Single Module 15
Global Versus Module Scope 16

Initializing Variables 17

Expressions and Values 18
Literal Values 18
Values from Variables 19
Values from Function Calls 19
Numeric Expressions 20
Relational and Boolean Expressions 20
Character Expressions 21

Null Values 22
Null Values in Arithmetic 22
Null Values in Comparisons 23
Null Values in Boolean Expressions 23

Assignment and Data Conversion 23
Data Type Conversion 25
Conversion Errors 25

Decisions and Loops 26
Decisions Based on Null 28

Functions and Calls 29
Function Definition 29
Invoking Functions 30
Arguments and Local Variables 30

Working with Multiple Values 32
Assigning One Record to Another 32
Passing Records to Functions 33
Returning Records from Functions 34
8-2 Using the Language

Overview
INFORMIX-4GL has the features of a structured language such as Pascal or
C as well as advanced features of its own. This section surveys 4GL as a
programming language.

Simple Data Types
4GL supports a number of simple data types. They are called “simple” because
each type describes a single item of information (as opposed to a collection or
array of items). The simple data types of 4GL are a robust subset of the data
types that you can use as database columns with Informix database engines.

Each of the simple types is discussed in detail in INFORMIX-4GL Reference,
Chapter 3. There you will find information on their minimum and maximum
capacities, the proper format for literal values of each type, and other details.
The types are summarized here as background material for the rest of the
chapter.
Using the Language 8-3

Number Data Types
Number Data Types
4GL supports seven different representations of numeric values (some
of which have more than one keyword).

Synonyms such as REAL for SMALLFLOAT are supported to conform to the
ANSI standard for SQL.

Differences Between DECIMAL and MONEY Data Types

The internal representations of fixed DECIMAL and MONEY are identical;
the only difference between them is that when 4GL displays a MONEY value
to the screen or a report, it formats the number as currency.

Numeric Precision

Some 4GL number types are implemented as C standard data types,
as follows:

Datatype Keywords Kind of Data Represented

DEC(p, s)
DECIMAL(p, s)
NUMERIC(p,s)

Decimal fixed-point numbers with specified precision
and scale.

MONEY(p, s),
MONEY(p), MONEY

Currency amounts with specified precision and scale
(defaulting to 16, 2).

DEC(p)
DECIMAL(p)
NUMERIC(p)

Decimal floating-point numbers with specified precision
(defaulting to 16).

FLOAT
DOUBLE PRECISION

Binary floating-point numbers with precision of C double.

REAL
SMALLFLOAT

Binary floating-point numbers with precision of C float.

INT
INTEGER

Whole numbers, from -2,147,483,647 to +2,147,483,647.

SMALLINT Whole numbers from -32,767 to +32,767.

FLOAT Same as C double
SMALLFLOAT Same as C float
INTEGER Same as C long
SMALLINT Same as C short
8-4 Using the Language

Time Data Types
A library of C functions for working with DECIMAL and MONEY data types
is included with both 4GL and the INFORMIX-ESQL/C product.

Time Data Types
4GL supports three data types for keeping track of time.

A DATE value is stored as a count of days before or after midnight, 31 Decem-
ber 1899; that is, January 1, 1900 would be stored as zero. When it displays a
DATE value to the screen or a report, 4GL formats it according to directions in
the DBDATE environment variable, so your user can tailor the display of date
values to match local conventions. (You can also employ the USING operator
to format DATE values.)

You can mix DATE values with integers when doing arithmetic (for
example, subtracting 7 to get a date for the same day of the previous
week). In addition, a number of built-in operators accept or return DATE
values. Built-in functions and operators are described in Chapter 4 of the
INFORMIX-4GL Reference.

These operators are identical in name and use to functions available in SQL
statements. Used in SQL, they apply to values in the database. You can also
use them in 4GL statements, applying them to program variables.

Datatype Kind of Data Represented
DATE Points in time specified as calendar dates.
DATETIME Points in time stored with a specified precision, as calendar dates

and/or times of day.
INTERVAL Spans of time stored with a specified precision, either years and

months, or in days and hours.

Built-in Operator Purpose

DAY(date-expr) Return number of the day of the month from a DATE or
DATETIME.

MONTH(date-expr) Return number of the month from a DATE or DATETIME.
WEEKDAY(date-expr) Return number of the day of the week from a DATE or

DATETIME.
EXTEND(date, qual) Changes the precision of a DATE or DATETIME value,

returning a DATETIME value.
YEAR(date-expr) Return number of the year from a DATE or DATETIME.
DATE(expr) Convert integer or character string to DATE or DATETIME.
MDY(m, d, y) Compose a DATE from integer values for month, day, year.
TODAY An expression yielding the current date as a DATE.
Using the Language 8-5

Character and String Types
A DATETIME value can have more or less precision than a DATE: it can
specify a date and/or a time, and can be exact to a fraction of a second.

An INTERVAL represents a span of time, not a particular moment in time.
For example, “three hours” is an interval; “three o’clock” is a point in time.
You can do arithmetic that mixes DATE, DATETIME, and INTERVAL values,
yielding new DATETIME or INTERVAL values.

There are detailed discussions of the DATETIME and INTERVAL data types
in the INFORMIX-4GL Reference.

Character and String Types
4GL supports four ways to represent strings of bytes in memory, with
different abilities and uses.

The most important of these is CHAR or its synonym CHARACTER, which is
the type of most character strings in a typical program. In fact, CHAR is the
default 4GL datatype. The following built-in operators accept or return char-
acter values (either CHAR or VARCHAR).

Within a DISPLAY statement (that displays values to the screen) or a PRINT
statement (that sends values to a report), you can use the COLUMN operator
to set the beginning position of the value of the current line of output.

Datatype Kind of Data Represented

CHAR(length)
CHARACTER(length)

Character strings of fixed length up to 32,767 ASCII
characters.

VARCHAR(length) Character strings of varying length, up to 255 bytes.

TEXT Character strings up to 231 bytes.

Operator Purpose

char-variable [start, end] Select a substring from a CHAR or VARCHAR value.
ASCII int-expr Return a specific ASCII character as a CHAR(1) value.
char-expr CLIPPED Return a character value stripped of any trailing spaces.
LENGTH(char-expr) Return length of character value exclusive of trailing

spaces.
value USING "pattern" Return character representation of a value, formatted

to fit a pattern.
8-6 Using the Language

Character and String Types
CHAR and VARCHAR Compared

In the database, the important difference between CHAR and VARCHAR
columns is that only the actual length of a VARCHAR value is stored to disk,
while a CHAR value always occupies its full declared size.

This difference is not important for program variables because 4GL always
allocates enough memory to hold the defined size of a VARCHAR value.
For example, if you define a VARCHAR(25), it always occupies 26 bytes of
memory even if you store a 1 byte value in it. Thus you cannot economize
on program memory by using VARCHAR in place of CHAR.

In a program, the difference between the two types is that when you refer-
ence a CHAR variable, you always get its full size in characters, filled out with
railing spaces if necessary. The CLIPPED operator ban be used to drop these
trailing spaces. When you refer to a VARCHAR variable, you get only its
current contents without any padding. Hence the CLIPPED operator is less
often needed with VARCHAR values in the program.

Binary Large Objects

The types BYTE and TEXT are collectively known as blob (Binary Large Object)
data types; they represent strings of data that can be of any length. The only
difference between a BYTE and a TEXT datatype is that a BYTE value can
contain any combination of binary values, while TEXT data items contain
any number of ASCII values.

INFORMIX-OnLine Dynamic Server<Default ¶ Fo> database engines sup-
port blob data types.

In 4GL you can use the LOCATE statement to specify whether the contents of
a blob variable are to be held in memory or in a disk file, and you can change
this location dynamically, as the program runs.

The main uses for blob variables are:

• To fetch them from the database into program variables of the same type.

When the receiving variable is located in a file, this is effectively a
disk-to-disk copy from the database to the file.

• To store them from program variables into the database.

When the source variable is located in a file, this is effectively a
disk-to-disk copy from the file to the database.

• To view, or even modify, a blob value using any external program that
understands the value’s contents. An example of this would be retrieving
a blob consisting of a graphic from an INFORMIX-OnLine database,
Using the Language 8-7

Variables and Data Structures
calling a “paint-type” editing program, making changes in the graphic,
and reloading the modified graphic in the database after the revised
image had been saved. Obviously modifications of graphic images
generally requires a graphical user interface.

Variables and Data Structures
A program variable is a named location in memory where a value can
be stored. There are four things to know about any variable:

• Its type; that is, what type of data can it hold?

A variable can hold a particular type of data.

• Its structure; that is, does it contain only a single value or is it a collection
of multiple values? If it is an aggregate, how are the individual simple
values accessed?

For example, an array is a collection of values of the same type. You access
a single value by writing a subscript, as in custNumList[15].

• Its scope of reference; that is, in what parts of the program can you use
its name?

There are three possibilities discussed in greater detail later in this
chapter; they are local, module, and global.

• Its time of allocation; that is, when during the execution of the program
is it created and initialized?

There are two possible times: the variable can be allocated at compile time
as part of the executable program file, or it can be allocated at run-time,
dynamically, while the program is running.

Declaring the Data Type
All four characteristics of a variable are decided when you declare a variable.
To declare a variable is to write a statement that tells 4GL about the variable.
The keyword DEFINE is used for this. Here is a DEFINE statement that
declares four simple variables.

DEFINE
j, custNum INTEGER ,
callDate DATETIME YEAR TO SECOND ,
sorryMsg CHAR(40)
8-8 Using the Language

Creating Structured Datatypes
You state the type of a variable after its name. In the preceding declaration,
the types of variables j and custNum are INTEGER; the type of callDate is
DATETIME YEAR TO SECOND, and the type of the variable called sorryMsg
is CHAR(40). Any of the simple types listed earlier in this chapter can be used.

You can also use the LIKE keyword to specify that the type of a variable is
the same as the type of a specified column in a database.

DEFINE custFname LIKE customer.fname

The advantage of LIKE is that if the database schema changes, you need only
recompile your program to make sure that the datatypes of your variables
match those in the database.

Creating Structured Datatypes
Until now only simple datatypes have been considered. 4GL also supports
data types that contain many individual data items. Such aggregate data
types are considered to have a structure. You specify the structure of a
variable by stating that it is an ARRAY or a RECORD in the DEFINE statement.

Declaring an Array

An array is a collection of elements all of the same type, ordered along one
or more dimensions. Here are two examples of array declarations:

DEFINE custNumTab ARRAY [2000] OF LIKE customer.customer_num

DEFINE custByProd ARRAY [100, 25] OF MONEY(12)

The number of elements is specified in brackets. The example shows a single
dimension array 2,000 elements long and a 100 by 25 (100x25) two-dimen-
sional array. Three-dimensional arrays can also be created.

All elements of an array have the same data type that you can specify using
the OF clause. The type can be one of the simple types or can be a record.

You access an element of an array by naming the array with a subscript
expression in brackets, as in custNumTab[175] or
custByProd[j,prodNum].
Using the Language 8-9

Creating Structured Datatypes
Declaring a Record

A record is a collection of variables, each with its own data type and name.
You put them in a record so you can treat them as a group.

DEFINE person RECORD
honorific VARCHAR(40) , -- e.g. "Excellency"
initial CHAR(1) ,
famName CHAR(30)

END RECORD

You access an member of a record by writing the name of the record, a dot
(known as dot notation), and the name of the member; for example,
person.initial is the second member of the person record.

You can declare a record that has one member for each column in a database
table. The names of the members and their data types are derived from the
database. The only exception is that SERIAL data types are converted to
INTEGER data types. In the simplest form, you write:

RECORD LIKE tablename .*

As in the following:

DEFINE custRec RECORD LIKE customer.*

The statement creates a record named custRec having one member for each
column of the customer table. Each record member has the name and the
data type of the corresponding column in the table.

You can augment table columns with other members; the clause:

 LIKE tablename.*
8-10 Using the Language

Declaring the Scope of a Variable
retrieves the names of columns and their types. This, in effect, defines
a RECORD.

DEFINE custPlus RECORD
row INTEGER ,
customer RECORD LIKE customer.* ,
balanceDue DECIMAL(8,2)

END RECORD

The preceding statement creates a record named custPlus having a member
for each column of the customer table, and two additional members. The
member custPlus.row is an integer. The member custPlus.balanceDue is a
decimal number. In this case, where the LIKE clause only generates some of
the members of the record, you must use an END RECORD clause to finish the
record definition.

Since custPlus.customer is a record within the record, a reference to the
lname member of the record is specified as:

custplus.customer.lname

Declaring the Scope of a Variable
You specify the scope of a variable within its source module by where in the
source module you write the DEFINE statement. If the DEFINE statement is:

• Within a function, the scope is local to that function. The variable can only
be referenced while the function is executing. (Functions are described on
page 8-29.)

• At the top of the source module and outside any MAIN, REPORT, or
FUNCTION block, the variable is considered a module variable; its name
can be used anywhere from that point to the end of the source module.

• In a GLOBALS statement in a module separate from any other statements,
the variable is available in that module (and in any other module
that includes the GLOBALS filename.4gl statement that defines that
variable).
Using the Language 8-11

Declaring the Scope of a Variable
The context of the DEFINE statement also determines the following
characteristics of a variable:

• Scope of reference—where the 4GL compiler recognizes the variable
name

• Time of allocation—when 4GL allocates memory for the variable

4GL also supports recursion (a function calling itself). Each separate call
to a function allocates its own copy of local variables.

Scope of Variable Reference

The context of a DEFINE statement determines the scope of reference of
a variable, often referred to simply as scope. During compile-time, scope
is that portion of the source code in which the 4GL compiler can recognize
a particular variable name. Outside its scope, the variable name is unknown
or may even be defined differently.

Local Scope: Within a Program Block

Within the definition of a function, or within a MAIN or REPORT program
block, DEFINE creates local variables. The scope of reference of a local variable
is restricted to the same program block. The DEFINE statements that declare
local variables must precede any executable statement within the same
program block.

Modular Scope: Within a Source Module

Outside any FUNCTION, REPORT, or MAIN program block, DEFINE creates
module variables. The scope of reference of a module variable is the entire
source module. Module variable definitions must appear at the top of the
source module, before any executable statements.

Global Scope: Within Several Modules

The GLOBALS filename.4gl statement can extend the scope of module
variables that you define outside any FUNCTION, REPORT, or MAIN program
block and within a GLOBALS...END GLOBALS statement. The scope of
reference for a global variable is:

• The entire module in which the GLOBALS...END GLOBALS statement
appears.

• Any other modules that contain GLOBALS filename.4gl statement.
8-12 Using the Language

Declaring the Scope of a Variable
Both the GLOBALS...END GLOBALS and the GLOBALS filename.4gl statements
must appear at the top of a source module, before any executable statements.

Time of Variable Allocation

The context of the DEFINE statement also determines when the memory for
the variable is allocated. 4GL handles memory allocation differently for the
different variable scopes.

Allocation of Local Variables

Storage for local variables is allocated dynamically. 4GL allocates this storage
when the program block (MAIN, FUNCTION, or REPORT statement) contain-
ing the variable begins execution.

Local variables are initialized in the same order that their names appear in
the program block.

Allocation of Module Variables

Storage for module variables is allocated statically, in the executable image of
the program. 4GL allocates this storage when the program begins execution
and deallocates it when the program exits.

Module variables are initialized in the same order that their names (and the
names of global variables) appear in the source module.

Allocation of Global Variables

Storage for global variables is also allocated statically. 4GL allocates this
storage when the program begins execution and deallocates it when the pro-
gram exits. However, to be able to handle references to a global variable
across several source modules, 4GL makes a distinction between:

• Variable declaration: tells the 4GL compiler the name and the data type of
the variables so that the compiler can verify references to this variable in
a given source module.

• Variable definition: allocates the memory for the global variable. For global
variables, memory is allocated statically, as part of the program image.

The GLOBALS...END GLOBALS statement defines the global variables. It also
declares them so the compiler can verify references to a global variable in the
same module it is defined.
Using the Language 8-13

Using Global Variables
To make a global variable visible in other modules of the program,
you only need to declare these variables. You do not need to define
them because memory only needs to be allocated once and is done
so with the GLOBALS...END GLOBALS statement.

To declare global variables in other modules, you must:

• Put the GLOBALS...END GLOBALS statement in a separate 4GL source file.

• At the top of each source file which references a global variable, put the
GLOBALS filename.4gl statement, where filename.4gl is the name of a file
containing the GLOBALS...END GLOBALS statement.

The following declares global variables in the globs.4gl source file:

GLOBALS
DEFINE a,b,c INT ,
x,y,z CHAR(10)

END GLOBALS

To reference these variables in other source modules, you would put the
following statement at the top of each source module using a global variable:

GLOBALS "globs.4gl"

The following section discusses global variable declarations in detail.

Using Global Variables
The GLOBALS statement defines and declares a global variable. All references
to a global variable refer to the same location in memory. This statement has
two forms:

• If you use the LIKE keyword in any DEFINE statement, you must identify
the database that contains the referenced database columns. You can do
this in one of two ways:

o Precede the GLOBALS...END GLOBALS with a DATABASE statement
specifying the database containing the referenced columns

o Qualify each referenced column with its table name

• If a global variable defined within the GLOBALS...END GLOBALS block
has the same name as a local variable, then the local identifier takes
precedence within its scope of reference. A module variable in the same
source module cannot have the same name as a global variable.
8-14 Using the Language

Using Global Variables
The following program segment defines a variable like the customer table
of the stores2 demonstration database:

DATABASE stores2
GLOBALS

DEFINE p_customer RECORD LIKE customer.*
END GLOBALS

Global Variable Declaration

The globals file contains global variable definitions and must have a .4gl file
extension; for example, this file may be named globals.4gl. You compile
this file as part of your multiple-module program. This globals file should
contain only GLOBALS...END GLOBALS blocks, no 4GL executable statements
(DATABASE and DEFINE statements are valid, however). Different source
files can reference different globals files.

Using GLOBALS Within a Single Module

The following program fragment defines a global record, a global array, and a
simple global variable that are referenced by code in the same source module:

DATABASE stores2
GLOBALS
DEFINE p_customer RECORD LIKE lbraz.customer.* ,

p_state ARRAY[50] OF RECORD LIKE state.* ,
state_cnt SMALLINT ,
arraysize SMALLINT

END GLOBALS

MAIN

LET arraysize = 50
 ...
END MAIN

FUNCTION get_states()
 ...
FOREACH c_state INTO p_state[state_cnt].*

LET state_cnt = state_cnt + 1
IF state_cnt > arraysize THEN

EXIT FOREACH
END IF

END FOREACH
 ...
END FUNCTION
Using the Language 8-15

Using Global Variables
FUNCTION state_help()
DEFINE idx SMALLINT ...
CALL SET_COUNT(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = ARR_CURR()
LET p_customer.state = p_state[idx].code
DISPLAY BY NAME p_customer.state
 ...
END FUNCTION

The INFORMIX-4GL compiler will generate an error if you defined a module
variable with a name of arraysize, p_customer, p_state, or state_cnt in the
same module containing the GLOBALS statement.

However, used in this context, the GLOBALS statement simply defines
variables with module scope. For other modules to be able to access the
variables, they must use the GLOBALS filename statement and to do so,
the GLOBALS...END GLOBALS block must appear in a separate source file.

Global Versus Module Scope

When a variable is declared in a GLOBALS statement, the variable is still
a module variable as far as the current source module is concerned, but you
can use it anywhere in your program. When you do this, the source modules
share the single copy of the variable. If the value is changed in one module,
it is changed through the program.

Note: You cannot specify GLOBALS “filename” if the file being referenced contains
any executable statements such as LET.
8-16 Using the Language

Initializing Variables
Figure 8-1 Illustrates the difference between global and local variables. The numbers in boxes
indicate the value of taxRate at the particular point in the program.

In the preceding illustration, the source module glob.4gl declares a variable
taxrate as a global variable. The current value of the global variable is avail-
able to any function in any module that references the global source module.

Another source module, sub1.4gl, references the GLOBALS file glob.4gl, and
assigns a value of 1.085 to taxrate.

A third module, wildduck.4gl, defines a module variable named taxrate and
assigns it a value. Since there is no reference to the globals file glob.4gl, this
module-level assignment is permitted. No change in the value of taxRate in
wildDuck.4gl will affect the current value of the global taxRate.

Finally, a routine in a fourth module, sub2.4gl, displays the current value
of the global variable taxrate, 1.085.

Initializing Variables
You initialize variables using the LET statement.

DEFINE Pi, TwoPi SMALLFLOAT
LET Pi = 3.1415926
LET TwoPi = 2*Pi

GLOBALS

DEFINE taxrate DECIMAL(4,3)

END GLOBALS

glob.4gl sub1.4gl

DEFINE taxrate DECIMAL(4,3)

LET taxrate = 1.15

wildduck.4gl

GLOBALS “glob.4gl”

LET taxrate = 1.085

DEFINE

NYCtaxRate DECIMAL(4,3)

LET NYCtaxrate = taxrate * 2

1.15

1.085

GLOBALS “glob.4gl”

DISPLAY “%tax is” , taxrate AT 2,2

sub2.4gl

1.085

uninitialized
Using the Language 8-17

Expressions and Values
The declaration of a variable must precede any executable statement
in the same program block.

4GL programmers often initialize global variables at a single point
in the program, such as immediately after the last DEFINE or DATABASE
statement in the MAIN program block.

Expressions and Values
A value is a specific item of information. An expression specifies how a value
is to be produced. You can use expressions at many points in a 4GL program,
for example in:

• Function calls, to specify the arguments to functions

• Decision and looping statements, to control program flow

• Reports, to specify the values to print in the report

• SQL statements, to specify values to be inserted into the database

• LET statements, to specify values to be assigned to variables

Every value has a type, one of the simple data types listed earlier in this
chapter. The 4GL compiler knows the type of every part of an expression, so it
can tell the type of the final value that the expression describes.

See the INFORMIX-4GL Reference for a detailed discussion of 4GL and SQL
expressions.

Literal Values
The simplest kind of expression is a literal value, that is, a literal representa-
tion of a number, character string, or other kind of data.

Here are some literal numbers: -7, 3.1415926, 1e-8. 4GL assumes any lit-
eral number with a fractional component has the type DECIMAL(32), the most
precise number type available.

You write literal character values in quotes: "Record inserted." (You
can use either single apostrophes or double quotes.) 4GL assumes any literal
character value has the type CHAR(n) where n is the number of characters
between the quotes.

You can also write literal values of types DATE, DATETIME, and INTERVAL;
see the INFORMIX-4GL Reference for details on these data types.
8-18 Using the Language

Values from Variables
Values from Variables
The next simplest kind of expression is the name of a simple variable or
the name of one element of a structured variable. Suppose that the following
names are declared and a value assigned to pi.

DEFINE
j, prodNum INTEGER
pi SMALLFLOAT
LET pi = 3.1415926

Following these statements, you can use the name pi as an expression
meaning 3.1415926 and having the type SMALLFLOAT. The names j and
prodNum are expressions meaning, “the value that was last stored in this
variable,” and have a type of INTEGER.

References to structured variables are also expressions. The array access
custByProd[j,prod_num] is an expression meaning, “the value that
was last stored in the subscripted element of this array.”

Values from Function Calls
A function can return one or more values. In fact, this is the most common
reason to write a function: to calculate and return a value. (Functions are
discussed in more detail under “Functions and Calls” on page 8-29.)

A function that returns a single value can be used as an expression.

You write a call to a function by writing the name of the function followed
by its arguments enclosed in parentheses. See also “Data Type Conversion”
on page 8-25.

The use of functions returning more than one value is covered under
“Working with Multiple Values” on page 8-32.
Using the Language 8-19

Numeric Expressions
Numeric Expressions
You can write expressions that calculate numeric values. You can use the
arithmetic operators to combine numeric literals and the names of numeric
constants, variables, and functions to calculate new values. The following
statement from an example in the preceding chapter contains several
numeric expressions:

LET fahrDeg = (9*centDeg)/5 + 32

In this statement, 9, 5, and 32 are literals, and centDeg is the name of
a variable. The expression 9*centDeg tells 4GL to produce a new value by
multiplying two values, and (9*centDeg)/5+32 tells it how to produce
another new value by dividing and then adding.

As previously noted, 4GL carries intermediate results of calculations on
numbers with fractional components in its most precise data type,
DECIMAL(32). This helps prevent many errors due to rounding and
truncation, and reduces the chance that an intermediate result will overflow.
However, it is still possible for a badly planned calculation to cause overflow,
round-off, or truncation errors. As with any computer language, you should
think through the precision requirements of any critical calculation.

Integer and numeric expressions are described in Chapter 3, INFORMIX-4GL
Reference.

Relational and Boolean Expressions
In 4GL, the result of comparing two values is a new integer value: 1 if the
comparison is true and 0 if it is false. Suppose the following variables have
been declared and initialized:

DEFINE maxRow, rowNum INTEGER

The expression rowNum==maxRow is a comparison; that is, a numeric
expression with a value of either 1 or 0.

Note: You can write an equality comparison using either a single equals sign or
a double one. If you have used the C language, you may prefer to write “==”; if
your experience has been with other languages you may prefer to use just one.
8-20 Using the Language

Character Expressions
Other relational operators include <> for “not-equals” and MATCHES for
character pattern matching. Two especially important relational operators
are IS NULL and IS NOT NULL. You can use these to test for the presence of a
NULL value in a variable. (For more information on the use of NULL values,
see “Null Values” on page 8-22 and Chapter 3, INFORMIX-4GL Reference.)

All these relational tests return 1 to mean “true” or 0 to mean “false.” The
names TRUE and FALSE are predefined 4GL constants with those values.

You can combine numeric values with the Boolean operators AND, OR, and
NOT. Normally you use them to combine the results of relational expressions,
writing expressions such as keepOn="Y" AND rowNum < maxRows. That
expression means:

• Take the value of the comparison keepOn="Y" (which is 1 or 0).

• Take the value of the comparison rowNum<maxRows (1 or 0).

• Combine those two values using AND to produce a new value.

Usually you write Boolean expressions as part of IF statements and other
decision-making statements (for some examples, see the section “Decisions
and Loops” on page 8-26). However, a comparison is simply a numeric
expression. You can store its value in a variable, pass it as a function
argument, or use it any other way that an expression can be used.

For more on relational and Boolean expressions, see Chapter 3 of the
INFORMIX-4GL Reference.

Character Expressions
You can express a character value:

• With a literal.

• By naming a CHAR or VARCHAR variable.

You can produce a character value:

• With a call to a function that returns CHAR or VARCHAR.

• As a substring of a literal, a variable, or the returned value from a function
returning a CHAR or VARCHAR value.
Using the Language 8-21

Null Values
A substring is written as one or two numbers in square brackets. The first
is the position of the first character to extract, and the second is the position
of the last. Suppose this variable exists:

DEFINE delConfirm CHAR(11)
LET delConfirm = "Row deleted"

Now you can write delConfirm[1,3] as an expression with the value Row
and the expression delConfirm[5,8] is the value dele. The expression
delConfirm[4] or delConfirm[4,4] is a single space character.

It should be noted that the substring expression uses the same notation as
the subscript to an array. Here is an example of an array of character values:

DEFINE companies ARRAY[75] OF CHAR(15)

The expression companies[61] produces the character value from the 61st
element of the array. The expression companies[1,7] would cause an error
at compile time because the array companies does not have two dimensions.
However, the expression companies[61][1,7] accesses the 61st element and
then extracts the first through the seventh letters of that value.

Null Values
For every data type, the Informix database engines define a NULL value.
A value of NULL in a database column means do not know, or not applicable,
or unknown. Since null values can be read from the database into program
variables, 4GL also supports a NULL value for every data type. The keyword
NULL stands for this unknown value. A variable of any type can contain NULL
and a function can return a variable with a value of NULL.

Null Values in Arithmetic

If you do arithmetic that combines a number with NULL, the result is NULL.
Adding 1 to unknown must result in unknown. Thus a single NULL value in an
arithmetic expression will usually make the entire expression have the value
NULL.
8-22 Using the Language

Assignment and Data Conversion
Null Values in Comparisons

If you compare a NULL value to anything else, the result is NULL. Is “A”
equal to unknown? The only answer can be unknown. Thus every comparison
expression has not two but three possible results: TRUE, FALSE, and unknown,
or NULL.

It is worth noting that the decision-making statements such as IF and WHILE
do not distinguish this third result. They treat NULL the same as FALSE. This
can cause problems when you test values that may be NULL. That is why
the relational tests IS NULL and IS NOT NULL are provided; they allows you
to detect NULL values and respond according to the requirements of your
application program.

Null Values in Boolean Expressions

The Boolean operators AND and OR give special treatment to NULL. In the
case of OR, when one of its arguments is TRUE, its result is TRUE no matter
what the other argument may be. But if one of its arguments is FALSE and
the other is NULL, OR must return NULL; it does not know whether its result
should be TRUE or FALSE.

Assignment and Data Conversion
In creating a useful 4GL program, first you write expressions to describe
values; then, you do something with the values. Sometimes you display them
or pass them as arguments to functions. Most often, you assign a value for
a variable; that is, you tell 4GL to store the value in the memory reserved
to the variable.

DEFINE fahrDeg, centDeg DECIMAL(4,2)
LET centDeg = 10.28
LET fahrDeg = (9*centDeg)/5 + 32

The expression is (9*centDeg)/5+32. The LET statement causes 4GL to
calculate the value of the expression and to store that value in the memory
reserved for the variable fahrDeg.
Using the Language 8-23

Assignment and Data Conversion
There are several ways to assign a value to a variable:

• Use the LET statement. This is the most common kind of assignment.

• Use the CALL…RETURNING statement to call a function and store the
value it returns.

CALL tempConvert(32) RETURNING fahrDeg

• Use the INTO clause of an SQL statement to get a value from the database
and assign it to a variable.

SELECT COUNT(*) INTO maxRow FROM stock

Other SQL statements that support INTO include SELECT, FETCH, and
FOREACH.

• Use the INITIALIZE statement to set a variable, or all members of a record,
to NULL or to other values.

INITIALIZE custRow.* TO NULL

• Use PROMPT to accept values entered by the user from the keyboard.

PROMPT "Enter temp to convert: " FOR centDeg

• Use INPUT or INPUT ARRAY to get values from fields of a form and put
them in variables.

INPUT custRec.* FROM customer.*

• Use CONSTRUCT to get a query by example expression from a form and
put it in a variable.

CONSTRUCT BY NAME whereClause ON customer.*
8-24 Using the Language

Data Type Conversion
Data Type Conversion
All of the preceding methods of assignment perform the same action: they
store values in variables. Each performs automatic data conversion when is
necessary and possible. Data conversion is necessary when the data type
of the value is different from the data type of the variable that receives it.

As previously noted, 4GL has liberal rules for data conversion. It will attempt
to convert a value of almost any type to match the type of the receiving
variable. For a table summarizing the rules and showing data type incompat-
ibilities, see Chapter 3 of INFORMIX-4GL Reference for a table of compatible
4GL data types.

DEFINE num DECIMAL(8,6)
DEFINE chr CHAR(8)
LET num = 2.18781
LET chr = num

The second assignment statement asks 4GL to initialize chr, a character vari-
able, from the value of num, a numeric variable. In other words, this state-
ment asks 4GL to convert the value in num to character. It does that using the
same rules it would use when displaying the number, in this case producing
the string 2.187810 (with all six declared decimal places filled in).

LET num = chr[1,3]

Given the initialization of chr to the string 2.187810, the expression
chr[1,3] returns the characters 2.1. Since the receiving variable has type
DECIMAL(8,6), 4GL converts the characters into a number 2.100000 and
assign that to num.

Conversion Errors
Some conversions cannot be done. When 4GL can recognize at compile time
that a particular conversion is illegal, it returns a compiler error.

Two data types that 4GL never attempts to convert are BYTE and TEXT. The
reason is the same in each case; 4GL does not know enough about the internal
structure of values of these types to convert them.
Using the Language 8-25

Decisions and Loops
Some conversions may only prove to be impossible at execution time.
Then the error will be detected while the program is running. For example,
the following program tries to assign a CHAR value to a SMALLINT variable:

DATABASE stores2
DEFINE a, b SMALLINT, c,d CHAR(10)

MAIN
LET c="apple"
DISPLAY "This is c ", c AT 3,3
SLEEP 2

LET a=c
DISPLAY "This is a ", a AT 5,5
SLEEP 4

END MAIN

For more information, see “Run-Time Errors” on page 12-4.

Decisions and Loops
The statements you use to control the sequence of execution are similar
to those in other languages you may have used. You will find details in
the INFORMIX-4GL Reference article for each statement.

IF…THEN…ELSE Tests for Boolean (yes/no) conditions. You write the test
as a conditional statement, usually a relational compari-
son or a Boolean combination of relational comparison. If
the value of the expression is 1 (TRUE), the THEN state-
ments are executed. When the expression evaluates to 0
(FALSE) or is NULL, the ELSE statements are executed.

IF promptAnswer MATCHES "[yY]" THEN
DELETE WHERE CURRENT OF custCursor

ELSE
DISPLAY "Row not deleted at your request"

END IF
8-26 Using the Language

Decisions and Loops
CASE(expr) Implements multiple branches. This statement has two forms.
The first is a simple form that compares one expression for
equality against a list of possible values.

CASE (WEEKDAY(ship_date))
WHEN 0 -- Sunday

DISPLAY "Will ship by noon Monday"
WHEN 5 -- Friday

DISPLAY "Will ship by noon Saturday"
WHEN 6 -- Saturday already

DISPLAY "Will ship by noon Monday"
OTHERWISE

IF DATETIME (12) HOUR TO HOUR <
EXTEND(CURRENT,HOUR TO HOUR) THEN

DISPLAY "Will ship by 5 today"
ELSE -- past noon

DISPLAY "Will ship by noon tomorrow"
END IF

END CASE

CASE The second form of CASE is effectively a list of else-if tests. No
expression follows the keyword CASE, but a complete Boolean
expression (instead of a comparison value) follows each WHEN
keyword.

MAIN
DEFINE promptAnswer CHAR(10)
PROMPT "Delete current row? " FOR promptAnswer
CASE

WHEN promptAnswer MATCHES "[Yy]"
DISPLAY "Row will be deleted." AT 2,2

WHEN promptAnswer MATCHES "[Nn]"
DISPLAY "Row not deleted." AT 2,2

WHEN promptAnswer MATCHES ("Maybe")
DISPLAY "Please make a decision." AT 2,2

OTHERWISE
DISPLAY "Please read the instructions again." AT 2,2

END CASE
SLEEP 5
END MAIN
Using the Language 8-27

Decisions Based on Null
WHILE Provides for generalized looping. You can use the EXIT statement
to break out of a loop early.

LET j=1
WHILE manyObj[j] IS NOT NULL

LET j = j + 1
IF j > maxArraySize THEN -- off the end of the array

LET j = maxArraySize
EXIT WHILE

END IF
END WHILE
DISPLAY "Array contains ",j," elements."

FOR Provides counting loops.

FOR j = 1 TO maxArraySize
IF manyObj[j] IS NOT NULL THEN

LET j = j-1
EXIT FOR

END IF
END FOR
DISPLAY "Array contains ",j," elements."

An additional loop, the FOREACH loop, is discussed under “Row-by-Row
SQL” on page 9-5.

Decisions Based on Null
If a Boolean comparison evaluates to NULL (see “Null Values” on page 8-22),
it will have the same effect as FALSE:

• IF NULL… always executes the ELSE statements (if any).

• CASE (NULL)… always executes the OTHERWISE statements (if any).

• WHILE NULL… does not execute its loop statements at all.

Using a NULL value as either the starting or the ending number in a FOR loop
results in an endless loop. The FOR loop ends when the control variable
equals the upper limit, but a NULL value cannot equal anything; hence
the loop never ends.
8-28 Using the Language

Functions and Calls
Functions and Calls
A function is a named block of executable code. The function is your primary
tool for achieving a readable, modular program.

Function Definition
You define a function when you specify the executable statements it contains.
Here is a definition for a simple function:

This example shows the important parts of a function definition. It contains:

• A FUNCTION statement that defines:

o The name of the function (fahrToCent in the example).

o How many arguments it takes (just one in the example).

• A function program block, statements between the FUNCTION and END
FUNCTION.

o DEFINE statements must appear first, before other kinds of
statements.

o Executable statements do the work of the function. In the example
there is only one, a RETURN statement.

Variables declared in the program block are local to the function. The variable
named FiveNinths is local to this function; it is not available outside the
function, although other FiveNinths variables can be declared at the module
level, locally in other functions, or globally.

When the 4GL compiler processes a function definition, it generates the
executable code of the function.

Once defined, a function is available to any 4GL module in your program.

FUNCTION fahrToCent(ftemp)

DEFINE ftemp, FiveNinths FLOAT

LET FiveNinths = 5/9

RETURN (ftemp - 32) * FiveNinths

END FUNCTION

Function name

Variables local
to function

Name of argument
Using the Language 8-29

Invoking Functions
Invoking Functions
You cause a function to be executed by calling it. There are two ways to call
a function:

• In an expression

• Through the CALL statement

When a function returns a single value, you can call it as part of an
expression. The fahrToCent() function described previously returns a single
value, so it can be called in an expression that expects the data type of the
returned value.

LET tmp_range = fahrToCent(maxTemp) - fahrToCent(minTemp)

This statement contains two calls to the function fahrToCent(). The
statement subtracts one of these values from the other and assigns the result
to a variable of type FLOAT named tmp_range.

When a function returns no values or multiple values, you must use the CALL
statement. Functions that return one value can be called in this way also.

CALL mergeFiles()
CALL fahrToCent(currTemp) RETURNING cTemp

The very useful ability to return more than one value from a function is
considered further under “Working with Multiple Values” on page 8-32.

Arguments and Local Variables
The arguments you provide when a function is called are, in effect, local
variables of the function. That is, these names (the name ftemp in the
fahrToCent() function, for example) represent values that are passed to
the function when it is called. They are local to the function.

The following things happen when a function is called:

• The local variables of the function are allocated in memory, including the
variables that will represent the arguments. In the function fahrToCent(),
local variables are fiveNinths and ftemp, its argument.
8-30 Using the Language

Arguments and Local Variables
• Each argument expression in the function call is evaluated. In the
following call, the expression targetTemp + 20 is evaluated.

LET limitTemp = fahrToCent(targetTemp + 20)

• Each argument value is assigned to its argument variable, as described
earlier (“Assignment and Data Conversion” on page 8-23). When an
argument value has a different type from the argument variable, 4GL
attempts to convert it, as it would in any assignment.

• The statements of the function are executed.

• The local variables, including the argument variables, are discarded and
the memory reclaimed.

The key point here is that the expressions you write in the call to a function
are, in effect, assignments to local variables of the function. Knowing this,
you can answer some common questions:

• Does a value passed to a function require a certain data type?

No, because the value is assigned to the argument variable, and 4GL will
attempt to convert it to the specific type.

• Can a function assign new values to its arguments?

Yes, because they are simply local variables.

• Does this change the contents of variables named in the call to
the function?

No, because the function’s argument variables are local to it.

This method of passing arguments to functions is known as call by value.
An alternative technique, call by reference, is used in some other programming
languages, but generally not by 4GL. The only call by references in 4GL are
references to BYTE and TEXT data types. These are called by reference because
it is not practical to pass blobs by value.

The use of call by value has an effect on performance. Each argument value
is copied into the function’s variable. When the arguments are bulky charac-
ter strings, the time such copying takes can be significant. A common way
of avoiding this time penalty is to use global variables.
Using the Language 8-31

Working with Multiple Values
Working with Multiple Values
4GL lets you work with record variables in a very consistent and flexible way.
The basic rules for records are:

• The name of a record followed by a dot and an asterisk, record.*, also
means a list of all the members of the record.

• You can select a range of members using record.first THRU last where
first and last are names of members of record.

These examples illustrate the use of these rules:

DEFINE
rSSS1, rSSS2 RECORD s1, s2, s3 SMALLINT END RECORD
rFFC RECORD f1, f2 FLOAT , c3 CHAR(7) END RECORD

FUNCTION takes3(a,b,c)
DEFINE a,b,c SMALLINT
...
END FUNCTION

These statements define three record variables and declare a function
that takes three arguments. The function takes3() will be used in examples
in subsequent sections.

Assigning One Record to Another
To assign a value to a single member of a record, you use LET.

LET rSSS1.s1 = 101
LET rSSS1.s2 = rSSS1.s1 + 1
LET rSSS1.s3 = 103

You can assign one record to another using LET when they have the same
number of members.

LET rSSS2.* = rSSS1.*

This statement assigns the three members of rSSS1 to the corresponding
members of rSSS2.
8-32 Using the Language

Passing Records to Functions
In other words, 4GL assigns members one at a time, with data conversion
as required. The members must all have simple data types, and the data
types must be the same, or else data conversion must be possible.

You can use THRU notation to assign a range of members.

LET rFFC.f1 THRU rFFFC.f2 = rSSS1.s2 THRU rFFFC.s3

Note: In general, THRU is allowed whereever an expression list is allowed, such as
in a CALL statement. However, THRU in the LET statement is allowed in a special
case only:

LET charvar = rec.a THRU rec.b

Passing Records to Functions
The name of a record is a list of values; and a function takes a list of
arguments. Thus you can use a record as a list of arguments.

CALL takes3(rFFC.*)

The previous statement is equivalent to listing the members:

CALL takes3(rFFC.f1,rFFC.f2,rFFC.c3)

When calling a function, you can also mix record members and single
expressions as arguments.

CALL takes3(17, rSSS1.f2 THRU rSSS1.f3)
Using the Language 8-33

Returning Records from Functions
Returning Records from Functions
A function can return more than one value. You can make this happen by
writing a RETURN statement in the FUNCTION definition containing a list of
expressions. An example follows.

The function agedBalances() returns the amounts that are owed by
a specified customer as three numbers: amounts owed for 30 days or less,
31-60 days, and more than 60 days.

DATABASE stores2

FUNCTION agedBalances(cn)

DEFINE cn LIKE customer.customer_num ,

 bal30, bal60, bal90 DEC(8,2) ,

 ordDate LIKE orders.order_date ,

 ordAmt DEC(8,2)

LET bal30 = 0.00

LET bal60 = 0

LET bal90 = 0

DECLARE balCurs CURSOR FOR

SELECT order_date, SUM(items.total_price)

FROM orders, items

WHERE orders.customer_num = cn

AND orders.order_num = items.order_num

GROUP BY order_date

FOREACH balCurs INTO ordDate, ordAmt

IF ordDate <= TODAY - 90 THEN

LET bal90 = bal90 + ordAmt

ELSE IF ordDate <= TODAY - 60 THEN

LET bal60 = bal60 + ordAmt

ELSE

LET bal30 = bal30 + ordAmt

END IF

END FOREACH

RETURN bal30, bal60, bal90

END FUNCTION

The RETURN
statement must match
in number of values in
the calling function.
8-34 Using the Language

Returning Records from Functions
A function like this one can be used in several ways. It can be used in
a CALL…RETURNING statement. You list variables to receive the values.

DEFINE balShort, balMed, balLong MONEY(10)
...
CALL agedBalances(custNumber)

RETURNING balShort, balMed, balLong

If you have a record with appropriate members of the appropriate number
of data types, you can refer to it in the RETURNING clause of the CALL
statement.

DEFINE balRec RECORD b1, b2, b3 MONEY(10) END RECORD
...

CALL agedBalances(custNumber) RETURNING balRec.*
Using the Language 8-35

Returning Records from Functions
8-36 Using the Language

Chapter
9

Using Database
Cursors
Overview 3

The SQL Language 3

Nonprocedural SQL 4

Nonprocedural SELECT 5

Row-by-Row SQL 5
Updating the Cursor’s Current Row 8
Updating Through a Primary Key 8
Updating with a Second Cursor 9

Dynamic SQL 10

9-2 Using Database Cursors

Overview
In many ways the SQL language can be considered a subset of the 4GL
language because you can embed many SQL statements in a 4GL program.

The SQL Language
SQL can be used both procedurally and non-procedurally, depending on the
needs of your application. Similarly, SQL statements can be static—that is,
created at compile time—or dynamic. Dynamic statements are composed
during run time, based in whole or in part on information supplied or
selected by the user of the application.

For additional information about the use of SQL in general and embedded
in a 4GL program in particular, see the Informix Guide to SQL: Tutorial, and the
Informix Guide to SQL: Reference. If you want to use 5.0 or 6.0 SQL features, see
the Informix Guide to SQL: Syntax. However, to include 6.0 SQL statements in
a a 4GL program, you must prepare the statement (by using the PREPARE
statement). For information on preparing SQL statements, see Chapter 3 of
the INFORMIX-4GL Reference.
Using Database Cursors 9-3

Nonprocedural SQL
Nonprocedural SQL
Here is an example of SQL use shown earlier in this book. It defines a function
named markup() whose purpose is to alter the prices of stock received from
a specified manufacturer.

The function takes two arguments. The first, manuf, is the code for
the supplier whose prices are to be changed. The second, changePct,
is the fraction by which prices should be changed.

Here is an example call to markup():

LET rowCount = markup("ANZ",0.05)
DISPLAY rowCount, " stock items changed."

The SQL statement UPDATE in the definition of the markup() function causes
a change in the unit prices of certain stock items in the database. The function
argument values are used in this UPDATE statement, one in the SET clause
and one in the WHERE clause.

This function is an example of the nonprocedural use of SQL. The UPDATE
statement will examine many rows of the stock table. It may update all, some,
or none of them. The 4GL program does not loop, updating rows one at a
time; instead it specifies the set of rows using a WHERE clause and leaves
the sequence of events to the database engine.

FUNCTION markup(manuf, changePct)

DEFINE manuf CHAR(3) ,

changePct DECIMAL(2,2)

UPDATE stock

SET unit_price = unit_price * (1+changePct)

WHERE manu_code = manuf

RETURN sqlca.sqlerrd[3] -- number of rows affected

END FUNCTION

Argument used in
SET clauseArgument used in

WHERE clause
9-4 Using Database Cursors

Nonprocedural SELECT
Nonprocedural SELECT
All 4.1-level SQL statements except the SELECT statement can be used this
way: by writing them in the body of a function. SELECT also can be used this
way as long as only a single row is returned. The following function returns
the count of unpaid orders for a single customer, given the customer name:

FUNCTION unpaidCount(cust)
DEFINE cust LIKE customer.company ,

theAnswer INTEGER
SELECT COUNT(*) INTO theAnswer

FROM customer, orders
WHERE customer.company = cust
AND customer.customer_num = orders.customer_num
AND orders.paid_date IS NULL

RETURN theAnswer
END FUNCTION

Since the SELECT statement returns only an aggregate result (a count), it can
return only a single value. The argument variable cust is used in the WHERE
clause. The result of the SELECT is assigned to the local variable theAnswer
by the INTO clause.

Some SQL statements do not allow program variables in all contexts. You can
refer to the syntax diagrams in Informix Guide to SQL: Syntax.

Note: To include any SQL statements introduced after version 4.1 of the servers in a
4GL program, you must prepare the statement. You prepare a statement by using the
PREPARE statement. For a list of SQL statements that must be prepared and for
information on preparing SQL statements, see Chapter 3 of the INFORMIX-4GL
Reference.

Row-by-Row SQL
When a SELECT statement can return more than one row of data, you must
write procedural logic to deal with each row as it is retrieved. You do this in
four or five steps:

• If you wish to generate your SQL statement dynamically—that is, using
the 4GL CONSTRUCT statement to generate dynamic search criteria—
place your statement text in a CHAR variable and use the SQL PREPARE
Using Database Cursors 9-5

Row-by-Row SQL
statement. (See “Dynamic SQL” on page 9-10 and the Informix Guide to
SQL: Reference.)

• You declare a database cursor, which is a name that stands for a selection
of rows.

You specify the rows using SELECT statement. While you often specify
a selection from a single table, you are free to specify rows formed by
unions and/or joins over many tables, and including calculated values,
literal values, aggregates, and counts.

• You open the cursor, causing the database engine to retrieve the first
of the specified set of rows.

• You retrieve rows one at a time through the cursor using the FETCH
statement and process each one as it is produced.

• You close the cursor, releasing the set of rows.

Alternatively, you can use FOREACH statement to automatically open the
cursor, FETCH one row for each traversal of the FOREACH loop, and then
close the cursor after you have processed the last row of the selection set.

The following example contains a SELECT statement that retrieves one row
for each customer that has an unpaid order in the demonstration database.
The selected data consists of the customer number and the total value of that
customer’s unpaid orders. The DECLARE statement must be executed before
FOREACH in showCustDue().
9-6 Using Database Cursors

Row-by-Row SQL
Unless used in conjunction with a PREPARE statement, the SELECT statement
is written within a DECLARE statement, which creates a database cursor.
The cursor, when opened, represents the set of all selected rows. (For more
on database cursors and active sets, see the Informix Guide to SQL: Tutorial.)

The FOREACH statement in 4GL has three effects:

• It opens the database cursor.

• For every row in the selected set, FOREACH:

o Fetches the column values for that row. (In the example, it assigns
the fetched values to local variables cust and amt_owing.)

o Executes the statements in the body of the loop (a single DISPLAY
in the example above).

• Closes the cursor.

This is a common pattern for many programs: open a cursor, fetch the rows
and process each row, and close the cursor. The step “process each row,”
of course, can be very elaborate, especially when you “process” a row by
displaying it in a screen form for the user to read or change.

DECLARE custDue CURSOR FOR
SELECT C.customer_num, SUM(I.total_price)
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num
AND O.paid_date IS NULL
GROUP BY C.customer_num

FUNCTION showCustDue()
DEFINE

cust LIKE customer.customer_num,
amt_owing MONEY(8,2)

DISPLAY "Customer", COLUMN 15, "total unpaid"

FOREACH custDue INTO cust, amt_owing
DISPLAY cust, COLUMN 15, amt_owing USING "$$$,$$$.$$"

END FOREACH

END FUNCTION

The set of rows
is defined by a

SELECT statement.

A cursor
represents a
set of rows.

FOREACH loop iterates
once per row from

specified cursor.
Using Database Cursors 9-7

Updating the Cursor’s Current Row
Updating the Cursor’s Current Row
When you have fetched a row of a single table (not a row produced by joining
tables) through a cursor, you can delete or update that particular row. You do
this by:

• Making the cursor an update cursor, which locks the selected row

• Then indicating in your UPDATE statement that you wish to update
the current cursor row

To make the cursor an update cursor, add the keywords FOR UPDATE to
the cursor declaration; you can also limit the update to certain columns
by specifying those column names in the FOR UPDATE clause. When using
the cursor, you can update or delete the current row by writing an UPDATE
or DELETE statement as usual and adding the clause WHERE CURRENT OF
cursor, supplying the name of the cursor from which you fetched the row.

The following function uses a cursor to scan the orders table and deletes any
row for which the paid-date is at least a month old. (Note that the same task
could more easily be accomplished by a nonprocedural UPDATE.)

DECLARE oldOrder CURSOR FOR
SELECT order_num, paid_date FROM orders
— — no WHERE clause, all rows scanned
FOR UPDATE

FOREACH oldOrder INTO o_num, p_date
IF 30 < (TODAY - o_num) THEN

DELETE FROM orders WHERE CURRENT OF oldOrder
END IF

END FOREACH

The clause FOR UPDATE tells the database engine that you may update
or delete fetched rows (it is not required in an ANSI-compliant database).

Updating Through a Primary Key
Often you will find reasons why you cannot or should not update the current
row through the same cursor. (For example, the cursor produces rows based
on a join of multiple tables.) When this is the case, you can use the nonproc-
edural UPDATE or DELETE statement instead.

Be sure that the cursor produces a row that contains the primary key of the
row to be updated, so that you can isolate the exact row you want to modify.
When you fetch a row, you fetch the values of its primary key into program
variables.
9-8 Using Database Cursors

Updating with a Second Cursor
If you decide to change the row, you execute the UPDATE or DELETE
statement containing a WHERE clause that selects the specific row based
on its primary key values.

Updating with a Second Cursor
The following situation arises quite often. You want to select a set of rows
using a cursor. You will display each row on the screen and wait for the user
to react. The user may then tell you to delete or update the displayed row.

This is not a problem when your program is the only one using the database;
you can use UPDATE …WHERE CURRENT OF or you can update using the
primary key, whichever is appropriate.

However, the situation does become difficult when multiple users may be
working in the same table at the same time, using multiple copies of your
program or using different programs. You do not want to lock the row while
your user examines it; your user might answer the telephone or go to lunch,
blocking other users out. Hence you do not want to select rows using an
update cursor, which locks rows.

The answer is to use two cursors. The first, primary cursor selects the rows
of interest. You include in each row the primary key column(s). The second
cursor selects only one row based on its primary key, and is declared FOR
UPDATE. When the user chooses to update the current row, proceed as
follows:

1. Open the second cursor.

2. Fetch the one matching row into a temporary record. If the row with this
ROWID value cannot be found, you know that another user must have
deleted it while your user was looking at the screen display.

3. Compare the second set of column values to the ones you displayed to the
user. If any important ones have changed, you know that some other user
has altered this row while your user was looking at the display. Notify
your user and do not proceed.

4. Update the row through the second cursor using WHERE CURRENT OF.

5. Close the second cursor.

You can find examples of this kind of programming in INFORMIX-4GL
by Example.
Using Database Cursors 9-9

Dynamic SQL
Dynamic SQL
In the preceding examples, the SQL statements are static. That is, they were
written into the program source, and hence are static in that their clauses are
fixed at the time the source module is compiled. Only the values supplied
from program variables can be changed at execution time.

There are many times when you need to generate the contents of the SQL
statement itself while the program is running. For instance, you probably
want users of your program to be able to retrieve records based upon queries
they devise during the day-to-day operation of their business. In other
words, in real time. When you do this, you are using dynamic SQL.

The following function uses dynamic SQL. It assembles the text of a GRANT
statement and executes it. It takes three arguments:

• The name of the user to receive the privilege.

• The name of a table on which the privilege is to be granted.

• The name of a table-level privilege to be granted (for example, INSERT).

FUNCTION tableGrant(whom , tab , priv)
DEFINE whom , tab , priv CHAR(20), granTextCHAR(100)
LET granText = "GRANT " , priv , " ON " , tab ,

" TO " , whom
PREPARE granite FROM granText
EXECUTE granite

END FUNCTION

This function does nothing about handling the many possible errors that
could arise in preparing and executing this statement. In “Using WHEN-
EVER in a Program” on page 12-12, you can find a version of the same pro-
gram that does handle errors.
9-10 Using Database Cursors

Chapter
10

Creating Reports
Overview 3

Designing the Report Driver 3
An Example Report Driver 4

Designing the Report Formatter 5
The REPORT Statement 7
The Report Declaration Section 8
The OUTPUT Section 8
The ORDER BY Section 10

Sort Keys 10
One-Pass and Two-Pass Reports 11

Two-Pass Logic for Row Order 11
Two-Pass Logic for Aggregate Values 11
Further Implications of Two-Pass Logic 12

The FORMAT Section 12
Contents of a Control Block 13
Formatting Reports 13
PAGE HEADER and TRAILER Control Blocks 14
ON EVERY ROW Control Block 15
ON LAST ROW Control Block 16
BEFORE GROUP and AFTER GROUP Control

Blocks 16
Nested Groups 17

Using Aggregate Functions 17
Aggregate Calculations 18
Aggregate Counts 18
Aggregates Over a Group of Rows 19

10-2 Creating Reports

Overview
4GL reports are introduced in “Creating 4GL Reports” on page 6-4. As noted
there, a report program has two parts:

• A report driver that produces rows of data

• A report formatter that sorts the rows (if necessary), creates subtotals and
other summary information, and formats the rows for output

When you design a report program you can design these two parts
independently. A report driver can produce rows for any number of reports.

The 4GL statements you use for reports are covered in detail in Chapter 6
of the INFORMIX-4GL Reference. And you can find several examples of
programs that produce reports distributed with 4GL.

Designing the Report Driver
The report driver executes the following steps:

• Initialize the report using the START REPORT statement.

This statement initializes the report formatter. It can also specify the
destination of the report such as the screen, the printer, a file, or another
program.

• Generate rows of data, sending each row using OUTPUT TO REPORT.

This statement, which is similar to a function call, passes one row of data
to the report. Although called a “row,” each group of data values need
not come from a row of a database table; the values can come from any
source, including calculation made by your program. It is equally valid
to look at a row as an input record.

• Conclude row processing.

• Terminate the report using FINISH REPORT.

Totals and other aggregates are calculated, the report is output, and
the output file is closed.
Creating Reports 10-3

An Example Report Driver
An Example Report Driver
Row production can be a natural part of a 4GL application. Here is a brief
example of row-producing code (the report itself appears on page 10-7):

This function takes a filename (it may be a complete pathname) as its
argument, and produces a report with that destination.

The values in each row describe one row of merchandise from the stores
demonstration database. The values are produced by a database cursor
defined on a join of the stock and manufact tables. They are produced
in sorted order using the row ordering capability of the database engine.

The report formatter is named minStockRep(). That name appears
in the START, OUTPUT, and FINISH statements.

FUNCTION minRows(destfile)

DEFINE mn LIKE manufact.manu_Name ,

sn LIKE stock.stock_num ,

sd LIKE stock.description ,

sp LIKE stock.unit_price ,

su LIKE stock.unit ,

destfile CHAR(120)

DECLARE minStock CURSOR FOR

SELECT manu_Name , stock_num , description ,

unit_price, unit

FROM manufact M, stock S

WHERE M.manu_code = S.manu_code

ORDER BY 1,2

START REPORT minStockRep TO destFile

FOREACH minStock INTO mn,sn,sd,sp,su

OUTPUT TO REPORT minStockRep(mn, sn, sd, sp, su)

END FOREACH

FINISH REPORT minStockRep

END FUNCTION

Report initialized; file
destination can be a variable.

Rows are generated in sorted order.

Values for one row passed
like function arguments.

Report output completed
and file closed.
10-4 Creating Reports

Designing the Report Formatter
Designing the Report Formatter
Although a report has the general form of a function, its contents are quite
different. The body of a function contains one block of statements, while
the body of a report contains several independent statement blocks that
are executed as needed. Here is the minStockRep() that completes the
preceding example. This code is examined in detail in the topics that follow.
Creating Reports 10-5

Designing the Report Formatter
Figure 10-1 Typical 4GL report specification

REPORT minStockRep(manName, stNum, stDes, stPrice, stUnit)

DEFINE
pNum INTEGER ,
misc, showManName SMALLINT ,
manName, thisMan LIKE manufact.manu_name ,
stNum LIKE stock.stock_num ,
stDes LIKE stock.description ,
stPrice LIKE stock.unit_price ,
stUnit LIKE stock.unit

OUTPUT
LEFT MARGIN 8
PAGE LENGTH 20 -- short page for testing purposes

ORDER
EXTERNAL BY manName, stNum

FORMAT
FIRST PAGE HEADER

LET pnum = 1
 PRINT "Stock report",COLUMN 62, pNum USING "###"
 SKIP 2 LINES
 LET pNum = pNum + 1

PAGE HEADER
PRINT "Stock report",COLUMN 62, pNum USING "###"
SKIP 2 LINES
LET pNum = pNum + 1

PAGE TRAILER
SKIP 2 LINES
LET misc = 65 - LENGTH(thisMan)
PRINT COLUMN misc, thisMan
LET showManName = TRUE

BEFORE GROUP OF manName
LET thisMan = manName
LET showManName = TRUE

AFTER GROUP OF manName
SKIP 1 LINE

ON EVERY ROW
IF showManName THEN -- start of new group so...

PRINT thisMan; -- with no newline
LET showManName = FALSE

END IF
PRINT COLUMN 20, stNum USING "###" ,
COLUMN 25, stDes CLIPPED ,
COLUMN 45, stPrice USING "$,$$$.&&" ,
COLUMN 55, stUnit CLIPPED

ON LAST ROW
SKIP TO TOP OF PAGE
PRINT COUNT(*), " total rows processed."

END REPORT

Statement blocks called when
necessary as rows are

processed.

Calculated COLUMN value
used to right-justify name.

Semicolon suppresses
newline after printing.

Local variables created at
START REPORT time;

kept until FINISH REPORT.

Logic to display
manufacturer in first line

of group or at top of page.

States that rows are produced
in sorted sequence.

Values for one row passed as
arguments.
10-6 Creating Reports

The REPORT Statement
The following is an excerpt from the output of this report. The page length
was set to 20 for testing; it would normally be longer.

Figure 10-2 A sample 4GL report

The REPORT Statement
All reports begin with a REPORT statement. This statement is similar to
a FUNCTION statement: it states a name, which becomes the name of the
report, and a list of arguments. Here is the beginning of the minStockRep()
report definition:

REPORT minStockRep(manName, stNum, stDes, stPrice, stUnit)

DEFINE
pNum INTEGER ,
misc, showManName SMALLINT ,
manName, thisMan LIKE manufact.manu_name ,
stNum LIKE stock.num ,
stDes LIKE stock.description ,
stPrice LIKE stock.unit_price ,
stUnit LIKE stock.unit

The report name is used to identify this report in the START REPORT, OUTPUT
TO REPORT, and FINISH REPORT statements within the report driver.

Stock report 6

Nikolus 205 3 golf balls $312.00 case
301 running shoes $97.00 each

Norge 5 tennis racquet $28.00 each

ProCycle 101 bicycle tires $88.00 box
102 bicycle brakes $480.00 case
103 frnt derailleur $20.00 each

ProCycle

Produced by PAGE HEADER
control block.

Name display triggered by
BEFORE GROUP action.

Blank line written by AFTER
GROUP control block.

Produced by PAGE FOOTER
control block.
Creating Reports 10-7

The Report Declaration Section
The arguments to the report are the values that make one row of report data.
This report takes five arguments. For the purposes of this report, one set of
these values makes a row. Within the body of the report you can define and
then refer to these names to find values of the current report row.

When the report driver code executes OUTPUT TO REPORT, it sends another
set of values (that is, another row), to the report for processing. Here is such
a statement from the example on page 10-4:

FOREACH minStock INTO mn, sn, sd, sp, su
OUTPUT TO REPORT minStockRep(mn, sn, sd, sp, su)

END FOREACH

The Report Declaration Section
A report declares local variables, much like a function. Their definition must
come immediately after the REPORT statement.

The minStockRep() report defines several local variables using the LIKE
keyword. Just as you can define the local variables of a function using LIKE,
you can use LIKE to get a data type from the database for a report variable.

The local variables of a report are created and initialized when the START
REPORT statement is executed. They remain in existence until the report is
ended by FINISH REPORT. They are not reinitialized each time OUTPUT TO
REPORT is executed. (This is one way a report differs from a function. The
local variables of a function are created anew each time it is called.)

The OUTPUT Section
The OUTPUT section of a report is executed and takes effect at START REPORT
time. The values it sets cannot be changed until the report is started again.

This section contains statements that set the basic format of the report. Five
of them establish page layout:

LEFT MARGIN Number of spaces inserted to the left of every print line.

RIGHT MARGIN Total number of printed characters in any line, including
left margin spaces. (This statement is ignored unless the
FORMAT EVERY ROW default report formatting option is
used.)

TOP MARGIN Number of blank lines to print above the page header.
10-8 Creating Reports

The OUTPUT Section
BOTTOM MARGIN Number of blank lines to print after the page trailer
(also known as a footer).

PAGE LENGTH Total number of lines per page, including margins
and page header and trailer sections.

The TOP OF PAGE specification is used in the OUTPUT section to specify
a character value that 4GL will use to cause a page-eject. If you omit it,
4GL gets to a new page by printing empty lines.

The REPORT TO specification allows you to specify a report destination.
(If a destination is given in the START REPORT statement, it takes
precedence.) Each of these specifications takes a character expression.

Left
Margin

Top Margin

Space for PRINT output

Right Margin

Page Header
lines

Lines for
PRINT output

Page Trailer
lines

Bottom Margin

Page
Length
Creating Reports 10-9

The ORDER BY Section
The ORDER BY Section
The ORDER BY section of a report specifies whether the rows of data are to
be sorted, and if so, whether or not they will be produced in sorted sequence.
You must decide among three cases:

1. The order of the rows is not important; that is, the report is simply a list
of rows in the order they happen to be generated. To choose this, you omit
the ORDER BY section entirely.

When ORDER BY is not used, you cannot process rows in groups or take
aggregate values over them.

2. The rows should be sorted, so they will be processed in a specified order.
To say this, you specify ORDER EXTERNAL and list the field on which the
sort take place.

If the report driver code fails to generate the rows in their proper
sequence, the report output will be incorrect.

3. The rows need to be sorted, but the row-producing code does not produce
them in the correct order. To say this, you write ORDER BY and specify the
fields to sort on. You do not use EXTERNAL in this case.

When rows are to be sorted, it is best if the report driver code can produce
them in correct order. When the rows come from the database, you can use
the ORDER BY clause of the SELECT statement. The database engine has the
most efficient ways of producing sorted rows.

When it is necessary that the report itself order the rows, but your report
driver cannot produce the necessary order, 4GL uses two-pass report logic.
This is discussed in the section titled “One-Pass and Two-Pass Reports”
on page 10-11.

Sort Keys

You can use the ORDER BY statement to specify the sort keys of the report.
Here is the minStockRep() ORDER statement. It specifies that rows should
be sorted, and that they are produced by the report driver in sorted order.

ORDER
EXTERNAL BY manName,stNum

The priority of the sort keys decreases from first to last; that is, the first one
named is the major sort key. In the example, rows are sorted on manName.
Within groups containing matching manName values, rows are sorted on
stNum.
10-10 Creating Reports

One-Pass and Two-Pass Reports
The sort keys are used to define groups of rows. You can use the BEFORE
GROUP and AFTER GROUP sections to take special actions on these groups.

One-Pass and Two-Pass Reports
Report data are processed in one of these two ways:

one-pass Rows are processed as they are produced.

Each time a row is produced by an OUTPUT TO REPORT statement,
it is processed and the resulting output is written to the report
destination.

two-pass Rows are collected, saved, sorted, and then processed.

As rows are produced, they are saved in a temporary table in the
current database. When FINISH REPORT is executed, all the saved
rows are retrieved in sorted order and processed.

4GL chooses between these methods based on two things: how the report
rows are ordered, and how the report uses aggregate functions.

Two-Pass Logic for Row Order

Sorting of rows is essential to most reports. If the rows are not sorted, they
cannot be divided into groups with similar values. These groups are the basis
for subtotals and other summary information.

Sometimes it is convenient for the report driver to produce the rows in the
sequence you need. Other times this is not possible; the rows are produced in
random order. In such cases, 4GL uses a two-pass report to sort rows before
they are formatted.

Two-Pass Logic for Aggregate Values

Aggregate functions are used to get totals and other computed values
(see “Using Aggregate Functions” on page 10-17). You use them to get totals
and other computed values. You are allowed to refer to aggregate values
anywhere in the FORMAT section of a report. When you use aggregate
functions, you are asking for values based on the contents of all rows.
Creating Reports 10-11

The FORMAT Section
When you do not use aggregate functions, or when you use them only
in the ON LAST ROW block, 4GL can employ one-pass logic. But if you refer
to aggregate functions outside the LAST ROW block, 4GL must use a two-pass
report. Here is how a two-pass report works:

• When the report driver executes OUTPUT TO REPORT, the row value
is saved in a temporary table and the aggregate function values are
accumulated in memory.

• When the report driver executes FINISH REPORT to indicate that no more
rows will be produced, 4GL retrieves all the rows from the temporary
table in their proper sequence and sends them to the report for
formatting.

The values of the aggregate functions are now available while the rows
are processed, because they have been pre-computed.

Further Implications of Two-Pass Logic

When a report uses one-pass logic, the execution time of report output
is distributed over all the OUTPUT TO REPORT statements because each row
is formatted as it is received. The only action of FINISH REPORT is to print
final totals.

When a report uses two-pass logic, the OUTPUT TO REPORT statement runs
very quickly because it merely inserts a row in a temporary table. The actions
of FINISH REPORT, however, can be quite lengthy because that is when all
rows are retrieved and formatted.

A two-pass report builds a table in the current database. This table is created
in the database that is current at the time START REPORT is executed. The
same database must be open when OUTPUT and FINISH statements are
executed. This places a restriction on the report driver: it cannot change
databases (execute the DATABASE statement) during a two-pass report.

The FORMAT Section
Within the FORMAT section of a report, you place blocks of code that produce
output lines of data in the report. The control blocks are named:

PAGE HEADER Print the heading of any page

FIRST PAGE HEADER Prints a special heading or cover page

PAGE TRAILER Prints a footer at the end of any page

BEFORE GROUP Initializes counters and totals at the start of a group
of rows with similar contents; prints group headings
10-12 Creating Reports

Contents of a Control Block
AFTER GROUP Prints totals and other summary information following
a group of rows with similar contents

ON EVERY ROW Formats and displays detail lines. Accumulates totals
and calculated values for use by AFTER GROUP blocks

ON LAST ROW Displays final totals and aggregate values over all rows

4GL executes these control blocks automatically at appropriate times as rows
are processed. For example, 4GL calls the PAGE TRAILER code block when it
is time to print the page trailer. When that block completes, 4GL prints the
blank lines corresponding to the BOTTOM MARGIN and prints the page-eject
string, if any.

If more information is written to the report, 4GL prints the TOP MARGIN
blank lines and calls the PAGE HEADER block.

Contents of a Control Block
Within a formatting control block you can write any executable 4GL
statements you like. You can call functions; you can interact with the user;
you can even start other reports and send output to them.

However, you must use caution when writing code that refers to global
variables or interacts with the user. In a two-pass report, the formatting code
is not called until all rows have been produced and FINISH REPORT has been
executed. Global variables may not have the same values, and the screen may
not display the same data, as when the rows were produced.

Formatting Reports
Usually a block contains code to test and set the values of local variables, and
code to format and print the row values (the names defined in the REPORT
statement argument list).

The following report execution statements are available to display data:

Statement Usage
SKIP Inserts blank lines
NEED Causes a conditional page eject, so a set of lines can be made to

appear on the same page
PRINT FILE Embeds a file in the output
PRINT Writes lines of data
PAUSE Lets the user read the report (during output to screen only)
Creating Reports 10-13

PAGE HEADER and TRAILER Control Blocks
It is with PRINT that you send report data to the output destination. Like
the DISPLAY statement, PRINT takes a list of values to display. Within a PRINT
statement you can use the following keywords:

PAGE HEADER and TRAILER Control Blocks
Within the PAGE HEADER and PAGE TRAILER control blocks, you write code
that formats the pages of the report with fixed headings and pagination.
The minStockRep() report contains this page heading code (see page 10-6).

PAGE HEADER
PRINT "Stock report",COLUMN 62,pNum USING "###"
SKIP 2 LINES
LET pNum = pNum + 1

It prints a fixed heading and a page number, and keeps count of the pages.
A total of three lines is written, one line of heading and two blank lines. These
lines are in addition to the TOP MARGIN lines specified in the OUTPUT
section.

If a FIRST PAGE HEADER block is present, the PAGE HEADER block does not
take control until the second page is started.

The minStockRep() report contains this page trailer code:

PAGE TRAILER
SKIP 2 LINES
LET misc = 65 — LENGTH(thisMan)
PRINT COLUMN misc,thisMan
LET showManName = TRUE

The report prints the manufacturer name from the last-processed group
of rows, right-justified, on the last line of the page. The person reading the
report can find a manufacturer quickly by scanning the bottom right corner

Keyword Usage
COLUMN Positions the data in the specified column
SPACES Generates a calculated number of spaces
ASCII Generates specific character values
USING Formats numbers, including currency amounts
CLIPPED Eliminates trailing spaces from CHAR values
10-14 Creating Reports

ON EVERY ROW Control Block
of each page. The code also sets a flag that tells the ON EVERY ROW block
to display the manufacturer name in the next detail line (because that will
be the first detail line of the next page).

The FIRST PAGE HEADER section is similar to the PAGE HEADER except that
4GL calls it only once, before any other block. You can use it to display a cover
or a special heading on the first page. In a two-pass report you could put code
in this section to notify the user that report output was finally beginning.

ON EVERY ROW Control Block
In the ON EVERY ROW control block you write the code to display each detail
row of the report. Here is that block from the sample report specification on
page 10-6.

ON EVERY ROW
IF showManName THEN —— start of new group so...

PRINT thisMan; — — with no newline
LET showManName = FALSE

END IF
PRINT COLUMN 20, stNum USING "###" ,

COLUMN 25, stDes CLIPPED ,
COLUMN 45, stPrice USING "$,$$$.&&" ,
COLUMN 55, stUnit CLIPPED

It displays a line like this:

 Nikolus 205 3 golf balls $312.00 case

The leading spaces are produced by the LEFT MARGIN statement in the
OUTPUT section. This code suppresses the manufacturer name except
in the first row of a group or the first row on a new page.
Creating Reports 10-15

ON LAST ROW Control Block
ON LAST ROW Control Block
After the final row has been processed and the FINISH REPORT statement
encountered, 4GL calls the ON LAST ROW control block. In this block, you can
write code to summarize the entire report. You can use SKIP TO TOP OF PAGE
in this block to ensure that the final totals appear on a new page. Here is the
block from minStockRep():

ON LAST ROW
SKIP TO TOP OF PAGE
PRINT COUNT(*), " total rows processed."

Figure 10-3 A typical last row block

For the use of COUNT(*) and other aggregate functions, see “Using Aggregate
Functions” on page 10-17.

BEFORE GROUP and AFTER GROUP Control Blocks
Whenever the value of a sort key changes between one row and the next,
it marks the end of one group of rows and the start of another. In the
minStockRep() example, whenever there is a change of manName, a group
of rows ends and another begins. The same is true of a change in stNum, but
since stock numbers are unique in this particular situation, these “groups”
never have more than one member.

A BEFORE GROUP control block is called when the first row of the new group
has been received, but before it is processed by the ON EVERY ROW control
block. In it, you can put statements that:

• Initialize counts, totals, and other values calculated group-by-group

• Print group headings, use the NEED keyword to ensure space on the page,
or force a skip to a new page for the group

• Set flags and local variables used in the ON EVERY ROW block

Here is the BEFORE GROUP used in minStockRep(), found on page 10-6:

BEFORE GROUP OF manName
LET thisMan = manName
LET showManName = TRUE
10-16 Creating Reports

Using Aggregate Functions
The first statement saves the manufacturer name from the first row
of the new group so it can be used in the page trailer, as described earlier.
The second statement sets a flag that tells the ON EVERY ROW block to
display the manufacturer name in the next detail line (because that will be
the first detail line of this group).

An AFTER GROUP block is called when the last row of its group has been
processed by the ON EVERY ROW block. In it, you can put statements that
calculate and print subtotals, summaries, and counts for the group.

Nested Groups

Each of the sort keys that you list in the ORDER section defines a group.
In the example report there are two keys, and therefore two groups:

ORDER
EXTERNAL BY manName,stNum

These groups are “nested” in the sense that the rows in a major group
can contain multiple groups of the minor group.

In general, the BEFORE and AFTER blocks for minor groups will be called
more times than those for major groups. The group for the last sort key you
specify will change the most often. Only the ON EVERY ROW block will
be executed more frequently.

Using Aggregate Functions
Often, reports that deal with sorted data need to collect aggregate values over
the rows: counts, subtotals, averages, and extreme high or low values. You
can produce such statistics yourself by writing code in different blocks. For
example, you could collect an average value over a group this way:

1. In the BEFORE GROUP block, initialize variables for the sum and the count
to zero.

2. In the ON EVERY ROW block, increment the count variable and add
the current row’s value to the sum variable.

3. In the AFTER GROUP block, calculate the average and display it.

4GL contains ready-made aggregate-value functions for most common
needs. However, you can write code along these lines to collect unusual
statistical values, to avoid the need to do two-pass reporting, or both.
Creating Reports 10-17

Using Aggregate Functions
Aggregate Calculations

For sums, averages (means), and extremes, 4GL supplies these functions:

The expression can be any 4GL expression. Normally it will name one of
the row values (one of the arguments to the REPORT), but it may also
use constant values, local variables, and even function calls. (When
using function calls or global variables, keep in mind that rows might
all be processed at FINISH REPORT time.)

Any of these functions can be qualified with a WHERE clause to select only
certain rows. The WHERE clause will usually test the row values themselves,
but you can employ any test that is valid in an IF statement. For example, the
following lines could be added to the LAST ROW block on page 10-6.

PRINT "Lowest item price", MIN(stPrice)
PRINT "Average low-cost item" ,

AVG(stPrice) WHERE stPrice < 100

These lines would display the minimum over all stPrice values, and the
average of all stPrice values that were less than $100.

Aggregate Counts

For counts, 4GL supplies the COUNT(*) and PERCENT(*) functions. The value
of COUNT(*) is the number of records processed by the report. You can see it
in use in the ON LAST ROW control block on page 10-6. However, COUNT(*)
can also be qualified with a WHERE clause so as to count only particular
rows. The following could be added to the ON LAST ROW control block
of minStockRep():

PRINT "number of boxed items" ,
 COUNT(*) WHERE stUnit = "box"

Function Usage over many rows

SUM(expression) accumulates a sum
AVG(expression) calculates an average
MIN(expression) finds a minimal value
MAX(expression) finds a maximal value
10-18 Creating Reports

Using Aggregate Functions
The PERCENT(*) function returns the value of one count as a percentage
of the total number of rows processed:

PRINT "percent of case lots" ,
 PERCENT(*) WHERE stUnit = "case"

Aggregates Over a Group of Rows

You most often need aggregate values collected over the rows of one group,
for example, a sum over a group to produce a group subtotal. You can use any
of the six aggregate functions within an AFTER GROUP block for this purpose.
You must use the word GROUP to specify that you want the aggregate value
over the rows of the current group.

For example, the following lines could be added to the AFTER GROUP block
in the minStockRep() report on page 10-6:

PRINT "Count of stock items: " , GROUP COUNT(*) USING "<<<"
PRINT "Avg price of ‘each’ items: " ,

GROUP AVG(stPrice) WHERE stUnit = "each"

This code displays a group count, which is simply a count of rows in that
group, and an average. The average is taken over a subset of the rows of the
group. When the subset is empty (when no rows have stUnit="each")
the value of the aggregate function is NULL.

The value of GROUP PERCENT(*) WHERE… may not be what you expect.
It returns the number of rows in the group that met the condition, as a
percentage of the total number of rows in the entire report (not as a percent-
age of the rows in the group). Because it requires the total number of rows,
GROUP PERCENT forces a report to use two-pass logic. To calculate a percent-
age within a group, you can use explicit code such as:

PRINT "Pct ‘each’ items in group " ,
 ((100 * GROUP COUNT(*) WHERE stUnit = "each")

/ (GROUP COUNT(*))
USING "<<.&&"
Creating Reports 10-19

Using Aggregate Functions
10-20 Creating Reports

Chapter
11
Using the Screen
and Keyboard
Overview 3

Specifying a Form 3
The DATABASE Section 4
The SCREEN Section 5

Specifying Screen Dimensions 5
Screen Records and Screen Arrays 6
Multiple-Segment Fields 6

The TABLES Section 7
The ATTRIBUTES Section 8

The Field Name 9
The Field Data Type 9
Fields Related to Database Columns 9
FORMONLY Fields 10
Editing Rules 10
Default Values 11

The INSTRUCTIONS Section 11
Field Delimiters 11
Screen Records 11
Screen Arrays 12

Using Windows and Forms 13
Opening and Displaying a 4GL Window 14

Opening Additional 4GL Windows 14
4GL Window Names 15
Controlling the Current 4GL Window 15
Clearing the 4GL Window 15
Closing the 4GL Window 15

Displaying a Menu 16

Opening and Displaying a Form 17
Form Names and Form References 18
Displaying the Form 18

Displaying Data in a Form 19
Changing Display Attributes 20

Combining a Menu and a Form 20
Displaying a Scrolling Array 21
Taking Input Through a Form 23

Help and Comments 24
Keystroke-Level Controls 24
Field-Level Control 24
Field Order Constrained and Unconstrained 26

Taking Input Through an Array 27

Screen and Keyboard Options 27
Reserved Screen Lines 28
Changing Screen Line Assignments 29

Getting the Most on the Screen 30
Run-Time Key Assignments 31

Dedicated Keystrokes 32
Intercepting Keys with ON KEY 33
11-2 Using the Screen and Keyboard

Overview
The architecture of the INFORMIX-4GL user interface is described in
Chapter 3. The concepts behind the statements described in this chapter
were covered in “Overview” on page 7-3.

This chapter details the way you program the user interface for your 4GL
applications. Since screen forms are very important to this, the first topic
explains how you specify a form. Then statements you use to open 4GL
windows and fill them with forms and menus are discussed. At the end
of the chapter, keyboard and screen line customization are discussed.

Specifying a Form
This section covers the contents of a form specification file in detail.The idea
of managing screen forms in separate files was introduced in “Form Specifi-
cations and Form Files” on page 4-6. An overview of how your programs use
forms is given in “How Forms Are Used” on page 7-11.

Here again is a screen image of a sample form:

Screen array of
4 records, each
having 7 fields.

Labels (fixed text)

Fields
Using the Screen and Keyboard 11-3

The DATABASE Section
4GL forms are traditionally designed in a WYSIWYG (what-you-see-is-what-
you-get) environment using an ASCII text editor. Each ASCII form specifica-
tion contains several sections. Some are mandatory, others are optional.
The order of the sections is significant.

Chapter 5 of the INFORMIX-4GL Reference provides complete details on form
specifications and statements.

The DATABASE Section
Typically a form field holds data from a particular column in the database.
For example, the previous form begins with a field labeled Customer Num-
ber. This field displays data from the customer_num column in the customer
table of the stores demonstration database.

You can associate a form field with a database column. In such cases,
FORM4GL, the form compiler, will look in the specified database to determine
the data type for that column and will use that as the data type of the form
field.

The first line in the form specification file is a DATABASE specification. It tells
the form compiler which database to use when looking for columns.

DATABASE stores2

Some forms use no database at all; that is, they have no fields that correspond
to a database column. When this is the case, you can write:

DATABASE formonly

Form section Usage

DATABASE Specifies the database containing the tables and views whose
columns are associated with fields in your form

SCREEN Specifies the arrangement of fields and text that will appear in
your form after it is compiled and displayed

TABLES Specifies which tables have columns associated with the fields in
the form, and can declare aliases for tables that require qualifiers

ATTRIBUTES Declares a name for each field, and assigns attributes to it
INSTRUCTIONS Specifies non-default delimiters and screen records
11-4 Using the Screen and Keyboard

The SCREEN Section
The SCREEN Section
In the SCREEN section, you specify the appearance of the form on the screen.
With a text editor, you “paint” a picture of the form as you want it to appear.
Here is the SCREEN section of the form on page 11-3. The lines between the
curly braces ({ }) are a picture of the form as it is to appear on the screen.
(The lines containing the braces are not part of the form image.)

SCREEN
{

Customer Number:[f000] Company Name:[f001]
Order No:[f002] Order Date:[f003] PO Number:[f004]
--
Item No. Stock No Manuf Description Quantity Price Total
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]

 Sub-Total: [f012]
 Tax Rate [f013]% [f014] Sales Tax: [f015]
--

Order Total: [f016]
}

The square brackets ([]) delimit fields into which the program can later
display data and take input. Text outside brackets is label text; it will be
displayed exactly as typed. A field consists of the spaces between brackets.
If you need to make two fields adjacent, you can use a single vertical-bar
symbol (|) to separate the fields.

Each form field must contain a field tag, a name used to link the field in
the SCREEN section to its attributes in the ATTRIBUTES section of the form
specification. The first field in the SCREEN section of the previous example
has the field tag f000.

When you use the same field tag in more than one field (for example, the
tag f009 appears four times in the preceding example), you indicate that
the field is really one part of a larger whole, either a multiple-segment field
or a screen array.

Specifying Screen Dimensions

By default, the forms compiler assumes that your form will be displayed in
a format of 24 lines of 80 columns each. If you intend to use the form in a
larger window, you must specify larger dimensions in the SCREEN statement.
Using the Screen and Keyboard 11-5

The SCREEN Section
Screen Records and Screen Arrays

A screen record is a collection of fields that are treated as a group, just as a
program record is a collection of members you want to treat as a related
group. 4GL makes it easy to display all the elements of a program record into
the corresponding fields of a screen record, or to take input from a screen
record into a program record.

A screen array is an array of similar fields that your program will treat as
a unit, like a program array. 4GL enables you to associate an array of data
in the program with an array of fields on the screen, so that the user can view
or edit the rows of data on the screen.

The example form above has a screen record composed of the fields tagged
f005, f006, f07, f008, f009, f010, f011. These fields comprise an order item
detail record. They are repeated four times vertically to make an array of four
records. A statement in the INSTRUCTIONS section of the form (see “The
INSTRUCTIONS Section” on page 11-11) is used to declare the array of
records.

The process of displaying an array of data is covered under “Taking Input
Through an Array” on page 11-27.

Multiple-Segment Fields

To display a string that is too long to fit on a single line of the form, you can
create multiple-segment fields that occupy rectangular areas on successive
lines of the form. The SCREEN section must repeat the same field tag in each
segment of the multiple-segment field, and the ATTRIBUTES section must
assign the WORDWRAP attribute to the field.

Your 4GL program treats a multiple-segment field as a single field. When it
displays text, any string longer than the first segment is broken at the last TAB
or blank character before the end of the segment. Thus, word boundaries are
respected. The rest of the string is continued in the first character position of
the next segment. This is repeated until the end of the last segment, or until
the last character is displayed, whichever happens first.
11-6 Using the Screen and Keyboard

The TABLES Section
The TABLES Section
The TABLES section is closely related to the DATABASE section. In it you
specify the tables that supply data for this form. The TABLES section of
the form on page 11-3 is:

TABLES
customer orders items stock state

Any tables containing columns named in the ATTRIBUTES section of the form
(described in the next section of this chapter), must be listed in the TABLES
section. The forms compiler will look for these tables in the database named
in the DATABASE section.

You can also assign aliases to table names in the TABLES section. For example,
in the TABLES section you can write:

TABLES postings = financial.postings

This gives the short table name postings to the table known in full as
financial.postings. You must use the short name in the ATTRIBUTES section
of the form.

Aliases are needed in the following cases:

• If you are utilizing an ANSI-compliant database. In such cases, you must
declare table aliases—even if you are only drawing data from one table—
unless the end-user of your application is also the owner of every table in
the TABLES section. (This is because table owners must be specified when
using ANSI-compliant databases.)

• If you are drawing data from several tables with the identical column
names, since you cannot qualify a form field name with a table identifier
or owner name.

• If you are accessing data from tables in remote databases, since you
are restricted in the attributes section to the following format:

table_identifier.column_name

• If you want a condensed way to refer to a table. The full name of a table
can be quite lengthy since it can contain an owner name, a database name,
and a site name. Aliases make referencing such tables more convenient
and your form specification more readable.
Using the Screen and Keyboard 11-7

The ATTRIBUTES Section
Like the DATABASE section, the TABLES section is used only to get
information needed by FORM4GL. It has no effect when the form is used
by a program. The data you display into a form can come from any source,
including any table in a Informix database.

The ATTRIBUTES Section
In the ATTRIBUTES section, you give detailed specifications for each of
the fields you have defined in the SCREEN section. The two most important
attributes for any field are its field name and its data type.

The field name is the name that you use, in your program, to put data into
a field and get data out of it.

You assign these and other attributes in a series of specifications. Here is the
attributes section for the form on page 11-3. It illustrates some of the many
attributes that can be assigned to a field. (For a complete list of attributes, see
Chapter 5 of the INFORMIX-4GL Reference.)

ATTRIBUTES
 f000 = orders.customer_num;
 f001 = customer.company;
 f002 = orders.order_num;
 f003 = orders.order_date, DEFAULT = TODAY;
 f004 = orders.po_num;
 f005 = items.item_num, NOENTRY;
 f006 = items.stock_num;
 f007 = items.manu_code, UPSHIFT;
 f008 = stock.description, NOENTRY;
 f009 = items.quantity;
 f010 = stock.unit_price, NOENTRY;
 f011 = items.total_price, NOENTRY;
 f012 = formonly.order_amount,TYPE MONEY(7,2);
 f013 = formonly.tax_rate;
 f014 = state.code, NOENTRY;
 f015 = formonly.sales_tax TYPE MONEY;
 f016 = formonly.order_total;

Figure 11-1 Attributes section from a form specification
11-8 Using the Screen and Keyboard

The ATTRIBUTES Section
The Field Name

A field name is the name your program uses to refer to a field for data display
or input. The field name is often the same as the name of a database column.
For example, here is the first specification from the sample attributes section:

f000 = orders.customer_num;

This says that the field shown in the SCREEN section with a field tag of f000
is associated with the customer_num column of the orders table. As a result,
the name of this field is customer_num. To display data into this field you
would write a statement such as:

DISPLAY max_cust_num+1 TO customer_num

The Field Data Type

The data type affects how data is displayed in the field; for example, numeric
data is right-justified and character data is left-justified. The data type also
affects how the field behaves while the user is entering data during input; for
example, the user cannot enter non-numeric characters in a field with a
numeric type. You can specify the type of data that can be stored in a field
directly or indirectly.

Fields Related to Database Columns

Very often you will want fields to display data taken directly from a database
column. To simplify the definition of such fields, you can name the database
column and table. The field then receives both its name and its data type from
the database:

f009 = items.quantity ;

In this example, all of the fields with tag f009 (there are four in the
SCREEN section on page 11-5) take their name and data type from the
quantity column of the items table. The items table must have been listed
in the TABLES section of the form; also, a table of that name must exist in the
database named in the DATABASE section at the time the form is compiled.
Using the Screen and Keyboard 11-9

The ATTRIBUTES Section
FORM4GL opens the named database and verifies that it contains an items
table with a quantity column. It takes the data type of that column as the data
type for the field. The advantage of this is that, if the database schema
changes the data type of a particular column, you can keep your forms
consistent with the new schema simply by recompiling them.

FORMONLY Fields

A field that is not related to a particular database column is called a form only
field. You specify its name and its data type in the attributes statement:

f012 = formonly.order_amount TYPE MONEY(7,2)

The field with tag f012 is given the name order_amount. In a program, you
display data into the field using this name. Since FORM4GL cannot consult a
database to see what the type should be, you must tell it with a TYPE attribute
clause. If you omit information as to type, the default is a character string
equal in size to the number of spaces between brackets in the SCREEN section.

Editing Rules

In the ATTRIBUTES section, you can specify editing rules for fields. Some of
the rules you can apply to a field are shown in the following table (for com-
plete details on form attributes see INFORMIX-4GL Reference, Chapter 5):

You can also program specific input-editing rules by writing AFTER FIELD
blocks in the INPUT statement.

Attribute Usage

DOWNSHIFT
UPSHIFT

4GL changes the lettercase as the user types. An example of the
UPSHIFT attribute can be seen in the ATTRIBUTES section shown
on page 11-8.

INCLUDE A list of specific values permitted on input. For example, you
could limit entry to the letters “M” or “F,” or to a certain range of
numbers.

PICTURE An edit pattern or format string, such as “(###) ###-####” for a
USA telephone number. The user is allowed to type only letters or
digits as the pattern dictates. The punctuation you supply such as
parentheses or hyphens is filled in automatically as the user types.

REQUIRED The user is not allowed to press Accept without having entered
some value to the field.

VERIFY 4GL makes the user enter data to the field twice, checking that
it is identical the second time.
11-10 Using the Screen and Keyboard

The INSTRUCTIONS Section
Default Values

In the ATTRIBUTES section, you can specify a default value for a field.
The value will be filled in automatically when an INPUT operation begins,
and the user may replace it. (Alternatively, you can DISPLAY data into fields
prior to input, and use the displayed data as default values.)

The INSTRUCTIONS Section
You use the INSTRUCTIONS section of the form for special features: field
delimiters, screen records, and screen arrays.

Field Delimiters

Normally when a form is displayed, fields are displayed with the same
square brackets that you used in the SCREEN section to define them. In
the INSTRUCTIONS section, you can specify different delimiters. Most often
this feature is used to change the delimiters to spaces, thus causing the fields
to be drawn without any visible markers.

Screen Records

A screen record is a group of fields that you want your program to treat as
a unit. A screen record, like a program variable that is a record, is a collection
of named members. You can display all of the members of a record variable
into the matching fields of a screen record with a single DISPLAY statement.
You can request input from all the fields of a screen record, and have the input
values deposited in the matching members of a program variable, with one
INPUT statement.
Using the Screen and Keyboard 11-11

The INSTRUCTIONS Section
Screen Arrays

A screen array is a group of screen records that you want to treat as a scrolling
table. The form shown on page 11-3 has a screen array defined this way.
The following illustration shows the relationship between array fields as
they appear in the SCREEN section, the ATTRIBUTES section, and the
INSTRUCTIONS section of a form.

To use the array, your program must contain an array of records with similar
members. It can use the DISPLAY ARRAY statement to display all the records
in the array into the rows of the screen array.

SCREEN
{
Customer Number:[f000] Company Name:[f001]
Order No:[f002] Order Date:[f003] PO Number:[f004]
--

Item No. Stock No Manuf Description Quantity Price Total
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]
[f005] [f006] [f07] [f008] [f009] [f010] [f011]

Field names are used to group
fields into records and arrays.

f005 = items.item_num, NOENTRY;

f006 = items.stock_num;

f07 = items.manu_code, UPSHIFT;

f008 = stock.description, NOENTRY;

f009 = items.quantity;

f010 = stock.unit_price, NOENTRY;

f011 = items.total_price, NOENTRY;

INSTRUCTIONS
SCREEN RECORD sa_items[4](

items.item_num, items.stock_num, items.manu_code,
stock.description, items.quantity,
stock.unit_price, items.total_price)

Dimension number marks
an array of records.

Field tags connect SCREEN
and ATTRIBUTE sections.
11-12 Using the Screen and Keyboard

Using Windows and Forms
Using Windows and Forms
For character-based terminals and workstations emulating them, all of your
program’s screen output takes place in a single window. If the output device
is a real terminal, its screen is the window. If the output device is a graphical
screen emulating a terminal in a graphical window, then the screen is that
window.This section discusses the ways your program can make the best
use of 4GL windows.

Figure 11-2 The 4GL screen on a workstation and a terminal

The program displays on the 4GL screen. However, you can further control
program output by creating additional rectangular areas within the confines
of the screen. These can also be considered 4GL windows. The size and con-
tents of 4GL windows within it, are under the control of your program.

An application can have many 4GL windows. They can be the same size
or smaller than the 4GL screen. They can overlap. You can bring a particular
window to the top, so that it is fully visible, or completely cover a particular
window. And 4GL windows can be closed and opened depending on the
requirements of the application.

4GL screen.

Windows used by
other programs.

Subordinate
4GL windows.

4GL screen.
Using the Screen and Keyboard 11-13

Opening and Displaying a 4GL Window
Opening and Displaying a 4GL Window
The initial 4GL window is created automatically when 4GL first encounters
an I/O statement. This first 4GL window fills the screen. In the statements you
use for controlling windows, you can refer to this initial 4GL window as
SCREEN.

There is no way for the program to find out what that size is. Most programs
assume that it allows 24 lines of 80 columns, since that is the size of most
character-based terminals. If your program contains forms or reports that
require a larger window, it may not run on some terminals.

Opening Additional 4GL Windows

You can open additional 4GL windows with the OPEN WINDOW
statement. This statement is covered in detail in Chapter 3 of the
INFORMIX-4GL Reference. Here is an example of the statement:

OPEN WINDOW stockPopup AT 7, 4 WITH 12 ROWS, 73 COLUMNS
ATTRIBUTE(BORDER, FORM LINE 4)

You can specify the following things when you open a new 4GL window:

location With the AT clause, you specify the location of the upper-left
corner (1,1) of the new window in relation to the screen. The
units are character positions.

size In the WITH clause, you specify the size of the window
in one of two ways: with a specific number of ROWS and
COLUMNS, or by specifying a form. If you specify FORM or
a WINDOW WITH FORM, the screen dimensions of that form
establish the size of the new 4GL window (see “Specifying
Screen Dimensions” on page 11-5).

border In the ATTRIBUTE clause, you can specify a border for the
window. The statement above opens a bordered window.

color In the ATTRIBUTE clause, you can also specify a color for all
text displayed in the window. (You cannot specify a back-
ground color, only the foreground, or text, color.)

line numbers You can set the locations of the standard lines for the
menu, messages, prompts, and comments. These lines
are discussed in detail under “Changing Screen Line
Assignments” on page 11-29.
11-14 Using the Screen and Keyboard

Opening and Displaying a 4GL Window
4GL Window Names

The first argument of OPEN WINDOW is a name for the window. You can
use this argument to assign a global name to the window.

The following specifies errorAlert as a global name for a window:

OPEN WINDOW errorAlert AT 10, 20 WITH 4 ROWS, 40 COLUMNS

Anywhere else in the program (even in another source module), you can
write a statement that refers to the errorAlert window. For example, here
is how you would make a window current:

CURRENT WINDOW errorAlert

Controlling the Current 4GL Window

Only one 4GL window can be current at a time. When you open a new 4GL
window, it becomes current. It is “on top” visually, covering any other 4GL
windows that it overlaps.

The current window receives all output of the DISPLAY, PROMPT, MENU, and
MESSAGE statements. It is used by all INPUT statements. An error occurs if
the program tries to use a form field when that field is not part of the form in
the current window.

Clearing the 4GL Window

You can clear all displayed text from a window with the CLEAR WINDOW
statement. This removes all output including menus, form fields, and labels.
The window being cleared need not be the current window.

If you clear the current window from within a MENU statement, the menu
will be redisplayed. This is not true of forms; you must redisplay a form
explicitly.

Closing the 4GL Window

To remove a window, you use the CLOSE WINDOW statement. It makes the
window invisible and unusable until you recreate it with OPEN WINDOW.
When you close a window, the next window “below” it becomes the current
window.
Using the Screen and Keyboard 11-15

Displaying a Menu
This means that if you are using a form or menu (and hence using the current
window), and you call a subroutine that opens a window, uses it, and closes
it again, the original window will again be current when the subroutine
returns. This is the behavior you would expect.

However, if you are using a window and call a subroutine that makes another
window current and does not close it, the wrong window will be current
when the subroutine returns, and an error may follow.

Displaying a Menu
The key concepts of menus are covered in “How Menus Are Used” on
page 7-8. That topic also includes an example of the code you use to create
a menu. The details of the MENU statement are found in Chapter 3,
INFORMIX-4GL Reference.

When you execute the MENU statement, a ring menu is displayed on the
assigned MENU line of the current window. Normally, you will display a
menu across the top line of a window, usually above the display of a form.
But there are other ways to use menus.

FUNCTION alertMenu(msg , op1 , op2 , op3)
DEFINE windowWidth, indent SMALLINT ,

ret , msg , op1 , op2 , op3 CHAR(20)
LET windowWidth = 40
LET indent = (windowWidth-LENGTH(msg))/2
OPEN WINDOW alert2 AT 10,20 WITH 5 ROWS, windowWidth COLUMNS

ATTRIBUTE (BORDER, MENU LINE LAST)
DISPLAY msg CLIPPED AT 3,1
MENU "Respond"
COMMAND op1

LET ret = op1 EXIT MENU
COMMAND op2

LET ret = op2 EXIT MENU
COMMAND op3

LET ret = op3 EXIT MENU
END MENU
CLOSE WINDOW alert2
RETURN ret

END FUNCTION

Here the alertmenu() function is given a short message and three choices.
The choices would normally be keywords such as “OK,” “No,” “Cancel,” or
“Save.” The function opens a small 4GL window. In the window it displays
the message line below a menu composed of the three choices.
11-16 Using the Screen and Keyboard

Opening and Displaying a Form
The choices in the menu are not constants as is usually the case, but variables,
specifically the function’s arguments. Here is an example of how the function
could be called:

MAIN
DEFINE ret CHAR(20)
CALL alertMenu(“alert message here” , “FIRST” , “SECOND” , “THIRD”)

RETURNING ret
END MAIN

The function would display a window that looked like this:

Respond: FIRST SECOND THIRD

alert message here

Figure 11-3 An alternative way of using the MENU statement

Whichever menu option the user chooses is returned as the function’s result.

Note that although the function opens its window with the attribute MENU
LINE LAST, the menu begins on the next-to-last line. See “Changing Screen
Line Assignments” on page 11-29.

Opening and Displaying a Form
It takes only two program statements to open and display a form. The
OPEN FORM statement brings the compiled form into memory using a
command such as:

OPEN FORM orderFrm FROM "forders"

This statement causes 4GL to search for a compiled form file named
forders.frm. The file suffix .frm is supplied automatically and must not
be used. 4GL looks first in the current directory and then in directories named
in the DBPATH environment variable.
Using the Screen and Keyboard 11-17

Opening and Displaying a Form
Form Names and Form References

The first argument of OPEN FORM is a name for the form. You use that name
to manage the form later in the program.

Specifying a Form Name

When you specify a form name in conjunction with the OPEN FORM
statement, it becomes the global name of the form:

OPEN FORM orderForm FROM "forders"

Anywhere else in the program (even in another source module), you can
write a statement that refers to this form.

Displaying the Form

After opening a form, you can use DISPLAY FORM to display it in the current
window:

DISPLAY FORM orderForm

The current 4GL window is cleared from the FORM line to the bottom.
The fields and labels of the form are drawn on the current window starting
at the FORM line. The fields are initially empty.

The form must fit within the current 4GL window (see “Specifying Screen
Dimensions” on page 11-5 and “Opening Additional 4GL Windows” on
page 11-14), allowing for reserved lines.

By default, the Form line is the third line of the 4GL window, but you can
change it; see “Changing Screen Line Assignments” on page 11-29.

You can display a form repeatedly into one window or into different
windows. However, you can only display one form per 4GL window.
11-18 Using the Screen and Keyboard

Displaying Data in a Form
Displaying Data in a Form
When the form has been displayed, your program can display data in its
fields. The DISPLAY TO statement is used for this. It takes a list of expressions
and a list of field names in which to display them. You can display data to one
field at a time.

DISPLAY "Salaried" TO emp_status

More often, you display a list of expressions in the form of variables to a list
of fields.

DISPLAY theCustNum, theCustName, 0, 0
TO customer_num, company, order_amt, order_total

You can display all the elements of a record into the fields of a screen record
with one statement.

A common technique is to use the names of database columns as the names
of both the fields in a form and the members of a record. Here is how a record
variable is defined to contain one member for each column in a table:

DEFINE custRow RECORD LIKE customer.*

If the form in the current window has a screen record with corresponding
fields (see “Screen Records” on page 11-11) you can display all the members
of this record variable into the fields of the screen record with one statement.

DISPLAY custRow.* TO custFields.*

Alternatively, when the current form has fields whose names are the same as
the members of the record, you can display all the members this way:

DISPLAY BY NAME custRow.*

The BY NAME clause can be used whenever you want to display program
variables into fields that have the same names.
Using the Screen and Keyboard 11-19

Combining a Menu and a Form
Changing Display Attributes

4GL supports visual attributes such as REVERSE and BOLD, and a range
of colors when the output device supports them. These display attributes can
be assigned to a 4GL window, to an entire form, or to one or more individual
fields. Here are some techniques for making the best use of attributes:

• To set display attributes for the entire 4GL application, use the OPTIONS
statement before opening any windows.

• To set display attributes for all text in one window, use the ATTRIBUTE
clause of the OPEN WINDOW statement.

• To set display attributes for all lines of a form without changing the
attributes of other lines of the window, use the ATTRIBUTE clause of the
DISPLAY FORM statement.

• To set specific display attributes for one field of a form, use the REVERSE
or the COLOR clause for that field in the ATTRIBUTES section of the form
specification file. The COLOR clause takes a WHERE keyword, so you can
make the color of the field dependent on its contents or on the contents of
other fields.

• To override the display attributes of specific fields as you display data
into them, use the ATTRIBUTE clause of the DISPLAY TO statement.

These are the most important methods of setting visual attributes. There are
others, and the precedence among methods is more complicated than this list
shows. See Chapter 5, INFORMIX-4GL Reference, for complete information
on visual attributes.

Combining a Menu and a Form
It is very common to have both a menu and a form in the same 4GL window.
The form fields provide the structure for displaying information. Your user
can choose menu options to tell the program what information to display.

A common example is a program that lets the user browse through a series
of rows from the database, one row at a time. Several of the example pro-
grams in INFORMIX-4GL by Example are devoted to just this problem. The
basic technique is as follows:

• Set up a database cursor to represent the selected set of rows

• Display a form that has fields for the columns of one row

• Execute a MENU statement that includes an option such as “Next”
to cause the display of the next row
11-20 Using the Screen and Keyboard

Displaying a Scrolling Array
• In the COMMAND block for the “Next” menu option you use:

o FETCH to get the next row from the cursor

o DISPLAY to show the fetched values in the form

Thus each time the user selects menu option “Next,” the program displays
a new row. By using a SCROLL cursor (which supports backward as well as
forward movement through the rows) you can easily provide menu choices
for “Prior,” “First,” and “Last” row displays.

Displaying a Scrolling Array
Your 4GL program may frequently need to display a scrolling list of rows.
The screen array is used for this. In the following form, the rows of the
catalog table from the 4GL demonstration database are being scrolled
through a screen array. (The form specification file for this form is from
Example 18 of INFORMIX-4GL by Example.)

To implement a scrolling display like this your program must do two things:

• Display a form containing a screen array of screen records

• Define an array of records, each record having members that correspond
to the fields of the screen records

Screen record of 6 fields.

Screen array of 5 records.
Using the Screen and Keyboard 11-21

Displaying a Scrolling Array
In the example program, these two things are accomplished in the following
manner.

The screen array has five records; the array in the program has 200. The
members of the records have the same names and appear in the same order.

The program uses a FOREACH loop to fill the array with rows fetched from
the database (refer to “Row-by-Row SQL” on page 9-5). Once the program
array has been loaded with data, the scrolling display can be started with the
DISPLAY ARRAY statement. But first the program must call the built-in
function SET_COUNT() to tell 4GL how many records in the array have useful
data. Only these rows will be shown in the display.

INSTRUCTIONS
SCREEN RECORD sa_cat[5] (

catalog_num,
stock_num,
manu_name,
has_pic,
has_desc,
description)

f011 = items.total_price, NOENTRY;DEFINE
ga_catrows ARRAY[200] OF RECORD

catalog_num LIKE catalog.catalog_num,
stock_num LIKE stock.stock_num,
manu_name LIKE manufact.manu_name,
has_pic CHAR(1),
has_desc CHAR(1),
description CHAR(15)

END RECORD

Array of records with
matching names is
defined in the program.

Screen array of screen
records is defined in the

form specification file.

CALL SET_COUNT(cat_cnt)
DISPLAY ARRAY ga_catrows TO sa_cat.*

ON KEY (CONTROL-E)
EXIT DISPLAY

ON KEY (CONTROL-V,F5)
CALL show_advert(arr_curr())

ON KEY (CONTROL-T,F6)
CALL show_descr(arr_curr())

END DISPLAY

SET_COUNT() function
tells 4GL how many array

items contain valid data.

ARR_CURR() function
returns the index of the array

row whose contents are in
the current screen row.
11-22 Using the Screen and Keyboard

Taking Input Through a Form
During a DISPLAY ARRAY statement, 4GL interprets the keystrokes used for
scrolling (up and down arrows and others). It responds to them by scrolling
the rows from the array in memory through the lines of the screen array.

As shown in the previous example, you can write ON KEY blocks within
a DISPLAY ARRAY to act on specific keystrokes. In the example, if the user
presses either CONTROL-V or F5, the program calls a function named
show_advert(). If you read Example 18 in INFORMIX-4GL by Example, you
will see that this function opens a new window to display an expanded view
of one column.

Taking Input Through a Form
Once your program displays a form, it can take input from the user through
the form fields. In its simplest form, the INPUT statement, like the DISPLAY
statement, takes a list of program variables and a list of field names.

INPUT stockNum, quantity FROM stock_num, item_qty

In this example, two fields—stock_num and item_qty—are enabled for
input. Fields by these names must, of course, exist in the form displayed
into the current window.

The program waits while the user types data into the field and presses
the Accept key. (The Accept key is Escape by default, but the actual keyboard
assignment can be changed; see “Run-Time Key Assignments” on
page 11-31). The data is assigned into the program variables stockNum
and quantity and the program proceeds.

INPUT supports the same shortcuts for naming records as DISPLAY does. You
can ask for input to all members of a record, from all fields of a screen record
and you can ask for input BY NAME from fields that have the same names
as the program variables.
Using the Screen and Keyboard 11-23

Taking Input Through a Form
Help and Comments

In the ATTRIBUTES section of a form, you can specify an explanatory
comment for any form field. These comments are displayed during input.
When the cursor enters a field, the comment for that field is displayed on
a specified line of the screen, the Comments line. (This line is by default
the last line of the window, but can be changed; see “Changing Screen Line
Assignments” on page 11-29.)

You can also associate a help message with any INPUT operation. See
“How the Help System Works” on page 7-24.

Keystroke-Level Controls

Some programs require very precise control over user actions during input.
You can do this, too, by writing one or more ON KEY blocks as part of the
INPUT statement. 4GL executes the statements in your ON KEY clause code
block whenever the user presses one of the specified keys during input.

A typical use for an ON KEY block is to display special assistance. You can tell
your user something like “Press CONTROL-P for a list of price codes.” In an
ON KEY block for the CONTROL-P key, you can open a 4GL window and dis-
play in it the promised list. After getting the necessary information, your user
can finish entering data and terminate the INPUT statement by pressing
Accept or Cancel.

Field-Level Control

Sometimes you want to make a form even more responsive to the user or you
may require more detailed control over the user’s actions.

• To make a form seem lively and “intelligent,” you want to cause a visible
response to the user’s last action, if possible anticipating the user’s likely
next action.

• To catch errors early, saving the user time, you want to verify each value
as soon as it is entered, with respect to values in other fields.

You achieve this level of control by writing BEFORE FIELD and AFTER FIELD
blocks of code as part of the INPUT statement. These are groups of 4GL
statements that are called automatically as the user moves the cursor through
the fields on the form.
11-24 Using the Screen and Keyboard

Taking Input Through a Form
Using a BEFORE FIELD Block

A BEFORE FIELD block is executed as the cursor is just entering a field. In
the following example a message is displayed when the cursor enters a field,
and removed when the cursor leaves the field.

INPUT...
...
BEFORE FIELD customer_num

MESSAGE "Enter customer number or press F5 for a list."
AFTER FIELD customer_num

MESSAGE ""

You could get the same effect by writing the message as a COMMENT
attribute for this field in the form specification. But if you did that, the
message would be displayed whenever the form was used. In this case, the
pop-up list of customers is a service offered only within this particular INPUT
statement. The same form might be used in other contexts where you do not
mean to do anything special for an F5 key.

A typical use of BEFORE FIELD is to prepare likely default values. Here, as
the cursor enters a shipping-charge field, the program calculates, stores, and
displays an estimated charge. This is done only if no value has previously
been entered to the field.

BEFORE FIELD shipCharge
IF shipRec.shipCharge IS NULL THEN

LET shipRec.shipCharge =
 shipEstCalc(shipRec.shipWeight,custRec.state)

DISPLAY BY NAME shipRec.shipCharge
END IF

Using an AFTER FIELD Block

An AFTER FIELD block is called as the cursor is just leaving a field. In it,
you can write statements that:

• Check the value of the field for validity with respect to other form fields
and with respect to the database

• Display values into other fields as a result of the value just entered into
this one
Using the Screen and Keyboard 11-25

Taking Input Through a Form
Here is a simple example of validation:

AFTER FIELD customer_num
-- Prevent user from leaving an empty customer_num field

IF gr_customer.customer_num IS NULL THEN
ERROR "You must enter a customer number. Please do so."
NEXT FIELD customer_num

END IF

The NEXT FIELD statement sends the cursor to the specified field (in this case,
back to the field it had just left). It terminates execution of the AFTER FIELD
block and starts execution of the BEFORE FIELD block of the destination field.

The block from which the preceding example is taken (Example 15 in
INFORMIX-4GL by Example) does more. When a customer number had been
entered, it:

• Uses SELECT to read that customer’s row from a database table.

• If no row exists, displays the fact and uses NEXT FIELD to repeat the input.

• Initializes other fields of the form with data from the database row.

Field Order Constrained and Unconstrained

In a BEFORE or AFTER FIELD block or an ON KEY block, you can also write a
NEXT FIELD statement, forcing the cursor to move to a particular field. Many
existing 4GL programs control the cursor in this way. It is done to direct the
user’s attention to important data, or to require the user to enter certain data.

This tight control over actions of your user is a natural way to manage
computer interaction on a character-based terminal. Programmers can
assume that the cursor never enters the “discount” field without first having
passed through the “customer number” field, for example. The BEFORE
FIELD block for “discount” could therefore refer to the value of “customer
number” with certainty that it was present.

Through the 4GL OPTIONS statement you can adjust the amount of freedom
your user will have in moving through a form. If you set FIELD ORDER
CONSTRAINED, you can accurately predict the path your user will follow
when moving through a form.

On the other hand, if FIELD ORDER UNCONSTRAINED is set, the user will be
able to move through the form in any particular order using the arrow key.
11-26 Using the Screen and Keyboard

Taking Input Through an Array
Taking Input Through an Array
The DISPLAY ARRAY statement lets the user view the contents of an array
of records, but the user cannot change them. You can use INPUT ARRAY to
allow the user to alter the contents of records in the array, to delete records,
and to insert new records.

The preparation for array input is very similar to that for DISPLAY ARRAY:

• You design a form containing a screen array of screen records.

• You define a program array of records. The members of each record
match the fields of the screen record.

• If the user can alter existing data, you pre-load data into the program
array and use the built-in set_count() function to specify how many array
items contain data.

• You execute an INPUT ARRAY statement, naming the program array
as a receiving variable and the screen array as its corresponding field.

The same INPUT statement can also name ordinary program variables
corresponding to ordinary form fields. The user directs the cursor through
the fields as usual.

When the cursor enters the screen array on the form, 4GL handles the
scrolling of the array allowing the user to edit and change the contents of the
fields, using arrow keys to navigate through the cells of the screen array. You
can control and monitor these changes with BEFORE and AFTER FIELD blocks
as usual. The built-in arr_curr() function is available to tell you which array
element is being changed. Besides the NEXT FIELD statement, you can exe-
cute the NEXT ROW statement to reposition the cursor to a different row.

4GL also supports an Insert key to open a new, empty row in the array, and
a Delete key to delete a row. You can monitor and control these actions with
BEFORE and AFTER INSERT and DELETE blocks. You can redefine the Insert
or Delete key using the OPTIONS statement.

Screen and Keyboard Options
Now that you understand how 4GL uses the screen, here is a review
of options for customizing the user interface.
Using the Screen and Keyboard 11-27

Reserved Screen Lines
Reserved Screen Lines
Here is a summary of the reserved, or dedicated, screen lines:

Prompt line The PROMPT statement prompts the user for input to one
or more variables. It displays its prompt string on the
specified line and the user types a response on the same
line.

Menu line The MENU statement displays a “ring” (horizontal) menu
on this line. The user moves the cursor from choice to
choice with the Tab and Arrow keys.

MENU and PROMPT can share the same line. Each clears
the line and rewrites it as necessary.

Menu help line In the MENU statement you can also write an explanatory
phrase for each menu choice. As the user moves the cur-
sor across menu options, the explanations are displayed
on this line. The Menu line is always the line immediately
below the menu.

Message line The MESSAGE statement is used to show a short message
to the user. The Message line can share the line after the
Menu because the MENU statement rewrites its help line
when it starts or resumes. The Message line could also
be the same as the Comments line.

Prompt line FIRST
Menu line FIRST

Menu help MENU+1
Message line FIRST+1

Form line FIRST+2

space for form

Comment line LAST
Error line LAST
11-28 Using the Screen and Keyboard

Changing Screen Line Assignments
Form line The top line of a screen form will be displayed on this line
by the DISPLAY FORM statement.

Comments line When designing a screen form, you can specify an
explanatory comment for any field. As the user moves the
cursor through the fields of the form, these explanations
are displayed on the Comments line.

Error line The ERROR statement is used for providing the user with
a message serious enough to warrant an audible warning.

The Error line is special in another way. All other
dedicated lines represent positions within the current 4GL
window where text can be written, replacing previous
text on that line. The Error line specifies a position where
a one-line error message appears on the screen. In other
words, the Error line appears on the specified line of the
screen without regard to the position or size of the current
4GL window.

Changing Screen Line Assignments
The default layout of reserved screen lines is usually satisfactory. If you
change it, you should make sure that your new layout is consistent across
your application and consistent with other applications that your users will
see.

You can change the assignment of logical lines to line numbers in two ways,
depending on your needs:

• With the OPTIONS statement, you can change the assignment of one or
more lines for all windows.

• With the ATTRIBUTES clause of OPEN WINDOW, you can assign the logical
lines for one window when you create it.

There are, however, some line assignments you cannot change. For example,
the Menu Help line always follows the Menu line, so the Menu line can never
be LAST. If you specify MENU LINE LAST, 4GL treats it as if you had assigned
LAST-1.
Using the Screen and Keyboard 11-29

Changing Screen Line Assignments
Getting the Most on the Screen

The most common reason for changing screen line assignments is to increase
the maximum number of lines available for other purposes. To do this, you
make multiple screen lines use the same row. The following table shows
which lines can share the same screen row:

In this table, the word “yes” means that the two intersecting types of screen
lines can share the same screen row because the lines appear at different
times, and each clears the row before using it. Potential problems are
discussed in the following notes:

Note 1 The screen form is not automatically redrawn after it has been
overwritten. If you display a prompt, menu, message, or comment
into a line used by a form, the only way to restore the complete
form is to redisplay the form and then redisplay the data in its
fields.

Note 2 If you make the Message line the same as Menu or Menu help, you
must be careful when using the MESSAGE statement from within
a MENU. You must program a delay before resuming the menu
operation. Otherwise the menu will replace the message text too
quickly for the user to read it. (If messages and menus are used at
different times, there is no difficulty about them using the same
row.)

Note 3 When you use both a menu and a form you should probably
not make the Comments and Menu lines the same. You can make
Comments the same as Menu help. Then both types of explana-
tions appear on the same screen row.

The ERROR text is always displayed on the designated Error line of the phys-
ical screen. When you design a 4GL window as described under “How 4GL
Windows Are Used” on page 7-21, you do not need to allow for an Error line.

Menu
Menu
help Message Form Comment Error

Prompt yes yes yes note 1 yes yes
Menu no note 2 note 1 note 3 yes
Menu help note 2 note 1 yes yes
Message note 1 yes yes
Form note 1 yes
Comment yes

Figure 11-4 Table shows which menu lines can share the same screen row
11-30 Using the Screen and Keyboard

Run-Time Key Assignments
Run-Time Key Assignments
The 4GL run-time environment uses several logical function keys and
provides default keyboard assignments. These can easily be reassigned.
The abstract function keys are summarized in the following table:

You can change the assignment of the logical keys to physical keystrokes with
the OPTIONS statement. There are two common problems that require you to
change them.

• The Escape key is often a prefix value for function keys. The operating
system may wait a fraction of a second after the Escape key is pressed, in
order to make sure it is not the start of an escape sequence, before passing
it to the program. On some systems this can cause a delay in the response
of your program to the Accept key.

• The numbering of function keys is not consistent from one version
of UNIX to another. This is because some terminals may have different
physical keys than those defined in termcap file.

Key Name Purpose of Key Default Keystroke

Accept Selects the current menu option in a statement; terminates
input during CONSTRUCT, INPUT, and INPUT ARRAY;
terminates DISPLAY ARRAY.

Escape

Interrupt Represents the external interrupt signal; available
when interrupts are deferred with the DEFER statement.

stty interrupt key
(usually CONTROL-C)

Insert Requests insertion of a new line during INPUT ARRAY,
starting execution of a BEFORE INSERT block.

F1

Delete Requests deletion of the current line during ARRAY, starting
execution of a BEFORE DELETE block.

F2

Next Causes scrolling to the next page (group of lines) during
DISPLAY ARRAY and INPUT ARRAY.

F3

Previous Causes scrolling to the previous page (group of lines)
during DISPLAY ARRAY and INPUT ARRAY.

F4

Help Starts the display of the specified HELP message
from the current help file.

CONTROL-W

Figure 11-5 Logical command keys in the 4GL run-time environment and their default
assignments
Using the Screen and Keyboard 11-31

Run-Time Key Assignments
Dedicated Keystrokes

The following physical keys have dedicated uses during some 4GL
statements:

Key Name
Use in INPUT, INPUT ARRAY, and
CONSTRUCT Use in MENU

CONTROL-A* Switches between overtype and insert
modes.

None.

CONTROL-D* Deletes from the cursor to the end of
the field.

None.

CONTROL-H*
(backspace)

During text entry, moves the cursor left
one position (nondestructive
backspace).

Moves highlight to next
option left.

CONTROL-I* or
TAB*

Cursor moves to next field; except in a
WORDWRAP field, inserts a tab or skips
to a tab depending on mode.

None.

CONTROL-J
(Linefeed)

Cursor moves to next field; except in a
WORDWRAP field, inserts a newline or
moves down one line, depending on
mode.

Moves the highlight to
the next option right.

CONTROL-L* During text entry, moves the cursor
right one position.

Moves the highlight to
the next option right.

CONTROL-M or
Return

Completes entry of the current field.
Cursor moves to next field if any; else
same as Accept.

Accepts the option that is
currently highlighted

CONTROL-N Same as CONTROL-J None.
CONTROL-R* Causes the screen to be redrawn. Causes the screen to be

redrawn.
CONTROL-X* Deletes the character under the cursor. None.
Left Arrow Same as Backspace. Same as Backspace.
Right Arrow Same as CONTROL-L. Same as CONTROL-L.
Up Arrow Usually moves to previous field;

except in a WORDWRAP field moves
up one line in field and in an INPUT
ARRAY moves to the corresponding
field in the previous row.

Moves the highlight to
the next option left.

Down Arrow Usually moves to next field; except in a
WORDWRAP field moves down one
line in field and in an INPUT ARRAY
moves to the corresponding field in the
next row.

Moves the highlight to
the next option right.

Insert Same as logical INSERT key None.

Figure 11-6 Effect of special keys on interactive statements and within menus.
An asterisk indicates that the key cannot be used in an ON KEY clause.
11-32 Using the Screen and Keyboard

Run-Time Key Assignments
Intercepting Keys with ON KEY

The names shown in the first column of the preceding two tables are accepted
in an ON KEY clause with the noted exceptions. If you intercept these keys
using ON KEY, they lose their dedicated abilities. For example, if you inter-
cept the UP key in a DISPLAY ARRAY statement, the user will have no way
to move the cursor upward. If you name RIGHT in a KEY clause of a MENU
COMMAND, the user will not be able to move through the menu using
the right-arrow key.

Delete Same as logical DELETE key None.
PgUp Same as logical NEXT None.
PgDn Same as logical PREVIOUS None.

Key Name
Use in INPUT, INPUT ARRAY, and
CONSTRUCT Use in MENU

Figure 11-6 Effect of special keys on interactive statements and within menus.
An asterisk indicates that the key cannot be used in an ON KEY clause.
Using the Screen and Keyboard 11-33

Run-Time Key Assignments
11-34 Using the Screen and Keyboard

Chapter
12

Handling
Exceptions
Overview 3

Exceptions 4
Run-Time Errors 4
SQL End of Data 5
SQL Warnings 5
Asynchronous Signals: Interrupt and Quit 6

Uses of Asynchronous Signals 6

Using the DEFER Statement 7
Interrupt with Interactive Statements 7

Interrupt with INPUT and CONSTRUCT 8
Deferred Interrupt with the MENU Statement 10

Using the WHENEVER Mechanism 10
What WHENEVER Does 10
Actions of WHENEVER 11
Errors Handled by WHENEVER 11
Using WHENEVER in a Program 12

Notifying the User 14

12-2 Handling Exceptions

Overview
Exceptions, usually referred to as errors, are unusual occurrences that you
might sometimes wish would never happen to your program. Of course, you
know they will happen, and you know you need to write your programs so
they behave in reasonable ways when errors and other unplanned for events
occur.

This chapter reviews the categories of exceptional conditions and how 4GL
reacts to them when you do not specify what to do. Then it details the
mechanisms that 4GL gives you for handling them:

DEFER Allows you to convert asynchronous signals into
synchronous flags that you can poll.

WHENEVER Lets you change how 4GL responds to specific error
conditions.

Error type Check

Interrupt signal int_flag
Quit signal quit_flag
Run-time error, expression error, file error,
display error, initialization error

status

SQL error status, SQLCA.SQLCODE
SQL warnings SQLCA.SQLAWARN
SQL end of data error status=NOTFOUND

or
SQLCA.SQLCODE=NOTFOUND

Figure 12-1 Common error conditions and the built-in flags they set
Handling Exceptions 12-3

Exceptions
Exceptions
You can write your 4GL program to recognize and respond to the following
types of exceptions:

• Run-time errors (sometimes called execution errors)

• SQL end of data conditions

• SQL warnings

• Asynchronous signals, meaning signals from the keyboard or elsewhere,
occurring at an unplanned for time

Run-Time Errors
Run-time or execution errors are serious conditions that are detected by the
database engine or 4GL during run-time. Although they are divided into sev-
eral categories, these errors all have one thing in common: if they occur and
the program does not explicitly handle them, the program will terminate
immediately. To handle these types of errors, you must use the WHENEVER
ERROR statement. See “Using the WHENEVER Mechanism” on page 12-10
for more information.

A negative error code number is associated with every type of execution
error. For every number there is an error message. Error numbers and
their associated messages are available on-line. (See the introduction of
INFORMIX-4GL Reference.) In addition, your 4GL application can call a
function, err_get(), to retrieve the message text for any error number.
See the chapter on built-in functions and operators in Chapter 4 of the
INFORMIX-4GL Reference.

Execution errors are divided into five groups based on the kinds of program
actions that can cause them:

Expression errors arise when 4GL attempts to evaluate an expression that
violates the rules of the language. For example, error
—1348 occurs when an attempt is made to divide by zero.
Error —1350 occurs when 4GL cannot convert between
data types.

File errors arise when 4GL tries to access a file and the operating
system returns an error code. For example, error —1324
means that a report output file could not be written.

SQL errors arise when the database engine detects an error in an SQL
statement. For example, error —201 results from a syntax
12-4 Handling Exceptions

SQL End of Data
error in an SQL statement, while error —346 shows that an
attempt to update a row in a table failed.

screen errors arise when something goes wrong with a screen interac-
tion. For example, error -1135 means that the row or col-
umn in a DISPLAY AT statement falls outside the current
4GL window.

initialization and
validation errors

The INITIALIZE and VALIDATE statements are used
to initialize or test program variables against a special
database table, syscolval. Errors in the operation of these
statements are in a separate category; you handle them
apart from other errors.

SQL End of Data
When the database engine is unable to retrieve a specified row, it reaches an
end of data condition and sets the SQLCODE member of the SQLCA record to
100. 4GL includes a built-in constant called NOTFOUND that has a value of
100.

By default, 4GL continues execution of your program when an End of Data
condition is encountered. However, you can test for this condition after the
following statements:

• FETCH

• FOREACH

• SELECT

If the value of sqlca.sqlcode is greater than zero, there was no row available.

Alternatively, your program can treat end of data as an error condition so that
when it occurs, your program is diverted to code that handles end of data.

To change the default behavior of 4GL, use the WHENEVER NOT FOUND
statement. (See “Using the WHENEVER Mechanism” on page 12-10 for more
information.)

SQL Warnings
Some SQL statements can detect conditions that are not errors, but may
provide important information for your program. These conditions are called
warnings and are signalled by setting warning flags in the SQLAWARN
member of the SQLCA record.
Handling Exceptions 12-5

Asynchronous Signals: Interrupt and Quit
As with end of data, you have a choice in how to treat an SQL warning.
By default, 4GL sets SQLCA.SQLAWARN and continues execution of the
program. You can insert code after any SQL statement to test the SQLAWARN
flag values.

To change this default behavior, you can use the WHENEVER WARNING
statement, described beginning on page 12-10.

Asynchronous Signals: Interrupt and Quit
External signals are asynchronous signals that—unless specifically deferred—
are delivered by the operating system to a running program. An asynchro-
nous signal is one that is not related to an action of the program.

Common external signals such as Interrupt and Quit would typically be
generated by the user. The keystroke that generates an Interrupt is known as
the Interrupt key; the keystroke that generates a Quit is known as the Quit
key. (On some systems, physical keys associated with external signals can be
reassigned.)

Generally speaking, unless intercepted, an external signal that reaches an
application causes the application to terminate immediately. 4GL provides
mechanisms for testing for and handling Interrupt and Quit signals.

Uses of Asynchronous Signals

A first glance, it is difficult to see why an external signal of any kind should
be allowed to terminate a running program. But in fact, it is often quite useful
to allow user-induced exceptions to end programs during certain stages of
program development or debugging.

For example, if you create a FOREACH or WHILE routine without a termina-
tion point, you cannot stop the routine without killing the process or reboot-
ing the system. However, if interrupts are not trapped, pressing the Interrupt
key (CONTROL-C by default) ends the program immediately. Later, once you
have perfected the routine, any external signals can be deferred using the 4GL
DEFER statement (described in the next section) and more polite mechanisms
put in place to handle unanticipated user requests.
12-6 Handling Exceptions

Using the DEFER Statement
Using the DEFER Statement
Since it is generally not convenient for the user to immediately terminate
an application from the keyboard, 4GL provides a DEFER statement that:

• Captures an Interrupt or Quit signal.

• Sets the appropriate 4GL flag, allowing you to deal with the external
signal programmatically.

The DEFER mechanism allows you to choose how to handle Interrupt or Quit
signals. To enable this mechanism, you include the DEFER statement once,
at the beginning of your 4GL program. This statement has two forms:

DEFER
INTERRUPT

the Interrupt key combination is trapped and TRUE is
assigned to the built-in global integer variable int_flag.
Once deferred, the Interrupt signal causes no effect on
most program statements; however it does terminate some
interactive statements, as described in the next section.

DEFER QUIT the 4GL Quit key combination, CONTROL-\, is caught and
TRUE assigned to the built-in global variable quit_flag.

Note: Some systems may also be able to deliver other external signals, but these are
not handled by the 4GL DEFER mechanism. There are also synchronous signals that
represent program run-time errors trapped by the operating system, usually for
major program faults such as indexing past the end of an array.

The DEFER statement can only be executed in the MAIN program block.
Its effect cannot later be undone. Once deferred, Interrupt can be named
as a logical key in an ON KEY clause.

Interrupt with Interactive Statements
The effect of a user-generated Interrupt when DEFER INTERRUPT is in effect
can be summarized as follows:

INPUT When INTERRUPT is named in an ON KEY clause, the signal
is treated as just another keystroke. In other words, you can
trap an Interrupt signal. If the signal is not trapped, it causes
the INPUT to end. The AFTER INPUT block is executed, if one
exists; then, control goes to the next statement.

CONSTRUCT When INTERRUPT is named in an ON KEY clause, the signal
is treated as the activation key for that control block. Other-
wise, the signal causes CONSTRUCT to end. The AFTER
CONSTRUCT block is executed, if one exists; then, control
goes to the next statement.
Handling Exceptions 12-7

Interrupt with Interactive Statements
DISPLAY
ARRAY

When INTERRUPT is named in an ON KEY clause, the signal
is treated as just another keystroke. Otherwise, the operation
ends and control goes to the next statement.

MENU When INTERRUPT is named in a MENU clause, the signal
is treated as just another keystroke. The menu operation
continues. However, INTERRUPT can be named in a
COMMAND KEY list and used to initiate an action.

PROMPT When INTERRUPT is named in an ON KEY clause, the signal
is treated as just another keystroke. In other words, you can
trap an Interrupt signal. When an Interrupt is generated,
the operation ends and NULL is assigned to the receiving
variable.

Interrupt with INPUT and CONSTRUCT

You will often use program logic similar to the following program fragment
with INPUT or CONSTRUCT statements:

DEFER INTERRUPT
LET int_flag = FALSE
LET cancelled = FALSE

-- the Interrupt flag is specifically set FALSE
INPUT ...

BEFORE INPUT
MESSAGE "Use CTRL-E to cancel input."

ON KEY (CONTROL-E) -- logical cancel
LET cancelled = TRUE
EXIT INPUT

...other clauses of INPUT...
AFTER INPUT

-- tests to see if an Interrupt has been received (is TRUE)
IF int_flag THEN

LET cancelled = TRUE
ELSE

...post-process based on Accept key...
END IF

END INPUT
IF cancelled THEN

MESSAGE "Input cancelled at your request!"
END IF
12-8 Handling Exceptions

Interrupt with Interactive Statements
The code sample establishes three ways for the user to terminate the INPUT
operation.

Accept key Normal completion of INPUT is signaled by pressing the
Accept key. The statements in the AFTER INPUT block are
used to perform any final validation of the entered data.

Interrupt key When the user generates an Interrupt, 4GL ends the INPUT
operation, but in doing so it executes the AFTER INPUT
block. The program checks the setting of the int_flag. If
TRUE, the INPUT operation is terminated. It exits the AFTER
INPUT block early if it was entered due to an Interrupt.

CONTROL-E The program establishes a logical Cancel based on using an
unassigned control key trapped by an ON KEY block.

The example code converts both cancellations, the built-in cancellation due
to Interrupt and the programmed signal based on CONTROL-E, into a TRUE
value in a variable named cancelled. This is cleared before the INPUT opera-
tion begins, and is tested afterward.

When Interrupt is used in an ON KEY clause, Interrupt no longer terminates
the operation, so the preceding example could be written this way:

-- DEFER INTERRUPT run earlier
LET cancelled = FALSE
INPUT ...

BEFORE INPUT
MESSAGE "Use ctrl-E to cancel entry"

ON KEY (control-E, Interrupt) — — logical cancel
LET cancelled = TRUE
EXIT INPUT

...other clauses of INPUT...
END INPUT
IF cancelled THEN

MESSAGE "Input cancelled at your request!"
END IF

This explicit handling of Interrupt with an ON KEY statement prevents exe-
cution of AFTER INPUT following an Interrupt. Logic of either type can also
be used with CONSTRUCT.
Handling Exceptions 12-9

Using the WHENEVER Mechanism
Deferred Interrupt with the MENU Statement

Normally the arrival of the Interrupt signal has no effect on a MENU
operation. Typically a program should treat a user-generated Interrupt key
as a sign that the user is at least impatient. You can write a MENU program
block so that it treats Interrupt as a keystroke and uses it to exit the menu:

MENU "Scrolling menu"
COMMAND "First" "View first row of set" HELP 301

...
COMMAND "Next" "View next row of set" HELP 302
...etc etc
COMMAND KEY(ESCAPE, INTERRUPT) "Exit" "Exit this menu"

EXIT MENU
END MENU

Using the WHENEVER Mechanism
The WHENEVER statement handles:

• Run-time errors

• SQL warnings

• SQL end of data conditions

The WHENEVER statement is based on the ANSI standard for embedded SQL,
which defines the keywords and basic operation of that statement.

What WHENEVER Does
The form of the statement is:

WHENEVER event action

You use this mechanism to tell 4GL that when a certain event occurs, a certain
action should be done. Following WHENEVER you write the normal line of
program logic, just as if the errors would never happen. (For full details on
using WHENEVER, see Chapters 3 and 4 of the INFORMIX-4GL Reference.)
12-10 Handling Exceptions

Actions of WHENEVER
Actions of WHENEVER
You can specify four possible types of actions using variations of
the WHENEVER statement:

do not terminate You write WHENEVER…CONTINUE to specify that when
the error happens, it is to be ignored. 4GL sets the status
variable and continues executing the program.

terminate You write WHENEVER…STOP to specify that when the
error happens, the program is to be terminated. Any
uncommitted database transaction is rolled back and an
error message is displayed.

call a function You write WHENEVER…CALL function to say that, when
the error occurs, the named function should be called.

go to a label You write WHENEVER…GOTO label to say that, when the
error occurs, the program is to branch to a certain label.

Note: The appearance of WHENEVER in a source module changes the way the
compiler produces code, starting with that line and continuing through the source
code to the end or to the next WHENEVER. When you specify an action other than do
nothing (CONTINUE), the compiler automatically generates code to test for an error
following each statement that might cause one, and to carry out the specified action
when an error occurs.

Errors Handled by WHENEVER
You use the first argument of WHENEVER to specify the error or errors to
be handled. The keywords and the errors trapped are shown in this table.

Keyword E
n

d
 o

f
D

at
a

S
Q

L
 W

ar
n

in
g

S
Q

L
 E

rr
or

s

S
cr

ee
n

 E
rr

or
s

In
it

ia
li

ze
 a

n
d

V
al

id
at

e

E
xp

re
ss

io
n

E
rr

or
s

Fi
le

 E
rr

or
s

NOT FOUND

WARNING or
SQLWARNING

SQLERROR

ERROR

ANY ERROR
Handling Exceptions 12-11

Using WHENEVER in a Program
Note: The 4GL C code compiler traps expression errors with either ERROR or
ANY ERROR set.

By default, 4GL executes a program as if it contained the following
WHENEVER statements:

WHENEVER NOT FOUND CONTINUE
WHENEVER SQLWARNING CONTINUE
WHENEVER ANY ERROR STOP

That is, warnings and end of data exceptions are ignored while all errors
cause the program to end.

Using WHENEVER in a Program
The following function contains two SQL statements, either of which could
produce an error if the arguments of the function are not correct. (The pur-
pose of the function is discussed in “Dynamic SQL” on page 9-10.)

To prevent run-time errors in these two statements from terminating the
program, the WHENEVER statement has been inserted, along with code
to test the SQL error value after each statement.

FUNCTION tableGrant()
DEFINE whom , tab , priv , granText VARCHAR(255)

LET granText = "GRANT " , priv,
" ON " , tab ,
" TO " , whom

WHENEVER SQLERROR CONTINUE
PREPARE granite FROM granText
IF SQLCA.SQLCODE == 0 THEN

EXECUTE granite
IF SQLCA.SQLCODE == 0 THEN

RETURN -- all done in good style
END IF

END IF
WHENEVER SQLERROR STOP

-- Some SQL error if we get here
DISPLAY "The following prepared statement is in error:"
DISPLAY granText
DISPLAY "Error is ",SQLCA.SQLCODE USING "-<<<<<<",

", meaning:"
DISPLAY ERR_GET(SQLCA.SQLCODE)

END FUNCTION
12-12 Handling Exceptions

Using WHENEVER in a Program
The WHENEVER statements are placed closely around the statements
of interest. The WHENEVER SQLERROR CONTINUE statement causes errors
in SQL statements to be ignored. The only effect of an error will be to set a
negative code in the SQL communications area and the status variable.

The WHENEVER SQLERROR STOP statement restores the default handling of
SQL errors. If it was omitted, the effect of the first statement would continue
to the end of the source module.

Using WHENEVER ERROR for Non-Fatal Errors

You can prevent most execution errors from terminating the program using
the WHENEVER ERROR statement, which establishes your program’s policy
for handling execution errors. For example, when an error is encountered at
a particular point in your program you could:

• Ignore errors

• Call a function

• Jump to a label

• Display a PROMPT statement to get more guidance from your user

The WHENEVER ERROR statement is a condensed way of putting an IF
statement after every SQL statement in order to establish what action should
be taken when errors occur.

Using WHENEVER ANY ERROR for Expression Error

You can cause a variable to be checked after an expression error by using
the ANY keyword with a WHENEVER ERROR statement.

Using WHENEVER WARNING for SQL Warnings

By default, 4GL sets SQLCA.SQLAWARN and continues execution when
it encounters a warning. Although the statement WHENEVER WARNING can
be used to make the program call a function or go to a label when an SQL
warning flag is set, normally you do not want the SQL warning flags to divert
the program.
Handling Exceptions 12-13

Notifying the User
Using WHENEVER NOT FOUND for SQL End of Data

By default, 4GL sets SQLCA.SQLCODE (and status to 100 (NOTFOUND)) and
continues execution when it encounters an end of data condition. Although
the statement WHENEVER NOT FOUND can be used to make the program call
a function or go to a label when SQL input finds end of data, you normally do
not want an “end of data” to cause any diversion of the program.

Notifying the User
The 4GL Error line is a one-line display dedicated to the display of messages.
(See “Screen and Keyboard Options” on page 11-27.) The Error line becomes
visible in three cases:

• When you execute the ERROR statement to display a message that you
composed.

• When you execute the ERR_PRINT() function to display a message based
on a 4GL error number.

• When you execute the ERR_QUIT() function to display a message and ter-
minate the program.

In fact, the Error line is a one-line 4GL window that is automatically opened
on the screen (see “Opening and Displaying a 4GL Window” on page 11-14).
After an ERROR statement or call to ERR_PRINT(), this window remains open
and visible until a keystroke event occurs. Then it is closed, revealing any
form or menu that might be hidden beneath it.
12-14 Handling Exceptions

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z

Index
A
Accept key

terminating INPUT
operation 12-9

using 11-23
AFTER FIELD block 11-10, 11-25
AFTER GROUP block 10-19
Alias of a table

in a form 11-7
in the TABLES section 11-7

ANSI-compliant database, table
aliases in a form 11-7

ARRAY
data type 5-7
declaration 8-9

Array, screen 11-6
Asynchronous signals 12-6
ATTRIBUTES section of form

specification
commenting 11-24
multiple-table forms 11-7
using 11-8 to 11-11

B
BEFORE FIELD block

typical use of 11-25
using 11-25

Boldface terms in text Intro-5
BY NAME clause, DISPLAY

statement 11-19

C
C code compiler 4-12
C Compiler Version 1-5, 4-10
c4gl command 4-12
cat command 4-11
Character data types 8-6
Character-based terminal 7-3
Chronological data types 8-5
CLEAR WINDOW statement 11-15
CLOSE WINDOW statement 11-15
Column connected to form

fields 11-9
Command block 7-10
Commenting form fields 11-24
CONSTRUCT statement

effect of Interrupt signal
upon 12-7

using 7-19
CONTROL keys, default

assignments 11-32
Conventions,

typographical Intro-5
Current window 7-8

D
Data

data allocation 5-8
data conversion 5-4
definition 5-3 to 5-9
records 5-6
structures 5-6, 8-8 to 8-23

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Data type
character and string 8-6
chronological 8-5
conversion 5-3
declaration 5-3
number 8-4
using 8-3 to 8-8
using NULL values 5-4

DATABASE
section 11-4
specification in a form file 11-4
statement 11-4, 11-10

Database
accessing 2-4
administrator (DBA) 4-4
cursor 6-3
engine 2-4
schema 4-4 to 4-5
stores2 Intro-6

DBPATH environment
variable 11-17

Debugger Intro-4
Decision tree 5-9
Default argument values 11-11
DEFER statement 12-3, 12-7
Demonstration database

overview Intro-6
Display

errors 12-5
field attributes 11-20

DISPLAY ARRAY statement
displaying records in an

array 11-12
effect of Interrupt signal

upon 12-8
using 11-23, 11-27

DISPLAY FORM statement 11-18
DISPLAY statement 7-4
DISPLAY TO statement 11-19,

11-20
Displaying forms 7-14
Documentation notes Intro-5
Dynamic SQL 6-3

E
Error

conditions 5-11
line 12-14

ERROR statement 11-29
Errors

display 12-5
screen display 12-5

Escape key 11-23, 11-31
ESQL/C 4-12
Example code 3-4, 3-5, 3-7
Exceptions handling 5-11
Expressions

described 8-18 to 8-23
errors 12-4

External
function 4-9
signals 12-6

F
FETCH statement 11-21
Field

data type 11-9
delimiter 11-5, 11-11
multiple segment 11-5, 11-6
names in screen forms 11-8, 11-9
responding to entry or exit by

user 11-24
tag, using 11-5

File errors 12-4
File extensions 4-13

.4gi 4-11

.4gl 4-9

.4go 4-11
FOREACH statement 11-22
Form

compiler, using 4-3
displaying 7-14, 11-17
field comments 11-24
line 11-18
name, specifying 11-18
opening 11-17
opening and

displaying 11-17 to 11-20

specification file 4-3, 4-6 to 4-8,
7-11

compiler 4-7
using 3-7, 4-6 to 4-8, 7-11 to 7-19

Form specification file
components 11-4
DATABASE 11-10
display attributes 11-20

Formatted mode 7-5 to 7-7
FORMONLY field 11-10
Function keys 11-31
FUNCTION statement 4-9
Functions, external 4-9

G
GLOBALS keyword 4-10
Graphical terminals 7-3
GROUP keyword 10-19

H
Help

message, displaying 11-24
system, creating for an

application 7-24

I
INFORMIX-OnLine Dynamic

Server 2-4
INFORMIX-SE 2-4
Initialization of variables 4-9
INITIALIZE statement 12-5
Input records, as a synonym for a

row 10-3
INPUT statement

effect of Interrupt signal
upon 12-7

using 7-18, 11-23
INSTRUCTIONS section of form

specification 11-11 to 11-12
Interface, character based 2-5
Interrupt

key, with AFTER INPUT 12-9
signal 12-7
2 Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
K
Keywords, typographic

convention Intro-5

L
Language features

database interaction 2-4
database schema 4-4 to 4-5
machine code 4-12
MAIN module 4-9
message file 4-3
nonprocedural programming 3-5
object module 4-9 to 4-13
overview of 4GL 1-3
reports 2-4, 3-6
source code modules 4-3, 4-8
structured programming 3-4

LET statement 5-4
Letter case 3-4
LIKE keyword

DEFINE statement 5-6
using 8-9

Line mode 7-3 to 7-4
Local variables 4-9
Lowercase characters, using 3-4

M
Machine code 4-10, 4-12
MAIN module 4-9
Menu 3-7

options 7-8
using 7-8 to 7-11

MENU statement
displaying and

using 11-16 to 11-17
effect of Interrupt signal

upon 12-8
using 11-16
using DEFER INTERRUPT

with 12-10
Message

compiler 4-3
source files 4-3

mkmessage utility 7-24

Monospace typeface Intro-5
Multiple-segment fields 11-6

N
Network, interfacing to 2-4
NEXT FIELD keywords, INPUT

statement 11-26
NULL values, using 5-4
Numeric data type 8-4

O
Object module

concatenating 4-11
machine code 4-10, 4-12
p-code 4-10, 4-11
using 4-10 to 4-13

ON KEY clause
code block 11-24
using 11-33

On-line
files Intro-5
Help for developers Intro-5

OPEN FORM statement 11-18
OPEN WINDOW statement 11-14
Operating system standard

files 2-4
OPTIONS statement

changing line assignments 11-29
setting window display

attributes 11-20
Organization of a 4GL program 4-9

P
p-code

object files 4-11
runner 4-12

Program array
in relation to screen array 7-17

Program flow statements 5-9
Prompt line 11-28
PROMPT statement 7-4, 12-8
Pseudo-code 1-5

Q
Query by example

description 7-19
using the CONSTRUCT

statement 7-19
Quit signal 12-7

R
Rapid Development System 1-5,

4-10
Record

defined 5-6
variables 7-15

RECORD keyword, defining screen
arrays 8-9

Release notes Intro-5
Report

driver 10-3
formatter 10-3
generating 3-6
output 2-4

REPORT TO keywords 10-9
Ring menu 7-8
Row

passed to report driver 10-3
production by a report

driver 10-4
Runner, invoking 1-5
Run-time errors 12-4 to 12-7

S
Screen array

description 11-6
in relation to program array 7-17

Screen form
reserved line positions 11-28

Screen record 11-6
using 7-15
within a screen array 11-6, 11-11

SCREEN section of form
specification

field delimiters 11-5
using 11-5

Screen, defined 7-7
SCROLL cursor 11-21
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Scrolling array 11-21
Source

code modules 4-3
modules 4-9

SQL language
communications area 3-5
dynamic SQL 6-3
errors 12-4, 12-5
using in 4GL programs 3-5, 6-3

SQLCA record 12-6
Standard file I/O 2-4
String data types 8-6
Synchronous signals 12-7

T
TABLES section of form

specification 11-7
Terminal 2-5
TOP OF PAGE clause 10-9
Typographical conventions Intro-5

U
Uppercase characters

typographic convention Intro-5
using 3-4

User interface, character-based 3-7

V
VALIDATE statement 12-5
Validation errors 12-5
Value 8-18 to 8-23
Variables

data typing 5-3
NULL values 5-4
scope of reference 8-11
using 5-3 to 5-9, 8-8 to 8-23

W
WHENEVER statement,

using 12-3, 12-7, 12-10 to 12-13
Window

4GL 11-14
current 4GL 7-8
defined 7-7
opening and

displaying 11-13 to 11-16
WORDWRAP attribute 11-6
workstations 7-3
4 Index

	Answers OnLine Web Site
	Preface
	Table of Contents
	Introduction
	Documentation Included with 4GL
	Other Useful Documentation
	How to Use this Manual
	Typographical Conventions

	Useful On-Line Files
	On-Line Error Reference
	The stores Demonstration Application and Database
	New Features in 4GL
	NLS Support
	Improved Performance
	Improved Quality

	Compatibility and Migration

	Introducing INFORMIX-4GL
	Overview
	What is 4GL?
	4GL Provides a Programmer’s Environment
	4GL Works with Databases
	4GL Runs in Different UNIX Environments
	Two Versions of 4GL

	Interfaces of INFORMIX-4GL
	Overview
	Database Access
	Access to Sequential Files
	Report Output
	User Access
	Using Forms and Menus�
	Summary

	The INFORMIX- 4GL Language
	Overview
	A Structured, Procedural Language
	A Nonprocedural, Fourth-Generation Language
	Database Access
	Report Generation���
	User Interaction

	Summary

	Parts of an Application
	Overview
	The Database Schema
	Form Specifications and Form Files
	Form Design
	Field Entry Order

	Program Source Files
	Organization of a Program
	The Globals File

	Program Object Files
	P-code Object Files
	C Code Object Files

	Example Programs

	The Procedural Language
	Overview
	Declaration of Variables
	Data Typing
	Automatic Data Conversion
	Data Structures
	Records
	Arrays

	Data Allocation
	Scope of Reference

	Decisions and Loops
	Statement Blocks
	Comments

	Exceptions
	Kinds of Exceptions
	Why Exceptions Must Be Handled
	How Exceptions Are Handled

	Database Access and Reports
	Overview
	Using SQL in a 4GL Program
	Creating 4GL Reports
	The Report Driver
	The Report Formatter

	The User Interface
	Overview
	Line-Mode Interaction�

	Formatted Mode Interaction
	Formatted Mode Display

	Screens and Windows
	The Computer Screen and the 4GL Screen
	The 4GL Window

	How Menus Are Used
	How Forms Are Used
	Defining a Form
	DATABASE Section
	SCREEN Section
	TABLES Section
	ATTRIBUTES Section
	INSTRUCTIONS Section

	Displaying a Form
	Reading User Input from a Form
	Screen Records
	Screen Arrays

	How the Input Process Is Controlled
	How Query by Example Is Done
	How 4GL Windows Are Used
	Alerts and Modal Dialogs
	Information Displays

	How the Help System Works

	Using the Language
	Overview
	Simple Data Types
	Number Data Types
	Differences Between DECIMAL and MONEY Data Types
	Numeric Precision

	Time Data Types��
	Character and String Types
	CHAR and VARCHAR Compared
	Binary Large Objects

	Variables and Data Structures
	Declaring the Data Type
	Creating Structured Datatypes
	Declaring an Array
	Declaring a Record

	Declaring the Scope of a Variable
	Scope of Variable Reference
	Time of Variable Allocation

	Using Global Variables
	Global Variable Declaration
	Using GLOBALS Within a Single Module
	Global Versus Module Scope

	Initializing Variables

	Expressions and Values
	Literal Values
	Values from Variables
	Values from Function Calls�
	Numeric Expressions�
	Relational and Boolean Expressions
	Character Expressions
	Null Values
	Null Values in Arithmetic
	Null Values in Comparisons
	Null Values in Boolean Expressions

	Assignment and Data Conversion
	Data Type Conversion
	Conversion Errors

	Decisions and Loops
	Decisions Based on Null

	Functions and Calls
	Function Definition
	Invoking Functions
	Arguments and Local Variables

	Working with Multiple Values
	Assigning One Record to Another
	Passing Records to Functions
	Returning Records from Functions

	Using Database Cursors
	Overview
	The SQL Language
	Nonprocedural SQL
	Nonprocedural SELECT
	Row-by-Row SQL
	Updating the Cursor’s Current Row
	Updating Through a Primary Key
	Updating with a Second Cursor �

	Dynamic SQL

	Creating Reports
	Overview �
	Designing the Report Driver
	An Example Report Driver

	Designing the Report Formatter
	The REPORT Statement
	The Report Declaration Section
	The OUTPUT Section�
	The ORDER BY Section
	Sort Keys

	One-Pass and Two-Pass Reports
	Two-Pass Logic for Row Order
	Two-Pass Logic for Aggregate Values
	Further Implications of Two-Pass Logic

	The FORMAT Section �
	Contents of a Control Block
	Formatting Reports
	PAGE HEADER and TRAILER Control Blocks
	ON EVERY ROW Control Block
	ON LAST ROW Control Block
	BEFORE GROUP and AFTER GROUP Control Blocks
	Nested Groups

	Using Aggregate Functions
	Aggregate Calculations
	Aggregate Counts
	Aggregates Over a Group of Rows

	Using the Screen and Keyboard
	Overview
	Specifying a Form
	The DATABASE Section
	The SCREEN Section
	Specifying Screen Dimensions
	Screen Records and Screen Arrays
	Multiple-Segment Fields

	The TABLES Section
	The ATTRIBUTES Section
	The Field Name
	The Field Data Type
	Fields Related to Database Columns
	FORMONLY Fields
	Editing Rules
	Default Values

	The INSTRUCTIONS Section
	Field Delimiters
	Screen Records
	Screen Arrays

	Using Windows and Forms
	Opening and Displaying a 4GL Window
	Opening Additional 4GL Windows
	4GL Window Names
	Controlling the Current 4GL Window
	Clearing the 4GL Window
	Closing the 4GL Window

	Displaying a Menu
	Opening and Displaying a Form
	Form Names and Form References
	Displaying the Form

	Displaying Data in a Form
	Changing Display Attributes

	Combining a Menu and a Form
	Displaying a Scrolling Array
	Taking Input Through a Form
	Help and Comments
	Keystroke-Level Controls
	Field-Level Control
	Field Order Constrained and Unconstrained

	Taking Input Through an Array

	Screen and Keyboard Options
	Reserved Screen Lines
	Changing Screen Line Assignments
	Getting the Most on the Screen

	Run-Time Key Assignments
	Dedicated Keystrokes
	Intercepting Keys with ON KEY

	Handling Exceptions
	Overview
	Exceptions
	Run-Time Errors
	SQL End of Data
	SQL Warnings
	Asynchronous Signals: Interrupt and Quit
	Uses of Asynchronous Signals

	Using the DEFER Statement
	Interrupt with Interactive Statements
	Interrupt with INPUT and CONSTRUCT
	Deferred Interrupt with the MENU Statement

	Using the WHENEVER Mechanism
	What WHENEVER Does
	Actions of WHENEVER
	Errors Handled by WHENEVER
	Using WHENEVER in a Program

	Notifying the User

	Index

