
INFORMIX®-4GL

Reference

Version 6.0
April 1994
Part No. 000-7611

ii
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries,
registered in the United States of America as indicated by an “®,” and in numerous other
countries worldwide:

INFORMIX® and C-ISAM®.

The following are worldwide trademarks of the indicated owners or their subsidiaries,
registered in the United States of America as indicated by an “®,” and in numerous other
countries worldwide:

X/OpenCompany Ltd.: UNIX®; X/Open®

Adobe Systems Incorporated: Post Script®

Some of the products or services mentioned in this document are provided by companies other
than Informix. These products or services are identified by the trademark or servicemark of the
appropriate company. If you have a question about one of those products or services, please call
the company in question directly.

ACKNOWLEDGMENTS

The following people contributed to this version of INFORMIX-4GL Reference:

Documentation Team: Adam Barnett, Diana Boyd, Kaye Bonney, Lisa Braz, Mitch Gordon,
Tom Houston, Todd Katz, Liz Knittel, Dawn Maneval, Sara Odom

Technical Contributors: Alan Denney, Jonathan Leffler, Kevin Rowney

Copyright © 1981-1994 by Informix Software, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form
or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems—without permission of the publisher.

RESTRICTED RIGHTS LEGEND

Software and accompanying materials acquired with United States Federal Government funds
or intended for use within or for any United States federal agency are provided with “Restricted
Rights” as defined in DFARS 252.227-7013(c)(1)(ii) or FAR 52.227-19.

Preface

This INFORMIX-4GL Reference manual is a complete guide to the features
and syntax of the INFORMIX-4GL language.

You do not need database management experience, nor familiarity with
relational database concepts, to use this manual. A knowledge of SQL
(Structured Query Language), however, and experience using a high-level
programming language would be useful. Concepts underlying the
INFORMIX-4GL language are described in a companion volume,
INFORMIX-4GL Concepts and Use.

Informix database engines and the SQL language are described in separate
manuals, including Informix Guide to SQL: Tutorial, and Informix Guide to SQL:
Reference.

Summary of Chapters
This INFORMIX-4GL Reference manual includes the following chapters
and appendices:

• This Preface provides general information about the manual and lists
additional references to help you understand INFORMIX-4GL concepts.

• The Introduction describes the documentation set of INFORMIX-4GL,
explains how to read syntax diagrams, and describes some features of
INFORMIX-4GL.

• Chapter 1, “Compiling INFORMIX-4GL Source Files,” describes the C
Compiler and Rapid Development System implementations of INFOR-
MIX-4GL. It also explains how to create executable versions of 4GL source
files, both from the Programmer’s Environment and the command line.

• Chapter 2, “The INFORMIX-4GL Language,” provides an overview
of 4GL language features and visual features of the applications that
you can create with INFORMIX-4GL.

Summary of Chapters
• Chapter 3, “INFORMIX-4GL Statements,” describes the statements
of 4GL in alphabetical order. Additional sections describe 4GL data types,
expressions, and other syntax topics that affect several statements.

• Chapter 4, “Built-In Functions and Operators,” includes an overview of
the predefined functions and operators of 4GL, and describes the syntax
of each built-in function and built-in operator, with examples of usage.

• Chapter 5, “Screen Forms,” provides an overview of 4GL screen forms
and form drivers, and describes the syntax of 4GL form specification files.
It also describes how to create default forms with the Form Compiler tool,
and how the Column Attributes Dictionary sets default attributes.

• Chapter 6, “INFORMIX-4GL Reports,” offers an overview of 4GL reports
and report drivers, and describes the syntax of 4GL report definitions.
It also describes the syntax of statements and operators that can appear
only in 4GL reports.

• Appendix A, “The Demonstration Database and Application,” describes
the structure and content of the tables in the stores demonstration
database.

• Appendix B, “INFORMIX-4GL Utility Programs,” describes the
mkmessage and upscol utility programs.

• Appendix C, “Using C with INFORMIX-4GL,” describes how to call
C functions from 4GL programs, and vice versa, and describes a function
library for conversion between the DECIMAL data type of 4GL and the
C data types.

• Appendix D, “Environment Variables,” describes the environment
variables that are used by INFORMIX-4GL.

• Appendix E, “Native Language Support Within INFORMIX-4GL,”
describes how the NLS environment variables affect your 4GL programs.

• Appendix F, “Modifying termcap and terminfo,” describes the modifica-
tions you can make to your termcap and terminfo files to extend function
key definitions, to specify characters for window borders, and to enable
INFORMIX-4GL programs to interact with terminals that support color
displays.

• Appendix G, “The ASCII Character Set,” lists the ASCII characters
and their numeric codes.

• Appendix H, “Reserved Words,” lists reserved words of INFORMIX-4GL.

• Appendix I, “Developing Applications for International Markets,”
describes the internationalization features provided with 4GL and
shows how to develop 4GL applications that are world-ready and easy
to localize.
iv Preface

Informix Welcomes Your Comments
• The Glossary defines terms used throughout the 4GL documentation set.

• The Index lists page references to selected topics in this manual.

Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Please include the following infor-
mation:

• The name and version of the manual that you are using

• Any comments that you have about the manual

• Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
[TETC Technical Publications Department]
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your feedback.

Related Reading
If you have no prior experience with database management, you should refer
to the Informix Guide to SQL: Tutorial. This manual is provided with all
Informix database servers.

For additional technical information on database management, consult
the following texts by C. J. Date:

• Database: A Primer (Addison-Wesley Publishing, 1983)

• An Introduction to Database Systems, Volume I (Addison-Wesley Publishing,
1990)

• An Introduction to Database Systems, Volume II (Addison-Wesley
Publishing, 1983)

This guide assumes that you are familiar with the UNIX operating system. If
you have limited UNIX experience, you might want to look at your operating
system manual or a good introductory text before you read this manual.
Preface v

Related Reading
Some suggested texts about UNIX systems follow:

• A Practical Guide to the UNIX System, Second Edition, by M. Sobell
(Benjamin/Cummings Publishing, 1989)

• A Practical Guide to UNIX System V by M. Sobell (Benjamin/Cummings
Publishing, 1985)

• Introducing the UNIX System by H. McGilton and R. Morgan (McGraw-Hill
Book Company, 1983)

• UNIX for People by P. Birns, P. Brown, and J. Muster (Prentice-Hall, 1985)

If you are interested in learning more about the SQL language, consider
the following text:

• Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)
vi Preface

Table of
Contents

INFORMIX-4GL
Reference

Preface
Summary oaf Chapters iii
Informix Welcomes Your Comments v
Related Reading v

Introduction
Documentation Included with 4GL 4
Other Useful Documentation 5
Conventions of this Manual 5

Typographical Conventions 5
Syntax Notation 6

Useful On-Line Files 10
On-Line Error Messages 11
The stores Demonstration Application and Database 12
New Features in 4GL 12

NLS Support 12
Improved Performance 12
Improved Quality 13

Accessing Databases from Within 4GL 13
Preparing SQL Statements 13

Compatibility and Migration 14

Chapter 1 Compiling INFORMIX-4GL Source Files
Chapter Overview 1-3
Two Implementations of INFORMIX-4GL 1-3

Differences Between the C Compiler and RDS
Versions 1-4

The C Compiler Version 1-6
The Programmer´s Environment 1-6
Creating Programs in the Programmer’s

Environment 1-23
Creating Programs at the Command Line 1-27
Program Filename Extensions 1-32

The Rapid Development System Version 1-34
The Programmer´s Environment 1-34
Creating Programs in the Programmer’s Environment 1-52
Creating Programs at the Command Line 1-56
Program Filename Extensions 1-71

Chapter 2 The INFORMIX-4GL Language
Overview of 4GL 2-3
Language Features 2-3

Lettercase Insensitivity 2-3
4GL Statements 2-4
Comments 2-5
Source Code Modules and Program Blocks 2-7
Statement Blocks 2-8
Statement Segments 2-9
4GL Identifiers 2-9

Interacting with Users 2-15
Ring Menus 2-15
Screen Forms 2-17
4GL Windows 2-19
On-Line Help 2-21

Exception Handling 2-23
Error Handling with SQLCA 2-23
A Taxonomy of Run-Time Errors 2-26

Chapter 3 INFORMIX-4GL Statements
Chapter Overview 3-11
The 4GL Statement Set 3-11

Types of SQL Statements 3-11
Other Types of 4GL Statements 3-13

Statement Descriptions 3-15
CALL 3-16
CASE 3-21
CLEAR 3-26
CLOSE FORM 3-29
CLOSE WINDOW 3-30
CONSTRUCT 3-31
CONTINUE 3-55
CURRENT WINDOW 3-56
DATABASE 3-58
DEFER 3-62
DEFINE 3-65
DISPLAY 3-74
viii Table of Contents

DISPLAY ARRAY 3-85
DISPLAY FORM 3-93
END 3-95
ERROR 3-96
EXIT 3-98
FINISH REPORT 3-100
FOR 3-102
FOREACH 3-105
FUNCTION 3-111
GLOBALS 3-117
GOTO 3-122
IF 3-124
INITIALIZE 3-125
INPUT 3-128
INPUT ARRAY 3-152
LABEL 3-177
LET 3-178
LOAD 3-181
LOCATE 3-186
MAIN 3-191
MENU 3-193
MESSAGE 3-213
NEED 3-216
OPEN FORM 3-217
OPEN WINDOW 3-219
OPTIONS 3-228
OUTPUT TO REPORT 3-242
PAUSE 3-244
PREPARE 3-245
PRINT 3-254
PROMPT 3-255
REPORT 3-260
RETURN 3-263
RUN 3-265
SCROLL 3-268
SKIP 3-269
SLEEP 3-270
START REPORT 3-271
UNLOAD 3-274
VALIDATE 3-278
WHENEVER 3-281
WHILE 3-287
Table of Contents ix

Statement Segments 3-289
ATTRIBUTE 3-290
Color and Monochrome Attributes 3-291
Precedence of Attributes 3-292
Data Types of 4GL 3-293
The Simple Data Types 3-294
The Structured Data Types 3-296
The Large Data Types 3-296
Descriptions of the 4GL Data Types 3-296
ARRAY 3-297
BYTE 3-298
CHAR 3-299
CHARACTER 3-300
DATE 3-300
DATETIME 3-300
DEC 3-304
DECIMAL 3-304
DOUBLE PRECISION 3-305
FLOAT 3-305
INT 3-306
INTEGER 3-306
INTERVAL 3-307
MONEY 3-312
NUMERIC 3-313
REAL 3-313
RECORD 3-313
SMALLFLOAT 3-315
SMALLINT 3-316
TEXT 3-317
VARCHAR 3-318
Data Type Conversion 3-319
Summary of Compatible 4GL Data Types 3-324
Expressions of 4GL 3-326
Components of 4GL Expressions 3-327
4GL Boolean Expressions 3-333
Integer Expressions 3-338
Number Expressions 3-341
Character Expressions 3-343
Time Expressions 3-347
Field Clause 3-359
Table Qualifiers 3-361
THRU or THROUGH Keywords and .* Notation 3-363
x Table of Contents

Chapter 4 Built-In Functions and Operators
Functions in 4GL Programs 4-5

Built-In 4GL Functions 4-5
Built-In SQL Functions 4-6
C Functions 4-6
ESQL/C Functions 4-7
Programmer-Defined 4GL Functions 4-7
Invoking Functions 4-8

Operators of 4GL 4-10
Syntax of Built-In Functions and Operators 4-11

Aggregate Report Functions 4-13
ARG_VAL() 4-16
Arithmetic Operators 4-18
ARR_COUNT() 4-24
ARR_CURR() 4-26
ASCII 4-28
Boolean Operators 4-30
CLIPPED 4-38
COLUMN 4-40
CURRENT 4-42
DATE 4-44
DATE() 4-45
DAY() 4-46
DOWNSHIFT() 4-47
ERR_GET() 4-48
ERR_PRINT() 4-49
ERR_QUIT() 4-50
ERRORLOG() 4-51
EXTEND() 4-53
FGL_DRAWBOX() 4-56
FGL_GETENV() 4-58
FGL_KEYVAL() 4-60
FGL_LASTKEY () 4-62
FIELD_TOUCHED() 4-64
GET_FLDBUF() 4-66
INFIELD() 4-69
LENGTH() 4-71
LINENO 4-73
MDY() 4-74
MONTH() 4-75
NUM_ARGS() 4-76
PAGENO 4-77
SCR_LINE() 4-78
Table of Contents xi

SET_COUNT() 4-80
SHOWHELP() 4-81
SPACE 4-82
SQLEXIT() 4-83
STARTLOG() 4-84
TIME 4-86
TODAY 4-87
UNITS 4-89
UPSHIFT() 4-90
USING 4-91
WEEKDAY() 4-100
WORDWRAP 4-102
YEAR() 4-104

Chapter 5 Screen Forms
4GL Forms 5-3

Form Drivers 5-3
Form Fields 5-4

Structure of a Form Specification File 5-6
DATABASE Section 5-10

Database References in the DATABASE Section 5-11
The FORMONLY Option 5-11
The WITHOUT NULL INPUT Option 5-12

SCREEN Section 5-12
The SIZE Option 5-13
The Screen Layout 5-14
Display Fields 5-14
Literal Characters in Forms 5-15

TABLES Section 5-18
Table Aliases 5-19

ATTRIBUTES Section 5-20
Fields Linked to Database Columns 5-21
FORMONLY Fields 5-24
Multiple-Segment Fields 5-26
Field Attributes 5-27
Field Attribute Syntax 5-28
AUTONEXT 5-30
COLOR 5-31
COMMENTS 5-36
DEFAULT 5-38
DISPLAY LIKE 5-40
DOWNSHIFT 5-41
FORMAT 5-42
xii Table of Contents

INCLUDE 5-44
INVISIBLE 5-46
NOENTRY 5-47
PICTURE 5-48
PROGRAM 5-50
REQUIRED 5-52
REVERSE 5-53
UPSHIFT 5-54
VALIDATE LIKE 5-55
VERIFY 5-56
WORDWRAP 5-57

INSTRUCTIONS Section 5-63
Screen Records 5-63
Screen Arrays 5-66
Field Delimiters 5-68

Default Attributes 5-69
Precedence of Field Attribute Specifications 5-72
Default Attributes in an ANSI-Compliant Database 5-72

Creating and Compiling a Form 5-73
Compiling a Form Through the Programmer’s Environment 5-73
Compiling a Form Through the Operating System 5-74
Default Forms 5-75

Using PERFORM Forms in 4GL 5-77

Chapter 6 INFORMIX-4GL Reports
Output from 4GL Programs 6-3
Features of 4GL Reports 6-3
Producing 4GL Reports 6-4

The Report Driver 6-5
The REPORT Definition 6-5

DEFINE Section 6-8
OUTPUT Section 6-9
ORDER BY Section 6-18
FORMAT Section 6-23
FORMAT Section Control Blocks 6-27

AFTER GROUP OF 6-29
BEFORE GROUP OF 6-31
FIRST PAGE HEADER 6-33
ON EVERY ROW 6-34
ON LAST ROW 6-36
PAGE HEADER 6-37
PAGE TRAILER 6-38
Table of Contents xiii

Statements in REPORT Control Blocks 6-39
NEED 6-40
PAUSE 6-41
PRINT 6-42
SKIP 6-52

Appendix A The Demonstration Database and Application

Appendix B INFORMIX-4GL Utility Programs

Appendix C Using C with INFORMIX-4GL

Appendix D Environment Variables

Appendix E Native Language Support Within INFORMIX-4GL

Appendix F Modifying termcap and terminfo

Appendix G The ASCII Character Set

Appendix H Reserved Words

Appendix I Developing Applications for International Markets

Glossary

Index
xiv Table of Contents

Introduction
Introduction
Documentation Included with 4GL 4

Other Useful Documentation 5

Conventions of this Manual 5
Typographical Conventions 5
Syntax Notation 6

Useful On-Line Files 10

On-Line Error Messages 11

The stores Demonstration Application and Database 12

New Features in 4GL 12
NLS Support 12
Improved Performance 12
Improved Quality 13

Accessing Databases from Within 4GL 13
Preparing SQL Statements 13

Compatibility and Migration 14

2 Introduction

Chapter Overview
INFORMIX-4GL, often called 4GL in this manual, is a high-level programming
language for creating relational database management system (RDBMS)
applications in a UNIX environment. As Chapter 3 explains, 4GL is a superset
of the industry-standard SQL structured query language. This book describes
the INFORMIX-4GL language, including the syntax of 4GL statements,
functions, forms, reports, and operators.

By using INFORMIX-4GL, you can efficiently produce complex interactive
database applications for data entry, data retrieval and display, and report
generation. 4GL provides all the tools necessary to create screen forms,
construct and manage program modules, debug programs, and compile
source modules.
Introduction 3

Documentation Included with 4GL
Documentation Included with 4GL
The INFORMIX-4GL documentation set includes the following manuals:

Manual Description

INFORMIX-4GL Concepts
and Use

Introduces 4GL and provides the context needed to understand the other
manuals in the documentation set. It covers 4GL goals (what kinds of
programming the language is meant to facilitate), concepts and nomenclature
(parts of a program, ideas of database access, screen form, and report generation),
and methods (how groups of language features are used together to achieve
particular effects).

INFORMIX-4GL Reference The day-to-day, keyboard-side companion for the 4GL programmer. It describes
the features and syntax of the 4GL language, including 4GL statements, forms,
reports, and the built-in functions and operators. Appendixes are included that
describe the demonstration database, the application programming interface of
4GL with the C language, and utility programs such as mkmessage and upscol,
among other topics.

INFORMIX-4GL by
Example

A collection of 30 annotated 4GL programs. Each is introduced with an overview;
then the program source code is shown with line-by-line notes. The program
source files are distributed as text files with the product; scripts that create the
demonstration database and copy the applications are also included.

INFORMIX-4GL Quick
Syntax

Contains the syntax diagrams from the INFORMIX-4GL Reference, the Guide to the
Guide to the INFORMIX-4GL Interactive Debugger, and the Informix Guide to SQL:
Syntax.

Informix Guide to SQL:
Tutorial

Provides a tutorial on SQL as it is implemented by Informix products, and
describes the fundamental ideas and terminology that are used when planning
and implementing a relational database. It also describes how to retrieve
information from a database, and how to modify a database.

Informix Guide to SQL:
Reference

Provides full information on the structure and contents of the demonstration
database that is provided with 4GL. It includes details of the Informix system
catalog tables, describes Informix and common environment variables that
should be set, and describes the column data types that are supported by
Informix database engines. It also provides a detailed description of all of the
SQL statements that Informix products support.

Informix Guide to SQL:
Syntax

Contains syntax diagrams for all of the SQL statements and statement segments
that are supported by the 6.0 server. However, not all the statements and
segments described in the Informix Guide to SQL: Syntax are directly supported by
4GL. Syntax introduced after Version 5.0 of the server can only be used if it is
prepared. For information on preparing statements in 4GL programs, see
page 3-245.

Informix Error Messages,
Version 6.0

Lists all the error messages that can be generated by the different Informix
products. This document is organized by error message number; it lists each error
message and describes the situation that causes the error to occur.
4 Introduction

Other Useful Documentation
Other Useful Documentation
Depending on the database server that you are using, you or your
system administrator need either the INFORMIX-OnLine Dynamic Server
Administrator’s Guide, Version 6.0 or the INFORMIX-SE Administrator’s Guide,
Version 6.0.

Conventions of this Manual
This manual assumes that you are using INFORMIX-OnLine as your database
server.

The terms “you,” “programmer,” and “developer” are synonyms for the
person (or code-generating program) that writes a 4GL program. These con-
trast with the term “user,” which refers to the end-user of a 4GL application.

Informix supports two versions of 4GL. Both versions use the same 4GL
statements; the versions differ in how they compile and execute code. In this
document, INFORMIX-4GL or 4GL refers to the C Compiler Version of 4GL.
Rapid Development System Version or RDS refers to the Rapid Develop-
ment System Version of 4GL. Chapter 1, “Compiling INFORMIX-4GL Source
Files,” describes the differences between the two versions of 4GL and
explains how to use both versions.

Sections that follow describe conventions that are used in this manual
for typographical format and syntax diagrams.

Typographical Conventions
Informix product manuals use a standard set of conventions to introduce
new terms, illustrate screen displays, describe command syntax, and so forth.
The following typographical conventions are used throughout this manual:

KEYWORD All keywords appear in UPPERCASE letters. (You can in fact
enter keywords in either uppercase or lowercase letters.)

italics New terms and emphasized words are printed in italics.
Italics also mark syntax terms for which you must specify
some valid identifier, expression, keyword, or statement.

boldface 4GL identifiers, SQL identifiers, filenames, database names,
table names, column names, utilities, command-line specifi-
cations, and similar names are printed in boldface.

monospace Output from 4GL, code examples, and information that you
or the user enters are printed in this typeface.
Introduction 5

Syntax Notation
... Ellipses (. . .) in examples of code or of output mean that text
has been omitted to save space or to simplify an illustration.
These symbols only appear within an example; they are not
shown at the beginning or the end of a program fragment.
(Ellipses can also appear in ring menus to indicate addi-
tional menu options.)

Syntax Notation
SQL statement syntax is described in the Informix Guide to SQL: Syntax.
The syntax of other 4GL statements is described in Chapter 3 of this man-
ual.

Syntax diagram conventions are described in this section. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given 4GL statement, command line, or other
specification, as in the following diagram of the OPEN FORM statement
of 4GL.

The following are the three most important rules to remember regarding
terms that appear in the syntax diagrams of this book:

• For ease of identification, all 4GL keywords (like OPEN) are shown in
UPPERCASE characters, even though you can enter them in lowercase.

• Terms for which you must supply specific values or names are in italics.
In this example, form and filename must be replaced by identifiers.

• All punctuation and other non-alphabetic characters are literal symbols.
In this example, the quotation marks (") are literal symbols.

Each syntax diagram begins at the upper left, and ends at the upper right
with a vertical terminator. Between these points, any path that does not
stop or reverse direction describes a possible form of the statement. (For
a few diagrams, notes in the text identify path segments that are mutually
exclusive.)

Syntax elements in a path represent terms, keywords, symbols, and
segments that can appear in your statement. Except for separators in loops
(page Intro-8), which the path approaches counter-clockwise from the right,
the path always approaches elements from the left, and continues to the right.
Unless otherwise noted, at least one blank character separates syntax
elements.

OPEN FORM form FROM “ filename”
6 Introduction

Syntax Notation
You may encounter one or more of the following elements on a path:

KEYWORD Spell any word in UPPERCASE letters exactly as shown; you
can, however, type it in either uppercase or lowercase letters.

(. , ;@+ * - /) Punctuation and other non-alphanumeric characters are
literal symbols that you must enter exactly as shown.

Double quotes must be entered as shown. If you prefer,
you can replace the pair of double quotes with a pair of
single quotes, but you cannot mix double and single quotes.

variable A word in italics represents a term that you must supply.
An explanation below the diagram identifies what values,
identifiers, or keywords you can substitute for the italicized
term.

A term in a rectangle represents a subdiagram on the same
page (if no page number is supplied) or on a specified page,
as if the subdiagram were spliced into the diagram at this
point. (Here “segment” and “subdiagram” are synonyms.)
The aspect ratio is not significant. That is, the same segment
can be represented by rectangles of different shapes, as
in these symbols for the ATTRIBUTE Clause segment.

A reference to SQL:R in a syntax diagram represents an SQL
statement or segment that is described in the Informix Guide
to SQL: Reference. Imagine that the segment were spliced into
the diagram at this point.

An icon is a warning that this path is valid only for some
products, or only under certain conditions. Symbols on the
icons indicate what products or conditions support the path.

These icons that appear in the Informix Guide to SQL:
Reference can also appear in a 4GL syntax diagram:

This path is valid only for INFORMIX-SE.

This path is valid only for INFORMIX-OnLine.

A shaded option is the default. If you do not specify any of the
available options, then by default, this option is in effect.

Syntax enclosed between a pair of arrows is a subdiagram.

The vertical line is a terminator. This only appears at the right,
indicating that the syntax diagram is complete.

" "

" "

ATTRIBUTE
 Clause
p. 3-288

ATTRIBUTE Clause
p. 3-288

ATTRIBUTE
 Clause

ATTRIBUTE Clause

Procedure
 Name

see SQL:R

OL

SE

OLOL

ALL
Introduction 7

Syntax Notation
A branch below the main path indicates an optional path.
(Any term on the main path is required, unless a branch
can circumvent it.)

A set of multiple branches indicates a syntax context where
a choice among more than two different paths is available.

A loop indicates a path that can be repeated. Punctuation
along the top of the loop indicates the separator symbol for list
items, as in this example. If no symbol appears, a blank space
is the separator, or (as here) the Linefeed that separates each
successive 4GL statement within a source module.

A gate () on a path indicates that you can only use that
path the indicated number of times, even if it is part of
a larger loop. Here BEFORE CONSTRUCT can be specified
no more than once within this 4GL statement segment.

Icons that appear in the left margin of the text indicate that the accompanying
shaded text is valid only for some products or under certain conditions.
In addition to the icons described in the preceding list, you may encounter
the following icon in the left margin:

This icon indicates that the functionality described in the
shaded text is valid only if your database is ANSI-compliant.

This icon indicates that the functionality described in
the shaded text is valid only if you are using NLS.

The grey labels and arrows in the following illustration identify the elements
of a syntax diagram for the INITIALIZE statement of 4GL.

NOT

NULLIS

NEXT

NEXT FIELD

PREVIOUS

Field Clause
p. 3-357

statement

variable

,

1 BEFORE CONSTRUCT

1

E/CANSI

E/CNLS
8 Introduction

Syntax Notation
Figure 1 Elements of a syntax diagram

To construct a statement using this diagram, start at the top left with
the keyword INITIALIZE. Then follow the diagram to the right, proceeding
through the options that you want. The diagram conveys the following
information:

1. You must type the keyword INITIALIZE.

2. You must supply the name of a 4GL variable or record.

3. You can repeat step (2), using the comma (,) symbol to separate names.

4. If you want to assign NULL values to the variables, follow the lower
branch of the diagram and type the TO NULL keywords. Now the path
leads to the terminator, and your INITIALIZE statement is complete.

5. The alternative to (4) is to assign the default values of database columns
(from the syscolval table) to the simple variables and record member
variables that you specified in (2). To do this, type the LIKE keyword, and
then follow the subdiagram that describes the ‘‘Column List’’ segment
to specify a list of one or more database columns.

• If you are using INFORMIX-OnLine, you have the option of specifying
the name of a database. If you do, you can also specify the name of

database

OL

@ server

owner .

table . column

*:

,

variable Column
ListINITIALIZE

,

LIKE

TO NULLrecord

Column
List

.*Subdiagram
Title

Main Diagram Path Loop Reference Box Terminator

Keyword
Required
Element

VariableOptional
Branch

PunctuationIcon
Segment
Indicator
Introduction 9

Useful On-Line Files
a server, prefixed by the @ symbol. You must follow the database or
the database@server qualifier with a colon (:) symbol.

• Regardless of your engine, you have the option of including the owner
in the qualifier of the column. (This is diagrammed as an option, even
though it is sometimes required, for example, in an ANSI-compliant
database, if the user who runs the program is not the owner of table.)
You must follow the owner qualifier with a period (.) symbol.

• You must type the name of a table.You must follow this table qualifier
with a period (.) symbol.

• You can type the name of a column in table; otherwise, you must type
an asterisk (*) symbol to specify all the columns in table.

• You have reached the segment indicator at the end of the subdiagram,
so you must return to ‘‘Column List’’ box in the main diagram.

6. Once you are back at the main diagram, you have two options:

• Type a comma (,) and loop back to the subdiagram to type another
table.* or table. column specification, just as you did in step (5).

• Alternatively, you can continue to the terminator. When you reach
the terminator, the INITIALIZE statement is complete.

Note: When you are instructed to “enter” characters or to “execute” a command,
immediately press ENTER or RETURN after the entry. When you are instructed
to “type” the text or to “press” other keys, no ENTER nor RETURN is required.

Useful On-Line Files
In addition to the Informix set of manuals, the following on-line files,
located in the $INFORMIXDIR/release directory, may supplement
the information in this manual:

Documentation describe features not covered in the manuals or that
Notes have been modified since publication. The file containing

the documentation notes for 4GL is called 4GLDOC_6.0.

Release Notes describe feature differences from earlier versions of Informix
products and how these differences may affect current
products. The file containing the release notes for this
product is called TOOLS_6.0.

Please examine these files because they contain important information about
application and performance issues.

4GL provides on-line Help; invoke Help by pressing CONTROL-W.
10 Introduction

On-Line Error Messages
On-Line Error Messages
Use the finderr script to display a particular error message or messages
on your terminal screen. The script is located in the $INFORMIXDIR/bin
directory.

The finderr script has the following syntax:

msg_num Indicates the number of the error message to display. Error mes-
sages range from -1 to -32000. Specifying the - sign is optional.

You can specify up to 16 error messages per finderr command. finderr copies all the
specified messages to standard output.

For example, to display the -359 error message, you can enter either of the
following:

finderr -359

or, equivalently:

finderr 359

The following example demonstrates how to specify a list of error messages.
The example also pipes the output to the UNIX more command to control
the display. You can also direct the output to another file so that you can save
or print the error messages:

finderr 233 107 113 134 143 144 154 | more

A few messages have positive numbers. These messages are used solely
within the application tools. In the unlikely event that you want to display
them, you must precede the message number with the + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system’s documentation for the precise meaning of the message
number.

The stores Demonstration Application and Database
4GL includes several 4GL demonstration applications, along with a demon-
stration database called stores2 that contains information about a fictitious
wholesale sporting-goods distributor. You can create the stores2 database
in the current directory by entering one of the following commands.

finderr msg_num
Introduction 11

New Features in 4GL
• If you are using the INFORMIX-4GL C Compiler Version, type:

i4gldemo

• If you are using the Rapid Development System Version, type:

r4gldemo

Many (but not all) of the examples in the 4GL documentation set are based
on the stores2 database. This database is described in detail in Appendix A.

New Features in 4GL
This version of 4GL provides support for developers working in European
countries, improved performance, and improved quality.

NLS Support
Native Language Support (NLS) is supplied to meet the needs of European
countries. This feature extends the ASCII character set from 128 to 256 charac-
ters. These additional characters allow you to include characters such as Ö
and ç in the definition of your database and in 4GL programs. NLS provides
character sorting and comparison specific to particular languages, and
region-specific monetary and numeric information. To use NLS, you need
to set some environment variables. You must set the environment variables
to the same values as the variables are set for the database (as set by the
database creator). NLS is described in detail in Appendix E.

Improved Performance
The removal of the relay module in the 6.0 engine results in improved speed
in which data can be retrieved from and sent to a database. As a result, the
performance of your 4GL applications that access a database should improve.

Improved Quality
Over 200 bug fixes have been made to this version of the product. Also, the
documentation set has been completely reorganized, rewritten, and updated
to include all 6.0 4GL features.
12 Introduction

Accessing Databases from Within 4GL
Accessing Databases from Within 4GL
Version 6.0 of 4GL can access any 6.0 Informix server. This includes both
INFORMIX-OnLine and INFORMIX-SE. It cannot, however, access older
versions of the server, such as version 5.0.

You access a database in a 4GL program by placing SQL statements in the pro-
gram. The version 6.0 4GL compiler does not recognize some SQL statements.
To include these statements in your 4GL program, you must prepare these
statements so that the compiler knows to pass them on to the engine for
processing.

This section describes how to prepare statements. It also lists the SQL
statements that are unrecognized. Note that some SQL statements are
only unrecognizable if you specify certain options.

For the syntax of the SQL statements allowed in a 4GL program, see the
INFORMIX-4GL Quick Syntax guide. This document identifies (with a
6.0 icon) the statements that need to be prepared. For additional information
on SQL statements, see the 6.0 server documentation, including the Informix
Guide to SQL: Syntax, or Informix Guide to SQL: Reference, Version 6.0.

Preparing SQL Statements
You prepare SQL statements that the 4GL compiler will not recognize
by including the SQL statement within a PREPARE statement. For example,
you can type the following:

PREPARE new_procedure FROM
"CREATE PROCEDURE FROM "/usr/dev/elke/my_procedure""

All SQL statements introduced by the 5.0 server and later are not recognized
within version 6.0 of 4GL and therefore must be prepared. For information on
using the PREPARE statement, see page 3-245. For a list of statements that
must be prepared, see “Preparing Statements in 4GL” on page 3-247.

Compatibility and Migration
You can easily use applications developed with an earlier version of 4GL,
such as Version 4.0 or 4.1, with this 6.0 version of 4GL. Also, if you have
4GL applications written for the Windows environment, you can compile
and run the applications in the UNIX environment. For complete information
on using a Windows application to the UNIX environment, see the
INFORMIX-4GL Starts Here manual in the Windows documentation set.
Introduction 13

Compatibility and Migration
14 Introduction

Chapter
1

Compiling
INFORMIX-4GL
Source Files
Chapter Overview 3

Two Implementations of INFORMIX-4GL 3
Differences Between the C Compiler and RDS

Versions 4
Differences in the Programmer’s Environment 4
Differences in Commands 5
Differences in Filename Extensions 5

The C Compiler Version 6
The Programmer´s Environment 6

The INFORMIX-4GL Menu 6
The MODULE Design Menu 7
The FORM Design Menu 12
The PROGRAM Design Menu 16
The QUERY LANGUAGE Menu 22

Creating Programs in the Programmer’s
Environment 23

Creating a New Source Module 23
Revising an Existing Module 24
Compiling a Source Module 24
Linking Program Modules 25
Executing a Compiled Program 27

Creating Programs at the Command Line 27
Creating or Modifying a 4GL Source File 29
Compiling a 4GL Module 29
Compiling and Linking Multiple Source Files 29
Running 4GL Programs 32
4GL Programs that Call C Functions 32

Program Filename Extensions 32

The Rapid Development System Version 34
The Programmer´s Environment 34

The INFORMIX-4GL Menu 34
The MODULE Design Menu 35
The FORM Design Menu 41
The PROGRAM Design Menu 45
The QUERY LANGUAGE Menu 51

Creating Programs in the Programmer’s Environment 52
Creating a New Source Module 52
Revising an Existing Module 53
Compiling a Source Module 53
Combining Program Modules 54
Executing a Compiled RDS Program 56
Invoking the Debugger 56

Creating Programs at the Command Line 56
Creating or Modifying a 4GL Source File 58
Compiling an RDS Source File 58
Concatenating Multi-Module Programs 60
Running RDS Programs 62
Running Multi-Module Programs 63
Running Programs with the Interactive Debugger 63
RDS Programs that Call C Functions 64
Editing the fgiusr.c File 65
Creating a Customized Runner 67
Running Programs that Call C Functions 70

Program Filename Extensions 71
1-2 Compiling INFORMIX-4GL Source Files

Chapter Overview
This chapter describes how to create INFORMIX-4GL source-code modules,
and how to produce executable 4GL programs from these source-code
modules, both at the operating system prompt and from within the INFOR-
MIX-4GL Programmer’s Environment.

The procedures to do this are described for the INFORMIX-4GL C Compiler
Version, as well as for the INFORMIX-4GL Rapid Development System.
These two implementations of 4GL differ in how they process 4GL source-
code modules.

This chapter begins by describing the differences between the two implemen-
tations of 4GL. It then goes on to describe each implementation of 4GL. The
INFORMIX-4GL C Compiler Version is described first, beginning on page 1-6.
The description of the INFORMIX-4GL Rapid Development System begins
on page 1-34.

Except as otherwise noted, the other chapters and appendixes of this manual
describe features that are identical in both the C Compiler Version and Rapid
Development System Version implementations of INFORMIX-4GL.

Two Implementations of INFORMIX-4GL
To write an INFORMIX-4GL program, you must first create an ASCII file
of 4GL statements that perform logical tasks to support your application.
Other chapters and appendixes describe the features of the 4GL application
development language, and the use and syntax of its statements and utilities.
This chapter explains the procedures by which you can transform one or
more source-code files of 4GL statements into an executable 4GL program.

Informix Software, Inc., offers two different implementations of the 4GL
application development language:

• The INFORMIX-4GL C Compiler Version, which uses a preprocessor
to generate INFORMIX-ESQL/C source code. This code is preprocessed
Compiling INFORMIX-4GL Source Files 1-3

Differences Between the C Compiler and RDS Versions
in turn to produce C source code, which is then compiled and linked
as object code in an executable command file.

• The INFORMIX-4GL Rapid Development System, which uses a compiler
to produce pseudo-code (called “p-code”) in a single step. You then
invoke a “runner” to execute the p-code version of your application.
(The INFORMIX-4GL Rapid Development System is sometimes
abbreviated as RDS.)

Differences Between the C Compiler and RDS Versions
Both implementations of INFORMIX-4GL use the same 4GL statements, and
nearly identical Programmer’s Environments. Because they use different
methods to compile your 4GL source files into executable programs,
however, there are a few differences in the user interfaces.

Differences in the Programmer’s Environment

The Programmer’s Environment is a system of menus that supports
the various steps in the process of developing 4GL application programs.
The Drop option on the PROGRAM Design menu of the C Compiler Version
is called Undefine in the INFORMIX-4GL Rapid Development System
implementation.

The New and Modify options of the PROGRAM Design menu display a
different screen form in the two implementations. Both of these screen forms
are illustrated later in this chapter.

The INFORMIX-4GL Rapid Development System includes a Debug option
on its MODULE Design menu and PROGRAM Design menu. This option does
not appear in the C Compiler Version. (The Debugger is based on p-code, so
it can execute programs and modules compiled by the INFORMIX-4GL Rapid
Development System.)

The INFORMIX-4GL Interactive Debugger is available as a separate product.
1-4 Compiling INFORMIX-4GL Source Files

Differences Between the C Compiler and RDS Versions
Differences in Commands

The commands you use to enter the Programmer’s Environments, compile
and execute 4GL programs, and build or restore the stores demonstration
database vary between implementations of 4GL.

The INFORMIX-4GL C Compiler Version requires no equivalent command
to the fglgo command, since its compiled object files are executable without
a runner. The INFORMIX-4GL Rapid Development System also contains
a command-file script to compile and execute 4GL programs that call C func-
tions or INFORMIX-ESQL/C functions, as described on page 1-64.

Differences in Filename Extensions

The differences in filename extensions are as follows:

The backup file extensions .4bo and .4be for compiled modules and
programs have the same names in both implementations. These designate
files that are not interchangeable between the two 4GL implementations,
however, because object code produced by a C compiler is different from
p-code.

Other filename extensions that are the same in both the C Compiler Version
and Rapid Development System Version designate interchangeable files, if
you use both implementations of INFORMIX-4GL to process the same 4GL
source-code module.

C Compiler RDS Effect of Command

i4gl r4gl Enter Programmer’s Environment

c4gl sfile.4gl fglpc sfile Compile 4GL source file sfile.4gl
xfile.4ge fglgo xfile Execute compiled 4GL program xfile

i4gldemo r4gldemo Create the demonstration database

C Compiler RDS Significance of Extension

.o .4go Compiled 4GL source-code module

.4ge .4gi Executable (runable) 4GL program file
Compiling INFORMIX-4GL Source Files 1-5

The C Compiler Version
The C Compiler Version
This section describes the C Compiler Version of INFORMIX-4GL. In
particular, this section:

• Identifies and illustrates all the menu options and screen form fields
of the Programmer’s Environment.

• Describes the steps for compiling and executing INFORMIX-4GL
programs from the Programmer’s Environment.

• Describes the equivalent command-line syntax for compiling and
executing INFORMIX-4GL programs.

• Identifies the filename extensions of 4GL source-code, object, error,
and backup files.

The Programmer´s Environment
The INFORMIX-4GL C Compiler Version provides a series of nested menus,
called the Programmer’s Environment. These menus support the steps of 4GL
program development and keep track of the components of your application.
You can invoke the Programmer’s Environment by entering i4gl at the
system prompt.

The INFORMIX-4GL Menu

The i4gl command briefly displays the INFORMIX-4GL banner. Then
a menu appears, called the INFORMIX-4GL menu:

INFORMIX-4GL: Module Form Program Query-language Exit
Create, modify, or run individual 4GL program modules.

---Press CTRL-W for Help------

This is the highest menu, from which you can reach any other menu of
the Programmer’s Environment. You have five options:

Module Work on an INFORMIX-4GL program module.

Form Work on a screen form.
1-6 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
Program Specify components of a multi-module program.

Query-language Use the <vk>SQL interactive interface, if you have
INFORMIX-SQL installed on your system.

Exit Return to the operating system.

The first three options display new menus that are described in the pages that
follow. (You can also press CTRL-W at any menu to display an on-line help
message that describes your options.) As at any 4GL menu, you can select
an option in either of two ways:

• By typing the first letter of the option.

• By using the SPACEBAR or Arrow keys to move the highlight to the option
that you choose, and then pressing RETURN.

The MODULE Design Menu

You can press RETURN or type m or M to select the Module option of the
INFORMIX-4GL menu. This displays a new menu, called the MODULE Design
menu. Use this menu to work on an individual 4GL source-code module.

MODULE: Modify New Compile Program_Compile Run Exit
Change an existing 4GL program module.

---Press CTRL-W for Help------

The MODULE Design menu supports the following options:

Modify Change an existing 4GL source-code module.

New Create a new source-code module.

Compile Compile a source-code module.

Program_Compile Compile a 4GL application program.

Run Execute a compiled 4GL program module or a
multi-module application program.

Exit Return to the INFORMIX-4GL menu.

The Exit option returns control to the higher menu from which you accessed
the current menu.
Compiling INFORMIX-4GL Source Files 1-7

The Programmer´s Environment
You can use these options to create and compile source-code modules of
a 4GL application. See “The FORM Design Menu” on page 1-12 for
information on creating 4GL screen forms. For information on how to create
and compile programmer-defined help messages for an INFORMIX-4GL
application, see the description of the mkmessage utility in Appendix B.

The Modify Option

Select this option to edit an existing 4GL source-code module. If you select
this option, INFORMIX-4GL requests the name of the 4GL source-code file
to be modified and then prompts you to specify a text editor. If you
have designated an editor with the DBEDIT environment variable
(see Appendix D) or named an editor previously in this session at the
Programmer’s Environment, INFORMIX-4GL invokes that editor. The 4GL
source file whose filename you specified is the current file.

When you leave the editor, INFORMIX-4GL displays the MODIFY MODULE
menu, with the Compile option highlighted:

MODIFY MODULE: Compile Save-and-exit Discard-and-exit
Compile the 4GL module specification.

---Press CTRL-W for Help------

If you press RETURN or type c or C to select the Compile option, 4GL displays
the COMPILE MODULE menu:

COMPILE MODULE: Object Runable Exit
Create object file only; no linking to occur.

---Press CTRL-W for Help------

The Object option creates a compiled file with the .o extension but makes
no attempt to link the file with other files.
1-8 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Runable option creates a compiled file with the .4ge extension.
INFORMIX-4GL assumes that the current module is a complete 4GL program,
and that no other module needs to be linked to it. Select the Runable option
if the current program module is a stand-alone 4GL program. If this is not the
case (that is, if the file is one of several 4GL source-code modules within
a multi-module program), then you should use the Object option instead,
and you must use the PROGRAM Design menu to specify all the component
modules.

After you select Object or Runable, a message near the bottom of the screen
will advise you if INFORMIX-4GL issues a compile-time warning or error.
If there are warnings (but no errors), an executable file is produced. Select
the Exit option of the next menu, and then Save-and-exit at the MODIFY
MODULE menu, if you want to save the executable file without reading the
warnings.

Alternatively, you can examine the warning messages by selecting Correct
at the next menu. When you finish editing the .err file that contains the warn-
ings, you must select Compile again from the MODIFY MODULE menu, since
the Correct option deletes the executable file.

If there are compilation errors, the following menu appears:

COMPILE MODULE: Correct Exit
Correct errors in the 4GL module.

---Press CTRL-W for Help------

If you choose to correct the errors, an editing session begins on a copy of your
source module with embedded error messages. You do not need to delete the
error messages, since INFORMIX-4GL does this for you. Correct your source
file, save your changes, and exit from the editor. The MODIFY MODULE menu
reappears, prompting you to recompile, or to save or discard your changes
without compiling.

If there are no compilation errors, the MODIFY MODULE menu appears with
the Save-and-Exit option highlighted. Select this option to save the current
source-code module as a file with extension .4gl, and create an object file with
the same filename, but with the extension .o. If you specified Runable when
Compiling INFORMIX-4GL Source Files 1-9

The Programmer´s Environment
you compiled, the executable version is saved with the extension .4ge.
The Discard-and-Exit option discards any changes to your file since you
selected the Modify option.

The New Option

Select this option to create a new 4GL source-code module.

MODULE: Modify New Compile Program_Compile Run Exit
Create a new 4GL program module.

---Press CTRL-W for Help------

This option resembles the Modify option, but NEW MODULE is the menu
title, and you must enter a new module name, rather than select it from a list.
If you have not designated an editor previously in this session or with
DBEDIT, you are prompted for an editor. Then an editing session begins.

The Compile Option

The Compile option enables you to compile an individual 4GL source-code
module.

MODULE: Modify New Compile Program_Compile Run Exit
Compile an existing 4GL program module.

---Press CTRL-W for Help------

After you specify the name of a 4GL source-code module to compile, the
screen displays the COMPILE MODULE menu. Its Object, Runable, and Exit
options were described earlier in the discussion of the Modify option.
1-10 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Program_Compile Option

The Program_Compile option of the MODULE Design menu is the same
as the Compile option of the PROGRAM Design menu. (For details, see the
previous section, “The Compile Option.”) You can use this option to compile
and link modules, as described in the program specification database, taking
into account the time when the modules were last updated.

This option is useful when you have just modified a single module of a
complex program, and need to test it by compiling and linking it with the
other modules.

The Run Option

Select this option to begin execution of a compiled program.

MODULE: Modify New Compile Program_Compile Run Exit
Execute an existing 4GL program module or application program.

---Press CTRL-W for Help------

The RUN PROGRAM screen presents a list of compiled modules and
programs, with the highlight on the module corresponding to the current file,
if any has been specified. Compiled programs must have the extension .4ge
to be included in the list. If you compile a program outside the Programmer’s
Environment and you want it to appear in the program list, give it the
extension .4ge. If no compiled programs exist, INFORMIX-4GL displays an
error message and return to the MODULE Design menu.
Compiling INFORMIX-4GL Source Files 1-11

The Programmer´s Environment
The Exit Option

Select this option to exit from the MODULE Design menu and display
the INFORMIX-4GL menu.

MODULE: Modify New Compile Program_Compile Run Exit
Returns to the INFORMIX-4GL menu.

---Press CTRL-W for Help------

The FORM Design Menu

You can type f or F at the INFORMIX-4GL menu to select the Form option.
This option displays a menu, called the FORM Design menu:

FORM: Modify Generate New Compile Exit
Change an existing form specification.

---Press CTRL-W for Help------

You can use this menu to create, modify, and compile screen form specifica-
tions. These define visual displays that 4GL applications can use to query and
modify the information in a database. INFORMIX-4GL form specification files
are ASCII files that are described in Chapter 5, “Screen Forms.”

The FORM Design menu supports the following options:

Modify Change an existing 4GL screen form specification.

Generate Create a default 4GL screen form specification.

New Create a new 4GL screen form specification.

Compile Compile an existing 4GL screen form specification.

Exit Return to the INFORMIX-4GL menu.

Readers familiar with INFORMIX-SQL may notice that this resembles
the menu displayed by the Form option of the INFORMIX-SQL Main menu.
1-12 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Modify Option

The Modify option of the FORM Design menu enables you to edit an existing
form specification file. It resembles the Modify option in the MODULE Design
menu, since both options are used to edit program modules.

FORM: Modify Generate New Compile Exit
Change an existing form specification.

---Press CTRL-W for Help------

If you select this option, you are prompted to select the name of a form
specification file to modify. Source files created at the FORM Design menu
have the file extension .per. (If you use a text editor outside of the Program-
mer’s Environment to create form specification files, you must give them the
extension .per before you can compile them with the FORM4GL screen form
facility.)

If you have not already designated a text editor in this INFORMIX-4GL
session or with DBEDIT, you are prompted for the name of an editor. Then
an editing session begins, with the form specification source-code file that
you specified as the current file. When you leave the editor, INFORMIX-4GL
displays the MODIFY FORM menu with the Compile option highlighted.
Now you can press RETURN to compile the revised form specification file.

MODIFY FORM: Compile Save-and-exit Discard-and-exit
Compile the form specification.

---Press CTRL-W for Help------
Compiling INFORMIX-4GL Source Files 1-13

The Programmer´s Environment
If there are compilation errors, INFORMIX-4GL displays the COMPILE FORM
menu:

COMPILE FORM: Correct Exit
Correct errors in the form specification.

---Press CTRL-W for Help------

Press RETURN to select Correct as your option. An editing session begins on
a copy of the current form, with diagnostic error messages embedded where
the compiler detected syntax errors. INFORMIX-4GL automatically deletes
these messages when you save and exit from the editor. After you have cor-
rected the errors, the MODIFY FORM menu appears again, with the Compile
option highlighted. Press RETURN to recompile. Repeat these steps until the
compiler reports no errors.

If there are no compilation errors, you are prompted whether to save
the modified form specification file and the compiled form, or to discard
the changes. (Discarding the changes restores the version of your form
specifications from before you chose the Modify option.)

The Generate Option

You can type g or G to select the Generate option. This option creates a
simple “default” screen form that you can use directly in your program,
or that you can later edit by selecting the Modify option.

FORM: Modify Generate New Compile Exit
Generate and compile a default form specification.

---Press CTRL-W for Help------
1-14 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
When you select this option, INFORMIX-4GL prompts you to select a
database, to choose a filename for the form specification, and to identify the
tables that the form will access. After you provide these data, INFORMIX-4GL
creates and compiles a form specification file. (This is equivalent to running
the -d (default) option of the form4gl command, as described in the section
titled “Compiling a Form Through the Operating System” on page 5-74.)

The New Option

The New option of the FORM Design menu enables you to create a new
screen form specification.

FORM: Modify Generate New Compile Exit
Create a new form specification.

---Press CTRL-W for Help------

After prompting you for the name of your form specification file,
INFORMIX-4GL places you in the editor where you can create a form specifi-
cation file. When you leave the editor, INFORMIX-4GL transfers you to the
NEW FORM menu that is like the MODIFY FORM menu. You can compile your
form and correct it in the same way.

The Compile Option

The Compile option enables you to compile an existing form specification
file without going through the Modify option.

FORM: Modify Generate New Compile Exit
Compile an existing form specification.

---Press CTRL-W for Help------
Compiling INFORMIX-4GL Source Files 1-15

The Programmer´s Environment
INFORMIX-4GL compiles the form specification file whose name you specify.
If the compilation fails, INFORMIX-4GL displays the COMPILE FORM menu
with the highlight on the Correct option.

The Exit Option

The Exit option restores the INFORMIX-4GL menu.

FORM: Modify Generate New Compile Exit
Returns to the INFORMIX-4GL menu.

---Press CTRL-W for Help------

The PROGRAM Design Menu

An INFORMIX-4GL program can be a single source-code module that you
create and compile at the MODULE Design menu. For applications of greater
complexity, however, it is often easier to develop and maintain separate 4GL
modules. The INFORMIX-4GL menu includes the Program option so that you
can create multi-module programs. If you select this option, INFORMIX-4GL
searches your DBPATH directories (see Appendix D) for the program specifi-
cation database, called syspgm4gl. This database describes the component
modules and function libraries of your 4GL program.

If INFORMIX-4GL cannot find this database, you are asked if you want one
created. If you enter y in response, INFORMIX-4GL creates the syspgm4gl
database, grants CONNECT privilege to PUBLIC, and displays the PROGRAM
Design menu. As Database Administrator of syspgm4gl, you can later
restrict the access of other users.

If syspgm4gl already exists, the PROGRAM Design menu appears.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Change the compilation definition of a 4GL application program.

---Press CTRL-W for Help------
1-16 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
You can use this menu to create or modify a multi-module 4GL program
specification, to compile and link a program, or to execute a program.

The PROGRAM Design menu supports the following options:

Modify Change an existing program specification.

New Create a new program specification.

Compile Compile an existing program.

Planned_Compile List the steps necessary to compile and link an existing
program.

Run Execute an existing program.

Drop Delete an existing program specification.

Exit Return to the INFORMIX-4GL menu.

You must first use the MODULE Design menu and FORM Design menu
to enter and edit the INFORMIX-4GL statements within the component
source-code modules of a 4GL program. Then you can use the PROGRAM
Design menu to identify which modules are part of the same application
program, and to link all the modules as an executable command file.
Compiling INFORMIX-4GL Source Files 1-17

The Programmer´s Environment
The Modify Option

The Modify option enables you to modify the specification of an existing 4GL
program. (This option is not valid unless at least one program has already
been specified. If none has, you can create a program specification by select-
ing the New option from the same menu.) INFORMIX-4GL prompts you for
the name of the program specification to be modified. It then displays a menu
and form that you can use to update the information in the program specifi-
cation database as shown in Figure 1-1:

MODIFY PROGRAM: 4GL Other Libraries Compile_Options Rename Exit
Edit the 4GL sources list.

---Press CTRL-W for Help------
Program
[myprog]

4gl Source 4gl Source Path
[main] [/u/john/appl/4GL]
[funct] [/u/john/appl/4GL]
[rept] [/u/john/appl/4GL]
[] []
[] []

Other Source Ext Other Source Path
[cfunc] [c] [/u/john/appl/C]
[] [] []
[] [] []
[] [] []

Libraries [m] Compile Options []
[] []

Figure 1-1 Example of a Program Specification Entry

The name of the program appears in the Program field. In Figure 1-1 the
name is myprog. You can change this name by selecting the Rename option.
INFORMIX-4GL assigns the program name, with the extension .4ge, to the
executable program produced by compiling and linking all the source files
and libraries. (Compiling and linking occurs when you select the Compile
option, as described later in this chapter.) In this example, the resulting exe-
cutable program would have the name myprog.4ge.

Use the 4GL option to update the entries for the 4gl Source fields and the 4gl
Source Path fields on the form. The five rows of fields under these labels form
a screen array. When you select the 4GL option, INFORMIX-4GL executes an
INPUT ARRAY statement so you can move and scroll through the array. See
the INPUT ARRAY statement on page 3-152 for information about how to use
1-18 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
your function keys to scroll, delete rows, and insert new rows. (You cannot
redefine the function keys, however, as you can with an INFORMIX-4GL
program.)

The INFORMIX-4GL source program that appears in Figure 1-1 contains three
modules:

• One module contains the main program (main.4gl).

• One module contains functions (funct.4gl).

• One module contains REPORT statements (rept.4gl).

Each module is located in the directory /u/john/appl/4GL.

If your program includes a module containing only global variables
(for example, global.4gl), you must also list that module in this section.

Use the Other option to include non-INFORMIX-4GL source modules
or object-code modules in your program. Enter this information into
the three-column screen array with the headings Other Source, Ext, and
Other Source Path. Enter the filename and location of each non-
INFORMIX-4GL source-code or object-code module in these fields. Enter the
name of the module in the Other Source field, the filename extension of the
module (for example, ec for an INFORMIX-ESQL/C module, or c for a C
module) in the Ext field, and the full directory path of the module in the
Other Source Path field. The example in Figure 1-1 includes a file containing
C function source-code (cfunc.c) located in /u/john/appl/C. You can list up to
100 files in this array.

The Libraries option enables you to indicate the names of up to ten special
libraries to link with your program. INFORMIX-4GL calls the C compiler to
do the linking and adds the appropriate -l prefix, so you should enter only
what follows the prefix. The example displayed in Figure 1-1 calls only the
standard C math library.

Use the Compile_Options option to indicate up to ten C compiler options.
Enter this information in the Compile Options field. You cannot, however,
specify the -e or -a options of c4gl in this field. (See the section “Creating
Programs at the Command Line” on page 1-27 for more information about
the options of the c4gl command.)

The Exit option exits from the MODIFY PROGRAM menu and displays
the PROGRAM Design menu.
Compiling INFORMIX-4GL Source Files 1-19

The Programmer´s Environment
The New Option

Use the New option on the PROGRAM Design menu to create a new
specification of the program modules and libraries that make up an
application program. You can also specify any necessary compiler or loader
options.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Add the compilation definition of a 4GL application program.

---Press CTRL-W for Help------

The submenu screen forms displayed by the New and the Modify options of
the PROGRAM Design menu are identical, except that you must first supply
a name for your program when you select the New option. (INFORMIX-4GL
displays a blank form in the NEW PROGRAM menu.) The NEW PROGRAM
menu has the same options as the MODIFY PROGRAM menu, as illustrated
earlier.

The Compile Option

The Compile option performs the compilation and linking described in the
program specification database, taking into account the time when each file
was last updated. It compiles only those files that have not been compiled
since they were changed.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Compile a 4GL application program.

---Press CTRL-W for Help------

INFORMIX-4GL lists each step of the preprocessing and compilation as
it occurs. An example of these messages appears in the illustration of
the Planned_Compile option, next.
1-20 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Planned_Compile Option

Taking into account the time when the various files in the dependency
relationships last changed, the Planned_Compile option prompts for a
program name and displays a summary of the steps that will be executed
if you select the Compile option. No compilation actually takes place.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Show the planned compile actions of a 4GL application program.

---Press CTRL-W for Help------
Compiling INFORMIX-4GL sources:

/u/john/appl/4GL/main.4gl
/u/john/appl/4GL/funct.4gl
/u/john/appl/4GL/rept.4gl

Compiling Embedded SQL sources:
Compiling with options:
Linking with libraries:

m
Compiling/Linking other sources:

/u/john/appl/C/cfunc.c

In this instance, changes were made to all the components of the 4GL
program that were listed in Figure 1-1. This display indicates that no
source-code module has been compiled since the program was changed.
Compiling INFORMIX-4GL Source Files 1-21

The Programmer´s Environment
The Run Option

The Run option of the PROGRAM Design menu is the same as the Run option
of the MODULE Design menu. It displays a list of any compiled programs
(files with the extension .4ge) and positions the highlight on the current
program, if a program has been specified. INFORMIX-4GL then executes
the program that you select.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Execute a 4GL application program.

---Press CTRL-W for Help------

The Drop Option

The Drop option of the PROGRAM Design menu prompts you for a program
name and removes the compilation and linking definition of that program
from the syspgm4gl database. This action removes the definition only. Your
program and 4GL modules are not removed.

PROGRAM: Modify New Compile Planned_Compile Run Drop Exit
Drop the compilation definition of a 4GL application program.

---Press CTRL-W for Help------

The Exit Option

The Exit option clears the PROGRAM Design menu and restores the
INFORMIX-4GL menu.

The QUERY LANGUAGE Menu

The <vk>SQL interactive interface is identical to the interactive <vk>SQL
interface of INFORMIX-SQL. You can use this option only if you have sepa-
rately purchased INFORMIX-SQL and installed it.
1-22 Compiling INFORMIX-4GL Source Files

Creating Programs in the Programmer’s Environment
The Query-language option is placed at the top-level menu so you can test
<vk>SQL statements without leaving the INFORMIX-4GL Programmer’s
Environment. You can also use this option to create, execute, and save
<vk>SQL scripts.

Creating Programs in the Programmer’s Environment
To invoke the C Compiler Version of the Programmer’s Environment, enter
the following command at the system prompt:

i4gl

After a sign-on message, the INFORMIX-4GL menu appears.

Creating a 4GL application with the C Compiler Version of INFORMIX-4GL
requires the following steps:

1. Creating a new source module or revising an existing source module.

2. Compiling the source module.

3. Linking the program modules.

4. Executing the compiled program.

This process is described below.

Creating a New Source Module

This section outlines the procedure for creating a new source module. If your
source module already exists, see “Revising an Existing Module,” next.

1. Select the Module option of the INFORMIX-4GL menu by pressing m or by
pressing RETURN if the Module option is highlighted.

The MODULE Design menu is displayed.

2. If you are creating a new .4gl source module, press n to select the New
option of the MODULE Design menu.

3. Enter a name for the new module.

The name must begin with a letter and can include letters, numbers,
and underscores. The name must be unique among the files in the same
directory, and among the other program modules, if it will be part of a
multi-module program. INFORMIX-4GL attaches extension .4gl to this
identifier, as the filename of your new source module.

4. Press RETURN.
Compiling INFORMIX-4GL Source Files 1-23

Creating Programs in the Programmer’s Environment
Revising an Existing Module

If you are revising an existing 4GL source file, follow these steps:

1. Select the Modify option of the MODULE Design menu.

The screen lists the names of all the .4gl source modules in the current
directory and prompts you to select a source file to edit.

2. Use the Arrow keys to highlight the name of a source module and press
RETURN, or enter a filename (with no extension).

If you specified the name of an editor with the DBEDIT environment vari-
able, an editing session with that editor begins automatically. Otherwise,
the screen prompts you to specify a text editor.

Specify the name of a text editor, or press RETURN for vi, the default
editor. Now you can begin an editing session by entering 4GL statements.

3. When you have finished entering or editing your 4GL code, use an
appropriate editor command to save your source file and end the text
editing session.

Compiling a Source Module

The .4gl source file module that you create or modify is an ASCII file that must
be compiled before it can be executed.

1. Select the Compile option from the MODULE Design menu.

2. Select the type of module you are compiling, either Runable or Object.

If the module is a complete 4GL program that requires no other modules,
select Runable. This option first creates an intermediate ESQL/C version
of your source-code module, then calls the ESQL/C preprocessor which
produces C output, and finally calls the C compiler to produce a compiled
file with the same filename, but with the extension .4ge.

If the module is one module of a multi-module 4GL program, select
Object. This option creates a compiled object file module, with the same
filename, but with extension .o. See also “Linking Program Modules” on
page 1-25.

3. If the compiler detects errors, no compiled file is created, and you are
prompted to fix the problem.

Select Correct to resume the previous text editing session, with the same
4GL source code, but with error messages in the file. Edit the file to correct
the error, and select Compile again. If an error message appears, repeat
this process until the module compiles without error.
1-24 Compiling INFORMIX-4GL Source Files

Creating Programs in the Programmer’s Environment
4. After the module compiles successfully, select Save-and-exit from
the menu to save the compiled program.

The MODULE Design menu appears again on your screen.

5. If your program requires screen forms, select Form from the
INFORMIX-4GL menu.

The FORM Design menu appears. For information about designing and
creating screen forms, see Chapter 5.

6. If your program displays help messages, you must create and compile
a help file.

Use the mkmessage utility to compile the help file. For more information
on this utility, see Appendix B.

Linking Program Modules

 If your new or modified module is part of a multi-module 4GL program, you
must link all of the modules into a single program file before you can run the
program. If the module that you compiled is the only module in your pro-
gram, you are now ready to run your program (see “Executing a Compiled
Program” on page 1-27).

1. Select the Program option from the INFORMIX-4GL menu.

The PROGRAM Design menu appears.

2. If you are creating a new multi-module 4GL program, select the New
option. If you are modifying an existing one, select Modify.

In either case, the screen prompts you for the name of a program.

3. Enter the name (without a file extension) of the program that you are
modifying, or the name to be assigned to a new program.

Names must begin with a letter, and can include letters, underscores (_),
and numbers. After you enter a valid name, the PROGRAM screen
appears, with your program name in the first field.

If you selected Modify, the names and pathnames of the source-code
modules are also displayed. In that case, the PROGRAM screen appears
below the MODIFY PROGRAM menu, rather than below the NEW
PROGRAM menu. (Both menus list the same options.)
Compiling INFORMIX-4GL Source Files 1-25

Creating Programs in the Programmer’s Environment
4. Identify the files that comprise your program:

• To specify new 4GL modules or edit the list of 4GL modules, select
the 4GL option.

You can enter or edit the name of a module, without the .4gl file
extension. Repeat this step for every module. If the module is not
in the current directory nor in a directory specified by the DBPATH
environment variable, enter the pathname to the directory where the
module resides.

• To include any modules in your program that are not 4GL source files,
select the Other option.

This option enables you to specify each filename in the Other Source
field, the filename extension in the Ext field, and the pathname in the
Other Source Path field.

These fields are part of an array that can specify up to 100 “other”
modules, such as C language source files or object files. If you have the
INFORMIX-ESQL/C product installed on your system, you can also
specify ESQL/C source modules (with extension .ec) here.

• To specify any function libraries that should be linked to your
program (besides the INFORMIX-4GL library that is described in
Chapter 4), select the Libraries option. This option enables you to
enter or edit the list of library names in the Libraries fields.

• To specify compiler flags, select the Compile_Options option.
These flags can be entered or edited in the Compile Options fields.

MODIFY PROGRAM: 4GL Other Libraries Compile_Options Rename Exit
Edit the 4GL sources list.

---Press CTRL-W for Help------
Program
[]

4gl Source 4gl Source Path
[] []
[] []
[] []
[] []
[] []

Other Source Ext Other Source Path
[] [] []
[] [] []
[] [] []
[] [] []

Libraries [] Compile Options [][] []
1-26 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
5. After you have correctly listed all of the modules of your program, select
the Exit option to return to the PROGRAM Design menu.

6. Select the Compile option of the PROGRAM Design menu.

This option produces an executable file that contains all your 4GL
program modules. Its filename is the program name that you specified,
with extension .4ge. The screen lists the names of your .4gl source
modules, and displays the PROGRAM Design menu with the Run option
highlighted.

Executing a Compiled Program

After compiling and linking your program modules, you can execute your
program. To do so, select the Run option from the MODULE Design menu.
This option begins execution of the compiled 4GL program.

Your program can display menus, screen forms, windows, or other screen
output according to your program logic and any keyboard interaction of the
user with the program.

Creating Programs at the Command Line
You can also create .4gl source files and compiled .o and .4ge files at the oper-
ating system prompt. Figure 1-2 shows the process of creating, compiling,
linking, and running an INFORMIX-4GL program from the command line.
Compiling INFORMIX-4GL Source Files 1-27

Creating Programs at the Command Line
Figure 1-2 Creating and Running an INFORMIX-4GL Program

In Figure 1-2 the rectangles represent processes controlled by specific
commands, and the circles represent files. Arrows indicate whether a file can
serve as input or output (or as both) for a process.

This diagram is simplified and ignores the similar processes by which forms,
help messages, and other components of 4GL applications are compiled,
linked, and executed.

• The cycle begins in the upper left corner with a text editor, such as vi,
to produce a 4GL source module.

• A multi-module program can include additional 4GL source files (.4gl),
INFORMIX-ESQL/C source files (.ec), C language source files (.c), and
object files (.o).

• The program module can then be compiled, by invoking the c4gl
preprocessor and compiler command. (If error messages result, find them
in the .err file and edit the source file to correct the errors. Then recompile
the corrected source module.)

TEXT
EDITOR

.4gl
Source
Files

.o
Object
Files

PREPROCESSOR
& COMPILER

c4gl

.c, .ec
Files

.4ge
Compiled
Program

File

.err
Error
File
1-28 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
The resulting compiled .4ge program file is an executable command file
that you can run by entering its name at the system prompt:

filename .4ge

where filename.4ge specifies your compiled 4GL file.

The correspondence between commands and menu options of the Program-
mer’s Environment is summarized by the following list:

Creating or Modifying a 4GL Source File

Use your system editor or another text editing program to create a .4gl source
file or to modify an existing file. For information on the statements you can
include in a 4GL program, see Chapter 3.

Compiling a 4GL Module

You can compile an INFORMIX-4GL source file at the system prompt by
entering a command of the form:

c4gl source . 4gl -o filename .4ge

The c4gl command compiles your 4GL source-code module (here called
source.4gl) and produces an executable program called filename.4ge. The
complete syntax of the c4gl command appears on the next page.

Compiling and Linking Multiple Source Files

An INFORMIX-4GL program can include several source-code modules.
You cannot execute a 4GL program until you have preprocessed and com-
piled all the source modules and linked them with any function libraries that
they reference. You can do all this in a single step at the system prompt by
using the c4gl command, which performs the following processing steps:

1. Reads your 4GL source-code files (extension .4gl) and preprocesses them
to produce ESQL/C code.

2. Reads the ESQL/C code and preprocesses it to produce C code.

3. Reads the C code and compiles it to produce an object file.

Menu Option Invokes Command

Module New/Modify UNIX System Editor vi
Compile 4GL Preprocessor/ C Compiler c4gl
Run 4GL Application filename.4ge
Compiling INFORMIX-4GL Source Files 1-29

Creating Programs at the Command Line
4. Links the object file to the INFORMIX-ESQL/C libraries and to any
additional libraries that you specify in the command line.

You must assign the filename extension .4gl to any INFORMIX-4GL
source-code modules that you compile. The resulting .4ge file is an
executable version of your program.

Notice that ESQL/C source files (with extension .ec), C source files (with
extension .c), and C object files (with extension .o) are intermediate steps in
producing an executable INFORMIX-4GL program. Besides 4GL source files
(with extension .4gl), you can also include files of any or all of these types
when you specify a c4gl command line to compile and link the component
modules of a 4GL program.

c4gl Command

The c4gl command supports the following syntax:

-args are other arguments for your C compiler.

esql.ec is an ESQL/C source file to compile and link.

obj.o is an object file to link with your 4GL program.

outfile is a name that you assign to the compiled 4GL program.

source.4gl is the name of an 4GL source module. You must specify the
.4gl extension.

src.c is a C language source file to compile and link.

yourlib is a library from which to extract functions that are not part
of the 4GL or ESQL/C libraries.

-o outfile

-ansi -e -a -anyerr

-args

source.4gl

obj.o

yourlib

esqlc.ec

source.c

-V

c4gl
1-30 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
Usage

The c4gl command passes all C compiler arguments (args) and other C source
and object files (src.c, obj.o) directly to the C compiler (cc).

You can compile 4GL modules separately from your MAIN program block.
If there is no MAIN program block in source.4gl, your code is compiled to
source.o, but not linked with other modules or libraries. You can use c4gl
to link your code with a module that includes the MAIN program block
at another time. (For more information, see the description of the MAIN
statement on page 3-191.)

To have your compiled program check array bounds at run time, include the
-a option. As shown in the syntax diagram, the -a option must appear on the
command line before the source.4gl filename. The -a option requires addi-
tional run-time processing, so you may want to use this option only during
development to debug your program.

To instruct the compiler to check all <vk>SQL statements for compliance
with ANSI standards, include the -ansi option. If you specify the -ansi option,
it must appear first in your list of c4gl command arguments. The -ansi option
asks for compile-time warning messages if your source code includes Infor-
mix extensions to the ANSI standard for <vk>SQL. Compiler warnings and
error messages are saved in a file called source.err.

To perform only the preprocessor steps, with no compilation or linking,
include the -e option.

If you specify the -anyerr option, 4GL sets the status variable after evaluating
expressions. The -anyerr option overrides any WHENEVER ERROR state-
ments in your program.

If you omit the -o outfile option, the default filename is a.out.

To display the release version number of your <vk>SQL software, use the -V
option. If you specify the -V option, all other arguments are ignored, and
no output files are produced.

Examples

The simplest case is to compile a single-module INFORMIX-4GL program.
This command produces an executable program called single.4ge:

c4gl single.4gl -o single.4ge
Compiling INFORMIX-4GL Source Files 1-31

Program Filename Extensions
In the next example, the object files mod1.o, mod2.o, and mod3.o are
previously compiled INFORMIX-4GL modules, and mod4.4gl is a source-
code module. Suppose that you want to compile and link mod4.4gl with the
three object modules to create an executable program called myappl.4ge. To
do so, enter the following command line:

c4gl mod1.o mod2.o mod3.o mod4.4gl -o myappl.4ge

Running 4GL Programs

As noted in the previous section, a valid c4gl command line produces a .4ge
file (or whatever you specify after the -o argument) that is an executable
command file.

To execute your compiled INFORMIX-4GL application program, enter the
filename at the system prompt. For example, to run myappl.4ge (the program
in the previous example), simply enter the command line:

myappl.4ge

Some INFORMIX-4GL programs may require additional command-line argu-
ments, such as constants or filenames, depending on the logic of your specific
4GL application.

4GL Programs that Call C Functions

No special procedures are needed to create, compile, and execute 4GL
programs that call C functions or INFORMIX-ESQL/C functions when you
use the C Compiler Version of INFORMIX-4GL. For information on creating
INFORMIX-4GL programs that call programmer-defined C functions within
4GL modules, see Appendix C.

Program Filename Extensions
Source, runable, error, and backup files generated by INFORMIX-4GL are
stored in the current directory and are labeled with a filename extension. The
following list shows the file extensions for the source, runable, and error files.
These files are produced during the normal course of using the C Compiler
Version of INFORMIX-4GL.

File Description

file.4gl 4GL source file.
file.o 4GL object file.
file.4ge 4GL executable (runable) file.
1-32 Compiling INFORMIX-4GL Source Files

Program Filename Extensions
The last three files do not exist unless you create or modify a screen form
specification file, as described in Chapter 5.

The following list identifies the backup files that are produced when you use
INFORMIX-4GL from the Programmer’s Environment:

Under normal conditions, INFORMIX-4GL creates the backup files and
intermediate files as necessary and deletes them upon a successful
compilation. If you interrupt a compilation, you may find one or more
of these files in your current directory.

During the compilation process, INFORMIX-4GL stores a backup copy of the
file.4gl source file in file.4bl. The time stamp is modified on the (original)
file.4gl source file, but not on the backup file.4bl file. In the event of a system
crash, you may need to replace the modified file.4gl file with the backup copy
contained in the file.4bl file.

file.err 4GL source error file, created when an attempt to compile a module
fails. The file contains 4GL source code, plus any compiler syntax
error or warning messages.

file.ec Intermediate source file, created during the normal course of
compiling an 4GL module.

file.c Intermediate C file, created during the normal course of compiling an
4GL module.

file.erc 4GL object error file, created when an attempt to compile or to link a
non-4GL source-code or object module fails. The file contains 4GL
source code and annotated compiler errors.

form.per FORM4GL source file.
form.frm FORM4GL object file.
form.err FORM4GL source error file.

File Description

file.4bl 4GL source backup file, created during the modification and
compilation of a .4gl program module.

file.4bo Object backup file, created during the compilation of a .o program
module.

file.4be Object backup file, created during the compilation of a .4ge program
module.

file.pbr FORM4GL source backup file.
file.fbm FORM4GL object backup file.

File Description
Compiling INFORMIX-4GL Source Files 1-33

The Rapid Development System Version
The Programmer’s Environment does not allow you to begin modifying a
.4gl or .per source file if the corresponding backup file already exists in the
same directory. After an editing session terminates abnormally, for example,
you must delete or rename any backup file before you can resume editing
your 4GL module or form from the Programmer’s Environment.

The Rapid Development System Version
This section describes the Rapid Development System Version of
INFORMIX-4GL. In particular, it:

• Identifies and illustrates all the menu options and screen form fields
of the RDS Programmer’s Environment.

• Describes the steps for compiling and executing INFORMIX-4GL
programs from the Programmer’s Environment.

• Describes the equivalent command-line syntax for compiling and
executing INFORMIX-4GL programs.

• Identifies the filename extensions of 4GL source-code, object, error,
and backup files.

The Programmer´s Environment
The INFORMIX-4GL Rapid Development System provides a series of menus
called the Programmer’s Environment. These menus support the steps of 4GL
program development and keep track of the components of your application.
You can invoke the Programmer’s Environment by entering r4gl at the
system prompt.

The INFORMIX-4GL Menu

The r4gl command briefly displays the INFORMIX-4GL banner and sign-on
message. Then a menu appears, called the INFORMIX-4GL menu:

INFORMIX-4GL: Module Form Program Query-language Exit
Create, modify or run individual 4GL program modules.

---Press CTRL-W for Help------
1-34 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
This is the highest menu, from which you can reach any other menu of
the Programmer’s Environment. You have five options:

Module Work on an INFORMIX-4GL program module.

Form Work on a screen form.

Program Specify components of a multi-module program.

Query-language Use the <vk>SQL interactive interface, if you have
INFORMIX-SQL installed on your system.

Exit Return to the operating system.

The first three options display new menus that are described in the pages that
follow. (You can also press CONTROL-W at any menu to display an on-line
help message that describes your options.) As at any 4GL menu, you can
select an option in either of two ways:

• By typing the first letter of the option.

• By using the SPACEBAR or Arrow keys to move the highlight to the option
that you choose, and then pressing RETURN.

The MODULE Design Menu

You can press RETURN or type m or M to select the Module option of the
INFORMIX-4GL menu. This option displays a new menu, called the MODULE
Design menu. Use this menu to work on an individual 4GL source-code file.

MODULE: Modify New Compile Program_Compile Run Debug Exit
Change an existing 4GL program module.

---Press CTRL-W for Help------

The MODULE Design menu supports the following options:

Modify Change an existing 4GL source-code module.

New Create a new 4GL source-code module.

Compile Compile an existing 4GL source-code module.

Program_Compile Compile a 4GL application program.

Run Execute a compiled 4GL module or multi-module
application program.
Compiling INFORMIX-4GL Source Files 1-35

The Programmer´s Environment
Debug Invoke the INFORMIX-4GL Interactive Debugger
to examine an existing 4GL program module or
application program (if you have the Debugger
product installed on your system).

Exit Return to the INFORMIX-4GL menu.

As in all of the menus of the Programmer’s Environment except the
INFORMIX-4GL menu, the Exit option returns control to the higher menu
from which you accessed the current menu.

You can use these options to create and compile source-code modules of a
4GL application. (For information on creating 4GL screen forms, see “The
FORM Design Menu” on page 1-41. For information on creating and compil-
ing programmer-defined help messages for an INFORMIX-4GL application,
see the description of the mkmessage utility in Appendix B.)

The Modify Option

Select this option to edit an existing 4GL source-code module. You are
prompted for the name of the 4GL source-code file to modify and the text
editor to use. If you have designated an editor with the DBEDIT environment
variable (see Appendix D) or named an editor previously in this session at
the Programmer’s Environment, INFORMIX-4GL invokes that editor. The
4GL source file whose filename you specified is the current file.

When you leave the editor, INFORMIX-4GL displays the MODIFY MODULE
menu, with the Compile option highlighted:

MODIFY MODULE: Compile Save-and-exit Discard-and-exit
Compile the 4GL module specification.

---Press CTRL-W for Help------
1-36 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
If you press RETURN or type c or C to select the Compile option,
INFORMIX-4GL displays the COMPILE MODULE menu:

COMPILE MODULE: Object Runable Exit
Create object file (.4go suffix).

---Press CTRL-W for Help------

The Object option creates a file with a .4go extension. The Runable option
creates a file with a .4gi extension. Select the Runable option if the current
program module is a stand-alone 4GL program. If this is not the case, (that is,
if the file is one of several 4GL source-code modules within a multi-module
program), then you should use the Object option instead, and you must use
the PROGRAM Design menu to specify all the component modules.

After you select Object or Runable, a message near the bottom of the screen
will advise you if INFORMIX-4GL issues a compile-time warning or error. If
there are warnings (but no errors), a p-code file is produced. Select the Exit
option of the next menu, and then Save-and-exit at the MODIFY MODULE
menu, if you want to save the p-code file without reading the warnings.

Alternatively, you can examine the warning messages by selecting Correct
at the next menu. When you finish editing the .err file that contains the
warnings, you must select Compile again from the MODIFY MODULE menu,
since the Correct option deletes the p-code file.

If there are compilation errors, the following menu appears:

COMPILE MODULE: Correct Exit
Correct errors in the 4GL module.

---Press CTRL-W for Help------
Compiling INFORMIX-4GL Source Files 1-37

The Programmer´s Environment
If you choose to correct the errors, an editing session begins on a copy of your
source module with embedded error messages. (You do not need to delete
error messages, since INFORMIX-4GL does this for you.) Correct your source
file, save your changes, and exit from the editor. The MODIFY MODULE menu
reappears, prompting you to recompile, or to save or discard your changes
without compiling.

If there are no compilation errors, the MODIFY MODULE menu appears
with the Save-and-Exit option highlighted. If you select this option,
INFORMIX-4GL saves the current source-code module as a disk file with
the filename extension .4gl, and saves the compiled version as a file with
the same filename, but with the extension .4go or .4gi. If you select the
Discard-and-Exit option, INFORMIX-4GL discards any changes made to
your file since you selected the Modify option.

The New Option

Select this option to create a new 4GL source-code module.

MODULE: Modify New Compile Program_Compile Run Debug Exit
Create a new 4GL program module.

---Press CTRL-W for Help------

This option resembles the Modify option, but NEW MODULE is the menu
title, and you must enter a new module name, rather than select it from a list.
If you have not designated an editor previously in this session or with
DBEDIT, you are prompted for an editor. Then an editing session begins.
1-38 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Compile Option

The Compile option enables you to compile an individual 4GL source-code
module without first selecting the Modify option.

MODULE: Modify New Compile Program_Compile Run Debug Exit
Compile an existing 4GL program module.

---Press CTRL-W for Help------

After you specify the name of a 4GL source-code module to compile, the
screen displays the COMPILE MODULE menu. For information on the
COMPILE MODULE menu options, see “The Modify Option” on page 1-36.

The Program_Compile Option

The Program_Compile option of the MODULE Design menu is the same
as the Compile option of the PROGRAM Design menu (see “The Compile
Option” on page 1-49). It permits you to compile and combine modules as
described in the program specification database, taking into account the time
when the modules were last updated. This option is useful when you have
just modified a single module of a complex program and want to test it by
compiling it with the other modules.

The Run Option

Select this option to begin execution of a compiled program.

MODULE: Modify New Compile Program_Compile Run Debug Exit
Execute an existing 4GL program module or application program.

---Press CTRL-W for Help------
Compiling INFORMIX-4GL Source Files 1-39

The Programmer´s Environment
The RUN PROGRAM screen presents a list of compiled modules and
programs, with the highlight on the module corresponding to the current file,
if any has been specified. Compiled programs must have the extension .4gi
to be included in the list. If you compile a module with the extension .4go,
you can run it by typing the filename and extension at the prompt. If no com-
piled programs exist, INFORMIX-4GL displays an error message and restores
the MODULE Design menu.

The Debug Option

Select this option to use the INFORMIX-4GL Interactive Debugger to
analyze a program. This option is implemented only if you have separately
purchased and installed the INFORMIX-4GL Interactive Debugger on your
system.

MODULE: Modify New Compile Program_Compile Run Debug Exit
Returns to the INFORMIX-4GL menu.

---Press CTRL-W for Help------

If you have the Debugger product, refer to the INFORMIX-4GL Interactive
Debugger documentation for more information about this option.

The Exit Option

Select this option to exit from the MODULE Design menu and display
the INFORMIX-4GL menu.

MODULE: Modify New Compile Program_Compile Run Debug Exit
Returns to the INFORMIX-4GL menu.

---Press CTRL-W for Help------
1-40 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The FORM Design Menu

You can type f or F at the INFORMIX-4GL menu to select the Form option.
This option replaces the INFORMIX-4GL menu with a new menu, called
the FORM Design menu:

FORM: Modify Generate New Compile Exit
Change an existing form specification.

---Press CTRL-W for Help------

You can use this menu to create, modify, and compile screen form specifica-
tions. These specifications define visual displays that 4GL applications can
use to query and modify the information in a database. INFORMIX-4GL
screen form specifications are ASCII files that are described in Chapter 5.

The FORM Design menu supports the following options:

Modify Change an existing 4GL screen form specification.

Generate Create a default 4GL screen form specification.

New Create a new 4GL screen form specification.

Compile Compile an existing 4GL screen form specification.

Exit Return to the INFORMIX-4GL menu.

Readers familiar with the menu system of INFORMIX-SQL may notice
that this menu resembles the menu displayed by the Form option of
the INFORMIX-SQL Main menu.

For descriptions of the usage and statement syntax of 4GL screen form
specifications, see Chapter 5.
Compiling INFORMIX-4GL Source Files 1-41

The Programmer´s Environment
The Modify Option

The Modify option of the FORM Design menu enables you to edit an existing
form specification file. It resembles the Modify option in the MODULE Design
menu, since both options are used to edit program modules.

FORM: Modify Generate New Compile Exit
Change an existing form specification.

---Press CTRL-W for Help------

If you select this option, you are prompted to select the name of a form
specification file to modify. Source files created at the FORM Design menu
(or at the command line by the form4gl screen form facility) have the file
extension .per.

If you have not already designated a text editor in this INFORMIX-4GL
session or with DBEDIT, you are prompted for the name of an editor. Then
an editing session begins, with the form specification source-code file that
you specified as the current file. When you leave the editor, INFORMIX-4GL
displays the MODIFY FORM menu with the Compile option highlighted.

MODIFY FORM: Compile Save-and-exit Discard-and-exit
Compile the form specification.

---Press CTRL-W for Help------
1-42 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
Now you can press RETURN to compile the revised form specification file.
If the compiler finds errors, the COMPILE FORM menu appears:

COMPILE FORM: Correct Exit
Correct errors in the form specification.

---Press CTRL-W for Help------

Press RETURN to select Correct as your option. An editing session begins on
a copy of the current form, with diagnostic error messages embedded where
the compiler detected errors. INFORMIX-4GL deletes these messages when
you save and exit from the editor. After you correct the errors, the MODIFY
FORM menu appears again, with the Compile option highlighted. Press
RETURN to recompile.

If there are no compilation errors, you are prompted whether to save
the modified form specification file and the compiled form, or to discard
the changes. (Discarding the changes restores the version of your form
specifications from before you chose the Modify option.)

The Generate Option

You can type g or G to select the Generate option. This option creates a simple
“default” screen form for use directly in your 4GL program, or for you to edit
later by selecting the Modify option.

FORM: Modify Generate New Compile Exit
Generate and compile a default form specification.

---Press CTRL-W for Help------

When you select this option, INFORMIX-4GL prompts you to select a data-
base, to choose a filename for the form specification, and to identify the tables
that the form will access. After you provide this information, INFORMIX-4GL
Compiling INFORMIX-4GL Source Files 1-43

The Programmer´s Environment
creates and compiles a form specification file. This is equivalent to running
the -d (default) option of the form4gl command, as described in the section
titled “Compiling a Form Through the Operating System” on page 5-74.

The New Option

The New option of the FORM Design menu enables you to create a new
screen form specification.

FORM: Modify Generate New Compile Exit
Create a new form specification.

---Press CTRL-W for Help------

After prompting you for the name of your form specification file,
INFORMIX-4GL places you in the editor where you can create a form
specification file. When you leave the editor, INFORMIX-4GL transfers you to
the NEW FORM menu that is like the MODIFY FORM menu. You can compile
your form and correct it in the same way.

The Compile Option

The Compile option enables you to compile an existing form specification
file without going through the Modify option.

FORM: Modify Generate New Compile Exit
Compile an existing form specification.

---Press CTRL-W for Help------

INFORMIX-4GL prompts you for the name of the form specification file
and then performs the compilation. If the compilation is not successful,
INFORMIX-4GL displays the COMPILE FORM menu with the highlight on
the Correct option.
1-44 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Exit Option

The Exit option clears the FORM Design menu from the screen.

FORM: Modify Generate New Compile Exit
Returns to the INFORMIX-4GL menu.

---Press CTRL-W for Help------

Selecting this option restores the INFORMIX-4GL menu:

INFORMIX-4GL: Module Form Program Query-language Exit
Create, modify or run individual 4GL program modules.

---Press CTRL-W for Help------

The PROGRAM Design Menu

An INFORMIX-4GL program can be a single source-code module that
you create and compile at the MODULE Design menu. For applications of
greater complexity, however, it is often easier to develop and maintain an
INFORMIX-4GL program that includes several modules. The INFORMIX-4GL
menu includes the Program option so that you can create multiple-module
programs. When you select this option, INFORMIX-4GL searches your
DBPATH directories (see Appendix D) for the program specification data-
base, called syspgm4gl. This database describes the runner options and
the modules of your program.

If INFORMIX-4GL cannot find this database, you are asked if you want one
created. If you enter y in response, INFORMIX-4GL creates the syspgm4gl
database, grants CONNECT privilege to PUBLIC, and displays the PROGRAM
Design menu. As Database Administrator of syspgm4gl, you can later
restrict the access of other users.
Compiling INFORMIX-4GL Source Files 1-45

The Programmer´s Environment
If syspgm4gl already exists, the PROGRAM Design menu appears.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Change the compilation definition of a 4GL application program.

---Press CTRL-W for Help------

You can use this menu to create or modify a multi-module 4GL program
specification, to compile a program, or to execute or analyze a program.

The PROGRAM Design menu supports the following eight options:

Modify Change an existing program specification.

New Create a new program specification.

Compile Compile an existing program.

Planned_Compile Display the steps to compile an existing program.

Run Execute an existing program.

Debug Invoke the INFORMIX-4GL Interactive Debugger.

Undefine Delete an existing program specification.

Exit Return to the INFORMIX-4GL menu.

You must first use the MODULE Design menu and FORM Design menu
to enter and edit the INFORMIX-4GL statements within the component
source-code modules of a 4GL program. Then you can use the PROGRAM
Design menu to identify which modules are part of the same application
program, and to combine all the 4GL modules in an executable program.

The Modify Option

The Modify option enables you to modify the specification of an existing
4GL program. (This option is not valid unless at least one program has
already been specified. If none has, you can create a program specification
by selecting the New option from the same menu.) INFORMIX-4GL prompts
1-46 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
you for the name of the program specification you want to modify. It then
displays a screen and menu that you can use to update the information in the
program specification database, as shown in Figure 1-3:

MODIFY PROGRAM: 4GL Globals Other Program_Runner Rename Exit
Edit the 4GL sources list.

---Press CTRL-W for Help------
Program [myprog]
Runner [fglgo] Runner Path []
Debugger [fgldb] Debugger Path []

4gl Source 4gl Source Path
[main] [/u/john/appl/4GL]
[funct] [/u/john/appl/4GL]
[rept] [/u/john/appl/4GL]
[] []
[] []

Global Source Global Source Path
[] []
[] []

Other .4go Other .4go Path
[obj] []
[] []

Figure 1-3 Example of a Program Specification Entry

The name of the program appears in the Program field. In Figure 1-3 this
name is myprog. You can change the name by selecting the Rename option.
The program name, with extension .4gi, is assigned to the program produced
by compiling and combining all the source files. (Compiling and combining
is done by the Compile option, as described in “The Compile Option” on
page 1-49, or by the Program_Compile option of the MODULE Design menu.)
In this case, the runable program would have the name myprog.4gi.

The 4GL option enables you to update the entries for 4gl Source and 4gl
Source Path. The five rows of fields under these labels form a screen array.
If you select the 4GL option, INFORMIX-4GL executes an INPUT ARRAY
statement so you can move through the array and scroll for up to a maximum
of 100 entries.

The INPUT ARRAY statement description in Chapter 3 explains how to use
function keys to scroll, delete rows, and insert new rows. (You cannot rede-
fine function keys, however, as you can with an INFORMIX-4GL program.)

In the example shown in Figure 1-3, the 4GL source program has been
broken into three modules: a module containing the MAIN program block
(main.4gl), a module containing functions (funct.4gl), and a module contain-
Compiling INFORMIX-4GL Source Files 1-47

The Programmer´s Environment
ing REPORT statements (rept.4gl). These modules are all located in the direc-
tory /u/john/appl/4GL. If a module contains only global variables, you can
list it here or in the Global Source array.

The Globals option enables you to update the Global Source array. If you use
the Global Source array to store a globals module, any modification of the
globals module file causes all 4GL modules to be recompiled when you select
the Compile option.

The Other option enables you to update the entries for the Other .4go and
Other .4go Path fields. This is where you specify the name and location of
other 4GL object files (.4go files) to include in your program. Do not specify
the filename extensions. You can list up to 100 files in this array.

The Program_Runner option enables you to specify the name and location
of the p-code runner to execute your program. You can run INFORMIX-4GL
programs with fglgo (the default) or with a customized p-code runner. A cus-
tomized p-code runner is an executable program that you create to run 4GL
programs that call C functions (see “RDS Programs that Call C Functions” on
page 1-64). If you do not modify the Runner field, your program is executed
by fglgo when you select the Run option from the PROGRAM Design menu.

The MODIFY PROGRAM screen form contains two additional fields labeled
Debugger and Debugger Path. If you have the INFORMIX-4GL Interactive
Debugger, you can also use the Program_Runner option to enter the name
of a customized Debugger. See “RDS Programs that Call C Functions” on
page 1-64 for information about the use of a customized Debugger. For the
procedures to create a customized Debugger, refer to Appendix C of the
Guide to the INFORMIX-4GL Interactive Debugger, which includes an example.

The Exit option of the MODIFY PROGRAM menu returns you to the PROGRAM
Design menu.
1-48 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The New Option

The New option of the PROGRAM Design menu enables you to create a new
specification of the program modules and libraries that make up the desired
application program.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Add the compilation definition of a 4GL application program.

---Press CTRL-W for Help------

The New option is identical to the Modify option, except that you must first
supply a name for your program. INFORMIX-4GL then displays a blank form
with a NEW PROGRAM menu that has the same options as the MODIFY
PROGRAM menu.

The Compile Option

The Compile option compiles and combines the modules listed in the
program specification database, taking into account the time when files
were last updated. INFORMIX-4GL compiles only those files that have been
modified since they were last compiled, except in the case where you have
modified a module listed in the Global Source array. If you have modified a
module that is listed in the Global Source array, all files are recompiled.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Compile a 4GL application program.

---Press CTRL-W for Help------

The Compile option produces a runable p-code file with a .4gi extension.
INFORMIX-4GL lists each step of the compilation as it occurs.
Compiling INFORMIX-4GL Source Files 1-49

The Programmer´s Environment
The Planned_Compile Option

Taking into account the time of last change for the various files in the
dependency relationships, the Planned_Compile option prompts for a
program name and displays a summary of the steps that will be executed
if you select Compile. No compilation actually takes place.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Show the planned compile actions of a 4GL application program.

---Press CTRL-W for Help------
Compiling INFORMIX-4GL sources:

/u/john/appl/4GL/main.4gl
/u/john/appl/4GL/funct.4gl
/u/john/appl/4GL/rept.4gl

Linking other objects:
/u/john/appl/Com/obj.4go

If you have made changes in all the components of the program listed in
Figure 1-3 since the last time they were compiled, INFORMIX-4GL displays
the previous screen.

The Run Option

Select the Run option to execute a compiled program.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Execute a 4GL application program

---Press CTRL-W for Help------

The screen lists any compiled programs (files with the extension .4gi)
and highlights the current program, if one has been specified. This option
resembles the Run option of the MODULE Design menu.

Although .4go files are not displayed, you can also enter the name and
extension of a .4go file. Whatever compiled program you select is executed
by fglgo, or by the runner that you specified in the Runner field of the
Program Specification screen. This screen was illustrated earlier, in the
description of the MODIFY PROGRAM menu.
1-50 Compiling INFORMIX-4GL Source Files

The Programmer´s Environment
The Debug Option

The Debug option works like the Run option but enables you to examine
a 4GL program with the INFORMIX-4GL Interactive Debugger. This option
is not implemented unless you have purchased the Debugger.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Drop the compilation definition of a 4GL application program.

---Press CTRL-W for Help------

The Undefine Option

The Undefine option of the PROGRAM Design menu prompts you for a
program name and removes the compilation definition of that program from
the syspgm4gl database. This action removes the definition only. Your
program and 4GL modules are not removed.

PROGRAM: Modify New Compile Planned_Compile Run Debug Undefine Exit
Drop the compilation definition of a 4GL application program.

---Press CTRL-W for Help------

The Exit Option

The Exit option clears the PROGRAM Design menu from the screen and
restores the INFORMIX-4GL menu.

The QUERY LANGUAGE Menu

The <vk>SQL interactive interface is identical to the interactive <vk>SQL
interface of INFORMIX-SQL. You can use this option only if you have sepa-
rately purchased and installed INFORMIX-SQL on your system.
Compiling INFORMIX-4GL Source Files 1-51

Creating Programs in the Programmer’s Environment
The Query-language option is placed at the top-level menu so you can test
<vk>SQL statements without leaving the INFORMIX-4GL Programmer’s
Environment. You can also use this option to create, execute, and save
<vk>SQL scripts.

Creating Programs in the Programmer’s Environment
Enter the following command at the system prompt to invoke the
Programmer’s Environment:

r4gl

After a sign-on message, the INFORMIX-4GL menu appears.

Creating a 4GL application with the INFORMIX-4GL Rapid Development
System requires the following steps:

1. Creating a new source module or revising an existing source module.

2. Compiling the source module.

3. Linking the program modules.

4. Executing the compiled program.

This process is described below.

Creating a New Source Module

This section outlines the procedure for creating a new module. If your source
module already exists but needs to be modified, skip ahead to the next sec-
tion, “Revising an Existing Module.”

1. Select the Module option of the INFORMIX-4GL menu by pressing m or by
pressing RETURN.

The MODULE Design menu is displayed.

2. If you are creating a new .4gl source module, press n to select the New
option of the MODULE Design menu.

3. Enter a name for the new module.

The name must begin with a letter, and can include letters, numbers,
and underscores. The name must be unique among the files in the same
directory, and among the other program modules, if it will be part of a
multi-module program. INFORMIX-4GL attaches extension .4gl to this
identifier, as the filename of your new source module.

4. Press RETURN.
1-52 Compiling INFORMIX-4GL Source Files

Creating Programs in the Programmer’s Environment
Revising an Existing Module

If you are revising an existing 4GL source file, follow these steps:

1. Select the Modify option of the MODULE Design menu.

The screen lists the names of all the .4gl source modules in the current
directory and prompts you to select a source file to edit.

2. Use the Arrow keys to highlight the name of a source module and press
RETURN, or enter a filename (with no extension).

If you specified an editor with the DBEDIT environment variable, an edit-
ing session begins automatically. Otherwise, the screen prompts you to
specify a text editor.

Specify the name of a text editor, or press RETURN for vi, the default
editor. Now you can begin an editing session by entering 4GL statements.
(The chapters that follow describe INFORMIX-4GL statements and
programs.)

3. When you have finished entering or editing your 4GL code, use an appro-
priate editor command to save your source file and end the text editing
session.

Compiling a Source Module

The .4gl source file module that you create or modify is an ASCII file that must
be compiled before it can be executed.

1. Select the Compile option from the MODULE Design menu.

2. Select the type of module you are compiling, either Object or Runable.

If the module is a complete 4GL program that requires no other modules,
select Runable. This option creates a compiled p-code version of your
program module, with the same filename, but with extension .4gi.

If the module is one module of a multi-module 4GL program, select
Object. This creates a compiled p-code version of your program module,
with the same filename, but with extension .4go. See also “Combining
Program Modules” on page 1-54.

3. If the compiler detects errors, no compiled file is created, and you are
prompted to fix the problem.

Select Correct to resume the previous text editing session, with the
same 4GL source code, but with error messages in the file. Edit the file to
correct the error, and select Compile again. If an error message appears,
repeat this process until the module compiles without error.
Compiling INFORMIX-4GL Source Files 1-53

Creating Programs in the Programmer’s Environment
4. After the module compiles successfully, select Save-and-exit from
the menu to save the compiled program.

The MODULE Design menu appears again on your screen.

5. If your program requires screen forms, select Form from the
INFORMIX-4GL menu to display the FORM Design menu. For information
about designing and creating screen forms, see Chapter 5.

6. If your program displays help messages, you must create and compile
a help file.

Use the mkmessage utility to compile the file. For more information
about this utility, see Appendix B.

Combining Program Modules

If your new or modified module is part of a multi-module 4GL program, you
must combine all of the modules into a single program file before you can run
the program. If the module that you compiled is the only module in your pro-
gram, you are now ready to run your program (see “Executing a Compiled
RDS Program” on page 1-56).

1. Select the Program option from the INFORMIX-4GL menu.

The PROGRAM Design menu appears.

2. If you are creating a new multi-module 4GL program, select the New
option. If you are modifying an existing one, select Modify.

In either case, the screen prompts you for the name of a program.

3. Enter the name (without a file extension) of the program that you are
modifying, or the name to be assigned to a new program.

Names must begin with a letter, and can include letters, underscores (_),
and numbers. After you enter a valid name, the PROGRAM screen
appears, with your program name in the first field.

If you selected Modify, the names and pathnames of the source-code
modules are also displayed. The PROGRAM screen appears below the
1-54 Compiling INFORMIX-4GL Source Files

Creating Programs in the Programmer’s Environment
MODIFY PROGRAM menu, rather than below the NEW PROGRAM menu.
(Both menus list the same options.)

NEW PROGRAM: 4GL Globals Other Program_Runner Rename Exit
Edit the 4GL sources list.

--- Press CTRL-W for Help -------
Program []
Runner [fglgo] Runner Path []
Debugger[fgldb] Debugger Path []

4gl Source 4gl Source Path
[] []
[] []
[] []
[] []
[] []

Global Source Global Source Path
[] []
[] []

Other .4go Other .4go Path
[] []
[] []

4. Identify the files that comprise your program:

• To specify new 4GL modules or edit the list of 4GL modules, select
the 4GL option.

You can enter or edit the name of a module under the heading 4GL
Source ; the .4gl file extension is optional. Repeat this step for every
module. If the module is not in the current directory or in a directory
specified by the DBPATH environment variable, enter the pathname to
the directory where the module resides.

The name of the runner (and of the Debugger, if you have the
INFORMIX-4GL Interactive Debugger) are usually as illustrated in
the PROGRAM screen, unless your 4GL program calls C functions.
For information on calling C functions, see “RDS Programs that
Call C Functions” on page 1-64.

• To enter or edit the name or pathname of a Globals module, select
the Globals option and provide the corresponding information.

• To enter or edit the file or pathname of any .4go modules that you
have already compiled, select the Other option.

5. After you correctly list all of the modules of your 4GL program, select
the Exit option to return to the PROGRAM Design menu.
Compiling INFORMIX-4GL Source Files 1-55

Creating Programs at the Command Line
6. Select the Compile option of the PROGRAM Design menu.

This option produces a file that combines all of your .4gl source files into
an executable program. Its filename is the program name that you speci-
fied, with extension .4gi. The screen lists the names of your .4gl source
modules and displays the PROGRAM Design menu with the Run option
highlighted.

Executing a Compiled RDS Program

After compiling your program modules, you can execute your program.
To do so, select the Run option from the MODULE Design menu. This option
executes the compiled 4GL program.

Menus, screen forms, windows, or other screen output are displayed, accord-
ing to your program logic and your keyboard interaction with the program.

Invoking the Debugger

If you are developing or modifying an INFORMIX-4GL program, you
have much greater control over program execution by first invoking the
INFORMIX-4GL Interactive Debugger. If you have purchased the Debugger,
you can invoke it from the MODULE Design menu or PROGRAM Design
menu of the Programmer’s Environment by selecting the Debug option.

For information on using the Debugger as a programmer’s productivity tool,
see the Guide to the INFORMIX-4GL Interactive Debugger.

Creating Programs at the Command Line
You can also create .4gl source files and compiled .4go and .4gi p-code files
at the operating system prompt. Figure 1-4 shows the process of creating,
compiling, and running or debugging a single-module program from the
command line.
1-56 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
Figure 1-4 Creating and Running a Single-Module Program

In Figure 1-4 the rectangles represent processes controlled by specific
commands, and the circles represent files. Arrows indicate whether a
file serves as input or output for a process.

This diagram is simplified and ignores the similar processes by which forms,
help messages, and any other components of INFORMIX-4GL applications
are compiled and executed.

• The cycle begins in the upper left corner with a text editor, such as vi,
to produce a 4GL source module.

• The program module can then be compiled, using the fglpc p-code
compiler. (If error messages are produced by the compiler, find them

TEXT
EDITOR

.4gl
Source

File

P-CODE
RUNNER

fglgo

P-CODE
COMPILER

fglpc

.4go
Compiled

p-code
File

DEBUGGER
fgldb
Compiling INFORMIX-4GL Source Files 1-57

Creating Programs at the Command Line
in the .err file, and edit the .4gl file to correct the errors. Then recompile
the corrected .4gl file.)

• The following command line invokes the p-code runner:

fglgo filename

where filename specifies a compiled 4GL file to be executed.

Executing a program that is undergoing development or modification
sometimes reveals the existence of run-time errors. If you have licensed
the INFORMIX-4GL Interactive Debugger, you can invoke it to analyze and
identify run-time errors in your program by entering the command:

fgldb filename

where filename specifies your compiled 4GL file. You can then recompile and
retest the program. When it is ready for use by others, they can use the fglgo
runner to execute the compiled program.

A correspondence between commands and menu options of the RDS
Programmer’s Environment is summarized by the following list:

Subsequent sections of this chapter describe how to use the INFORMIX-4GL
Rapid Development System to compile and execute 4GL programs that call
C functions. (These special Rapid Development System procedures require
a C language compiler and linker, which are unnecessary for 4GL applica-
tions that do not call programmer-defined C functions.)

Creating or Modifying a 4GL Source File

Use your system editor or another text-editing program to create a .4gl source
file, or to modify an existing file. For information on the statements you can
include in a 4GL program, see Chapter 3.

Compiling an RDS Source File

You cannot execute a 4GL program until you have compiled each source
module into a .4go file. Do this at the system prompt by entering the fglpc
command, which compiles your 4GL source code, and generates a file

 Command Invokes Menu Option

vi UNIX System Editor Module New/Modify

fglpc 4GL P-Code Compiler Compile
fglgo 4GL P-Code Runner Run

fgldb 4GL Interactive Debugger Debug
1-58 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
containing tables of information and blocks of p-code. You can then run
this compiled code by using the INFORMIX-4GL p-code runner (or the
INFORMIX-4GL Interactive Debugger, if you have the Debugger).

The INFORMIX-4GL source-code module to be compiled should have the
file extension .4gl.

fglpc Command

pathname is the pathname of the directory to contain object and error
files.

source is the name of an INFORMIX-4GL source-code module.
The .4gl extension is optional.

Usage

The fglpc command reads source.4gl files and creates a compiled version
of each, with the filename source.4go. You can specify any number of source
files, in any order, with or without their .4gl filename extensions.

To instruct the compiler to check all <vk>SQL statements for compliance
with ANSI standards, use the -ansi option. If you specify the -ansi option, it
must appear first in your list of fglpc command arguments. The -ansi option
asks for compile-time warning messages if your source code includes Infor-
mix extensions to the ANSI standard for <vk>SQL.

If an error or warning occurs during compilation, INFORMIX-4GL creates a
file called source.err. Look in source.err to find where the error or warning
occurred in your code.

If you specify the -anyerr option, 4GL sets the status variable after evaluating
expressions. The -anyerr option overrides any WHENEVER ERROR state-
ments in your program.

You can use the -p pathname option to specify a non-default directory for
the object (.4go) and error (.err) files. Otherwise, any files produced by fglpc
are stored in your current working directory.

To have your compiled program check array bounds at run time, specify
the -a option. The -a option requires additional processing, so you may want
to use this option only for debugging during development.

-ansi -a -anyerr

fglpc

-p pathname

source

.4gl

-V
Compiling INFORMIX-4GL Source Files 1-59

Creating Programs at the Command Line
To display the version number of the software, specify the -V option. The
version number of your <vk>SQL and p-code compiler software appears on
the screen. Any other command options are ignored. After displaying
this information, the program terminates without compiling.

Examples

The following command compiles a 4GL source file single.4gl, and creates
a file called single.4go in the current directory:

fglpc single.4gl

The next command line compiles two 4GL source files:

fglpc -p /u/ken fileone filetwo

This command generates two compiled files, fileone.4go and filetwo.4go,
and stores them in subdirectory /u/ken. Any compiler error messages are
saved in files fileone.err or filetwo.err in the same directory.

Concatenating Multi-Module Programs

If a program has several modules, the compiled modules must all be
concatenated into a single file, as represented in Figure 1-5:
1-60 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
Figure 1-5 Creating and Running a Multi-Module Program

The UNIX cat command combines the listed files into the file specified after
the redirect symbol (>). For example, the following command combines a list
of .4go files into a new file called new.4gi:

cat file1.4go file2.4go ... fileN.4go > new.4gi

TEXT
EDITOR

.4gl
Source
Files

CONCATENATION
UTILITY

P-CODE
COMPILER

fglpc

.4go
p-code
Object
Files

.4gi
p-code

Executable
Files

P-CODE
RUNNER

fglgo
Compiling INFORMIX-4GL Source Files 1-61

Creating Programs at the Command Line
Note: The new filename of the combined file must have either a .4go or a .4gi
extension. Throughout this manual, extension .4gi designates runable files that have
been compiled (and concatenated, if several source modules comprise the program).
You may wish to follow this convention in naming files, since only .4gi files are
displayed from within the Programmer’s Environment. This convention is also
a convenient way to distinguish complete program files from object files that are
individual modules of a multi-module program.

If your 4GL program calls C functions or INFORMIX-ESQL/C functions, you must
follow procedures described in “RDS Programs that Call C Functions” on page 1-64
before you can run your application.

Running RDS Programs

To execute a compiled 4GL program from the command line, you can invoke
the p-code runner, fglgo.

fglgo Command

filename is the name of a compiled 4GL file. The filename must
have a .4go or .4gi extension. You do not need to enter this
extension on the command line.

argument are any arguments required by your 4GL program.

Usage

If you do not specify a filename extension in the command line, fglgo looks
first for the filename with a .4gi extension, and then for the filename with a .4go
extension.

To have your compiled program check array bounds at run time, specify the
-a option. The -a option requires additional processing, so you may want to
use this option only for debugging during development.

If you specify the -anyerr option, 4GL sets the status variable after
evaluating expressions. The -anyerr option overrides any WHENEVER ERROR
statements in your program.

-a -anyerr

fglgo argument

-V

filename

.4go

.4gi
1-62 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
To display the version number of the software, specify the -V option. The
version number of your <vk>SQL and p-code software appears on the
screen. Any other command options are ignored. After displaying this infor-
mation, the program terminates without invoking the p-code runner.

Note: To run a 4GL program that calls programmer-defined C functions, you cannot
use fglgo. You must instead use a customized p-code runner. The section “RDS Pro-
grams that Call C Functions” on page 1-64 describes how to create a customized
runner.

Examples

To run a compiled program named myprog.4go, enter the following
command line at the operating system prompt:

fglgo myprog

or:

fglgo myprog.4go

Running Multi-Module Programs

To run a program with multiple modules, you must compile each module
and then combine them by an operating system concatenation utility, as
described in an earlier section. For example, if mod1.4go, mod2.4go, and
mod3.4go are compiled INFORMIX-4GL modules that you want to run as one
program, you must first combine them as in the following example:

cat mod1.4go mod2.4go mod3.4go > mods.4gi

You can then run the mods.4gi program by using the command lines:

fglgo mods

or:

fglgo mods.4gi

Running Programs with the Interactive Debugger

You can also run compiled 4GL programs with the INFORMIX-4GL Interac-
tive Debugger. This 4GL source-code debugger is a p-code runner with a rich
command set for analyzing 4GL programs. You can use the Debugger to
locate logical and run-time errors in your 4GL programs and to become more
familiar with 4GL programs. The Debugger must be purchased separately
from INFORMIX-4GL.
Compiling INFORMIX-4GL Source Files 1-63

Creating Programs at the Command Line
If you have the Debugger, you can invoke it at the system prompt by a
command line of the form:

fgldb filename

where filename is any runable 4GL file that you produced by an fglpc
command.

For the complete syntax of the fgldb command, see Chapter 8 of the Guide to
the INFORMIX-4GL Interactive Debugger.

RDS Programs that Call C Functions

If your INFORMIX-4GL Rapid Development System program calls program-
mer-defined C functions, you must create a customized runner to execute the
program. You can do this by following two steps:

1. Edit a structure definition file to contain information about your C
functions.

This file is named fgiusr.c and is supplied with INFORMIX-4GL.

2. Compile and link the fgiusr.c file with the files that contain your C
functions.

To do this, use the cfglgo command.

You can then use the runner produced by the cfglgo command to run
the 4GL program that calls your C functions. Both the fgiusr.c file and the
cfglgo command are described in the pages that follow.

For an example of how to call C functions from a 4GL program, see
Example 13, “Calling a C Function,” in INFORMIX-4GL by Example.

Note: To create a customized runner, you must have a C compiler installed
on your system. If the only functions that your INFORMIX-4GL Rapid Devel-
opment System program calls are INFORMIX-4GL or INFORMIX-ESQL/C
library functions, or functions written in the INFORMIX-4GL language, you
do not need a C compiler and you do not need to follow the procedures described
in this section.
1-64 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
Editing the fgiusr.c File

With your INFORMIX-4GL software, you receive a file named fgiusr.c.
This file is located in the /etc subdirectory of the directory in which you
install INFORMIX-4GL (that is, in $INFORMIXDIR/etc). The following listing
shows the fgiusr.c file in its unedited form:

/**
* *
* INFORMIX SOFTWARE, INC. *
* *
* Title: fgiusr.c *
* Sccsid: @(#)fgiusr.c 4.2 8/26/87 10:48:37 *
* Description: *
* definition of user C functions *
* *

*/

/***
* This table is for user-defined C functions.
*
* Each initializer has the form:
*
* "name", name, nargs
*
* Variable # of arguments:
*
* set nargs to -(maximum # args)
*
* Be sure to declare name before the table and to leave the
* line of 0’s at the end of the table.
*
* Example:
*
* You want to call your C function named "mycfunc" and it expects
* 2 arguments. You must declare it:
*
* int mycfunc();
*
* and then insert an initializer for it in the table:
*
* "mycfunc", mycfunc, 2

*/

#include "fgicfunc.h"

cfunc_t usrcfuncs[] =
{
0, 0, 0
};

The fgiusr.c file is a C language file that you can edit to declare any number
of programmer-defined C functions.
Compiling INFORMIX-4GL Source Files 1-65

Creating Programs at the Command Line
To edit fgiusr.c, you can copy the file to any directory. (Unless this is your
working directory at compile time, you must specify the full pathname of the
edited fgiusr.c file when you compile.) Edit fgiusr.c to specify the following:

• A declaration for each function:

int function-name();

• Three initializers for each function:

" function-name ", function-name, [-] integer,

In the declaration of the function, the parenthesis symbols () must follow
the function-name.

The first initializer is the function name between double quotation marks and
is a character pointer.

The second initializer is the function name without quotes and is a function
pointer.

The third initializer is an integer representing the number of arguments
expected by the function. If the number of arguments expected by the
function can vary, make the third argument the maximum number of
arguments, prefixed with a minus (-) sign.

You must use commas (,) to separate the three initializers. Insert a set
of initializers for each C function that you declare. A line of three zeroes
indicates the end of the structure.

Here is an example of an edited fgiusr.c file:

#include "fgicfunc.h"

int function-name ();

cfunc_t usrcfuncs[] =
{
" function-name ", function-name ,1, 0,0,0
}

Here the 4GL program will be able to call a single C function called
function-name that has one (1) argument.
1-66 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
If you have several 4GL programs that call C functions, you can use fgiusr.c
in either of two ways:

• You can create one customized p-code runner.

In this case, you can edit fgiusr.c to specify all the C functions called from
all your 4GL programs. After you create one comprehensive runner, you
can use it to execute all your 4GL applications.

• You can create several application-specific runners.

In this case, you can either make a copy of the fgiusr.c file (with a new
name) for each customized runner, or you can re-edit fgiusr.c to contain
information on the C functions for a specific application before you com-
pile and link. If you create several runners, you must know which cus-
tomized runner to use with each 4GL application.

In some situations the first method is more convenient, since users do not
have to keep track of which runner supports each 4GL application.

Creating a Customized Runner

You can use the cfglgo command to create a customized runner. You can use
cfglgo to compile C modules and INFORMIX-ESQL/C modules that contain
functions declared in an edited fgiusr.c file. The customized runner can also
run 4GL programs that do not call C functions.

cfglgo Command

cfile is the name of a source file containing INFORMIX-ESQL/C or
C functions to be compiled and linked with the new runner;
or the name of an object file previously compiled from a .c
or .ec file. You can specify any number of uncompiled or
compiled C or INFORMIX-ESQL/C files in a cfglgo command
line.

newfglgo specifies the name of the customized runner.

cfglgo -o newfglgo

-V

cfile

.c

.o

fgiusr.c .ec
Compiling INFORMIX-4GL Source Files 1-67

Creating Programs at the Command Line
Usage

You must have the INFORMIX-ESQL/C product to compile
INFORMIX-ESQL/C files with cfglgo.

The cfglgo command compiles and links the edited fgiusr.c file with your
C program files into an executable program that can run your 4GL applica-
tion. fgiusr.c is the name of the file that you edited to declare C and/or
INFORMIX-ESQL/C functions. If the fgiusr.c file to be linked is not in the cur-
rent directory, you must specify a full pathname. You can also rename the
fgiusr.c file. If you do so, specify its new filename in place of fgiusr.c.

If you do not specify the -o newfglgo option, the new runner is given the
default name a.out.

To display the version number of the software, specify the -V option. The
version number of your <vk>SQL and p-code software appears on the
screen. Any other command options are ignored. After displaying this infor-
mation, the program terminates without creating a customized p-code run-
ner.

Examples

The following example 4GL program calls the C function prdate():

prog.4gl:

main
. . .
call prdate()
. . .
end main
1-68 Compiling INFORMIX-4GL Source Files

Creating Programs at the Command Line
The function prdate() is defined in file cfunc.c, as shown here:

cfunc.c:

#include <stdio.h>
#include <time.h>

prdate()
{
/* This program timestamps file FileX */

long cur_date;
extern int errno;
FILE *fptr;

time(&cur_date);
fptr = fopen("time_file","a");
fprintf(fptr,"FileX was accessed %s", ctime(&cur_date));
fclose(fptr);

}

The C function is declared and initialized in the following fgiusr.c file:

fgiusr.c:

1 #include "fgicfunc.h"
2
3 int prdate();
4 cfunc_t usrcfuncs[] =
5 {
6 "prdate", prdate, 0,
7 0, 0, 0
8 };

An explanation of this example of an fgiusr.c file follows:

line 1: The file fgicfunc.h is always included. This line already exists
in the unedited fgiusr.c file.

line 3: This is the declaration of the function prdate(). You must add
this line to the file.

line 4: This line already exists in the unedited file. It declares the
structure array usrcfuncs.

line 6: This line contains the initializers for function prdate(). Since
it expects no arguments, the third value is zero.

line 7: The line of three zeros indicates that no more functions are
to be included.
Compiling INFORMIX-4GL Source Files 1-69

Creating Programs at the Command Line
In this example, you can use the following commands to compile the 4GL
program, to compile the new runner, and to run the program:

To compile the example 4GL program:

fglpc prog.4gl

To compile the new runner:

cfglgo fgiusr.c cfunc.c -o newfglgo

To run the 4GL program:

newfglgo prog.4go

Running Programs that Call C Functions

After you create a customized runner, you can use it to execute any 4GL
program whose C functions you correctly specified in the edited fgiusr.c file.
The syntax of a customized runner (apart from its name) is the same as the
syntax of fglgo, which is described in “Running RDS Programs” on
page 1-62.

You can also create a customized Debugger to run a 4GL program that calls
C functions. See Appendix C of the Guide to the INFORMIX-4GL Interactive
Debugger for details and an example of how to create a customized Debugger.

Note: You cannot create a customized runner or a customized Debugger from
within the Programmer’s Environment. You must work from the system prompt and
follow the procedures described in the section titled “Creating Programs at the Com-
mand Line” on page 1-56 if you are developing a 4GL program that calls user-defined
C functions. Then you can return to the Programmer’s Environment and use the
Program_Runner option of the MODIFY PROGRAM menu or NEW PROGRAM
menu to specify the name of a customized runner or Debugger.
1-70 Compiling INFORMIX-4GL Source Files

Program Filename Extensions
Program Filename Extensions
Source, runable, error, and backup files generated by INFORMIX-4GL
are stored in the current directory and are labeled with a filename extension.
The following list shows the file extensions for the source, runable, and error
files. These files are produced during the normal course of using the
INFORMIX-4GL Rapid Development System.

The last three files do not exist unless you create or modify a screen form
specification file, as described in Chapter 5.

The following list identifies backup files that are produced when you use
INFORMIX-4GL from the Programmer’s Environment.

Under normal conditions, INFORMIX-4GL creates the backup files
and intermediate files as necessary, and deletes them upon a successful
compilation. If you interrupt a compilation, you may find one or more of
the files in your current directory.

File Description

file.4gl 4GL source file.
file.4go 4GL file that has been compiled to p-code.
file.4gi 4GL file that has been compiled to p-code.
file.err 4GL source error file, created when an attempt to compile a module

fails or produces a warning. The file contains the 4GL source code
plus compiler syntax warnings or error messages.

file.erc 4GL object error file, created when an attempt to compile or to link a
non-INFORMIX-4GL source-code or object module fails. The file
contains 4GL source code and annotated compiler errors.

form.per FORM4GL source file.
form.frm FORM4GL object file.
form.err FORM4GL source error file.

File Description

file.4bl 4GL source backup file, created during the modification and
compilation of a .4gl program module.

file.4bo Object backup file, created during the compilation of a .4go program
module.

file.4be Object backup file, created during the compilation of a .4gi program
module.

file.pbr FORM4GL source backup file.
file.fbm FORM4GL object backup file.
Compiling INFORMIX-4GL Source Files 1-71

Program Filename Extensions
If you compile with a fglpc command line that includes the p pathname
option, INFORMIX-4GL creates the .4gi, .4go, .err, and corresponding backup
files in the directory specified by pathname, rather than in your current
directory.

During the compilation process, INFORMIX-4GL stores a backup copy of
the file.4gl source file in file.4bl. The time stamp is modified on the (original)
file.4gl source file, but not on the backup file.4bl file. In the event of a system
crash, you may need to replace the modified file.4gl file with the backup copy
contained in the file.4bl file.

The Programmer’s Environment does not allow you to begin modifying a
.4gl or .per source file if the corresponding backup file already exists in the
same directory. After an editing session terminates abnormally, for example,
you must delete or rename any backup file before you can resume editing
your 4GL module or form from the Programmer’s Environment.
1-72 Compiling INFORMIX-4GL Source Files

Chapter
2
The INFORMIX-
4GL Language
Overview of 4GL 3

Language Features 3
Lettercase Insensitivity 3
4GL Statements 4
Comments 5

Comment Indicators 6
Restrictions on Comments 6

Source Code Modules and Program Blocks 7
Statement Blocks 8
Statement Segments 9
4GL Identifiers 9

Naming Rules for 4GL Identifiers 10
Scope of Reference of 4GL Identifiers 11
Scope and Visibility of SQL Identifiers 12
Visibility of Identical Identifiers 13

Interacting with Users 15
Ring Menus 15

Selecting Menu Options 16
Ambiguous Keyboard Selections 16
Hidden Options and Invisible Options 16
Disabled Menus 17
Reserved Lines for Menus 17

Screen Forms 17
Visual Cursors 18
Field Attributes 18
Reserved Lines 19

4GL Windows 19
The Current Window 20

On-Line Help 21
The Help Key and the Message Compiler 21
The Help Window 22

Exception Handling 23
Error Handling with SQLCA 23
A Taxonomy of Run-Time Errors 26
2-2 The INFORMIX-4GL Language

Overview of 4GL
An INFORMIX-4GL program consists of at least one source file containing
a series of English-like statements. These obey a well-defined syntax that this
book describes. Here the term “4GL” is a synonym for “INFORMIX-4GL.”

This chapter presents a brief overview of the language. Its theory, applica-
tion, constructs, and semantics are described in detail in INFORMIX-4GL
Concepts and Use, a companion volume to this manual.

This manual assumes that you are using INFORMIX-OnLine Dynamic Server
as your database server. Features specific to INFORMIX-SE are noted.

Language Features
INFORMIX-4GL is an English-like C or COBOL-replacement programming
language that Informix Software, Inc., introduced in 1986 as a tool for
creating relational DBMS applications. Its statement set (page 3-11) includes
the industry-standard SQL language for accessing a relational database.

The INFORMIX-4GL development environment provides a complete
environment for writing 4GL programs.

Lettercase Insensitivity
4GL makes no distinction between uppercase and lowercase letters, except in
character strings enclosed within quotation marks. Use quotation marks in
your source code modules if you need to preserve the lettercase of character
string literals, filenames, pathnames, the names of database entities, or
arguments of C function calls.

4GL is completely free-form, like C or Pascal, and generally ignores TAB
characters, LINEFEED characters, comments, and extra blank spaces or lines
between statements or between statement elements. You can use these
non-significant characters to make your 4GL source code easier to read.
The INFORMIX-4GL Language 2-3

4GL Statements
You can mix uppercase and lowercase letters in the identifiers that you assign
to 4GL entities (page 2-9), but 4GL downshifts any uppercase characters in
identifiers to lowercase at compile time.

4GL Statements
INFORMIX-4GL source code modules can contain statements and comments:

• A statement is a logical unit of code within 4GL programs. See page 3-11
for a list of statements in the INFORMIX-4GL statement set.

• A comment is a specification that INFORMIX-4GL disregards. See
page 2-6 for information about the 4GL comment indicators.

A compilation error usually occurs if your program (or one of its modules or
blocks, as described on pages 1-11 and 1-12) includes only part of a statement,
but not all the required elements. Statements of 4GL can contain identifiers,
keywords, literal constants, operators, and expressions. These terms are
described in subsequent sections of this chapter, and in Chapter 3.

For the purposes of this manual, 4GL supports two types of statements:

• 4GL language statements

• SQL (Structured Query Language) statements

This distinction among statements reflects whether they provide instructions
to the database server (SQL statements) or instructions to the application
(other 4GL statements). See INFORMIX-4GL Concepts and Use for information
about the process architecture of INFORMIX-4GL applications.
2-4 The INFORMIX-4GL Language

Comments
Within the broad division into SQL and other 4GL statements, the 4GL
statement set can be further classified into several functional categories:

Types of SQL Statements Types of 4GL Statements
Data definition Definition and declaration
Data manipulation Program flow
Dynamic management Compiler directives
Data access Storage manipulation
Query optimization Report execution
Data integrity Screen interaction
Cursor manipulation
Stored procedure
OnLine/Optical

The section “The 4GL Statement Set” on page 3-11 identifies the SQL state-
ments and other 4GL statements that comprise these functional categories.

Some statements, called compound statements (page 2-8), can contain other
4GL statements. A set of nested statements within a compound statement is
called a statement block. When necessary, 4GL uses END (with another key-
word to indicate a specific statement) to terminate a compound statement.

Except in a few special cases (like multiple-statement prepared entities, and
some specifications for screen forms and for formatting reports), 4GL requires
no statement terminators; but if you want, you can use the semicolon (;) as
a statement terminator. (See also the PRINT statement on page 6-42, however,
which can use the semicolon to control the format of output from a report.)

Note: Screen forms of 4GL are manipulated by form drivers (page 5-3), but are
defined in form specification files (page 5-6). These ASCII files use a syntax that is dis-
tinct from the syntax of other 4GL features. See Chapter 5 for details of the syntax of
4GL form specification files. Similarly, 4GL reports resemble functions, but require
some special considerations; Chapter 6 describes the syntax of 4GL reports.

Comments
A comment is one or more characters or lines of text that you include in 4GL
source code to assist human readers, but which INFORMIX-4GL ignores. (This
meaning of comment in documenting your program source code is unrelated
to the COMMENTS attribute of a form specification file, or to the COMMENT
LINE keywords of the OPTIONS statement, both of which control on-screen
text displays to assist users of the application.)
The INFORMIX-4GL Language 2-5

Comments
For clarity and to simplify program maintenance, it is recommended that you
document your 4GL code by including comments in your .4gl source files.
You can also use comment symbols during program development to disable
statements without deleting them from your source code modules.

Comment Indicators

You can indicate comments in any of three ways:

• A comment can begin with the left-brace ({) and end with the right-brace
(}) symbol. These can be on the same line or on different lines.

• The pound (#) symbol (sometimes called the “sharp symbol”) also can
begin a comment. The comment terminates at the end of the current line.

• You can also use a pair of hyphen symbols or minus signs (--) to begin
a comment that terminates at the end of the current line. (The use of this
comment indicator conforms to the ANSI standard for SQL.)

All text between the braces symbols (or from the # or -- comment indicator
to the end of the same line) is ignored.

Restrictions on Comments

When using comments, keep the following restrictions in mind :

• Within a quoted string, INFORMIX-4GL interprets comment symbols
as literal characters, rather than as comment indicators.

• Comments cannot appear in the SCREEN section of a form specification
file, nor can the # symbol indicate comments anywhere in a form specifi-
cation file.

• You cannot use the braces indicator to nest comments within comments.

• You cannot specify consecutive minus (--) signs in arithmetic expres-
sions, because 4GL interprets what follows as a comment. Instead use a
blank space () or parentheses (()) symbols to separate consecutive
arithmetic minus signs. For example:

LET x = y --3 # Now variable x evaluates as y
because 4GL ignores text after --

LET x = y -(-3) # Now variable x evaluates as (y + 3).
2-6 The INFORMIX-4GL Language

Source Code Modules and Program Blocks
Source Code Modules and Program Blocks
When you create a 4GL program, enter statements and comments into one or
more ASCII files, called modules. Most statements are organized into larger
units, called program blocks (sometimes called routines, sections, or functions).
4GL modules can include three kinds of program blocks: MAIN, FUNCTION,
and REPORT.

Each block begins with the keyword after which it is named, and ends with
the corresponding END statement keywords (END MAIN, END FUNCTION, or
END REPORT). Program blocks can support 4GL applications in several ways:

• As part of a complete 4GL program (one that includes a MAIN block).

• As a 4GL FUNCTION or REPORT block called by a 4GL program.

• As a 4GL FUNCTION block called by a C language or ESQL/C program.
(The INFORMIX-ESQL/C product requires a separate license.)

The following rules apply to 4GL program blocks:

• Every 4GL program must contain exactly one (1) MAIN program block.
This must be the first program block of the module in which it appears.

• Except for declarations (DATABASE, DEFINE, GLOBALS), no statement can
appear outside a program block.

• Variables that you declare within a program block have a scope of
reference (page 2-11) that is local to the same program block. They cannot
be referenced from other program blocks.

• The GO TO or GOTO keywords cannot reference a statement label in a
different program block. (Statement labels are described in Chapter 3.)

• Program blocks cannot be nested, nor divided among different modules.

• DATABASE (page 3-58) has a compile-time effect when it appears before
the first program block. Within a program block, it has a run-time effect.

• The scope of the WHENEVER statement extends from its occurrence to the
end of the same module, but it must occur within a program block.

REPORT Statement
p. 3-260

FUNCTION Statement
p. 3-111

MAIN Statement
p. 3-191
The INFORMIX-4GL Language 2-7

Statement Blocks
The CALL, RETURN, START REPORT, OUTPUT TO REPORT, and FINISH
REPORT statements, or any expression that includes a programmer-defined
function as an operand (page 3-332), can transfer control of program execu-
tion among program blocks. These statements are described in Chapter 3.

Chapter 4 describes 4GL FUNCTION blocks, and Chapter 6 describes 4GL
REPORT blocks. (See Chapter 1 for details of how source code modules are
compiled and linked to create applications, and naming conventions for file-
names and for file extensions of 4GL modules.)

Statement Blocks
The MAIN, FUNCTION, and REPORT statements are special cases of compound
statements, the 4GL statements that can contain other statements:

CASE FOREACH INPUT PROMPT
CONSTRUCT FUNCTION INPUT ARRAY REPORT
DISPLAY ARRAY GLOBALS MAIN WHILE
FOR IF MENU

Every compound statement of 4GL supports the END keyword to mark the
end of the compound statement construct within the source code module.
Most compound statements also support the EXIT statement keywords, to
transfer control of execution to the statement that follows the END statement
keywords, where statement is the name of the compound statement.

By definition, every compound statement can contain at least one statement
block, a group of one or more consecutive SQL statements or other 4GL state-
ments. In the syntax diagram of a compound statement, a statement block
always includes this element:

(Some contexts permit or require the semicolon (;) to separate statements.)
These are examples of statement blocks within compound 4GL statements:

• The WHEN, OTHERWISE, THEN, or ELSE blocks of CASE or IF statements.

• Statements within FOR, FOREACH, or WHILE loops.

• CONSTRUCT, DISPLAY ARRAY, INPUT, or INPUT ARRAY control blocks.

• Statements following the COMMAND clauses of MENU statements.

• Statements within the ON KEY blocks of PROMPT statements.

• FORMAT section control blocks of REPORT statements.

• All the statements within a MAIN, FUNCTION, or REPORT program block.

statement
2-8 The INFORMIX-4GL Language

Statement Segments
4GL statement blocks can contain other statement blocks. This recursion can
be static, as when a function includes a FOREACH loop that contains an IF
statement. Blocks can also be recursive in a dynamic sense, as when a CALL
statement invokes a function only if some specified condition occurs.

Although most 4GL statements can appear within statement blocks, and most
compound statements can be nested, some restrictions apply. In some cases,
you can circumvent these restrictions by invoking a function to execute a
statement that cannot appear directly within a given statement.

Statement Segments
Any subset of a 4GL statement, including the entire statement, is called a
statement segment. To simplify the description of some statements, many syn-
tax diagrams in this book use rectangles to represent certain 4GL statement
segments (for example, MAIN, FUNCTION, and REPORT on page 2-7). These
are expanded into syntax diagrams on the page referenced in the rectangle,
or elsewhere on the same page, if the rectangle indicates no page number.

Chapter 3 lists and describes statement segments that are elements of several
4GL statements (see page 3-289). Most of these segments are also described
more tersely in the syntax articles that describe the statements in which they
can occur.

4GL Identifiers
Statements and form specifications can reference some 4GL program entities
by name. To create a named program entity, you must declare a 4GL identifier.
When you create any of the following program entities, you must follow the
naming rules (page 2-10) and declaration procedures of INFORMIX-4GL to
declare a valid identifier:

Named Program Entity How Name is Declared
4GL function or its formal argument FUNCTION statement
4GL program variable DEFINE and GLOBAL statements
4GL report or its formal argument REPORT statement
4GL screen field ATTRIBUTES section of form specification
4GL screen form OPEN FORM statement
4GL screen record or screen array INSTRUCTIONS section of form specification
4GL statement label LABEL statement
4GL table alias TABLES section of form specification
4GL window OPEN WINDOW statement
The INFORMIX-4GL Language 2-9

4GL Identifiers
This list excludes columns, constraints, cursors, databases, indexes, prepared
statements, stored procedures, synonyms, tables, triggers, views, and other engine
objects, because those are SQL entities, not 4GL entities. It also omits filenames,
pathnames, and usernames, which must conform to operating system or net-
work rules. Consult the documentation of your database engine or of your
operating system or network for information about non-4GL identifiers.

Naming Rules for 4GL Identifiers

A 4GL identifier is a character string that is used as the name of a program
entity. Every 4GL identifier must conform to the following rules:

• It must include at least one character, but no more than 50.

• It must include only letters, digits, and underscore (_) symbols. Blank
characters and other non-alphanumeric symbols are not allowed.

• The initial character must be a letter or an underscore.

• It is not case-sensitive, so “my_Var” and “MY_vaR” both denote the same
identifier.

Note: If you are using the C Compiler Version of 4GL, there is a chance that only
the first seven characters of a 4GL identifier are recognized by your C compiler. If this
is the case with your C compiler, or if you want your application to be portable to all
C compilers, keep the first seven characters unique among similar program entities
that have the same scope of reference. (Scope of reference is explained later in this
section.)

Unexpected results may result if you declare as an identifier some keywords
of SQL, of the C or C++ languages, or of the operating system or network.
(Appendix H lists some keywords and predefined identifiers of 4GL that
should not be used as identifiers of programmer-defined entities.) If you
receive an error message that seems unrelated to the 4GL statement that elic-
its the error, see if the statement uses a reserved word as an identifier.

These rules resemble the rules for naming SQL identifiers, except that:

• SQL identifiers are typically limited to no more than 18 characters. (But
database names may be limited to 8, 10, or 14, characters, depending on the
database engine and the operating system environment.)

• SQL identifiers within quoted strings are lettercase-sensitive.

• You can use reserved words as SQL identifiers (but such usage may require
qualifiers, can produce errors, and makes your code difficult to read).
2-10 The INFORMIX-4GL Language

4GL Identifiers
If you plan to produce a Rapid Development Version of your 4GL applica-
tion, the total length of the names of all 4GL variables must be less than
32,767.

4GL identifiers can be the same as SQL identifiers, but this may require special
attention within the scope of the 4GL name. See the section “Scope and Visi-
bility of SQL Identifiers” on page 2-12 for more information. The Informix
Guide to SQL: Reference describes SQL identifiers.

Scope of Reference of 4GL Identifiers

Any 4GL identifier can be characterized by its scope of reference, sometimes
called its name scope, or simply its scope. A point in the program where an
entity can be referenced by its identifier is said to be in the scope of reference
of that identifier. Conversely, any point in the program where the identifier
cannot be recognized is said to be outside its scope of reference.

Identifiers of Variables

The scope of reference of a variable is determined by where in the .4gl source
module the DEFINE statement appears that declares the identifier. Identifiers
of variables can be local, module, or global in their scope.

• Local 4GL variables are declared within a program block. These variables
cannot be referenced by statements outside the same program block.

• Module variables (sometimes called modular or static) must be declared
outside any MAIN, REPORT, or FUNCTION program block. These identifi-
ers cannot be referenced outside the same .4gl module.

• Global variables are module variables whose visibility you extend to addi-
tional modules. If the GLOBALS ... END GLOBALS statement declares
variables in one module, you can reference those variables in any other
module that includes a corresponding GLOBALS filename statement.

Other 4GL Identifiers

Also global in scope are names of predefined entities, and of 4GL windows,
forms, reports, and functions. The scope of the identifiers of form entities
(like screen fields, screen arrays, screen records, or table aliases) includes the 4GL
statements that are executed while the form is open. Here is a summary of the
scope of reference of 4GL identifiers for various types of program entities:

The LC_CTYPE environment variable specifies which predefined set of char-
acters can be legally contained in user-defined names. By specifying a char-
acter set other than US ASCII by way of LC_CTYPE, non-ASCII characters
such as the ö (o-umlaut) character can be included in identifiers without
error. For more information about using NLS, see Appendix E.

NLS
The INFORMIX-4GL Language 2-11

4GL Identifiers
Named Program Entity Scope of Reference of Identifier
formal function or report argument Local (to the function or report definition)
4GL function or report Global
4GL variable Global, module, or local (based on declaration)
4GL screen field, array, or record While the form that declares it is displayed
4GL screen form or window Global (after it has been declared)
4GL statement label Local (to the program block in which it appears)
4GL table alias While the form that declares it is displayed

With each named program entity, or name space, 4GL identifiers that have the
same scope of reference must be unique.

Note: In the C language, global variables and functions share the same name space.
Unless you compile your 4GL source code to the Rapid Development Version, a
compilation error results if a global variable has the same identifier as a 4GL function
or report.

4GL recognizes predefined identifiers that you can reference without declara-
tions or definitions. These include the names of built-in functions and opera-
tors like LENGTH() or INFIELD(), constants like TRUE or FALSE, and variables
like status or SQLAWARN. Predefined identifiers are global in scope; unless
you declare a conflicting identifier, they are visible in any statement.

Scope and Visibility of SQL Identifiers

The scope of an SQL cursor or prepared object name is from its DECLARE or PRE-
PARE declaration until the module ends, or until a FREE statement specifies
that name. (After FREE, subsequent DECLARE or PREPARE statements in the
same module cannot reassign the same name, even to an entity that is iden-
tical to whatever FREE referenced.) All other SQL identifiers have global scope.

Statements cannot reference the name of a global database entity like a table,
column, or index after an SQL data definition statement to DROP the entity is
executed, or if the database that contains the entity is not open.

If you assign to a 4GL entity the name of an SQL entity, the 4GL name takes
precedence within its scope. To avoid ambiguity in DELETE, INSERT, SELECT,
and UPDATE statements (and only in these statements), prefix an @ symbol
to the name of any table or column that has the same name as a 4GL variable.
Otherwise, only the 4GL identifier is visible in these ambiguous contexts.
2-12 The INFORMIX-4GL Language

4GL Identifiers
Visibility of Identical Identifiers

A compile-time error occurs if a 4GL program declares the same name for two
variables that have the same scope. You can, however, declare the same name
for two or more variables that differ in their scope of reference. For example,
you can use the same identifier to reference different local variables in differ-
ent program blocks.

You can also declare the same name for two or more variables whose scopes
of reference are different but overlapping. Within their intersection, 4GL
interprets the identifier as referencing the entity whose scope is smaller.
Within the smaller scope of reference, the variable whose scope is a superset
of the other is not visible.

Non-Unique Global and Local Variables

If a local variable has the same identifier as a global variable, the local variable
takes precedence inside the block in which it is declared. Elsewhere in the
program, the identifier references the global variable, as illustrated in the
following INFORMIX-4GL program:

The shaded area indicates the scope of the global identifier called var. This is
superseded in the MAIN and in the first FUNCTION program blocks by the
identifiers of local variables that have the same name. Only the last DISPLAY
statement references the global variable; the first two display local variables.

GLOBALS
 DEFINE var INT

MAIN
 DEFINE var INT

FUNCTION first3()
 DEFINE var INT

Scope is global (entire program).

Scope is local (to MAIN block).

Scope is local (to FUNCTION block).

END MAIN

END FUNCTION

END GLOBALS

LET var = 3

DISPLAY var AT 2,2

 DISPLAY var AT 3,3

 LET var = 2

DISPLAY var AT 4,4

END FUNCTION

CALL first3()

Scope is global (entire program).

}

}

SLEEP 2

 CALL final4()

FUNCTION final4()
LET var = 4

 SLEEP 2

SLEEP 2

}

The INFORMIX-4GL Language 2-13

4GL Identifiers
Non-Unique Global and Module Variables

The identifier of a module variable can be the same as a global identifier that
is declared in a different module. Within the module where it is declared, the
module identifier takes precedence over the global identifier. Statements
within that module cannot reference the global identifier.

The identifier of a module 4GL variable cannot be the same as the name of
a global variable that is declared in the same module.

Non-Unique Module and Local Variables

If a local variable has the same identifier as a module variable, then the local
identifier takes precedence inside the program block in which it is declared.
Elsewhere in the same source code module, the name references the module
variable, as illustrated in the following example:

The shaded area indicates the scope of the module variable called var. This is
superseded in the MAIN block and in the first FUNCTION program block by
the identifiers of local variables called var. The first two DISPLAY statements
show values of local variables; the last displays the module variable.

Within the portion of a program where more than one variable has the same
identifier, INFORMIX-4GL gives precedence to a module identifier over a
global one, and to a local identifier over one with any other scope. Assign
unique names to variables, if you wish to avoid masking part of the scope
of non-unique module identifiers.

MAIN
 DEFINE var INT

FUNCTION first3()
 DEFINE var INT

Scope is modular (entire module).

Scope is local (to MAIN block).

Scope is local (to FUNCTION block).

END MAIN

END FUNCTION

DEFINE var INT

LET var = 3

DISPLAY var AT 2,2

 DISPLAY var AT 3,3

 LET var = 2

DISPLAY var AT 4,4

END FUNCTION

CALL first3()

Scope is modular (entire module).

}

}

SLEEP 2

 CALL final4()

FUNCTION final4()
LET var = 4

 SLEEP 2

SLEEP 2
}

2-14 The INFORMIX-4GL Language

Interacting with Users
Interacting with Users
You can use INFORMIX-4GL to create applications that interact with users in
the following ways:

• Menus (page 2-15)

• Screen forms (page 2-17)

• 4GL windows (page 2-19)

• Help messages (page 2-22)

• Reports based on data retrieved from an SQL database (page 6-3)

Ring Menus
You can use the MENU statement of 4GL to create and display a ring menu
of command options, so that users can perform the tasks that you specify.
The menu of a typical 4GL program, for example, might look like this:

Options : Customer Order Customer Calls Clients State ...
Display information about current customers.

Figure 2-1 The format of a typical 4GL ring menu

If a menu has more options than can fit on one line, ellipsis (. . .) symbols
automatically indicate that more options appear on another page of the
menu. In this example, the ellipsis indicates that additional menu options are
on one or more pages to the right. Similarly, an ellipsis on the left means that
additional menu options are on one or more menu pages to the left.

The user can scroll to the right to display the next page of options by using
the Right Arrow key or Spacebar, or scroll to the left by using the Left Arrow
key.

Option names can include embedded blank characters. By default, an option
is chosen when the user types its initial character, but you can specify addi-
tional activation keys. Different menus can have the same option names.

Menu title.

Current option is highlighted.

Ellipsis shows
that additional
options exist.

Menu
options.

Message describes the
currently highlighted

menu option.
The INFORMIX-4GL Language 2-15

Ring Menus
You can nest MENU statements within other MENU statements, so that
the menus form a hierarchy. A nested MENU statement can appear directly
within a menu control block, or else in a function that is called directly
or indirectly when the user chooses an option of the enclosing menu.

Selecting Menu Options

By pressing the RETURN key, the user can select the menu option that is cur-
rently highlighted in reverse video. In the previous example, Customer
would be selected. The highlight that indicates the current option is called the
menu cursor.

This is called a ring menu because the menu cursor behaves as if the list of
options were cyclic: if the user moves the cursor to the right, past the last
option, then the first option is highlighted. Similarly, moving the menu cursor
to the left, past the first option, highlights the last option.

Pressing the key that matches the initial character of a menu option, such as
O (for Order) in the preceding illustration, selects the corresponding option.

All other options are disabled until the associated COMMAND block
completes its execution. Disabled menu options cannot be selected.

Ambiguous Keyboard Selections

If the user makes an ambiguous menu option selection (for example, by
typing C in the 4GL menu containing Customer, Customer Calls, and Clients
in the previous example, 4GL clears the second line of the menu and prompts
the user to clarify the choice. 4GL displays each keystroke, followed by the
names of the menu options that begin with the typed letters. When 4GL iden-
tifies a unique option, it closes this prompt line and executes the statements
associated with the selected menu option. The backspace key undoes the
most recently typed key.

Hidden Options and Invisible Options

You can suppress the display of any subset of the menu options, disabling
these hidden options. The section “The HIDE OPTION and SHOW OPTION
Keywords” on page 3-203 describes how the MENU statement can program-
matically control whether or not a menu option is hidden or accessible.

Menus can also include invisible options. An invisible option does not appear
in the menu, but it performs the specified actions when the user presses the
activation key. See page 3-200 for a description of how to create invisible
menu options.
2-16 The INFORMIX-4GL Language

Screen Forms
Disabled Menus

Menus themselves are not always accessible. During screen interaction state-
ments like INPUT, CONSTRUCT, INPUT ARRAY, or DISPLAY ARRAY, errors
would be likely to result if the user could interrupt the interaction with menu
choices. 4GL prevents these errors by disabling the entire menu during the
execution of these statements. The menu does not change its appearance
when it is disabled.

Reserved Lines for Menus

The first line (called the Menu line) lists a title and options of the menu. A
menu cursor (a double border) highlights the current option. For each option,
a menu control block (page 3-194) specifies statements to execute if the user
chooses the option.

The next line (called the Menu help line) displays a prompt for the currently
highlighted option. If the user moves the menu cursor to another option, this
prompt is replaced by one for the new current option.

Screen Forms
A screen form is a 4GL display in which the user can view, enter, or edit data.
The following elements can appear in a 4GL screen form:

• Fields: Areas (also called form fields or screen fields) where the user enters
or edits data, or where the 4GL program displays values (page 5-14).

• Field delimiters: Fields are usually enclosed by square brackets (page 5-14).

• Screen records: Logically related sets of fields (page 5-63).

• Screen arrays: Scrollable arrays of fields or of screen records (page 5-66).

• Decorative rectangles: These can enclose all or part of the form (page 4-56).
The INFORMIX-4GL Language 2-17

Screen Forms
• Text: Anything else in the form is called text. This always appears while
the form is visible. Text can include display labels to identify fields, titles
for the form or for its parts, or other ornaments, as in this example:

ORDER FORM
--

Customer Number: []

First Name: [] Last Name: [Grant|Miller]
Address: []

[]
City: [] State: [] Zip: []

Telephone: []
--

Order No: [] Order Date: [>06/05/89] Ship Date: []

Item No. Stock No. Code Description Quantity Price Total

[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
[] [] [] [] [] [] []
--

Chapter 5 describes how to create screen forms.

Visual Cursors

4GL marks the user’s current location (if any) in the current menu, form, or
field with a visual cursor. Usually, each of these is simply called “the cursor”:

• Menu cursor: Reverse video marks the option that the RETURN key can
choose.

• Field cursor: This vertical (|) bar marks the current character position
in the current field.

Field Attributes

Several 4GL statements can set display attributes (page 3-290). A form
specification file can also specify field attributes. These optional descriptors
can control the display when the cursor is in the field, or can supply or restrict
field values during data entry. Field attributes can have effects like these:

• Control cursor movement among fields.

• Set validation and default value field attributes.

Form title

Text

Decorative line

Screen field
2-18 The INFORMIX-4GL Language

4GL Windows
• Set formatting attributes, or automatically invoke a multiple-line editor for
character data, or an external editor to view or modify TEXT or BYTE data.

• Set video display color or intensity attributes.

Reserved Lines

On the 4GL screen, certain lines are reserved for output from specific 4GL
statements or from other sources. By default, these reserved lines appear in the
following positions on the 4GL screen:

Menu line Line 1 displays the menu title and options list from MENU.

Prompt line Line 1 also displays text specified by the PROMPT statement.

Menu help Line 2 displays text describing MENU options. You cannot
 line reposition this line independently of the Menu line.

Message line Line 2 also displays text from the MESSAGE statement.
You can reposition this line with the OPTIONS statement.

Form line Line 3 begins a form display when DISPLAY FORM executes.

Comment line The (last - 1) line of the 4GL screen (or last line in
a 4GL window) displays COMMENTS attribute messages.

Error line The last line of the 4GL screen displays output from the
ERROR statement.

If you display the form in a named 4GL window (page 2-19), these default
values apply to that window, rather than to the 4GL screen, except for the
Error line. (The position of the Error line is defined relative to the entire
screen, rather than to the 4GL window.)

The OPTIONS statement (page 3-228) can change these default positions for
all the 4GL windows of your application. The OPEN WINDOW statement
(page 3-219) can reposition all of these reserved lines (except the Error line)
within the specified 4GL window.

4GL Windows
A 4GL window is a named rectangular area on the 4GL screen. When a 4GL
program starts, the entire 4GL screen is the current window. In 4GL state-
ments that can reference windows, the name of this default window is
SCREEN. The OPEN WINDOW statement (page 3-219) can create additional
4GL windows, and can specify the dimensions and attributes of each win-
dow. In DBMS applications that perform various tasks, displaying distinct
activities in different 4GL windows may make it easier for users to operate
your program.
The INFORMIX-4GL Language 2-19

4GL Windows
Every 4GL window can display no more than one 4GL form. The CURRENT
WINDOW statement can transfer control from one 4GL window to another.

The Current Window

INFORMIX-4GL maintains a list of all the open 4GL windows, called the
window stack. When you open a new 4GL window, it is added to the top of
this stack. The window at the top of the stack is called the current window.

The current 4GL window is always completely visible, and can obscure all
or part of any inactive windows. When you specify a current window, 4GL
adjusts the window stack by moving the new current window to the top, and
closing the gap in the stack left by this window. When you close a window,
4GL removes that window from the window stack. The topmost window
among those that remain on the screen becomes the current window, if the
4GL window that was closed was the current window. All this takes place
within the 4GL screen.

All input and output is done in the current window. If that window contains
a screen form, the form becomes the current form. The DISPLAY ARRAY,
INPUT, INPUT ARRAY, and MENU statements all run in the current window.
If a user displays a form in another window from within one of these
statements (for example, by activating an ON KEY block), the window
containing the new form becomes the current window. When the enclosing
statement resumes execution, the original window is restored as the current
window.

Programs with multiple windows may need to switch to a different current
window unconditionally, so that input and output occur in the appropriate
window. The CURRENT WINDOW statement (page 3-56) makes a specified
window (or SCREEN) the current window. When a window becomes the cur-
rent window, 4GL restores its values for the positions of the Prompt, Menu,
Message, Form, and Comment lines.
2-20 The INFORMIX-4GL Language

On-Line Help
On-Line Help
INFORMIX-4GL includes two distinct facilities for displaying Help messages:

• Development Help

The developer can request Help from the Programmer’s Environment
regarding features of the INFORMIX-4GL language. Press the Help key to
display help on the currently selected menu option.

• Run-Time Help

The user of a 4GL application can display programmer-defined Help
messages.

Run-time Help is displayed when the user presses a designated Help key.
The 4GL statements that can include a HELP clause are these:

• CONSTRUCT (during a query-by-example)

• INPUT and INPUT ARRAY (during data entry)

• MENU (for each menu option)

• PROMPT (when the user must supply keyboard input)

The HELP clause specifies a single Help message for the entire 4GL statement.
To provide field-level Help in these interactive statements, you can use an ON
KEY clause with the INFIELD() operator (page 4-69) and the SHOW_HELP()
function (page 4-81).

The Help Key and the Message Compiler

By default, CONTROL-W acts as the Help key. To specify a non-default Help
key, or to identify a file that contains Help messages, use the OPTIONS state-
ment. If you specify a file of Help messages, 4GL displays the messages in the
Help window.
The INFORMIX-4GL Language 2-21

On-Line Help
The Help Window

Here is an example of a typical Help window display:

HELP: Screen Resume
Ends this Help session.

__
To delete a customer from the database, first use the
query function to find the customer row you want to
delete. Then select the delete option and type "y" to
delete the row or "n" if you decide not to delete the row.

You have reached the end of this help text. Press RETURN to continue.

When the user presses the Help key, Help appears in a Help window. The 4GL
screen is hidden while this window is open.

The Help window has a 4GL ring menu containing Screen and Resume menu
options. Screen display the next page of Help text. Resume closes the Help
window and redisplays the 4GL screen.

You must create these Help messages and store them in an ASCII file. Each
message begins with a unique whole number that has an absolute value no
greater than 32,767 and is prefixed by a period (.) symbol. Statements of 4GL
can reference a Help message by specifying its number in a HELP clause. You
create run-time messages from an ASCII source file by using the mkmessage
utility. For more information about creating Help messages, see “The
mkmessage Utility” on page B-2.

The Help window persists until the user closes it. The user can dismiss
the Help window by using the Resume menu option or by pressing RETURN.
2-22 The INFORMIX-4GL Language

Exception Handling
Exception Handling
INFORMIX-4GL provides facilities for issuing compile-time and link-time
detection of compiler errors, and for run-time detection and handling of
exceptional conditions. These can include any of the following:

• SQL errors, warnings, or NOTFOUND conditions that the database engine
detects, and that 4GL automatically records in the SQLCA area.

• Interrupt, Quit, or other signals from the user or from other sources.

• Run-time errors that 4GL issues.

You can use DEFER and WHENEVER statements to trap and handle errors.The
WHENEVER statement can control the processing of exceptional conditions of
several kinds: SQL warnings, SQL end of data, errors in SQL or screen
operations, or errors in expressions of all kinds.

The DEFER statement can instruct 4GL not to terminate the program when the
Interrupt or Quit key is pressed. The DEFER statement has dynamic scope, as
opposed to the lexical scope of WHENEVER. When Quit or Interrupt is
deferred, it is ignored globally (that is, in all modules).

See the descriptions of DEFER and WHENEVER in Chapter 3 for details of how
to use these statements to handle interrupts, errors, and warnings.

Error Handling with SQLCA
Proper database management requires that all logical sequences of
statements that modify the database continue successfully to completion.
Suppose, for example, that an UPDATE of a customer account shows a reduc-
tion of $100.00 in the payable balance, but for some reason the next step, an
UPDATE of the cash balance, fails; now your books are out of balance. It is
prudent to verify that every SQL statement executes as you anticipated.

INFORMIX-4GL provides two ways to do this:

• The global variable status that can indicate errors both from interactive
statements and from SQL statements.

• A global record SQLCA that allows you to test the success of SQL
statements, and to obtain other information about actions by the engine.
The INFORMIX-4GL Language 2-23

Error Handling with SQLCA
Compared to status, the SQLCA.SQLCCODE variable is typically easier to use
for monitoring the success or failure SQL statements, because it ignores
exceptional conditions that may be encountered in other 4GL statements.

INFORMIX-4GL returns a result code into the SQLCA record after executing
every SQL statement except DECLARE. The SQLCA record has this structure:

DEFINE SQLCA RECORD
SQLCODE INTEGER,
SQLERRM CHAR(71),
SQLERRP CHAR(8),
SQLERRD ARRAY [6] OF INTEGER,
SQLAWARN CHAR (8)

END RECORD

SQLCODE indicates the result of executing an SQL statement. It is set to
zero for a successful execution of most statements and to
NOTFOUND (= 100) for a successfully executed query that
returns zero rows or for a FETCH that seeks beyond the end
of an active set.

SQLCODE is negative after an unsuccessful execution.

At run time, INFORMIX-4GL sets the global variable status
equal to SQLCODE after each SQL statement. (See also the
description of the ANY keyword of WHENEVER on
page 2-26.) The Informix Error Messages, Version 6.0 manual
provides explanations of SQL and 4GL error codes.

SQLERRM is not used at this time.

SQLERRP is not used at this time.

SQLERRD an array of six variables of data type INTEGER

SQLERRD[1] is not used at this time.

SQLERRD[2] is a SERIAL value returned or ISAM error
code.

SQLERRD[3] is the number of rows processed.

SQLERRD[4] is the estimated CPU cost for query.

SQLERRD[5] is the offset of error into the SQL statement.

SQLERRD[6] is the ROWID of last row.
2-24 The INFORMIX-4GL Language

Error Handling with SQLCA
SQLAWARN is a character string of length eight whose individual charac-
ters signal various warning conditions (as opposed to errors)
following the execution of an SQL statement. The characters
are blank if no problems were detected.

SQLAWARN[1] is set to W if any of the other warning charac-
ters has been set to W. If SQLAWARN[1] is
blank, you do not have to check the
remaining warning characters.

SQLAWARN[2] is set to W if one or more data items was
truncated to fit into a CHAR program vari-
able, or if a DATABASE statement selected a
database with transactions.

SQLAWARN[3] is set to W if an aggregate like SUM(), AVG(),
MAX(), or MIN() encountered a NULL value
in its evaluation, or if the DATABASE state-
ment specified an ANSI-compliant database.

SQLAWARN[4] is set to W if a DATABASE statement selected
an INFORMIX-OnLine database, or when
the number of items in the select-list of a
SELECT clause is not the same as the num-
ber of program variables in the INTO clause.
The number of values returned by 4GL is the
smaller of these two numbers.

SQLAWARN[5] is set to W if float-to-decimal conversion is
used.

SQLAWARN[6] is set to W when your program executes an
INFORMIX-4GL extension to ANSI standard
syntax, and the DBANSIWARN environment
variable is set.

SQLAWARN[7] is not used at present.

SQLAWARN[8] is not used at present.
The INFORMIX-4GL Language 2-25

A Taxonomy of Run-Time Errors
A Taxonomy of Run-Time Errors
The WHENEVER statement classifies 4GL run-time errors into five disjunct
categories:

The WHENEVER statement cannot trap fatal errors, the category marked (1).
By definition, a fatal error terminates the program immediately with an error
message, regardless of any WHENEVER directive.

To trap errors of types (2), (3), and (4), specify WHENEVER ERROR. However,
if you want to additionally trap errors of type (5), you need to specify WHEN-
EVER ANY ERROR. (These are arithmetic, Boolean, or conversion errors that
can occur when 4GL evaluates an expression.)

For a list of all the 4GL run-time errors, see Informix Error Messages, Version 6.0.

Fatal Run-Time Errors

In the context of WHENEVER ERROR or WHENEVER ANY ERROR directives, a
“fatal” error means an untrappable error. If you specify WHENEVER ERROR
STOP, then any error terminates the program, but if you specify WHENEVER
ERROR CONTINUE, 4GL attempts to continue execution after most errors.

 The following, however, are fatal run-time errors in category (1):

-1318 A parameter count mismatch has occurred between the calling
function and the called function.

-1319 The 4GL program has run out of run-time data space memory.

-1322 A report output file cannot be opened.

-1323 A report output pipe cannot be opened.

-1324 A report output file cannot be written to.

4GL Errors

Fatal Errors Non-fatal Errors

SQL
 Errors

Screen I/O
Errors

Validation
 Errors

Evaluation
 Errors

(1)

(2) (3) (4) (5)

(‘‘Untrappable’’)
2-26 The INFORMIX-4GL Language

A Taxonomy of Run-Time Errors
-1326 An array variable has been referenced outside of its specified
dimensions.

-1332 A character variable has referenced subscripts that are out of range.

-1335 A report is accepting output or being finished before it has been
started.

-1340 The error log has not been started.

-1362 4GL run-time stack violation.

-1379 Report functions may not be called directly. Please use the
OUTPUT TO REPORT statement.

-4339 4GL has run out of data space memory.

-4392 The 4GL compiler has run out of data space memory to contain the
4GL program symbols. If the program module is very large, dividing
it into separate modules may alleviate the situation.

-4508 PRINT FILE error - cannot open file “filename” for reading.

-4517 Strings of length > 512 cannot be returned from function calls.

-4518 The 4GL program cannot allocate any more space for temporary
string storage.

-4623 Memory allocation error.

Note: This list may not be complete, and is likely to change in future releases, or even
between the time when this manual is written and your current release. If you need
detailed information about untrappable errors, examine the release notes in $INFOR-
MIXDIR/release/TOOLS_6.0 to see if new fatal errors exist.
The INFORMIX-4GL Language 2-27

A Taxonomy of Run-Time Errors
2-28 The INFORMIX-4GL Language

Chapter
3

INFORMIX-4GL
Statements
Chapter Overview 11

The 4GL Statement Set 11
Types of SQL Statements 11
Other Types of 4GL Statements 13

Statement Descriptions 15
CALL 16

Arguments 17
The RETURNING Clause 19
Restrictions on Returned Character Strings 20
Invoking a Function Without CALL 20

CASE 21
The WHEN Blocks 22
The OTHERWISE Block 23
The EXIT CASE Statement 24
The END CASE Keywords 24

CLEAR 26
The CLEAR FORM Option 26
The CLEAR WINDOW Option 26
The CLEAR WINDOW SCREEN Option 27
The CLEAR SCREEN Option 27
The CLEAR field Option 27

CLOSE FORM 29
CLOSE WINDOW 30

CONSTRUCT 31
The CONSTRUCT Variable Clause 33
The ATTRIBUTE Clause 37
The HELP Clause 37
The CONSTRUCT Form Management Blocks 38
The NEXT FIELD Clause 44
The CONTINUE CONSTRUCT Statement 46
The EXIT CONSTRUCT Statement 47
The END CONSTRUCT Keywords 47
Using Built-In Functions and Operators 47
Query by Example 48
Positioning the Screen Cursor 50
Editing During a CONSTRUCT Statement 52
Completing a Query 52

CONTINUE 55
CURRENT WINDOW 56
DATABASE 58

The Database Specification 59
The Default Database at Compile Time 59
The Current Database at Run Time 60
The EXCLUSIVE Keyword 61
Testing SQLCA.SQLAWARN 61

DEFER 62
Interrupting Screen Interaction Statements 62
Interrupting SQL Statements 64

DEFINE 65
The Context of DEFINE Declarations 65
Declaring the Names and Data Types of Variables 67
Variables of Simple Data Types 68
Variables of Large Data Types 70
Variables of Structured Data Types 70

DISPLAY 74
Sending Output to the Line Mode Overlay 76
Sending Output to the Current 4GL Window 77
Sending Output to a Screen Form 80
The ATTRIBUTE Clause 83
Displaying Numeric and Monetary Values 83
3-2 INFORMIX-4GL Statements

DISPLAY ARRAY 85
The ATTRIBUTE Clause 86
The ON KEY Blocks 87
The EXIT DISPLAY Statement 89
The END DISPLAY Keywords 89
Using Built-In Functions and Operators 90
Scrolling During the DISPLAY ARRAY Statement 91
Completing the DISPLAY ARRAY Statement 92

DISPLAY FORM 93
Form Attributes 93
Reserved Lines 93

END 95
ERROR 96

The ATTRIBUTE Clause 97
System Error Messages 97

EXIT 98
Leaving a Control Structure 98
Leaving the Program 99

FINISH REPORT 100
FOR 102

The TO Clause 102
The STEP Clause 103
The CONTINUE FOR Statement 103
The EXIT FOR Statement 104
The END FOR Keywords 104
Databases with Transactions 104

FOREACH 105
Cursor Names 106
The INTO Clause 107
The FOREACH Statement Block 108
The END FOREACH Keywords 109

FUNCTION 111
The Prototype of the Function 112
The FUNCTION Program Block 113
Data Type Declarations 113
The Function as a Local Scope of Reference 114
Executable Statements 115
Returning Values to the Calling Routine 115
The END FUNCTION Keywords 116

GLOBALS 117
Declaring and Exporting Global Variables 117
Importing Global Variables 119

GOTO 122
INFORMIX-4GL Statements 3-3

IF 124
INITIALIZE 125

The LIKE Clause 126
The TO NULL Clause 127

INPUT 128
The Binding Clause 129
The ATTRIBUTE Clause 133
The HELP Clause 133
The INPUT Form Management Blocks 134
The CONTINUE INPUT Statement 143
The EXIT INPUT Statement 143
The END INPUT Keywords 144
Using Built-In Functions and Operators 144
Keyboard Interaction 146
Cursor Movement in Simple Fields 146
Multiple-Segment Fields 147
Using Large Data Types 149
Completing the INPUT Statement 150

INPUT ARRAY 152
The Binding Clause 153
The ATTRIBUTE Clause 155
The HELP Clause 155
The INPUT ARRAY Form Management Blocks 156
The CONTINUE INPUT Statement 169
The EXIT INPUT Statement 169
The END INPUT Keywords 169
Using Built-In Functions and Operators 170
Keyboard Interaction 172
Using Large Data Types 174
Completing the INPUT ARRAY Statement 174

LABEL 177
LET 178
LOAD 181

The Input File 182
The DELIMITER Clause 184
The INSERT Clause 184

LOCATE 186
The List of Large Variables 187
The IN MEMORY Option 187
The IN FILE Option 188
Passing Large Variables to Functions 189
Freeing the Storage Allocated to a Large Variable 190
3-4 INFORMIX-4GL Statements

MAIN 191
The END MAIN Keywords 191
Variables Declared in the MAIN Statement 192

MENU 193
The MENU Control Blocks 194
Invisible Menu Options 200
The CONTINUE MENU Statement 201
The EXIT MENU Statement 202
The NEXT OPTION Clause 203
The HIDE OPTION and SHOW OPTION Keywords 203
Nested MENU Statements 205
The END MENU Keywords 205
Identifiers in the MENU Statement 205
Choosing a Menu Option 206
Scrolling the Menu Options 208
Completing the MENU Statement 209

MESSAGE 213
The Message Line 213
The ATTRIBUTE Clause 214

NEED 216
OPEN FORM 217

The Form Name 217
Specifying a Filename 217
Displaying a Form in a 4GL Window 218

OPEN WINDOW 219
The 4GL Window Stack 220
The AT Clause 220
The WITH ROWS, COLUMNS Clause 221
The WITH FORM Clause 221
The OPEN WINDOW ATTRIBUTE Clause 222

OPTIONS 228
Features Controlled by OPTIONS Clauses 229
Positioning Reserved Lines 231
Cursor Movement in Interactive Statements 232
The OPTIONS ATTRIBUTE Clause 233
The HELP FILE Option 234
Assigning Logical Keys 234
Interrupting SQL Statements 235

OUTPUT TO REPORT 242
PAUSE 244
INFORMIX-4GL Statements 3-5

PREPARE 245
Statement Identifier 246
Releasing a Statement Identifier 246
Statement Text 246
Preparing Statements in 4GL 247
Using Parameters in Prepared Statements 250
Preparing Statements with SQL Identifiers 251
Preparing Sequences of Multiple SQL Statements 252
Using Prepared Statements for Efficiency 253

PRINT 254
PROMPT 255

The PROMPT String 256
The Response Variable 256
The FOR Clause 257
The ATTRIBUTE Clauses 257
The HELP Clause 258
The ON KEY Blocks 258
The END PROMPT Keywords 259

REPORT 260
The Report Prototype 261
The Report Program Block 261
The END REPORT Keywords 262
Two-Pass Reports 262

RETURN 263
The Data Types of Returned Values 264

RUN 265
The RETURNING Clause 266
The WITHOUT WAITING Clause 267

SCROLL 268
SKIP 269
SLEEP 270
START REPORT 271

The TO Clause 271
UNLOAD 274

The Output File 274
The DELIMITER Clause 276

VALIDATE 278
The LIKE Clause 279
The syscolval Table 280
3-6 INFORMIX-4GL Statements

WHENEVER 281
The Scope of the WHENEVER Statement 282
The ERROR Condition 282
The ANY ERROR Condition 283
The NOT FOUND Condition 283
The WARNING Condition 284
The GOTO Option 284
The CALL Option 285
The CONTINUE Option 285
The STOP Option 285

WHILE 287
The CONTINUE WHILE Statement 288
The EXIT WHILE Statement 288
The END WHILE Keywords 288

Statement Segments 289
ATTRIBUTE 290
Color and Monochrome Attributes 291
Precedence of Attributes 292
Data Types of 4GL 293
The Simple Data Types 294

Number Data Types 295
Time Data Types 295
Character Data Types 296

The Structured Data Types 296
The Large Data Types 296
Descriptions of the 4GL Data Types 296
ARRAY 297
BYTE 298
CHAR 299
CHARACTER 300
DATE 300
DATETIME 300
DEC 304
DECIMAL 304
DOUBLE PRECISION 305
FLOAT 305
INT 306
INTEGER 306
INTERVAL 307
MONEY 312
NUMERIC 313
REAL 313
RECORD 313
INFORMIX-4GL Statements 3-7

SMALLFLOAT 315
SMALLINT 316
TEXT 317
VARCHAR 318
Data Type Conversion 319

Converting from Number to Number 319
Converting Numbers in Arithmetic Operations 320
Converting Between DATE and DATETIME 321
Converting CHAR to DATETIME or INTERVAL Data Types 322
Converting Between Number and Character Data Types 323

Summary of Compatible 4GL Data Types 324
Notes on Automatic Data Type Conversion 325

Expressions of 4GL 326
Components of 4GL Expressions 327

Parentheses in 4GL Expressions 327
Operators in 4GL Expressions 327
Operands in 4GL Expressions 331
Named Values as Operands 331
Function Calls as Operands 332
Expressions as Operands 332

4GL Boolean Expressions 333
Logical Operators 333
Boolean Comparisons 334
Data Type Compatibility 337
Evaluating 4GL Boolean Expressions 338

Integer Expressions 338
Binary Arithmetic Operators 339
Unary Arithmetic Operators 340
Literal Integers 340

Number Expressions 341
Arithmetic Operators 341
Literal Numbers 342

Character Expressions 343
Arrays and Substrings 344
String Operators 344
Non-Printable Characters 345
3-8 INFORMIX-4GL Statements

Time Expressions 347
Numeric Date 349
DATETIME Qualifier 349
DATETIME Literal 351
INTERVAL Qualifier 353
INTERVAL Literal 355
Arithmetic Operations on Time Values 356
Relational Operators and Time Values 358

Field Clause 359
Table Qualifiers 361

Owner Naming 361
Database References 362

THRU or THROUGH Keywords and .* Notation 363
INFORMIX-4GL Statements 3-9

3-10 INFORMIX-4GL Statements

Chapter Overview
This chapter describes the INFORMIX-4GL statements. Information about
their syntax and usage is presented in three sections:

• The statement set of 4GL, classified within functional categories.

• Descriptions of the non-SQL statements of 4GL, in alphabetic order.

• Other 4GL elements, called segments, that can appear within statements.

The 4GL Statement Set
INFORMIX-4GL supports the SQL language, but it is sometimes convenient
to distinguish between SQL statements and other 4GL statements:

• SQL statements operate on tables and their columns in a database.

• 4GL statements operate on variables in memory.

Types of SQL Statements
The SQL statements of 4GL can be divided into these functional categories:

• Data definition statements

• Data manipulation statements

• Cursor manipulation statements

• Dynamic-management statements

• Query optimization information statements

• Data access statements

• Data integrity statements

• Stored-procedure statements

• INFORMIX-OnLine/Optical statements

The SQL statements in each of these functional categories are listed on the
following pages.
INFORMIX-4GL Statements 3-11

Types of SQL Statements
Note: For syntax and usage information about most SQL statements, see the
Informix Guide to SQL: Reference. If the statement is preceded by a icon in
the following lists, see the Informix Guide to SQL: Syntax. To use the SQL statements
identified by the 6.0 icon in a 4GL program, you must prepare the statement; for
details, see page 3-247.

SQL Data Definition Statements

ALTER INDEX CREATE VIEW
ALTER TABLE DATABASE
CLOSE DATABASE DROP DATABASE
CREATE DATABASE DROP INDEX
CREATE INDEX DROP PROCEDURE
CREATE PROCEDURE DROP SYNONYM
CREATE PROCEDURE FROM DROP TABLE
CREATE SCHEMA DROP TRIGGER
CREATE SYNONYM DROP VIEW
CREATE TABLE RENAME COLUMN
CREATE TRIGGER RENAME TABLE

SQL Data Manipulation Statements

INSERT SELECT
DELETE UNLOAD
LOAD UPDATE

SQL Cursor Manipulation Statements

CLOSE FLUSH
DECLARE OPEN
FETCH PUT

SQL Dynamic-Management Statements

EXECUTE PREPARE
FREE

SQL Query Optimization Information Statements

SET EXPLAIN UPDATE STATISTICS
SET OPTIMIZATION

SQL Data Access Statements

GRANT SET ISOLATION
LOCK TABLE SET LOCK MODE
REVOKE UNLOCK TABLE

6.0

6.0

6.0

6.0

6.0
6.0

6.0

6.0

OL
OL
3-12 INFORMIX-4GL Statements

Other Types of 4GL Statements
SQL Data Integrity Statements

BEGIN WORK ROLLBACK WORK
COMMIT WORK ROLLFORWARD DATABASE
CREATE AUDIT SET CONSTRAINTS
DROP AUDIT SET LOG
RECOVER TABLE START DATABASE

SQL Stored-Procedure Statements

EXECUTE PROCEDURE SET DEBUG FILE TO

SQL INFORMIX-OnLine/Optical Statements

ALTER OPTICAL CLUSTER
CREATE OPTICAL CLUSTER
DROP OPTICAL CLUSTER
RELEASE
RESERVE
SET MOUNTING TIMING

Note: INFORMIX-OnLine/Optical statements are shown and described in
INFORMIX-OnLine/Optical User Manual.

Other Types of 4GL Statements
Six other types of 4GL statements are available. (These are sometimes called
simply “4GL statements,” to distinguish them from SQL statements.)

• Definition and declaration statements

• Program flow control statements

• Compiler directives

• Storage manipulation statements

• Report execution statements

• Screen interaction statements

4GL Definition and Declaration Statements

DEFINE MAIN
FUNCTION REPORT

SE

OL
SE

OLSE
SE
SE

6.0 6.0

6.0

6.0
6.0

6.0

6.0
6.0

6.0
6.0
INFORMIX-4GL Statements 3-13

Other Types of 4GL Statements
4GL Program Flow Control Statements

CALL GOTO
CASE IF
CONTINUE LABEL
DATABASE OUTPUT TO REPORT
END RETURN
EXIT RUN
FINISH REPORT START REPORT
FOR WHILE
FOREACH

4GL Compiler Directives

DATABASE GLOBALS
DEFER WHENEVER

4GL Storage Manipulation Statements

INITIALIZE LOCATE
LET VALIDATE

4GL Screen Interaction Statements

CLEAR INPUT
CLOSE FORM INPUT ARRAY
CLOSE WINDOW MENU
CONSTRUCT MESSAGE
CURRENT WINDOW OPEN FORM
DISPLAY OPEN WINDOW
DISPLAY ARRAY OPTIONS
DISPLAY FORM PROMPT
ERROR SCROLL

SLEEP

4GL Report Execution Statements

NEED PRINT
PAUSE SKIP

Most 4GL statements are not sensitive to whether INFORMIX-SE or the
OnLine engine supports the application. Only the OnLine engine, however,
can store values in BYTE, TEXT, or VARCHAR columns, or can accept database:
or database@system: as qualifiers to names of tables, views, or synonyms.
3-14 INFORMIX-4GL Statements

Statement Descriptions
Statement Descriptions
The sections that follow describe in alphabetical order the 4GL statements
that are not SQL statements, as well as the SQL statements DATABASE, LOAD,
PREPARE, and UNLOAD. Each statement description includes the following
elements:

• The name and a terse summary of the effect of the 4GL statement.

• A syntax diagram.

• Notes on usage, typically arranged by keyword options or by other
syntax elements.

If a description is longer than a few pages, a table identifies the major topical
headings and their page numbers.

A list of related statements concludes most of these statement descriptions.
INFORMIX-4GL Statements 3-15

CALL
3

CALL
The CALL statement invokes a specified function.

function is the name of the function to be executed.

Usage
You can use the CALL statement to invoke functions from a 4GL application:

• Programmer-defined 4GL functions

• 4GL built-in functions

• C language functions

• ESQL/C functions (if you have the INFORMIX-ESQL/C product)

Programmer-defined 4GL functions are defined in FUNCTION statements
(page 3-111). These can appear in the same source file as the MAIN statement,
or they can be compiled in separate .4gl modules (individually, or with other
function and report definitions) and linked later to the MAIN program block.

When 4GL encounters a CALL statement at run time, it locates the specified
FUNCTION program block and executes its statements in sequence. If the
function is not a built-in function, a link-time error occurs unless exactly one
definition of that function exists in the modules that comprise the program.

The program block containing the CALL statement is called the calling routine.
The RETURNING clause can specify the name of one or more variables that
function returns to the calling routine. This variable (or list of variables) has
the same syntax as a receiving variable (page 3-178) in the LET statement.

Note: Unlike 4GL identifiers, the names of C functions are lettercase-sensitive, and
must typically appear in lowercase letters within the function call. For details about
how to use C functions in 4GL programs, refer to Appendix C.

,
)

,

RETURNING

CALL function

Receiving
Variable
p. 3-178

)

4GL Expression
p. 3-326
-16 INFORMIX-4GL Statements

CALL
In this example, the CALL statement invokes the show_menu() function:

MAIN
...
CALL show_menu()
...

END MAIN
FUNCTION show_menu()

...
END FUNCTION

Chapter 4 provides more information about defining and invoking functions.
Sections that follow describe these topics:

Topic Page
Arguments 3-17
Passing Arguments by Value 3-18
Passing Arguments by Reference 3-18
The RETURNING Clause 3-19
Restrictions on Returned Character Strings 3-20
Invoking a Function without CALL 3-20

Arguments

The expression list after the function name specifies values for CALL to pass
as actual arguments to the function. These actual arguments can be any 4GL
expression (page 3-326), if the returned data types are compatible with the
corresponding formal arguments in the FUNCTION definition. (Parentheses are
required around the argument list, even if the list is empty because you do
not specify any arguments.)

For example, the following program fragment passes the current values of
p_customer.fname and p_customer.lname to the print_name() function:

MAIN
...
CALL print_name(p_customer.fname, p_customer.lname)
...

END MAIN
FUNCTION print_name(fname, lname)

DEFINE fname, lname CHAR(15)
...

END FUNCTION
INFORMIX-4GL Statements 3-17

CALL
When passing arguments to a function, keep the following in mind:

• Values in the argument list must correspond in number and in position
to the formal arguments that were specified in the FUNCTION statement.

• Data types of values must be compatible (page 3-324), but need not be
identical, to those of the formal arguments in the FUNCTION statement.

• An argument can be an expression that contains variables of simple data
types, or simple members of records, or simple elements of arrays.

• You may get unpredictable results if a variable has not yet been assigned
a value before it is used as an argument in a CALL statement.

Passing Arguments by Value

How 4GL passes an argument between the calling routine and the function
depends on the data type of the argument. Except for variables of data type
BYTE or TEXT, arguments are passed to the function by value. That is, a copy
of the argument is passed. (In this case, changing the value of a formal
argument within the function has no effect in the calling routine.)

Passing Arguments by Reference

4GL passes arguments of data type BYTE or TEXT by reference. In this case, the
function works directly with the actual variable, rather than with a copy. That
is, changing a reference to a formal argument in a function changes the cor-
responding variable in the calling routine. You can use this as a substitute for
the RETURNING clause, which does not permit BYTE or TEXT variables. This
example show how to pass a BYTE or TEXT argument to a 4GL function:

MAIN
DEFINE resume TEXT
...
LOCATE resume IN MEMORY
CALL get_resume(resume)
...

END MAIN
FUNCTION get_resume(parm)

DEFINE parm TEXT
...

END FUNCTION

In this example, the LOCATE statement allocates memory for the TEXT
variable, and places a pointer to this variable in resume. Any change to parm
within the get_resume() function also changes the TEXT variable in MAIN.
3-18 INFORMIX-4GL Statements

CALL
The RETURNING Clause

The RETURNING clause assigns values returned by the function to variables
in the calling routine. To use this feature, you must do the following:

• You need to know how many values the function returns. In the CALL
statement, specify that number of variables in the RETURNING clauses.

• If you write the function definition, include expressions in a RETURN
statement (page 3-263) to specify values returned by the function.

When returning values to the CALL statement, keep the following in mind:

• The values in the RETURN statement of the FUNCTION must correspond
in number and position to the variables specified in the RETURNING
clause of the CALL statement. Data types of the RETURNING variables
must be compatible (page 3-324) with the RETURN values, but they need
not be identical.

• It is an error to specify more variables in the RETURNING clause than the
number of values in the RETURN statement of the FUNCTION definition.

• You can return simple or RECORD variables from a function. You cannot,
however, return RECORD members of ARRAY, BYTE, or TEXT data types.

• The RETURNING clause passes information by value.

Because they are passed by reference (page 3-18), variables of the BYTE or
TEXT data types cannot be included in the RETURNING clause.

Note: It is an error to specify a RETURNING clause in the CALL statement if the
function does not return anything. It is not an error to omit the RETURNING clause
when you invoke a function that returns values, if no statement in the calling routine
references the returned values.

Here the returned value in a CHAR variable cannot be longer than 512 bytes.
You can use TEXT variables to pass longer character values by reference
(page 3-18), rather than using the RETURNING clause.
INFORMIX-4GL Statements 3-19

CALL
In the next example, the get_cust() function returns values of whole_price
and ret_price to the CALL statement. 4GL then assigns the whole_price and
ret_price variables to the wholesale and retail variables in the price record:

MAIN
DEFINE price RECORD

wholesale, retail MONEY
END RECORD

...
CALL get_cust() RETURNING price.*
...

END MAIN

FUNCTION get_cust()
DEFINE whole_price, ret_price MONEY
...
RETURN whole_price, ret_price

END FUNCTION

Restrictions on Returned Character Strings

4GL allocates 5 kilobytes of memory to store character strings returned by
functions, in 10 blocks of 512 bytes. This imposes restrictions on the total
length of returned character strings that the RETURNING clause can receive,
and on the number of long character strings. For example, no returned
character value can be longer than 511 bytes (because every string requires a
terminating ASCII 0), and no more than 10 of these 511-byte strings can be
returned to the calling routine.

Invoking a Function Without CALL

If a function returns a value, you can invoke it without using CALL by simply
including it (and any arguments) within an expression in contexts where the
returned value is valid; see “Function Calls as Operands” on page 3-332:

IF get_order() THEN
LET total = total + get_items()

END IF

References
DEFINE, FUNCTION, RETURN, WHENEVER
3-20 INFORMIX-4GL Statements

CASE
CASE
The CASE statement specifies statement blocks to be executed conditionally,
depending on the value of an expression. Unlike IF statements (page 3-124),
CASE does not restrict the logical flow of control to only two branches.

statement is an SQL statement or other 4GL statement.

Usage
The CASE statement is equivalent to a set of nested IF statements. You can
specify two types of CASE statements:

• If you specify an expression following the CASE keyword, you must also
specify INT, SMALLINT, DECIMAL, CHAR(1), or VARCHAR(1) expressions
in the WHEN block. (The syntax diagram indicates a subset of general 4GL
expressions because of these data type restrictions.) 4GL executes the
statement block if both expressions return the same non-NULL value.

• If no expression follows the CASE keyword, the WHEN block must specify
a 4GL Boolean expression; if this returns TRUE, then the WHEN block is exe-
cuted. (See page 3-333, “4GL Boolean Expressions.”) This form of CASE
typically executes more quickly than the equivalent CASE expression form.

There is an implicit EXIT CASE statement at the end of each WHEN block of
statements. An implicit or explicit EXIT CASE statement transfers program
control to the statement that immediately follows the END CASE keywords.

statementWHEN

EXIT CASE

4GL Boolean
Expression

p. 3-333

statement

EXIT CASE

()

Case I: (single criterion)

Case II: (multiple criteria)

WHEN

4GL
Expression

(subset)
p. 3-326

4GL
Expression

(subset)
p. 3-326

END CASE

OTHERWISE
Block

p. 3-23

CASE
INFORMIX-4GL Statements 3-21

CASE
The WHEN Blocks

Each WHEN block specifies an expression and a block of one or more
associated statements. The WHEN block has the following syntax:

statement is an SQL statement or other 4GL statement.

The data type of the expression that you use in the WHEN blocks depends
on whether or not you include an expression following the CASE keyword.
If you omit the CASE expression, then you must include a Boolean expression
(one that returns either TRUE or FALSE or NULL) in each of the WHEN blocks.
If the Boolean expression is TRUE (non-zero), 4GL executes the corresponding
block of statements, as in the following CASE statement:

CASE
WHEN total_price < 1000
...
WHEN total_price = 1000
...
WHEN total_price > 1000
...

END CASE

If CASE expression precedes the first WHEN block, then an INT, SMALLINT,
DECIMAL, CHAR(1), or VARCHAR(1) expression must follow the WHEN
keywords. Each WHEN expression must evaluate to a data type compatible
with the CASE expression. If a WHEN expression matches the value of the CASE
expression, then 4GL executes the statements. In the following example, both
customer_num and the WHEN expression values are of type SMALLINT:

CASE (p_customer.customer_num)
WHEN 101
...
WHEN 102
...

END CASE

statement

WHEN Block

EXIT CASE
4GL Boolean Expression

p. 3-333

4GL Expression
(subset) p. 3-326

WHEN
3-22 INFORMIX-4GL Statements

CASE
4GL does not execute the statement block if the expression in the WHEN block
returns FALSE or NULL, or if the CASE expression returns NULL. (The IF and
WHILE statements and the WHERE clause of a COLOR attribute also treat any
NULL value returned from a 4GL Boolean expression as FALSE.)

The OTHERWISE Block

The OTHERWISE keyword specifies statements to be executed when 4GL does
not find a matching WHEN block to execute. It has this syntax:

statement is an SQL statement or other 4GL statement.

4GL executes the OTHERWISE block only if it cannot execute any of the WHEN
blocks. If you include the OTHERWISE block, it must follow the last WHEN
block. In the next example, if neither 4GL Boolean expression in the WHEN
blocks returns TRUE, 4GL invokes the retry() function:

WHILE question ...
CASE

WHEN answer MATCHES "[Yy]"
CALL process()
LET question = FALSE

WHEN answer MATCHES "[Nn]"
CALL abort()

OTHERWISE
CALL retry()

END CASE
END WHILE

An implied EXIT CASE statement follows the statements in the OTHERWISE
block. Unless the OTHERWISE block contains a valid GOTO statement, pro-
gram control passes to the statement that follows the END CASE statement.

statementOTHERWISE

OTHERWISE
Block

EXIT CASE
INFORMIX-4GL Statements 3-23

CASE
The EXIT CASE Statement

The EXIT CASE statement interrupts processing of the WHEN or OTHERWISE
block. When it executes an EXIT CASE statement, 4GL does the following:

• Skips all statements between the EXIT CASE and END CASE keywords.

• Resumes execution at the statement following the END CASE keywords.

Use of the GOTO statement (page 3-122) to leave a WHEN block, rather than
an implicit or explicit EXIT CASE statement, may cause run-time error -4518.

The END CASE Keywords

Use the END CASE keywords to indicate the end of the CASE statement
construct. These keywords must follow either the last WHEN block or else the
OTHERWISE block. After executing the WHEN or OTHERWISE block, 4GL
passes control to the statement that follows the END CASE keywords.

In the next example, quantity has a SMALLINT value. When quantity equals
min_qty, 4GL executes the statement in the min_qty block. When quantity
equals max_qty, 4GL executes the statements in the max_qty block.

CASE (quantity)
WHEN min_qty
...
WHEN max_qty
...

END CASE
3-24 INFORMIX-4GL Statements

CASE
In the next example, print_option is declared as a global CHAR(1) variable
that controls the destination of output from a REPORT program block. The
value of print_option determines which statement block is executed:

CASE (print_option)
WHEN "f"

PROMPT " Enter file names for labels >"
FOR file_name

IF file_name IS NULL THEN
LET file_name = "labels.out"

END IF
MESSAGE "Printing mailing labels to ",

file_name CLIPPED," -- Please wait"
START REPORT labels_report TO file_name

WHEN "p"
MESSAGE "Printing mailing labels -- Please wait"
START REPORT labels_report TO PRINTER

WHEN "s"
START REPORT labels_report
CLEAR SCREEN

END CASE

Because WHEN blocks are logically disjunct, exactly one of the START
REPORT statements is executed by the CASE statement in this example.

References
FOR, IF, WHILE
INFORMIX-4GL Statements 3-25

CLEAR
CLEAR
The CLEAR statement can clear any of these portions of the screen display:

• The 4GL screen (excluding any open 4GL windows within it).

• Any specified 4GL window.

• All of the fields in the current screen form.

• A list of one or more specified fields in the current screen form.

window is the name of the 4GL window to be cleared.

Usage
The CLEAR statement clears the specified portion of the display. It does not
change the value of any 4GL variable.

The CLEAR FORM Option

Use CLEAR FORM to clear all fields of the form in the current 4GL window:

CLEAR FORM

The CLEAR FORM option has no effect on other parts of the screen display.

The CLEAR WINDOW Option

Use CLEAR WINDOW window to clear a specified 4GL window, for window
a 4GL identifier that was declared in an OPEN WINDOW statement:

CLEAR WINDOW threshold

If the window that you specify has a border, the CLEAR WINDOW statement
does not erase the border. You can specify any 4GL window, including one
that is not the current window, but the CLEAR WINDOW statement does not
affect which 4GL window is the current 4GL window in the window stack.

Field Clause
p. 3-359

CLEAR

SCREEN

FORM

,

windowWINDOW
3-26 INFORMIX-4GL Statements

CLEAR
The CLEAR WINDOW SCREEN Option

If you specify CLEAR WINDOW SCREEN, then 4GL does the following:

• Clears the 4GL screen, except for the area occupied by any open 4GL
windows.

• Leaves any information in the open 4GL windows untouched.

• Does not change the current 4GL window setting.

As in several other 4GL statements, the keyword SCREEN here specifies the
4GL screen.

The CLEAR SCREEN Option

Use the CLEAR SCREEN option to make the 4GL screen the current 4GL
window, and to clear everything on it, including the Prompt, Message, and
Error lines. In the next example, choosing the Exit option clears the screen
and terminates the MENU statement:

MENU "ORDERS"
COMMAND "Add-order"

"Enter new order into database and print invoice"
HELP 301

CALL add_order()
...

COMMAND "Exit"
"Return to MAIN MENU"
HELP 305

CLEAR SCREEN
EXIT MENU

END MENU

The CLEAR field Option

Use the CLEAR field option to clear the specified field or fields in a form that
the current 4GL window displays. For the syntax of the field clause, see the
section “Field Clause” (page 3-359) later in this chapter. The next example
clears the fields named fname, lname, address1, city, state, and zipcode:

CLEAR fname, lname, address1, city, state, zipcode

If you specify table.* (for table a name or alias from the TABLE section of the
form specification file), CLEAR clears all the fields associated with columns of
that table. (See “INSTRUCTIONS Section” in Chapter 5 for a description of
screen records and screen arrays that the record.* notation can reference.)
INFORMIX-4GL Statements 3-27

CLEAR
For example, the following program fragment clears the orders screen record
and the first four records of the s_items screen array:

FOREACH order_list INTO p_orders.*
CLEAR s_orders
FOR idx = 1 TO 4

CLEAR s_items[idx].*
END FOR
DISPLAY p_orders.* TO orders.*
...

END FOREACH

If a screen form is in the current 4GL window, then the following statement
clears all the screen fields that are not associated with database columns:

CLEAR FORMONLY.*

Any fields that you associated with database columns in the ATTRIBUTES
section of the form specification file are not affected by this statement.

References
CLOSE FORM, CLOSE WINDOW, CURRENT WINDOW, DISPLAY, DISPLAY
ARRAY, INPUT, INPUT ARRAY, OPEN FORM, OPEN WINDOW, OPTIONS
3-28 INFORMIX-4GL Statements

CLOSE FORM
CLOSE FORM
The CLOSE FORM statement releases the memory required for a form.

form is the name of the 4GL screen form to be cleared from memory.

Usage
When it executes the OPEN FORM statement, 4GL loads the compiled screen
form into memory. Until you close the form, it remains in memory. To regain
the memory allocated to a form, you can use the CLOSE FORM statement.
For example, the following program fragment opens and displays the o_cust
form, and then closes both the form and the 4GL window cust_w:

OPEN WINDOW cust_w AT 3,5 WITH 19 ROWS, 72 COLUMNS
OPEN FORM o_cust FROM "custform"
DISPLAY FORM o_cust ATTRIBUTE(MAGENTA)
...
CLOSE FORM o_cust
CLOSE WINDOW cust_w

If you open the form by using the WITH FORM option of the OPEN WINDOW
statement, you do not need to use the CLOSE FORM statement before closing
the 4GL window. In this case, CLOSE WINDOW both closes the form (releasing
the memory allocated to that form) and closes the 4GL window.

CLOSE FORM affects memory use only, not the logic of the 4GL program. After
you use CLOSE FORM to release the memory that supports a form, its name is
no longer associated with the form. If you subsequently try to redisplay the
form, an error message results. If you execute a new OPEN FORM or OPEN
WINDOW statement that specifies the same form name that an OPEN FORM or
OPEN WINDOW statement referenced previously, 4GL automatically closes
the previously opened form before opening the new form.

References
CLOSE WINDOW, DISPLAY FORM, OPEN FORM, OPEN WINDOW

formCLOSE FORM
INFORMIX-4GL Statements 3-29

CLOSE WINDOW
CLOSE WINDOW
The CLOSE WINDOW statement closes a specified 4GL window.

window is the identifier of the 4GL window to be closed.

Usage
The CLOSE WINDOW statement causes 4GL to take the following actions:

• Clears the specified 4GL window from the 4GL screen, and restores any
underlying display.

• Frees all resources used by the 4GL window, and deletes it from the 4GL
window stack.

• If the OPEN WINDOW statement included the WITH FORM clause, the
CLOSE WINDOW statement closes both the form and the 4GL window.

4GL maintains an ordered list of open 4GL windows, called the window stack.
When you open a new 4GL window, the new window is added to the stack
and becomes the current window, meaning that it occupies the top of the stack.
If you close the current window, the next 4GL window on the stack becomes
the new current window. If you close any other window, 4GL deletes it from
the window stack, leaving the current window unchanged.

Closing a window has no effect on values of variables that were set while the
window was open.

This program fragment opens and closes a 4GL window called stock_w:

OPEN WINDOW stock_w AT 7, 3 WITH 6 ROWS, 70 COLUMNS
...
CLOSE WINDOW stock_w

You cannot specify CLOSE WINDOW SCREEN. If window is currently being
used for input, CLOSE WINDOW generates a run-time error. For example, you
cannot close the current 4GL window while a CONSTRUCT, DISPLAY ARRAY,
INPUT, INPUT ARRAY, or MENU statement is executing.

References
CLEAR, CLOSE FORM, CURRENT WINDOW, OPEN WINDOW, OPTIONS

windowCLOSE WINDOW
3-30 INFORMIX-4GL Statements

CONSTRUCT
CONSTRUCT
The CONSTRUCT statement stores in a character variable the 4GL Boolean
expression that corresponds to the query by example that a user specifies. You
can use this character variable as the WHERE clause of a SELECT statement.

number is a literal integer (page 3-340) to specify a Help message number.

Usage
The CONSTRUCT statement is among the statements required to allow users
to perform a query by example. Query by example lets a user query a database
by specifying values or ranges of values for screen fields that correspond to
database columns. 4GL converts these values into a Boolean expression that
specifies search criteria in the WHERE clause of a SELECT statement.

The CONSTRUCT statement can also control the environment in which
the user enters search criteria, and can restrict the values that the user enters.
To use the CONSTRUCT statement, you must do the following:

• Define fields linked to database columns in a form specification file.

• Declare a character variable with the DEFINE statement.

• Open and display the screen form with either of the following:

o OPEN FORM and DISPLAY FORM statements.

o OPEN WINDOW statement with a WITH FORM clause.

• Use the CONSTRUCT statement to store in the character variable a Boolean
expression based on search criteria that the user enters in the fields.

The CONSTRUCT statement activates the current form. This is the form most
recently displayed or, if you are using more than one 4GL window, the form
currently displayed in the current window. You can specify the current
window by using the CURRENT WINDOW statement. When the CONSTRUCT
statement completes execution, the form is deactivated.

END
CONSTRUCT

ATTRIBUTE
Clause
p. 3-290

CONSTRUCT
Form

Management
Block p. 3-38

HELP
number

CONSTRUCT
Variable
Clause
p. 3-33

CONSTRUCT
INFORMIX-4GL Statements 3-31

CONSTRUCT
When it encounters the CONSTRUCT statement, 4GL does the following:

1. Displays blank spaces in all the screen fields of the CONSTRUCT field list.

2. Moves the screen cursor to the first screen field in that list.

3. Waits for the user to enter some value as search criteria in the field.
(For fields where the user enters no value, any value in the corresponding
database column satisfies the search criteria.)

After the user chooses Accept, CONSTRUCT uses AND operators to combine
field values as search criteria in a Boolean expression, and stores this in
a character variable. By performing the following steps, you can use this
variable in a WHERE clause to search the database for matching rows:

1. Concatenate the character variable that contains the Boolean expression
with one or more character strings to create the string representation of an
SQL statement to be executed. (The Boolean expression generated by the
CONSTRUCT statement is typically used to create SELECT statements.)

2. Use the PREPARE statement to create an executable SQL statement from
the character string that was generated in the previous step.

3. Execute the prepared statement in one of the following ways:

• Use an SQL cursor with DECLARE and FOREACH statements (or else
OPEN and FETCH statements) to execute a prepared SELECT statement
that includes no INTO clause.

• Use the EXECUTE statement to execute other SQL statements.

Environment variables that format data values, such as DBDATE, DBTIME,
DBFORMAT, DBFLTMASK, or DBMONEY, have no effect on the contents of the
Boolean expression.

The following are among the topics that are described in this section:

Topic Page
The CONSTRUCT Variable Clause 3-33
The ATTRIBUTE Clause 3-37
The HELP Clause 3-37
The CONSTRUCT Form Management Blocks 3-38
The END CONSTRUCT Keywords 3-47
Using Built-In Functions and Operators 3-47
Query by Example 3-48
Positioning the Screen Cursor 3-50
Editing During a CONSTRUCT Statement 3-52
Completing a Query 3-52
3-32 INFORMIX-4GL Statements

CONSTRUCT
The CONSTRUCT Variable Clause

The CONSTRUCT variable clause specifies a character variable to store search
criteria, and one or more screen fields in which the user can enter search cri-
teria for database columns. The CONSTRUCT variable clause has this syntax:

column is the name of some database column in table.

database is the name of the database in which the table resides.

owner is the username of the owner of the table containing the column.

server is the name of the host system where database resides.

table is the name or synonym of a table or view in the specified database,
in DBPATH, or in the current database (page 3-60) most recently,
specified by a DATABASE statement within this program block.

variable is the name of a CHAR or VARCHAR variable that stores the 4GL
Boolean expression that the CONSTRUCT statement creates, sum-
marizing the user-entered search criteria.

This clause temporarily binds the specified screen fields to database columns.
It allows you to identify database columns for which the user can enter search
criteria. You can map the fields implicitly (with the BY NAME clause)
or explicitly (with the FROM clause). With either method, each field and

variable ON FROM

BY NAME variable ON

,

Field Clause
p. 3-359

CONSTRUCT
Variable Clause

database

OL

@ server

owner .
:

,

table .

column

*

Table Qualifier

table .

Column List

Column List

Column List

Table Qualifier

Table Qualifier
INFORMIX-4GL Statements 3-33

CONSTRUCT
corresponding column must be the same or compatible data types. The order
of fields in the FROM clause determines the default sequence in which the
screen cursor moves from field to field on the screen form. Within a screen
array, you can specify only one screen record.

4GL “constructs” a character variable by associating each column name in the
ON clause with search criteria that the user enters into the corresponding field
(as specified in the FROM clause, or implied by the BY NAME keywords). You
can use the information stored in character variable in the WHERE clause of a
prepared SELECT statement to retrieve rows from the database. To avoid
overflow, the length of the variable should be a several times the total length
of all the fields, since the Boolean expression includes additional operators.

The BY NAME Clause

You can use the BY NAME clause when the fields on the screen form have the
same names as the corresponding columns in the ON clause. The BY NAME
clause maps the form fields to columns implicitly. The user can query only
the screen fields implied in the BY NAME clause. The following CONSTRUCT
statement, for example, assigns search criteria to the variable query_1:

CONSTRUCT BY NAME query_1 ON company, address1, address2,
city, state, zipcode

The user can enter search criteria in the fields named company, address1,
address2, city, state, and zipcode. Because these fields have the same names
as the columns specified after the ON keyword, the statement uses the BY
NAME clause. If the field names do not match the column names, you must
use the FROM clause instead of the BY NAME clause. This functionally equiv-
alent CONSTRUCT statement uses the FROM clause:

CONSTRUCT query_1
ON company, address1, address2, city, state, zipcode
FROM company, address1, address2, city, state, zipcode

If the column names in a CONSTRUCT BY NAME statement are associated
with field names in a screen array, the construct takes place in the first row of
the screen array. If you want the CONSTRUCT to take place in a different row
of the screen array, you must use the FROM clause, not the BY NAME clause.
3-34 INFORMIX-4GL Statements

CONSTRUCT
You cannot preface column names with a qualifier that includes an owner
name, a server name, or a pathname when you use the BY NAME clause. Use
the FROM clause to specify table aliases in the field list when the qualifier of
any column name requires an owner name, a server name, or a pathname.

The ON Clause

The ON clause specifies a list of database columns for which the user will
enter search criteria. These columns do not have to be from the same table. If
the CONSTRUCT statement includes the BY NAME keywords, be sure that the
fields on the screen form have the same names as the columns listed after the
ON keyword. If the CONSTRUCT statement includes a FROM clause, the
expanded list of columns in the ON clause must correspond in order and
in number to the expanded list of fields in the FROM clause.

You can use the notation table.* (page 3-363), meaning “every column in
table,” for all or part of the column list. The order of columns within table
depends on their order in the syscolumns system catalog table when you
compile your program. If the ALTER TABLE statement has changed the order,
the names, the data types, or the number of the columns in table since you
compiled your program, then you might need to modify your program and
its screen forms that reference that table.

The following example uses the customer.* notation as a macro for listing all
columns in the customer table and cust.* as a macro for all the fields in the
customer screen record:

CONSTRUCT query_1 ON customer.* FROM cust.*

The FROM Clause

The FROM clause specifies a list of screen fields or screen records in the form.
You cannot use the FROM clause if you include the BY NAME clause, but you
must use the FROM clause if any of the following conditions are true:

• The names of fields on the screen form are different from the names of the
corresponding database columns in the ON clause.

• You want to reference fields in a screen array beyond the first record.

• You specify additional qualifiers for table.column in the ON clause (for
example, for external or non-unique table names, or to reference the owner
of a table if the database is ANSI-compliant).
INFORMIX-4GL Statements 3-35

CONSTRUCT
The user can position the cursor only in fields specified in the FROM clause.
The list of fields in the FROM clause must correspond in order and in number
to the list of database columns in the ON clause, as in this example:

CONSTRUCT query_1 ON stock_num, manu_code, description
FROM stock_no, m_code, descr

If you use the record.* notation for all or part of a field list, be sure that the
implied order of fields corresponds to the order of columns in the ON clause.
(The order of fields in record depends on its declaration in the form.)

In the following CONSTRUCT statement, the field list includes the stock_num
and manu_code fields, as well as the screen record s_stock.* that corresponds
to the remaining columns in the stock table:

CONSTRUCT query_1 ON stock.*
FROM stock_num, manu_code, s_stock.*

To specify an individual field of a screen array in the FROM clause, use the
notation record [n]. field name to indicate the row in which the CONSTRUCT
takes place. For example, the following CONSTRUCT statement allows the
user to enter search criteria in the third record of screen array s_items:

CONSTRUCT query_1 ON items.* FROM s_items[3].*

The FROM clause is required when the field list includes an alias representing
a table, view, or synonym name that includes any qualifier. For example, in
the following CONSTRUCT statement, cust is a table alias declared in the form
specification file for the actg.customer table, where actg is an owner prefix.
This table alias must be prefixed to each field name in the FROM clause,
because the column qualifiers in the ON clause include an owner name:

CONSTRUCT query_1 ON
actg.customer.fname, actg.customer.lname,
actg.customer.company
FROM cust.fname, cust.lname, cust.company
3-36 INFORMIX-4GL Statements

CONSTRUCT
The ATTRIBUTE Clause

For information about the ATTRIBUTE clause, see page 3-290. This section
describes how to use the ATTRIBUTE clause in a CONSTRUCT statement.
You can use the ATTRIBUTE clause to apply display attributes to the fields
specified implicitly in the BY NAME clause or explicitly in the FROM clause.
If you use the ATTRIBUTE clause, the following attributes do not apply to
the fields:

• Default attributes listed in syscolatt table. (See the description of “The
upscol Utility” on page B-5.)

• Default attributes (REVERSE and COLOR) in the form specification file.

• The NOENTRY attribute in the form specification file.

The CONSTRUCT attributes temporarily override any display attributes set
by the INPUT ATTRIBUTE clause of an OPTIONS or OPEN WINDOW statement.
Attributes in the ATTRIBUTE clause of CONSTRUCT apply to all the fields in
the field list, but only during the current activation of the form. When the
user deactivates the form, the form reverts to its previous attributes.

The following CONSTRUCT statement includes an ATTRIBUTE clause that
specifies CYAN and REVERSE for values entered in screen fields that have the
same names as the columns in the customer table:

CONSTRUCT BY NAME query_1 ON customer.*
ATTRIBUTE (CYAN, REVERSE)

The HELP Clause

The HELP clause specifies the number of the Help message associated with
the CONSTRUCT statement. This message appears in the Help window
(page 2-22) when the user presses the Help key from any field in the field list.
The Help key is CONTROL-W by default, but the OPTIONS statement
(page 3-228) can assign a different physical key as the Help key.

You create Help messages in an ASCII file. For details of how to create a run-
time version of the Help file, see “The mkmessage Utility” on page B-2. An
error occurs if 4GL cannot open the Help file, or if number is not in the Help
file, or if the specified value is greater than 32,767. To provide field-level
Help, use an ON KEY clause with the INFIELD() operator and SHOWHELP()
function; both are described in Chapter 4.

If you provide messages to assist the user through an ON KEY clause, rather
than by the HELP clause, the message must be displayed in a 4GL window
within the 4GL screen, rather than in the separate Help window.
INFORMIX-4GL Statements 3-37

CONSTRUCT
The CONSTRUCT Form Management Blocks

Each CONSTRUCT form management block includes a statement block of at
least one statement, and an activation clause that specifies when to execute the
statement block. The activation clause and statement block correspond respec-
tively to the left-hand and right-hand syntax elements in this diagram:

field is the name of a field that was either explicitly or implicitly ref-
erenced in the CONSTRUCT Variable clause (page 3-33).

key is one of the keywords that are listed in the section “The ON KEY
Blocks” on page 3-41.

statement is an SQL or other 4GL statement.

You can use a CONSTRUCT form management block to specify:

• Statements to execute before and after the query by example.

• Statements to execute before and after a given field.

• Statements to execute if a user presses some key sequence.

• The next field to which to move the screen cursor.

• When to exit from the CONSTRUCT statement.

4GL executes the statements in the block according to the following events:

• The fields into which and from which the user moves the cursor.

• The keys that the user presses.

CONSTRUCT
Form Management Block

BEFORE CONSTRUCT1

AFTER CONSTRUCT1

BEFORE FIELD

,

field

AFTER FIELD

ON KEY

,

key)(

statement

NEXT FIELD PREVIOUS

NEXT

CONTINUE CONSTRUCT

EXIT CONSTRUCT

Field
Clause
p. 3-359
3-38 INFORMIX-4GL Statements

CONSTRUCT
Statements can include CONTINUE CONSTRUCT and EXIT CONSTRUCT, the
NEXT FIELD clause, and most 4GL and SQL statements. The CONSTRUCT, or
INPUT statement is not valid in a CONSTRUCT form management block, but
you can call a function that executes CONSTRUCT, INPUT, or INPUT ARRAY
statements in a different 4GL window.

4GL temporarily deactivates the form while executing statements in a form
management block. After executing the statements, 4GL reactivates the form,
allowing the user to continue modifying values in fields.

The Precedence of Form Management Blocks

The CONSTRUCT statement can list form management blocks in any order.
You should develop some consistent ordering, however, so that your code is
more readable than if the blocks were randomly ordered. When you use one
or more form management blocks, you must include the END CONSTRUCT
statement to terminate the CONSTRUCT statement. If you include several
form management blocks, 4GL processes them in the following sequence,
regardless of the order in which they appear in the CONSTRUCT statement:

1. BEFORE CONSTRUCT (executed before the user begins entering values)

2. BEFORE FIELD (executed before the user enters values in a specified field)

3. ON KEY (executed after the user presses a specified key)

4. AFTER FIELD (executed after the user enters values in a specified field)

5. AFTER CONSTRUCT (executed after the user has finished entering values)

If you include no form management blocks, the program waits while the user
enters values in the fields. When the user accepts the values in the form, the
CONSTRUCT statement terminates, and control passes to the next statement.

The BEFORE CONSTRUCT Block

4GL sets the values of all the screen fields to blank spaces when it first exe-
cutes a CONSTRUCT statement. You can use the BEFORE CONSTRUCT block
to supply different initial default values for the fields.

CONSTRUCT executes the statements in the BEFORE CONSTRUCT block once
before it allows the user to perform the query by example. You can use
DISPLAY statements in the BEFORE CONSTRUCT block to populate the fields;
DISPLAY initializes the field buffers to the displayed values. To determine the
first field where criteria can be entered, you can use the NEXT FIELD clause.
INFORMIX-4GL Statements 3-39

CONSTRUCT
For example, the following DISPLAY statement assigns the values in the rec
program record to the field buffers associated with the srec screen record:

BEFORE CONSTRUCT
DISPLAY rec.* TO srec.*
NEXT FIELD lname

The CONSTRUCT statement can include only one BEFORE CONSTRUCT block.
You cannot include the FIELD_TOUCHED() operator in this block.

The BEFORE FIELD Blocks

This block specifies statements that are associated with a specific screen field.
4GL executes the BEFORE FIELD block statements of a field whenever the
screen cursor enters the field, and before the user types search criteria.

You can use a NEXT FIELD clause within a BEFORE FIELD block to restrict
access to a field. You can also use a DISPLAY statement within a BEFORE
FIELD block to display a default value in a field.

The following program fragment defines two BEFORE FIELD blocks. The first
block uses the NEXT FIELD clause to limit access to the salary field to certain
users. The second block displays the current date in the q_date field:

CONSTRUCT BY NAME query_1 ON employee.*
BEFORE FIELD salary

IF (username <> "manager") AND (username <> "admin")
THEN NEXT FIELD NEXT

END IF
BEFORE FIELD q_date

LET query_date = TODAY
DISPLAY query_date TO q_date

END CONSTRUCT
3-40 INFORMIX-4GL Statements

CONSTRUCT
The ON KEY Blocks

The statements in the appropriate ON KEY block are executed if the user
presses the activation key corresponding to one of your key specifications.
These are the keywords that you can specify for key:

ACCEPT HELP NEXT or RETURN
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE LEFT PREVPAGE UP

F1 through F64

CONTROL-char (except A, D, H, I, J, L, M, R, or X)

Like other keywords of 4GL, you can specify these in uppercase or lowercase.

Some keys need special consideration if you assign them in an ON KEY block:

Key Special Considerations
ESC or ESCAPE You must use the OPTIONS statement to specify another key as the

Accept key, because ESCAPE is the default Accept key.
INTERRUPT You must execute a DEFER INTERRUPT statement. When the user

presses the Interrupt key under these conditions, 4GL executes the
ON KEY block and sets int_flag to non-zero, but does not terminate
the CONSTRUCT statement. Similarly, 4GL executes the statements
in the ON KEY block and sets quit_flag to non-zero if the DEFER
QUIT statement has been executed when the user presses the Quit
key.

CONTROL-char

A, D, H,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The standard meaning of these keys (TAB, LINEFEED, and RETURN,
respectively) is lost to the user. Instead, the key is trapped by 4GL
and activates the commands in the ON KEY block. For example, if
CONTROL-M appears in an ON KEY block, the user cannot press
RETURN to advance the cursor to the next field. If you specify one
of these keys in an ON KEY block, be careful to restrict the scope of
the statement.

You may not be able to use other keys that have special meaning to your ver-
sion of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.
INFORMIX-4GL Statements 3-41

CONSTRUCT
The following ON KEY block calls a function that display a Help message.
Here the BEFORE CONSTRUCT block informs the user how to access Help:

BEFORE CONSTRUCT
MESSAGE "Press F8 or CTRL-Y for Help"

ON KEY (f8, control-Y)
CALL customer_help()

If an ON KEY block is activated during data entry, 4GL does the following:

1. Suspends the input of the current field.

2. Preserves the input buffer that contains the characters the user has typed.

3. Executes the statements in the corresponding ON KEY clause.

4. Restores the input buffer for the current screen field.

5. Resumes input in the same field, with the cursor at the end of the
buffered list of characters.

You can change this default behavior by including statements to perform
the following tasks in the ON KEY block:

• Resuming input in another field by using the NEXT FIELD keywords.

• Changing the input buffer value for the current field by assigning a new
value to the corresponding variable and then displaying the value.

The AFTER FIELD Blocks

4GL executes the AFTER FIELD block associated with a field when the cursor
leaves the field. This includes instances when the user chooses Accept. When
the NEXT FIELD clause appears in an AFTER FIELD block, 4GL places the cur-
sor in the specified field and ignores the Accept keystroke. If an AFTER FIELD
block exists for each field, and if a NEXT FIELD clause appears in every AFTER
FIELD block, then the user is unable to leave the form.
3-42 INFORMIX-4GL Statements

CONSTRUCT
The following program fragment checks for the Accept key, and terminates
execution of CONSTRUCT if the Accept key was chosen:

AFTER FIELD status
IF NOT GET_LASTKEY() = ACCEPT_KEY THEN

LET p_stat = GET_FLDBUF(status)
IF p_stat MATCHES “married” THEN

NEXT FIELD spouse_name
END IF

END IF
END CONSTRUCT

As noted in the section “Completing a Query” on page 3-52, the user can ter-
minate the CONSTRUCT statement by choosing Accept, Interrupt, or Quit, or
by pressing the TAB or RETURN key after the last form field. You can use the
AFTER FIELD clause with the NEXT FIELD keywords on the last field to over-
ride this default termination. (Alternatively, you can specify INPUT WRAP in
an OPTIONS statement to achieve the same effect.)

The AFTER CONSTRUCT Block

4GL executes the statements in the AFTER CONSTRUCT block after the user
chooses Accept and before 4GL constructs the string containing the Boolean
expression. You can use the AFTER CONSTRUCT block to validate, save, or
alter the values of the screen field buffers. The section titled “Using Built-In
Functions and Operators” on page 3-47 describes built-in functions and oper-
ators of 4GL that commonly appear in the AFTER CONSTRUCT block.

You can specify CONTINUE CONSTRUCT or NEXT FIELD in this block to
return the cursor to the form. If you include these in the AFTER CONSTRUCT
block, be sure that it appears within a conditional statement. Otherwise, the
user cannot exit from the CONSTRUCT statement and leave the form.

In the following program fragment, a CONTINUE CONSTRUCT statement
appears in an IF statement. If the user does not specify any selection criteria,
then 4GL returns the screen cursor to the form:

AFTER CONSTRUCT
IF NOT FIELD_TOUCHED(orders.*) THEN

MESSAGE "You must indicate at least one ",
"selection criteria."

CONTINUE CONSTRUCT
END IF

See also the section “Searching for All Rows” on page 3-50.
INFORMIX-4GL Statements 3-43

CONSTRUCT
4GL executes the statements in the AFTER CONSTRUCT block when the user
presses any of the following keys:

• The Accept key.

• The Interrupt key (if DEFER INTERRUPT has executed).

• The Quit key (if the DEFER QUIT statement has executed).

The AFTER CONSTRUCT block is not executed in the following situations:

• The user presses the Interrupt or Quit key and the DEFER INTERRUPT or
DEFER QUIT statement, respectively, has not been executed. In either case,
the program terminates immediately, and no query is performed.

• The EXIT CONSTRUCT statement terminates the CONSTRUCT statement.

A CONSTRUCT statement can include only one AFTER CONSTRUCT clause.

The NEXT FIELD Clause

While the CONSTRUCT statement is executing, 4GL moves the screen cursor
from field to field in the order specified in the FROM clause, or in the order
implied by the ON clause of the CONSTRUCT BY NAME statement). You can
use the NEXT FIELD clause, however, to control cursor movement.

You can specify any of the following fields in the NEXT FIELD clause:

• The next field, as defined by the order of fields in the CONSTRUCT
statement. In this case, specify the NEXT keyword.

• The previous field, as defined by the order of fields in the CONSTRUCT
statement. In this case, specify the PREVIOUS keyword.

• Any other field in the current form. In this case, specify the name of the
field (from the ATTRIBUTES section of the form specification file).

The NEXT FIELD keywords can appear in a BEFORE CONSTRUCT block (for
example, to position the cursor at a different starting field) and in a BEFORE
FIELD block (for example, to restrict access to a field), but they are more com-
monly used in AFTER FIELD, ON KEY, or AFTER CONSTRUCT blocks.

Use NEXT FIELD only if you want the cursor to deviate from the default field
order. 4GL immediately positions the cursor in the form when it encounters
the NEXT FIELD clause, without executing any statements that immediately
follow the NEXT FIELD clause in the same statement block. The following -
3-44 INFORMIX-4GL Statements

CONSTRUCT
program fragment demonstrates this. Here the qty_help() function cannot
be invoked, because its CALL statement is positioned after the NEXT FIELD
clause:

ON KEY (CONTROL_B, F4)
IF INFIELD(stock_num) OR INFIELD(manufact) THEN

CALL stock_help()
NEXT FIELD quantity
CALL qty_help() -- function is never called

END IF

The following program segment includes NEXT FIELD clauses in ON KEY
and AFTER FIELD blocks. The user triggers the ON KEY block by pressing
CONTROL-B or F4. If the cursor is in the stock_num field or manufact field,
4GL calls the stock_help() function. When 4GL returns from the stock_help()
function, the NEXT FIELD clause moves the cursor to the quantity field.

The user executes the AFTER FIELD block by moving the cursor out of the
zipcode field. The FIELD_TOUCHED() operator checks whether the user
entered a value into the field. If this returns TRUE, then GET_FLDBUF()
retrieves the value entered into the field during a query, and assigns it to the
p_zipcode variable. If the first character in the p_zipcode variable is not a 5,
4GL displays an error, clears the field, and returns the cursor to the field.

ON KEY (CONTROL_B, F4)
IF INFIELD stock_num) OR INFIELD(manufact) THEN

CALL stock_help()
NEXT FIELD quantity

END IF

AFTER FIELD zipcode
IF FIELD_TOUCHED(zipcode) THEN

LET p_zipcode = GET_FLDBUF(zipcode)
IF p_zipcode[1,1] <> "5" THEN

ERROR "You can only search area 5."
CLEAR zipcode
NEXT FIELD zipcode

END IF
END IF

Do not use NEXT FIELD clauses to move the cursor across every field in a
form. If you want the cursor to move in a specific order, list the fields in the
CONSTRUCT statement in the desired order. In most situations, NEXT FIELD
INFORMIX-4GL Statements 3-45

CONSTRUCT
appears in a conditional statement. The NEXT FIELD clause must appear in
a conditional statement when it appears in an AFTER CONSTRUCT block;
otherwise, the user cannot exit from the query.

The CONTINUE CONSTRUCT Statement

The CONTINUE CONSTRUCT statement skips all subsequent statements in
the CONSTRUCT statement, and returns the cursor to the screen form at the
last field occupied. This statement is useful where program control is nested
within multiple conditional statements and you want to return control to the
user. It is also useful in an AFTER CONSTRUCT block, where you can examine
field buffers and, depending on their contents, return the cursor to the form.

For example, in the following program fragment, an IF statement tests for an
entered value in any field.

CONSTRUCT BY NAME query1 ON customer.*
...

AFTER CONSTRUCT
IF NOT FIELD_TOUCHED(customer.*) THEN

PROMPT "Do you really want to see ",
"all customer rows? (y/n)" FOR CHAR answer

IF answer MATCHES "[Nn]" THEN
CONTINUE CONSTRUCT

END IF
END IF

END CONSTRUCT

If none was entered, the user is prompted to indicate whether to retrieve all
customer records. If the user types N or n, then 4GL executes the CONTINUE
CONSTRUCT statement and positions the cursor in the form, giving the user
another chance to enter selection criteria in the last field occupied. If the user
types any other key, the IF statement terminates, and control passes to the
END CONSTRUCT statement.

Note: Compare this method of detecting and handling the absence of search criteria
to the examples in the sections “The AFTER CONSTRUCT Block” (page 3-43) and
“Searching for All Rows” (page 3-50).

When a test in an AFTER CONSTRUCT clause identifies a field that requires
action by the user, specify NEXT FIELD, rather than CONTINUE CONSTRUCT,
to position the cursor in the field.
3-46 INFORMIX-4GL Statements

CONSTRUCT
The EXIT CONSTRUCT Statement

The EXIT CONSTRUCT statement causes 4GL to do the following:

• Skip all statements between EXIT CONSTRUCT and END CONSTRUCT.

• Terminate the process of constructing the query by example.

• Create the Boolean expression and store it in the character variable.

• Resume execution at the statement after the END CONSTRUCT keywords.

If it encounters the EXIT CONSTRUCT statement, 4GL does not execute the
statements in the AFTER CONSTRUCT block, if that block is present.

The END CONSTRUCT Keywords

The END CONSTRUCT keywords indicate the end of the CONSTRUCT
statement construct. These keywords should follow the last CONSTRUCT
form management block. The END CONSTRUCT keywords are required only
if you specify one or more CONSTRUCT form management blocks.

Using Built-In Functions and Operators

The CONSTRUCT statement supports built-in functions and operators of 4GL.
(For more about the built-in 4GL functions and operators, see Chapter 4.) The
following features allow you to access field buffers and keystroke buffers:

Feature Description
FIELD_TOUCHED() Returns TRUE when the user has “touched” (made a change to)

a screen field whose name is passed as an operand. Moving the
screen cursor through a field (with the RETURN, TAB, or Arrow
keys) does not mark a field as touched. This operator also
ignores the effect of statements that appear in the BEFORE
CONSTRUCT control block. For example, you can assign values
to fields in the BEFORE CONSTRUCT control block without hav-
ing the fields marked as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form.

FGL_LASTKEY() Returns an INTEGER value corresponding to the most recent
keystroke executed by the user while in the screen form.

INFIELD() Returns TRUE if the name of the field that is specified as its
operand is the name of the current field.

Each field in a form has only one field buffer, and a buffer cannot be used by
two statements simultaneously. If a CONSTRUCT statement calls a function
that includes an INPUT or CONSTRUCT statement, and both statements use
INFORMIX-4GL Statements 3-47

CONSTRUCT
the same form, you may overwrite one or more of the field buffers. Fields
used in a CONSTRUCT statement should not be reused in an INPUT or another
CONSTRUCT statement until the first CONSTRUCT statement finishes.

If you plan to display the same form more than one time and will access the
form fields, you should open a new window and open and display a second
copy of the form. 4GL allocates a separate set of buffers to each form, and you
can be certain that your program is retrieving the correct field values.

Query by Example

The CONSTRUCT statement allows users of your application to specify search
criteria for retrieving rows from the database. The user does this by entering
values (or ranges of values) into the fields of the screen form. This process is
called a query by example. The user can use symbols to search for data values
less than, equal to, greater than, or within a range.

The CONSTRUCT statement supports the following symbols:

Symbol Meaning Data Type Domain Pattern
= equal to all simple SQL types =x, =
> greater than all simple SQL types >x
< less than all simple SQL types <x
>= greater than or equal to all simple SQL types >=x
<= less than or equal to all simple SQL types <=x
<> not equal to all simple SQL types <>x
: range all simple SQL types x:y
.. range DATETIME, INTERVAL x..y
* wildcard for any string CHAR, VARCHAR *x, x*, *x*
? single-character wildcard CHAR, VARCHAR ?x, x?, ?x?, x??
| logical OR all simple SQL types a|b...
[] list of values (see next page) CHAR, VARCHAR [xy]*, [xy]?

The user cannot perform a query-by-example on BYTE or TEXT fields, nor on
FORMONLY fields. The following list explains the symbols in the table above.

x The x means any value appropriate to the data type of the field. The
value must immediately follow any of the first six symbols in the pre-
ceding table. Do not leave a space between a symbol and a value.

=x The equal sign (=) is the default symbol for non-character fields, and
for character fields in which the search value contains no wildcards.
If the user enters a character value that does not contain a wildcard
character, CONSTRUCT produces the Boolean expression:

char-column = “value”
3-48 INFORMIX-4GL Statements

CONSTRUCT
= The equal sign (=) with no value searches for a NULL value. The user
must explicitly enter the equal sign to find any character value that
is also used as a search criteria symbol.

>, <, These symbols imply an ordering of the data. For character fields,
>=, “greater than” means later in the ASCII sequence (where a > A > 1),
<=, as listed in Appendix A. For DATE and DATETIME data “greater than”
 <> means after. For INTERVAL data, it means a longer span of time.

A query by example cannot combine these relational operators with the
range, wildcard, or logical operators that are described later. Any characters
that follow a relational operator are interpreted as literals.

Besides the relational operators, the user can specify a range, or use syntax
like that of the MATCHES operator to search for patterns in character values.

: The colon in x: y searches for all values between the x and y value, inclu-
sive. The y value must be larger than the x value. The search criterion 1:
10 would find all rows with a value in that column from 1 through 10.
For character data, the range specifies values in the ASCII collating
sequence between x and y. (For DATETIME and INTERVAL fields, use
instead the .. symbol to specify ranges.)

.. Substitute two periods (..) for the colon in DATETIME and INTERVAL
ranges to avoid ambiguity with field separators in hh:mm:ss values.

* The asterisk (*) is a character string wildcard, representing zero or
more characters. Use the asterisk character as follows:

• The search value *ts* in a field specifies all strings containing the
letters ts, such as the strings “Watson ” and “Albertson .”

• The search value S* specifies all strings beginning with the letter s,
including the strings “S,” “Sadler ,” and “Sipes .”

• The search value *er specifies all strings that end in the letters er,
such as the strings “Sadler ” and “Miller .”

? The question mark (?) is the single-character wildcard. The user can
use the question mark to find values matching a pattern in which the
number of characters is fixed, as in the following examples:

• Enter Eriks?n to find names like “Erikson ” and “Eriksen .”

• Enter New??n to find names like “Newton ,” “Newman,” and
“Newson,” but not “Newilsson .”

| The symbol | between values a and b represents the logical OR.
The following entry specifies any of three numbers:

• 102|105|118
INFORMIX-4GL Statements 3-49

CONSTRUCT
[] When used in conjunction with the * and ? wildcard characters, the
brackets enclose a list of characters, including ranges, to be matched.

^ A caret (^) as the first character within the brackets matches any char-
acter not listed. For example, the search value [^AB]* specifies all
strings beginning with characters other than A or B.

- A hyphen (-) between characters within brackets specifies a range. The
search value [^d-f*] specifies all strings beginning with characters
other than lowercase d, e, or f. If you omit the * or ? wildcard, 4GL treats
the brackets as literal characters, not as operators.

Searching for All Rows

If none of the fields contain search values when the user completes entry for
the CONSTRUCT statement, 4GL uses “ 1=1” as the Boolean expression.
Notice that this string begins with a blank character. In a WHERE clause, this
search criterion causes 4GL to select all the rows of the specified table(s).

Place a conditional statement after the CONSTRUCT statement to check for
this expression, or to examine the field buffers in the AFTER CONSTRUCT
control block, if you want to prevent users from selecting all rows. The next
fragment, for example, tests for the “ 1=1” expression. If this is found, the
LET statement limits the resulting query list by creating a Boolean expression
that searches only for customers with numbers less than or equal to 110 :

CONSTRUCT BY NAME query_1 ON customer.*
IF query_1 = " 1=1" THEN

LET query_1 = " customer_num <= 110"
MESSAGE "You entered nothing. Here are customers ",

"with codes less than 111."
SLEEP 3

END IF

The FIELD_TOUCHED() operator (page 4-65) describes an equivalent test.

Positioning the Screen Cursor

When the user presses RETURN or TAB, the screen cursor moves from one
field to the next in the order specified in the FROM clause, or implied by the
column list in the BY NAME clause. The user can also press the following
arrow keys to alter this behavior and to position the cursor explicitly:
3-50 INFORMIX-4GL Statements

CONSTRUCT
Key Effect on Cursor

[↓] By default, it moves to the next field. If you specify the FIELD ORDER
UNCONSTRAINED option of the OPTIONS statement, this key moves the cur-
sor to the field below the current field.

[↑] By default, it moves to the previous field. If you specify the FIELD ORDER
UNCONSTRAINED option of the OPTIONS statement, this key moves the cur-
sor to the field above the current field.

[←] It moves one space to the left within a field. If this is the beginning of the
field, the cursor moves to the beginning of the previous field.

[→] It moves one space to the right within a field. If this is the end of the field,
4GL creates a workspace at the bottom of the screen, and places the cursor
there, so the user can continue entering values.

These arrow keys all operate non-destructively. That is, they move the screen
cursor without erasing any underlying character.

When the cursor moves to a new field, the CONSTRUCT statement clears the
Comment line and the Error line. The Comment line displays the text defined
with the COMMENTS attribute in the form specification file. The Error line
displays system error messages, output from the built-in ERR_PRINT() and
ERR_QUIT() functions, and ERROR statement messages.

If the user enters search criteria that exceed the length of the screen field, 4GL
automatically moves the cursor down to the Comment line and allows the
user to continue entry. When the user presses RETURN or TAB, 4GL clears the
Comment line. The field buffer contains all the criteria that the user entered,
even though only a portion is visible in the screen display.

In a multiple-segment field (that is, one with the WORDWRAP attribute), 4GL
ignores any values that the user enters in any segments beyond the first seg-
ment of the field. Similarly, in a screen array, the user can enter criteria only
in the first screen record of the array during a CONSTRUCT statement.
INFORMIX-4GL Statements 3-51

CONSTRUCT
Editing During a CONSTRUCT Statement

The user can employ these keys for editing during a CONSTRUCT statement:

Key Effect

CONTROL-A Toggles between insert and typeover mode.

CONTROL-D Deletes characters from the cursor position to the end of the field.

CONTROL-H Moves the cursor non-destructively one space to the left within a field.
This is equivalent to pressing the [←] key.

CONTROL-L Moves the cursor non-destructively one space to the right within a
field. This is equivalent to pressing the [→] key.

CONTROL-R Redisplays the screen.

CONTROL-X Deletes the character beneath the cursor.

Completing a Query

The following actions terminate the CONSTRUCT statement:

• The user presses one of the following keys:

o The Accept key.

o The RETURN or TAB key from the last field (when INPUT WRAP is not
set in the OPTIONS statement).

o The Interrupt or Quit key.

• 4GL executes the EXIT CONSTRUCT statement.

The user must choose Accept to complete the query under these conditions:

• INPUT WRAP is specified in the OPTIONS statement.
• An AFTER FIELD block for the last field includes a NEXT FIELD clause.

By default, the Accept, Cancel, Interrupt, or Quit terminates both the query
and the CONSTRUCT statement. (But pressing the Interrupt or Quit key can
also immediately terminate the program, unless the program has also exe-
cuted the DEFER INTERRUPT and DEFER QUIT statements.)

If 4GL previously executed a DEFER INTERRUPT statement in the program, an
Interrupt causes 4GL to do the following:

• Set the global variable int_flag to a non-zero value.

• Terminate the CONSTRUCT statement, but not the 4GL program.
3-52 INFORMIX-4GL Statements

CONSTRUCT
If 4GL previously executed a DEFER QUIT statement in the program, the Quit
key causes 4GL to do the following:

• Set the global variable quit_flag to a non-zero value.

• Terminate the CONSTRUCT statement, but not the 4GL program.

When the user terminates a CONSTRUCT statement, 4GL executes the
statements in the AFTER CONSTRUCT clause. (If the CONSTRUCT statement is
terminated by an EXIT CONSTRUCT statement, however, 4GL does not exe-
cute the statements in the AFTER CONSTRUCT clause.) In these cases, the
statements in the AFTER FIELD clause of the current field are not executed.
When a NEXT FIELD clause appears in either of these clauses, 4GL ignores the
Accept keystroke, and focus moves to the specified field.

The following program segment uses a simple CONSTRUCT statement to
specify the search condition of a WHERE clause. The variable query_1 is
declared as CHAR(250), and the cursor_1 cursor executes the query.

CONSTRUCT BY NAME query_1
ON order_num, customer_num, order_date, ship_date
ATTRIBUTE(BOLD)

LET s1 = "SELECT * FROM orders
WHERE ", query_1 CLIPPED,
" ORDER BY order_date, order_num"

PREPARE s_1 FROM s1
DECLARE cursor_1 CURSOR FOR s_1
FOREACH cursor_1 INTO order_rec.*

...
END FOREACH
INFORMIX-4GL Statements 3-53

CONSTRUCT
The following program fragment demonstrates several CONSTRUCT form
management blocks:

CONSTRUCT BY NAME query_1 ON customer.*

BEFORE CONSTRUCT
MESSAGE "Enter search criteria; ",

"press ESC to begin search."
DISPLAY "Press F1 or CTRL-W for field help." AT 2,1

ON KEY (F1, CONTROL-W)
CALL customer_help() -- display field level help

BEFORE FIELD state
MESSAGE "Press F2 or CTRL-B ",

"to display a list of states."

ON KEY (F2, CONTROL-B)
IF INFIELD(state) THEN

CALL statehelp() -- display list of states
END IF

AFTER FIELD state
MESSAGE "Enter search criteria; ",

"press ESC to begin search."

AFTER CONSTRUCT -- check for blank search criteria
IF NOT FIELD_TOUCHED(customer.*) THEN

PROMPT "Do you really want to see ",
"all customer rows? (y/n) "
FOR CHAR answer

IF answer MATCHES "[Nn]" THEN
MESSAGE "Enter search criteria; ",

"press ESC to begin search."
CONTINUE CONSTRUCT -- reenter query by example

END IF
END IF

END CONSTRUCT

LET s1 = "SELECT * FROM customer WHERE ", query_1 CLIPPED
PREPARE s_1 FROM s1
DECLARE q_curs CURSOR FOR s_1
DISPLAY "" AT 2,1 -- clear line 2 of text
LET exist = 0

References
DECLARE, DEFER, DISPLAY FORM, EXECUTE, LET, OPEN FORM,
OPEN WINDOW, OPTIONS, SELECT, PREPARE
3-54 INFORMIX-4GL Statements

CONTINUE
CONTINUE
The CONTINUE keyword transfers control of execution from a statement
block to another location in the currently executing compound statement.

keyword is the name of the current 4GL statement. You can choose from the
following keywords: CONSTRUCT, FOR, FOREACH, INPUT, MENU,
or WHILE.

Usage
You can use CONTINUE within a statement block of the currently executing
compound statement that keyword specifies. This is a run-time instruction to
transfer control within the current statement. (Use the EXIT keyword, rather
than CONTINUE, to terminate the compound statement unconditionally.)

Page 3-285 describes the effect of CONTINUE in the WHENEVER statement.

CONTINUE in CONSTRUCT, INPUT, and INPUT ARRAY Control Blocks

The CONTINUE CONSTRUCT (page 3-47) and CONTINUE INPUT statements
(page 3-169) cause 4GL to skip all subsequent statements in the current con-
trol block. The screen cursor returns to the most recently occupied field in the
current form, giving the user another chance to enter data in that field.

CONTINUE in FOR, FOREACH, and WHILE Loops

The CONTINUE FOR (page 3-103), CONTINUE FOREACH (page 3-108), or
CONTINUE WHILE (page 3-288) cause the current FOR, FOREACH, or
WHILE loop (respectively) to begin a new cycle immediately. If conditions
do not permit a new cycle, however, the looping statement terminates.

CONTINUE in MENU Control Blocks

The CONTINUE MENU statement causes 4GL to ignore the remaining
statements in the current MENU control block, and redisplay the menu. The
user can then choose another menu option. (See “MENU” on page 3-193.)

References
CONSTRUCT, FOR, FOREACH, GOTO, INPUT, INPUT ARRAY, MENU, WHILE,
WHENEVER

CONTINUE keyword
INFORMIX-4GL Statements 3-55

CURRENT WINDOW
CURRENT WINDOW
The CURRENT WINDOW statement makes a specified 4GL window the
current window (that is, the topmost 4GL window in the window stack).

window is the name of the open 4GL window to be made current.

Usage
4GL maintains a list or “stack” of all open 4GL windows in the 4GL screen. The
OPEN WINDOW statement creates a new 4GL window that is added to the top
of this window stack, becoming the current window. When you close a 4GL
window, that 4GL window is removed from the stack. The topmost 4GL win-
dow among those that remain open becomes the new current window. Its
values take effect for the positions of reserved lines like Prompt, Message,
Form, and Comment lines.

The current 4GL window is always completely visible, and can obscure all or
part of any inactive 4GL windows. When you specify a new current window,
4GL adjusts the window stack by moving the new current 4GL window to the
top, and closing the gap in the stack left by this 4GL window.

Programs with multiple 4GL windows may need to switch to a different cur-
rent window so that input and output occur in the appropriate 4GL window.
To make a 4GL window the current window, specify its name in the CURRENT
WINDOW statement. For example, the following statement makes win1 the
current 4GL window:

CURRENT WINDOW IS win1

When a program starts, the 4GL screen is the current 4GL window. Its name
is SCREEN. To make this the current 4GL window, specify the keyword
SCREEN instead of a window identifier:

CURRENT WINDOW IS SCREEN

If a 4GL window contains a form, that form becomes the current form when
a CURRENT WINDOW statement specifies the name of that 4GL window.

The CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT ARRAY, and MENU
statements use only the current 4GL window for input and output. If
the user displays another form (for example, through an ON KEY clause)
in one of these statements, the 4GL window containing the new form

window

SCREEN

CURRENT WINDOW IS
3-56 INFORMIX-4GL Statements

CURRENT WINDOW
becomes the current window. When the CONSTRUCT, DISPLAY ARRAY,
INPUT, INPUT ARRAY, or MENU statement resumes, its original 4GL window
becomes the current window.

The next program fragment opens multiple 4GL windows, including one
called w2. Interactive statements that use 4GL window w2 can follow the
CURRENT WINDOW statement within the do2() function. If function do2()
terminates after assigning modular variable next_win any value but 2, the
CALL statement in the WHILE loop invokes a different function. The w2
4GL window remains current until another CURRENT WINDOW statement
specifies some other 4GL window, or until CLOSE WINDOW w2 is executed.

DEFINE next_win INTEGER
MAIN
OPEN WINDOW w1 AT 3,3 WITH FORM "cust1"
OPEN WINDOW w2 AT 9,15 WITH FORM "cust2"
OPEN WINDOW w3 AT 15,27 WITH FORM "cust3"

. . .
LET next_win = 1
WHILE next_win IS NOT NULL

CASE (next_win)
WHEN 1

CALL do1()
WHEN 2

CALL do2()
WHEN 3

CALL do3()
. . .

END CASE
END WHILE

CLOSE WINDOW w1
CLOSE WINDOW w2
CLOSE WINDOW w3

. . .
END MAIN
FUNCTION do2()

LET next_win = NULL
CURRENT WINDOW IS w2
 . . .

END FUNCTION

References
CLEAR, CLOSE WINDOW, DISPLAY ARRAY, INPUT, INPUT ARRAY, MENU,
OPEN WINDOW, OPTIONS
INFORMIX-4GL Statements 3-57

DATABASE
3

DATABASE
The DATABASE statement opens a default database at compile time, or a cur-
rent database at run time. (See also the description of the DATABASE state-
ment in the Informix Guide to SQL: Syntax, Version 6.0.)

database is the name of a database. Blank spaces are not valid between
quotes nor after the @ symbol.

pathname is the directory path to the parent directory of the .dbs directory.

server is the name of the host system where database resides.

variable is a variable that contains the database specification (page 3-59).
(You can specify a variable only in a MAIN or FUNCTION block.)

Usage
This statement is not required if your 4GL program does not reference entities
in a database. You can use the DATABASE statement in two distinct ways,
depending on the context of the statement within its source code module:

• To specify the default database for the compiler to use in declaring data
types indirectly in DEFINE statements (page 3-59), or for INITIALIZE
(page 3-125) or VALIDATE (page 3-278) to access syscolatt or syscolval.
Specifying a default database also results in that database being opened
automatically at run time.

• To specify the current database at run time, so that SQL statements can
access data and other entities in that database (page 3-60).

DATABASE

EXCLUSIVE

" / / server / database"

variable

Database
Specification

Database
Specification

database database @server

OL

SE " / pathname / database @ server"

" / / server / pathname / database"
-58 INFORMIX-4GL Statements

DATABASE
The Database Specification

The DATABASE statement can specify any accessible database on the current
INFORMIX-OnLine database server (or on another OnLine server, if you also
specify its name). This becomes the default database at compile time, and the
current database at run time. To reference entities in any other database, you
must use the CLOSE DATABASE statement and then another DATABASE state-
ment or table qualifiers (page 3-361).

The DATABASE statement closes any other open database on the same data-
base server. If a database is open on another server, you must first use CLOSE
DATABASE explicitly to close that current database, or an error occurs. An
error results if you specify a database that 4GL cannot locate or cannot open
or for which the user of your program does not have access privileges.

The Default Database at Compile Time

The DEFINE statement (page 3-69) can specify that a record is LIKE a table, or
that a variable is LIKE a column in a database table. Even if you qualify the
name of the table with a database name, this requires a DATABASE statement

SE Only the databases stored in your current directory, or in a directory
specified in your DBPATH environment variable, are recognized.

To specify a database that does not reside in your current directory nor in a
DBPATH directory, you must follow the DATABASE keyword with a com-
plete pathname, or with a program variable that evaluates to the full
pathname of the database (excluding the .dbs extension).

NLS When the database connection is established between a user session and
the database server by way of the DATABASE statement with NLS features
active, the information in environment variables LC_CTYPE and
LC_COLLATE is transmitted with the request for database service. The data-
base server uses the information to check that the user locale and existing
database locale match. If they do not match, the request for database service
is rejected. This process is referred to as locale consistency checking.

LC_CTYPE and LC_COLLATE values active at the time of database creation
are stored with the database in a system table. These values are kept
unchanged throughout the life of the database to ensure the consistent use
of collating sequences, codesets, and formatting rules. The character set and
collation settings for a database cannot be changed; the data must be
unloaded and reloaded into a different database to change locales.
For complete information on using NLS, see Appendix E.
INFORMIX-4GL Statements 3-59

DATABASE
to specify a default database at compile time. The compiler looks in this
default database for the schema of tables whose columns are to be used as
templates for declaring variables indirectly through the LIKE keyword.

To declare variables indirectly, the DATABASE statement must precede any
program block in each module that includes a DEFINE . . . LIKE declaration,
and must precede any GLOBALS . . . END GLOBALS statement (page 3-117).
It must also precede any DEFINE . . . LIKE declaration of module variables.
Here the database name must be expressed explicitly, and not as a variable.
The EXCLUSIVE keyword is not valid in this context. (The INITIALIZE . . . LIKE
and VALIDATE . . . LIKE statements likewise require that DATABASE specify a
default database before the first program block in the same module.)

If you want different program blocks to use the same database, you can
repeat the same DATABASE statement in each program block in which enti-
ties in the database are referenced or created. Alternatively, you can create a
file that includes only the DATABASE and the GLOBALS . . . END GLOBALS
(page 3-117) statements, and then include GLOBALS “ filename” statements at
the beginning of each module that requires the DATABASE statement.

The next example shows the contents of a file in which no global variables are
declared, but the zeitung database can be accessed by statements in any other
source modules that include the GLOBALS “ filename” statement:

DATABASE zeitung
GLOBALS
END GLOBALS

Here GLOBALS . . . END GLOBALS can also include DEFINE statements.

The Current Database at Run Time

If your 4GL program is designed to interact with a database at run-time, the
DATABASE must specify a current database that subsequent SQL statements
can reference, until it is closed (by CLOSE DATABASE or by another DATA-
BASE statement, for example), or until the program terminates.

In this case, the DATABASE statement must occur in a FUNCTION or the MAIN
program block, and must follow any DEFINE statements in that block, or else
it must precede the MAIN program block. When DATABASE specifies the cur-
rent database, the database specification can be in a 4GL variable, and you can
include the EXCLUSIVE keyword (page 3-61).

If a DATABASE statement (or a GLOBALS “ filename” statement, where filename
includes the DATABASE statement) precedes the MAIN statement, then the
4GL compiler (in effect) inserts the same DATABASE statement into the
3-60 INFORMIX-4GL Statements

DATABASE
beginning of the MAIN program block, before the first executable statement,
if no other DATABASE statement precedes MAIN. In this special case, the
same DATABASE statement produces both compile-time and run-time effects.

You cannot include the DATABASE statement within a REPORT program
block. If a 4GL report definition requires a two-pass report (page 6-22), an
error occurs if no database is open when the report is run, or if the report
driver issues a DATABASE statement while the report is running (page 3-101).

You cannot include the DATABASE statement in a multiple-statement
PREPARE operation. (See also the descriptions of the PREPARE statement and
of the CLOSE DATABASE statement in the Informix Guide to SQL: Reference.)

The EXCLUSIVE Keyword

The DATABASE statement with the EXCLUSIVE keyword opens the database
in exclusive mode but prevents access by anyone but the current user. It is
valid only in a FUNCTION or MAIN program block. To allow others to access
a database that was opened in EXCLUSIVE mode, you must execute the
CLOSE DATABASE statement. Then use DATABASE without the EXCLUSIVE
keyword to reopen the database, if appropriate.

The following statement opens the stores2 database on the mercado server in
exclusive mode:

DATABASE stores2@mercado EXCLUSIVE

If another user already has the specified database open, exclusive access is
denied, an error is returned, and no database is opened.

Testing SQLCA.SQLAWARN

You can determine the type of database that the DATABASE statement opens
by examining the built-in SQLCA.SQLAWARN variable (page 2-23) after the
DATABASE statement has executed successfully:

• If the specified database uses transactions, then SQLCA.SQLAWARN[2],
the second element of the SQLCA.SQLAWARN global record, contains a W.

• If the database is ANSI-compliant, then SQLCA.SQLAWARN[3], the third
element of the SQLCA.SQLAWARN global record, contains a W.

• If INFORMIX-OnLine is the database engine, then SQLCA.SQLAWARN[4],
the fourth element of the SQLCA.SQLAWARN global record, contains a W.

References
DEFINE, FUNCTION, GLOBALS, INITIALIZE, MAIN, REPORT, VALIDATE
INFORMIX-4GL Statements 3-61

DEFER
DEFER
The DEFER statement prevents 4GL from terminating program execution
when the user presses the Interrupt key or the Quit key.

Usage
DEFER is a method of intercepting asynchronous signals from outside the
program.

Unless it includes the DEFER statement, the 4GL application terminates when-
ever the user presses the Interrupt or Quit key. The Interrupt key is CON-
TROL-C, and the Quit key is CONTROL-\.

The DEFER statement tells 4GL to set a built-in global variable to a non-zero
value, rather than terminate, when the user presses one of these keys:

• If the user presses the Interrupt key when DEFER INTERRUPT has been
specified, 4GL sets the built-in global variable int_flag to TRUE.

• If the user presses the Quit key when DEFER QUIT has been specified, 4GL
sets the built-in global variable quit_flag to TRUE.

The DEFER INTERRUPT and DEFER QUIT statements can appear only in the
MAIN program block, and only once there in any program. Once executed,
the DEFER statement remains in effect for the duration of the program; you
cannot restore the original function of the Interrupt key or the Quit key.

4GL programs can include code to check whether int_flag or quit_flag is
TRUE, and if so, to take appropriate action. Be sure also to reset int_flag or
quit_flag to FALSE (that is, to zero) so that subsequent tests are valid.

Interrupting Screen Interaction Statements

If DEFER INTERRUPT has executed, you can specify INTERRUPT to make the
Interrupt key the activation key in an ON KEY clause of CONSTRUCT, INPUT
ARRAY, or INPUT statements. If the user presses the Interrupt key, control
returns to the same field, unless the statement block includes the EXIT or
NEXT FIELD keywords. Without the ON KEY (INTERRUPT) specification, an
Interrupt signal transfers control to the AFTER INPUT or AFTER CONSTRUCT
control block, if these are present, or else to END INPUT or END CONSTRUCT.
Any AFTER FIELD clause for the current field is ignored, and the int_flag is

QUIT

INTERRUPTDEFER
3-62 INFORMIX-4GL Statements

DEFER
reset to TRUE. (After DEFER QUIT, pressing the Quit key resets the quit_flag
to TRUE, but the Quit key has no effect on CONSTRUCT, INPUT ARRAY, or
INPUT statements.)

To make sure that int_flag or quit_flag is reset, you can use the LET statement
to set both variables to FALSE immediately before the CONSTRUCT, DISPLAY
ARRAY, INPUT, MENU, or PROMPT statements. After DEFER INTERRUPT has
executed, if the user presses the Interrupt key during any DISPLAY ARRAY or
PROMPT statement, program control leaves the current statement, and 4GL
sets the int_flag to a non-zero value. (When a MENU statement is executing,
however, program control remains in the MENU statement.)

To have the user terminate a statement with a key other than the Interrupt
key, use the ON KEY clause to define the action of the desired key sequence.

The next program fragment executes the DEFER INTERRUPT statement in the
MAIN program block, and then calls a function that prompts the user to enter
criteria for retrieving data from the stock table.

MAIN
. . .
DEFER INTERRUPT
. . .
CALL find_stock()
. . .

END MAIN

FUNCTION find_stock()
DEFINE

where_clause CHAR(200)
. . .
DISPLAY "Enter selection criteria for “,

“the stock items you want." AT 10,1
LET int_flag = FALSE
CONSTRUCT BY NAME where_clause

ON stock.* FROM s_stock.*
IF int_flag THEN

ERROR "Query cancelled."
RETURN

END IF
. . .

END FUNCTION

If the user decides not to enter any selection criteria, pressing the Interrupt
key terminates the CONSTRUCT statement without executing the query.
INFORMIX-4GL Statements 3-63

DEFER
If int_flag flag is set to a non-zero value (TRUE), the program terminates
the function by executing a RETURN statement. Notice that the function
resets the value of int_flag to FALSE (zero) before beginning the CONSTRUCT.

Here if int_flag is set to a non-zero value (evaluates to TRUE), a RETURN state-
ment terminates the function. Notice that in this example, the find_stock()
function explicitly resets the value of int_flag to FALSE (zero) before
beginning the CONSTRUCT statement.

Interrupting SQL Statements

To enable the Interrupt key to interrupt SQL statements, your program must
contain:

• The DEFER INTERRUPT statement.

• The OPTIONS statement with the SQL INTERRUPT ON option.

The keywords SQL INTERRUPT OFF restore the default of uninterruptable
SQL statements. The section “Interrupting SQL Statements” on page 3-235
describes this feature in detail and its effect on the current database transac-
tion.

References
CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT ARRAY, MAIN, MENU,
OPTIONS, PROMPT, WHENEVER
3-64 INFORMIX-4GL Statements

DEFINE
DEFINE
The DEFINE statement declares the names and data types of 4GL variables.

variable is a name that you declare here as the identifier of a variable.

Usage
A variable is a named location in memory that can store a single value, or
an ordered set of values. Except for predefined global variables like status,
int_flag, quit_flag, or the SQLCA record, you cannot reference a variable
before it has been declared by the DEFINE statement.

Sections that follow describe the following topics:

Topic Page
The Context of DEFINE Declarations 3-65
Global Variables in Multiple-Module Programs 3-66
Declaring the Names and Data Types of Variables 3-67
Variables of Simple Data Types 3-68
Indirect Typing 3-69
Variables of Large Data Types 3-70
Variables of Structured Data Types 3-70

The Context of DEFINE Declarations

The DEFINE statement declares the identifier of at least one variable. There
are two important things to know about these identifiers:

• Where in the program can they be used? The answer defines the scope of
reference of the variable. A point in the program where an identifier can be
used is said to be in the scope of the identifier. A point where the identifier
is not known is outside the scope of the identifier.

• When is storage for the variable allocated? Storage can be allocated either
statically when the program is loaded to run, (at load time), or dynamically
while the program is executing (at run time).

The context of its declaration in the source module determines where a vari-
able can be referenced by other 4GL statements, and when storage is allocated
for the variable in memory.

,

variableDEFINE Data Type Declaration
p. 3-67
INFORMIX-4GL Statements 3-65

DEFINE
The DEFINE statement can appear in only two contexts:

1. Within a FUNCTION, MAIN, or REPORT program block, DEFINE declares
local variables, and causes memory to be allocated for them. These
DEFINE declarations of local variables must precede any executable
statements within the same FUNCTION, REPORT, or MAIN program block.

• The scope of reference of a local variable is restricted to the same pro-
gram block. Elsewhere, the variable is not visible.

• Storage for local variables is allocated when its FUNCTION, REPORT,
or MAIN block is entered during execution. Functions can be called
recursively, and each recursive entry creates its own set of local vari-
ables. The variable is unique to that invocation of its program block.
Each time the block is entered, a new copy of the variable is created.

2. Outside any FUNCTION, REPORT, or MAIN program block, the DEFINE
statement declares names and data types of module variables, and causes
storage to be allocated for them. These declarations must appear before,
any program blocks.

• Scope of reference is from the DEFINE statement to the end of the same
source code module (but the variable is not visible within this scope
in program blocks where a local variable has the same identifier).

• Memory storage for variables of module scope is allocated statically,
in the executable image of the program.

Global Variables in Multiple-Module Programs

The GLOBALS statement can extend the visibility of a module-scope variable
to additional modules. GLOBALS (page 3-117) can be used in two ways:

• GLOBALS DEFINE . . . END GLOBALS declares global variables directly.

• GLOBALS “ filename” indirectly extends to the current source module
the scope of the variables that were declared as global in filename.

The following example declares global variables directly in a source file:

GLOBALS
DEFINE a,b,c INT,

x,y,z CHAR(10)
END GLOBALS

If this GLOBALS statement were in a source module called gloFile.4gl that
included no other statement, then you could extend the scope of these six
variables to any other module that contained the declaration:

GLOBALS "gloFile.4gl"
3-66 INFORMIX-4GL Statements

DEFINE
Declaring the Names and Data Types of Variables

The DEFINE statement must declare the name and the data type of each new
variable, either explicitly or else implicitly (by using the LIKE keyword):

column is the name of a database column, qualified by the name or by the
synonym of a table or view.

table is the name or synonym of a database table or view.

variable is the name of the variable. This must be unique among variables
within the same scope of reference (page 3-65).

See the section “Data Types of 4GL” on page 3-293 for details of the various
data types that you can specify when you declare 4GL variables.

See the section “Indirect Typing” on page 3-69 for details of using the LIKE
keyword (and the DATABASE statement, page 3-58) to declare 4GL variables.

In the Rapid Development System, the compiler supports no more than
32,767 variables in a single program, and no more than 64,535 characters in
all the names of 4GL variables, including record members. The C Compiler
Version has no such limits, apart from the memory capacity of your system.

,

Data Type
Declaration

variable

Large Data Type
p. 3-70

Record Data Type
p. 3-72

LIKE

Array Data Type
p. 3-71

4GL Simple
Data Type

p. 3-68

table . column

DEFINE

Data Type
Declaration

Table
Qualifier
p. 3-361
INFORMIX-4GL Statements 3-67

DEFINE
Variables of Simple Data Types

maximum is a whole number from 1 to 255, specifying the largest number of
size characters that the VARCHAR data type can store.

precision specifies the total number of decimal digits, from 1 to 32.

reserve size is a whole number, from 0 to maximum size. The default is 0.
(Like precision for FLOAT or DOUBLE PRECISION, 4GL accepts this
value for compatibility with SQL, but does not use this value.)

scale is a whole number, from 1 to precision, specifying the number of
digits in the fractional part of a fixed-point number.

size is a whole number from 1 to 32,767, specifying how many
characters a CHAR data type can store. The default is 1.

, scale

DATETIME Qualifier
p. 3-349

INTERVAL Qualifier
p. 3-353

VARCHAR

, reserve size

FLOAT

DOUBLE PRECISION precision

SMALLFLOAT

REAL

DATE

DATETIME

INTERVAL

CHARACTER

CHAR

(1)

(16)

, 2

MONEY

 size

()

()

()

precision

, scale(
(

(16, 2)
)

, 0

SMALLINT

DECIMAL

precision)
NUMERIC

DEC

maximum size

INTEGER

INT

4GL Simple Data Type
3-68 INFORMIX-4GL Statements

DEFINE
All these declaration parameters are literal integers (page 3-340).

Indirect Typing

You can use the LIKE keyword to declare a variable that has the same simple,
BYTE, or TEXT data type as a specified column in a database table.

column is the identifier of some column in table, as it appears in the
syscolumns table of the system catalog.

table is the identifier or synonym of a table or view in the default
database that was specified in the DATABASE statement.

variable is the 4GL identifier of a variable that you declare here.

If table is a view, then column cannot be based on an aggregate. If LIKE refer-
ences a SERIAL column, the new variable is of the INTEGER data type.

The DATABASE statement must specify a default database (page 3-59) before
the first program block (or before the first DEFINE statement that uses LIKE to
define module-scope or global variables) in the current module. At compile
time, 4GL substitutes a data type for the LIKE declaration, based on the
schema of table. (If that schema is subsequently modified, recompile the
module to restore the correspondence between variables and columns.)

Any column in the LIKE declaration has either a simple (page 3-68) or a large
(page 3-70) data type. (An OnLine database cannot include ARRAY nor
RECORD columns. An SE database cannot include ARRAY, BYTE, RECORD,
TEXT, nor VARCHAR columns.)

The table qualifier must specify owner if table.column is not a unique column
identifier within its database, or if the database is ANSI-compliant and any
user of your 4GL application is not the owner of table.

See also “RECORD Variables” on page 3-72, which shows how the LIKE key-
word in RECORD declarations can declare implicit names (the same as column
names) for member variables of a record, and can indirectly assign to these
member variables the data types of the corresponding database columns.

In the demonstration database, the manufact table has three columns:

• manu_code of data type CHAR(3)

• manu_name of data type CHAR(15)

table . columnDEFINE variable LIKE

,

Table Qualifier
p. 3-361
INFORMIX-4GL Statements 3-69

DEFINE
• lead_time of data type INTERVAL DAY(3) TO DAY

The following declarations of variables are based on the manufact table:

DATABASE demo5
DEFINE codename RECORD LIKE manufact.*

-- equivalent to "manu_code char(3), manu_name char(15),
-- lead_time interval day(3) to day"
DEFINE hidden LIKE manufact.manu_code
-- equivalent to "hidden char(3)"
DEFINE leaden LIKE manufact.lead_time
-- equivalent to "lead_time interval day(3) to day"

Variables of Large Data Types

These store pointers to binary large object (blob) values, up to 231 bytes in size
(or up to a limit imposed by your implementation of INFORMIX-OnLine):

• TEXT Character strings.
• BYTE Any data, including binary, that can be stored on your system.

Unlike BYTE and TEXT declarations in SQL, there is no IN clause in DEFINE
statements; in 4GL the LOCATE statement (page 3-186) supports the function-
ality of the IN clause.

The CALL and RUN statements cannot include the BYTE nor TEXT keywords
in their RETURNING clauses. See “Data Types of 4GL” for more information
about the BYTE (page 3-298) and TEXT (page 3-317) data types.

Variables of Structured Data Types

INFORMIX-4GL supports two structured data types for storing sets of values:

• ARRAY Arrays of values of any data type except ARRAY.

• RECORD Sets of values of any data type, or any combination of types.

 TEXT

 BYTE

Large Data Type
3-70 INFORMIX-4GL Statements

DEFINE
ARRAY Variables

The ARRAY keyword declares a structured variable that can store a 1-, 2-,
or 3-dimensional array of values, all of the same data type:

size is the number (up to 32,767) of elements in a dimension. Dimensions
can be different sizes, up to the limit of your C compiler.

The elements of an ARRAY variable can be of any data type except ARRAY.
The limit on the total number of elements in an array is compiler-dependent.

Although the Rapid Development System compiler supports no more than
32,767 variables in one program, an array counts as only a single variable in
respect to this limit, regardless of the number of array elements. Array ele-
ments can be of any 4GL data type except ARRAY, but an element can be a
record that contains an array member.

You cannot specify an ARRAY data type as an argument nor as a returned
value of a 4GL function. The CALL and RUN statements cannot include the
ARRAY keyword in their RETURNING clauses. In the DEFINE section of a
REPORT statement, formal arguments (page 6-8) cannot be declared as
ARRAY data types, nor as RECORD variables that contain ARRAY members.
(Data types of local variables that are not formal arguments are unrestricted.)

A database table cannot include a column of the ARRAY nor RECORD data
types, because the SQL language does not support structured data types.

ARRAY Data Type

4GL Simple Data Type
p. 3-68

ARRAY]

RECORD Data Type
p. 3-72

BYTE

TEXT

size OF

,
[3
INFORMIX-4GL Statements 3-71

DEFINE
RECORD Variables

A 4GL program record is a collection of members, each of which is a variable.
The member variables of a record can be of any 4GL data type, including the
simple data types (page 3-68), the structured (ARRAY, RECORD) data types,
and the large (BYTE, and TEXT) data types.

member is a name that you declare for a member variable of the record; this
identifier must be unique within the record.

table is the identifier or synonym of a table or view in the default data-
base that was specified in the DATABASE statement.

The DATABASE statement must specify a default database (page 3-59) before
the first program block (or before the first DEFINE statement that uses LIKE to
define module-scope or global variables) in the current module.

Specify LIKE table.* to declare the record members implicitly, with identifiers
and data types that correspond to all the non-SERIAL columns of table. You do
not need the END RECORD keywords to declare a single record whose mem-
bers correspond to all the non-SERIAL columns of table:

recordname RECORD LIKE table.*

In this context, table.* cannot be a view containing an aggregate column.

Data Type Declaration
p. 3-67

member END RECORD

,
RECORD Data Type

RECORD

table .*LIKE

Table Qualifier
p. 3-361
3-72 INFORMIX-4GL Statements

DEFINE
You can use multiple LIKE clauses in the same RECORD declaration, provided
that the LIKE keyword does not immediately follow the keyword RECORD:

DEFINE cust_ord_item
RECORD

cust_no LIKE customer.customer_num,
ord RECORD LIKE orders.*,-- row from "orders" table
it1 RECORD a1 LIKE items.item_num, -- subset of row

b1 LIKE items.order_num -- in "items"
END RECORD

item_quantity LIKE items.quantity, --an "items" column
it2 RECORD a2 LIKE items.total_price -- columns from

b2 LIKE stock.unit, -- various tables
c2 LIKE manufact.manu_name

END RECORD
END RECORD

A compilation error occurs, however, if a LIKE clause begins the declaration
of a record that is terminated by the END RECORD keywords. To declare a
record with members that mirror the data types of a database table, but that
also contains other members, declare one or more of the other members first.
Then you can mix LIKE clauses and explicit variable declarations to the end
of the record, as in the previous example.

Join columns often have the same name, but you must avoid the repetition of
column names when using two or more LIKE clauses in the same scope of ref-
erence, so that both variables do not have the same name. In the demonstra-
tion database, both the orders and items tables include a column order_num
that can join them. In the previous example, the record members declared
LIKE the columns of items have the same sequence as in the table, but the
record member that is declared like the second order_num column is called
item_order_num.

Note: A scroll cursor cannot be used with a record that has a BYTE or TEXT column.

The section “Data Types of 4GL” describes ARRAY (page 3-297) and RECORD
(page 3-313) data types. See also the INPUT ARRAY statement (page 3-152)
and DISPLAY ARRAY statement (page 3-85) for information on using pro-
gram arrays of records in interactive statements.

References
DATABASE, FUNCTION, GLOBALS, MAIN, REPORT
INFORMIX-4GL Statements 3-73

DISPLAY
DISPLAY
The DISPLAY statement displays data values on the screen. (To produce out-
put within a REPORT routine, you must use PRINT, rather than DISPLAY.) The
syntax of DISPLAY determines whether output appears in a specified line of
the current 4GL window or in a form.

format string is a quoted string to specify a display format; see page 4-91.

left-offset is an integer variable or a literal integer, specifying the posi-
tion of the first character of the next item of output within
the current line of the screen or window; see page 4-40.

line is an integer variable or a literal integer, specifying the
position of a line of the screen or of the current window.

value

CLIPPED

USING format string" "

Case II:

DISPLAY

,

BY NAME

,

variable

,DISPLAYCase III:
DISPLAY

Value

(in a specified line of

(in a screen form)

ASCII number

DISPLAY
Value

AT line, left-offset

TO

 the current window)

ATTRIBUTE
Clause
p. 3-290

DISPLAY
Value

,

Field
Clause
p. 3-359

,

ATTRIBUTE
Clause
p. 3-290

DISPLAY

,

COLUMN left-offset

DISPLAY
Value

Case I:
 (output in the
Line mode overlay)
3-74 INFORMIX-4GL Statements

DISPLAY
number is a whole number, specifying an ASCII code to be displayed;
see page 4-28 and Appendix G.

value is a quoted string, or the 4GL identifier of a named constant
or variable, specifying a value to be displayed.

variable is the name of a variable that is also the name of a field.

Usage
The DISPLAY statement sends output directly to the screen, or to specified
fields of a screen form (page 3-80). The DISPLAY statement cannot reference
values of the ARRAY or BYTE data types. After DISPLAY is executed, changing
the value of a displayed variable has no effect on the current display until you
execute the DISPLAY statement again.

The following topics are described in this section:

Topic Page
Sending Output to the Line Mode Overlay 3-76
Sending Output to the Current 4GL Window 3-77
Formatting Screen Output 3-77
The AT Clause 3-79
Sending Output to a Screen Form 3-80
The BY NAME Clause 3-81
The TO Clause 3-82
The ATTRIBUTE Clause 3-83
Displaying Numeric and Monetary Values 3-83
INFORMIX-4GL Statements 3-75

DISPLAY
Sending Output to the Line Mode Overlay

The DISPLAY statement without qualifying clauses (or with the COLUMN
operator) sends output to the Line mode overlay:

left-offset specifies the position of the first character of the next item of out-
put within the Line mode overlay.

Interactive statements of 4GL produce screen output in either of two modes:

• Formatted mode statements: INPUT, INPUT ARRAY, CONSTRUCT, ERROR,
MESSAGE, DISPLAY ARRAY, and DISPLAY (with any clause)

• Line mode statements: DISPLAY (without any clause)

The PROMPT statement produces output in whichever of these two display
modes is current. When it executes a DISPLAY statement that has no qualify-
ing clause, 4GL automatically opens a new 4GL window that covers the
entire 4GL screen until another interactive statement that produces Format-
ted mode output is encountered.

If the next interactive statement is neither a Line mode DISPLAY nor a
PROMPT statement, the Line mode overlay disappears, revealing the 4GL
screen. Otherwise, any Line mode DISPLAY statement or PROMPT statement
continues the display in the Line mode overlay.

DISPLAY

,

COLUMN left-offset

Case I:
 (display output in
 the Line mode overlay)

DISPLAY Value
p. 3-74
3-76 INFORMIX-4GL Statements

DISPLAY
Sending Output to the Current 4GL Window

If you include the AT keyword and specify coordinates, output is displayed,
beginning in that location in the current 4GL window:

left-offset is a literal integer (page 3-340) that specifies the position of the
first character of the next item of output within the current line of
the screen or window.

line is an integer expression (page 3-338) that returns a positive value,
to specify a line of the current 4GL window (which can be the 4GL
screen itself, if no other 4GL window is current).

Formatting Screen Output

The DISPLAY statement supports only a subset of the syntax of character
expressions (page 3-343). You can use the record.* or the THROUGH or THRU
notation (page 3-363) to reference the member variables of a record. You can
refer to substrings of CHAR, VARCHAR, and TEXT variables by following the
identifier with the starting and ending position of the substring, separated by
a comma, and enclosed in brackets. For example, this statement displays
characters 8 through 20 of the full_name variable:

DISPLAY “name”, full_name[8,20],”added to database” AT 9, 2

You can use the following keywords to format the screen output:

• ASCII number (to display any ASCII character)

• CLIPPED (to truncate trailing blanks)

• COLUMN number (to begin the output at a specified character position)

• USING “string” (to format values of number or DATE data types)

Note: You cannot use an AT, ATTRIBUTE, BY NAME, or TO clause with COLUMN.

These operators are described in Chapter 4. No others are supported. If you
want to display the current time, for example, you must assign the value of
CURRENT to a program variable and then display that variable, rather than
include the CURRENT operator among the list of DISPLAY values.

Case II:

DISPLAY

,

(to a specified line AT line, left-offset
 of current window)

DISPLAY
Value

p. 3-74 ATTRIBUTE
Clause
p. 3-290
INFORMIX-4GL Statements 3-77

DISPLAY
The following statement displays the values of two character variables in the
format lname, fname on the next line, using the CLIPPED operator:

DISPLAY p_customer.lname CLIPPED, “, “, p_customer.fname

Unless you use the CLIPPED or USING operators, the DISPLAY statement
formats character representations of the values of program variables and
constants with display widths (including any sign) that depend on their
declared data types, as the following chart indicates.

Data Type Default Display Width (in characters)

CHAR The length from the data-type declaration.
DATE 10.
DATETIME From 2 to 25, as implied in the data-type declaration.
DECIMAL (2 + m), for m the precision from the data-type declaration.
FLOAT 14.
INTEGER 11.
INTERVAL From 3 to 25, as implied in the data-type declaration.
MONEY (3 + m), for m the precision from the data-type declaration.
SMALLFLOAT 14.
SMALLINT 6.
VARCHAR The maximum length from the data-type declaration.

When no field is referenced by the TO or BY NAME keywords, output begins
on the screen where the AT line, left-offset coordinates position it, or (if the AT
clause is omitted) it defaults to the line below the current cursor position.

Unless the COLUMN operator specifies a non-default character position, the
output begins in the first character position, and successive output items
within the same DISPLAY statement are not separated by blank spaces. For
example, suppose the following program fragment runs on May 5, 1994:

DEFINE col INTEGER, cow DATE
LET col = 2
LET cow = CURRENT
DISPLAY COLUMN 3, "col ", col, COLUMN 23, cow, cow

SLEEP 5
3-78 INFORMIX-4GL Statements

DISPLAY
This DISPLAY statement would produce one line of output on May 5, 1994:

• Two blank spaces (the COLUMN 3 specification)

• The string col (the “col” string specification)

• Ten blank spaces, followed by the character 2 (the col INTEGER variable)

• Seven blank spaces (the COLUMN 23 specification)

• The string 05/05/199405/05/1994 (the cow, cow DATE variables)

Each DISPLAY statement begins its output on a new line. You can also use the
AT clause to position output when no screen fields are specified by the TO or
BY NAME clause. If no fields are specified, you cannot include an ATTRIBUTES
clause in the DISPLAY statement, unless you also include the AT clause.

The AT Clause

You can use the AT clause to display text at a specified location in the current
4GL window, which can be the 4GL screen. The CLIPPED or USING operators
can format the displayed values. You cannot, however, include the COLUMN
operator in a DISPLAY statement that includes the AT clause.

The coordinates start with line 1 and character position 1 in the upper left
corner of the 4GL screen or the current 4GL window. The line values increase
as you go down, and the character position values increase as you move from
left to right. An error occurs if either coordinate value exceeds the dimen-
sions of the 4GL screen or the current 4GL window.

For example, the following DISPLAY statement displays the value of record
member total_price, starting in line 22, at character position 5:

DISPLAY "TOTAL: ", p_items.total_price AT 22, 5

Text that you display remains on the screen until you overwrite it. If you use
the AT clause when the last element of variable list is a NULL CHAR value,
4GL clears to the end of the line. If you execute a Formatted-mode statement
 when Line mode output from a DISPLAY statement with no clause is visible,
4GL clears the screen or the current 4GL window before producing Formatted
mode display. (Formatted mode statements include ERROR, MESSAGE,
PROMPT, or DISPLAY with any AT, BY NAME, or TO clause.)

col 2 05/05/199405/05/1994

left-offset = 3 left-offset = 23
INFORMIX-4GL Statements 3-79

DISPLAY
Do not use DISPLAY AT to display text where it could overwrite useful data.
Because INPUT clears the Comment line and the Error line when the cursor
moves between fields, it is often a good idea not to display text in the follow-
ing positions of the current 4GL window or the 4GL screen:

• The last line of the current 4GL window (the default Comment line).

• The last line of the 4GL screen (the default Error line).

If you want to use these lines for text display, make sure to reposition the
Comment and Error lines. The OPEN WINDOW and OPTIONS statements
position the Comment line. The OPTIONS statement positions the Error line.
If the displayed text exceeds the size of the current 4GL window, then 4GL
truncates the text to fit the available space.

Sending Output to a Screen Form

You can use the TO clause or the BY NAME clause to display output in the
fields of a screen form, using the Formatted mode of display.

variable is the name of a variable that is also the name of a field.

Here you cannot use the COLUMN operator nor the AT keyword to position
output, since the locations of fields within the form (page 5-4) are fixed.

If 4GL was in Line mode, this form of the DISPLAY statement first clears the
screen before sending output to the fields of the form.

Character representations of values are displayed according to data type:

Type of Value Display

number Right-justified. If the number does not fit in the field, 4GL fills
the field with asterisks (*) to indicate an overflow.

literal character
string, TEXT

Left-justified. If a character string does not fit in the field, 4GL
truncates the display of the value.

DISPLAY TO

, ,

DISPLAY Value
p. 3-74

Field Clause
p. 3-359

ATTRIBUTE
Clause
p. 3-290

Case III:
 (display output
in a screen form)

,

variableBY NAME
3-80 INFORMIX-4GL Statements

DISPLAY
BYTE The field displays the message <byte value> , but actual BYTE
values do not appear in the field. (The PROGRAM attribute, as
described on page 5-50, can display BYTE and TEXT values.)

Field attributes can change some of these default formats. For example, the
LEFT attribute (page 5-31) left-justifies numbers, and the FORMAT attribute
can format DATE, DECIMAL, FLOAT, and SMALLFLOAT values. See also the
PICTURE attribute (page 5-48) and the USING operator (page 4-91).

The BY NAME Clause

If the variables to be displayed have the same name as screen fields, you can
use the BY NAME clause. The BY NAME clause binds the fields to variables
implicitly. To use this clause, you must define variables with the same name
as the screen fields where they will be displayed. 4GL ignores any record
name prefix when matching the names. The names must be unique and
unambiguous. If not, this option results in an error, and 4GL sets status < 0.

For example, the following statement displays the values for the specified
variables in the screen fields with corresponding names (company, address1,
address2, city, state, and zipcode):

DISPLAY BY NAME p_customer.company, p_customer.address1,
p_customer.address2, p_customer.city, p_customer.state,
p_customer.zipcode

You can produce the same result by using the THRU or THROUGH notation
when listing the fields of the screen record:

DISPLAY BY NAME p_customer.company THRU p_customer.zipcode

This BY NAME clause displays data to the screen fields of the default screen
records. The default screen records are those having the names of the tables
defined in the TABLES section of the form specification file. To use a screen
array, you define a screen array in addition to the default screen record. This
default screen record holds only the first line of the screen array.

For example, the following DISPLAY statement displays the ordno variable
only in the first line of the screen array (the default screen record):

DISPLAY BY NAME p_stock[1].ordno
INFORMIX-4GL Statements 3-81

DISPLAY
To display ordno in all elements of the array, you can use the DISPLAY ARRAY
statement, or DISPLAY and the TO clause, as in the next example:

FOR i = 1 TO 10
DISPLAY p_stock[i].ordno TO sc.stock[i].ordno
...

END FOR

The TO Clause

If the variables do not have the same names as the screen fields, the BY NAME
clause is not valid. Instead, you must use the TO clause to map variables to
fields explicitly. You can list the fields individually, or you can use the screen
record.* or screen record[n].* notation, where screen record[n].* specifies all
the fields in line n of a screen array.

You can use the SCROLL statement to move such values up or down, but the
DISPLAY ARRAY statement is generally more convenient to use with screen
arrays. In the following example, the values in the p_items program record
are displayed in the first row of the s_items screen array:

DISPLAY p_items.* TO s_items[1].*

The expanded list of screen fields must correspond in order and in number
to the expanded list of identifiers after the DISPLAY keyword. Identifiers and
their corresponding fields must have the same or compatible data types. For
example, the next DISPLAY statement displays the values in the p_customer
program record in fields of the s_customer screen record:

DISPLAY p_customer.* TO s_customer.*

For this example, the p_customer program record and the s_customer screen
record require compatible declarations. The following DEFINE statement
declares the p_customer program record:

DEFINE p_customer RECORD
customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
phone LIKE customer.phone
END RECORD
3-82 INFORMIX-4GL Statements

DISPLAY
This fragment of a form specification declares the s_customer screen record:

ATTRIBUTES
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.phone;
END

INSTRUCTIONS
SCREEN RECORD s_customer (customer.customer_num,

customer.fname,
customer.lname,
customer.phone)

END

In a DISPLAY TO statement, any screen attributes specified in the ATTRIBUTE
clause apply to all the fields that you specify after the TO keyword.

The ATTRIBUTE Clause

For general information and the syntax of the ATTRIBUTE clause, see
page 3-290. This section describes specific information about using the
ATTRIBUTE clause within the DISPLAY statement.

You can use the ATTRIBUTE clause only if you also use the BY NAME, TO, or
AT clause. The ATTRIBUTE clause temporarily overrides any default display
attributes, or any attributes specified in the OPTIONS or OPEN WINDOW
statements for the fields. When the DISPLAY statement completes execution,
the default display attributes are restored.

The following DISPLAY statement specifies the attributes REVERSE and BLUE
for the message that will be displayed on line 12, starting in the first column:

DISPLAY " There are ", num USING "#####",
" items in the list" AT 12,1
ATTRIBUTE(REVERSE, BLUE)

While the DISPLAY statement is executing, 4GL ignores the INVISIBLE
attribute, regardless of whether you specify it in the ATTRIBUTE clause.

Displaying Numeric and Monetary Values

The DBFORMAT and DBMONEY environment variables affect the display of
numeric and monetary values as follows. 4GL will:
INFORMIX-4GL Statements 3-83

DISPLAY
• Display the leading currency symbol (as set by DBFORMAT or DBMONEY)
for MONEY values. If the FORMAT attribute specifies a leading currency
symbol for other data types, then 4GL displays that symbol.

• Omit the thousands separators, unless they are specified by a FORMAT
attribute or by the USING operator.

• Display the decimal separator, except for INT or SMALLINT values.

• Display the trailing currency symbol (as set by DBFORMAT or DBMONEY)
for MONEY values, unless you specify a FORMAT attribute or the USING
operator. In this case, 4GL ignores the trailing currency symbol; the user
cannot enter a trailing currency symbol, and 4GL does not display it.

For complete information on DBFORMAT and DBMONEY, refer to
Appendix D.

References
INPUT, DISPLAY ARRAY, DISPLAY FORM, OPEN WINDOW, OPTIONS, PRINT
3-84 INFORMIX-4GL Statements

DISPLAY ARRAY
DISPLAY ARRAY
The DISPLAY ARRAY statement displays program array values in a screen
array, so that the user can scroll through the screen array.

record array is the identifier of a program array of RECORD variables.

screen array is the identifier of a screen array (page 5-66).

Usage
To use the DISPLAY ARRAY statement, you must do the following:

1. Define the screen array in the form specification file.

2. Use DEFINE to declare an array of program records, whose members cor-
respond in name, data type, and order to the screen array fields.

3. Open and display the screen form with either of the following:

• The OPEN FORM and DISPLAY FORM statements.

• The OPEN WINDOW statement with the WITH FORM clause.

4. Fill the program array with data to be displayed, counting the number of
program records being filled with retrieved data.

5. Call the SET_COUNT(x) function, with x the number of filled records.

6. Use the DISPLAY ARRAY statement to display the program array values
in the screen array fields.

The SET_COUNT() function sets the initial value of the ARR_COUNT() func-
tion. If you do not call SET_COUNT(), then 4GL cannot determine how much
data to display, and so the screen array remains empty. For a description of
the syntax of the built-in SET_COUNT() function, see page 4-80.

The DISPLAY ARRAY statement binds the screen array fields to the member
records of the program array. The number of variables in each record of the
program array must be the same as the number of fields in each screen record
(that is, in a single row of the screen array). Each mapped variable must have
the same data type or a compatible data type as the corresponding field.

record
array

DISPLAY ARRAY TO screen .
array

ON KEY
Block

p. 3-87

END
DISPLAY

 *

ATTRIBUTE
Clause
p. 3-290
INFORMIX-4GL Statements 3-85

DISPLAY ARRAY
The size of the screen array (from the form specification file) determines the
number of program records that 4GL displays at one time on the screen. The
size of the program array determines how many retrieved rows of data the
program can store. The size of the program array can exceed the size of the
screen array. In this case, the user can scroll through the rows on the form.

When 4GL encounters a DISPLAY ARRAY statement, it does the following:

1. Displays the program array values in the screen array fields.

2. Moves the cursor to the first field in the first screen record.

3. Waits for the user to press a scroll key (by default, F3 or Page Down to
scroll forward, or F4 or Page Up to scroll backwards) or the Accept key
(the ESCAPE key by default).

Since the DISPLAY ARRAY statement does not terminate until the user presses
the Accept or Interrupt key, you may want to display a message informing
the user. By default, 4GL displays variables and constants as follows:

• Right-justifies number values in a screen field.

• Left-justifies character values in a screen field.

• Truncates the displayed value, if a character value is longer than the field.

• Fills the field with asterisks (*) to indicate an overflow, if a number value
is larger than the field can display.

• If the field contains a BYTE value, displays <byte value> in the field.

The following are among the topics that are described in this section:

Topic Page
The ATTRIBUTE Clause 3-86
The ON KEY Blocks 3-87
The EXIT DISPLAY Statement 3-89
The END DISPLAY Keywords 3-89
Using Built-In Functions and Operators 3-90
Scrolling During the DISPLAY ARRAY Statement 3-91
Completing the DISPLAY ARRAY Statement 3-92

The ATTRIBUTE Clause

For general information and the syntax of the ATTRIBUTE clause, see
page 3-290. This section describes specific information about using the
ATTRIBUTE clause within a DISPLAY ARRAY statement.
3-86 INFORMIX-4GL Statements

DISPLAY ARRAY
The attributes that you include apply to all of the fields in screen array. For
example, the following DISPLAY ARRAY statement displays items in RED:

DISPLAY ARRAY p_items TO s_items.* ATTRIBUTE (RED)

The ATTRIBUTE clause specifications overrides all default attributes, and
temporarily override any display attributes that the OPTIONS or the OPEN
WINDOW statement specified for these fields. While the DISPLAY ARRAY
statement is executing, 4GL ignores the INVISIBLE attribute.

The ON KEY Blocks

The ON KEY keywords specify a block of statements to be executed when the
user selects one of the specified keys. This is the syntax of the ON KEY block:

key name is one or more of these keywords, in uppercase or lowercase
letters, separated by commas, to specify a key:

ACCEPT HELP NEXT or RETURN
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE LEFT PREVPAGE UP
F1 through F64
CONTROL-char (except A, D, H, I, J, L, M, R, or X)

statement is an SQL statement or some other 4GL statement.

For key name you can also substitute the NEXTPAGE keyword as a synonym
for NEXT, and PREVPAGE as a synonym for PREVIOUS.

4GL executes the statements specified in the ON KEY block when the user
presses one of the keys that you specify. 4GL deactivates the form while exe-
cuting statements in an ON KEY block. After executing the statements, 4GL re-
activates the form, allowing the user to continue viewing the fields.

key
nameON KEY () statement

EXIT DISPLAY

,
ON KEY

Block
INFORMIX-4GL Statements 3-87

DISPLAY ARRAY
You can enter uppercase or lowercase key specifications. Some keys require
special consideration before you reference them in an ON KEY clause:

Key Special Considerations

ESC or ESCAPE Specify another key as the Accept key in the OPTIONS
statement, because ESC is the default Accept key.

INTERRUPT You must execute a DEFER INTERRUPT statement, so that when the
user presses the Interrupt key, 4GL executes the statements in the
ON KEY clause and sets int_flag to nonzero for the current task, but
does not terminate the DISPLAY ARRAY statement. 4GL also exe-
cutes the statements in this ON KEY clause if the DEFER QUIT state-
ment has executed and the user presses the Quit key. In this case,
4GL sets quit_flag to non-zero for the current task.

F3 Specify another key as the Next Page key in the OPTIONS statement,
because F3 is the default Next key.

F4 Specify another key as the Previous Page key in the OPTIONS
statement, because F4 is the default Previous key.

CONTROL-char

A, D, H,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M If you specify these keys in the ON KEY clause, the key is “trapped”
by 4GL to activate the ON KEY clause. The standard effect of these
keys (TAB, LINEFEED, and RETURN, respectively) is not available to
the user. For example, if CONTROL-M appears in an ON KEY clause,
the user cannot press RETURN to advance the cursor to the next
field.

You may not be able to use other keys that have special meaning to your ver-
sion of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

After executing the statements in the ON KEY block, 4GL resumes the display
with the cursor in the same location as before the ON KEY block, unless it
encounters EXIT DISPLAY within the block. (In this case, program execution
resumes at the statement following the DISPLAY ARRAY statement.)

The following ON KEY clause specifies two keys to display a Help message:

ON KEY (f1, control-w) CALL customer_help()
3-88 INFORMIX-4GL Statements

DISPLAY ARRAY
The EXIT DISPLAY Statement

The EXIT DISPLAY statement terminates the DISPLAY ARRAY statement.
When it encounters an EXIT DISPLAY statement, 4GL does the following:

1. Skips all subsequent statements between the EXIT DISPLAY keywords and
the END DISPLAY keywords.

2. Resumes execution at the statement after the END DISPLAY keywords.

For example, the EXIT DISPLAY statement terminates the following DISPLAY
ARRAY statement if the user presses F5 and the value of amt_received in the
current program array record is greater than 1000:

DISPLAY ARRAY p_receipts TO s_receipts.*
ON KEY (F5)

LET x = arr_curr()
IF p_receipts[x].amt_received > 1000 THEN

CALL get_allocation(p_receipts[x].receipt_num)
EXIT DISPLAY

END IF
END DISPLAY

The END DISPLAY Keywords

The END DISPLAY keywords terminate the DISPLAY ARRAY statement. Each
of these conditions requires that you include the END DISPLAY keywords:

• The DISPLAY ARRAY statement includes one or more ON KEY blocks.

• The DISPLAY ARRAY statement is specified in a form management block
of a CONSTRUCT, INPUT, or INPUT ARRAY statement, and an ON KEY
block of the enclosing statement follows the DISPLAY ARRAY statement.

• The DISPLAY ARRAY statement is specified within an ON KEY block in a
PROMPT statement or in another DISPLAY ARRAY statement.
INFORMIX-4GL Statements 3-89

DISPLAY ARRAY
The following DISPLAY ARRAY statement must include the END DISPLAY
keywords because it immediately precedes an ON KEY block that belongs to
an INPUT statement:

INPUT BY NAME p_customer.*
AFTER FIELD company

...
DISPLAY ARRAY pa_array TO sc_array.*
END DISPLAY

ON KEY (CONTROL_B)
...

END INPUT

Otherwise, it would be ambiguous whether the ON KEY block were part of
the INPUT statement or part of the DISPLAY ARRAY statement.

Here the END DISPLAY keywords are required because of the ON KEY clause:

DISPLAY ARRAY p_items TO s_items.*ON KEY (CONTROL_W)
CALL get_help()

END DISPLAY

Using Built-In Functions and Operators

INFORMIX-4GL provides several built-in functions to use in a DISPLAY
ARRAY statement. These are described in Chapter 4 and are summarized
here.

You can use the following built-in functions to keep track of the relative states
of the screen cursor, the program array, and the screen array:

Function Description

ARR_CURR() Returns the number of the current record of the program array. This
corresponds to the position of the screen cursor at the beginning of
the ON KEY control block, not the line to which the screen cursor
moves after execution of the block.

ARR_COUNT() Returns the current number of records in the program array.

SCR_LINE() Returns the number of the current line within the screen array. This
number can be different from the value returned by ARR_CURR() if
the program array is larger than the screen array.

SET_COUNT() Takes the number of rows currently in the program array as an
argument, and sets the initial value of ARR_COUNT().
3-90 INFORMIX-4GL Statements

DISPLAY ARRAY
DISPLAY ARRAY also supports the following built-in functions and operators
that allow you to access field buffers and keystroke buffers:

Feature Description
FIELD_TOUCHED() Returns TRUE when the user has “touched” (made a change to)

a screen field whose name is passed as an operand. Moving the
screen cursor through a field (with the RETURN, TAB, or Arrow
keys) does not mark a field as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form.

FGL_LASTKEY() Returns an INTEGER value corresponding to the most recent
keystroke executed by the user while in the screen form.

INFIELD() Returns TRUE if the name of the field that is passed as its
operand is the name of the current field.

For more about these built-in 4GL functions and operators, see Chapter 4.
Each field in a form has only one field buffer, and a buffer cannot be used by
two different statements simultaneously. If you plan to display more than
once the same form with data entry fields, you can open a new 4GL window,
and then open and display in it a second copy of the form. INFORMIX-4GL
allocates a separate set of buffers to each form, and you can be certain that
your program is retrieving the correct field values.

Scrolling During the DISPLAY ARRAY Statement

Users can select these keys to scroll through the screen array:

Key Effect
[↓], [→] Moves the cursor down one row at a time. If the cursor was on the last

row of the screen array before the user pressed one of these arrow keys,
4GL scrolls the program array data up one row. If the last row in the
program array is already in the last row of the screen array, pressing one
of these keys generates a message that says there are no more rows in that
direction.

[↑], [←] Moves the cursor up one row at a time. If the cursor was on the first row
of the screen array before the user pressed one of these arrow keys, 4GL
scrolls the program array data down one row. If the first row in the pro-
gram array is already in the first row of the screen array, pressing one of
these keys generates a message that says there are no more rows in that
direction.

F3 Scrolls the display to the next full page of program array records. You can
reset this key by using the NEXT KEY option of the OPTIONS statement.

F4 Scrolls the display to the previous full page of program array records.
You can reset this key by using the PREVIOUS KEY option of the OPTIONS
statement.
INFORMIX-4GL Statements 3-91

DISPLAY ARRAY
Completing the DISPLAY ARRAY Statement

The following conditions terminate the DISPLAY ARRAY statement:

• The user chooses any of the following keys:

o Accept

o Interrupt

o Quit

• 4GL executes the EXIT DISPLAY statement

By default, the Accept, Interrupt, or Quit keys terminate the DISPLAY ARRAY
statement. Each of these actions also deactivates the form. (But pressing the
Interrupt or Quit key can immediately terminate the program, unless the pro-
gram also includes the DEFER INTERRUPT and DEFER QUIT statements.)

If 4GL previously executed a DEFER INTERRUPT statement in the program,
the Interrupt key causes 4GL to do the following:

• Set the global variable int_flag to a nonzero value.

• Terminate the DISPLAY ARRAY statement, but not the 4GL program.

If 4GL previously executed a DEFER QUIT statement in the program, pressing
the Quit key causes 4GL to do the following:

• Set the global variable quit_flag to a nonzero value.

• Terminate the DISPLAY ARRAY statement, but not the 4GL program.

The following program fragment displays a program array p_customer in
the fields of a screen array called s_customer:

OPEN FORM f_customer FROM "f_customer"
DISPLAY FORM f_customer
...
DECLARE c_custs CURSOR FOR

SELECT customer_num, company
FROM customer
WHERE state = "CA"

LET counter = 1
FOREACH c_custs INTO p_customers[counter].*

LET counter = counter + 1
END FOREACH
...
CALL SET_COUNT(counter - 1)
DISPLAY ARRAY p_customers TO s_customers.*

References
ATTRIBUTE, DISPLAY, INPUT ARRAY, OPEN WINDOW, OPTIONS, SCROLL
3-92 INFORMIX-4GL Statements

DISPLAY FORM
DISPLAY FORM
The DISPLAY FORM statement displays a compiled 4GL screen form.

form is the identifier of a 4GL screen form.

Usage
Before you can use a compiled form to display information on the screen
or to accept keyboard input from the user, you must do the following:

• First, use the OPEN FORM statement to declare the name of the form.

• Then use the DISPLAY FORM statement to display the form on the screen.

The form name specifies the name of the screen form to be displayed. The
DISPLAY FORM statement is not required if you open and display a form by
using the WITH FORM option of the OPEN WINDOW statement (page 3-221).

An error occurs if the current 4GL window is too small to display the form.

Form Attributes

The DISPLAY FORM statement ignores the INVISIBLE attribute. 4GL applies
any other display attributes that you specify in the ATTRIBUTE clause to any
fields that have not been assigned attributes by the ATTRIBUTES section of the
form specification file, or by the syscolatt table, or by the OPTIONS statement.
If the form is displayed in a 4GL window, color attributes from the DISPLAY
FORM statement supersede any from the OPEN WINDOW statement.

If subsequent CONSTRUCT, DISPLAY, or DISPLAY ARRAY statements that
include an ATTRIBUTE clause reference the form, however, their attributes
take precedence over those of the DISPLAY FORM statement. (For information
on display attributes and the order of precedence among conflicting attribute
specifications, see the section on ATTRIBUTE Clauses on page 3-290.

Reserved Lines

DISPLAY FORM displays the specified form in the current 4GL window, or
in the 4GL screen itself, if no other 4GLwindow is open. The form begins in
the line that was indicated by the FORM LINE specification of the
OPEN WINDOW or OPTIONS statements. This specification positions the first

ATTRIBUTE Clause
p. 3-290

DISPLAY FORM form
INFORMIX-4GL Statements 3-93

DISPLAY FORM
line of the form relative to the top of the current 4GL window. If you provided
no FORM LINE specification, the default Form line is 3. On a default screen
display, the reserved lines are positioned as follows:

Default Location Reserved for

First line Prompt line (output from PROMPT statement); also
Menu line (command value from MENU statement).

Second line Message line (output from MESSAGE statement; also the
description value output from MENU statement).

Third line Form line (output from DISPLAY FORM statement).

Second-to-last line Comment line (output from COMMENT attribute)
when SCREEN is the current 4GL window.

Last line Error line (output from ERROR statement); also
Comment line in any 4GL window except SCREEN.

For example, the following statements display the cust_form form in the 4GL
screen (or in the current 4GL window):

OPEN FORM cust_form FROM "customer"
DISPLAY FORM cust_form

The OPTIONS statement can change the default position of all the reserved
lines, including that of the Form line, for all 4GL windows, including the
entire 4GL screen (specified as SCREEN). You can also reposition the Form line
for a specific 4GL window only, by using an ATTRIBUTE clause in the OPEN
WINDOW statement.

The following statements make line 6 the Form line for all 4GL windows, and
then displays cust_form:

OPTIONS FORM LINE 6
OPEN FORM cust_for FROM "customer"
DISPLAY FORM cust_form

References
CLEAR, CLOSE FORM, OPEN FORM, OPEN WINDOW, OPTIONS
3-94 INFORMIX-4GL Statements

END
END
The END keyword marks the end of a compound 4GL statement.

keyword is a keyword that specifies the name of the 4GL statement
to be delimited, from among the keywords listed below.

Usage
The END keyword marks the last line of a compound 4GL statement. This is
a compile-time indicator of the end of the statement construct. (Use the EXIT
keyword, rather than END, to terminate execution of a compound statement.)

Several compound statements of 4GL support END keywords to mark the end
of the statement construct within the source module:

 CASE FOREACH INPUT PROMPT
 CONSTRUCT FUNCTION INPUT ARRAY REPORT
 DISPLAY ARRAY GLOBALS MAIN WHILE
 FOR IF MENU

The END DISPLAY keyword delimits the DISPLAY ARRAY statement, and
END INPUT delimits both INPUT and INPUT ARRAY. Unlike EXIT statement
clauses (page 3-98), no more than one END statement clause can appear within
the specified statement, but most compound statements of 4GL can be nested.

This statement fragment uses END MENU to delimit a MENU statement:

MENU "MAIN"
...

END MENU

The END keyword can also delimit RECORD declarations in DEFINE
statements, as well as sections of form specification files.

References
CASE, DISPLAY ARRAY, FOR, FOREACH, FUNCTION, GLOBALS, IF, INPUT,
INPUT ARRAY, MAIN, MENU, PROMPT, REPORT, WHILE

keywordEND
INFORMIX-4GL Statements 3-95

ERROR
ERROR
The ERROR statement displays an error message on the Error line and rings
the terminal bell.

string is a quoted string of a length no greater than the number of char-
acters than the Error line of the current 4GL window can display.

variable is the name of a CHAR or VARCHAR variable whose contents are
to be displayed on the Error line of the 4GL screen.

Usage
The string or variable specifies all or part of the text of a screen message to be
displayed on the Error line.

You can specify any combination of character variables and literal character
strings for the message. 4GL generates the message to display by replacing
any variables with their values, and concatenating the returned strings. The
total length of this message must not be greater than the number of characters
that the Error line can display in a single line of the 4GL screen. The message
text remains on the screen until the user presses the next key.

The error text appears in a borderless single-line 4GL window on the Error
line. This 4GL window opens to display your text when ERROR is executed,
and closes at the next keystroke by the user. When this 4GL window closes,
any underlying display on the same line becomes visible again.

The position of the Error line is determined by the most recently executed
ERROR LINE specification in the OPTIONS statement. Otherwise, the default
Error line position is the last line of the screen. Because the Error line is posi-
tioned relative to the screen, rather than to the current window, you cannot use
the OPEN WINDOW statement to reposition the Error line.

ERROR

,

"string"
variable ATTRIBUTE

Clause
p. 3-290
3-96 INFORMIX-4GL Statements

ERROR
You can use the CLIPPED and USING operators in the ERROR statement, as
illustrated in the following examples:

ERROR p_orders.order_num USING "#####", " is not valid."

ERROR pattern CLIPPED, " has no match."

You can also use the ASCII and COLUMN operators, and other features of 4GL
character expressions. (For more information on the built-in functions and
operators of 4GL, see Chapter 4.)

The ATTRIBUTE Clause

The ATTRIBUTE clause options are described in the ATTRIBUTE Clause sec-
tion on page 3-290. The default display attribute for the Error line is REVERSE.
You can use the ATTRIBUTE clause to specify some other attribute. 4GL
ignores the INVISIBLE attribute if you include it with another attribute in the
ATTRIBUTE clause of the ERROR statement. If the INVISIBLE attribute is the
only attribute that you specify, 4GL displays the ERROR text as NORMAL.

The next example specifies BLUE and BLINK attributes for the ERROR text:

ERROR “Unable to insert items” ATTRIBUTE(BLUE, BLINK)

System Error Messages

The Error line also displays system error messages. These can provide you with
useful diagnostic information while you are developing 4GL programs, but
they may not be helpful to users of your application.

One way to avoid displaying system error messages is to use the WHENEVER
statement to trap run-time errors. The WHENEVER statement can call a func-
tion that executes an ERROR statement, displaying a screen message that is
more suitable for your users.

Some run-time errors cannot be trapped by the WHENEVER statement. The
description of “Exception Handling” on page 2-23 includes a list of error
messages that are currently untrappable.

References
DISPLAY, MESSAGE, OPTIONS, PROMPT, WHENEVER
INFORMIX-4GL Statements 3-97

EXIT
EXIT
The EXIT statement transfers control out of a control structure: a block, a loop,
a CASE statement, an interface statement, or out of the program itself.

exit code is an integer expression (page 3-338).

keyword is a keyword that specifies the current statement from which con-
trol of execution is to be transferred, from among those in the list
that appears below on this page.

Usage
The EXIT PROGRAM statement terminates the program that is currently exe-
cuting. Other forms of EXIT transfer control from the current control structure
to whatever statement follows the corresponding END keyword keywords.

Leaving a Control Structure

Some compound statements support EXIT statement to terminate execution of
the current statement and pass control of execution to the next statement:

EXIT CASE EXIT FOR EXIT MENU
EXIT CONSTRUCT EXIT FOREACH EXIT WHILE
EXIT DISPLAY EXIT INPUT

Here EXIT DISPLAY exits from DISPLAY ARRAY (but not DISPLAY) statements,
and EXIT INPUT can exit from both INPUT ARRAY and INPUT statements.

Unlike EXIT PROGRAM, these other EXIT statements can only appear within
the specified statement. For example, EXIT FOR can occur only in a FOR loop;
if it is executed, it transfers control to the statement following the END FOR
keywords that mark the end of that FOR statement.

Similarly, EXIT MENU can appear only within a control block of a MENU state-
ment; it transfers control to the statement that follows the corresponding END
MENU keywords of the same MENU statement.

Case I: (terminating a program)

Case II: (terminating a statement)

)exit code(

PROGRAM

keyword

exit code

 EXIT
3-98 INFORMIX-4GL Statements

EXIT
Leaving the Program

The EXIT PROGRAM statement terminates execution of the 4GL program.
After 4GL encounters the EXIT PROGRAM statement anywhere within the
program, no subsequent statements are executed, and control returns to the
operating system (or to whatever process invoked the 4GL program). For
example, here EXIT PROGRAM appears in a MENU statement:

MENU "MAIN"
...
COMMAND "Quit" "Exit from the program"

CLEAR SCREEN
EXIT PROGRAM

END MENU

If 4GL encounters the END MAIN keywords in the MAIN block, END MAIN
terminates the program, as if you specified EXIT PROGRAM (0). If you are
using the INFORMIX-4GL Interactive Debugger, a program that EXIT PRO-
GRAM terminates can be examined subsequently by the WHERE or STACK
commands of the Debugger, as if an abnormal termination had occurred.

The Exit Code Value

The exit code returns the status code when a process terminates. The status
code is a whole-number value, usually less than 256. The RETURNING clause
of the RUN statement instructs 4GL to save the exit code from the EXIT PRO-
GRAM statement, if RUN invokes a 4GL program that EXIT PROGRAM termi-
nates. When the 4GL program that RUN specifies completes execution, RUN
can return an integer variable that contains two bytes of termination status
information:

• The low byte contains the termination status of whatever RUN executes.
You can recover this by calculating the value of (integer value modulo 256).

• The high byte contains the low byte from the EXIT PROGRAM statement
of the 4GL program that RUN executes. You can recover this returned code
by dividing integer value by 256.

See the RUN statement (page 3-266) for an example of using RUN and EXIT
PROGRAM to examine termination status and exit codes from 4GL programs
that RUN invoked and EXIT PROGRAM terminated.

References
CONTINUE, END, GOTO, LABEL, MAIN, RUN
INFORMIX-4GL Statements 3-99

FINISH REPORT
FINISH REPORT
The FINISH REPORT statement completes processing of a 4GL report.

report is the name of a 4GL report, as declared in the REPORT statement.

Usage
You can use the FINISH REPORT statement to indicate the end of a report driver
(page 6-5) and to complete processing of the report. FINISH REPORT must fol-
low a START REPORT statement, and at least one OUTPUT TO REPORT state-
ment, that reference the same report.

If the REPORT definition includes an ORDER BY section with no EXTERNAL
keyword (page 6-22), or specifies aggregates (page 6-46) based on all the
input records, 4GL makes two passes through the input records. During the
first pass, it uses the database engine to sort the data, and then stores the
sorted values in a temporary file. During the second pass, it calculates any
aggregate values, and produces output from data in the temporary files.

Executing the FINISH REPORT statement performs the following actions:

• Completes the second pass, if report is a two-pass report. These “second
pass” activities handle the calculation and output of any aggregate values
(page 6-46) that are based on all the input records in the report, such as
COUNT(*) or PERCENT(*) with no GROUP qualifier.

• Executes any AFTER GROUP OF control blocks (page 6-29).

• Executes any PAGE HEADER (page 6-37), ON LAST ROW (page 6-36), and
PAGE TRAILER control blocks (page 6-38) needed to complete the report.

• Copies any data from the output buffers of the report to what START
REPORT or the report definition (page 6-13) specified as the destination.
If none was specified, output goes to the Report window (page 6-14).

• Closes the Select cursor on any temporary table that was created to order
the input records or to perform aggregate calculations.

• Deallocates memory for any local BYTE or TEXT variables in the report.

• Terminates processing of the 4GL report, and deletes from the database
any files that held temporary tables for a two-pass report.

FINISH REPORT report
3-100 INFORMIX-4GL Statements

FINISH REPORT
The following program creates a report based on data in the orders table:

DATABASE stores2
MAIN

DEFINE p_orders RECORD LIKE orders.*
DECLARE q_ordcurs CURSOR FOR SELECT * FROM orders
START REPORT ord_list TO "ord_listing"
FOREACH q_ordcurs INTO p_orders

OUTPUT TO REPORT ord_list(p_orders)
END FOREACH
FINISH REPORT ord_list

END MAIN
REPORT ord_list(r_orders)

DEFINE r_orders RECORD LIKE orders.*
FORMAT EVERY ROW

END REPORT

Temporary Tables Created by Reports

The temporary tables that 4GL reports use for sorting input records or for
calculating aggregates in two-pass reports are stored in the current database.
If you do not open any database, or if the CLOSE DATABASE statement closes
the current database, then a run-time error occurs when 4GL cannot create or
access the temporary table that is required for a two-pass report.

Similarly, the FINISH REPORT statement cannot access temporary tables in
more than one database. An error can occur if the DATABASE statement
opens a different database while a two-pass 4GL report is being processed.
The following program fragment, for example, produces a run-time error if
the produce report requires two passes:

DATABASE apples
. . .

START REPORT produce --database is apples
. . .

OUTPUT TO REPORT produce(input_rex)
. . .

DATABASE oranges --new database is oranges
FINISH REPORT produce --cannot access files in apples database

References
DATABASE, OUTPUT TO REPORT, REPORT, START REPORT
INFORMIX-4GL Statements 3-101

FOR
FOR
The FOR statement executes a statement block a specified number of times.

counter is a variable of type INTEGER or SMALLINT that serves as an index
for the statement block.

finish is an integer expression (page 3-338) to specify an upper limit for
counter.

increment is an integer expression (page 3-338) whose value is added to
counter after each iteration of the statement block.

start is an integer expression (page 3-338) to set an initial counter value.

statement is an SQL statement or other 4GL statement. (This statement block
is sometimes called “the FOR loop.”)

Usage
The FOR statement executes the statements up to the END FOR statement a
specified number of times, or until EXIT FOR terminates the FOR statement.
(Use the WHILE statement, rather than FOR, if you cannot specify an upper
limit on how many times the program needs to repeat a statement block, but
you can specify a Boolean condition for leaving the block.)

The TO Clause

On each iteration through the statements, the counter is set to a different value.
On the first pass through the loop, the counter is set to the initial expression at
the left of the TO keyword. Thereafter, the value of the increment expression
in the STEP clause specification (or by default, 1) is added to counter in each
pass through the block of statements.

When the sign of the difference between the values of counter and the finish
expression at the right of the TO keyword changes, 4GL exits from the FOR
loop. Execution resumes at the statement following the END FOR keywords.

CONTINUE FOR

EXIT FOR

END FORFOR counter = start TO finish statement

STEP increment
3-102 INFORMIX-4GL Statements

FOR
For example, this statement clears four records of the s_items screen array:

FOR counter = 1 TO 4
CLEAR s_items[counter].*

END FOR

Note: The FOR loop terminates after the iteration for which the left- and right- hand
expressions are equal. If either expression returns NULL, the loop cannot terminate,
because in that case the Boolean expression “left = right” cannot become TRUE.

The STEP Clause

Use the STEP clause to tell 4GL the number by which to increment the counter.
For example, this FOR statement increments the counter by 2:

FOR idx = 1 TO 12 STEP 2
DISPLAY month_names[idx] TO sc_month[i]
LET i = i + 1

END FOR

If you use a negative STEP value, specify the second expression in the TO
clause as smaller than the first value in the range.

Before processing the block of statements, 4GL first tests the counter value
against the terminating value. For example, if the STEP value is positive and
the counter value is greater than the last value in the range, 4GL skips over
the statements in the loop without executing them.

The CONTINUE FOR Statement

Use the CONTINUE FOR statement to interrupt the current iteration and start
the next iteration of the statement block. To execute a CONTINUE FOR
statement, 4GL does the following:

• Skips the remaining statements between the CONTINUE FOR and END
FOR keywords.

• Increments the counter variable and tests it.

• If the counter does not exceed the final value, then 4GL goes back to the
beginning of the loop and performs another iteration. Otherwise, 4GL
continues execution after the END FOR keywords.
INFORMIX-4GL Statements 3-103

FOR
The EXIT FOR Statement

Use the EXIT FOR statement to terminate the statement block. When 4GL
encounters this statement, it: skips any statements between the EXIT FOR and
END FOR keywords. Execution resumes at the first statement immediately
after the END FOR keywords.

The END FOR Keywords

Use this to indicate the end of the FOR loop. Upon encountering the END FOR
keywords, 4GL increments the counter and compares it with the expression
that immediately follows the TO keyword. If the counter exceeds this value,
then 4GL terminates the FOR loop and executes the statement following the
END FOR keywords.

Databases with Transactions

If your database has transaction logging, and the FOR loop includes one or
more SQL statements that modify the database, then it is advisable that the
entire FOR loop be within a transaction. Otherwise, if an error occurs after
some of the SQL statements within the FOR loop have executed, but before the
loop has terminated, the user may face two potential problems:

• It may be difficult to determine the extent to which the integrity of the
database has been compromised; and

• If the database has been corrupted, it may be difficult to restore it to its
condition prior to the execution of the FOR loop.

The same data integrity considerations also apply to FOREACH and WHILE
loops that include SQL statements in 4GL programs. (See the Informix Guide to
SQL: Tutorial for more information about the SQL concepts and statements
that support data integrity through transactions.)

References
CONTINUE, FOREACH, WHILE
3-104 INFORMIX-4GL Statements

FOREACH
FOREACH
The FOREACH statement applies a series of actions to each row of data that is
returned from a query by a cursor.

cursor is the name of a previously declared SQL cursor.

statement is an SQL statement or other 4GL statement.

Usage
Use the FOREACH statement to retrieve and process rows selected by a query.
The FOREACH statement is equivalent to using the OPEN, FETCH and CLOSE
statements. The FOREACH statement has these effects:

• Opens the specified cursor

• Fetches the rows selected

• And then closes the cursor

You must declare the cursor (by using the DECLARE statement) before the
FOREACH statement can retrieve the rows. A compile-time error occurs
unless the cursor was declared prior to this point in the source module. You
can reference a sequential cursor, a SCROLL cursor, a cursor WITH HOLD, or
FOR UPDATE, but FOREACH only processes rows in sequential order.

FOREACH does not have the equivalent of the USING clause that the OPEN
statement of SQL supports. The FOREACH statement can only open cursors
for SELECT statements that do not contain unknown parameters.

The FOREACH statement performs successive fetches until all rows specified
by the SELECT statement are retrieved. Then the cursor is automatically
closed. It is also closed if a WHENEVER NOT FOUND statement within the
FOREACH loop detects a NOTFOUND condition (that is, status = 100).

Implicit FETCH statements that FOREACH executes with an Update cursor
can support promotable locks. (See the Informix Guide to SQL: Reference.)

FOREACH cursor

CONTINUE
FOREACH

END FOREACH

EXIT
FOREACH

statement

,

Variable
List

p. 3-107

INTO
INFORMIX-4GL Statements 3-105

FOREACH
The following topics are described in this section:

Topic Page
Cursor Names 3-106
The INTO Clause 3-107
The FOREACH Statement Block 3-108
The CONTINUE FOREACH Statement 3-108
The EXIT FOREACH Statement 3-109
The END FOREACH Keywords 3-109

Cursor Names

Each SQL cursor has a name. The name of a cursor must be specified in the
FOREACH statement. Follow the FOREACH keyword with a cursor name that
a DECLARE statement declared earlier in the same module. A run-time error
can occur if the FOREACH statement does not specify the name of a cursor
that a DECLARE statement has previously declared.

The next example fetches values retrieved by the c_orders cursor. For each
retrieved row, 4GL increments the counter variable by 1, invokes a function
called scan(), and passes the values of ord_num, cust_num, and comp. If the
query does not return any rows, 4GL ignores the FOREACH loop and resumes
processing with the statement that immediately follows the END FOREACH
keywords. This IF statement examines the counter variable, and displays a
message on the Error line if the query returned no rows.

PROMPT "Enter cut-off date for orders: " FOR o_date
DECLARE c_orders CURSOR FOR

SELECT order_num, orders.customer.num, company
INTO ord_num, cust_num, comp FROM orders o, customer c
WHERE o.customer_num = c.customer_num

AND order_date < o_date
LET counter = 1
FOREACH c_orders

LET counter = counter + 1
CALL scan(ord_num, cust_num, comp)

END FOREACH
IF counter = 0 THEN

ERROR "No orders before ", o_date
END IF
3-106 INFORMIX-4GL Statements

FOREACH
The INTO Clause

The INTO clause specifies a variable or a comma-separated list of variables
in which to store values from each row that is returned by the query:

array is the name of a program array.

first is the name of a member variable in which to store a value.

last is another member of record that was declared later than member.

record is the name of a variable of the RECORD data type.

variable is the name of a simple variable to store the retrieved value.

You can include the INTO clause in the SELECT statement associated with the
cursor, or in the FOREACH statement, but not in both. To retrieve rows into a
program array, however, you must place the INTO clause in the FOREACH
statement. For example, the following FOREACH statement stores the
retrieved rows in the p_items program array:

LET counter = 1
FOREACH my_curs INTO p_items[counter].*

LET counter = counter + 1
IF counter > 10 THEN

CALL mess ("Ten or more items.")
EXIT FOREACH

END IF
END FOREACH

The number and order of variables in the INTO clause must match the
number and order of the columns in the active set of rows that are retrieved
by the cursor, and must be of compatible data types.

Variable ListINTO

Variable
List

THRU

. first THROUGH

.*

record . last

Integer
Expression

p. 3-338

array

,

,

.

record

variable

[]3
INFORMIX-4GL Statements 3-107

FOREACH
The FOREACH Statement Block

These statements are executed after each row of the active set is fetched:

This block is sometimes called “the FOREACH loop.” If the cursor returns no
rows, then no statements in this loop are executed, and program control
passes to the first statement that follows the END FOREACH keywords.

If the specified cursor is an Update cursor, the statement block can include
statements to modify retrieved rows. See the Informix Guide to SQL: Reference.

Databases with Transactions

If your database has transaction logging, then it is advisable that the entire
FOREACH statement block be within a transaction. Otherwise, if an error
occurs after some of the SQL statements within the FOREACH statement block
have executed, but before the loop has terminated, the user may face two
potential problems:

• It may be difficult to determine the extent to which the integrity of the
database has been compromised; and

• If the database has been corrupted, it may be difficult to restore it to its
condition prior to the execution of the FOREACH loop.

These considerations apply to FOR and WHILE loops that can change the
database. (See Informix Guide to SQL: Tutorial for information about the SQL
concepts and statements that support data integrity through transactions.)

The CONTINUE FOREACH Statement

Use the CONTINUE FOREACH statement to interrupt processing of the cur-
rent row and start processing the next row. 4GL fetches the next row and
resumes processing at the first statement in the FOREACH statement block.
For example, if total_price is less than 1000 in the next example, 4GL incre-
ments smallOrders, fetches the next row, and executes the IF statement.
If total_price is equal to or greater than 1000, 4GL proceeds to the next state-
ment in the FOREACH block, in this case, the OUTPUT TO REPORT statement:

CONTINUE FOREACH

EXIT FOREACH

statement
3-108 INFORMIX-4GL Statements

FOREACH
LET smallOrders = 1
FOREACH orderC

IF orderP.total_price < 1000 THEN
LET smallOrders = smallOrders + 1
CONTINUE FOREACH

END IF
OUTPUT TO REPORT order_list (orderR.*, smallOrders)
...

END FOREACH

The EXIT FOREACH Statement

Use this statement to interrupt processing and ignore the remaining rows.
Upon encountering an EXIT FOREACH statement, 4GL skips the statements
between the EXIT FOREACH and the END FOREACH keywords. Execution
resumes at the statement following the END FOREACH keywords. For exam-
ple, if the status variable is not equal to 0 in the following program segment,
4GL displays a message and then exits from the FOREACH loop:

FOREACH orderC
...
IF status != 0 THEN

MESSAGE "Error on output to report."
EXIT FOREACH

END IF
END FOREACH

The END FOREACH Keywords

Use the END FOREACH keywords to indicate the end of the FOREACH loop.
When 4GL encounters the END FOREACH keywords, it re-executes the loop
until no more rows returned by the query remain. Otherwise, it executes the
statement that follows the END FOREACH keywords.

For example, if the status variable is not equal to 0 in the following program
fragment, 4GL displays a message and exits from the FOREACH loop:

DECLARE orderC CURSOR FOR
SELECT * INTO orderR.* FROM orders
WHERE order_date BETWEEN start_date AND end_date

START REPORT order_list
LET smallOrders = 0
INFORMIX-4GL Statements 3-109

FOREACH
FOREACH orderC
IF orderR.total_price < 1000 THEN

LET smallOrders = smallOrders + 1
CONTINUE FOREACH

END IF
OUTPUT TO REPORT order_list (orderR.*, smallOrders)
IF status != 0 THEN

MESSAGE "Error on output to report."
EXIT FOREACH

END IF
END FOREACH
FINISH REPORT order_list

The next example creates a cursor c_query, based on search criteria entered
by the user. For each row retrieved by the SELECT statement defined for the
cursor, this example displays the row on the screen and waits for the user to
request the next row. If no rows are selected, then 4GL displays a message.

DEFINE stmt1, query1 CHAR(300),
p_customer RECORD LIKE customer.*

CONSTRUCT BY NAME query1 ON customer.*
LET stmt1 = "SELECT * FROM customer ",

"WHERE ", query1 CLIPPED
PREPARE stmt_1 FROM stmt1
DECLARE c_query CURSOR FOR stmt_1
LET exist = 0
FOREACH c_query INTO p_customer.*

LET exist = 1
DISPLAY BY NAME p_customer.*
PROMPT "Do you want to see the next customer (y/n): "

FOR ANSWER
IF answer MATCHES "[Nn]" THEN

EXIT FOREACH
END IF

END FOREACH
IF exist = 0 THEN

MESSAGE "No rows found."
END IF

References
CONTINUE, FETCH, FOR, OPEN, WHILE, WHENEVER
3-110 INFORMIX-4GL Statements

FUNCTION
FUNCTION
This statement defines a FUNCTION program block.

argument is the name of a formal argument to this function. The DEFINE
statement that follows must specify a data type for each argument.

function is the identifier that you declare for this 4GL function.

statement is an statement or other 4GL statement.

Usage
As Chapter 3 explains, a 4GL function is a named block of statements. The
FUNCTION statement defines a 4GL function that can be invoked from any
module of your program. The FUNCTION statement has two effects:

• To declare the name of a function and of any formal arguments
(page 3-112). 4GL imposes no limit on the number or size of formal
arguments.

• To define the corresponding FUNCTION program block (page 3-113).

The FUNCTION statement cannot appear within the MAIN statement, nor in
a REPORT statement, nor within another FUNCTION statement.

If the function returns a single value, it can be invoked as an operand within
a 4GL expression (page 3-332). Otherwise, you must invoke it with the CALL
statement (page 3-16). An error results if the list of returned values in the
RETURN statement conflicts in number or in data types with the RETURNING
clause of the CALL statement that invokes the function (page 3-19).

Topics that are described in this section include the following:

) END FUNCTION

argument

,

RETURN
Statement
p. 3-263

statementDEFINE
Statement

p. 3-65

)

FUNCTION function (
INFORMIX-4GL Statements 3-111

FUNCTION
Topic Page
The Prototype of the Function 3-112
The Argument List of the Function 3-112
The FUNCTION Program Block 3-113
Data Type Declarations 3-113
Executable Statements 3-115
The END FUNCTION Keywords 3-116

The Prototype of the Function

The FUNCTION statement both declares and defines a 4GL function. The
function declaration specifies the identifier of the function and the identifiers
of its formal arguments (if any). These specifications are sometimes called the
function prototype, as distinct from the function definition:

argument is the name of a formal argument to this function. This can be of
any data type (page 3-67) except the ARRAY (page 3-71) data type.

function is the identifier that you declare for this 4GL function.

The Identifier of the Function

The function name must follow the rules for 4GL identifiers (page 2-9), and
must be unique among all the names of functions or reports in the same pro-
gram. If the name is also the name of a built-in 4GL function, an error occurs
at link time, even if the program does not reference the built-in function.
Like all 4GL identifiers, the name is not lettercase sensitive. For example, the
function names unIonized() and Unionized() are identical to 4GL.

The Argument List of the Function

The names specified (between parentheses) in the argument list define the
formal arguments, if any, as they will be received when the FUNCTION pro-
gram block is executed. If no argument is specified, an empty argument list

FUNCTION FUNCTION
Program Block

3-113

FUNCTION
Prototype

FUNCTION
Prototype

()

END FUNCTION

function

argument

,

3-112 INFORMIX-4GL Statements

FUNCTION
must still be supplied. Argument names must be unique within the argument
list of the current FUNCTION declaration. Their scope of reference is local to
the function; that is, they are not visible in other program blocks.

The FUNCTION Program Block

The statements between the argument list and the END FUNCTION keywords
comprise the FUNCTION program block. These statements are executed
whenever the function is successfully invoked.

statement is any SQL statement or other 4GL statement (but not FUNCTION,
REPORT, MAIN, GLOBALS, nor the report execution statements
(NEED, PAUSE, PRINT, and SKIP).

Data Type Declarations

The data type of each formal argument of the function must be specified by
a DEFINE statement that immediately follows the argument list. Any DEFINE
declarations within a function definition must occur before any other state-
ments within the FUNCTION program block. Just as in a MAIN or REPORT
program block, a compile-time error occurs if any executable statement pre-
cedes a DEFINE declaration in the FUNCTION definition.

The actual argument in a call to the function need not be of the declared data
type of the formal argument. If both are of compatible data types, 4GL con-
verts the actual argument to the data type that the function requires. If data
type conversion is impossible, a run-time error occurs. For a discussion of
compatible data types, see “Data Type Conversion” on page 3-319.

DEFINE
Statement

p. 3-65

RETURN
Statement
p. 3-263

statement

FUNCTION
Program Block
INFORMIX-4GL Statements 3-113

FUNCTION
Here is an example of a call for which data conversion is necessary. The actual
argument, the character string “105 ,” must be converted to INTEGER.

DEFINE getStat INTEGER
LET getStat = getCustRec("105")

. . .
FUNCTION getCustRec(cno)

DEFINE cno, dno INTEGER
. . .
RETURN dno

END FUNCTION

The Function as a Local Scope of Reference

The same or a subsequent DEFINE statement must also declare any other local
variable that is referenced in the same FUNCTION definition. Two local vari-
ables are declared in the previous example, the function argument, cno, and
the variable named dno. The identifiers of local variables must be unique
among the variables that are declared in the same FUNCTION definition.
They are not visible in other program blocks.

Just as within MAIN or REPORT program blocks, statements in the function
can reference previously declared module or global variables. Any module
variable or global variable that has the same identifier as a local variable,
however, is not visible within the scope of the local variable.

See the description of the DATABASE statement (page 3-59) for information
about using the LIKE keyword during compilation to declare the data types
of local variables indirectly. You can also use DATABASE within a FUNCTION
definition to specify a new current database at run time (page 3-60).

Any GOTO or WHENEVER . . . GOTO statements in a function must reference
a statement label (page 3-177) within the same FUNCTION program block.
3-114 INFORMIX-4GL Statements

FUNCTION
Executable Statements
Any executable statements in the statement block are executed when the
function is called. Here is a simple example of a function definition:

FUNCTION state_abbrev(state)
DEFINE st LIKE state.code,

state LIKE state.sname
SELECT state.code INTO st FROM state

WHERE state.sname MATCHES state
RETURN st

END FUNCTION

In this example, the function definition contains two executable statements:

• DEFINE is a declarative statement that allocates storage in memory for the
local variables st and state.

• SELECT is an executable SQL statement.

• RETURN returns control (and the value of st) to the calling routine.

• END FUNCTION (not executable) marks the end of the program block.

You can define a function whose statement block is empty. This enables the
developer to test other parts of a program before a function definition is
written, but such “dummy functions” are of limited use in a 4GL application.

Returning Values to the Calling Routine

Any programmer-defined 4GL function that returns one or more values to the
calling routine must include the RETURN statement (page 3-263). Values
specified in the RETURN statement must correspond in number and position,
and must be of the same or of compatible data types (page 3-324), to the
variables in the RETURNING clause of the CALL statement (page 3-19).

Unless it has the same name as a built-in operator (see Chapter 4), any built-
in or programmer-defined function that returns a single value of a simple
data type can appear in 4GL expressions (with its arguments, if any) if the
returned value is of a range and data type that is valid in the expression:

DISPLAY AT 2,2 ERR_GET(SQLCA.SQLCODE)
INFORMIX-4GL Statements 3-115

FUNCTION
Returned Character Strings

4GL allocates 5 kilobytes of memory to store character strings returned by
functions, in 10 blocks of 512 bytes. A returned CHAR value can be no larger
than 511 bytes (because every string requires a terminating ASCII 0), and no
more than 10 of these 511-byte strings can be returned. (This restriction has
no effect on TEXT arguments, which are passed by reference, not by value.)

Since no value can occupy more than one block, ten returned strings of 256
bytes would leave no room for an eleventh. Similarly, if there are partially
evaluated string expressions in the calling sequence, then some space for
returned values may already be in use, as in this example:

 FUNCTION func_f()
LET g = func_h(), func_i()

 END FUNCTION

While 4GL evaluates either func_h() or func_i(), the returned value from the
other occupies part of the temporary string space. If insufficient space is
available in memory for a returned string, 4GL issues run-time error -4518.

The END FUNCTION Keywords

The END FUNCTION keywords mark the end of the FUNCTION program
block. In this release of INFORMIX-4GL, only another FUNCTION definition or
else the REPORT statement can follow the END FUNCTION keywords.

References
CALL, DEFINE, RETURN, WHENEVER
3-116 INFORMIX-4GL Statements

GLOBALS
GLOBALS
The GLOBALS statement declares modular variables that can be exported
to other program modules. It can also import variables from other modules.

filename is a quoted string that specifies the pathname of a file that contains
the GLOBALS . . . END GLOBALS statement (and optionally the
DATABASE statement, but no executable statement). The filename
can include a pathname. The .4gl file extension is required.

Usage
In general, a program variable is visible only in the same FUNCTION, MAIN,
or REPORT program block in which it was declared. To make its scope of
reference the entire source module, you must specify a modular declaration,
by locating the DEFINE statement outside of any program block.

To extend the visibility of one or more modular variables beyond the source
module in which they are declared, you must take the following steps:

• Declare the variable in a GLOBALS . . . END GLOBALS declaration in a .4gl
file that contains only GLOBALS statements.

• Specify that file in GLOBALS “ filename” statements in each additional
source module that includes statements referencing the variable.

These files must also be compiled and linked with the 4GL application.

Declaring and Exporting Global Variables

To declare global variables, the GLOBALS statement must appear before the
first MAIN, FUNCTION, or REPORT program block, so that variables that you
declare in the GLOBALS statement are modular in their scope of reference.
You can include one or more DEFINE statements after the GLOBALS keyword.
The END GLOBALS keywords must follow the last DEFINE declaration.

 GLOBALS

,

END GLOBALSDEFINE Statement
p. 3-65

Case I: (declaring and exporting variables)

Case II: (importing variables)

" filename"
INFORMIX-4GL Statements 3-117

GLOBALS
If you use the LIKE keyword in the DEFINE declaration, then the DATABASE
statement must precede the GLOBALS statement within the same module.

The following program fragment declares a global record, a global array, and a
simple global variable that are referenced by built-in and programmer-defined
functions in the same source code module:

DATABASE stores2
GLOBALS

DEFINE p_customer RECORD LIKE customer.*,
p_state ARRAY[fifty] OF RECORD LIKE state.*,
fifty, state_cnt SMALLINT

END GLOBALS
MAIN

...
END MAIN
FUNCTION get_states()

...
FOREACH c_state INTO p_state[state_cnt].*

LET state_cnt = state_cnt + 1
IF state_cnt > fifty THEN

EXIT FOREACH
END IF

END FOREACH
...

END FUNCTION
FUNCTION statehelp()

DEFINE idx SMALLINT
...
CALL SET _COUNT(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = ARR_CURR()
CLOSE WINDOW w_state
LET p_customer.state = p_state[idx].code
DISPLAY BY NAME p_customer.state
RETURN

END FUNCTION

A compile-time error would occur if you declared a 4GL variable of modular
scope called fifty, p_customer, p_state, or state_cnt in the same module as
this GLOBALS statement. (If you want, however, you can declare local
variables whose names match those of variables from GLOBALS
declarations.)
3-118 INFORMIX-4GL Statements

GLOBALS
Importing Global Variables

A globals file is a source module that contains a GLOBALS . . . END GLOBALS
statement. This can also contain a DATABASE statement (page 3-59), but no
executable statements. The scope of reference of variables declared in that file
can be extended to all the program blocks of any 4GL program module that
includes a GLOBALS “ filename” statement, for filename the globals file.

To import global variables into other modules, you must do the following:

1. Create a globals file called filename.4gl that includes the following:.

• If necessary, include a DATABASE statement. (This is required only if
you use the LIKE keyword in the DEFINE declaration. If present, the
DATABASE statement must precede the GLOBALS statement. For the
syntax of column qualifiers, see “Indirect Typing” on page 3-69.)

• Then include the GLOBALS keyword, followed by as many DEFINE
statements as necessary to declare your global variables. (You can also
include no DEFINE statements, if the GLOBALS “ filename” statement is
used only to apply a DATABASE statement to several modules.)

• Finally, include the END GLOBALS keywords.

2. In any other module of the program that includes statements referencing
the global variables, include a GLOBALS “ filename” statement before the
first MAIN, FUNCTION, or REPORT program block. Specify the “ filename”
of the globals file, but do not include the END GLOBALS keywords.
INFORMIX-4GL Statements 3-119

GLOBALS
These two steps correspond, respectively, to Case I and Case II in the syntax
diagram on page 3-117. For example, the globals file d4_glob.4gl in the stores
demonstration application includes the following DATABASE and GLOBALS
statements:

DATABASE stores
GLOBALS

DEFINE
p_customer RECORD LIKE customer.*,
p_orders RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
po_num LIKE orders.po_num,
ship_instruct LIKE orders.ship_instruct

END RECORD,
p_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
description LIKE stock.description,
quantity LIKE items.quantity,
unit_price LIKE stock.unit_price,
total_price LIKE items.total_price

END RECORD,
p_stock ARRAY[30] OF RECORD

stock_num LIKE stock.stock_num,
manu_code LIKE manufact.manu_code,
manu_name LIKE manufact.manu_name,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit_descr LIKE stock.unit_descr

END RECORD,
p_state ARRAY[fifty] OF RECORD LIKE state.*,
fifty, state_cnt, stock_cnt INTEGER,
print_option CHAR(1)

END GLOBALS
3-120 INFORMIX-4GL Statements

GLOBALS
The next program fragment include a GLOBALS statement that specifies
d4_glob.4gl as the globals file that declares global variables:

GLOBALS "d4_glob.4gl"
MAIN

DEFER INTERRUPT
...
CALL get_states()
CALL get_stocks()
...

END MAIN

Here the database specified by the DATABASE statement in the globals file is
both the default database at compile time (page 3-59) and the current data-
base at run time (page 3-60), because the GLOBALS “ d4_glob.4gl” statement
includes the DATABASE statement before the MAIN program block.

If a local variable has the same name as another variable that you declare in
the GLOBALS statement, only the local variable is visible within its scope of
reference. Similarly, a modular variable takes precedence in the module where
it is declared over any variable of the same name whose declaration is in the
filename referenced by a GLOBALS statement. (A compile-time error occurs if
you declare another module variable with the same identifier as another vari-
able that the GLOBALS ... END GLOBALS statement declares in the same mod-
ule.) For more information about the scope and visibility of 4GL identifiers,
see “4GL Identifiers” on page 2-9.

References
DATABASE, DEFINE, FUNCTION, INCLUDE, MAIN, REPORT
INFORMIX-4GL Statements 3-121

GOTO
GOTO
The GOTO statement transfers program control to a labelled line within
the same program block.

label name is a statement label that you declare in a LABEL statement.

Usage
The GOTO statement transfers control of execution within a program block.
Upon encountering this statement, 4GL jumps to the statement immediately
following the specified LABEL statement (page 3-177), and resumes execution
there, skipping any intervening statements that lexically follow the GOTO
statement. These rules apply to the use of the GOTO and LABEL statements:

• To transfer control to a labelled line, the GOTO statement must use the
same label name as the LABEL statement above the desired line.

• Both statements must reside in the same MAIN, FUNCTION, or REPORT
block. You cannot use GOTO to transfer into or out of a program block.

Excessive use of GOTO statements in 4GL (or any programming language)
can make your code difficult to read or to maintain, or can result in a loop that
has no termination. Many situations in which you need to transfer control of
program execution can be solved by using one of the following alternatives
to the GOTO statement:

• Boolean expressions and the CASE, FOR, IF, and WHILE statements.

• The EXIT keyword in blocks within the following statements:

BEGIN FOR INPUT ARRAY
CASE FOREACH MENU
DISPLAY ARRAY INPUT WHILE

• The CONTINUE keyword in blocks within the following statements:

FOR INPUT MENU
FOREACH INPUT ARRAY WHILE

• The CALL statement.

• The WHENEVER statement.

label name

:

GOTO
3-122 INFORMIX-4GL Statements

GOTO
It is convenient to use the GOTO and LABEL statements in some situations;
for example, to exit from deeply nested code:

FOR i = 1 TO 10
FOR j = 1 TO 20

FOR k = 1 To 30
...
IF pa_array3d[i,j,k] IS NULL THEN

GOTO :done
ELSE

...
END IF
...

END FOR
END FOR

END FOR

LABEL done:
ERROR "Cannot complete processing."
ROLLBACK WORK

More important than avoiding the GOTO statement, however, is to adhere to
the design principle that any block of statements (such as a function or a loop)
have only one entry point and one exit point, as in this program fragment:

CALL do_things(value) --invokes a FUNCTION block
...
FUNCTION do_things(arglist) --unique entry point

...
IF (exit_condition) THEN

GOTO :outofhere --jump within same program block
END IF
...
LABEL outofhere:
CALL clean_up()
RETURN ret_code --unique exit point

END FUNCTION --marks end of FUNCTION construct

You can optionally place a colon (:) before label name in the GOTO statement.
This conforms to the ANSI standard for embedded SQL syntax, but has no
impact on the execution of the GOTO statement.

References
CASE, FOR, IF, FOR, FUNCTION, LABEL, MAIN, REPORT, WHENEVER, WHILE
INFORMIX-4GL Statements 3-123

IF
IF
The IF statement executes a group of statements conditionally. It can switch
program control conditionally between two blocks of statements.

statement is an SQL statement or other 4GL statement.

Usage
If the Boolean expression is TRUE, 4GL executes the block of statements fol-
lowing the THEN keyword, until it reaches either the ELSE keyword or the
END IF keywords. 4GL then resumes execution after the END IF keywords.

If the Boolean expression is FALSE, 4GL executes the block of statements
between the ELSE keyword and the END IF statement. If you omit the ELSE
keyword, 4GL resumes execution with the statement following the END IF
keywords. The Boolean expression is treated as FALSE if it contains a NULL
value anywhere (except as the operand of the IS NULL operator).

If you have a set of nested IF statements, all testing the same value, consider
using a CASE statement. In the following example, if direction matches
BACK, then 4GL decrements p_index by one. If direction matches the string
FORWARD, then 4GL increments p_index by one.

IF direction = "BACK" THEN
LET p_index = p_index - 1
DISPLAY dp_stock[p_index].* TO s_stock.*
ELSE IF direction = "FORWARD" THEN

LET p_index = p_index + 1
DISPLAY dp_stock[p_index].* TO s_stock.*

END IF
END IF

References
CASE, FOR, WHENEVER, WHILE

Boolean
expression

IF

ELSE

statement

statement

END IF4GL Boolean
Expression

p. 3-333

THEN

NLS When NLS is active, the evaluation of less than (<) and greater than (>)
expressions containing character arguments is dependent on the
LC_COLLATE setting in the user environment.
3-124 INFORMIX-4GL Statements

INITIALIZE
INITIALIZE
The INITIALIZE statement assigns initial NULL or default values to variables.

array is the name of a variable of the ARRAY data type.

column is the name of a column of table for which a DEFAULT value exists.

first is the name of a member variable to be initialized.

last is another member of record that was declared later than first.

record is the name of a variable of the RECORD data type.

table is the name or synonym of the table or view that contains column.

variable is the name of a variable of a simple data type (page 3-68).

Usage
After you declare a variable with a DEFINE statement, the Source Compiler
allocates memory to that variable. The contents of the variable, however, is
whatever happens to occupy that memory location. The INITIALIZE state-
ment can specify initial values for 4GL variables in either of two ways:

• The LIKE keyword assigns the default values of a specified database
column, using default values from the syscolval table (page 3-126).

• You can use the TO NULL keywords to assign NULL values, using the
representation of NULL for the declared data type of each variable.

INITIALIZE Variable
List

LIKE .columntable

.*

,

TO NULL

last. first THROUGH

.*

record .

Integer
Expression

p. 3-338

[array]

,

,

.

record

variable

THRU

3

Variable
List

Table
Qualifier
p. 3-361
INFORMIX-4GL Statements 3-125

INITIALIZE
The LIKE Clause

The LIKE clause specifies default values from one or more syscolval columns:

Just as in the DEFINE or VALIDATE statement, the LIKE clause requires a
DATABASE statement to specify a default database (page 3-59) at compile
time. The DATABASE statement to specify a default database must precede
the first program block in the same module as the INITIALIZE statement.

When initializing variables with the default values of database columns, the
variables must match the columns in order, number, and data type. You must
prefix the name of each column with the name of its table. For example, the
following statement assigns to three variables the default values from three
database columns in table tab1:

INITIALIZE var1, var2, var3
LIKE tab1.col1, tab1.col2, tab1.col3

The table.* notation specifies every column in the specified table. If tab1 has
only the three columns (col1, col2, and col3), then the following statement is
equivalent to the previous one:

INITIALIZE v_cust.* LIKE customer.*

INITIALIZE var1, var2, var3
LIKE tab1.var1, lydia.tab2.var2, boris.tab3.var3

You can include the owner name as a prefix in a database that is not ANSI-
compliant, but if the owner name that you specify is incorrect, you receive an
error. For additional information, see the Informix Guide to SQL: Reference.

The INITIALIZE statement looks up the default values for database columns
in the DEFAULT column of the syscolval table in the default database. Any
changes to syscolval after compilation have no effect on the 4GL program,
unless you recompile the program.

In an ANSI-compliant database, you must qualify each table name with that
of its owner (owner. table), if the application will be run by a user who does
not own the table. For example, if you own tab1, and Lydia owns tab2, and
Boris owns tab3, then the following statement is valid:

ANSI
3-126 INFORMIX-4GL Statements

INITIALIZE
To enter default values in this table, use the upscol utility, as described in
Appendix B. If a column has no default value in the syscolval table, 4GL
assigns NULL values to any variables initialized from that column. If the
database is not ANSI-compliant, upscol creates a single syscolval table.

The TO NULL Clause

Use the TO NULL clause to assign a NULL value to a variable. The following
statement initializes all variables in the v_orders record to NULL:

INITIALIZE v_orders.* TO NULL

You may wish to initialize variables to NULL for the following reasons:

• To assign an initial value to a variable, rather than leaving it unassigned.

• To discard some existing value of a variable. This may be convenient if
you want to reuse the same variable later in a program.

To optimize performance, you may wish to limit the use of this statement.
For example, the next program fragment uses INITIALIZE once to create a
NULL record, and then uses the LET statement to initialize another record:

DATABASE stores2
MAIN
DEFINE p_customer, n_customer RECORD LIKE customer.*

INITIALIZE n_customer.* TO NULL
LET p_customer.* = n_customer.*

References
DATABASE, DEFINE, GLOBALS, LET, VALIDATE

In an ANSI-compliant database, each user can create an owner.syscolval
table, which sets the default values only for the tables owned by that user.
If you omit the owner of the table and you own the table, your syscolval
table becomes the source for the defaults when you compile the program. If
the owner.syscolval table does not exist, the LIKE clause of the INITIALIZE
statement sets the values of the specified variables to NULL

ANSI

You cannot use upscol to specify attributes nor validation criteria for TEXT
or BYTE columns. Therefore, you cannot use the LIKE clause of the INITIAL-
IZE statement to assign non-NULL values to variables of these large binary
data types.

OL
INFORMIX-4GL Statements 3-127

INPUT
INPUT
The INPUT statement supports data entry by users into fields of a screen
form.

number is a literal integer (page 3-340) to specify a Help message number.

Usage
The INPUT statement assigns to one or more variables the values users enter
into the fields of a screen form. This statement can include statement blocks to
be executed under conditions that you specify, such as screen cursor move-
ment, or other user actions. To use this statement, you must do the following:

1. Specify screen field(s) in a form specification file, and compile the form.

2. Declare variable(s) with the DEFINE statement.

3. Open and display the screen form in either of the following ways:

• The OPEN FORM and DISPLAY FORM statements.

• An OPEN WINDOW statement that uses the WITH FORM keywords.

4. Use the INPUT statement to assign values to the variables from data that
the user enters into fields of the screen form.

When the INPUT statement is encountered, 4GL does the following:

1. Displays any default values in the screen fields, unless you specify the
WITHOUT DEFAULTS keywords (as described on page 3-131.)

2. Moves the cursor to the first field explicitly or implicitly referenced in the
binding clause, and waits for the user to enter a value in that field.

3. Assigns the user-entered field value to a corresponding program variable
when the user moves the cursor from the field or presses the Accept key.

The INPUT statement activates the current form (the form that was most
recently displayed, or the form in the current 4GL window). When the INPUT
statement completes execution, the form is deactivated. After the user
presses the Accept key, the INSERT statement of SQL can insert values from
the program variables into the appropriate database tables.

Binding
Clause
p. 3-129 HELP number

INPUT

INPUT Form
Management

 Block
p. 3-134

END INPUT
ATTRIBUTE

Clause
p. 3-290
3-128 INFORMIX-4GL Statements

INPUT
The following topics are described in this section:

Topic Page
The Binding Clause 3-129
The ATTRIBUTE Clause 3-133
The HELP Clause 3-133
The INPUT Form Management Blocks 3-134
The EXIT INPUT Statement 3-143
The END INPUT Keywords 3-144
Using Built-In Functions and Operators 3-144
Keyboard Interaction 3-146
Editing Keys 3-147
Using Large Data Types 3-149
Completing the INPUT Statement 3-150

The Binding Clause

The binding clause temporarily associates fields of the screen form with 4GL
variables, so that the 4GL program can manipulate values that the user enters
in the form. INPUT statements supports two types of binding clauses:

• In the special case where all of the variables have names that are identical
(apart from qualifiers) to the names of fields, you can specify INPUT BY
NAME variable list to bind the specified variables to their namesake fields
implicitly. (See also page 3-131.)

• In the general case, you can specify INPUT variable list FROM field list to
bind variables explicitly to fields.

variable is the name of a variable to store values entered in the field.

Here variable supports the syntax of a receiving variable (page 3-178) in the LET
statement, but you can also use record.* or the THRU or THROUGH notation
to specify all or some of the members of a program record.

,

BY NAME

FROM

Binding
Clause

field

variable

,

WITHOUT DEFAULTS

WITHOUT DEFAULTS

Field Clause
(subset)
p. 3-359

variable

,

INFORMIX-4GL Statements 3-129

INPUT
The field names must be among those declared in the ATTRIBUTES section
of the form specification file of the current form. These can include simple
fields, members of screen records, multiple-segment WORDWRAP fields,
and FORMONLY fields, but cannot include records from screen arrays.

The Correspondence of Variables and Fields

The total number of variables in the variable list must equal the total number
of fields that the FROM clause specifies (or that the BY NAME clause implies).

The order in which the screen cursor moves from field to field in the form
is determined by the order of the field names in the FROM clause, or else by
the order of variable names in the BY NAME clause. (See also the NEXT FIELD
keywords on page 3-141, and the WRAP and FIELD ORDER options of the
OPTIONS statement on page 3-232.)

Each screen field and its corresponding variable must have the same (or a
compatible) data type. When the user enters data in a field, 4GL checks the
value against the data type of the variable, not that of the field. You must first
declare all the variables before using the INPUT statement.

The binding clause can specify variables of any 4GL data type. If a variable is
declared LIKE a SERIAL column, however, then 4GL does not allow the screen
cursor to stop in the field. (Values in SERIAL columns are maintained by the
database engine, not by 4GL.)

Displaying Default Values

If you omit the WITHOUT DEFAULTS keywords, 4GL displays default values
from the program array when the form is activated. 4GL determines the
default values in the following way, in descending order of precedence:

1. The DEFAULT attribute (from the form specification file).

2. The DEFAULT column value (from the syscolval table).

4GL assigns NULL values to all variables for which no default is set. But
if you include the WITHOUT NULL INPUT option in the DATABASE section of
the form specification file, then 4GL assigns the following default values:
3-130 INFORMIX-4GL Statements

INPUT
Field Type Default
character blank (= ASCII 32)
number 0
INTERVAL 0
MONEY $0.00
DATE 12/31/1899
DATETIME 1899-12-31 23:59:59.99999

The WITHOUT DEFAULTS Keywords

If you specify the WITHOUT DEFAULTS option, however, the screen displays
the current values of the variables when the INPUT statement begins. This
option is available with both the BY NAME and the FROM binding clauses.

To display initialized values, rather than defaults, you can do the following:

1. Initialize the variables with whatever values you want to display.

2. Use INPUT ... WITHOUT DEFAULTS to display the current values of the
variables, and to allow the user to change those values.

The following INPUT statement causes 4GL to display the character string
“Send via air express ” in the ship_instruct field:

LET pr_orders.ship_instruct = "Send via air express"
INPUT BY NAME pr_orders.order_date THRU pr_orders.paid_date

WITHOUT DEFAULTS
END INPUT

The WITHOUT DEFAULTS option is useful when you want the user to be able
to make changes to existing rows of the database. You can display the existing
database values on the screen before the user begins editing the data. The
FIELD_TOUCHED() operator (described briefly on page 3-144, and in detail
on page 4-64) can help you to determine which fields have been altered, and
that therefore require updates to the database.

The BY NAME Clause

The BY NAME clause implicitly binds the fields to the 4GL variables that have
the same identifiers as field names. You must first declare variables with the
same names as the fields from which they accept input. 4GL ignores any
record name prefix when making the match.
INFORMIX-4GL Statements 3-131

INPUT
The unqualified names of the variables and of the fields must be unique and
unambiguous within their respective domains. If they are not, 4GL generates
a runtime error, and sets the status variable to a negative value. (To avoid this
error, use the FROM clause instead of the BY NAME clause when the screen
fields and the variables have different names.)

The user can enter values only into fields that are implied in the BY NAME
clause. For example, the INPUT statement in the following example specifies
variables for all the screen fields except customer_num:

DEFINE pr_customer RECORD LIKE customer.*
...
INPUT BY NAME pr_customer.fname, pr_customer.lname,

pr_customer.company, pr_customer.address1,
pr_customer.address2, pr_customer.city, pr_customer.state,
pr_customer.zipcode, pr_customer.phone

Because pr_customer.customer_num does not appear in the list of variables,
the user cannot enter a value for it. A functionally equivalent statement is:

DEFINE pr_cust RECORD LIKE customer.*
...
INPUT BY NAME pr_cust.fname THRU pr_cust.phone

The FROM Clause

When variables and fields do not have the same names, you must use the
FROM clause. For any INPUT statement with FROM, you must specify the
same number of variables and fields, and list them in the same order on both
sides of the FROM keyword. The user can position the cursor only in fields
that you include explicitly or implicitly in the FROM clause. These fields must
correspond both in order and in number to the list of variables, and must be
of the same or compatible data types as the corresponding variables:

DEFINE pr_cust RECORD LIKE customer.*
...
INPUT pr_cust.fname, pr_cust.lname FROM fname, lname
3-132 INFORMIX-4GL Statements

INPUT
The THRU (or THROUGH) keyword implicitly includes the variables between
two specified member variables of a program record. For example, the next
statement maps fields to all member variables from fname to phone:

INPUT pr_cust.fname THRU pr_cust.phone
FROM fname, lname, company, address1,

address2, city, state, zipcode, phone

If the form specification file declared a screen record as fname THRU phone,
then you can abbreviate this statement even further:

INPUT pr_cust.fname THRU pr_cust.phone FROM sc_cust.*

Note: You cannot use the THRU nor THROUGH keywords in the FROM clause.

The ATTRIBUTE Clause

For the syntax of the ATTRIBUTE clause, see page 3-290. This section
describes the use of the ATTRIBUTE clause within an INPUT statement.

If you specify form attributes with the INPUT statement, the new attributes
apply only during the current activation of the form. When actions of the user
deactivate the form, the form reverts to its previous attributes. The following
INPUT statement assigns the RED and REVERSE attributes:

INPUT p_addr.* FROM sc_addr.* ATTRIBUTE (RED, REVERSE)

This statement assigns the WHITE attribute:

INPUT BY NAME p_items ATTRIBUTE (WHITE)

The ATTRIBUTE clause overrides any default display attributes specified in
an OPTIONS or OPEN WINDOW statement for these fields. It also suppresses
any default attributes specified in the syscolatt table of the upscol utility.

The HELP Clause

The HELP clause includes a literal integer (page 3-340) to specify the number
of the Help message to display. The Help message is displayed in the Help
window, as described on page 2-22. This window appears if the user presses
the Help key while the screen cursor is in any field that you listed in the
FROM clause, or that you implied in the BY NAME clause. The default Help
key is CONTROL-W, but you can specify a different Help key by using the
OPTIONS statement (page 3-233).
INFORMIX-4GL Statements 3-133

INPUT
This example specifies Help message 311 if the user requests Help from any
field in the s_items screen array:

INPUT p_items.* FROM s_items.* HELP 311

The next example tells 4GL to display message 12 if the user presses the Help
key when the screen cursor is in either of two fields:

INPUT cust.fname, cust.lname FROM fname, lname HELP 12

You create Help messages in an ASCII file whose filename you specify in the
HELP FILE clause of the OPTIONS statement. Use the mkmessage utility, as
described in Appendix B, to create a run-time version of the Help file. A run-
time error occurs in the following situations:

• 4GL cannot open the Help file.

• You specify a number that is not in the Help file.

• You specify a number outside the range from -32,767 to 32,767.

The Help message corresponding to your HELP clause specification applies
to the entire INPUT statement. To override this with field-level Help mes-
sages, specify the Help key in an ON KEY block (page 3-137) that invokes the
INFIELD() operator and SHOWHELP() function.

If you provide messages to assist the user through an ON KEY clause, rather
than by the HELP clause, the messages must be displayed in a 4GL window
within the 4GL screen, rather than in the separate Help window.

The INPUT Form Management Blocks

Each INPUT form management block includes a statement block of at least one
statement, and an activation clause that specifies when to execute the statement
block. An INPUT form management block can specify any of the following:

• The statements to execute before or after visiting specific screen fields.

• The statements to execute when the user presses a key sequence.

• The statements to execute before or after the INPUT statement.

• The next field to which to move the screen cursor.

• When to terminate execution of the INPUT statement.

The activation clause can specify any one of the following:

• Pre- and post-INPUT actions (the BEFORE or AFTER INPUT clause).

• Keyboard sequence conditions (the ON KEY clause).

• Cursor movement conditions (the BEFORE or AFTER FIELD clause).
3-134 INFORMIX-4GL Statements

INPUT
The statement block can include any SQL or 4GL statements, as well as:

• Cursor movement instructions (the NEXT FIELD clause).

• Termination of the INPUT statement (the EXIT INPUT statement).

• Returning control to the user, without terminating the INPUT statement
(the CONTINUE INPUT statement).

The activation clause and the statement block correspond respectively to the
left-hand and right-hand elements in the following syntax diagram:

field in the name of a field (page 3-359) in the current form.

key is one or more keywords to specify physical or logical keys.
For details, see “The ON KEY Block” on page 3-137.

statement is an SQL statement or other 4GL statement.

After BEFORE FIELD, AFTER FIELD, or NEXT FIELD, the Field clause specifies
a field that the binding clause referenced implicitly (in the BY NAME clause,
or as record.* or array [line].*) or explicitly. You can qualify a field name by a
table reference, or the name of a screen record or a screen array or array [line].

If you include one or more form management blocks, the END INPUT key-
words must terminate the INPUT statement. If no form management block is
included, 4GL waits while the user enters values into the fields. When the
user accepts the values in the form, the INPUT statement terminates.

If you include a form management block, 4GL executes or ignores the state-
ments in a form management block, depending on the following:

• Whether you specify the BEFORE INPUT or AFTER INPUT keywords.

• The fields to which and from which the user moves the screen cursor.

• The keys that the user presses.

AFTER

 FIELD statement

ON KEY

,
field

,

BEFORE

INPUT

Field Clause
p. 3-359

NEXT FIELD

PREVIOUS

INPUT Form
Management Block

INPUT

NEXT

CONTINUE

EXITkey)(
INFORMIX-4GL Statements 3-135

INPUT
4GL deactivates the form while executing statements in a form management
block. After executing the statements, 4GL reactivates the form, allowing the
user to continue entering or modifying the data values in fields.

The Precedence of INPUT Form Management Blocks

This is the order in which 4GL executes the statements from control blocks:

1. BEFORE INPUT

2. BEFORE FIELD

3. ON KEY

4. AFTER FIELD

5. AFTER INPUT

You can list these blocks in any order. If you develop some consistent
ordering, however, your code may be easier to read.

Within these blocks, you can include the NEXT FIELD keywords and EXIT
INPUT statement, as well as most 4GL and SQL statements.You cannot specify
a CONSTRUCT, PROMPT, INPUT, or INPUT ARRAY statement, but you can
invoke a function that executes one or more of these statements.

The activation clauses that you can specify in form management blocks are
described in their order of execution by 4GL. Descriptions of NEXT FIELD and
EXIT INPUT follow the discussions of these activation clauses. No subsequent
INPUT control block statements are executed if EXIT INPUT executes.

The BEFORE INPUT Block

You can use the BEFORE INPUT block to display messages on how to use the
INPUT statement. For example, the following INPUT statement fragment
displays a message informing the user how to enter data into the table:

INPUT BY NAME p_customer.*
BEFORE INPUT

DISPLAY "Press ESC to enter data" AT 1,1

4GL executes the BEFORE INPUT block after displaying the default values in
the fields and before letting the user enter any values. (If you included the
WITHOUT DEFAULTS clause, 4GL displays the current values of the variables,
not the default values, before executing the BEFORE INPUT block.)

An INPUT statement can include only one BEFORE INPUT block. You cannot
include the FIELD_TOUCHED() operator in the BEFORE INPUT block.
3-136 INFORMIX-4GL Statements

INPUT
The BEFORE FIELD Block

4GL executes the statements in the BEFORE FIELD block associated with a field
whenever the cursor moves into the field, but before the user enters a value.
You can specify no more than one BEFORE FIELD block for each field.

The following program fragment defines two BEFORE FIELD blocks. When
the cursor enters the fname or lname field, 4GL displays a message:

BEFORE FIELD fname
MESSAGE "Enter first name of customer"

BEFORE FIELD lname
MESSAGE "Enter last name of customer"

You can use a NEXT FIELD clause within a BEFORE FIELD block to restrict
access to a field. You can also use a DISPLAY statement within a BEFORE
FIELD block to display a default value in a field.

The following statement fragment causes 4GL to prompt the user for input
when the cursor is in the stock_num, manu_code, or quantity fields:

INPUT p_items.* FROM s_items.*
BEFORE FIELD stock_num

MESSAGE "Enter a stock number."
BEFORE FIELD manu_code

MESSAGE "Enter the code for a manufacturer."
BEFORE FIELD quantity

MESSAGE "Enter a quantity."
...

END INPUT

The ON KEY Block

Statements in the ON KEY block are executed if the user presses some key that
you specify by these keywords (in lowercase or uppercase letters):

ACCEPT HELP NEXT or RETURN
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE LEFT PREVPAGE UP

F1 through F64

CONTROL-char (except A, D, H, I, J, L, M, R, or X)
INFORMIX-4GL Statements 3-137

INPUT
For example, the following ON KEY block displays a Help message. The
BEFORE INPUT clause informs the user how to access Help:

BEFORE INPUT
DISPLAY "Press CONTROL-W or CTRL-F for Help"

ON KEY (CONTROL-W, CONTROL-F)
CALL customer_help()

The next statement defines an ON KEY block for the CONTROL-B key. When-
ever the user presses the CONTROL-B key, 4GL determines if the screen cursor
is in the stock_num or manu_code fields. If it is in either one of these fields,
then 4GL calls the stock_help() function and sets quantity as the next field.

INPUT p_items.* FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

Some keys require special consideration if specified in an ON KEY block:

Key Special Considerations

ESC or ESCAPE You must specify another key as the Accept key in the OPTIONS
statement, because this is the default Accept key.

INTERRUPT You must execute a DEFER INTERRUPT statement. If the user presses
the Interrupt key under these conditions, 4GL executes the state-
ments in the ON KEY block and sets int_flag to nonzero, but does
not terminate the INPUT statement. 4GL also executes the state-
ments in this ON KEY block if the DEFER QUIT statement has exe-
cuted and the user presses the Quit key. In this case, 4GL sets
quit_flag to non-zero.

CONTROL-char

A, D, H,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The regular meaning of these keys (TAB, LINEFEED, and RETURN,
respectively) is lost to the user. Instead, the key is trapped by 4GL
and used to activate the ON KEY block. For example, if CONTROL-
M appears in an ON KEY block, the user cannot press RETURN to
advance the cursor to the next field. If you include one of these keys
in an ON KEY block, be careful to restrict the scope of the block to
specific fields.
3-138 INFORMIX-4GL Statements

INPUT
You may not be able to use other keys that have special meaning to your ver-
sion of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

If you use the OPTIONS statement to redefine the Accept or Help keys, the
keys assigned to these sequences cannot be used in an ON KEY clause. For
example, if you redefine the Accept key by using the following statement,
you should not define an ON KEY block for the key sequence CONTROL-B:

OPTIONS ACCEPT KEY (CONTROL-B)

When the user presses CONTROL-B, 4GL will always perform the Accept key
function, regardless of the presence of an ON KEY (CONTROL-B) block.

If the user activates an ON KEY block while entering data in a field, 4GL:

1. Suspends input to the current field.

2. Preserves the input buffer that contains the characters the user has typed.

3. Executes the statements in the current ON KEY block.

4. Restores the input buffer for the current screen field.

5. Resumes input in the same field, with the screen cursor at the end of the
buffered list of characters.

You can change this default behavior by performing the following tasks in
the ON KEY block:

• Resuming input in another field by using the NEXT FIELD statement.

• Changing the input buffer value for the current field by assigning a new
value to the corresponding variable, and then displaying this value.

This block can support accelerator keys for common functions, such as saving
and deleting. You can use the INFIELD() operator in the ON KEY clause to
support field-specific actions. For example, you can implement field-level
Help by using the INFIELD() operator and the built-in SHOWHELP() function.

The AFTER FIELD Block

4GL executes the statements in the AFTER FIELD block associated with a field
every time the cursor leaves the specified field. Any of the following keys can
cause the cursor to leave the field.

• Home or End key

• Any arrow key

• RETURN or TAB key

• Accept key

• Interrupt or Quit key (if a supporting DEFER statement was included)
INFORMIX-4GL Statements 3-139

INPUT
You can specify only one AFTER FIELD block for each field.

This AFTER FIELD block checks if the stock_num and manu_code fields
contain values. If they contain values, 4GL calls the get_item() function:

AFTER FIELD stock_num, manu_code
LET pa_curr = ARR_CURR()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL THEN
CALL get_item()
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

END IF

The following INPUT statement performs a NULL test to determine whether
the user enters a value in the address1 field, and returns to that field if no
value was entered:

INPUT p_addr.* FROM sc_addr.*
AFTER FIELD address1

IF p_addr.address1 IS NULL THEN
NEXT FIELD address1

END IF
END INPUT

The user terminates the INPUT statement by pressing the Accept key when
the cursor is in any field, or by pressing the TAB or RETURN key after the last
field. You can use the AFTER FIELD block on the last field to override this
default termination. (Including the INPUT WRAP in the OPTIONS statement
produces the same effect.)

When the NEXT FIELD keywords appear in an AFTER FIELD block, the cursor
moves to in the specified field. If an AFTER FIELD block appears for each field,
and NEXT FIELD keywords are in each block, the user cannot leave the form.

The AFTER INPUT Block

4GL executes the AFTER INPUT block when the user presses the Accept key.
You can use the AFTER INPUT block to validate, save, or alter the values the
user entered by using the built-in GET_FLDBUF() or FIELD_TOUCHED() oper-
ators within the AFTER INPUT clause. (Use of these operators in an INPUT
3-140 INFORMIX-4GL Statements

INPUT
statement is described in“Using Built-In Functions and Operators” on
page 3-144.) The next example uses the AFTER INPUT block to require that a
first name be specified for any customers with the last name Smith :

INPUT BY NAME p_customer.fname THRU p_customer.phone
AFTER INPUT

IF p_customer.lname="Smith" THEN
IF NOT FIELD_TOUCHED(p_customer.fname) THEN

CALL mess("You must enter a first name.")
NEXT FIELD fname

END IF
END IF

END INPUT

4GL executes the AFTER INPUT block only when the INPUT statement is
terminated by the user choosing one of the following keys:

• The Accept key.

• The Interrupt key (if the DEFER INTERRUPT statement has executed).

• The Quit key (if the DEFER QUIT statement has executed).

The AFTER INPUT clause is not executed in the following situations:

• The user presses the Interrupt or Quit key when the DEFER INTERRUPT or
DEFER QUIT statement, respectively, has not executed. In either case, the
program terminates immediately.

• The EXIT INPUT statement terminates the INPUT statement.

You can place the NEXT FIELD clause in this block to return the cursor to the
form. If you place a NEXT FIELD clause in the AFTER INPUT block, use it in a
conditional statement. Otherwise, the user cannot exit from the form.

An INPUT statement can include only one AFTER INPUT block.

The NEXT FIELD Keywords

The NEXT FIELD keywords specify the next field to which 4GL moves the
screen cursor. If you do not specify a NEXT FIELD clause, then by default the
cursor moves among the screen fields according to the explicit or implicit
order of fields in the INPUT binding clause. The user can control movement
from field to field by the Arrow keys, TAB, and RETURN. By using the NEXT
FIELD keywords, however, you can explicitly position the screen cursor. You
must specify one of the following options with the NEXT FIELD keywords:
INFORMIX-4GL Statements 3-141

INPUT
Clause Effect
NEXT FIELD NEXT Advances the cursor to the next field.
NEXT FIELD PREVIOUS Returns the cursor to the previous field.
NEXT FIELD field name Moves the cursor to field-name.

For example, this NEXT FIELD clause places the cursor in the previous field:

NEXT FIELD PREVIOUS

The following INPUT statement includes a NEXT FIELD clause in an ON KEY
block. If the user presses CONTROL-B when the cursor is in the stock_num or
manu_code fields, then 4GL moves the cursor to quantity as the next field:

INPUT p_items.* FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF
...

END INPUT

4GL immediately positions the cursor in the form when it encounters the
NEXT FIELD clause; it does not execute any statements that follow the NEXT
FIELD clause in the control block. For example, 4GL cannot invoke function
qty_help() in the next example:

ON KEY (CONTROL-B, F4)
IF INFIELD(stock_num) OR INFIELD(manufact) THEN

CALL stock_help()
NEXT FIELD quantity
CALL qty_help() -- function is never called

END IF

You can use the NEXT FIELD clause in any INPUT form management block.
The NEXT FIELD clause typically appears in a conditional statement. In an
AFTER INPUT clause, the NEXT FIELD statement must appear in a conditional
statement; otherwise, the user cannot exit from the form. To restrict access to
a field, use the NEXT FIELD statement in a BEFORE FIELD clause.
3-142 INFORMIX-4GL Statements

INPUT
The following example demonstrates using the NEXT FIELD clause in an
ON KEY control block. 4GL executes the ON KEY block if the user presses
CONTROL-W. If the cursor is in the city field, 4GL displays San Francisco
in the city field and CA in the state field, and then moves the cursor to the zip-
code field.

ON KEY (CONTROL-W)
IF INFIELD(city) THEN

LET p_addr.city = "San Francisco"
DISPLAY p_addr.city TO city
LET p_addr.state = "CA"
DISPLAY p_addr.state TO state
NEXT FIELD zipcode

END IF

To wrap from the last field of a form to the first field of a form, use the NEXT
FIELD statement after an AFTER FIELD clause for the last field of the form.
(The INPUT WRAP option of the OPTIONS statement has the same effect.)

The CONTINUE INPUT Statement

The CONTINUE INPUT statement causes 4GL to skip all subsequent state-
ments in the current control block. The screen cursor returns to the most
recently occupied field in the current form.

The CONTINUE INPUT statement is useful when program control is nested
within multiple conditional statements, and you want to return control to the
user. It is also useful in an AFTER INPUT control block that examines the field
buffers; depending on their contents, you can return the cursor to the form.

The EXIT INPUT Statement

The EXIT INPUT statement terminate input. 4GL does the following:

• Skips all statements between the EXIT INPUT and END INPUT keywords.

• Deactivates the form.

• Resumes execution at the first statement after the END INPUT keywords.

4GL ignores any statements in an AFTER INPUT control block if the EXIT
INPUT statement is executed.
INFORMIX-4GL Statements 3-143

INPUT
The END INPUT Keywords

The END INPUT keywords indicate the end of the INPUT statement. These
keywords should follow the last control block. If you do not include any
control blocks, then the END INPUT keywords are not required.

Using Built-In Functions and Operators

The INPUT statement supports built-in functions and operators of 4GL. (For
more about these built-in 4GL functions and operators, see Chapter 4.) The
following features allow you to access field buffers and keystroke buffers:

Feature Description
FIELD_TOUCHED() Returns TRUE when the user has “touched” (made a change to)

a screen field whose name is passed as an operand. Moving the
screen cursor through a field (with the RETURN, TAB, or Arrow
keys) does not mark a field as touched. This operator also
ignores the effect of statements that appear in the BEFORE
INPUT control block. For example, you can assign values to
fields in the BEFORE INPUT control block without having the
fields marked as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form

FGL_LASTKEY() Returns an INTEGER value corresponding to the most recent
keystroke executed by the user while in the screen form.

INFIELD() Returns TRUE if the name of the field that is specified as its
operand is the name of the current field.

Each field has only one field buffer, and a buffer cannot be used by two dif-
ferent statements simultaneously. If you plan to display more than once the
same form with data entry fields, you should open a new 4GL window and
open and display a second copy of the form. 4GL allocates a separate set of
buffers to each form, so this avoids overwriting field buffers when more than
one INPUT, INPUT ARRAY, or CONSTRUCT statement accepts input.
3-144 INFORMIX-4GL Statements

INPUT
The following statement uses the INFIELD() operator to determine if the cur-
sor is in the stock_num or manu_code fields. If the cursor is in one of these
fields, 4GL calls the stock_help() function and sets quantity as the next field:

INPUT p_items.* FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

The INFIELD(field) expression returns TRUE if the current field is field and
FALSE otherwise. Use this function for field-dependent actions when the user
presses a key in the ON KEY block. In the following INPUT statement, the
BEFORE FIELD clause for the city field displays a message advising the user
to press a control key to enter the value San Francisco into the field:

INPUT p_customer.fname THRU p_customer.phone
FROM sc_cust.* ATTRIBUTE(REVERSE)
BEFORE FIELD city

MESSAGE "Press CONTROL-F to enter San Francisco"
ON KEY (CONTROL-F)

IF INFIELD(city) THEN
LET p_customer.city = "San Francisco"
DISPLAY p_customer.city TO city
LET p_customer.state = "CA"
DISPLAY p_customer.state TO state
NEXT FIELD zipcode

END IF
END INPUT

If the user presses the CONTROL-F key while the cursor is in the city field, the
ON KEY clause in this example changes the screen display in three ways:

1. Displays the value San Francisco in the city field.

2. Displays CA in the state field.

3. Moves the cursor to the first character position in the zipcode field.
INFORMIX-4GL Statements 3-145

INPUT
Keyboard Interaction

The user of your 4GL application can use the keyboard to position the cursor
during an INPUT statement. The behavior of some of the keys that can posi-
tion the cursor during an INPUT statement is sensitive to what kind of field
the cursor occupies:

• Whether the cursor is currently in a simple field.

• Or in a segment of a multiple-segment field.

Subsequent sections describe cursor movement in both environments.

Cursor Movement in Simple Fields

In a simple field, when the user presses TAB or RETURN, the cursor moves
from one screen field to the next in an order based on the binding clause:

• For INPUT BY NAME, 4GL uses the order implied by the sequence of
program variables specified in the binding clause.

• Otherwise, 4GL uses the order of the screen fields specified in the FROM
clause of the INPUT statement.

The user can press the Arrow keys to position the screen cursor:

Arrow Effect

[↓] By default, moves the cursor to the next field. If you specify FIELD ORDER
UNCONSTRAINED in the OPTIONS statement, this key moves the cursor to
the field below the current field. If no field is below the current field and
a field exists to the left of the current field, 4GL moves the cursor to the
field to the left.

[↑] By default, moves the cursor to the previous field. If you specify the
FIELD ORDER UNCONSTRAINED option of the OPTIONS statement, this
key moves the cursor to the field above the current field. If no field is
above the current field and a field exists to the left of the current field,
4GL moves the cursor to the field to the left.

 [→] Moves the cursor one space to the right inside a screen field, without
erasing the current character. At the end of the field, 4GL moves the
cursor to the first character position of the next screen field. The [→]
is equivalent to the CONTROL-L editing key.

If NLS is active, the settings in the NLS environment variables
LC_MONETARY and LC_NUMERIC can change the interpretation of cur-
rency symbols and numeric and decimal separators input by the user. For
example, in the French or German locale, values input by the user are
expected to contain commas, not periods, as decimal separators.

NLS
3-146 INFORMIX-4GL Statements

INPUT
 [←] Moves the cursor one space to the left inside a screen field without eras-
ing the current character. At the beginning of the field, 4GL moves the
cursor to the first character position of the previous field. The [←] is
equivalent to the CONTROL-H editing key.

Editing Keys

Unless a field has the NOENTRY attribute, the user can press the following
keys during an INPUT statement to edit values in a screen field:

Key Effect

CONTROL-A Toggles between insert and typeover mode.

CONTROL-D Deletes characters from the current cursor position to the end
of the field.

CONTROL-H Moves the cursor nondestructively one space to the left.
It is equivalent to pressing [←].

CONTROL-L Moves the cursor nondestructively one space to the right.
It is equivalent to pressing [→].

CONTROL-R Redisplays the screen.

CONTROL-X Deletes the character beneath the cursor.

Multiple-Segment Fields

Chapter 5 explains how you can create a multiple-segment field (page 5-26) to
display long character strings; these superficially resemble a screen array, but
the successive lines are segments of the same field, rather than screen records.

If the data string is too long to fit in the first segment, 4GL divides it at a blank
character (if possible), padding the rest of the segment on the right with blank
(ASCII 32) characters, and continues the display in the next field segment.
If necessary, this process is repeated until all of the segments are filled, or
until the last text character is displayed (whichever happens first).

If the user inserts or deletes characters while editing a multiple-segment
field, WORDWRAP attribute can “wrap” subsequent characters, as needed.
Blank characters that the WORDWRAP editor uses as padding are called editor
blanks. The COMPRESS keyword in the form specification file to prevent the
storage of editor blanks in the database. Characters that the user enters, or
that 4GL retrieves from the database, are called intentional characters.
INFORMIX-4GL Statements 3-147

INPUT
If the cursor enters a multiple-segment field, additional features of a multiple
line editor become available to the user. The user must press CONTROL-R for
NEWLINE, because RETURN moves to the next field.

WORDWRAP Editing Keys

When values are entered or updated in a multiple-segment field, the user can
press keys to move the screen cursor over the data, and to insert, delete, and
type over the data. The cursor never pauses on editor blanks.

The WORDWRAP editor has two modes, insert (to add data at the cursor) and
typeover (to replace the displayed data with entered data). Users cannot over-
write a NEWLINE. If the cursor in typeover mode encounters a NEWLINE char-
acter, the mode automatically changes to insert, “pushing” the NEWLINE
character to the right. Some keystrokes behave differently in the two modes.

When it first enters a multiple-segment field, the cursor is positioned on the
first character of the first field segment, and the editing mode is set to typeover.
The cursor movement keys are as follows:

RETURN leaves the entire multiple-segment field, and goes to the first
character of the next field.

BACKSPACE
 or
LEFT ARROW

move left one character, unless at the left edge of a field seg-
ment. From the beginning of the first segment, these move to
the first character of the preceding field (if INPUT WRAP is in
effect), or beep (if INPUT NO WRAP; see the OPTIONS state-
ment). From the left edge of a lower field segment, these
keys move to the last intentional character of the previous
field segment.

RIGHT ARROW moves right one character, unless at the rightmost inten-
tional character in a segment. From the rightmost intentional
character of the last segment, this either moves to the first
character of the next field, or only beeps, depending on
INPUT WRAP mode. From the last intentional character of a
higher segment, this moves to the first intentional character
in a lower segment.

UP ARROW moves from the topmost segment to the first character of the
preceding field. From a lower segment, this moves to the
character in the same column of the next higher segment,
jogging left, if required, to avoid editor blanks, or if it
encounters a TAB.

DOWN ARROW moves from the lowest segment to the first character of the
next field. From a higher segment, moves to the character in
3-148 INFORMIX-4GL Statements

INPUT
the same column in the next lower segment, jogging left if
required to avoid editor blanks, or if it encounters a TAB.

TAB enters a TAB character, in insert mode, and moves the cursor
to the next TAB stop. This can cause following text to jump
right to align at a TAB stop. In typeover mode, this moves the
cursor to the next TAB stop that falls on an intentional char-
acter, going to the next field segment if required.

The character keys enter data. Any following data shifts right, and words can
move down to subsequent segments. This can result in characters being dis-
carded from the final field segment. These keystrokes can also alter data:

CONTROL-A switches between typeover and insert mode.

CONTROL-X deletes the character under the cursor, possibly causing
words to be pulled up from subsequent segments.

CONTROL-D deletes all text from the cursor to the end of the multiple-line
field (not merely to the end of the current field segment).

CONTROL-N inserts a NEWLINE character, causing subsequent text to
align at the first column of the next segment of the field, and
possibly moving words down to subsequent segments. This
can result in characters being discarded from the final seg-
ment of the field.

The editing keys (page 3-147) have the same effect in a multiple-segment
field, except that CONTROL-H can move to the last intentional character of the
previous segment of the same field, if the cursor is on the first intentional
character. Also, CONTROL-L can move to the first intentional character of
the next segment of the same field from the last intentional character of a
segment.

Using Large Data Types

4GL displays values of large data types (BYTE or TEXT) as follows:

Field Type Screen Display

TEXT As much of the TEXT data as fit within the screen field.

BYTE The string "<BYTE value>" . 4GL cannot display the actual BYTE
value in a screen field.

Use a simple field. (You can display part of a TEXT value in a multiple-
segment field, or all of a TEXT value that is short enough to fit, but the user
cannot apply the WORDWRAP editor to a TEXT value.)
INFORMIX-4GL Statements 3-149

INPUT
If the form specification file assigns an appropriate attribute to a BYTE or
TEXT field, the user can invoke an external program by pressing the exclama-
tion (!) key when the cursor is in the field. This external program is typically
an editor to allows the user to edit character (TEXT) or graphic (BYTE) data.
To implement this feature, specify the PROGRAM attribute as part of the field
description in the form specification file, identifying the external program to
execute. (For more information on using the PROGRAM attribute, see the
description of that field attribute in Chapter 5.)

The external program takes over the entire screen. Any key sequence that you
have specified in the ON KEY clause is ignored by the external program.
When the external program terminates, 4GL does the following:

1. Restores the screen to its state before the external program began.

2. Resumes the INPUT statement at the BYTE or TEXT field.

3. Reactivates any key sequences specified in the ON KEY clause.

Completing the INPUT Statement

The following actions can terminate the INPUT statement:

• The user chooses one of the following keys:

o Accept, Interrupt, or Quit

o The RETURN or TAB key from the last field (and INPUT WRAP is not
currently set by the OPTIONS statement)

• 4GL executes the EXIT INPUT statement.

By default, the Accept, Interrupt, or Quit keys terminate the INPUT state-
ment. Each of these actions also deactivates the form. (But pressing the Inter-
rupt or Quit key can immediately terminate the program, unless the program
also includes the DEFER INTERRUPT and DEFER QUIT statements.)

The user must choose Accept explicitly to complete the INPUT statement
under the following conditions:

• INPUT WRAP is specified in the OPTIONS statement.

• An AFTER FIELD block for the last field includes a NEXT FIELD clause.

If 4GL previously executed a DEFER INTERRUPT statement in the program,
the Interrupt key causes 4GL to do the following:

• Set the global variable int_flag to a nonzero value.

• Terminate the INPUT statement, but not the 4GL program.
3-150 INFORMIX-4GL Statements

INPUT
If 4GL previously executed a DEFER QUIT statement in the program, a Quit
signal causes 4GL to do the following:

• Set the global variable quit_flag to a nonzero value.

• Terminate the INPUT statement, but not the 4GL program.

Executing Control Blocks When INPUT Terminates

When INPUT terminates, these blocks are executed in the order indicated:

1. The AFTER FIELD clause for the current field.

2. The AFTER INPUT clause.

If INPUT terminates by an EXIT INPUT statement, or by pressing the Interrupt
or Quit keys, 4GL does not execute any of these clauses. If a NEXT FIELD state-
ment appears in one of these clauses, 4GL places the cursor in the specified
field and returns control to the user.

References
DEFER, DISPLAY ARRAY, INPUT ARRAY, OPEN WINDOW, OPTIONS
INFORMIX-4GL Statements 3-151

INPUT ARRAY
INPUT ARRAY
The INPUT ARRAY statement supports data entry by users into a screen array,
and stores the entered data in a program array of records.

number is a literal integer (page 3-340) to specify a Help message number.

Usage
The INPUT ARRAY statement assigns to variables in one or more program
records the values that the user enters into the fields of a screen array. This
statement can include statement blocks to be executed under conditions that
you specify, such as screen cursor movement, or other user actions. To use the
INPUT ARRAY statement, you must do the following:

1. Specify a screen array in the form specification file, and compile the form.

2. Declare an ARRAY OF RECORD with the DEFINE statement.

3. Open and display the screen form in either of the following ways:

• The OPEN FORM and DISPLAY FORM statements.

• An OPEN WINDOW statement with the WITH FORM clause.

4. Use the INPUT ARRAY statement to assign values to the program array
from data that the user enters into fields of the screen array.

When the INPUT ARRAY statement is encountered, 4GL does the following:

1. Displays any default values in the screen fields, unless you specify the
WITHOUT DEFAULTS keywords (as described on page 3-131.)

2. Moves the cursor to the first field and waits for input from the user.

3. Assigns the user-entered field value to a corresponding program variable
when the user moves the cursor from the field or presses the Accept key.

The INPUT ARRAY statement activates the current form (the form that was
most recently displayed, or the form in the current 4GL window). When the
INPUT ARRAY statement completes execution, the form is deactivated. After
the user presses Accept, the INSERT statement of SQL can insert the values of
the program variables into the appropriate database tables.

Binding
Clause
p. 3-153 HELP number

INPUT ARRAY

INPUT ARRAY
Form

Management
 Block

p. 3-156

END INPUT
ATTRIBUTE

Clause
p. 3-290
3-152 INFORMIX-4GL Statements

INPUT ARRAY
The following topics are described in this section:

Topic Page
The Binding Clause 3-153
The ATTRIBUTE Clause 3-155
The HELP Clause 3-133
The INPUT ARRAY Form Management Blocks 3-158
The EXIT INPUT Statement 3-169
The END INPUT Keywords 3-169
Using Built-In Functions and Operators 3-170
Keyboard Interaction 3-172
Using Large Data Types 3-149
Completing the INPUT ARRAY Statement 3-174

The Binding Clause

The binding clause temporarily associates the member variables in an array of
program records with fields in the member records of a screen array, so the
4GL program can manipulate values that the user enters in the screen array:

program array is the name of an array of program records.

screen array is the name of an array of screen records.

You must declare the program array in your program, and the screen array in
the form specification file.

The Correspondence of Variables and Fields

The form can include other fields that are not part of the specified screen
array, but the number of member variables in each record of program array
must equal the number of fields in each row of screen array. Each variable
must be of the same (or a compatible) data type as the corresponding screen
field. When the user enters data, 4GL checks the entered value against the
data type of the variable, not the data type of the screen field

The member variables of the records in program array can be of any 4GL data
type. If a variable is declared LIKE a SERIAL column, however, 4GL does not
allow the screen cursor to stop in the field. (Values in SERIAL columns are
maintained by the database engine, not by 4GL.)

FROM screen array . *

Binding
Clause

program array

WITHOUT DEFAULTS
INFORMIX-4GL Statements 3-153

INPUT ARRAY
The number of screen records in screen array determines how many rows the
form can display at one time. The size of record array determines how many
RECORD variables your program can store. If the size of a program array
exceeds the size of its screen array, users can press the Next Page or Previous
Page keys (page 3-172) to scroll through the screen array.

The default order in which the screen cursor moves from field to field in the
screen array is determined by the declared order of the corresponding mem-
ber variables, beginning in the first screen record. (See also the NEXT FIELD
keywords on page 3-141, and the WRAP and FIELD ORDER options of the
OPTIONS statement, as described on page 3-232.)

Displaying Default Values

If you omit the WITHOUT DEFAULTS keywords, 4GL displays default values
from the program array when the form is activated. 4GL determines the
default values in the following way, in descending order of precedence:

1. The DEFAULT attribute (from the form specification file).

2. The DEFAULT column value (from the syscolval table).

4GL assigns NULL values to all variables for which no default is set. But
if you include the WITHOUT NULL INPUT option in the DATABASE section
of the form specification file, then 4GL assigns the following default values:

Field Type Default
character blank (= ASCII 32)
number 0
INTERVAL 0
MONEY $0.00
DATE 12/31/1899
DATETIME 1899-12-31 23:59:59.99999

The WITHOUT DEFAULTS Keywords

If you specify the WITHOUT DEFAULTS option, however, the screen displays
current values of the variables when the INPUT ARRAY statement begins. This
option is available with both the BY NAME and the FROM binding clauses.

To display initialized values, rather than defaults, you can do the following:

1. Initialize the variables with whatever values you want to display.

2. Call the built-in SET_COUNT() function to tell 4GL how many rows are
currently stored in the program array.
3-154 INFORMIX-4GL Statements

INPUT ARRAY
3. Specify INPUT ARRAY . . . WITHOUT DEFAULTS to display current values
of the program array, and to allow the user to change those records.

The WITHOUT DEFAULTS clause is useful when you want the user to be able
to make changes to existing rows of the database. You can display the existing
database values on the screen before the user begins editing the data. The
FIELD_TOUCHED() operator can help you to determine which fields have
been altered, and that therefore require updates to the database. (This
operator is described briefly on page 3-170, and in detail on page 4-64.)

The ATTRIBUTE Clause

For the syntax of the ATTRIBUTE clause, see page 3-290. This section
describes the use of the ATTRIBUTE clause within an INPUT ARRAY state-
ment.

If you specify form attributes with the INPUT ARRAY statement, the new
attributes apply only during the current activation of the form. When actions
of the user deactivate the form, the form reverts to its previous attributes. The
following INPUT statement assigns the RED and REVERSE attributes:

INPUT ARRAY p_addr FROM sc_addr.* ATTRIBUTE (RED, REVERSE)

This statement assigns the WHITE attribute:

INPUT ARRAY p_items FROM sc_items.* ATTRIBUTE (WHITE)

The ATTRIBUTE clause overrides any default display attributes specified in
an OPTIONS or OPEN WINDOW statement for these fields. It also suppresses
any default attributes specified in the syscolatt table of the upscol utility.

The HELP Clause

The HELP clause specifies the number of a Help message to display if the user
presses the Help key while the screen cursor is in any field of the specified
screen array. The default Help key is CONTROL-W, but you can assign a
different key as the Help key by using the HELP KEY clause of the OPTIONS
statement.

The following program fragment specifies Help message 311 if the user
requests Help from any field in the s_items screen array:

INPUT ARRAY p_items FROM s_items.*
HELP 311
INFORMIX-4GL Statements 3-155

INPUT ARRAY
You create Help messages in an ASCII file whose filename you specify in the
HELP FILE clause of the OPTIONS statement (page 3-234). A run-time error
occurs in the following situations:

• 4GL cannot open the Help file.

• You specify a number that is not in the Help file.

• You specify a number outside the range from -32,767 to 32,767.

The Help message specified in your HELP clause applies to the entire
INPUT ARRAY statement. To override this with field-level Help messages,
specify an ON KEY block (page 3-137) that invokes the INFIELD() operator
and SHOW_HELP() function, as described in Chapter 4. If you do this, the
messages must be displayed in a 4GL window within the 4GL screen, rather
than in the separate Help window.

The INPUT ARRAY Form Management Blocks

Each INPUT ARRAY form management block includes a statement block of
at least one statement, and an activation clause that specifies when to execute
the statement block. An INPUT ARRAY form management block can specify
any of the following:

• The statements to execute before or after visiting specific screen fields.

• The statements to execute when the user presses a key sequence.

• The statements to execute before or after the INPUT ARRAY statement.

• The next field to which to move the screen cursor.

• When to terminate execution of the INPUT ARRAY statement.

The activation clause can specify any one of the following:

• Pre- and post-INPUT actions (the BEFORE or AFTER INPUT clause)

• Pre- and post-INSERT actions (the BEFORE or AFTER INSERT clause)

• Pre- and post-DELETE actions (the BEFORE or AFTER DELETE clause)

• Keyboard sequence conditions (the ON KEY clause)

• Cursor movement conditions (the BEFORE or AFTER FIELD clause, and
the BEFORE or AFTER ROW clause)

The statement block can include any SQL or 4GL statements, as well as:

• Cursor movement instructions (the NEXT FIELD clause)

• Termination of the INPUT ARRAY statement (the EXIT INPUT statement)

• Returning control to the user, without terminating the INPUT ARRAY
statement (the CONTINUE INPUT statement)
3-156 INFORMIX-4GL Statements

INPUT ARRAY
If you include one or more form management blocks, the END INPUT key-
words must terminate the INPUT ARRAY statement. If no form management
block is included, 4GL waits while the user enters values into the fields. When
the user presses the Accept key, the INPUT ARRAY statement terminates.

The activation clause and the statement block correspond respectively to the
left-hand and right-hand elements in the following syntax diagram:

keyname is one or more keywords to specify physical or logical keys.
For details, see “The ON KEY Block” on page 3-137.

statement is an SQL or other 4GL statement.

After BEFORE FIELD, AFTER FIELD, or NEXT FIELD, the Field clause specifies
a field that the binding clause referenced implicitly (in the BY NAME clause,
or as record.* or array [line].*) or explicitly. You can qualify a field name by a
table reference, or the name of a screen record or a screen array or array [line].

The BEFORE FIELD screen-array or AFTER FIELD screen-array activation clause
applies to the entire screen-array. BEFORE FIELD screen-array. field or AFTER
FIELD screen-array. field applies to the specified field in the screen array, as in
the following example, which represents part of a screen form:

AFTER

 FIELD

ON KEY

,

,

key

DELETE

BEFORE

INPUT

INSERT

INPUT ARRAY Form
Management Block

fieldField Clause
p. 3-359

NEXT FIELD

INPUT

NEXT
EXIT

statement

ROW

Field Clause
p. 3-359

()

PREVIOUS

CONTINUE

[] []
 [] []
 [] [] }

} }field1 field2

Screen array
INFORMIX-4GL Statements 3-157

INPUT ARRAY
If you specify BEFORE FIELD screen array.field1, 4GL executes the statement
block if the cursor moves into the field1 field of any screen record of screen
array, but not after movement to a field2 field. You can specify BEFORE FIELD
screen array if you want the statement block to be executed if the cursor enters
any field of screen array.

If you include a form management block, 4GL executes or ignores the state-
ments in a form management block, depending on the following:

• Whether you specify the BEFORE INPUT or AFTER INPUT keywords.

• The fields to which and from which the user moves the screen cursor.

• The keys that the user presses.

4GL deactivates the form while executing statements in a form management
block. After executing the statements, 4GL reactivates the form, allowing the
user to continue entering or modifying the data values in fields.

The Precedence of Form Management Blocks

This is the order in which 4GL executes the statements in control blocks:

1. BEFORE INPUT

2. BEFORE ROW

3. BEFORE INSERT, BEFORE DELETE

4. BEFORE FIELD screen array

5. BEFORE FIELD screen array. field

6. ON KEY

7. AFTER FIELD screen array. field

8. AFTER FIELD screen array

9. AFTER INSERT, AFTER DELETE

10. AFTER ROW

11. AFTER INPUT

You can list these blocks in any order. If you develop some consistent
ordering, however, your code may be easier to read.

Within these blocks, you can include the NEXT FIELD keywords (page 3-141)
and EXIT INPUT statement (page 3-143), as well as most 4GL and SQL state-
ments. You cannot specify a CONSTRUCT, PROMPT, INPUT, nor INPUT ARRAY
statement, but you can invoke a function that executes one or more of these
statements.
3-158 INFORMIX-4GL Statements

INPUT ARRAY
The activation clauses of INPUT ARRAY form management blocks are
described in their order of execution by 4GL. Descriptions of NEXT FIELD and
EXIT INPUT follow the discussions of these activation clauses. No subsequent
control block statements are executed if EXIT INPUT executes.

The BEFORE INPUT Block

You can use the BEFORE INPUT block to display messages on how to use
the INPUT ARRAY statement. For example, the following statement fragment
displays a message informing the user how to enter data into the table:

INPUT ARRAY p_customer FROM s_customer.*
BEFORE INPUT

DISPLAY "Press ESC to enter data" AT 1,1

4GL executes the BEFORE INPUT block after displaying the default values in
the fields and before letting the user enter any values. (If you included the
WITHOUT DEFAULTS clause, 4GL displays the current values of the variables,
not the default values, before executing the BEFORE INPUT block.)

The following program fragment uses the DISPLAY statement in the BEFORE
INPUT block to populate the fields of a single screen array:

1. Call SET_COUNT(1) to initialize the array with one non-default record.

2. Include the WITHOUT DEFAULTS block in the INPUT ARRAY statement.

3. Within the BEFORE INPUT block, use LET statements to assign values to
the variables. Then use DISPLAY to display the variable to the screen:

CALL SET_COUNT(1)
INPUT ARRAY p_items WITHOUT DEFAULTS FROM s_items.*

BEFORE INPUT
LET pa_curr = ARR_CURR()
LET s_curr = SCR_LINE()
LET p_items[pa_curr].stock_num = 2
DISPLAY p_items[pa_curr].stock_num TO

s_items[s_curr].stock_num
NEXT FIELD manu_code

END INPUT

An INPUT ARRAY statement can include only one BEFORE INPUT block. You
cannot include the FIELD_TOUCHED() operator in the BEFORE INPUT block.
INFORMIX-4GL Statements 3-159

INPUT ARRAY
The BEFORE ROW Block

Here “ROW” means a screen record; it need not be linked to a database row.
The INPUT ARRAY statement can include no more than one BEFORE ROW
block. 4GL executes the BEFORE ROW block statements in the following cases:

• The cursor moves into a new line of the screen form.

• An INSERT statement fails because of lack of space.

• An INSERT statement is terminated by the Interrupt or Quit key.

• The user presses the Delete key.

The BEFORE DELETE Block

This statement block is executed after the user presses the Delete key while
the cursor is in a screen array, but before 4GL actually deletes the record. An
INPUT ARRAY statement can include only one BEFORE DELETE block.

If you want to prevent the record from being deleted (for example, if some
Boolean condition is not satisfied), specify EXIT INPUT, rather than CON-
TINUE INPUT, within the BEFORE DELETE block.

The BEFORE INSERT Block

Statements in the BEFORE INSERT block are executed in these cases:

• When the user begins entering new records into the array.

• After the user presses the Insert key to insert a new record between exist-
ing records of a screen array, but before the record is added to the array.

• When the user moves the cursor to a blank record at the end of an array.

4GL executes the statements in this block before the user enters data for each
successive screen record that the Insert key creates.

The following BEFORE INSERT block calls the get_item_num() function
before inserting a new empty record into the screen array:

BEFORE INSERT
CALL get_item_num()

An INPUT ARRAY statement can include only one BEFORE INSERT block.
3-160 INFORMIX-4GL Statements

INPUT ARRAY
The BEFORE FIELD Block

This statement block is executed whenever the screen cursor moves into the
specified field, but before the user enters a value. You can specify no more
than one BEFORE FIELD block for each field.

The following program fragment defines two BEFORE FIELD blocks. When
the cursor enters the fname or lname field, 4GL displays a message:

BEFORE FIELD fname
MESSAGE "Enter first name of customer"

BEFORE FIELD lname
MESSAGE "Enter last name of customer"

You can use a NEXT FIELD clause within a BEFORE FIELD block to restrict
access to a field. You can also use a DISPLAY statement within a BEFORE
FIELD block to display a default value in a field.

The following statement fragment causes 4GL to prompt the user for input
when the cursor is in the stock_num, manu_code, or quantity fields:

INPUT ARRAY p_items FROM s_items.*
BEFORE FIELD stock_num

MESSAGE "Enter a stock number."
BEFORE FIELD manu_code

MESSAGE "Enter the code for a manufacturer."
BEFORE FIELD quantity

MESSAGE "Enter a quantity."
...

END INPUT

The ON KEY Block

Statements in the ON KEY block are executed if the user presses some key that
you specify by these keywords (in lowercase or uppercase letters):

ACCEPT HELP NEXT or RETURN
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE LEFT PREVPAGE UP

F1 through F64

CONTROL-char (except A, D, H, I, J, L, M, R, or X)
INFORMIX-4GL Statements 3-161

INPUT ARRAY
This statement defines an ON KEY block for the CONTROL-B key. Whenever
the user presses the CONTROL-B key, 4GL determines if the screen cursor is in
the stock_num or manu_code fields. If it is in either one of these fields, then
4GL calls the stock_help() function and sets quantity as the next field.

INPUT ARRAY p_items FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

The following ON KEY block displays a Help message. The BEFORE INPUT
clause informs the user how to access Help:

BEFORE INPUT
DISPLAY "Press CTRL-W for help"

ON KEY (CONTROL-W, CONTROL-F)
CALL customer_help()

Some keys require special consideration if specified in an ON KEY block:

Key Special Considerations

ESC or ESCAPE You must specify another key as the Accept key in the OPTIONS
statement, because this is the default Accept key.

INTERRUPT You must execute a DEFER INTERRUPT statement. If the user presses
the Interrupt key under these conditions, 4GL executes the state-
ments in the ON KEY block and sets int_flag to nonzero, but does
not terminate the INPUT statement. 4GL also executes the state-
ments in this ON KEY block if the DEFER QUIT statement has exe-
cuted and the user presses the Quit key. In this case, 4GL sets
quit_flag to non-zero.

CONTROL-W You must specify another key as the Insert key in the OPTIONS
statement, because CONTROL-W is the default Insert key.

F2 You must specify another key as the Delete key in the OPTIONS
statement, because F2 is the default Delete key.

F3 You must specify another key as the Next Page key in the OPTIONS
statement, because F3 is the default Next Page key.

F4 You must specify another key as the Previous Page key in the
OPTIONS statement, because F4 is the default for that key.
3-162 INFORMIX-4GL Statements

INPUT ARRAY
CONTROL-char

A, D, H,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The regular meaning of these keys (TAB, LINEFEED, and RETURN,
respectively) is lost to the user. Instead, the key is trapped by 4GL
and used to activate the ON KEY block. For example, if CONTROL-
M appears in an ON KEY block, the user cannot press RETURN to
advance the cursor to the next field. If you include one of these keys
in an ON KEY block, be careful to restrict the scope of the block to
specific fields.

You may not be able to use other keys that have special meaning to your ver-
sion of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

If you use the OPTIONS statement to redefine the Accept or Help keys, the
keys assigned to these sequences cannot be used in an ON KEY clause. For
example, if you redefine the Accept key by using the following statement,
you should not define an ON KEY block for the key sequence CONTROL-B:

OPTIONS ACCEPT KEY (CONTROL-B)

When the user presses CONTROL-B, 4GL will always perform the Accept key
function, regardless of the presence of an ON KEY (CONTROL-B) block.

If the user activates an ON KEY block while entering data in a field, 4GL takes
the following actions:

1. Suspends input to the current field.

2. Preserves the input buffer that contains the characters the user has typed.

3. Executes the statements in the current ON KEY block.

4. Restores the input buffer for the current screen field.

5. Resumes input in the same field, with the screen cursor at the end of the
buffered list of characters.

You can change this default behavior by performing the following tasks in
the ON KEY block:

• Resuming input in another field by using the NEXT FIELD statement.

• Changing the input buffer value for the current field by assigning a new
value to the corresponding variable, and then displaying this value.
INFORMIX-4GL Statements 3-163

INPUT ARRAY
You can also use this block to provide accelerator keys for common functions,
such as saving and deleting. The INFIELD() operator can control field-specific
responses in the action for an ON KEY clause. You can implement field-level
Help by using the INFIELD() operator and SHOWHELP() function.

The AFTER FIELD Block

4GL executes the statements in the AFTER FIELD block associated with a field
every time the cursor leaves the field. Any of the following keys can cause the
cursor to leave the field.

• Any arrow key

• RETURN or TAB key

• Accept key

• Interrupt or Quit key (if a supporting DEFER statement was executed)

You can specify only one AFTER FIELD block for each field.

This AFTER FIELD block checks if the stock_num and manu_code fields
contain values. If they contain values, 4GL calls the get_item() function:

AFTER FIELD stock_num, manu_code
LET pa_curr = ARR_CURR()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL THEN
CALL get_item()
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

END IF

The following statement makes sure that the user enters an address line:

INPUT ARRAY p_addr FROM sc_addr.*
AFTER FIELD address1

IF p_addr.address1 IS NULL THEN
NEXT FIELD address1

END IF
END INPUT
3-164 INFORMIX-4GL Statements

INPUT ARRAY
The user terminates the INPUT ARRAY statement by pressing the Accept key
when the screen cursor is in any field, or by pressing the RETURN or TAB key
after the last field. You can use the AFTER FIELD block on the last field to over-
ride this default termination. (Including the INPUT WRAP in the OPTIONS
statement produces the same effect.)

When the NEXT FIELD keywords appear in an AFTER FIELD block, the cursor
moves to in the specified field. If an AFTER FIELD block appears for each field,
and NEXT FIELD keywords are in each block, the user cannot leave the form.

The AFTER INSERT Block

This has no effect unless the BY NAME or FROM clause references a screen
array. 4GL executes the AFTER INSERT block after the user inserts a record into
the screen array. A user inserts a record by doing the following:

1. Entering information in all the required fields of the current record.

2. Moving the cursor out of the last input field by using one of these keys:

• Any arrow key

• RETURN or TAB key

• Accept key

• Home or End key

Notice that the Insert key does not by itself activate the AFTER INSERT block;
the user must also move the cursor from the newly inserted record.

The following AFTER INSERT block calls the renum_items() function after
the user inserts a new blank screen record into the items screen array:

AFTER INSERT OF items
CALL renum_items()

An INPUT statement can include only one AFTER INSERT block.

The AFTER DELETE Block

4GL executes the AFTER DELETE block after the user deletes the values from
a screen record by using the Delete key. If this block is present, 4GL takes the
following actions when the user presses the Delete key:

1. Deletes the record from the screen array.

2. Executes the statements in the AFTER DELETE block.

3. Executes the statements in the AFTER ROW block, if one is specified.
INFORMIX-4GL Statements 3-165

INPUT ARRAY
The user must also press the Accept key to make corresponding changes to
the variables in the array of program records. The following AFTER DELETE
block calls the renum_items() function:

AFTER DELETE OF items
CALL renum_items()

An INPUT statement can include only one AFTER DELETE block.

The AFTER ROW Block

Here “ROW” means a screen record; this need not be linked to a database row.
4GL executes the statements in the AFTER ROW block in these cases:

• When the cursor leaves the current row by using one of these keys:

o Any Arrow key

o The RETURN or TAB key

o The Accept key

o The Interrupt key (if DEFER INTERRUPT was also executed)

• When a new screen record is inserted by the Insert key.

The INPUT ARRAY statement can specify only one AFTER ROW block. If you
specify both an AFTER ROW and an AFTER INSERT block, 4GL executes the
AFTER ROW block immediately after executing the AFTER INSERT block.

The following AFTER ROW block calls the order_total() function after the
screen cursor leaves a row, and the row is inserted:

AFTER ROW
CALL order_total()

If you include a NEXT FIELD statement in an AFTER ROW block, 4GL moves
the cursor to the next field of the next row, not to the row which the cursor
has just left.

The AFTER INPUT Block

The statements in the AFTER INPUT block are executed when the user termi-
nates the INPUT ARRAY statement without terminating the 4GL program.

By using the GET_FLDBUF() or FIELD_TOUCHED() built-in operators within
the AFTER INPUT block, you can use the AFTER INPUT block to validate, save,
or alter values that the user entered. (For the use of these operators in an
3-166 INFORMIX-4GL Statements

INPUT ARRAY
INPUT ARRAY statement, see “Using Built-In Functions and Operators” on
page 3-170.) The following example uses this block to require that a first
name be specified for any customers with the last name Smith :

CALL SET_COUNT(1)
INPUT ARRAY p_customer FROM sc_customer.*

AFTER INPUT
IF p_customer.lname="Smith" THEN

IF NOT FIELD_TOUCHED(p_customer.fname) THEN
CALL mess("You must enter a first name.")
NEXT FIELD fname

END IF
END IF

END INPUT

4GL executes the AFTER INPUT block only when the INPUT ARRAY statement
is terminated by the user pressing one of the following keys:

• The Accept key.

• The Interrupt key (if the DEFER INTERRUPT statement has executed).

• The Quit key (if the DEFER QUIT statement has executed).

The AFTER INPUT clause is not executed in the following situations:

• The user presses the Interrupt or Quit key and the DEFER INTERRUPT or
DEFER QUIT statement, respectively, has not executed. In either case, the
program terminates immediately.

• The EXIT INPUT statement terminates the INPUT ARRAY statement.

You can place the NEXT FIELD clause in this block to return the cursor to the
form. If you place a NEXT FIELD clause in the AFTER INPUT block, use it in a
conditional statement. Otherwise, the user cannot exit from the form.

An INPUT ARRAY statement can include only one AFTER INPUT block.

The NEXT FIELD Keywords

The NEXT FIELD keywords specify the next field to which 4GL moves the
screen cursor. If you omit this clause, then by default the cursor moves
among the screen fields according to the explicit or implicit order of fields in
the INPUT ARRAY binding clause. The user can control movement from field
to field by the Arrow keys, TAB, and RETURN. By using the NEXT FIELD
keywords, however, you can explicitly position the screen cursor. You must
specify one of the following options with the NEXT FIELD keywords:
INFORMIX-4GL Statements 3-167

INPUT ARRAY
Clause Effect

NEXT FIELD NEXT Advances the screen cursor to the next field.

NEXT FIELD PREVIOUS Returns the screen cursor to the previous field.

NEXT FIELD field name Moves the screen cursor to field-name.

For example, this NEXT FIELD clause places the cursor in the previous field:

NEXT FIELD PREVIOUS

The following INPUT ARRAY statement includes a NEXT FIELD clause in an
ON KEY block. If the user presses CONTROL-B when the screen cursor is in the
stock_num or manu_code fields, 4GL sets quantity as the next field:

INPUT ARRAY p_items FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF
...

END INPUT

4GL immediately positions the screen cursor in the form when it encounters
the NEXT FIELD clause; it does not execute any statements that follow the
NEXT FIELD clause in the control block. For example, 4GL does not invoke the
qty_help() function in the next example:

ON KEY (CONTROL-B, F4)
IF INFIELD(stock_num) OR infield(manufact) THEN

CALL stock_help()
NEXT FIELD quantity
CALL qty_help() -- function is never called

END IF

You can use the NEXT FIELD clause in any INPUT ARRAY form management
block. The NEXT FIELD clause typically appears in a conditional statement. In
an AFTER INPUT clause, the NEXT FIELD statement must appear in a condi-
tional statement; otherwise, the user cannot exit from the form. To restrict
access to a field, use the NEXT FIELD statement in a BEFORE FIELD clause.

The following example demonstrates using the NEXT FIELD clause in an
ON KEY control block. 4GL executes the ON KEY block if the user presses
CONTROL-W.
3-168 INFORMIX-4GL Statements

INPUT ARRAY
If the cursor is in the city field, 4GL displays San Francisco in the city field
and CA in the state field, and then moves the cursor to the zipcode field.

ON KEY (CONTROL-W)
IF INFIELD(city) THEN

LET p_addr.city = "San Francisco"
DISPLAY p_addr.city TO city
LET p_addr.state = "CA"
DISPLAY p_addr.state TO state
NEXT FIELD zipcode

END IF

To wrap from the last field of a form to the first field of a form, use the NEXT
FIELD statement after an AFTER FIELD clause for the last field of the form.
(The INPUT WRAP option of the OPTIONS statement has the same effect.)

The CONTINUE INPUT Statement

The CONTINUE INPUT statement causes 4GL to skip all subsequent state-
ments in the current control block. The screen cursor returns to the most
recently occupied field in the current form.

The CONTINUE INPUT statement is useful when program control is nested
within multiple conditional statements, and you want to return control to the
user. It is also useful in an AFTER INPUT control block that examines the field
buffers; depending on their contents, you can return the cursor to the form.

The EXIT INPUT Statement

The EXIT INPUT statement terminates input. 4GL does the following:

• Skips all statements between the EXIT INPUT and END INPUT keywords.

• Deactivates the form.

• Resumes execution at the first statement after the END INPUT keywords.

4GL ignores any statements in an AFTER INPUT control block if the EXIT
INPUT ARRAY statement is executed.

The END INPUT Keywords

The END INPUT keywords indicate the end of the INPUT ARRAY statement.
These keywords should follow the last control block. If you do not include
any control blocks, then the END INPUT keywords are not required.
INFORMIX-4GL Statements 3-169

INPUT ARRAY
Using Built-In Functions and Operators

INPUT ARRAY supports various built-in functions and operators of 4GL.
(For more about the built-in 4GL functions and operators, see Chapter 4.) The
following features allow you to access field buffers and keystroke buffers:

Feature Description
FIELD_TOUCHED() Returns TRUE when the user has “touched” (made a change to)

a screen field whose name is passed as an operand. Moving the
screen cursor through a field (with the RETURN, TAB, or Arrow
keys) does not mark a field as touched. This operator also
ignores the effect of statements that appear in the BEFORE
INPUT control block. For example, you can assign values to
fields in the BEFORE INPUT control block without having the
fields marked as touched.

GET_FLDBUF() Returns the character values of the contents of one or more
fields in the currently active form.

FGL_LASTKEY() Returns an INTEGER value corresponding to the most recent
keystroke executed by the user while in the screen form.

INFIELD() Returns TRUE if the name of the field that is specified as its
operand is the name of the current field.

Each field has only one field buffer; two statements cannot use a buffer simul-
taneously. To display more than once the same form with data entry fields,
open a new 4GL window, and open and display a second copy of the form.
(4GL allocates a separate set of buffers to each form, so this avoids overwrit-
ting buffers when two or more concurrent statements accept input.)

The following statement uses the INFIELD() operator to determine if the cur-
sor is in the stock_num or manu_code fields. If the cursor is in one of these
fields, 4GL calls the stock_help() function and sets quantity as the next field:

INPUT ARRAY p_items FROM s_items.*
ON KEY (CONTROL-B)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN
CALL stock_help()
NEXT FIELD quantity

END IF

The INFIELD(field) expression returns TRUE if the current field is field and
FALSE otherwise. You can use this function to control field-dependent actions
when the user presses a specified key in the ON KEY control block. In the
3-170 INFORMIX-4GL Statements

INPUT ARRAY
following INPUT ARRAY statement, the BEFORE FIELD control block for the
city field displays a message identifying a key that the user can press to enter
the character string “San Francisco” into the field:

INPUT ARRAY pr_customer FROM sc_cust.* ATTRIBUTE(REVERSE)
BEFORE FIELD city

MESSAGE "Press CTRL-F for default city, San Francisco"
ON KEY (CONTROL-F)

IF INFIELD(city) THEN
LET p_customer.city = "San Francisco"
DISPLAY p_customer.city TO city
LET p_customer.state = "CA"
DISPLAY p_customer.state TO state
NEXT FIELD zipcode

END IF
END INPUT

If the user presses the CONTROL-F key while the cursor is in the city field, the
ON KEY clause in this example changes the screen display in three ways:

1. Displays the value San Francisco in the city field.

2. Displays CA in the state field.

3. Moves the cursor to the first character position in the zipcode field.

You can use the following built-in functions to keep track of the relative states
of the screen cursor, the program array, and the screen array:

Function Description

ARR_CURR() Returns the number of the current record of the program array. This
corresponds to the position of the screen cursor at the beginning of
the BEFORE or AFTER ROW control block, rather than the line to
which the screen cursor moves after execution of the block.

ARR_COUNT() Returns the current number of records in the program array.

SCR_LINE() Returns the number of the current line within the screen array. This
is the line containing the screen cursor at the beginning of the
BEFORE ROW or AFTER ROW control block, rather than the line to
which the screen cursor moves after execution of the block. This
number can be different from the value returned by ARR_CURR() if
the program array is larger than the screen array.

SET_COUNT() Takes the number of records currently in the program array as an
argument, and sets the initial value of ARR_COUNT().
INFORMIX-4GL Statements 3-171

INPUT ARRAY
Keyboard Interaction

The user of your 4GL application can use the keyboard to position the cursor
during an INPUT ARRAY statement, to scroll the screen array, and to edit data
in screen records.

By default, the user can move the cursor within a screen array and scroll the
displayed rows by clicking the Arrow, Page Up, or Page Down keys and the
F3 and F4 function keys. The following table describes these keys:

Key Effect

[→] Moves the cursor one space to the right inside a screen field without
erasing the current character. At the end of the field, 4GL moves the
cursor to the first character position of the next screen field. The [→]
is equivalent to the CONTROL-L editing key.

[←] Moves the cursor one character position to the left inside a screen field
without erasing the current character. At the end of the field, 4GL moves
the cursor to the first character position of the previous screen field. The
[←] is equivalent to the CONTROL-H editing key.

[↓] Moves the cursor to the same display field one line down on the screen.
If the cursor was on the last line of the screen array before [↓] was used,
4GL scrolls the program array data up one line. If the last program array
record is already on the last line of the screen array, [↓] generates a mes-
sage indicating that there are “no more rows in that direction.”

[↑] Moves the cursor to the same field one line up on the screen. If the cursor
were on the first line of the screen array, 4GL scrolls the program array
data down one line. If the first program array record is already on the first
screen array line, [↑] generates a message indicating that there are “no
more rows in that direction.”

F3 Scrolls the display to the next full page of program records. The NEXT KEY
clause of the OPTIONS statement can reset this key.

F4 Scrolls the display to the previous full page of program records. The
PREVIOUS KEY clause of the OPTIONS statement can reset this key.

Clearing Reserved Lines

When moving the cursor to a new field of an array, the INPUT ARRAY state-
ment clears the Comment line and the Error line. The Comment line displays
text defined with the COMMENTS attribute in the form specification file. The
Error line displays system error messages and ERROR statement text.
3-172 INFORMIX-4GL Statements

INPUT ARRAY
Inserting and Deleting Records from an Array

The user can insert and delete records within the screen arrays by using the
CONTROL-W key (the default Insert key) and F2 key (the default Delete key):

Key Effect

CONTROL-W Inserts a new blank screen record into the screen array at the line
below the cursor. Any displayed values in lower records move down
by one line, and the cursor moves to the beginning of the first field of
the new blank record. This key is not needed to insert rows at the end
of the screen array. If the user attempts to insert more rows than the
declared size of the program array, then 4GL displays a message that
the array is full. The OPTIONS statement can specify a different physi-
cal key as the Insert key.

F2 Deletes the current record from the screen array. 4GL adjusts any sub-
sequent rows to fill the gap. The OPTIONS statement can specify a dif-
ferent physical key as the Delete key.

Pressing the Accept key makes corresponding changes in the program array.
You can then use the arr_count() function to determine how many records
(possibly including blank records) remain in the program array after the user
has pressed the Insert or Delete keys and the Accept key.

See also the BEFORE DELETE (3-160), BEFORE INSERT (3-160), AFTER INSERT
(3-165) and AFTER DELETE (3-165) control blocks.

Editing Keys

Unless a field has the NOENTRY attribute, the user can press the following
keys during an INPUT ARRAY statement to edit values in a field:

Key Effect

CONTROL-A Toggles between insert and typeover mode.

CONTROL-D Deletes characters from the current cursor position to
the end of the field.

CONTROL-H Moves the cursor nondestructively one space to the left.
It is equivalent to pressing [←].

CONTROL-L Moves the cursor nondestructively one space to the right.
It is equivalent to pressing [→].

CONTROL-R Redisplays the screen.

CONTROL-X Deletes the character beneath the cursor.
INFORMIX-4GL Statements 3-173

INPUT ARRAY
Using Large Data Types

Within a field of a screen array, 4GL displays any value of a large data type
(BYTE or TEXT) in the following way:

Field Type Screen Display

TEXT As much of the TEXT data as can fit in the screen field.

BYTE The string <BYTE value> . 4GL cannot display the actual BYTE value in
a screen field.

If the form specification file assigns an appropriate attribute to a BYTE or
TEXT field, the user can invoke an external program by pressing the exclama-
tion (!) key when the cursor is in the field. This external program is typically
an editor that allows the user to edit large string (TEXT) or graphic (BYTE)
data. To implement this feature, specify the PROGRAM attribute as part of the
field description in the form specification file, identifying the external pro-
gram to execute. (For more information on using the PROGRAM attribute, see
the description of that field attribute in Chapter 5.)

The external program takes over the entire screen. Any key sequence that you
have specified in the ON KEY clause is ignored by the external program.
When the external program terminates, 4GL does the following:

1. Restores the screen to its state before the external program began.

2. Resumes the INPUT statement at the BYTE or TEXT field.

3. Reactivates any key sequences specified in the ON KEY clause.

Completing the INPUT ARRAY Statement

The following actions can terminate the INPUT ARRAY statement:

• The user presses one of the following keys:

o The Accept, Interrupt, or Quit key

o The RETURN or TAB key from the last field (and INPUT WRAP is not
currently set by the OPTIONS statement)

• 4GL executes the EXIT INPUT statement.

By default, the Accept, Interrupt, or Quit keys terminate the INPUT ARRAY
statement. Each of these actions also deactivates the form. (But pressing the
Interrupt or Quit key can immediately terminate the program, unless the
program also includes the DEFER INTERRUPT and DEFER QUIT statements.)
3-174 INFORMIX-4GL Statements

INPUT ARRAY
The user must press the Accept key explicitly to complete the INPUT ARRAY
statement under the following conditions:

• INPUT WRAP is specified in the OPTIONS statement.

• An AFTER FIELD block for the last field includes a NEXT FIELD clause.

If 4GL previously executed a DEFER INTERRUPT statement in the program, an
Interrupt signal causes 4GL to do the following:

• Set the global variable int_flag to a nonzero value.

• Terminate the INPUT ARRAY statement, but not the 4GL program.

If 4GL previously executed a DEFER QUIT statement in the program, a Quit
signal causes 4GL to do the following:

• Set the global variable quit_flag to a nonzero value.

• Terminate the INPUT ARRAY statement, but not the 4GL program.

Executing Control Blocks when INPUT ARRAY Terminates

When INPUT ARRAY terminates, control blocks are executed in this order:

1. The AFTER FIELD clause for the current field.

2. The AFTER ROW clause.

3. The AFTER INPUT clause.

If INPUT ARRAY is terminated by the EXIT INPUT keywords, or by pressing
the Interrupt or Quit keys, 4GL does not execute any of these clauses. If a
NEXT FIELD statement appears in one of these clauses, 4GL places the cursor
in the specified field and returns control to the user.

The INPUT ARRAY statement on the next page supports data entry into a
screen form.

The BEFORE FIELD clauses display messages telling the user what to enter in
the stock_num, manu_code, and quantity fields. The AFTER FIELD clauses
check that user entered values for the stock_num, manu_code, and quantity
fields. When the user enters item values for the stock_num and manu_code
fields, 4GL calls get_item() to display a description and price of the item.
When all three fields are specified, 4GL displays the total cost.
INFORMIX-4GL Statements 3-175

INPUT ARRAY
In this example, the BEFORE INSERT, AFTER INSERT, and AFTER DELETE
clauses call functions that ensure that the numbering of the items is accurate.
This is necessary because the user can press the Insert and Delete keys at run
time to insert and to delete items within the screen form.

CALL SET_COUNT(1)
INPUT ARRAY p_items FROM s_items.*

BEFORE FIELD stock_num
MESSAGE "Enter a stock number."

BEFORE FIELD manu_code
MESSAGE "Enter the code for a manufacturer."

BEFORE FIELD quantity
MESSAGE "Enter a quantity"

AFTER FIELD stock_num, manu_code
MESSAGE ""
LET pa_Curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL THEN
CALL get_item()
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

END IF
AFTER FIELD quantity

MESSAGE ""
LET pa_curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL
AND p_items[pa_curr].quantity IS NOT NULL THEN

CALL get_total()
END IF

BEFORE INSERT
CALL get_item_num()

AFTER INSERT
CALL renum_items()

AFTER DELETE
CALL renum_items()

END INPUT

References
DEFER, DISPLAY ARRAY, INPUT, OPEN WINDOW, OPTIONS, SCROLL
3-176 INFORMIX-4GL Statements

LABEL
LABEL
The LABEL statement defines a statement label, marking the next statement as
one to which the WHENEVER statement or the GOTO statement can transfer
program control.

label identifier is a statement label. A colon (:) follows the last character.

Usage
The LABEL statement indicates where to transfer control of program execu-
tion within the same program block. Upon executing a GOTO or WHENEVER
statement that references the label identifier, 4GL jumps to the statement imme-
diately following the LABEL statement, skipping any intervening statements.
(See also the GOTO statement, on page 3-122, for suggestions regarding the
use of GOTO and LABEL statements.)

The following restrictions apply to the LABEL statement:

• The label identifier must be unique among labels in its program block.

• To jump to a label, the GOTO or WHENEVER statement must use the same
label identifier as the LABEL statement above the desired statement.

• The GOTO and LABEL (or the WHENEVER and LABEL) statements must
both be in the same MAIN, FUNCTION, or REPORT program block.

The label identifier must follow the rules for 4GL identifiers, as described on
page 2-9. A colon (:) symbol must immediately follow the last character. You
may wish to declare a meaningful name to indicate something about the
purpose of the jump:

WHENEVER ERROR GO TO :l_error
...

LABEL l_error:
ERROR "Cannot complete processing."
ROLLBACK WORK

References
GOTO, WHENEVER

label identifier : LABEL
INFORMIX-4GL Statements 3-177

LET
LET
The LET statement assigns a value to a variable, or a set of values to a record.

array is the name of a variable of the ARRAY data type.

blob is the name of a variable of the BYTE or TEXT data type.

destination, are names, respectively, of a program record to be assigned
source values, and of a program record from which to copy values.

record is the name of a variable of the RECORD data type.

simple variable is the name of a variable of a simple data type (page 3-295),
or a simple member of a record, or element of an array.

Usage
The LET statement can assign a single value to a single variable, or it can
assign a set of values from a RECORD variable to an entire program record:

To execute a LET statement, 4GL evaluates the expression on the right of the
equal sign (=) and assigns the resulting value to the variable on the left.
For example, these statements create the SELECT statement for a PREPARE
statement. The backslash is used to embed a quote in a character string:

DEFINE sel_stmt CHAR(80)
LET sel_stmt = "SELECT * FROM customer WHERE lname MATCHES \"",

last_name CLIPPED, "\""
PREPARE s1 FROM sel_stmt

Receiving
Variable

,

Integer Expression
p. 3-338

[array]

,

3

simple variable

record .

 LET =

destination .* source .=

4GL Expression
p. 3-326

*

Receiving
Variable

blob

,

= NULL
3-178 INFORMIX-4GL Statements

LET
This example assigns a NULL value to a variable of the MONEY data type:

DEFINE total_price MONEY
LET total_price = NULL

You can use most of the 4GL built-in functions and character operators like
CLIPPED and USING within the LET statement. For example, these statements
use the ASCII operator to ring the terminal bell (= the ASCII value for 7):

DEFINE bell CHAR(1)
LET bell = ASCII 7
DISPLAY bell

You cannot assign individual values to an entire program record nor to a
program array. You cannot use the THRU or THROUGH notation (page 3-363)
in the LET statement, but you can assign all the values of one program record
to another program record of the same size by using the asterisk (*) notation:

LET x.* = y.*

This copies the value of each member of the y record to consecutive members
of the x record. The two records must have the same number of members,
and corresponding members must be of compatible data types (page 3-324).

To reference substrings of CHAR or VARCHAR variables, specify the starting
and ending character positions as integers. These substring positions must be
enclosed within brackets and separated by a comma, as in this example:

DEFINE full_name CHAR(20), first_name CHAR(10)
LET full_name[1,10] = new_first

For TEXT and BYTE variables, LET can assign only NULL values. The LET
statement cannot assign any other values to TEXT and BYTE variables. To
assign values to these variables, you can do one of the following:

• Use the INTO clause of the SELECT, FOREACH, OPEN, or FETCH statement.

• Pass the name of the variable as an argument to a function.
INFORMIX-4GL Statements 3-179

LET
4GL performs data type conversion on compatible data types (page 3-319).

References
GLOBALS, INITIALIZE

If NLS is active and you convert numeric or monetary values by using the
LET statement, the conversion process inserts locale-specific separators
and currency symbols into the created strings, not US English separators
and currency symbols. Monetary values take on separators and currency
symbols specified by LC_MONETARY. Numeric values take on separators
specified by LC_NUMERIC. This happens regardless of you including a
USING clause in the LET statement. However, if DBFORMAT or DBMONEY
is set, these settings override settings in LC_ variables.

NLS
3-180 INFORMIX-4GL Statements

LOAD
LOAD
The LOAD statement inserts data from an ASCII file into an existing table.

character is a quoted string, specifying a delimiter symbol.

column is the name of a column in table, in parentheses. If you omit the
list of column names, the default is all the columns of table.

delimiter is a CHAR or VARCHAR variable containing a symbol.

filename is the specification (within quotation marks) of a file that
contains the input data. This can include a pathname.

file variable is a CHAR or VARCHAR variable containing a filename.

insert variable is a CHAR or VARCHAR variable containing an INSERT clause.

table is the name of a table, synonym, or view in the current data-
base (as specified by a prior DATABASE statement in the same
module), or in a database specified in the table qualifier.

Usage
The LOAD statement must include an INSERT statement (either directly or in
a variable) to specify where to store the data. LOAD appends the new rows to
the specified table, synonym, or view. It does not overwrite existing data.
It cannot add a row that has the same key as an existing row. You cannot use
the PREPARE statement to preprocess a LOAD statement.

The user who executes the LOAD statement must have Insert privileges for
table. (For information on database-level and table-level privileges, see the
Informix Guide to SQL: Reference.)

,
INSERT INTO

column

insert
variable

LOAD FROM " filename"

table

INSERT
Clause

" character"DELIMITER

delimiter

(

file variable
INSERT
Clause

Table Qualifier
p. 3-361

)

INFORMIX-4GL Statements 3-181

LOAD
The Input File

The variable or string following the LOAD FROM keywords must specify the
name of a file of ASCII characters that represent the data to be inserted.

How data values in this input file should be represented by a character string
depends on the SQL data type of the receiving column in table:

Each set of data values in filename that represents a new row is called an input
record. The NEWLINE character must terminate each input record in filename.
Specify only values that 4GL can convert to the data type of the database
column. Inserted values are truncated from the right if they exceed the
declared length of the corresponding CHAR or VARCHAR column.

NULL values of any data type must be represented by consecutive delimiters
in the input file; you cannot include anything between the delimiter symbols.

Data Type Input Format

CHAR,
VARCHAR,
TEXT

Values can have more characters than the declared maximum length of
the column, but any extra characters are ignored. The backslash
(\) symbol is required before any literal backslash symbol or any
literal delimiter character, and before any NEWLINE character
anywhere in a VARCHAR value, or as the last character in a TEXT value.
Blank values can be represented as one or more blank characters
between delimiters, but leading blanks must not precede other CHAR,
VARCHAR, or TEXT values.

DATE Values must be in the format month/ day/ year (page 3-349) unless some
other format is specified by the DBDATE environment variable. You
must represent the month as a two-digit number. You can use a two-
digit number for the year if the year is in the range 1900 to 1999. Values
must be actual dates; for example, February 30 is illegal.

DATETIME,
INTERVAL

Values must be in numeric format year- month- day
hour: minute: second. fraction (as on page 3-351 and 3-355), without
DATETIME or INTERVAL keywords or qualifiers.
Time units outside the declared column precision can be omitted. The
DATETIME year must be a four-digit number; other units (except
fraction) require two digits.

MONEY Values can have leading currency symbols, but these are not required.

SERIAL Values can be represented as 0 to tell the database engine to supply a
new SERIAL value. You can specify a literal integer (page 3-340) greater
than zero, but if the column has a unique index, an error results if this
number duplicates an existing value.

BYTE Values must be in ASCII-hexadecimal form, without leading or trailing
blanks.
3-182 INFORMIX-4GL Statements

LOAD
This example shows two records in a hypothetical input file called nu_cus:

0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|Palo Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||Palo Alto|CA|94301|(415)323-6440

This nu_cus data file illustrates the following features of LOAD:

• The first data value in each record is zero (0), because the engine should
here supply a value for a SERIAL column in the row of the database table.

• The vertical (|) bar, the default delimiter, separates consecutive values.

• It uses adjacent delimiters to assign NULL values to the phone column in
the first record and to the address2 column for the second record.

The following LOAD statement inserts all the values from the nu_cus file into
a customer table that is owned by the user whose login is krystl:

LOAD FROM "nu_cus" INSERT INTO krystl.customer

Each input record must contain the same number of delimited data values.
If you do not include a list of columns in the INSERT clause, the sequence of
values in each input record must match the columns of table in number and
order. Each value must correspond to the literal format of the column data
type, or the format of a compatible data type (page 3-324).

A file created by the UNLOAD statement (page 3-274) can be used as input for
the LOAD statement, if its values are compatible with the schema of table.

The onload and dbload utilities give you more flexibility for the format of the
input file. See the INFORMIX-Online Dynamic Server Administrator’s Guide,
Version 6.0 for a description of onload or the INFORMIX-SE Administrator’s
Guide, Version 6.0 for a description of dbload.

The LOAD statement expects incoming data in the format specified by
environment variables DBFORMAT, DBMONEY, LC_NUMERIC,
LC_MONETARY, and DBDATE. The precedence of these format specifica-
tions is consistent with that of other output facilities (that is, forms and
reports). If there is an inconsistency, an error is reported and the LOAD is
cancelled. For more information, see Appendix E.

NLS
INFORMIX-4GL Statements 3-183

LOAD
The DELIMITER Clause

The DELIMITER clause specifies the ASCII symbol that must separate consec-
utive data values within each input record. The next statement, for example,
identifies the caret (^) symbol as the delimiter:

LOAD FROM "/a/data/ord.loadfile" DELIMITER "^"
INSERT INTO orders

If you omit this clause, the character specified by the DBDELIMITER environ-
ment variable is used. If the DBDELIMITER variable has not been set, the
default delimiter is the vertical bar (| = ASCII 124). See Informix Guide to SQL:
Reference for information about how to set the DBDELIMITER variable.

You cannot specify any of the following characters as the delimiter symbol:

• Hexadecimal numbers (0 through 9 , a through f , or A through F)

• NEWLINE or Control-J

• Backslash (\) symbol

The backslash (\) symbol serves as an escape character to indicate that the
next character is to be interpreted literally as part of the data, rather than as
a delimiter or record separator or escape character. If any character value in
the input file includes the delimiter or NEWLINE symbols without back-
slashes, the LOAD statement produces error -846; see Informix Error Messages,
Version 6.0.

Note: The UNLOAD statement automatically inserts a backslash (\) before literal
delimiter or NEWLINE symbols in character values. When the LOAD statement (or
the onload or dbload utility) inserts output from the UNLOAD statement into a
database table, then these escapist backslash symbols are automatically stripped.

The INSERT Clause

The INSERT clause specifies the table and columns in which to store the new
data. This clause supports a subset of the syntax of the INSERT statement,
which is described in the Informix Guide to SQL: Reference. You cannot, how-
ever, include the VALUES, SELECT, nor EXECUTE PROCEDURE clauses of the
INSERT statement within the INSERT clause of the LOAD statement. You must
specify explicit column names if either of these conditions is true:

• You are not inserting data into all of the columns of table.

• The input file does not match the default order of columns, as listed in the
syscolumns table of the system catalog.
3-184 INFORMIX-4GL Statements

LOAD
The following example identifies the price and discount columns as the only
columns into which to insert non-NULL data values:

LOAD FROM "/tmp/prices" DELIMITER ","
INSERT INTO maggie.worktab(price,discount)

If LOAD is executed within a transaction, the inserted rows are locked, and
they remain locked until the COMMIT WORK or ROLLBACK WORK statement
terminates the transaction. If no other user is accessing the table, you can
avoid locking limits and reduce locking overhead by locking the table with
the LOCK TABLE statement after the transaction begins. This exclusive table
lock is released when the transaction terminates. (Transactions, row locking,
and table locking are described in Informix Guide to SQL: Tutorial.)

Note: Consult the documentation of your database engine for details of the limit
on the number of locks available during a single transaction.

References
DATABASE, UNLOAD
INFORMIX-4GL Statements 3-185

LOCATE
LOCATE
The LOCATE statement specifies where to store a TEXT or BYTE value.

filename is the name of a file in which to store the TEXT or BYTE value. This
specification can include a pathname and file extension.

variable is the name of a CHAR or VARCHAR variable containing a filename
specification. (This can also be a CHAR or VARCHAR member of a
record, or element of an array, as illustrated on page 3-189.)

Usage
The TEXT or BYTE variable that stores a large binary value is also called a blob
(for binary large object). You must specify whether you want to store the value
of the variable in memory or in a file. You can access a value from memory
faster than from a file. If your program exceeds the available memory, how-
ever, 4GL automatically stores part of the blob value in a file. To use a blob
variable, your program must do the following:

1. Declare the variable with a DEFINE statement.

2. Use the LOCATE statement to specify the storage location. The LOCATE
statement must appear within the scope of reference of the variable.

The following topics are described in this section:

Topic Page
The List of Large Variables 3-187
The IN MEMORY Option 3-187
The IN FILE Option 3-188
Using a Temporary File 3-188
Specifying a Filename 3-189
Passing Large Variables to Functions 3-189
Freeing the Storage Allocated to a Large Variable 3-190

BYTE or TEXT
Variable List

p. 3-187 " filename"
IN MEMORY

FILE

variable

 LOCATE

,

3-186 INFORMIX-4GL Statements

LOCATE
The LOCATE statement must follow any DEFINE statement that declares TEXT
or BYTE variables, and it must appear in the same program block as a local
TEXT or BYTE variable. If you try to access a TEXT or BYTE value before ini-
tializing its variable with a LOCATE statement, 4GL generates a run-time
error.

The List of Large Variables

This comma-separated list specifies the large variable(s) to be initialized:

array is the name of a structured variable of the ARRAY data type.

first is the name of a large member variable to be initialized.

integer is a literal integer between 0 and the declared size of the array.

last is another member of record that was declared later than first.

record is the name of a structured variable of the RECORD data type.

variable is the name of a large variable of the TEXT or BYTE data type that
was declared in a previous DEFINE statement.

You can then use most 4GL statements to access the variable. The LET state-
ment can assign a NULL value to a TEXT or BYTE variable, but it cannot assign
non-NULL values. The INTO clause of the SELECT statement can assign to a
specified variable a TEXT or BYTE value from the database.

The IN MEMORY Option

Use the IN MEMORY option to allocate storage in memory for TEXT or BYTE
values. The following example declares the variable quarter as the same data
type as the database column analysis, and stores the variable in memory:

DEFINE quarter LIKE stock.analysis
LOCATE quarter IN MEMORY

. last

THRU

.first THROUGH record

array

,

.

record

variable

integer3

.*

[]

BYTE or TEXT
Variable List
INFORMIX-4GL Statements 3-187

LOCATE
If the TEXT or BYTE variable has already been stored in memory, then using
the LOCATE statement again reinitializes the variable.

If a TEXT or BYTE variable has been initialized to memory or to a temporary
file, you can use LOCATE to reinitialize the variable. You cannot reinitialize a
TEXT or BYTE variable that is stored in a named file.

The IN FILE Option

The IN FILE option stores the TEXT or BYTE values in a file. 4GL opens and
closes the file each time that you use the variable in an SQL or other 4GL state-
ment. When you retrieve a row containing a TEXT or BYTE column, the value
from the database column overwrites the current contents of the file. Simi-
larly, when you update a row, 4GL reads and stores the entire contents of the
file in the database column. As with storage in memory, the file contains only
the value most recently assigned to the variable. You have several options
with the IN FILE clause:

• Omit a filename, so that 4GL places the value in a temporary file.

• Specify a variable that contains the name of a file in which to store the
TEXT or BYTE value. The filename can include a pathname.

These options are described in the sections that follow.

Using a Temporary File

If you omit the filename, 4GL places the TEXT or BYTE value in a temporary
file. 4GL creates the temporary file at run time in the directory identified by
the DBTEMP environment variable. If DBTEMP is not set, 4GL puts the tempo-
rary files in the /tmp directory. If no temporary directory exists, a run-time
error occurs.

The following example omits the filename. It also shows that TEXT and BYTE
types can be declared as components of RECORD variables:

DEFINE stock RECORD
n INTEGER, analysis TEXT, graph BYTE

END RECORD
LOCATE stock.analysis IN FILE
LOCATE stock.graph IN FILE

If the TEXT or BYTE variable has already been located in a temporary file, then
using the LOCATE statement again reinitializes the variable.
3-188 INFORMIX-4GL Statements

LOCATE
You can specify multiple filenames by declaring an array of character variables.
This example stores an array of filenames in an array of TEXT variables:

DEFINE flnames ARRAY[10] OF char(20),
t_holds ARRAY[10] of TEXT
i INTEGER

FOR i = 1 TO 5
LET flnames[i] = "/u/db/profile", i, USING "<<&"
LOCATE t_holds[i] IN FILE flnames[i]

END FOR

Specifying a Filename

To place the TEXT or BYTE value in a specific file, the LOCATE statement can
include either a literal filename, or else a character variable that contains the
filename. This example uses a quoted string to specify the filename:

DEFINE analysis TEXT
LOCATE analysis IN FILE "/u/db/analysis"

The next example uses a CHAR variable to specify the filename:

DEFINE flname CHAR(20),t_hold TEXT
LET flname = "/tmp/TodaysReport"
LOCATE t_hold IN FILE flname

Passing Large Variables to Functions

If you specify a variable a variable in the argument list of a function or report,
4GL ordinarily passes it by value. The function or report can modify the
passed value without affecting the variable in the calling function.

4GL handles large binary objects (“blobs,” which are variables of the TEXT
and BYTE data types) differently. It passes blob variables by reference. This
means that if a function modifies a TEXT or BYTE variable, the change is
apparent to the variable in the calling routine. The CALL statement
(page 3-16) need not include a RETURNING clause for a TEXT or BYTE value.
INFORMIX-4GL Statements 3-189

LOCATE
Freeing the Storage Allocated to a Large Variable

If you no longer need a TEXT or BYTE variable, you can use the following
statements to release the memory that stored its value:

Statement Description

FREE If you stored the TEXT or BYTE variable in a file, you can reference the
variable in the FREE statement to delete the file. If you stored the TEXT or
BYTE variable in memory, the FREE statement releases all memory associ-
ated with the variable.

LOCATE The LOCATE statement for the same variable releases memory and
removes temporary files, but does not remove named files.

When it encounters the RETURN statement or the END FUNCTION, or END
REPORT keywords, 4GL frees any local TEXT or BYTE variables that are stored
in memory or in a temporary file. 4GL does not, however, de-allocate storage
for TEXT or BYTE variables that are passed by reference as arguments to a
function or to a report. Storage for such variables is de-allocated when EXIT
PROGRAM or END MAIN terminates the program. 4GL does not automatically
remove a named file that is associated with a TEXT or BYTE variable.

After you release the storage, you cannot access the TEXT or BYTE variable
without executing a new LOCATE statement to initialize it. If you have named
the file for the TEXT or BYTE value, and you want to retain the file, you should
not use the FREE statement. For information on the FREE statement, see the
Informix Guide to SQL: Reference.

References
DEFINE, EXIT, FUNCTION, GLOBALS, MAIN, INITIALIZE, REPORT, RETURN
3-190 INFORMIX-4GL Statements

MAIN
MAIN
The MAIN statement defines the MAIN program block.

statement is any SQL statement or other 4GL statement (but not FUNCTION,
GLOBALS, MAIN, REPORT, RETURN, nor the 4GL report execution
statements NEED, PAUSE, PRINT, and SKIP).

Usage
Every 4GL program must have exactly one MAIN statement. The MAIN state-
ment typically calls functions or reports to do the work of the application.
The following program fragment illustrates a program that calls functions
whose definitions appear in the same module as the MAIN statement:

MAIN
...
CALL get_states()
CALL ring_menu()
...

END MAIN

FUNCTION get_states()
...

END FUNCTION

FUNCTION ring_menu()
...

END FUNCTION

The MAIN statement cannot appear within another statement. It must be the
first program block of the module in which it appears, as in this example.

The END MAIN Keywords

The END MAIN keywords mark the end of the MAIN program block. The pro-
gram terminates when it encounters these keywords. If it encounters the EXIT
PROGRAM statement, however, the program terminates before END MAIN.

statement END MAIN

EXIT PROGRAM
DEFINE

Statement
p. 3-65 DEFER Statement

p. 3-62

DATABASE
Statement

p. 3-58

MAIN
INFORMIX-4GL Statements 3-191

MAIN
Variables Declared in the MAIN Statement

You can declare variables by including DEFINE statements within the MAIN
program block. Variables that you declare here are local to the MAIN block;
you cannot reference their names in any FUNCTION or REPORT definition.

If you include a DEFINE statement before the MAIN statement, however, and
outside of any FUNCTION or REPORT statement, its module variables are vis-
ible to subsequent statements in any other program block of the same source
module. The GLOBALS statement (page 3-117) can extend the visibility of a
module variable beyond the module where it is declared.

If you assign the same identifier to variables that differ in scope of reference,
then in any portion of your program where the scopes of their names overlap,
the following rules of precedence apply:

• A local variable has the highest precedence, so that within its scope,
no identical identifier of a global or module variable can be visible.

• Within the module in which it was declared, a module identifier takes
precedence over another with the same identifier whose scope has been
extended by the GLOBALS filename statement.

You should assign unique names to global and module variables that you
intend to reference within the MAIN program block.

DEFER and DATABASE Statements and the MAIN Program Block

DEFER statements (page 3-62) can appear only within the MAIN statement.

Any DATABASE statement that appears before the MAIN statement (but in
the same module) specifies the default database at compile time (page 3-59).
The same database also becomes the current database at run time (page 3-60),
unless another DATABASE statement specifies a different database.

Any DATABASE statement within the MAIN statement must follow the last
DEFINE declaration (page 3-65). The specified database becomes the current
database for subsequent SQL statements until the program ends, or until
another DATABASE statement is encountered.

References
CALL, DATABASE, DEFER, DEFINE, EXIT PROGRAM, FUNCTION, GLOBALS,
REPORT
3-192 INFORMIX-4GL Statements

MENU
MENU
The MENU statement creates and displays a ring menu. By using the key-
board, the user can choose menu options that execute blocks of statements.

title a quoted string that specifies a display label for the ring menu.

variable is a CHAR or VARCHAR variable containing a display label.

Usage
This statement specifies and displays a ring menu that occupies two lines
in the current 4GL window. The MENU statement can do the following:

• Create and display a screen menu, including a title of the menu.

• Define and display a list of menu options that the user can select.

• Specify a single-line description to display for each menu option.

• Designate Help message numbers for each menu option.

• Specify a block of 4GL statements to execute for each menu option.

When it encounters a MENU statement, 4GL performs these actions:

1. Displays in the current 4GL window the title and the options of the menu.

2. Moves the menu cursor to the first option, and displays its description.
(The order of options is determined by their order in the control blocks.
The menu cursor marks the current menu option with a double border.)

3. Waits for the user to press the activation key for a MENU control block,
or to terminate the MENU statement by pressing the Quit or Interrupt key.

4. If the user presses an activation key, 4GL executes the statements in the
corresponding control block, until it encounters one of these statements:

• EXIT MENU statement. 4GL then exits from the menu.

• CONTINUE MENU statement. 4GL skips any remaining statements in
the MENU control block, and redisplays the menu.

• Last statement in the MENU control block. 4GL redisplays the menu so
that the user can choose another option.

A menu can appear above or below a screen form, but not within a form.
4GL displays the menu title and the menu options on the Menu line. This

MENU END MENUMENU Control Block
p. 3-194

variable

" title"
INFORMIX-4GL Statements 3-193

MENU
reserved line is positioned by the most recent MENU LINE specification in the
OPTIONS or OPEN WINDOW statement. The default position is to the first line
of the current 4GL window.

Unless the title and at least one option can fit on the screen or in the current
4GL window, a run-time error occurs. For information on multiple-page
menus, and how the set of menu options act like a “ring” for the menu cursor,
see “Scrolling the Menu Options” on page 3-208.

The title of a menu is just a display label; you cannot reference a menu by
name. To repeat the same menu and all its behavior in different parts of a
program, you can include the MENU statement in a FUNCTION definition, so
that you can invoke the function when you want the menu to appear.
The following topics are described in this section:

Topic Page
The MENU Control Blocks 3-194
The BEFORE MENU Block 3-196
The COMMAND Clause 3-197
The HELP Clause 3-197
The KEY Clause 3-198
Invisible Menu Options 3-200
The CONTINUE MENU Statement 3-201
The EXIT MENU Statement 3-202
The NEXT OPTION Clause 3-203
The HIDE OPTION and SHOW OPTION Keywords 3-203
The END MENU Keywords 3-205
Identifiers in the MENU Statement 3-205
Choosing a Menu Option 3-206
Scrolling the Menu Options 3-208
Completing the MENU Statement 3-209

The MENU Control Blocks

Each control block includes a statement block of at least one statement, and an
activation clause that specifies when to execute the statement block. Any of
three types of activation clauses can appear within MENU control blocks:

• BEFORE MENU clause (to execute the block before the menu is displayed).

• COMMAND option clause (to specify the name and description of an option,
an optional activation key(s) to choose the option, and an optional Help
message code; execute the block when the user chooses the option).

• Hidden option clause (a COMMAND clause that only specifies activation
key(s) to execute a statement block if the key is pressed; no option name,
option description, nor Help message number is specified).
3-194 INFORMIX-4GL Statements

MENU
The statement block can specify SQL or other 4GL statements to execute when
a user presses a key sequence, as well as special MENU instructions:

• The next menu option to highlight with the menu cursor.

• Whether to suppress or restore the display of one or more menu options.

• Whether to exit from the MENU statement.

The activation clause and statement block correspond respectively to the
left-hand and right-hand syntax elements in the diagram that follows:

key is a letter, a literal symbol in quotation marks, or a keyword.
(Quotation marks are not required if key is a single letter of the
alphabet.) This list of up to four (4) activation keys must be
enclosed in parentheses; see “The KEY Clause” on page 3-198.

number is an integer that identifies the Help message for this menu
option. You must have used the OPTIONS statement previously
to identify the Help file containing the message.

option
description

is a quoted string or the name of a CHAR or VARCHAR variable
that contains an option description for the Menu help line.

option
name

is a quoted string or the name of a CHAR or VARCHAR variable
that contains the name of the menu option. This cannot be
longer than the width of the current 4GL window.

statement is an SQL statement or other 4GL statement.

The screen displays a ring menu of option names as menu options. The menu
options appear in the order in which you specify them in COMMAND clauses
of the MENU statement. You must include at least one option (that is, one

statement

HIDE

SHOW OPTION

ALL

option
name

,

CONTINUE MENU

EXIT MENU

NEXT OPTION option nameCOMMAND Block

BEFORE MENU

MENU Control
Block

,

)keyKEY (
3 HELP

number

option name
option

description

COMMAND

COMMAND Block
INFORMIX-4GL Statements 3-195

MENU
COMMAND clause) for each menu. Within the MENU control block that
includes the COMMAND clause, you can include statements that perform the
activity that is described by the menu option and its description.

The option description appears on the line below the menu when the option
is current. The string length must not be longer than the width of the screen
or 4GL window. See also “Identifiers in the MENU Statement” on page 3-205.

The BEFORE MENU Block

Before displaying the menu, 4GL executes any statements in the statement
block that follows the optional BEFORE MENU keywords. Use statements in
this control block to perform preliminary tasks, such as the following:

• Specifying values for variables used for the menu name, the names
of options, and the strings containing descriptions of options.

• Hiding or showing individual menu options.

• Checking user access privileges.

If 4GL encounters the EXIT MENU statement here, no menu is displayed.

The following program fragment includes statements that specify the name
of the menu, the name of an option, and the option description at run time:

DEFINE menu_name, opt_name CHAR(20)
opt_desc CHAR(40), priv_flag SMALLINT

LET menu_name = "SEARCH"
LET opt_name = "Query"
LET opt_desc = "Query for customers."
IF ...

LET priv_flag = 1
END IF
MENU menu-name

BEFORE MENU
IF priv_flag THEN

LET menu_name = "POWER SEARCH"
LET opt_name = "Power Query"

END IF
COMMAND opt_name opt_desc HELP 12

IF priv_flag THEN
CALL cust_find(1)

ELSE
CALL cust_find(2)

END IF
...

END MENU
3-196 INFORMIX-4GL Statements

MENU
The COMMAND Clause

The COMMAND clause can define a menu option that appear after the menu
title in the Menu line, as well as its description that appear in the following
line when the menu cursor is on the option. It has the following syntax:

For definitions of these terms, see “The MENU Control Blocks” on
page 3-194.

Each COMMAND clause is part of a MENU control block whose statements
perform the activity described by the option description. If you want to nest
menus, you can include another MENU statement. The MENU control blocks
may be easier to read if you use function calls to group statements.

The COMMAND clause can optionally include a HELP clause to associate a
Help message number with the menu option. It can also include a KEY clause,
to specify up to four activation key(s) that the user can press to choose the
option; otherwise, 4GL recognizes default activation keys, as the next page
describes.

The HELP Clause

The HELP clause specifies the number of a Help message to display for the
menu option. 4GL displays the Help message when the menu option is
highlighted and the user presses the Help key. The default Help key is
CONTROL-W. You can use the OPTIONS statement to assign a different Help
key.

COMMAND

)key

,

KEY

option
name

option
description

COMMAND Clause

HELP number
3

(

INFORMIX-4GL Statements 3-197

MENU
The following MENU statement specifies different Help message numbers for
each of two menu options:

MENU "MAIN"
COMMAND "Customer" "Enter and maintain customer data"

HELP 101
CALL customer()
CALL ring_menu()

COMMAND "Orders" "Enter and maintain orders" HELP 102
CALL orders()
CALL ring_menu()

...
END MENU

You can create Help messages (and their numbers) in an ASCII file whose file-
name you specify in the HELP FILE clause of the OPTIONS statement. Use the
mkmessage utility to create a run-time version of the Help file. A run-time
error occurs if the Help file cannot be opened, or if you specify a Help num-
ber that does not occur in the Help file, or that is greater than 32,767.

The KEY Clause

The KEY clause in a MENU control block specifies activation keys that users can
press to choose the option (if an option name is specified) and to execute the
statements in the MENU control block. If you omit the KEY clause, the first
character in option name is the default activation key to choose the option.

If a user chooses the option, 4GL executes the statements in the MENU control
block that includes the COMMAND clause. If EXIT MENU is not among these
statements, 4GL redisplays the menu, so the user can choose another option.

This MENU statement, for example, creates a menu entitled TOP LEVEL that
displays five options. The default activation keys are a, f , c , d, and e:

MENU "TOP LEVEL"
COMMAND "Add" "Add a row to the database."

...
COMMAND "Find" "Find a row in the database."

...
COMMAND "Change" "Update a row in the database."

...
COMMAND "Delete" "Delete a row from the database."

...
COMMAND "Exit" "Return to the operating system."

EXIT MENU
END MENU
3-198 INFORMIX-4GL Statements

MENU
This MENU statement produces the following initial display:

TOP LEVEL: Add Find Change Delete Exit
Add a row to the database

One option is always marked as the current option. This option is marked by
a double border, called the menu cursor.

The line under the menu options (the Menu help line) displays a description
of the menu option, as specified in the COMMAND clause for that menu
option. If the menu cursor moves to another option, the display in this line
changes, unless you specify the same description for both menu options.

4GL executes the statements in the MENU control block if the user presses an
activation key that you specify by key specification in the KEY clause:

• Letters. (Both upper and lowercase letters are valid, but 4GL does not
distinguish between them.)

• Symbols (such as !, @, or #) enclosed between quotation marks.

• Any of the following keywords (in uppercase or lowercase characters):

DOWN INTERRUPT RETURN or ENTER TAB
ESC or ESCAPE LEFT RIGHT UP
F1 through F64
CONTROL-char (except A, D, H, I, J, L, M, R, or X)

The following keys deserve special consideration before you assign them as
activation keys in the KEY clause of a MENU statement:

Key Special Considerations

ESC or ESCAPE You must use the OPTIONS statement to specify another key as the
Accept key, because this is the default Accept key.

INTERRUPT You must include a DEFER INTERRUPT statement. When the user
presses the Interrupt key under these conditions, 4GL executes the
statements in the MENU control block and sets int_flag to nonzero,
but does not terminate the MENU statement. 4GL also executes the
statements in the control block if DEFER QUIT has been executed
and the user presses the Quit key. In this case, 4GL sets quit_flag to
non-zero.
INFORMIX-4GL Statements 3-199

MENU
CONTROL-char

A, D, H,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The usual meanings of these keys (TAB, LINEFEED, and RETURN,
respectively) are lost to the user. Instead, the key is trapped by 4GL
and used to trigger the menu option. For example, if CONTROL-M
appears in the KEY clause, the user cannot press RETURN to
advance the cursor to the next field.

The key must be unique among all the KEY clauses of the MENU statement.
You may not be able to specify other keys that have special meaning to your
operating system.

Invisible Menu Options

You can add an invisible option (an option that is never displayed) to a menu
by including a KEY clause in the COMMAND clause of the MENU control
block, but not specifying an option name nor an option description.

The key cannot be the activation key of any other COMMAND clause. If you
specify a letter here as the activation key, this must be different from the first
character of any option of the same menu.

COMMAND ()key

,

KEY
3-200 INFORMIX-4GL Statements

MENU
The following MENU statement creates a menu named TOP LEVEL with six
options, of which only five appear in the menu display. The exclamation (!)
key chooses an invisible option that is not displayed on the menu. Here a
description and a Help number are associated with each visible option:

MENU "TOP LEVEL"
COMMAND "Add" "Add a row to the database" HELP 12

...
COMMAND "Find" "Find a row in the database" HELP 13

...
COMMAND "Change" "Update a row in the database" HELP 14

...
COMMAND "Delete" "Delete a row from the database" HELP 15

...
COMMAND KEY ("!")

CALL bang()
...

COMMAND "Exit" "Return to operating system" HELP 16
EXIT PROGRAM

END MENU

These statements produce the following menu display:

TOP LEVEL: Add Find Change Delete Exit
Add a row to the database

The CONTINUE MENU Statement

The CONTINUE MENU statement causes 4GL to ignore the remaining state-
ments in the current MENU control block, and redisplay the menu. The user
can then choose another menu option, as in the following program fragment.
INFORMIX-4GL Statements 3-201

MENU
In the next example, the Yearly Report option first cautions the user that
a report takes several hours to create. If the user types Y to create the report,
then 4GL calls the calc_yearly() function. Otherwise, 4GL executes the
CONTINUE MENU statement and redisplays the YEAR END menu:

MENU "YEAR END"
COMMAND "Yearly Report" "Compile Yearly Statistics Report"

PROMPT "This report takes several hours to create." ,
"Do you want to continue? (y/n)" FOR answer

IF answer MATCHES "[Yy]" THEN
CALL calc_yearly()

ELSE
CONTINUE MENU

...
END MENU

The EXIT MENU Statement

The EXIT MENU statement terminates the MENU statement without executing
any remaining statements in the menu control blocks. Use this statement at
any point where you want the user to leave the menu instead of redisplaying
it. You must specify this statement for at least one menu option in each 4GL
menu. Otherwise, the user will have no way to leave the menu. If it encoun-
ters the EXIT MENU statement, 4GL takes the following actions:

• Skips all statements between the EXIT MENU and END MENU keywords.

• Deactivates and erases the menu.

• Resumes execution at the first statement after the END MENU keywords.

The following example demonstrates using the EXIT MENU keywords in the
MENU block of a menu option named Exit:

MENU "CUSTOMER"
...
COMMAND "Exit" "leave the CUSTOMER menu." HELP 5

EXIT MENU
END MENU

(To exit from the current MENU control block without exiting from the MENU
statement, use the CONTINUE MENU keywords, rather than EXIT MENU.)
3-202 INFORMIX-4GL Statements

MENU
The NEXT OPTION Clause

When 4GL finishes executing the statements in a control block that includes a
COMMAND clause, the option just executed remains as the current option. If
you want a different option to be the current option, use the NEXT OPTION
keywords. The NEXT OPTION clause identifies the name of a menu option to
make current. This clause does not choose the next menu option; rather, it
identifies the next menu option that will be highlighted as the current option.
The user can simply press RETURN to choose the current option.

In the following MENU statement, if the user selects the Query option, 4GL
calls the function query_data(), and redisplays the menu with Modify as the
current option. To choose the Modify option, the user presses RETURN.

MENU "CUSTOMER"
COMMAND "Query" "Search for a customer"

CALL query_data()
NEXT OPTION "Modify"

...
COMMAND "Modify" "Modify a customer"

...
END MENU

If you want the cursor to move among menu options in a certain order, list
their defining COMMAND clauses in the desired order. Use the NEXT OPTION
keywords only if you want to deviate from the default left-to-right order of
the ring menu. 4GL does not execute any of the statements that follow a NEXT
OPTION clause within a MENU control block.

The HIDE OPTION and SHOW OPTION Keywords

Use the HIDE OPTION keywords to conceal some menu options from users.
4GL does not display a hidden option in the menu, and does not recognize as
valid any keystroke that would otherwise select the option (if it were visible).
Such options remain hidden and disabled, until 4GL executes a SHOW
OPTION clause that references their command value.
INFORMIX-4GL Statements 3-203

MENU
The following MENU statement creates a menu with seven options. The
Long_menu option shows all options; the Short_menu options shows only
the Query, Long_menu, and Exit options:

MENU "Order Management"
COMMAND "Query" "Search for orders"

CALL get_orders()
COMMAND "Add" "Add a new order"

CALL add_order()
COMMAND "Update" "Update the current order"

CALL upd_order()
COMMAND "Delete" "Delete the current order"

CALL del_order()
COMMAND "Long_menu" "Display all menu options"

SHOW OPTION ALL
COMMAND "Short_menu" "Display a short menu"

HIDE OPTION ALL
SHOW OPTION "Query", "Long_menu", "Exit"

COMMAND "Exit" "Exit from the Order Management Form"
EXIT MENU

END MENU

If you specify the options to hide by listing them in character variables, you
must assign values to the variables before you can include the variables in a
HIDE OPTION clause. (See page 3-205 for more information about variables.)

The ALL keyword in a SHOW OPTION or HIDE OPTION clause specifies all of
the menu options that you created in any COMMAND clause.

Use the SHOW OPTION keywords to restore a list of menu options that the
HIDE OPTION keywords disabled. By default, 4GL displays all menu options.
You only need to use this statement if you have previously specified the HIDE
OPTIONS keywords to disable at least one menu option.

4GL displays menu options in the same order that their COMMAND clauses
defined them. The order in which a SHOW OPTION clause lists options has no
effect on the order of their subsequent appearance in the menu. (3-212 at the
end of this section illustrates the SHOW OPTION and HIDE OPTION clauses of
MENU control blocks.)

Note: Do not confuse “hidden options” with “invisible options.” Neither appears on
the menu, but hidden options cannot be accessed by the user until after they have been
enabled by the SHOW OPTION keywords. Invisible options have an activation key,
but no command name. Their statement blocks can be accessed by pressing an acti-
vation key, but they do not appear in the menu. The HIDE OPTION and SHOW
OPTION keywords cannot affect invisible options, since (as their name suggests),
3-204 INFORMIX-4GL Statements

MENU
invisible options are never visible in the menu. You must use some other approach
to enable and disable invisible options; for example, you might specify their actions
within a conditional statement.

Nested MENU Statements

You can nest MENU statements within MENU control blocks, so that the
menus form a “tree” hierarchy. Nested MENU statements can appear either
directly in a statement block, or in 4GL functions that are called directly or
indirectly when the user chooses options of the enclosing menu.

The END MENU Keywords

Use the END MENU keywords to indicate the end of the MENU statement. The
END MENU keywords must follow the last statement in the last MENU control
block. These keywords are required in every MENU statement. If you are
nesting menus within menus, you must include a separate set of END MENU
keywords to mark the end of each MENU statement construct.

If 4GL encounters the EXIT MENU statement within any MENU control block,
control of execution is immediately transferred to the first statement that fol-
lows the END MENU keywords. (To terminate the current MENU control
block without exiting from the MENU statement, use the CONTINUE MENU
keywords, rather than END MENU or EXIT MENU.)

Identifiers in the MENU Statement

You can specify a character variable for the following:

• The menu title

• The option name

• The option description

• The NEXT OPTION option name

• The SHOW OPTION or HIDE OPTION option name

Assignment statements can appear before 4GL executes the MENU statement
or within the MENU statement. You can specify variable values in the BEFORE
MENU block and in one or more of the subsequent MENU control blocks.
Make sure, however, that a variable has a value before you include it in the
MENU statement.
INFORMIX-4GL Statements 3-205

MENU
Keep the following in mind if you change the value of a variable that was
used as the menu title or as an option name in a MENU statement:

• 4GL determines the length of the menu title and of each option name
when it first displays the menu. This length does not change during the
MENU statement. If you subsequently assign a new value to a variable,
4GL displays as much of the new value as can fit in the existing space. For
example, suppose that you assign the string Short_Menu (10 characters)
to a variable, and later specify that variable as a menu title.
If a subsequent statement in a control block of the same MENU statement
assigns the new value Very_Long_Menu (14 characters) to the variable,
4GL displays only the first ten characters of the new title.

Similarly, if a second MENU control block assigns the value Menu (four
characters) to the variable that you specified as the menu title, 4GL dis-
plays the new title with six trailing blank spaces. For examples of using a
variable as a menu title, an option name, and an option description in the
MENU statement, see the program fragment in the section “Completing
the MENU Statement” on page 3-209.)

• If you use an array element (for example, p_array[i]) as a variable in a
MENU statement, be aware that 4GL calculates the value of the index vari-
able only once, before it first displays the menu. To index into the array,
4GL uses the value of the index variable after executing the BEFORE MENU
block (if that block is included). Any subsequent changes to the index
variable made in subsequent MENU control blocks do not affect the way
that 4GL evaluates the array element variable.

4GL produces a run-time error if the length of a variable or quoted string that
specifies a menu name, an option name, or an option description exceeds the
width of the current 4GL window.

Choosing a Menu Option

The user can choose a menu option in any of the following ways:

• Using the Arrow keys to position the menu cursor on the option and
pressing RETURN. (See also the section“Scrolling the Menu Options” on
page 3-208.)

• Typing a key sequence that the KEY clause associated with the option.

• Typing the first letter or letters of the option name (regardless of whether
the option is currently displayed on the screen).
3-206 INFORMIX-4GL Statements

MENU
When the user types a letter, 4GL looks for a unique match among options:

• If only one option begins with the letter, or only one option is associated
in a KEY clause with the letter, the choice is unambiguous. 4GL executes
the commands associated with the option.

• If more than one option begins with the same letter, 4GL clears the second
line of the menu and prompts the user to clarify the choice. 4GL displays
each keystroke, followed by the names of the menu options that begin
with the typed letters. When 4GL identifies a unique option, it closes this
prompt line and executes the statements associated with the selected
menu option.

For example, the next menu includes three options that begin with the letters
Ma. The following screen is displayed when the user types the letter M:

Resorts: Oxnard Malaysia Malta Manteca Pittsburgh Portugal Exit
Select: M Malay Malta Manteca

When the user types the letters Mal , 4GL drops Manteca from the list and
displays the two remaining options:

Resorts: Oxnard Malaysia Malta Manteca Pittsburgh Portugal Exit
Select: Mal Malay Malta

At this point, the user can type an a to select Malay or a t to select Malta.

The Arrow keys have no effect when choosing among menu options that
begin with the same letters. BACKSPACE deletes the keystroke to the left of
the cursor.
INFORMIX-4GL Statements 3-207

MENU
Scrolling the Menu Options

When 4GL displays a menu, it adds a colon (:) and a blank space after the
menu name, and a space before and after each menu option. If the width of
the menu exceeds the number of characters that the screen or a 4GL window
can display on a single line, 4GL displays the first “page” of options followed
by an ellipsis (...) symbol. This indicate that additional options exist.For
example, the following menu displays an ellipsis (...) symbol:

menu-name: menu-option1 menu-option2 menu-option3 menu-option4 ...
optional Help line

If the user presses SPACEBAR or [→] to move past the rightmost option
(menu-option4 in this case), 4GL displays the next page of menu options.

In the following example, the ellipses at both ends of the menu indicate that
more menu options exist in both directions:

menu-name: ... menu-option5 menu-option6 menu-option7 menu-option8 ...
optional Help line

If the user moves the highlight to the right past menu-option8 in this exam-
ple, 4GL displays a page of menu options like the following:
3-208 INFORMIX-4GL Statements

MENU
menu-name: ... menu-option9 menu-option6 menu-option10 menu-option11 ...
optional Help line

The following keys can move through a menu:

Key Effect

[→],
SPACEBAR

Moves the menu cursor to the next option. If the menu displays an ellip-
sis (. . .) on the right, pressing [→] from the right-most option displays
the next page of menu options. If the last menu option is current and
no ellipsis is on the right, [→] returns to the first option in the first page
of menu options.

[←] Moves the cursor to the previous option. If the menu displays an ellipsis
(. . .) on the left, pressing [←] from the leftmost option displays the
previous page of menu options. If the first menu option is current and
no ellipsis is on the left, pressing [←] returns to the last option on the
last page of menu options.

[↑] Moves the cursor to the first option on the previous menu page.

[↓] Moves the cursor to the first option on the next page of menu options.

During interactive statements like INPUT, CONSTRUCT, or INPUT ARRAY,
errors would be likely to result if the user could interrupt the interaction with
menu choices. 4GL prevents this by disabling the entire menu during the exe-
cution of these statements. The menu does not change its appearance when
it is disabled.

Completing the MENU Statement

Any of the following actions can terminate the MENU statement:

• The user chooses the Interrupt key.

• 4GL encounters the EXIT MENU statement.
INFORMIX-4GL Statements 3-209

MENU
By default, the Interrupt key terminates program execution immediately.
Unlike CONSTRUCT, DISPLAY ARRAY, and INPUT statements, the MENU
statement is not terminated by the Interrupt key if 4GL has executed the
DEFER INTERRUPT statement. In these cases, an Interrupt signal causes 4GL
to do the following:

• Set the global variable int_flag to a non-zero value.

• Remain in the MENU statement until EXIT MENU is encountered.

The EXIT MENU statement is typically included in a MENU control block that
is activated when the user chooses an Exit or Quit option, as in the next
example. If menus are nested, EXIT MENU terminates only the current MENU
statement, passing control to the innermost enclosing MENU statement.

In the following program fragment, the MENU statement uses variables for
the menu name, for a command name, and for an option description:

DEFINE menu_name, command_name CHAR(10),
option_desc CHAR(30),
priv_flag SMALLINT

LET menu_name = "NOVICE"
LET command_name = "Expert"
LET option_desc = "Display all menu options."

IF ... THEN
LET priv_flag = 1

END IF

MENU menu_name
BEFORE MENU

HIDE OPTION ALL
IF priv_flag THEN -- expert user

LET menu_name = "EXPERT"
LET command_name = "Novice"
LET option_desc = "Display a short menu."
SHOW OPTION ALL

ELSE -- novice user
SHOW OPTION "Query", "Detail", "Exit", command_name

END IF

COMMAND "Query" "Search for rows." HELP 100
CALL get_cust()

COMMAND "Add" "Add a new row." HELP 101
CALL add_cust()

COMMAND "Update" "Update the current row." HELP 102
CALL upd_cust()
NEXT OPTION "Query"
3-210 INFORMIX-4GL Statements

MENU
COMMAND "Delete" "Delete the current row." HELP 103
CALL del_cust()
NEXT OPTION "Query"

COMMAND "Detail" "Get details." HELP 104
CALL det_ord()
NEXT OPTION "Query"

COMMAND command_name option_desc HELP 105
IF priv_flag THEN -- EXPERT menu visible

LET menu_name = "NOVICE"
LET command_name = "Expert"
LET option_desc = "Display all menu options."
HIDE OPTION ALL
SHOW OPTION "Query", "Detail", "Exit", command_name
LET priv_flag = 0

ELSE -- NOVICE menu visible
LET menu_name = "EXPERT"
LET command_name = "Novice"
LET option_desc = "Display a short menu."
SHOW OPTION ALL
LET priv_flag = 1

END IF
COMMAND KEY ("!")

CALL bang()
COMMAND "Exit" "Leave the program." HELP 106

EXIT MENU
END MENU

These statements produce two menus. This is the “expert” menu:

EXPERT: Query Add Update Delete Detail Novice Exit
Search for rows.
INFORMIX-4GL Statements 3-211

MENU
This is the simpler “novice” menu:

EXPERT: Query Detail Expert Exit
Search for rows.

References
CONTINUE, DEFER, OPEN WINDOW, OPTIONS
3-212 INFORMIX-4GL Statements

MESSAGE
MESSAGE
The MESSAGE statement displays a character string on the Message line.

string is a quoted string that contains message text.

variable is a CHAR or VARCHAR variable that contains message text.

Usage
You can specify any combination of variables and strings for the message
text. 4GL generates the message to display by replacing any variables with
their values and concatenating the strings. If the length of the message text
exceeds the width of the screen or 4GL window, the text is truncated to fit.

The Message Line

4GL displays message text in the Message line. 4GL positions this reserved
line according to default or explicit Message line specification for the pro-
gram or for the current 4GL window, in this order of descending precedence:

1. A MESSAGE LINE specification in the most recent OPTIONS statement.

2. A MESSAGE LINE specified in the most recent OPEN WINDOW statement.

3. The default Message line, or the second line of the current 4GL window.

The message remains on the screen until you display a menu or another mes-
sage. To clear the Message line, you can display a blank message, like this:

MESSAGE " "

You can include the CLIPPED and USING operators in a MESSAGE statement.
For example, the following MESSAGE statement uses the CLIPPED operator to
remove any trailing blanks from the string in the variable file_name:

DEFINE file_name CHAR(20)
...
MESSAGE "Printing mailing labels to", file_name CLIPPED,

" -- Please wait"

MESSAGE

ATTRIBUTE
Clause
p. 3-290

" string"

variable

,

INFORMIX-4GL Statements 3-213

MESSAGE
You can also use the ASCII and COLUMN operators. For information on using
the 4GL built-in functions and operators, see Chapter 4.

If you position the Message line so that it coincides with the Comment line,
Menu line, or fields of a form, then output from the MESSAGE statement is not
visible. For example:

DATABASE stores
MAIN

DEFINE p_customer RECORD LIKE customer.*
OPEN WINDOW r1 AT 4,1 WITH FORM "platonic"

ATTRIBUTE (MESSAGE LINE LAST)
MESSAGE "This is a word to the wise."
INPUT BY NAME p_customer.*
CLOSE WINDOW r1

END MAIN

This program does not display the text of the MESSAGE statement, because
the default position of the Comment line is also the last line. If the ATTRIBUTE
clause of the OPEN WINDOW statement in the same example were revised to
specify

ATTRIBUTE (MESSAGE LINE LAST, COMMENT LINE FIRST)

so that there is no conflict between those reserved lines, then the message text
will appear when the MESSAGE statement is executed. The sections “Posi-
tioning Reserved Lines” (page 3-225 and 3-231) describe the syntax of the
OPEN WINDOW and OPTIONS statements to position these reserved lines.

The ATTRIBUTE Clause

For general information about the syntax and use of the ATTRIBUTE clause,
see page 3-290. This section describes specific information about using the
ATTRIBUTE clause within a MESSAGE statement.

The default display attribute for the Message line is the NORMAL display.
You can use the ATTRIBUTE clause to alter the default display attribute of the
Message line. For example, the following statement changes the display
attribute of the message text to reverse video:

MESSAGE “Please enter a value “ ATTRIBUTE (REVERSE)

4GL ignores the INVISIBLE attribute if you include it in the ATTRIBUTE clause
of the MESSAGE statement.
3-214 INFORMIX-4GL Statements

MESSAGE
You can refer to substrings of CHAR, VARCHAR, and TEXT type variables
by following the variable name with a pair of integers to indicate the starting
and ending position of the substring, enclosed between brackets ([]) and
separated by a comma (,) symbol. For example, the following MESSAGE
statement displays a 10-character substring of the full_name variable:

MESSAGE "Customer ", full_name[11,20]
CLIPPED, " added to the database"

Statements in the next program fragment perform the following tasks:

1. Uses a MESSAGE statement to clear the Message line of any text.

2. Clears all the fields of the current form.

3. Uses a PROMPT statement to instruct the user to type a name.

4. Assigns the value of the entered string to the variable last_name.

5. Uses another MESSAGE statement to indicate to the user that the program
is retrieving rows.

6. Clears the second message after a 3-second delay.

MESSAGE ""
CLEAR FORM
PROMPT "Enter a last name:" FOR last_name
MESSAGE "Selecting rows for customer with last name ",

last_name, ". . ." ATTRIBUTE (YELLOW)
SLEEP 3
MESSAGE ""

References
DISPLAY, ERROR, OPEN WINDOW, OPTIONS, PROMPT
INFORMIX-4GL Statements 3-215

NEED
NEED
NEED is a conditional statement to control output from the PRINT statement.
(The NEED statement can appear only in a REPORT program block.)

lines is an integer expression (page 3-338) that specifies how many lines
must remain in the current page between the line above the current
character position and the bottom margin.

Usage
The NEED statement causes subsequent report output from the PRINT state-
ment to start on the next page of the report, if fewer than the specified num-
ber of available lines remain between the current line of the page and the
bottom margin. NEED has the effect of a conditional SKIP TO TOP OF PAGE,
the condition being that the number returned by the integer expression must
be greater than the number of lines that remain on the current page.

The NEED statement can prevent INFORMIX-4GL from separating parts of the
report that you want to keep together on a single page. In the following
example, the NEED statement causes the PRINT statement to send output to
the next page, unless at lease six lines remain on the current page:

AFTER GROUP OF r.order_num
NEED 6 LINES
PRINT " ",r.order_date, 7 SPACES,

GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

NEED does not include the BOTTOM MARGIN value in calculating the lines
available. If the number of lines remaining above the bottom margin on the
page is less than lines, then both the PAGE TRAILER and the PAGE HEADER
are printed before the next PRINT statement is executed. You cannot include
the NEED statement in the PAGE HEADER nor PAGE TRAILER control blocks.

References
PAUSE, PRINT, REPORT, SKIP

NEED lines LINES
3-216 INFORMIX-4GL Statements

OPEN FORM
OPEN FORM
The OPEN FORM statement declares the name of a compiled 4GL form.

filename is a quoted string that specifies the name of a file that contains the
compiled screen form. This can also include a pathname.

form is a 4GL identifier that you assign here as the name of the form.

Usage
To display a form, you can follow these steps:

1. Create a form specification file. (This file should have a .per extension.)

2. Compile the form by using the Compile option of the Form menu in the
Programmer’s Environment or by using the form4gl command. (The
compiled form file has .frm as its file extension.)

3. Declare the form name by using the OPEN FORM statement.

4. Display the form by using the DISPLAY FORM statement.

Once 4GL displays the form, you can activate the form by executing the
CONSTRUCT, DISPLAY ARRAY, INPUT, or INPUT ARRAY statements.

When it executes the OPEN FORM statement, 4GL loads the compiled form
into memory. (The CLOSE FORM statement is a memory-management feature
to recover memory from forms that 4GL no longer displays on the screen.)

The Form Name

The form name need not match the name of the form specification file, but it
must be unique among form names in the program. Its scope of reference is
the entire program. page 2-9 describes the rules for 4GL identifiers.

Specifying a Filename

The quoted string that follows the FROM keyword must specify the name of
the file that contains the compiled screen form. This filename can include a
pathname. You can omit or include the .frm extension:

OPEN FORM frmofmor FROM "/fomr/fmro.frm"

OPEN FORM form FROM " filename"
INFORMIX-4GL Statements 3-217

OPEN FORM
Displaying a Form in a 4GL Window

To position the form in a 4GL window, precede the OPEN FORM statement
with the OPEN WINDOW statement. The following program fragment opens
the w_cust1 window, opens and displays the o_cust form in that 4GL
window, and calls the cust_order() function. When the function returns, the
CLOSE WINDOW statement closes both the form and the 4GL window:

MAIN
OPEN WINDOW w_cust1 AT 10,15

WITH 11 ROWS, 63 COLUMNS
ATTRIBUTE (BORDER)

OPEN FORM o_cust FROM "custorder"
DISPLAY FORM o_cust
CALL cust_order()
CLOSE WINDOW w_cust1

END MAIN

If you execute an OPEN FORM statement with the name of an open form, 4GL
first closes the existing form before opening the new form.

The WITH FORM keywords of OPEN FORM both open and display a form in
a 4GL window. You do not need to execute the OPEN FORM, DISPLAY FORM,
and CLOSE FORM statements if you use the OPEN WINDOW statement to dis-
play the form. You also do not need to use the CLOSE FORM statement to
release the memory allocated to the form. Instead, you can use the CLOSE
WINDOW statement to close both the form and the 4GL window, and to
release the memory. For example, the following statements open 4GL win-
dow w_cust2, call function cust_order(), and then close the 4GL window:

OPEN WINDOW w_cust2 AT 10,15 WITH FORM "custorder"
CALL cust_order()
CLOSE WINDOW w_cust2

References
CLEAR, CLOSE FORM, CLOSE WINDOW, CURRENT WINDOW,
OPEN WINDOW, OPTIONS
3-218 INFORMIX-4GL Statements

OPEN WINDOW
OPEN WINDOW
The OPEN WINDOW statement declares and opens a 4GL window.

filename is a quoted string that specifies the file containing a compiled 4GL
form. This can include a drive, pathname, and file extension.

height is an integer expression (page 3-338) to specify the height, in lines.

left-offset is an integer expression to specify the left margin, in characters,
where 0 = the left edge of the 4GL screen.

top-line is an integer expression to specify the position of the top line of the
4GL window, where 0 = the top of the 4GL screen.

variable is a CHAR or VARCHAR variable that specifies the filename.

width is an integer expression to specify the width, in characters.

window is a name that you declare here for the 4GL window to be opened.

Usage
A 4GL window is a rectangular area in the 4GL screen that can display a form,
a menu, or output from the DISPLAY, MESSAGE, or PROMPT statements. Note
that the term “4GL window” is distinct from other windows, such as the Help
window. (That is, the 4GL screen can display one or more 4GL windows.) An
OPEN WINDOW statement can have the following effects:

• Declares a name for the 4GL window.

• Specifies the position of the 4GL window on the 4GL screen.

• Defines the dimensions of the 4GL window, in lines and characters.

• Specifies the display attributes of the 4GL window.

The window identifier must follow the rules for 4GL identifiers (page 2-9) and
be unique among 4GL windows in the program. Its scope is the entire pro-
gram. You can use this identifier to reference the same 4GL window in other
statements (for example, CLEAR, CURRENT WINDOW, and CLOSE WINDOW).

OPEN
WINDOW

ATTRIBUTE
Clause
p. 3-222

OPEN WINDOW window AT top-line , left-offset WITH

FORM

variable

height ROWS , width COLUMNS

" filename"
INFORMIX-4GL Statements 3-219

OPEN WINDOW
The following topics are described in this section:

Topic Page
The 4GL Window Stack 3-220
The AT Clause 3-220
The WITH ROWS, COLUMNS Clause 3-221
The WITH FORM Clause 3-221
The OPEN WINDOW ATTRIBUTE Clause 3-222
The Color and Intensity Attributes 3-224
The BORDER Attribute 3-224
Positioning Reserved Lines 3-225

The 4GL Window Stack

INFORMIX-4GL maintains a window stack of all open 4GL windows. If you exe-
cute OPEN WINDOW to open a new 4GL window, 4GL does the following:

• Saves any changes made to the current 4GL window.

• Adds the new 4GL window to the window stack.

• Makes the new 4GL window the current 4GL window.

Other statements that can modify the window stack are CURRENT WINDOW
(page 3-56) and CLOSE WINDOW (page 3-30).

The AT Clause

The AT clause specifies the location of the top left corner of the 4GL window.
The location is relative to the entire 4GL screen, and independent of any other
4GL windows. You must specify these coordinates as expressions that return
positive integers within the following ranges:

• The first expression must return an integer between 1 and (max - lines), for
max the maximum number of lines in the 4GL screen, and lines the ROWS
specification (page 3-221). The 4GL window begins on this line.

• The second expression must return a whole number between 1 and
(length - characters), where length is the maximum number of characters
that the 4GL screen can display on one line, and characters is the COLUMNS
specification (page 3-221). This is the left margin.

A comma separates the two expressions in the AT clause. For example, the
following statement opens a 4GL window with the top left corner at the third
line and the fifth character position of the 4GL screen:

OPEN WINDOW o1 AT LENGTH("Mom"), 5 WITH 10 ROWS, 40 COLUMNS
3-220 INFORMIX-4GL Statements

OPEN WINDOW
The WITH ROWS, COLUMNS Clause

The WITH lines ROWS, characters COLUMNS clause specifies explicit vertical
and horizontal dimensions for the 4GL window.

• The expression at the left of the ROWS keyword specifies the height of the
4GL window, in lines. This must be an integer between 1 and max, for max
the maximum number of lines that the 4GL screen can display.

• The integer expression after the comma at the left of the COLUMNS key-
word specifies the width of the 4GL window, in characters. This must
return a whole number between 1 and length, for length the number of
characters that your monitor can display on one line.

This statement opens a 4GL window 5 lines high and 74 characters wide:

OPEN WINDOW w2 AT 10, 12 WITH 5 ROWS, 74 COLUMNS

In addition to the lines needed for a form, allow room for reserved lines:

• The Comment line. (By default, this is the last line of the 4GL window.)

• The Form line (By default, this is line 3 of the 4GL window.)

• The Error line. (By default, this is the last line of the 4GL screen, not of the
4GL window).

4GL issues a run-time error if the 4GL window does not include sufficient
lines in to display both the form and these additional reserved lines.
To reduce the number of lines required by 4GL, you can define the Form line
as line one or two, and change other reserved lines accordingly, such as the
Prompt and Menu lines. For information on how to make these changes, see
the section “The OPEN WINDOW ATTRIBUTE Clause” on page 3-222.

The minimum number of lines required to display a form in a 4GL window
is the number of lines in the form, plus an additional line below the form for
prompts, messages, and comments.

The WITH FORM Clause

As an alternative to specifying explicit dimensions, the WITH FORM clause
can specify a quoted string or a character variable that specifies the name of
a file that contains the compiled screen form. You can omit or include the .frm
file extension. 4GL automatically opens a 4GL window sized to the screen lay-
out (page 5-14) of the form, and displays the form.

If you include a WITH FORM clause, the width of the 4GL window is from the
left-most character on the screen form (including leading blank spaces) to the
right-most character on the screen form (truncating trailing blank spaces).
INFORMIX-4GL Statements 3-221

OPEN WINDOW
The length of the 4GL window is the following sum:

(form line) + (form length)

Here form line is the reserved line position on which to display the first line of
the form (by default, line 3) and form length is the number of lines in the screen
layout of the SCREEN section of the form specification file. 4GL adds one line
for the Comment line. Unless you specify FORM LINE in an ATTRIBUTE clause
or in the OPTIONS statement, the default value of this sum is form length + 2.
(For more information on screen layouts in 4GL forms, see page 5-12.)

For example, the following statement opens a 4GL window called w1 and
positions its top left corner at the fifth row and fifth column of the 4GL screen.
The WITH FORM clause opens and displays the custform form in this 4GL
window. If custform were 10 lines long and the FORM LINE option were the
default value (3), the height of w1 would be (10 + 3) = 13 lines:

OPEN WINDOW w1 AT 5, 5 WITH FORM “custform”

The WITH FORM clause is convenient if the 4GL window always displays the
same form. If you use this clause, you do not need the OPEN FORM, DISPLAY
FORM, nor CLOSE FORM statements to open and close the form:

• The OPEN WINDOW WITH FORM statement opens and displays the form.

• The CLOSE WINDOW statement closes the 4GL window and the form.

You cannot use the WITH FORM clause in the following cases:

• To display more than one form in the same 4GL window.

• To display a 4GL window larger than the default dimensions that 4GL
supplies (as described above) when it executes the WITH FORM clause.

In these cases, you must specify explicit dimensions by using the WITH lines
ROWS, characters COLUMNS clause. You must also execute the OPEN FORM,
DISPLAY FORM, and CLOSE FORM statements to open, display, and close the
form or forms explicitly. (You typically are not required to use the CLOSE
FORM statement, which affects memory management, rather than the visual
interface of your program.)

The OPEN WINDOW ATTRIBUTE Clause

Use the OPEN WINDOW ATTRIBUTE clause to do the following:

• Specify a border for the 4GL window.

• Display the 4GL window in reverse video or in a color.

• Reposition the Prompt, Message, Menu, Form, and Comment lines.
3-222 INFORMIX-4GL Statements

OPEN WINDOW
The OPEN WINDOW ATTRIBUTE clause has the following syntax:

The color attributes are listed in the left-hand portion of the diagram. Besides
these, you can also specify INVISIBLE as a color, but this specification has no
effect in the OPEN WINDOW ATTRIBUTE clause. Without this clause, the
attributes and reserved line positions have the following default values:

Attribute Default Setting
color The default foreground color on your terminal
REVERSE No reverse video
BORDER No border
PROMPT LINE line valuee FIRST (=1)
MESSAGE LINE line value FIRST + 1 (=2)
MENU LINE line value FIRST (=1)
FORM LINE line value FIRST + 2 (=3)
COMMENT LINE line value LAST - 1 (for the 4GL screen)

LAST (for all other 4GL windows)

For more information on valid reserved line values, see page 3-225. For more
information about color and intensity attributes, see page 3-290.

If you specify a color or the REVERSE attribute in the ATTRIBUTE clause of
an OPEN WINDOW statement, it becomes the default attribute for displays in
the 4GL window, except for menus. You can override this default by specify-
ing a different attribute in the ATTRIBUTE clause of the CONSTRUCT, DIS-
PLAY, DISPLAY ARRAY, DISPLAY FORM, INPUT or INPUT ARRAY statement.

BORDER

ATTRIBUTE ()

YELLOW

MAGENTA

RED

CYAN

GREEN

BLUE

BLACK

PROMPT LINE

MESSAGE LINE

MENU LINE

FORM LINE

COMMENT LINE

REVERSE

,

Reserved
Line

Position
p. 3-225

DIM

NORMAL

BOLD

OPEN WINDOW
ATTRIBUTE Clause

WHITE
INFORMIX-4GL Statements 3-223

OPEN WINDOW

)

The Color and Intensity Attributes

Display attributes can be classified as color and intensity (or monochrome)
attributes. The color attributes (page 3-222) override the default foreground
color on your teminal. On monochrome monitors, all color attributes except
BLACK are displayed as WHITE.

4GL displays the intensity attributes as follows on color monitors:

Attribute Displayed As
NORMAL WHITE
BOLD RED
DIM BLUE

For example, if you have a color monitor, the 4GL window specified in the
following statement is displayed with the BLUE attribute:

OPEN WINDOW w2 AT 10, 12 WITH 5 ROWS, 40 COLUMNS ATTRIBUTE (BLUE)

On a monochrome display, the BLUE attribute produces a white 4GL window.

The REVERSE Attribute

Use the REVERSE attribute to display the foreground of the 4GL window in
reverse video (sometimes called “inverse video”). The following statement
assigns the BLUE and REVERSE attributes to the w2 window:

OPEN WINDOW w2 AT 10, 12 WITH 5 ROWS, 40 COLUMNS
ATTRIBUTE (BLUE,REVERSE)

The BORDER Attribute

The BORDER attribute draws a border outside the specified 4GL window. The
border requires two lines on the screen (one above and another below the
window) and two character positions (one to the left and one to the right of
the window). Make sure to account for this space when you specify coordi-
nates in the AT clause. For example, the following statement opens a 4GL win-
dow and displays a border around it:

OPEN WINDOW w1 AT 10,10 WITH 5 ROWS, 30 COLUMNS ATTRIBUTE (BORDER
3-224 INFORMIX-4GL Statements

OPEN WINDOW
The following diagram indicates the coordinates of the border enclosing the
5x30 4GL window that was specified in the preceding example:

Note that the coordinates of the top left corner of the window border are 9, 9.
The 4GL window itself starts at 10, 10.

4GL draws the window with the characters defined in the termcap or ter-
minfo files. You can specify alternative characters in these files. Otherwise,
4GL uses the hyphen (-) for horizontal lines, the vertical bar (|) for vertical
lines, and the plus sign (+) for corners. Some termcap or terminfo files have
settings that require additional row and columns to display windows. For
more information, see Appendix F.

If a window and its border exceed the physical limits of the screen, a run-time
error occurs.

See also the built-in FGL_DRAWBOX() function that displays rectangles
(page 4-56).

Positioning Reserved Lines

The Reserved Line Position segment has the following syntax:

(9,9) (9,40)

(15,9) (15,40)

+------------------------------+
| |
| |
| |
| |
| |
+------------------------------+

FIRST

+

-

Reserved Line
Position

integer

LAST
INFORMIX-4GL Statements 3-225

OPEN WINDOW
Line values specified in the OPTIONS ATTRIBUTE clause (page 3-231) of the
most recently executed OPTIONS statement can position the Form, Prompt,
Menu, Message, Comment, and Error lines. If no line positions are specified
in the OPTIONS ATTRIBUTE nor OPEN WINDOW ATTRIBUTE clause, then the
4GL window uses the following default positions for its reserved lines:

Default Location Reserved for
First line Prompt line (output from PROMPT statement); also

Menu line (command value from MENU statement)
Second line Message line (output from MESSAGE statement; also

the description value output from MENU statement)
Third line Form line (output from DISPLAY FORM statement)

Last line Comment line in any 4GL window except SCREEN

These positional values are relative to the first or last line of the 4GL window,
rather than to the 4GL screen. (The Error line is always the last line of the 4GL
screen.) When you open a new 4GL window, however, the OPEN WINDOW
ATTRIBUTE clause can override these defaults for every reserved line (except
the Error line). This disables the OPTIONS statement reserved line specifica-
tions only for the specified 4GL window.

Except for the cases that are described in notes that follow, the position that
you specify for the reserved lines of 4GL can be any of the following:

• FIRST

• FIRST + integer

• integer

• LAST - integer

• LAST

Here integer is a literal or variable that returns a positive whole number,
such that the LINE specification is no greater than the number of lines in
the 4GL window. This is true for all reserved lines except the following:

• The Menu line: do not specify LAST.

A menu requires two lines. The menu title and commands appear on the
Menu line, and command description appears on the next line. To display a
menu at the bottom of a 4GL window, specify MENU LINE LAST - 1.

• The Form line: do not specify LAST nor LAST - integer.
3-226 INFORMIX-4GL Statements

OPEN WINDOW
Here FIRST is the first line of the 4GL window (line 1), and LAST is the last line.
The following statement sets three reserved line positions:

OPEN WINDOW wcust AT 3,6 WITH 10 ROWS, 50 COLUMNS
ATTRIBUTE (MESSAGE LINE 20,

PROMPT LINE LAST-2,
FORM LINE FIRST)

If a 4GL window is not large enough to contain the specified value for one or
more of these reserved lines, 4GL increases its line value to FIRST or decreases
it to LAST, whichever may be appropriate.

If the 4GL window is not wide enough to display all the text that you specify,
4GL truncates the message. You can use these features to display text:

• PROMPT statement

• MESSAGE statement

• DISPLAY statement

• COMMENTS attribute of a screen form

Because the position of the Error line is relative to the 4GL screen, rather than
to the current 4GL window, the ATTRIBUTE clause of an OPEN WINDOW state-
ment cannot change the location of the Error line. Use the OPTIONS statement
(page 3-229) to change the position of the Error line.

Because the INPUT statement clears both the Comment line and the Error line
when moving between fields, it is not a good idea to set the Message or
Prompt line to any of the following:

• The last line of the 4GL window. (This is the default Comment line.)

• The last line of the 4GL screen. (This is the default Error line.)

To use these lines for messages or prompts, be sure to redefine the Comment
and Error lines too.

References
CLEAR, CLOSE FORM, CLOSE WINDOW, CURRENT WINDOW, DISPLAY,
MESSAGE, OPEN FORM, OPTIONS, PROMPT
INFORMIX-4GL Statements 3-227

OPTIONS
OPTIONS
The OPTIONS statement specifies default features of form-related statements
and other 4GL screen interaction statements.

filename is a quoted string that specifies the name of a file that contains the
compiled Help messages. This can also include a pathname.

key is a keyword to specify a physical or logical key (page 3-234).

number is a literal integer (page 3-340) to specify a line number.

Usage
The OPTIONS statements sets defaults for screen-interaction statements.

,

PROMPT

MESSAGE

MENU

FORM

COMMENT

ERROR

OPTIONS

INPUT WRAP

ACCEPT

HELP

DISPLAY

FIELD ORDER

CONSTRAINED

UNCONSTRAINED

PREVIOUS

INSERT

NEXT

FIRST

LAST

+

-

LINE

NO WRAP

OPTIONS
ATTRIBUTE

Clause
p. 3-233

number

DELETE

ATTRIBUTE

SQL INTERRUPT

ON

OFF

KEY key

FILE " filename"
3-228 INFORMIX-4GL Statements

OPTIONS
The following topics are described in sections that follow:

Topic Page
Features Controlled by OPTIONS Clauses 3-229
Positioning Reserved Lines 3-231
Cursor Movement in Interactive Statements 3-232
The OPTIONS ATTRIBUTE Clause 3-233
The HELP FILE Option 3-234
Assigning Logical Keys 3-234
Interrupting SQL Statements 3-235

Features Controlled by OPTIONS Clauses

A program can include several OPTIONS statements. If these conflict in their
specifications, the OPTIONS statement most recently encountered at run-time
prevails. OPTIONS can specify various features of form-related statements,
including CONSTRUCT, DISPLAY, DISPLAY ARRAY, DISPLAY FORM, ERROR,
INPUT, INPUT ARRAY, MESSAGE, OPEN FORM, OPEN WINDOW, and PROMPT:

• Positions of the reserved lines of 4GL

• Input and display attributes

• Logical key assignments

• The name of the Help file

• Whether SQL statements can be interrupted

• Field traversal constraints

If you omit the OPTIONS statement, 4GL uses defaults that are described here:

Clause Effect

COMMENT LINE Specifies the position of the Comment line. This displays mes-
sages defined with the COMMENT attribute in the form specifi-
cation file. The default is (LAST - 1) for the 4GL screen, and LAST
for all other 4GL windows.

ERROR LINE Specifies the position in the 4GL screen of the Error line that dis-
plays text from the ERROR statement. The default is the LAST
line of the 4GL screen.

FORM LINE Specifies the position of the first line of a form. The default is
(FIRST + 2), or line 3 of the current 4GL window.

MENU LINE Specifies the position of the Menu line. This displays the menu
name and options, as defined by the MENU statement. The
default is the FIRST line of the 4GL window.
INFORMIX-4GL Statements 3-229

OPTIONS
MESSAGE LINE Specifies the position of the Message line. This reserved line
displays the text listed in the MESSAGE statement. The default is
(FIRST + 1), or line 2 of the current 4GL window.

PROMPT LINE Specifies the position of the Prompt line, to display text from
PROMPT statements. The default value is the FIRST line of the
4GL window.

ACCEPT KEY Specifies the key to terminate an CONSTRUCT, INPUT, INPUT
ARRAY, or DISPLAY ARRAY. Default is ESCAPE.

DELETE KEY Specifies the key in INPUT ARRAY statements to delete a screen
record. The default Delete key is F2.

INSERT KEY Specifies the key to open a screen record for data entry in INPUT
ARRAY. The default Insert key is F1.

NEXT KEY Specifies the key to scroll to the next page of a program array of
records in an INPUT ARRAY or DISPLAY ARRAY statement. The
default Next key is F3.

PREVIOUS KEY Specifies the key to scroll to the previous page of program
records in an INPUT ARRAY or DISPLAY ARRAY statement. The
default Previous key is F4.

HELP KEY Specifies the key to display Help messages. The default Help
key is CONTROL-W.

HELP FILE Specifies the file (produced by the mkmessage utility) contain-
ing programmer-defined Help messages.

DISPLAY
ATTRIBUTE

Specifies default attributes to use during DISPLAY or DISPLAY
ARRAY statement when none are specified by those statements
or in the form specification file.

INPUT
ATTRIBUTE

Specifies the attributes to use during a CONSTRUCT or INPUT
statement when no attributes are specified by those statements
or in the form specification file.

INPUT NO WRAP Specifies that the cursor does not “wrap.” An INPUT or
CONSTRUCT statement terminates when a user presses RETURN
after the last field. This is the default value.

INPUT WRAP Specifies that the cursor “wraps” between the last and first input
fields during INPUT, INPUT ARRAY, or CONSTRUCT statements,
until the user presses the Accept key. Pressing RETURN at the
last field does not deactivate the form.

FIELD ORDER
CONSTRAINED

Specifies that the Up arrow key moves the cursor to the previous
field and the Down arrow key moves the cursor to the next field
when users enter values for CONSTRUCT or INPUT statements.

FIELD ORDER
UNCONSTRAINED

Specifies that the Up arrow key moves the cursor to the field
above the current position and the Down arrow key moves the
cursor to the field below the current cursor position when users
enter values for CONSTRUCT or INPUT statements.
3-230 INFORMIX-4GL Statements

OPTIONS
SQL INTERRUPT ON Specifies that the user can interrupt SQL statements as well
as 4GL statements.

SQL INTERRUPT OFF Specifies that the user cannot interrupt SQL statements.

Positioning Reserved Lines

Except for the cases that are described below, the position that you specify for
each reserved line of 4GL can be any of the following:

• FIRST

• FIRST + integer

• integer

• LAST - integer

• LAST
Here integer is a variable or a literal that returns a positive whole number,
such that the LINE specification is no greater than the number of lines in
the 4GL window or 4GL screen, except for these reserved lines:

• The Form line: do not specify LAST nor LAST - integer.

• The Menu line: do not specify LAST. A ring menu requires two lines.
The menu title and commands appear on the Menu line, and the command
description appears on the following line. If you want a menu to appear at
the bottom of a 4GL window, specify MENU LINE LAST - 1.

FIRST is the top line of the current 4GL window (line 1), and LAST is the last
line. For example, the following statement sets three reserved line positions:

OPTIONS MENU LINE 20, PROMPT LINE LAST-2, FORM LINE FIRST

If a 4GL window is not large enough to contain the specified value for one or
more of these reserved lines, 4GL automatically increases its line value to
FIRST or decreases it to LAST, as appropriate.

The line position for the Error line is relative to the 4GL screen, rather than to
the current 4GL window. The line value of any other reserved line is relative
to the first line of the current 4GL window (or to the 4GL screen, if that is the
current 4GL window). If the 4GL window is not wide enough to display all
the message text that you specify, then 4GL truncates the message. You can
use these features of 4GL to display message text:

• PROMPT statement

• MESSAGE statement

• DISPLAY statement

• ERROR statement
INFORMIX-4GL Statements 3-231

OPTIONS
• COMMENTS attribute of a form specification file

Because the INPUT statement clears both the Comment line and the Error line
when the cursor moves between fields, it is not a good idea to set the Message
line or the Prompt line to either of the following positions:

• The last line of the current 4GL window; this is the default Comment line.

• The last line of the 4GL screen; this is the default Error line.

Default line positions set by OPTIONS remain in effect until another OPTIONS
statement redefines them. They can also be reset by the ATTRIBUTE clause of
the OPEN WINDOW statement (page 3-225), but only for the specified 4GL
window; after it closes, the reserved line positions are restored to their values
from the most recently executed OPTIONS statement.

Cursor Movement in Interactive Statements

The TAB order in which the screen cursor visits fields of a form is that of the
field list of currently executing CONSTRUCT, INPUT, or INPUT ARRAY state-
ments, except as modified by NEXT FIELD clause. By default, the interactive
statement terminates if the user presses the RETURN key in the last field (or
if entered data fills the last field, if that field has the AUTONEXT attribute).

The INPUT WRAP keywords change this, causing the cursor to move from the
last field to the first, repeating the sequence of fields until the user presses the
Accept key. The INPUT NO WRAP option restores the default cursor behavior.

Specify FIELD ORDER UNCONSTRAINED to cause the Up and Down arrow
keys to move the cursor to the field above or below, respectively. Use the
FIELD ORDER CONSTRAINED option to restore the default behavior of the
Up and Down arrow keys moving the cursor to the previous or next field,
respectively.
3-232 INFORMIX-4GL Statements

OPTIONS
The OPTIONS ATTRIBUTE Clause

This section describes the OPTIONS ATTRIBUTE clause. It explains the FORM
keyword and WINDOW keyword in detail. For generic information about the
ATTRIBUTE clause, see page 3-290.

This clause can specify features for input statements (CONSTRUCT, INPUT,
and INPUT ARRAY) and for display statements (DISPLAY and DISPLAY
ARRAY):

• The attributes of the foreground of the 4GL window.

• Whether to use input attributes of the current form or 4GL window.

• Whether to use display attributes of the current form or 4GL window.

If this clause conflicts with another attribute specification, 4GL applies the
precedence rules that are listed on page 3-292. Any attribute defined by the
OPTIONS statement remains in effect until 4GL encounters an ATTRIBUTES
clause that redefines the same attribute in one of the following statements:

• CONSTRUCT, INPUT, INPUT ARRAY, DISPLAY, or DISPLAY ARRAY

• Another OPTIONS statement

• An OPEN WINDOW statement

An ATTRIBUTE clause of an OPEN WINDOW, CONSTRUCT, INPUT, DISPLAY,
or DISPLAY ARRAY statement only temporarily redefines the attributes. After
the 4GL window closes (in the case of an OPEN WINDOW statement) or after
the statement terminates (in the case of an input or display statement), 4GL
restores the attributes from the most recent OPTIONS statement.

OPTIONS ATTRIBUTE
Clause

REVERSE

BLINK

UNDERLINE

,

ATTRIBUTE ()

WHITE

YELLOW

MAGENTA

RED

CYAN

GREEN

BLUE

BLACK

BOLD

DIM

FORM

WINDOW

INVISIBLE

NORMAL
INFORMIX-4GL Statements 3-233

OPTIONS
The FORM keyword in INPUT ATTRIBUTE or DISPLAY ATTRIBUTE clauses
instructs 4GL to use the input or display attributes of the current form. For
example, this uses the display attributes from the form specification file:

OPTIONS DISPLAY ATTRIBUTE (FORM)

Similarly, you can use the WINDOW keyword of the same options to instruct
4GL to use the input or display attributes of the current 4GL window. You can-
not combine the FORM or WINDOW attributes with any other attributes.

The HELP FILE Option

The HELP FILE clause specifies an expression that returns the filename of a
Help file. This filename can also include a pathname.

Messages in this file can be referenced by number in form-related statements,
and are displayed at run time when the user chooses the Help key. (The
mkmessage utility for Help files is described in Appendix B.)

Assigning Logical Keys

The OPTIONS statement can specify physical keys to support 4GL logical key
functions in the current task. You can specify the following keywords in
uppercase or lowercase characters for key name:

DOWN NEXT or NEXTPAGE TAB
ESC or ESCAPE PREVIOUS or PREVPAGE UP
INTERRUPT RETURN or ENTER
LEFT RIGHT

F1 through F64

CONTROL-char (for char any letter except A, D, H, I, J, L, M, R, or X)

For example, this statement redefines the Next Page and Previous Page keys:

OPTIONS NEXT KEY CONTROL-N, PREVIOUS KEY CONTROL-P

The keyword NEXTPAGE is a synonym for NEXT in 4GL statements (like CON-
STRUCT, DISPLAY ARRAY, INPUT, MENU, OPTIONS, and PROMPT) that refer-
ence the Next Page key. Similarly, the keyword PREVPAGE is a synonym for
PREVIOUS in statements that reference the Previous Page key.

The following table lists keys that require special consideration before you
assign them in an OPTIONS statement:
3-234 INFORMIX-4GL Statements

OPTIONS
Key Special Considerations

ESC or ESCAPE You must specify another key as the Accept key because ESCAPE is
the default Accept key. Reassign the Accept key in the OPTIONS
statement.

INTERRUPT You must first execute a DEFER INTERRUPT statement. When the
user presses the Interrupt key under these conditions, 4GL exe-
cutes the statements in the ON KEY block and sets the global vari-
able int_flag to nonzero, but does not terminate the current
statement. 4GL also executes the ON KEY statement block if the
DEFER QUIT statement has executed and the user presses the Quit
key. In this case, 4GL sets the quit_flag variable for the current task
to non-zero.

CONTROL-char

A, D, H,
L, R, and X

4GL reserves these control keys for field editing.

I, J, and M The standard meaning of these keys (TAB, LINEFEED, and RETURN,
respectively) is lost to the user. Instead, the key is “trapped” by 4GL
and used to trigger the commands in the OPTIONS statement. For
example, if CONTROL-M appears in an OPTIONS statement, the user
cannot press RETURN to advance the cursor to the next field. If you
include one of these keys in an OPTIONS statement, also restrict the
scope of the statement.

You may not be able to use other keys that have special meaning to your ver-
sion of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

To disable a key function, you can assign it to a control sequence that will
never be executed. For example, the editing control sequences (CONTROL-A,
-D, -H, -L, -R, and -X) are always interpreted as field editing commands. If you
assign one of these control sequences to a key function, 4GL executes the edit-
ing sequence instead of the key function. For example, the following state-
ment disables the Delete key:

OPTIONS DELETE KEY CONTROL-A

After 4GL processes this statement, the user is no longer able to delete rows
in a screen array.

Interrupting SQL Statements

The SQL INTERRUPT option specifies whether the Interrupt key interrupts
SQL statements as well as 4GL statements. By default, this option is set to OFF
so pressing the Interrupt key cannot interrupt SQL statements. If the user
INFORMIX-4GL Statements 3-235

OPTIONS
presses the Interrupt key when an SQL statement is executing. 4GL waits for
the database engine to complete the SQL statement before processing the
Interrupt:

• If the program contains the DEFER INTERRUPT statement, 4GL sets the
int_flag built-in variable to TRUE and continues execution.

• If the program does not contain DEFER INTERRUPT, 4GL terminates the
program.

For more information on the actions of the DEFER INTERRUPT statement, see
the DEFER statement on page 3-62.

To enable the Interrupt key to interrupt SQL statements, your program must
contain:

• The DEFER INTERRUPT statement.

• The OPTIONS statement with the SQL INTERRUPT ON option.

When your program contains both these statements, 4GL takes the following
actions when the user presses the Interrupt key:

1. Tells the database engine to terminate the current SQL statement. SQL
statements which can be terminated include:

If the interrupted SQL statement is within a database transaction, then the
database engine must handle the interrupted transaction. See “Interrupt-
ing Transactions” on page 3-237 for more information.

2. Sets the built-in int_flag to TRUE.

3. Sets the global SQLCA.SQLCODE and status variables to an error code of
-213.

SQL Statement Considerations

ALTER INDEX Can be interrupted by INFORMIX-OnLine engine only
ALTER TABLE
CREATE INDEX Can be interrupted by INFORMIX-OnLine engine only
DELETE
FETCH Includes implicit FETCH performed during a FOREACH
INSERT Includes INSERT performed during a LOAD
OPEN If the SELECT stores all the data in a temporary table
SELECT Includes SELECT performed during an UNLOAD
UPDATE
3-236 INFORMIX-4GL Statements

OPTIONS
4. Continues execution with the statement following the interrupted SQL
statement, if your program has the WHENEVER ERROR CONTINUE com-
piler directive in effect; otherwise, the program terminates.

For SQL statements not listed in the table above, 4GL will allow the statement
to complete before setting the built-in int_flag variable. It will then continue
execution with the statement following the SQL statement (if your program
has the WHENEVER ERROR CONTINUE compiler directive in effect).

If the DEFER QUIT statement has been executed and the user presses the Quit
key (or sends a SIGQUIT signal), then 4GL takes the same four actions, except
that it sets the global variable quit_flag, rather than int_flag.

If you specify SQL INTERRUPT ON, but later in the program you wish to dis-
able the SQL interruption feature, execute an OPTIONS SQL INTERRUPT OFF
statement. This restores the default of uninterruptable SQL statements.

Interrupting Transactions

Interrupting an SQL statement has consequences for database transactions. In
typical 4GL applications, the SQL INTERRUPT ON feature is of very limited
value unless the database supports transaction logging.

How to handle an interrupted SQL statement depends upon whether the
database is ANSI-compliant and on what type of transaction the SQL state-
ment is within:

• Database which is not ANSI-compliant—if the database supports transac-
tion logging, a transaction is either:

o An explicit transaction—started with the BEGIN WORK statement and
ended with either the COMMIT WORK (save the transaction) or
ROLLBACK WORK (cancel the transaction) statement.

o A singleton transaction—an SQL statement that is not within an
explicit transaction (preceded by a BEGIN WORK) is in a transaction of
its own. The transaction ends when the SQL statement completes.

• ANSI-compliant database—has implicit transactions.

A transaction is always in effect. The BEGIN WORK statement is not
needed because every SQL statement is automatically within a transac-
tion. A COMMIT WORK or ROLLBACK WORK statement automatically
ends the current transaction and begins a new one. Therefore, no SQL
statement is ever executed outside of a transaction.
INFORMIX-4GL Statements 3-237

OPTIONS
Interrupting Implicit Transactions

Interrupting Singleton Transactions

A singleton transaction occurs for every SQL statement executed outside a
transaction. Singleton transactions occur only in databases which are not
ANSI-compliant.

In a database that is not ANSI-compliant, and that uses transaction logging,
the BEGIN WORK statement is required to begin a transaction. The database
engine treats any SQL statement that you execute outside of a transaction as
a singleton transaction.

If an interruptable SQL statement (those listed on page 3-236) is within a sin-
gleton transaction and is interrupted, the database engine automatically rolls
back the current transaction before returning control to the 4GL program. Just
as before the SQL statement was interrupted, no transaction is currently in
progress.

Interrupting Explicit Transactions

An explicit transaction is enclosed between a BEGIN WORK and COMMIT
WORK or ROLLBACK WORK statement. Explicit transaction occur only in
databases which are not ANSI-compliant.

The following table summarizes what the database engine does when an
explicit transaction is interrupted:

Database Engine Database Engine Response to Interrupt

OnLine database engine All interruptable SQL statements: automatic undo of
SQL statement.

SE database engine All interruptable SQL statements (ALTER INDEX and
CREATE INDEX are not interruptable): no automatic
undo for current SQL statement (interrupted statement
may be in a partially completed state). Current
transaction is still in progress.

In ANSI-compliant databases, a transaction is always in effect. BEGIN
WORK is not needed, because any COMMIT WORK or ROLLBACK WORK
statement that ends a transaction automatically marks the beginning of a
new implicit transaction. No SQL statement can be executed outside of a
transaction.

If an implicit transaction is interrupted by the user, no automatic ROLL-
BACK WORK occurs. The current transaction is still in progress.

ANSI
3-238 INFORMIX-4GL Statements

OPTIONS
Handling Interrupted Transactions

When the database engine does not perform an automatic rollback, an inter-
rupted transaction can leave the database in an unknown state. In these cases,
your program should decide how to proceed.

To check for an interrupted SQL statement, your program can test the values
of:

• The int_flag built-in variable— if your program contains the DEFER
INTERRUPT statement, int_flag will have a value of TRUE if the user
presses the Interrupt key during an interruptable SQL statement.

• The SQLCA.SQLCODE or status built-in variables: if the interruptable SQL
statement is preceded by the WHENEVER ERROR CONTINUE statement.
This variable will have the value of -213 if the SQL statement failed due to
user interruption.

If the database is in a unknown statement, your program should explicitly
perform a ROLLBACK WORK statement. The ROLLBACK WORK statement
reverses the current transaction while the COMMIT WORK statement commits
all modifications made to the database since the beginning of the transaction.
To begin a new transaction, you must use the BEGIN WORK statement.

Avoid use of the COMMIT WORK staement when the database is in an
unknown state.

In ANSI-compliant databases, the ROLLBACK WORK statement reverses the
current implicit transaction and automatically begins a new transaction.
No BEGIN WORK statement is needed.

ANSI
INFORMIX-4GL Statements 3-239

OPTIONS
The following code fragment checks for an interrupted DELETE statement.
This fragment assumes that the database engine is not ANSI-compliant but
that it supports transaction logging. Therefore the current transaction is
explicit (not a singleton):

DEFER INTERRUPT

OPTIONS
 SQL INTERRUPT ON
...
OPEN WINDOW w_purge AT 2,2

WITH 10 ROWS, 50 COLUMNS
ATTRIBUTE (BORDER, PROMPT LINE 9)

DISPLAY "ACCOUNT PURGE" AT 1, 2
DISPLAY "Purging customer account of last year's info...."

AT 3, 2
DISPLAY "Press Cancel to interrupt." AT 4, 2

LET cancelled = FALSE
LET tx_status = 0

BEGIN WORK

UNLOAD TO filename
SELECT *
FROM accthistory
WHERE customer_num = cust_num

AND tx_date < start_fiscal

IF int_flag THEN
LET int_flag = FALSE
IF (SQLCA.SQLCODE < 0) THEN

IF (SQLCA.SQLCODE = -213) THEN
LET cancelled = TRUE

ELSE
LET tx_status = SQLCA.SQLCODE

END IF
END IF

ELSE

DELETE FROM accthistory
WHERE customer_num = cust_num

AND tx_date < start_fiscal

IF int_flag THEN
IF (SQLCA.SQLCODE < 0) THEN
3-240 INFORMIX-4GL Statements

OPTIONS
IF (SQLCA.SQLCODE = -213) THEN
LET cancelled = TRUE

ELSE
LET tx_status = SQLCA.SQLCODE

END IF
END IF

END IF
END IF

IF (tx_status < 0) OR cancelled THEN
ROLLBACK WORK
IF cancelled THEN

ERROR "Account purge terminated at user request. ",
" No information purged."

ELSE
ERROR "Account purge terminated (status=",

tx_status USING "-<<<<<<<<<<<",
"). No information purged."

END IF
ELSE

COMMIT WORK
MESSAGE "Account purge complete."

END IF

CLOSE WINDOW w_purge

You can refer to the Informix Guide to SQL: Reference for more information on
data integrity.

References
CONSTRUCT, DISPLAY, DISPLAY ARRAY, DISPLAY FORM, ERROR, INPUT,
INPUT ARRAY, MENU, MESSAGE, OPEN FORM, OPEN WINDOW, PROMPT
INFORMIX-4GL Statements 3-241

OUTPUT TO REPORT
OUTPUT TO REPORT
The OUTPUT TO REPORT statement passes a single set of data values (called
an “input record”) to a REPORT statement.

blob is the name of a TEXT or BYTE variable to be passed to the report.

report is the name of a 4GL report by which to format the input record.
You must also declare this identifier in a REPORT statement, and
invoke the report with a previous START REPORT statement.

Usage
The OUTPUT TO REPORT statement passes data to a report, and instructs 4GL
to process and format the data as the next input record of the report.

An input record is the ordered set of values returned by the expressions that
you list between the parentheses. Returned values are passed to the specified
report, as part of the input record. The input record can correspond to a
retrieved row from the database, or to a 4GL program record, but 4GL does
not require this correspondence.

The members of the input record that you specify in the expression list of the
OUTPUT TO REPORT statement must correspond to elements of the formal
argument list in the REPORT definition (page 3-260) in their number and their
position, and must be of compatible data types (page 3-324).

Arguments of the TEXT or BYTE data types are passed by reference, rather
than by value; arguments of other data types are passed by value. A report
can use the WORDWRAP operator with the PRINT statement (page 6-50) to
display TEXT values. A report cannot display BYTE values; the character
string <byte value> in output from the report indicates a BYTE value.

You typically include the OUTPUT TO REPORT statement within a WHILE,
FOR, or FOREACH loop, so that the program passes data to the report one
input record at a time. The portion of the 4GL program that includes START
REPORT (page 3-271), OUTPUT TO REPORT, and FINISH REPORT (page 3-100)
statements that reference the same report is sometimes called the “report
driver.” (For more information about 4GL reports, see Chapter 6.)

OUTPUT TO REPORT report

,

()4GL Expression
p. 3-326

blob
3-242 INFORMIX-4GL Statements

OUTPUT TO REPORT
The following program fragment uses a FOREACH loop to pass input records
to a report. Each input record consists of four values:

• The lname and company values from the columns of a database table.

• The literal string constant “San Francisco”.

• The DATE value returned by the TODAY operator.

START REPORT cust_list
...

FOREACH q_curs INTO p_customer.lname, p_customer.company
OUTPUT TO REPORT cust_list

(p_customer.lname,
p_customer.company,
"San Francisco",
TODAY)

END FOREACH

The following program creates a report, with default formatting, of all the
customers in the customers table, and sends the resulting output to a file:

DATABASE stores
MAIN

DEFINE p_customer RECORD LIKE customer.*
DECLARE q_curs CURSOR FOR

SELECT * FROM customer
START REPORT cust_list TO "cust_listing"
FOREACH q_curs INTO p_customer.*

OUTPUT TO REPORT cust_list(p_customer.*)
FINISH REPORT cust_list

END MAIN
REPORT cust_list(r_customer)

DEFINE r_customer RECORD LIKE customer.*
FORMAT EVERY ROW

END REPORT

References
CALL, FINISH REPORT, PAUSE, REPORT, START REPORT
INFORMIX-4GL Statements 3-243

PAUSE
PAUSE
The PAUSE statement suspends the display of output from a 4GL report to the
4GL screen. The PAUSE statement can only appear in the FORMAT section of
a REPORT program block and only affects report output sent to the screen.

string is a quoted string.

Usage
The PAUSE statement affects the behavior of the report output in the 4GL
screen. It has no effect on the formatted report output:

• If a PAUSE statement appears in the REPORT definition, the report dis-
plays a screenful of output and then pauses. The user needs to press
RETURN to view the next screenful of output. If a quoted string is speci-
fied, its text appears on the 4GL screen.

• In the absence of a PAUSE statement, the report output scrolls down the
4GL screen.

The PAUSE statement has no effect if you include a REPORT TO clause in the
OUTPUT section, or a TO clause in the START REPORT statement. For more
information about the PAUSE statement, see page 6-41.

References
NEED, PRINT, REPORT, SCROLL, SKIP, START REPORT

PAUSE

" string "
3-244 INFORMIX-4GL Statements

PREPARE
PREPARE
Use the PREPARE statement to parse, validate, and generate an execution
plan for SQL statements in a 4GL program at run time.

statement id is an SQL statement identifier.

string is a string that contains the SQL statement to be prepared.

variable is a 4GL character variable that contains the text of the SQL
statement to be prepared.

Usage
The PREPARE statement permits your program to assemble the text of an SQL
statement at run time and make it executable. This dynamic form of SQL is
accomplished in three steps:

1. A PREPARE statement accepts statement text as input, either as a quoted
string or stored within a character variable. Statement text can contain
question mark (?) placeholders to represent values that are to be defined
when the statement is executed.

2. An EXECUTE or OPEN statement can supply the required input values
and execute the prepared statement once or many times.

3. Resources allocated to the prepared statement can be released later using
the FREE statement.

The number of prepared objects in a single program is limited only by
available memory. This includes both statement identifiers named in
PREPARE statements and cursor declarations that incorporate SELECT,
EXECUTE PROCEDURE, or INSERT statements. (To avoid exceeding the limit,
use a FREE statement to release some statements or cursors.)

For a list of statements that must be prepared, see “Preparing Statements in
4GL” on page 3-247. Also, note that the INFORMIX-4GL Quick Syntax marks
SQL statements that must be prepared with a 6.0 icon.

For information on using the EXECUTE, OPEN, and FREE statements with a
6.0-level server, see Informix Guide to SQL: Syntax.

variable

PREPARE statement id FROM " string"
INFORMIX-4GL Statements 3-245

PREPARE
Statement Identifier

A PREPARE statement sends the statement text to the database server where
it is analyzed. If it contains no syntax errors, the text converts to an internal
form. This translated statement is saved for later execution in a data structure
that the PREPARE statement allocates. The structure has the name specified
by the statement identifier (statement id) in the PREPARE statement.
Subsequent SQL statements can refer to the statement using the statement id.

A subsequent FREE statement id statement releases the resources allocated to
the statement. After you release the statement id, you cannot use it with a
cursor or with the EXECUTE statement until you prepare the statement again.

By default, the scope of a statement identifier is global in your 4GL program.
This means that a statement identifier prepared in one 4GL module can be
referenced from another module.

Releasing a Statement Identifier

A statement identifier can represent only one SQL statement or sequence of
statements at a time. You can execute a new PREPARE statement with an exist-
ing statement identifier if you wish to bind a given statement identifier to
different SQL statement text.

Statement Text

The PREPARE statement can take statement text either as a quoted string or
as text stored in a variable. The following restrictions apply to the statement
text:

• The text can contain only SQL statements. It cannot contain 4GL
statements.

Comments preceded by two hyphens (--), or enclosed in curly braces ({ })
are standard in SQL and are allowed in the statement text. The comment
ends at the end of the line or at the end of the statement.

• The text can contain either a single SQL statement or a sequence of
statements separated by semicolons.

• The only identifiers that you can use are names defined in the database,
such as names of tables and columns. Therefore, you cannot prepare a
SELECT statement that contains an INTO clause because the INTO clause
requires a variable.

Use a question mark (?) as a placeholder to indicate where data is
supplied when the statement executes.
3-246 INFORMIX-4GL Statements

PREPARE
The following example shows a PREPARE statement that includes
placeholders for values that are to be input:

PREPARE new_cust FROM
"INSERT INTO customer(fname,lname) VALUES(?,?)"

Preparing Statements in 4GL

The following section lists statements that must be prepared, may be
prepared, and cannot be prepared in a 4GL program. It also describes how to
execute stored procedures from within 4GL.

Statements that Must Be Prepared

The following SQL statements must be prepared to use them in a 4GL pro-
gram. (These statements require preparing because they are features specific
to the 5.0 or 6.0 engine. 4GL supports these statements only if you prepare
them.)

ALTER OPTICAL CLUSTER DROP TRIGGER
CREATE OPTICAL CLUSTER EXECUTE PROCEDURE
CREATE PROCEDURE RELEASE
CREATE PROCEDURE FROM RESERVE
CREATE SCHEMA SET CONSTRAINTS
CREATE TRIGGER SET DEBUG FILE TO
DROP OPTICAL CLUSTER SET MOUNTING TIMEOUT
DROP PROCEDURE SET OPTIMIZATION

Statements that May Need to Be Prepared

The following SQL statements require you to prepare them only if you are
using a 5.0 or 6.0 engine feature in the statement. For example, if you use the
PUBLIC or PRIVATE clause of the CREATE SYNONYM statement, you need to
prepare the CREATE SYNONYM statement. However, if you do not include
the PUBLIC or PRIVATE clause, you do not need to prepare the statement.

ALTER TABLE INSERT INTO
CREATE SYNONYM REVOKE
CREATE TABLE UPDATE STATISTICS
GRANT

To see exactly what part of the syntax requires you to prepare the statement,
see the INFORMIX-4GL Quick Syntax.
INFORMIX-4GL Statements 3-247

PREPARE
Preparing a SELECT Statement

You can prepare a SELECT statement. If the SELECT statement includes the
INTO TEMP clause, you can execute the prepared statement with an EXECUTE
statement. If it does not include the INTO TEMP clause, the statement returns
an indeterminate number of rows of data. Use DECLARE cursor to establish a
cursor and then either the FOREACH statement or the OPEN and FETCH cur-
sor statements to retrieve the rows.

A prepared SELECT statement can include a FOR UPDATE clause. This clause
normally is used with the DECLARE statement to create an update cursor. The
following example shows a SELECT statement with a FOR UPDATE clause:

PREPARE up_sel FROM
"SELECT * FROM customer ",
"WHERE customer_num between ? and ? ",
"FOR UPDATE"

DECLARE up_curs CURSOR FOR up_sel

OPEN up_curs USING low_cust, high_cust

Statements that Cannot Be Prepared

You cannot prepare the following statements:

ALLOCATE DESCRIPTOR GET DESCRIPTOR
CHECK TABLE GET DIAGNOSTICS
CLOSE INFO
CONNECT LOAD
DEALLOCATE DESCRIPTOR PUT
DECLARE OPEN
DESCRIBE OUTPUT
DISCONNECT PREPARE
EXECUTE REPAIR TABLE
EXECUTE IMMEDIATE SET CONNECTION
FETCH SET DESCRIPTOR
FLUSH UNLOAD
FREE WHENEVER

Additionally, you cannot use the following statements in statement text that
contains multiple statements separated by semicolons:

CLOSE DATABASE DATABASE SELECT
CREATE DATABASE DROP DATABASE START DATABASE
3-248 INFORMIX-4GL Statements

PREPARE
Thus, a SELECT statement is not allowed in a multi-statement prepare; the
statements that could cause the current database to be closed in the middle
of executing the sequence of statements are also not allowed. For general
information about multi-statement prepares, see “Preparing Sequences of
Multiple SQL Statements” on page 3-252.

Executing Stored Procedures Within a PREPARE Statement

You can include a stored procedure in a 4GL program by doing the following:

1. Put the text of the CREATE PROCEDURE statement in a file.

Use Stored Procedure Language statements to define the procedure.

2. Use a PREPARE statement to prepare a CREATE PROCEDURE FROM
statement that refers to the text file created in Step 1.

3. Use an EXECUTE statement to execute the prepared statement, which then
compiles the stored procedure.

Note: The Stored Procedure Language is not a part of the 4GL language. You cannot
include these statements directly within a 4GL program; doing so causes compile
errors.

You can explicitly invoke stored procedures from within your 4GL program
by preparing and executing the following SQL statements: CREATE
PROCEDURE FROM, DROP PROCEDURE, EXECUTE PROCEDURE.

Also, you may implicitly invoke a stored procedure through a reference to
that procedure within the context of an SQL expression. For example, the ref-
erence to avg_price() in the following SELECT statement implicitly invokes
the stored procedure having the name avg_price.

SELECT
manu_code, unit_price, (avg_price(1) - unit_price) VARIANCE
FROM stock
WHERE stock_num = 1

Such implicit references to stored procedures do not require the statement to
be prepared since the server processes them in a manner that is transparent
to the 4GL program.

See Chapter 14 of the Informix Guide to SQL: Tutorial, Version 6.0 for complete
information on creating and executing stored procedures. See the Informix
Guide to SQL: Syntax for a full description of the CREATE PROCEDURE state-
ment.
INFORMIX-4GL Statements 3-249

PREPARE
Using Parameters in Prepared Statements

You can pass values to a prepared statement when you prepare the statement
or at execution time.

Preparing Statements when Parameters Are Known

In some prepared statements, all needed information is known at the time the
statement is prepared. Although all parts of the statement are known prior to
the prepare, they also can be derived dynamically from program input. In the
following example, user input is incorporated into a SELECT statement,
which is then prepared and associated with a cursor:

DEFINE u_po LIKE orders.po_num
PROMPT "Enter p.o. number please: " FOR u_po
PREPARE sel_po FROM

"SELECT * FROM orders ",
"WHERE po_num = '", u_po, "'"

DECLARE get_po CURSOR FOR sel_po

Preparing Statements that Receive Parameters at Execution

In some statements, parameters are unknown when the statement is pre-
pared because a different value can be inserted each time the statement is exe-
cuted. In these statements, you can use a question mark (?) placeholder
where a parameter must be supplied when the statement is executed.

The PREPARE statements in the following example shows some uses of
question mark (?) placeholders:

PREPARE s3 FROM
"SELECT * FROM customer WHERE state MATCHES ?"

PREPARE in1 FROM
"INSERT INTO manufact VALUES (?,?,?)"

PREPARE update2 FROM
"UPDATE customer SET zipcode = ?"
"WHERE CURRENT OF zip_cursor"

You can use a placeholder only to supply a value for an expression. You can-
not use a question mark (?) placeholder to represent an identifier such as a
database name, a table name, or a column name.
3-250 INFORMIX-4GL Statements

PREPARE
The USING clause is available in both OPEN (for statements associated with
a cursor) and EXECUTE (all other prepared statements) statements. For
example:

DEFINE zip LIKE customer.zipcode
PREPARE zip_sel FROM

"SELECT * FROM customer WHERE zipcode MATCHES ?"
DECLARE zip_curs CURSOR FOR zip_sel
PROMPT "Enter a zipcode: " FOR zip
OPEN zip_curs USING zip

If the prepared SELECT statement contains a question mark (?) placeholder,
you cannot execute the statement with a FOREACH statement; you must use
the OPEN, FETCH, and CLOSE group of statements.

Preparing Statements with SQL Identifiers

You cannot use question mark (?) placeholders for SQL identifiers such as a
table name or a column name; you must specify these identifiers in the
statement text when you prepare it.

However, if these identifiers are not available when you write the statement,
you can construct a statement that receives SQL identifiers from user input.
In the following example, the name of the column is supplied by the user and
inserted in the statement text before the PREPARE statement. The search
value in that column also is taken from user input, but it is supplied to the
statement with a USING clause:

DEFINE column_name CHAR(30),
column_value CHAR(40),
del_str CHAR(100)

PROMPT "Enter column name: " FOR column_name

LET del_str =
"DELETE FROM customer WHERE ",
column_name CLIPPED, " = ?"

PREPARE de4 FROM del_str

PROMPT "Enter search value in column ",column_name, ":"
FOR column_value

EXECUTE de4 USING column_value
INFORMIX-4GL Statements 3-251

PREPARE
Preparing Sequences of Multiple SQL Statements

You can execute several SQL statements as one action if you include them in
the same PREPARE statement. Multi-statement text is processed as a unit;
actions are not treated sequentially. Therefore, multi-statement text cannot
include statements that depend on action that occurs in a previous statement
in the text. For example, you cannot create a table and insert values into that
table in the same prepared block. Avoid placing BEGIN WORK and COMMIT
WORK statements with other statements in a multi-statement prepare.

In most situations, 4GL returns error status information on the first error in
the multistatement text. No indication exists of which statement in the
sequence causes an error. You can use SQLCA to find the offset of the
SQLERRD(5) errors. For complete information about SQLCA and error-status
information, see “Exception Handling” on page 2-23.

The following example updates the stores2 database by replacing existing
manufacturer codes with new codes. Since the manu_code columns are
potential join columns that link four of the tables, the new codes must replace
the old codes in three tables:

DATABASE stores2
MAIN

DEFINE code_chnge RECORD
new_code LIKE manufact.manu_code,
old_code LIKE manufact.manu_code

END RECORD
sqlmulti CHAR(250)

PROMPT "Enter new manufacturer code: "
FOR code_chnge.new_code

PROMPT "Enter old manufacturer code: "
FOR code_chnge.old_code

LET sqlmulti =
"UPDATE manufact SET manu_code = ? WHERE manu_code = ?;",
"UPDATE stock SET menu_code = ? WHERE manu_code = ?;",
"UPDATE items SET manu_code = ? WHERE manu_code = ?;",
"UPDATE catalog SET manu_code = ? WHERE manu_code = ?;"

PREPARE exmulti FROM sqlmulti
EXECUTE exmulti USING code_chnge.*, code_chnge.*, code_chnge.*

code_chnge.*
END MAIN
3-252 INFORMIX-4GL Statements

PREPARE
Using Prepared Statements for Efficiency

To increase performance efficiency, you can use the PREPARE statement and
an EXECUTE statement in a loop to eliminate overhead caused by redundant
parsing and optimizing. For example, an UPDATE statement located within a
WHILE loop is parsed each time the loop runs. If you prepare the UPDATE
statement outside the loop, the statement is parsed only once, eliminating
overhead and speeding statement execution. The following example shows
how to prepare statements to improve performance:

PREPARE up1 FROM "UPDATE customer ",
"SET discount = 0.1 WHERE customer_num = ?"

WHILE TRUE
PROMPT "Enter Customer Number" FOR dis_cust
IF dis_cust = 0 THEN

EXIT WHILE
END IF
EXECUTE up1 USING dis_cust

END WHILE

References
See the DECLARE, DESCRIBE, EXECUTE, FREE, and OPEN statements in the
Informix Guide to SQL: Syntax.
INFORMIX-4GL Statements 3-253

PRINT
PRINT
The PRINT statement produces output from a report. (This statement can
appear only in the FORMAT section of a REPORT program block.)

BYTE variable is the identifier of a 4GL variable of data type BYTE.

filename is a character string, enclosed between quotation (") marks,
and specifying the name of an ASCII file to include in the out-
put from the report. The filename can include a pathname.

left offset is an expression that evaluates to a positive whole number,
specifying a character position offset (from the left margin) no
greater than the difference (right margin - left margin).

relative offset is an expression that evaluates to a positive whole number,
specifying an offset (from the current character position) no
greater than the difference (right margin - current position).

temporary is an expression that evaluates to a positive whole number,
specifying the absolute position of a temporary right margin.

TEXT variable is the identifier of a 4GL variable of data type TEXT.

For details of the syntax and usage of the PRINT statement in 4GL report
definitions, see page 6-42.

PRINT 4GL Expression
p. 3-326

,

FILE

LINENO

PAGENO

COLUMN

SPACES

" filename"

WORDWRAP RIGHT MARGIN

left offset

temporary

Aggregate Functions
p. 6-46

relative offset SPACE

 TEXT variable

 BYTE variable

;

Character
Expression

p. 3-343
3-254 INFORMIX-4GL Statements

PROMPT
PROMPT
The PROMPT statement assigns a user-supplied value to a variable.

key is a keyword (see page 3-258) to specify an activation key.

number is a literal integer (page 3-340) to specify a Help message number.

response is the name of a variable to store the response of the user to the
PROMPT character string. This cannot be of data type TEXT or
BYTE.

statement is a 4GL statement.

string is a quoted string that 4GL displays on the Prompt line.

variable is the name of a CHAR or VARCHAR variable containing a message
to the user, typically prompting the user to enter a value.

Usage
4GL takes the following actions when it executes a PROMPT statement:

1. Replaces any variables with their current values.

2. Concatenates the list of values into a single prompt string. The total length
of this string, plus the user’s response, cannot exceed 80 characters.

3. Displays the resulting string on the Prompt line of the current form (or in
the Line mode overlay, if it currently covers the 4GL screen).

4. Waits for the user to enter a value.

5. Reads whatever value was entered until the user presses RETURN, and
then stores this value in response variable.

,

PROMPT

CHAR

response

END PROMPT

ATTRIBUTE
Clause
p. 3-290

ATTRIBUTE
Clause
p. 3-290

keyON KEY () statement

,

variable HELP number

FOR" string"
INFORMIX-4GL Statements 3-255

PROMPT
The prompt string remains visible until the user enters a response.

The following topics are described in this section:

Topic Page
The PROMPT String 3-256
The Response Variable 3-256
The FOR Clause 3-257
The ATTRIBUTE Clauses 3-257
The HELP Clause 3-258
The ON KEY Blocks 3-258
The END PROMPT Keywords 3-259

The PROMPT String

Depending on whether the Line mode overlay is visible when the PROMPT
statement is executed, PROMPT can produce two types of displays:

• If the PROMPT statement is the next interactive statement after a Line
mode DISPLAY statement, then the prompt string appears in the Line
mode overlay. The prompt string always appears on the bottom line,
however, and does not scroll with any subsequent output from Line mode
DISPLAY statements. (For more information about using the Line mode
overlay, see “Sending Output to the Line Mode Overlay” on page 3-76.)

• If the 4GL screen or any other 4GL window is visible, output appears on
the Prompt line of the current 4GL window. If this is not wide enough to
display the prompt string, a run-time error occurs.

The default position of the Prompt line is the first line of the current 4GL
window. This default position can be changed by either of the following

• A PROMPT LINE specification in the OPEN WINDOW statement.

• A PROMPT LINE specification in the OPTIONS statement.

The Response Variable

The PROMPT statement returns the value entered by the user in the response
variable. The response variable can be of any data type except TEXT or BYTE.
If it is a string, its returned value can include blank spaces. If 4GL cannot con-
vert the value entered by the user to the data type of the response variable,
then 4GL cannot assign a value to the response variable; in this case, a nega-
tive error code is assigned to the global status variable.
3-256 INFORMIX-4GL Statements

PROMPT
The FOR Clause

The FOR clause specifies the name of the response variable to store input from
the user. When the user types a response and presses RETURN, 4GL saves
the response in the response variable. You can optionally include the
CHAR keyword to accept a single character input without requiring that the
user press the RETURN key. For example, the following statement checks the
prompt input for an upper or lowercase y :

PROMPT "Do you want to continue: " FOR CHAR ans
IF ans MATCHES "[Yy]" THEN

CALL next_form()
END IF

The ATTRIBUTE Clauses

For general information and syntax of the ATTRIBUTE clause, see page 3-290.
This section describes specific information about ATTRIBUTE clauses within
a PROMPT statement. You can use the ATTRIBUTE clauses to specify display
attributes both for the prompt value text and for the prompt response.

• The first ATTRIBUTE clause specifies display attributes of the prompt string
text. The default display attribute for this text is NORMAL.

• The second ATTRIBUTE clause specifies display attributes of the prompt
response. The default display attribute for the prompt response is REVERSE.

Display attributes specified in the PROMPT statement temporarily override
any display attributes specified in OPTIONS or OPEN WINDOW statements.
The following statement prompts for a delivery date. Here 4GL displays the
prompt string in yellow on color monitors (or in bold on monochrome moni-
tors; see page 3-291). The value that the user enters is displayed in blue on
monitors that support color, and in dim on monochrome monitors.

PROMPT "Enter the preferred delivery day for ",
customer_num, " "

ATTRIBUTE (YELLOW)
FOR del_day
ATTRIBUTE (BLUE)
...

END PROMPT
INFORMIX-4GL Statements 3-257

PROMPT
The HELP Clause

This clause specifies a literal integer (page 3-340) that returns the number of
a Help message for the PROMPT statement. 4GL displays the Help message in
the Help window (page 2-22) if the user presses the Help key from the
response field. By default, the Help key is CONTROL-W. You can redefine the
Help key by using the OPTIONS statement.

You create Help messages in an ASCII file whose filename you specify in the
HELP FILE clause of the OPTIONS statement. Use the mkmessage utility (as
described in Appendix B to create a run-time version of the Help file. Run-
time errors occur in these situations:

• 4GL cannot open the Help file.

• You specify a number that is not in the Help file.

• You specify a number outside the range from -32,767 to 32,767.

The ON KEY Blocks

An ON KEY block executes a series of statements when the user presses one
of the specified keys. If the user presses a specified key, control passes to the
statements specified in the ON KEY block. After completing the ON KEY
block, 4GL passes control to the statements following the END PROMPT state-
ment. In this case, the value of the response variable is undetermined.

You can specify the following in uppercase or lowercase for key name:

ACCEPT HELP NEXT or RETURN or ENTER
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE LEFT PREVPAGE UP

F1 through F64

CONTROL-char (except A, D, H, I, J, L, M, R, or X)

Here you can substitute NEXTPAGE for NEXT, and PREVPAGE for PREVIOUS.

The following table lists keys that require special consideration before you
assign them in an ON KEY clause:

Key Special Considerations

ESC or ESCAPE You must use the OPTIONS statement to specify another key as the
Accept key because ESCAPE is the default Accept key.

INTERRUPT You must execute a DEFER INTERRUPT statement. When the user
presses the Interrupt key under these conditions, 4GL executes the
ON KEY block statements and sets int_flag to nonzero, but does not
terminate the PROMPT statement. 4GL also executes the statements
3-258 INFORMIX-4GL Statements

PROMPT
in this ON KEY clause if the DEFER QUIT statement has executed and
the user presses the Quit key. In this case, 4GL sets quit_flag to non-
zero.

CONTROL-char

A, D, H,
L, R, and X

4GL reserves these keys for field editing.

I, J, and M The regular meaning of these keys (TAB, LINEFEED, and RETURN,
respectively) is lost to the user. Instead, the key is trapped by 4GL
and used to activate the commands in the ON KEY clause. For exam-
ple, if CONTROL-M appears in an ON KEY clause, the user cannot
press RETURN to advance the cursor to the next field. If you must
include one of these keys in an ON KEY clause, be careful to restrict
the scope of the clause to specific fields.

You may not be able to use other keys that have special meaning to your ver-
sion of the operating system. For example, CONTROL-C, CONTROL-Q, and
CONTROL-S specify the Interrupt, XON, and XOFF signals on many systems.

The next statement specifies two ON KEY clauses. If the user presses
CONTROL-B, 4GL calls the set_day() function and sets the del_day variable
to the value returned by set_day. If the user presses F6 or CONTROL-F, the
delivery_help() function is invoked:

PROMPT "Enter the preferred delivery day for ",
customer_num, " "

ATTRIBUTE (YELLOW)
FOR del_day
ON KEY (CONTROL_B)

LET del_day = set_day()
ON KEY (F6, CONTROL_F)

CALL delivery_help()
END PROMPT

The END PROMPT Keywords

The END PROMPT keywords indicate the end of the PROMPT statement.
These keywords are required only if you specify an ON KEY block. Place the
END PROMPT keywords after the last statement of the last ON KEY block.

References
DISPLAY, DISPLAY ARRAY, INPUT, INPUT ARRAY, OPEN WINDOW, OPTIONS
INFORMIX-4GL Statements 3-259

REPORT
REPORT
The REPORT statement declares the identifier and defines the format of a 4GL
report. (For details on the REPORT statement syntax and usage, see
Chapter 6.)

argument is the name of a formal argument (also called a parameter) corre-
sponding to a value that the calling routine passes to the report.

report is the name that you assign to the report.

Usage
This statement defines a REPORT program block, just as the FUNCTION state-
ment defines a function. You can execute a report from the MAIN program
block or from a function, but the REPORT statement cannot appear within the
MAIN statement, nor in a FUNCTION definition, nor in another REPORT state-
ment. To create a 4GL report, you must do the following:

1. Use the REPORT statement to describe how to format data in the report.

2. Write a report driver that passes data to the report.

The report driver typically uses a loop (such as WHILE or FOREACH) in
conjunction with the following 4GL statements to process the report:

• START REPORT (to invoke the REPORT routine)

• OUTPUT TO REPORT (to send data to the REPORT routine for formatting)

• FINISH REPORT (to complete execution of the REPORT routine)

Note: Unlike a FUNCTION program block, a 4GL REPORT routine is not reentrant.
If you execute a START REPORT statement that references a report that is already
running, then the report is reinitialized, and output may be unpredictable.

END REPORT)

argument DEFINE
Section
p. 6-8

)

(FORMAT
Section
p. 6-23

OUTPUT
Section
p. 6-9

ORDER BY
Section
p. 6-18

,
reportREPORT
3-260 INFORMIX-4GL Statements

REPORT
The Report Prototype

The report name must immediately follow the REPORT keyword. Follow the
guidelines for 4GL identifiers (page 2-9) when assigning a name to a report.
The name must be unique among function and report names within the 4GL
program. Its scope is the entire 4GL program.

The list of formal arguments of the report must be enclosed in parentheses
and separated by commas. These are local variables that store values that the
calling routine passes to the report. The compiler issues an error unless you
declare their data types in the subsequent DEFINE section (page 6-8). You can
include a program record in the formal argument list, but you cannot append
the .* symbols to the name of the record. Arguments can be of any data type
except ARRAY, or a record with an ARRAY member.

When you call a report, the formal arguments are assigned values from the
argument list of the OUTPUT TO REPORT statement. These actual arguments
that you pass must match, in number and position, the formal arguments of
the REPORT statement. The data types must be compatible (page 3-319), but
they need not be identical. 4GL can perform some conversions between com-
patible data types. The names of the actual arguments and the formal argu-
ments do not have to match.

The Report Program Block

The REPORT definition must include a FORMAT section, and can also include
DEFINE, OUTPUT, and ORDER BY sections, as described in Chapter 6. You
must declare the data types of the formal arguments and of any local vari-
ables in the DEFINE section of the report, which must immediately follow the
formal argument list. Within the REPORT program block, these variables take
precedence over any global or module variables of the same name. Variables
local to the 4GL report cannot be referenced outside of the report, and they do
not retain values between invocations of the report. You must include the fol-
lowing in the list of formal arguments:

• All the values for each row sent to the report in the following cases:

o If you include an ORDER BY section or GROUP PERCENT(*) function.

o If you use a global aggregate function (one over all rows of the report)
anywhere in the report, except in the ON LAST ROW control block.

o If you specify the FORMAT EVERY ROW default format.

• Any variables referenced in the following group control blocks:

o AFTER GROUP OF

o BEFORE GROUP OF
INFORMIX-4GL Statements 3-261

REPORT
The END REPORT Keywords

The END REPORT keywords terminate the REPORT program block. An
example near the end of this section (page 3-262) illustrates a report driver.

The following program fragment briefly illustrates some of the components
of the REPORT statement. This example creates a report named simple that
displays on the screen in default format all the rows from the customer table:

DECLARE simp_curs CURSOR FOR SELECT * FROM customer
START REPORT simple
FOREACH simp_curs INTO cust.*

OUTPUT TO REPORT simple(cust.*)
END FOREACH
FINISH REPORT simple

...
REPORT simple (x)

DEFINE x RECORD LIKE customer.*
FORMAT EVERY ROW

END REPORT

Two-Pass Reports

A two-pass report is one that creates a temporary table. The REPORT creates a
temporary table if it includes any of the following:

• An ORDER BY section without the EXTERNAL keyword.

• The GROUP PERCENT(*) aggregate function anywhere in the report.

• Any aggregate function outside the AFTER GROUP OF control block.

The FINISH REPORT statement uses values from these tables to calculate any
global aggregates, and then deletes the tables.

A two-pass report requires that the 4GL program be connected to a database
when the report runs. See the DATABASE statement for information on how
to specify a current database at run time (page 3-60).

Note: If the DEFINE section uses the LIKE keyword to declare local variables of the
report indirectly, you must also include a DATABASE statement in the same module
as the REPORT statement, but before the first program block, to specify a default data-
base at compile time (page 3-59).

References
DATABASE, DEFINE, FINISH REPORT, OUTPUT TO REPORT, START REPORT
3-262 INFORMIX-4GL Statements

RETURN
RETURN
The RETURN statement transfers control of execution from a FUNCTION
program block (page 3-111). It can also return values to the calling routine.
(This statement can appear only within a FUNCTION program block.)

Usage
The RETURN statement can occur only in the definition of a function. This
statement tells 4GL to exit from the function, and to return program control to
the calling routine. (The calling routine is the MAIN, FUNCTION, or REPORT
program block that contains the statement that invoked the function.)

You can use the RETURN statement in either of two ways:

• Without values, to control the flow of program execution.

• With a list of one or more values, to control the flow of program execution,
and to return values to the calling statement.

If 4GL does not encounter a RETURN statement, it exits from the function after
encountering the END FUNCTION keywords.

The List of Returned Values

You can specify a list of one or more expressions as values to return to the
calling routine. You can use the record.* or the THRU or THROUGH notation to
specify all or part of a list of the member variables of a record.

If the RETURN statement specifies one or more values, you can do either of
the following to invoke the function:

• Explicitly execute a CALL statement with a RETURNING clause.

• Invoke the function implicitly within an expression (in the same way that
you would specify a variable or a list of variables).

If the function does not return any values, you must use the CALL statement
(without the RETURNING clause) to invoke the function.

,
RETURN

4GL Expression
p. 3-326
INFORMIX-4GL Statements 3-263

RETURN
The Data Types of Returned Values

4GL compares the list of expressions in the RETURN statement to arguments
in the RETURNING clause of the CALL statement. A compile-time error is
issued if any of these arguments do not agree with the RETURN expression
list in number or position, or if data types are incompatible (page 3-324).

Similarly, if the function is invoked implicitly in an expression (page 3-332),
the RETURN statement is checked for agreement with the number and data
types of the values that are required by the context of the calling statement.

You cannot return variables of the ARRAY data type, nor RECORD variables
that contain ARRAY members. You can, however, return records that do not
include ARRAY members. This example returns the values of whole_price
and ret_price to the CALL statement. 4GL then assigns the whole_price and
ret_price variables to the wholesale and retail variables in the price record.

MAIN
DEFINE price RECORD wholesale, retail MONEY

END RECORD
...
CALL get_cust() RETURNING price.*
...

END MAIN
FUNCTION get_cust()

DEFINE whole_price, ret_price MONEY
...
RETURN whole_price, ret_price

END FUNCTION

You cannot specify variables of the BYTE or TEXT data types in the RETURN
statement, just as you cannot include those data types in the RETURNING
clause of a CALL statement. Since 4GL passes variables of large data types by
reference, any changes made to a BYTE or TEXT variable within a function
becomes visible within the calling routine without being returned.

4GL allocates 5 kilobytes of memory to store character strings returned by
functions, in 10 blocks of 512 bytes. A returned character value can be no
larger than 511 bytes (because every string requires a terminating ASCII 0),
and no more than 10 of these 511-byte strings can be returned. You can use
TEXT variables to pass longer character values by reference (as described on
page 3-18), rather than using the RETURN statement.

References
CALL, EXIT PROGRAM, FUNCTION, WHENEVER
3-264 INFORMIX-4GL Statements

RUN
RUN
The RUN statement executes an operating system command line.

character variable is the name of a CHAR or VARCHAR variable containing a
command line for the operating system to execute.

command is a quoted string (page 3-343) that specifies a command
line for the operating system to execute.

integer variable is the name of an INT or SMALLINT variable.

Usage
The RUN statement executes an operating system command line. You can
even run a second 4GL application as a secondary process, provided that only
one of the 4GL applications accesses a database. When the command termi-
nates, 4GL resumes execution.

For example, the following statement executes the command line specified
by the element i of the array variable charval, where i is an INT or SMALLINT
variable:

RUN charval[i]

Unless you specify WITHOUT WAITING, RUN also has these effects:

1. Causes execution of the current 4GL program to pause.

2. Displays any output from the specified command in a new 4GL window.

3. After that command completes execution, 4GL closes the new 4GL win-
dow, and restores the previous display in the 4GL screen.

If you specify WITHOUT WAITING (page 3-267), all of these effects except the
last are suppressed, so that the command line typically executes without any
effect on the visual display.

You can specify the name of a character variable that contains the command
line, or the command can follow the RUN keyword as a quoted string.

RUN

WITHOUT WAITING

character
 variable

" command "

RETURNING integer variable
INFORMIX-4GL Statements 3-265

RUN
The RETURNING Clause

The RETURNING clause saves the termination status code of a command in
a 4GL variable. You can then examine this variable in your program to deter-
mine the next action to take. A status code of zero usually indicates that the
command terminated normally. Non-zero exit status codes usually indicate
that an error or a signal caused execution to terminate.

You can only use this clause if RUN invokes a 4GL program that contains an
EXIT PROGRAM statement. When the program that RUN specifies completes
execution, the integer variable contains two bytes of termination status infor-
mation:

• The low byte contains the termination status of whatever RUN executes.
You can recover this by calculating the value of (integer value modulo 256).

• The high byte contains the low byte from the EXIT PROGRAM statement
of the 4GL program that RUN executes. You can recover this returned code
by dividing integer value by 256.

For example, suppose that a program consisted of these 4GL statements:

 MAIN
 DEFINE ret_int INT
 LET ret_int = 5
 EXIT PROGRAM (ret_int)
 END MAIN

The following program fragment uses RUN to invoke the compiled version
of the previous program, whose filename is stored in variable prog1:

DEFINE expg_code, stat_code, ret_int INT,
prog1 CHAR(20)

. . .
RUN prog1 RETURNING ret_int
LET stat_code = (ret_int MOD 256)
IF stat_code <> 0 THEN

MESSAGE "Unable to run the ", prog1, " program."
END IF
LET expg_code = (ret_int/256)

 DISPLAY " Code from the ", prog1, " program is ", expg_code
3-266 INFORMIX-4GL Statements

RUN
Unless an error or signal terminates the program before the EXIT PROGRAM
statements is encountered, the displayed value of expg_code is 5. You should
exercise caution in interpreting the integer variable, however, because under
some circumstances the quotient (variable)/256 may not be the actual status
code value that the command line returned.

If an Interrupt signal terminates the program, the integer value is 256.
If a Quit signal causes the termination, the integer value is (3*256), or 758.

If a 4GL program that RUN executes can be terminated by various actions of
the user, you could include several EXIT PROGRAM (number) statements with
different number values in different parts of the program. Examination of the
code returned by RUN could indicate which EXIT PROGRAM statement (if
any) was encountered during execution.

The WITHOUT WAITING Clause

The WITHOUT WAITING clause lets you execute a secondary application in
the background. The syntax of WITHOUT WAITING is illustrated in the
following example:

RUN "/$INFORMIXDIR/bin/fglgo /home/elke/sub.4gi" WITHOUT WAITING

Each 4GL application must have its own MAIN routine. The two programs
cannot share variable scope. Each must be independently terminated, either
by executing an END MAIN or EXIT PROGRAM statement in 4GL.

The WITHOUT WAITING clause is useful if you know that the command will
take some time to execute, and your 4GL program does not need the result to
continue. Because RUN WITHOUT WAITING executes the specified command
line as a background process, it generally does not affect the visual display.

A common way to use RUN WITHOUT WAITING is to generate reports in the
background.

References
CALL, FUNCTION, START REPORT
INFORMIX-4GL Statements 3-267

SCROLL
SCROLL
3

The SCROLL statement specifies vertical movement of displayed values in
all or some of the fields of a screen array within the current form.

lines is a literal integer (page 3-340), or the name of a variable containing an
integer value, that specifies how far (in lines) to scroll the display.

Usage
Here 1 ≤ lines ≤ size, for size the number of lines in the screen array, and lines
the positive whole number specified in the BY clause, indicating how many
lines to move the displayed values vertically in the specified fields of a screen
array. If you omit the BY lines specification, the default value is one (1) line.

Specify UP to scroll the data towards the top of the form, or DOWN to scroll
toward the bottom of the form. For example, the following statement moves
up by one line all the displayed values in the sc_item screen array, and fills
with blanks all the fields of the last (that is, the bottom) screen record:

SCROLL sc_item.* UP

The BY clause indicates how many lines upwards or downwards to move the
data; if you omit it, as in the previous example, the default is 1 line in the
specified direction. This example moves values in two fields down by 3 lines:

SCROLL stock_num, manu_code DOWN BY 3

The SCROLL statement ignores any bracket notation (like sc_item[3].*) that
references a single record within the array; 4GL always scrolls values in the
specified fields of every screen record.

If you use the SCROLL statement, it is your responsibility to keep track of the
data left on the screen. Many developers prefer to have the user use the scroll-
ing keys of the INPUT ARRAY (page 3-172) or DISPLAY ARRAY (page 3-91)
statements, rather than SCROLL, to scroll through screen records.

References
DISPLAY ARRAY, INPUT ARRAY

SCROLL DOWN

UP

,

Field Clause
p. 2-353

BY lines
-268 INFORMIX-4GL Statements

SKIP
SKIP
The SKIP statement inserts blank lines into a report, or finishes the current
page. (It can appear only in the FORMAT section of a REPORT program block.)

lines is a literal integer (page 3-340), specifying how many blank lines
to insert below the current line.

Usage
The SKIP statement inserts blank lines into REPORT output, or advances the
current print position to the top of the next page; see also Chapter 6. The LINE
and LINES keywords are synonyms in the SKIP statement (and only here).

Output from any page trailer or page header block appears in its usual location.
The following program fragment produces a list of names and addresses:

FIRST PAGE HEADER
PRINT COLUMN 30, "CUSTOMER LIST"
SKIP 2 LINES
PRINT "Listings for the State of ", thisstate
SKIP 2 LINES
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT customer_num USING "####",
COLUMN 12, fname CLIPPED, 1 SPACE,

lname CLIPPED, COLUMN 35, city CLIPPED, " , " , state,
COLUMN 57, zipcode, COLUMN 65, phone

The SKIP LINES statement cannot appear within a CASE statement, a FOR
loop, nor a WHILE loop. The SKIP TO TOP OF PAGE statement cannot appear
in a FIRST PAGE HEADER, PAGE HEADER, nor PAGE TRAILER control block.

References
NEED, OUTPUT TO REPORT, PAUSE, PRINT, REPORT, START REPORT

SKIP TO TOP OF PAGE

LINE

LINES

integer
INFORMIX-4GL Statements 3-269

SLEEP
SLEEP
The SLEEP statement suspends execution of the 4GL program for a specified
positive whole number of seconds.

Usage
The SLEEP statement causes the program to pause for the specified number
of seconds. This can be useful, for example, when you want the screen dis-
play to remain visible long enough for the user to read it. The following state-
ment displays a screen message, and then waits 3 seconds before erasing it:

MESSAGE "Row has been added."
SLEEP 3
MESSAGE " "

In contexts where the PROMPT statement is valid, an alternative to SLEEP is
the PROMPT statement. The following example suspends program execution
until the user acknowledges a screen message by providing keyboard input:

PROMPT "Row was added. Press RETURN to continue:" FOR reply

Here the screen display remains visible until the user presses RETURN (or
enters anything), rather than for a fixed time interval. Entered keystroke(s)
are stored in the reply variable, but their actual value can be ignored.

References
DISPLAY, EXPRESSION, MESSAGE, PROMPT

SLEEP Integer
Expression

p. 3-338
3-270 INFORMIX-4GL Statements

START REPORT
START REPORT
The START REPORT statement begins processing a 4GL report. (For a discus-
sion of 4GL reports, see Chapter 6.)

command is a quoted string, containing a command to receive report output.

filename is a quoted string, containing the name of the file to receive the
report output. The filename can include a pathname.

report is the name of a report, as declared in a REPORT statement.

variable is a character variable, containing a command to receive output.

Usage
Use the START REPORT statement in a report driver to begin processing a
report. This statement does the following:

• Identifies a REPORT routine to format the input records.

• Specifies where to send the formatted output from the REPORT routine.

• Initializes any page headers in the FORMAT section of the report.

The START REPORT statement typically occurs just before a FOR, FOREACH,
or WHILE loop in which you use the OUTPUT TO REPORT statement to send
input records to the report. After the loop has terminated, you can execute the
FINISH REPORT statement to complete the report.

Do not use the START REPORT statement to reference a report that is already
running; if you do, any output will be unpredictable but probably useless.

The TO Clause

The optional TO clause determines where to direct the output from the report.
If you specify a TO clause, 4GL ignores any REPORT TO clause (page 6-13) in
the OUTPUT section of the REPORT definition.

START REPORT

PIPE

report

PRINTER

" filename"TO

variable

" command "
INFORMIX-4GL Statements 3-271

START REPORT
If the OUTPUT TO REPORT statement sends an empty set of data records to
the report, the report produces no output, and the TO clause has no effect,
even if headers, footers, and other formatting control blocks are specified.
The TO clause can send the output to any of three destinations:

• To a printer

• To a file

• To another program, command line, or shell script

The sections that follow describe these three options of the TO clause.

If you omit the TO clause of START REPORT, 4GL sends the report output to
the destination that you indicate in the optional REPORT TO specification of
the OUTPUT section of the REPORT definition, as described on page 6-13.
If neither START REPORT nor the REPORT definition specifies a destination,
then output is sent by default to the Report window (page 6-14).

The TO PRINTER Option

If you use the TO PRINTER option, 4GL sends the report output to the device
or program specified by the DBPRINT environment variable. If you do not
set this variable, 4GL sends output to the default printer of the system. For
information about setting DBPRINT and other environment variables that
4GL uses, see Appendix D.

The following statement sends output from report cust_list to the printer:

START REPORT cust_list TO PRINTER

If you want to send the output to a printer other than the default printer, you
can do one of the following:

• Set the DBPRINT environment variable.

• Use the TO filename option to send the output to a file, and then send the
file to a printer.

• Use the TO PIPE option to direct the output to a file, and then send the file
to a printer.

The TO filename Option

If you use the TO filename option, 4GL sends the report output to the file spec-
ified. The filename specification must be a quoted string, not a program vari-
able. For example, the next statement sends output from the cu_list report to
the file outfile:

START REPORT cu_list TO "outfile"
3-272 INFORMIX-4GL Statements

START REPORT
The next program creates a report, with default formatting, describing all the
customers in the customers table, and saves it in the cust_lst file.

DATABASE stores2

MAIN
DEFINE p_customer RECORD LIKE customer.*
DECLARE q_curs CURSOR FOR

SELECT * FROM customer
START REPORT cust_list TO "cust_lst"
FOREACH q_curs INTO p_customer.*

OUTPUT TO REPORT cust_list(p_customer.*)
END FOREACH
FINISH REPORT cu _list

END MAIN

REPORT cust_lst(r_customer)
DEFINE r_customer RECORD LIKE customer.*
OUTPUT REPORT TO PRINTER
FORMAT EVERY ROW

END REPORT

Here 4GL ignores the OUTPUT REPORT TO PRINTER specification in the
REPORT routine, because the TO filename clause of the START REPORT state-
ment overrides any default destination in the REPORT routine. But if the same
cust_list report were referenced in another START REPORT statement that
had no TO clause, then its output would go to the default printer.

The TO PIPE Option

The TO PIPE option sends the report output to a UNIX program, shell script,
or command line. You can include command-line arguments in the character
string or variable specified for the TO PIPE option. For example, the following
statement pipes output from the report to the more program:

START REPORT cust_list TO PIPE "/usr/ucb/more"

References
FINISH REPORT, OUTPUT TO REPORT, REPORT
INFORMIX-4GL Statements 3-273

UNLOAD
UNLOAD
The UNLOAD statement copies data from the current database to a file.

character is a literal delimiter symbol, enclosed between quotation marks.

delimiter
variable

is a CHAR or VARCHAR variable containing single symbol to sep-
arate adjacent columns within the ASCII representation each row
from the database in the output file.

filename specifies the name of an output file in which to store the rows
retrieved by the SELECT statement. This can include a pathname.

file variable is a CHAR or VARCHAR variable containing a filename.

select
variable

is a CHAR or VARCHAR variable containing a SELECT statement.
(See the Informix Guide to SQL: Reference for the syntax of SELECT.)

Usage
The UNLOAD statement must include a SELECT statement (directly, or in a
variable) to specify what rows to copy into filename. UNLOAD does not delete
the copied data. The user must have Select privileges on every column spec-
ified in the SELECT statement. (For database-level and table-level privileges,
see the GRANT statement in the Informix Guide to SQL: Reference.)

The DATABASE statement must first open the database that SELECT accesses.

You cannot use the PREPARE statement to preprocess an UNLOAD statement.

The Output File

The filename or file variable identifies an output file to store the rows retrieved
from the database by the SELECT statement.

A set of values in output representing a row from the database is called an
output record. A Newline character (ASCII 10) terminates each output record.

DELIMITER

select
variable

SELECT
Statement

[see SQLR]

UNLOAD TO

delimiter
variable

" filename"
file variable " character"
3-274 INFORMIX-4GL Statements

UNLOAD
The UNLOAD statement represents each value in the output file as a string of
ASCII characters, according to the declared data type of the database column:

NULL values of any data type are represented by consecutive delimiters in
the output file, without any characters between the delimiter symbols.

Quotation (") marks are required around a literal filename. The following
statement copies any rows where the value of customer.customer_num is
greater than or equal to 138, and stores them in a file called cust_file:

UNLOAD TO "cust_file" DELIMITER "!"
SELECT * FROM customer WHERE customer_num> = 138

Data Type Output Format

character Trailing blanks are dropped from CHAR and TEXT (but not from
VARCHAR) values. Backslash (\) is inserted before any literal
backslash or delimiter character, and before Newline anywhere in a
VARCHAR value or as the last character in a TEXT value.

number Values are written as literals (page 3-341) with no leading blanks.
MONEY values are represented with no leading currency symbol. Zero
values are represented as 0 for INTEGER or SMALLINT columns, and as
0.00 for FLOAT, SMALLFLOAT, DECIMAL, or MONEY columns.
SERIAL values are represented as literal integers (page 3-338).

DATE Values are written in the format month/ day/ year (page 3-349) unless
some other format is specified by the DBDATE environment variable.

DATETIME,
INTERVAL

Values are written in numeric format year- month- day
hour: minute: second. fraction as on pages 3-351 and 3-355), including
only the time unit values and delimiters. Time units outside the
declared precision of the database column are omitted.

BYTE Values are written in ASCII hexadecimal form, without any added
blank or Newline characters. The logical record length of an output file
that contains BYTE values can be very long, and thus may be very
difficult to print or to edit.
INFORMIX-4GL Statements 3-275

UNLOAD
This produces this output file, cust_file:

138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite 10!Palo Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo Alto!CA!94301!(415)323-5400

The DELIMITER Clause

The DELIMITER clause specifies the delimiting character that separates the
data contained in each column in a row in the output file. Enclosing
quotation (") marks are required around a literal delimiter symbol.

The following statement specifies semicolon (;) as the delimiter character:

UNLOAD TO "cust.out" DELIMITER ";"
SELECT fname, lname, company, city

FROM customer

If you omit this clause, then the default delimiter symbol is the value of the
DBDELIMITER environment variable, or the vertical bar (| = ASCII 124) if
DBDELIMITER is not set. For details of how to set the DBDELIMITER variable,
see Appendix D.

Do not specify any of the following characters as the delimiter symbol:

• Hexadecimal numbers (0 through 9, a through f , or A through F)

• Newline or Control-J

• The backslash (\) symbol

The Backslash Escape Character

The backslash serves as an escape character in the output file to indicate that
the next character is a literal character in a data value. The UNLOAD state-
ment automatically inserts a preceding backslash to prevent literal characters
from being interpreted as special characters in the following contexts:

• The backslash symbol anywhere in a CHAR, VARCHAR, or TEXT column.

• The delimiter symbol anywhere in a CHAR, VARCHAR, or TEXT column.

The UNLOAD statement uses the environment variables DBFORMAT,
DBMONEY, LC_NUMERIC, LC_MONETARY, and DBDATE to determine the
format of the output file. The precedence of these format specifications is
consistent with that of other output facilities (that is, forms and reports).
For complete information, see Appendix E.

NLS
3-276 INFORMIX-4GL Statements

UNLOAD
• The Newline symbol anywhere in a VARCHAR column, or as the last
character in a TEXT column.

If a LOAD statement (or a TBLOAD command) inserts output from UNLOAD
into the database, all escapist backslash symbols are automatically stripped.

References
DATABASE, LOAD
INFORMIX-4GL Statements 3-277

VALIDATE
VALIDATE
The VALIDATE statement tests whether the value of a variable is within
the range of values for a corresponding column in the syscolval table.

array is the name of a variable of the ARRAY OF INTEGER or ARRAY OF
SMALLINT data type that is to be validated.

column is the name of a column of table for which an INCLUDE value exists
in the syscolval table of the default database.

first is the name of a member variable of record to be validated.

last is another member that was declared later than first in record.

record is the name of a program record to be validated.

table is the name or synonym of the table or view that contains column.

variable is the name of a variable (of a simple data type) to be validated.

Usage
If your program inserts data from a screen form, then 4GL automatically
checks for validation criteria. If your program inserts data into the database
from sources other than a screen form, you can apply validation criteria from
the syscolval table (page 5-69) by using the VALIDATE statement.

You must include a DATABASE statement before the first program block in
the same module to specify a default database (page 3-59) at compile time.

VALIDATE LIKEVariable
List

Variable
List

. first THROUGH

.*

Integer
Expression

p. 3-338

[array]

,

,

.

record

variable

THRU

3

.columntable

.*

,

Table
Qualifier
p. 3-361

record . last
3-278 INFORMIX-4GL Statements

VALIDATE
This statement has no effect unless the upscol utility has assigned INCLUDE
values in the syscolval table (page 3-280) for at least one of the database col-
umns in the column list (page 3-279) of the VALIDATE statement.

If the value of a variable does not conform with the INCLUDE value in the
syscolval table (page 3-280), then 4GL sets the status variable to -4504. If you
specify a list of variables and receive a negative status value, you must test
the variables individually to detect the non-conforming value.

Because INCLUDE values can be specified only for database columns of sim-
ple data types, the list of variables cannot include BYTE nor TEXT variables.
You can, however, include members of RECORD variables, or elements of
ARRAY variables, if these members or elements are of simple data types.

The LIKE Clause

The LIKE clause specifies the database columns with which to validate the
variables.

The variables must match the specified columns in order and number, and
must be of the same or compatible data types (page 3-324). You must prefix
the name of each column with that of the table. For example, the following
statement validates two variables against two columns in the stock table:

VALIDATE var1, var2 LIKE stock.stock_num, stock.manu_code

In an ANSI-compliant database, you must qualify each table name with that
of the owner of the table (owner.table). The only exception is that you can omit
the owner prefix for any tables that you own. For example, if you own tab1,
Krystl owns tab2, and Nick owns tab3, then you could use this statement

VALIDATE var1, var2, var3
LIKE tab1.var1, krystl.tab2.var2, nick.tab3.var3

You can include the owner name in a database that is not ANSI-compliant.
If the owner is incorrect, 4GL generates an error. For more information, see the
Informix Guide to SQL: Reference.

You can also reference columns in tables outside the default database. See the
section “Table Qualifiers” on page 3-361 for more information. Even if you
specify the name of a database in the table qualifier, however, you must also
include a DATABASE statement before the first program block in the same
module to specify a default database (page page 3-59) at compile time.
INFORMIX-4GL Statements 3-279

VALIDATE
The syscolval Table

The VALIDATE statement looks up validation criteria in the INCLUDE column
of the syscolval table. To enter values into this table, use the upscol utility, as
described in Appendix B. If a column does not have any INCLUDE value in
syscolval, then 4GL takes no action. If the current database is not ANSI-com-
pliant, upscol creates a single syscolval table for all users.

The compiler looks in the default database for syscolval. Any changes to
syscolval after compilation have no effect on the 4GL program, unless you
recompile the program.

This example assumes that the state field in the customer table has validation
criteria in syscolval that limit the valid states to those in the Western region:

INPUT BY NAME p_customer.*
...
AFTER FIELD zipcode

CALL check_zip(p_customer.zipcode)
RETURNING state_zip
WHENEVER ERROR CONTINUE
VALIDATE state_zip LIKE customer.state
WHENEVER ERROR STOP
IF (status < 0) THEN

ERROR "This zipcode is not in the Western region."
END IF

...
END INPUT

References
DATABASE, DEFINE, INITIALIZE, INPUT, INPUT ARRAY, WHENEVER

In an ANSI-compliant database, each user of the upscol utility creates an
owner.syscolval table, which stores validation criteria only for the tables
owned by that user. If you omit the owner qualifier for a table that you own,
your syscolval table becomes the source for validation criteria when you
compile the program. If the owner.syscolval table does not exist, the
VALIDATE statement takes no action.

ANSI

The upscol utility cannot specify validation criteria for TEXT or BYTE
columns. Because of this restriction, the VALIDATE statement cannot
reference variables of these large binary data types.

OL
3-280 INFORMIX-4GL Statements

WHENEVER
WHENEVER
The WHENEVER statement traps SQL and 4GL errors, warnings, and end-of-
data conditions that may occur during program execution.

function is a function name (without parentheses or argument list)
to be invoked if the specified exceptional condition occurs.

label is a statement label (in the same program block) to which
4GL transfers program control when the specified excep-
tional condition occurs. (Statement labels must be declared
with the LABEL statement, as described on page 3-177.)

Usage
This statement can appear only within a MAIN, REPORT, or FUNCTION pro-
gram block. It can trap errors, warnings, and the NOT FOUND condition at
run time. The WHENEVER statement must include two items of information:

• Some type of exceptional condition.

• An action to take if the specified exceptional condition is detected.

These specifications correspond respectively to the left-hand (conditions) and
right-hand (actions) portions of the syntax diagram that appears on this page.

Using WHENEVER is equivalent to including code after every SQL statement,
and (optionally) after certain other 4GL statements to take the specified action
if the exceptional condition is detected. Without WHENEVER, program exe-
cution immediately stops when a run-time error occurs, unless the database
is ANSI-compliant.

If you use WHENEVER ERROR with any option but STOP or CONTINUE, 4GL
tests for errors by polling the global variable status.

WHENEVER

+
SQLERROR

NOT FOUND

ANY

CONTINUE

GOTO

CALL function

STOP

+

labelERROR

+

SQLWARNING

WARNING

GO TO : label
+

INFORMIX-4GL Statements 3-281

WHENEVER
Topics that are discussed in this section include the following:

Topic Page
The Scope of the WHENEVER Statement 3-282
Exceptional Conditions (ERROR, ANY, NOT FOUND, WARNING) 3-282
Action Options (GO TO, CALL, CONTINUE, STOP) 3-284

The Scope of the WHENEVER Statement

The scope of a WHENEVER statement is from its location in a program block
until the next WHENEVER statement with the same exceptional condition in
the same module (except that both ERROR and ANY ERROR reset both ERROR
and ANY ERROR). Otherwise, the WHENEVER statement remains in effect for
that exceptional condition until the end of the module.

For example, the following program has three WHENEVER statements, two of
which describe WHENEVER ERROR conditions. In line 4, CONTINUE is speci-
fied as the action to take; line 8 specifies STOP as the action for the same
ERROR condition. Any errors that 4GL encounters after line 4 but before line
8 are ignored. After line 8, and for the rest of the program, any errors that are
encountered cause the program to terminate.

MAIN --1
DEFINE char_num INTEGER --2
DATABASE test --3
WHENEVER ERROR CONTINUE --4
PRINT "Program will now attempt first insert." --5
INSERT INTO test_color VALUES ("green") --6
WHENEVER NOT FOUND CONTINUE --7
WHENEVER ERROR STOP --8
PRINT "Program will now attempt second insert." --9
INSERT INTO test_color VALUES ("blue") --10
CLOSE DATABASE --11
PRINT "Program over." --12

END MAIN --13

The ERROR Condition

The ERROR keyword directs 4GL to take the specified action if sqlcode in the
SQLCA global record is negative after any SQL statement, or if a VALIDATE
(page 3-278) or screen interaction statement (page 3-228) fails. For example,
this statement causes SQL errors to be ignored:

WHENEVER ERROR CONTINUE
3-282 INFORMIX-4GL Statements

WHENEVER
If you do not use any WHENEVER ERROR statements in a program and if, at
compile time, the database accessed by the program is not ANSI-compliant,
then the default for WHENEVER ERROR is STOP.

Besides checking for errors after SQL statements, the WHENEVER ERROR
statement also checks for errors after screen interaction statements
(page 3-228) and after VALIDATE statements. (In a WHENEVER statement,
and only in this context, SQLERROR is a synonym for ERROR. You cannot, for
example, substitute SQLERROR for ERROR in an OPTIONS or ERROR state-
ment.)

Certain errors cannot be trapped by the WHENEVER ERROR statement. Some
errors always terminate the program, and others cause 4GL to print an error
message and exit prior to the action specified by WHENEVER. For a list of
untrappable run-time errors, see “Exception Handling” on page 2-23.

The ANY ERROR Condition

Without ANY, WHENEVER ERROR resets status to the sqlcode value only if
the error occurs during an SQL, VALIDATE, or screen interaction statement.
The ANY keyword before ERROR, however, resets status after evaluating any
4GL expression. The -anyerr command-line option is described in Chapter 1.
This can override WHENEVER statements in determining whether the status
variable is reset when 4GL expressions are evaluated.

The NOT FOUND Condition

If you use the NOT FOUND keywords, SELECT and FETCH statements (and
implicit FETCH or SELECT statements in FOREACH or UNLOAD statements)
are treated differently from other SQL statements. The NOT FOUND keywords
check for the end-of-data condition in the following cases:

• A FETCH attempts to get a row beyond the first or last row in the active
set.

• A SELECT statement returns no rows.

In both cases, the sqlcode variable is set to 100. The following statement calls
the no_rows() function whenever the NOT FOUND condition is detected:

WHENEVER NOT FOUND CALL no_rows

If you do not use any WHENEVER ERROR statements in a program and if, at
compile time, the database accessed by the program is ANSI-compliant,
then the default for WHENEVER ERROR is CONTINUE.

ANSI
INFORMIX-4GL Statements 3-283

WHENEVER
Note: Although both NOT FOUND and NOTFOUND indicate the same condition,
they cannot be used interchangeably. Use NOTFOUND (one word) in status, and use
NOT FOUND (two words) in the WHENEVER statement.

The WARNING Condition

If you use the WARNING keyword (or its synonym SQLWARNING), any SQL
statement that generates a warning also produces the action indicated by the
WHENEVER WARNING statement. If a warning occurs, the first field of the
SQLAWARN record is set to W. For example, the following statement causes
a program to halt execution whenever a warning condition exists:

WHENEVER WARNING STOP

The GOTO Option

Use the GOTO clause to transfer control to the statement identified by the
specified statement label. The keywords GO TO are a synonym for GOTO.

The label that follows the GOTO keyword must be declared by a LABEL state-
ment in the same FUNCTION, REPORT, or MAIN program block as the current
WHENEVER statement. For example, the WHENEVER statement in this pro-
gram fragment transfers control to the statement labeled missing: whenever
the NOT FOUND condition occurs:

FUNCTION query_data()
...
FETCH FIRST a_curs INTO p_customer.*
WHENEVER NOT FOUND GO TO :missing
...
LABEL missing:

MESSAGE "No customers found."
SLEEP 3
MESSAGE ""

END FUNCTION

If your source module contains more than one program block, you may need
to redefine the error condition. For example, suppose that the module con-
tains three functions, and the first function includes a WHENEVER ... GOTO
statement and a corresponding LABEL statement. When compilation moves
from the first FUNCTION definition to the next, the WHENEVER specification
still specifies a jump to the label, but that label is no longer defined in the sec-
ond FUNCTION block. If the compiler processes an SQL statement within that
block before you redefine the action to take for the same condition (for exam-
ple, to WHENEVER ERROR CONTINUE), then a compilation error results.
3-284 INFORMIX-4GL Statements

WHENEVER
To avoid this error, you can reset the error condition by issuing another
WHENEVER statement. Alternatively, you can use the LABEL statement to
define the same statement label in each function, or you can use the CALL
option of WHENEVER to invoke a separate function.

The CALL Option

The CALL clause transfers program control to the specified function. Do not
include parentheses after the function name. You cannot pass variables to the
function. For example, the following statement executes a function called
error_recovery() if an error condition is detected:

WHENEVER ERROR CALL error_recovery

If you use the BEGIN WORK statement in a function called by WHENEVER,
always specify WHENEVER ERROR CONTINUE and WHENEVER WARNING
CONTINUE before the ROLLBACK WORK statement. This prevents the pro-
gram from looping if ROLLBACK WORK encounters an error or warning.

You cannot specify the name of a stored procedure after the CALL keyword.
To invoke a stored procedure, use the CALL clause to execute a function that
contains an EXECUTE PROCEDURE statement for the desired procedure.

The CONTINUE Option

The CONTINUE keyword to instruct the program to take no action. You can
use this keyword to turn off a previously specified option. This is the default
option after a WARNING or NOT FOUND condition (and also after an error, if
the database is ANSI-compliant).

If you specify WHENEVER ERROR CONTINUE, the built-in START_LOG()
function does not record errors automatically; see page 4-83.

If the database is ANSI-compliant, CONTINUE is the default action after an
error, if no WHENEVER statement is in effect.

The STOP Option

Use the STOP keyword to exit from the program immediately, if the specified
exceptional condition occurs. The following statement terminates program
execution when the database server issues a warning:

WHENEVER WARNING STOP

If the database is not ANSI-compliant, the default action after an error is STOP,
if no WHENEVER statement is in effect.
INFORMIX-4GL Statements 3-285

WHENEVER
References
CALL, DEFER, FOREACH, FUNCTION, GOTO, IF, LABEL, VALIDATE
3-286 INFORMIX-4GL Statements

WHILE
WHILE
The WHILE statement executes a block of statements while a condition that
you specify by a 4GL Boolean expression is TRUE.

statement is an SQL statement or other 4GL statement.

Usage
If the 4GL Boolean expression is TRUE, then 4GL executes the statements that
follow the expression, until it encounters the END WHILE keywords. Then it
re-evaluates the 4GL Boolean expression.

If the Boolean expression is FALSE, 4GL terminates the loop and resumes exe-
cution after the END WHILE keywords. If the Boolean expression is already
FALSE on entry to the WHILE statement, then program control passes directly
to the statement immediately following the END WHILE keywords.

The following example demonstrates a WHILE loop. If the user responds to
the prompt with y, 4GL calls the enter_order() function and then prompts the
user whether to enter another order. 4GL continues entering orders and
prompting the user, as long as the user specifies y to the PROMPT:

LET answer = "y"
WHILE answer = "y"

CALL enter_order()
PROMPT "Do you want to enter another order (y/n) : "

FOR answer
END WHILE

You can interrupt the sequence of statements in a WHILE loop by using the
CONTINUE WHILE or EXIT WHILE statement, as described on the next page.

If your database has transaction logging, then it is advisable that the entire
WHILE loop be within a transaction (See Informix Guide to SQL: Tutorial for
more information about the SQL statements that support transactions.)

statement

EXIT WHILE

CONTINUE WHILE

END WHILE4GL Boolean
Expression

p. 3-333

WHILE
INFORMIX-4GL Statements 3-287

WHILE
The CONTINUE WHILE Statement

The CONTINUE WHILE statement interrupts a WHILE loop and cause 4GL
to evaluate the Boolean expression again. If the expression is still TRUE, 4GL
begins a new iteration of the statements in the loop. If the expression is no
longer TRUE, control passes to the statement that follows END WHILE.

The EXIT WHILE Statement

Use the EXIT WHILE statement to terminate the WHILE loop. When the
EXIT WHILE keywords are encountered, 4GL does the following:

• Skips all the statements between the EXIT WHILE statement and the
END WHILE keywords.

• Resumes execution at the statement following the END WHILE keywords.

The following example demonstrates using the EXIT WHILE statement within
a WHILE loop. If the status variable is not equal to zero, then 4GL executes the
statements that follow the END IF keywords; otherwise, 4GL exits from the
WHILE loop and executes the following DISPLAY statement:

WHILE TRUE
...
IF status = 0 THEN

EXIT WHILE
END IF
...

END WHILE
DISPLAY p_customer.* TO customer.*

If, as in this example, statements in the WHILE loop cannot change the value
of the Boolean expression to FALSE, the WHILE loop cannot terminate unless
you specify EXIT WHILE, or GOTO, or some other logical way out of the loop.

The END WHILE Keywords

The END WHILE keywords indicate the end of the WHILE loop, and cause 4GL
to evaluate the Boolean expression again. If the expression is still TRUE, 4GL
re-executes the statements in the loop. If the expression is no longer TRUE,
4GL passes control to the statement that follows END WHILE.

References
CONTINUE, END, EXIT, FOR, FOREACH
3-288 INFORMIX-4GL Statements

Statement Segments
Statement Segments
The sections that follow describe segments that can appear in the syntax
diagrams of some of the 4GL statements that were described in the
previous sections.

The following statement segments are described:

• ATTRIBUTE Clause

• Data Types

• Expressions of 4GL

• Field Clause

• Table Qualifiers

• THROUGH, THRU, and .* Notation
INFORMIX-4GL Statements 3-289

ATTRIBUTE
ATTRIBUTE
The ATTRIBUTE clause assigns visual attributes in some 4GL statements.

Usage
Keywords listed at the left of this diagram specify color; those at the
right specify intensity. The ATTRIBUTE clause can appear in the following
statements:

CONSTRUCT DISPLAY FORM INPUT ARRAY
DISPLAY ERROR MESSAGE
DISPLAY ARRAY INPUT PROMPT

Besides these statements, both the OPEN WINDOW statement (page 3-219)
and the OPTIONS statement (page 3-228) can include ATTRIBUTE clauses that
support additional keywords, as described earlier in this chapter.

An attribute clause in any statement except OPEN WINDOW or OPTIONS can
specify zero or more of the BLINK, REVERSE, and UNDERLINE attributes, and
zero or one of the other attributes. That is, all of the attributes except BLINK,
REVERSE, and UNDERLINE are mutually exclusive.

BLINK

UNDERLINE

,

ATTRIBUTE ()

WHITE

RED

CYAN

GREEN

BLUE

BOLD

DIM

INVISIBLE

NORMAL

REVERSE

ATTRIBUTE
Clause

YELLOW

MAGENTA

BLACK
3-290 INFORMIX-4GL Statements

Color and Monochrome Attributes
Color and Monochrome Attributes
Support for the REVERSE and INVISIBLE attributes does not depend on the
color versus monochrome status of the monitor. On any monitor, for example,
specifying INVISIBLE in an ATTRIBUTE clause prevents its 4GL statement
from displaying output on the screen, or else from echoing the user’s key-
strokes during data entry. (But the screen shows the character positions to
which the screen cursor moves while the user types.)

For other attributes, 4GL supports either color or monochrome monitors,
but not both. If you have a color monitor, you cannot display the monochrome
attributes (such as BOLD or DIM). If you have a monochrome monitor, you
cannot display the color attributes (such as RED or BLUE).

For all ATTRIBUTE clauses and field attributes (as described in Chapter 4), the
following table shows the effects of the color attributes on a monochrome
monitor, as well as the effects of the intensity attributes on a color monitor:

Color Monochrome Intensity Color
Attribute Display Attribute Display
WHITE normal NORMAL white
YELLOW bold BOLD red
MAGENTA bold DIM blue
RED bold
CYAN dim
GREEN dim
BLUE dim
BLACK dim

The following example demonstrates using the ATTRIBUTE clause in an
ERROR statement. If the insert_items() function returns FALSE, then 4GL rolls
back the changes to the database and displays the error message:

IF NOT insert_items() THEN
ROLLBACK WORK
ERROR "Unable to insert items."

ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF

If the terminal supports color, 4GL displays the error message in red, blink-
ing, reverse video. If the terminal screen is monochrome, then 4GL displays
the error message in bold, blinking, reverse video.
INFORMIX-4GL Statements 3-291

Precedence of Attributes
Within its scope (which may be while a field, a form, or a 4GL window is dis-
played, or while a statement executes), a color attribute overrides any default
colors specified for your terminal. (The next page describes the precedence of
4GL attributes.)

Precedence of Attributes
You can assign different attributes to the same field. During execution
of field-related statements, however, 4GL uses these rules of precedence
(highest to lowest) to resolve any conflicts among attribute specifications:

1. The ATTRIBUTE clause of the current statement.

2. The attributes from the field descriptions in the ATTRIBUTES section of
the current form file. (See “Field Attribute Syntax” on page 5-28.)

3. The default attributes specified in the syscolatt table of any fields linked
to database columns. To modify the syscolatt table, use the upscol utility.
For information on using this utility, see Appendix B.

4. The ATTRIBUTE clause of the most recent OPTIONS statement.

5. The ATTRIBUTE clause of the current form in the most recent
DISPLAY FORM statement.

6. The ATTRIBUTE clause of the current 4GL window in the most recent
OPEN WINDOW statement.

7. The default reserved line positions and the default foreground color on
your terminal.

The field-related statements of INFORMIX-4GL are these:

CONSTRUCT DISPLAY ARRAY INPUT
DISPLAY DISPLAY FORM INPUT ARRAY

You cannot override the attributes specified for the ERROR, MESSAGE, and
PROMPT statements, so precedence rules do not affect these statements.

References
CONSTRUCT, DATABASE, DISPLAY, DISPLAY ARRAY, DISPLAY FORM,
ERROR, INPUT, INPUT ARRAY, MESSAGE, OPEN WINDOW, OPTIONS, PROMPT
3-292 INFORMIX-4GL Statements

Data Types of 4GL
Data Types of 4GL
You must declare a data type for each variable, FORMONLY field, and argument
of a function or report. These are the 4GL data types:

Data Type Kind of Values Stored
ARRAY OF type Arrays of values of any other single data type.
BYTE Any kind of binary data.
CHAR Character strings of up to 32,767 ASCII characters.
CHARACTER (This keyword is a synonym for CHAR.)
DATE Points in time, specified as calendar dates.
DATETIME Points in time, specified as calendar dates and time-of-day.
DEC (This keyword is a synonym for DECIMAL.)
DECIMAL Fixed point numbers, of a specified scale and precision.
DOUBLE PRECISION (These keywords are a synonym for FLOAT.)
FLOAT Floating-point numbers, of up to 32-digit precision.
INT (This keyword is a synonym for INTEGER.)
INTEGER Whole numbers, from -2,147,483,647 to +2,147,483,647.
INTERVAL Spans of time in years and months, or else in smaller time units.
MONEY Currency amounts, with definable scale and precision.
NUMERIC (This keyword is a synonym for DECIMAL.)
REAL (This keyword is a synonym for SMALLFLOAT.)
RECORD Ordered sets of values, of any combination of 4GL data types.
SMALLFLOAT Floating-point numbers, of up to 16-digit precision.
SMALLINT Whole numbers, from -32,767 to +32,767.
TEXT Character strings of any length.
VARCHAR Character strings of varying length, no greater than 255.

Except for ARRAY and RECORD, each of these corresponds to a data type of
SQL. (The SERIAL type of SQL is not a 4GL data type. You can use variables of
the INTEGER data type to store SERIAL values from the database.) Every 4GL
data type specification uses the following syntax (or else uses the LIKE key-
word, as described on page 3-69):

TEXT and BYTE are called the large data types; ARRAY and RECORD are called
the structured data types. All other 4GL data types are simple data types.

4GL Data Type

RECORD Data Type
p. 3-313

 Simple Data Type
p. 3-295

ARRAY Data Type
p. 3-297

TEXT

BYTE
INFORMIX-4GL Statements 3-293

The Simple Data Types
The Simple Data Types
Each simple data type of 4GL can store a single value whose maximum storage
requirement is specified or implied in the data type declaration.

maximum
size

is a whole number from 1 to 255, specifying the largest number
of characters that a VARCHAR variable can store.

precision specifies the total number of decimal digits, from 1 to 32.

reserve size is a whole number, from 0 to maximum size. The default is 0.

scale is a whole number, from 1 to precision, specifying the number
of digits in the fractional part of a fixed-point number.

size is a whole number from 1 to 32,767, specifying how many
characters a CHAR variable stores. The default is 1.

,precision scale

DATETIME Qualifier
p. 3-349

INTERVAL Qualifier
p. 3-353

VARCHAR maximum size

, reserve size

INTEGER

INT

DECIMAL

DEC

NUMERIC

FLOAT

DOUBLE PRECISION precision

SMALLFLOAT

REAL

DATE

DATETIME

INTERVAL

CHARACTER

CHAR

4GL Simple Data Type

(1)

(16)
, 2

MONEY

 size

()

()

()

precision , scale

(
()
(16, 2))

)
SMALLINT

)

, 0
3-294 INFORMIX-4GL Statements

The Simple Data Types
All parameters are literal integers (page 3-340). Sections that follow describe
each of these data types. (The articles in this chapter about the FUNCTION,
REPORT, and DEFINE statements, as well as Chapter 5 and Chapter 6,
describe how to declare the data types of 4GL variables, FORMONLY screen
fields, and the formal arguments of functions and reports.)

Each simple data type can be classified as a number, time, or character type:

Number Data Types

4GL supports six simple data types to store various kinds of numbers:

Whole Number Data Types
• SMALLINT Whole numbers, ranging from -32,767 to +32,767.

• INTEGER Whole numbers, from -2,147,483,647 to +2,147,483,647.

Fixed-Point Number Data Types
• DECIMAL (p,s) Fixed-point numbers, of scale s and precision p.

• MONEY Currency values, of a definable scale and precision.

Floating-Point Number Data Types
• DECIMAL (p) Floating-point numbers of precision p (or by default, 16).

• FLOAT Floating-point, double-precision numbers.

• SMALLFLOAT Floating-point, single-precision numbers.

Time Data Types

4GL supports three simple data types for storing values in chronological
units. Two of these store points in time, and the third can store spans of time
(positive or negative differences between points in time):

• DATE Calendar dates (month, day, year) with a fixed scale of days,
within the range of calendar dates from January 1 of the year
1 up to December 31 of the year 9999.

• DATETIME Instants in time expressed as calendar dates (year, month,
day) and time-of-day (hour, minute, second, and fraction of a
second), within the range of years 1 to 9999.

• INTERVAL Differences between two DATETIME or INTERVAL values,
or between a DATE and a DATETIME value, expressed in
years and months, or else in days and smaller units of time.
INFORMIX-4GL Statements 3-295

The Structured Data Types
Character Data Types

4GL supports two simple data types for storing character strings. Each
is designed for a different maximum length of the data string:

• CHAR Strings of up to 32,767 characters. (The ANSI standard also
recognizes the keyword “CHARACTER” for this data type.)

• VARCHAR Strings of up to 255 characters, optionally reserving a
definable number of bytes (up to 255) of storage space.

Note: The TEXT data type (described on page 3-317) can contain long text strings,
theoretically up to 231 bytes. INFORMIX-4GL manipulates TEXT values in a different
way, however, from VARCHAR or CHAR values. The INFORMIX-SE engine does not
support TEXT or VARCHAR database columns, nor CHAR columns of size 32,512
through 32,767 characters. You can, however, declare these data types for 4GL vari-
ables, formal arguments of functions or reports, and screen fields in forms, regardless
of which database engine supports your 4GL application.

The Structured Data Types
4GL supports two structured data types for storing sets of values:

• ARRAY Arrays of up to 32,767 values (in any of up to three dimensions)
of any data type except ARRAY. (The limit on the total number
of elements in an array is compiler-dependent.)

• RECORD Sets of values of any data type, or any combination of types.

The Large Data Types
These store pointers to binary large object (“blob”) values, up to 231 bytes in
size (or to a limit imposed by your implementation of INFORMIX-OnLine):

• TEXT Character strings.

• BYTE Anything that can be digitized and stored on your system.

Descriptions of the 4GL Data Types
Sections that follow describe each of the 4GL data types in alphabetical order.
3-296 INFORMIX-4GL Statements

ARRAY
ARRAY
This structured data type stores a 1-, 2-, or 3-dimensional array of variables,
all of the same data type. These component variables can be any 4GL data
type except ARRAY. This is the syntax for declaring an array of variables:

size is the number (up to 32,767) of elements in a dimension. Each dimen-
sion can have a different size. (The limit on the total number of elements
in an array is imposed by your C compiler, not 4GL.)

Array Elements

Here the data types are a subset of those on page 3-293 because ARRAY is not
valid. A variable in an array is called an element. You can use bracket ([])
symbols and comma-separated integers to reference an element of an array.
For example, if array is the identifier of an array, then:

• array [i] means the ith element of a single-dimensional array.

• array [i, j] means the jth element in the ith row of a 2-dimensional array.

• array [i, j, k] means the kth element in the jth column of the ith row of a
3-dimensional array.

Here i, j, and k can be variables or other integer expressions (page 3-338) that
evaluate to positive whole numbers no larger than 32,767.

Note: Some compilers impose a lower limit on the number of elements in any dimen-
sion, or on the total number elements. For an array of two or more dimensions, the
total number of elements is the product of all the declared size specifications.

Substrings of Character Array Elements

If char_array [i, j, k] is an element of an array of a character data type, you can
use a comma-separated pair of integer expressions (page 3-338) between
trailing bracket ([]) symbols to specify a substring within its string value:

 char_array [i, j, k] [m, n]

Here m ≤ n, for m and n expressions that return positive whole numbers that
specify the respective positions of the first and last characters of a substring
within the array element whose coordinates in char_array are i, j, and k.

ARRAY Data Type

]size OF[3 4GL Data Type
(subset of p. 3-293)

,

ARRAY
INFORMIX-4GL Statements 3-297

BYTE
BYTE
The BYTE data type stores any kind of binary data in an undifferentiated byte
stream. Binary data typically consist of saved spreadsheets, program load
modules, digitized voice patterns, and so on. The INFORMIX-SE database
engine does not support BYTE columns, but the 4GL application program can
declare program variables of the BYTE data type. The INFORMIX-OnLine
engine can store data in BYTE columns.

The data type BYTE has no maximum size; the theoretical limit 231 bytes, but
the practical limit is determined by the storage capacity of your system.

You can use a BYTE variable to store, retrieve, or update the contents of a BYTE
database column, or to reference a file that you wish to display to users of the
4GL program through an external editor. After you declare a BYTE data type,
you must use the LOCATE statement to specify the storage location.

Subsets of BYTE Values

When you select a BYTE column, you can assign all or part of it to a variable
of type BYTE. You can use bracket ([]) symbols and subscripts to reference
only part of a BYTE value, as shown in the following example:

SELECT cat_picture [1,75] INTO cat_nip FROM catalog
WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_picture column of the row
with the catalog number 10001, and stores these data in the cat_nip variable.

Restrictions on BYTE Variables

Aggregate functions in reports cannot have BYTE variables as arguments.
Among expressions, only 4GL Boolean expressions can reference BYTE vari-
ables, and these are valid only when testing for NULL values (page 3-336).

The DISPLAY statement and PRINT statements cannot display BYTE values,
nor can the LET statement or INITIALIZE statement assign any value (except
NULL) to a BYTE variable. The CALL statement and OUTPUT TO REPORT
statements pass any BYTE arguments by reference, not by value.

A form field linked to a BYTE column (or a FORMONLY field of type BYTE)
displays the characters <BYTE value> rather than actual data. You can use
the PROGRAM attribute to display a BYTE value. No other field attributes
(except COLOR) can reference the value of a BYTE field. The upscol utility
cannot set default attributes or values for a BYTE field.
3-298 INFORMIX-4GL Statements

CHAR
CHAR
The CHAR data type of 4GL can store any ASCII character string, up to a
length specified between parentheses (()) symbols in the size parameter of
the DEFINE statement that declares the data type. The size can range from 1 to
32,767. For example, the variable keystrokes in the statement

DEFINE keystrokes CHAR(78)

can hold a character string of up to 78 characters. If no size is specified, as in

DEFINE keystrokes CHAR

the resulting default CHAR data type can store only a single character. In a
form, you cannot specify the size of a FORMONLY CHAR field; the size defaults
to the field length from the screen layout. On the INFORMIX-SE engine, the
maximum data string length that a CHAR column can store is 32,511.

The CHAR data type requires one byte of storage per character, or size bytes.
When a string value is passed between a CHAR variable and a CHAR data-
base column, or between two CHAR variables, exactly size bytes of data are
transferred, for size the declared length of the 4GL variable or the database
column that receives the string. If the length of the data string is shorter than
this size, the string is padded with trailing blank spaces to fill the declared
size. If the string is longer than size, then the stored value is truncated. A char-
acter string returned by a function can contain no more than 511 bytes of data.

To perform arithmetic on numbers stored in variables, use a number data
type. CHAR variables can store digits, but you might not be able to use them
in some calculations. Similarly, leading zeros (as in some postal codes) are
stripped from values stored as the number data types INTEGER or SMALLINT.
You should store such values as CHAR data types.

When accessing an NLS database in the standard way (Implicit NLS), all
character data in the database is sorted and compared according to the
locale established at the time of database creation. For example, the 4GL
user cannot create character data columns that sort in US English if the
database locale (the locale the database was created in) is non-US-English.
Although character columns defined by a 4GL program are defined within
the program as type CHAR (or VARCHAR, if variable-length), they are
interpreted by the server as type NCHAR (or NVARCHAR) if the database
is non-US-English. This process is known as implicit mapping.

4GL supports the Implicit and Open NLS environments. Explicit NLS is not
supported in 4GL. For more information, see Appendix E, “Native Lan-
guage Support Within INFORMIX-4GL.”

NLS
INFORMIX-4GL Statements 3-299

CHARACTER
CHARACTER
The CHARACTER keyword is a synonym for CHAR.

DATE
The DATE data type stores calendar dates. A calendar date is stored internally
as an integer that evaluates to the number of days since December 31, 1899.
The default display format of a DATE value is

mm/dd/yyyy

for mm a month (1 to 12), dd a day of the month (1 to 31), and yyyy a year (0001
to 9999). The DBDATE environment variable can change the separator symbol

and the default order of day, month, and year time units. The FORMAT
attribute specifies DATE display formats in forms. For month, 4GL accepts the
value 1 or 01 for January, 2 or 02 for February, and so on. For days, it accepts
a value 1 or 01 for the first day of the month, 2 or 02 for the second, and so
on, up to the maximum number of days in a given month.

If the user of your application enters from the keyboard a two-digit value for
the year, as in 89 or 93 , then 4GL assumes that the year is in the range 1900-
1999, and assigns 1 and 9 as the first two digits (19) of the year. (Users must
pad the year value with one or two leading zeros to specify years in the First
Century; for example, “093” or “0093 ” for the year 93 A.D.)

Because DATE values are stored as integers in the range 693,594 to 2,958,464,
you can use them in arithmetic expressions, such as the difference between
two DATE values. The result, a positive or negative INT value, is the number
of days that have elapsed between the two dates. The UNITS DAY operator
can convert this to an INTERVAL. (The use of DATE operands in division,
multiplication, or exponentiation cannot produce meaningful results.)

DATETIME
The DATETIME data type stores an instant in time, expressed as a calendar
date and time-of-day. You specify the time units that the DATETIME value
stores; the precision can range from a year through a fraction of a second.
Data are stored as DECIMAL numbers that represent a contiguous sequence
of values, each representing units of time. Its declaration uses this syntax:

DATETIME Qualifier
p. 3-349

DATETIME
3-300 INFORMIX-4GL Statements

DATETIME
The scale and precision specification is called the DATETIME qualifier. It uses
a “first TO last” format to declare variables and screen fields. You must sub-
stitute one or two of these keywords for the first and last terms:

Keyword Corresponding Time Unit and Range of Values
YEAR A year, numbered from 0001 (A.D.) to 9999.
MONTH A month, numbered from 1 to 12.
DAY A day, numbered from 1 to 31, as appropriate for its month.
HOUR An hour, numbered from 0 (midnight) to 23.
MINUTE A minute, numbered from 0 to 59.
SECOND A second, numbered from 0 to 59.
FRACTION (scale) A decimal fraction of a second, with a scale of up to five digits.
or FRACTION The default scale is three digits (thousandth of a second).

The keyword specifying the last term cannot represent a larger unit of time
than the first keyword. Thus, YEAR TO SECOND or HOUR TO HOUR are valid,
but DAY TO MONTH results in a compiler error, because the last keyword
(here MONTH) specifies a larger unit of time than DAY, the first keyword.

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify non-default
precision (except for FRACTION, if that is the last keyword in the qualifier).
The following are examples of valid DATETIME qualifiers:

DAY TO MINUTE YEAR TO MINUTE
FRACTION TO FRACTION(4)MONTH TO SECOND

Operations with DATETIME values that do not include YEAR in their qualifier
use the system date to supply any additional precision. If the first term is DAY
and the current month has fewer than 31 days, unexpected results can occur.

For example, assume that it is February, and you wish to store data from
January 31 in the sometime variable that is declared in the next statement:

DEFINE sometime DATETIME DAY TO MINUTE
CREATE TABLE mytable (mytime DATETIME DAY TO MINUTE)
LET sometime = DATETIME(31 12:30) DAY TO MINUTE
INSERT INTO mytable VALUES (sometime)

Because the column mytime does not store the month nor year, the current
month and year are used to evaluate whether the inserted value is within
acceptable bounds. February has only 28 (or 29) days, so no value for DAY
can be larger than 28 (or 29 some years). The INSERT statement in this case
INFORMIX-4GL Statements 3-301

DATETIME
would fail, because the value 31 for day is out of range for February. To avoid
this problem, qualify DATETIME data types with YEAR or MONTH as the first
keyword, and do not enter data values with day as the largest time unit.

DATETIME Literals and Delimiters
Statements of 4GL can assign values to DATETIME data types. The simplest way
to do this is as a DATETIME literal or as a character string. Both formats rep-
resent a specific DATETIME value as a numeric DATETIME value.

The DATETIME literal format begins with the DATETIME keyword, followed
by a pair of parentheses that enclose unsigned whole numbers (separated
by delimiters) to represent a consecutive sequence of year through fraction
values, or a subset thereof. This must be followed by a DATETIME qualifier,
specifying the first TO last keywords for the set of time units in the numeric
DATETIME value.

For example, DATETIME YEAR TO FRACTION(3) values require six delimiters:

These are the delimiters that are required within DATETIME literal values.

Delimiter Position within DATETIME Value
hyphen (-) symbol Between the year, month, and day portions of the value.
blank () space Between the day and hour portions
colon (:) symbol Between the hour, minute, and second portions.
decimal (.) point Between the second and fraction portions.

DATETIME Qualifier
p. 3-349

Numeric DATETIME Value
p. 3-351

DATETIME Literal
p. 3-351

()DATETIME

92-08-15 12:42:06.011
fractionsecondhour minutemonth dayyear

hyphen space colon decimal point
3-302 INFORMIX-4GL Statements

DATETIME
DATETIME literals can specify every time unit from the data-type declaration,
or only the units of time that you need. For example, you can assign a value
qualified as MONTH TO HOUR to a variable declared as YEAR TO MINUTE,
if the value contains information for a contiguous sequence of time units. You
cannot, however, assign a value for just month and hour; in this case, the
DATETIME literal must also include a value (and delimiters) for day.

A DATETIME literal that specifies fewer units of time than in the declaration
is automatically expanded to fill all the declared units. If the omitted value is
for the first unit of time, or for this and for other time units larger than the larg-
est unit that is supplied, then the missing units are automatically supplied
from the system clock-calendar. If the value omits any smaller time units, their
values each default to zero (or to 1 for month and day) in your entry. To specify
a year between 1 and 99, you must pad the year value with leading zeros.

Character Strings as DATETIME Values

You can also specify a DATETIME value as a character string, indicating the
numeric values of the date and time. In a 4GL source module, this must be
enclosed between a pair of quotation (") marks, without the DATETIME key-
word and without qualifiers, but with all the required delimiters. Unlike
DATETIME literals, the character string must include information for all the
units of time declared in the DATETIME qualifier. For example, the following
LET statement specifies a DATETIME value entered as a character string:

LET call_dtime = "1992-08-14 08:45"

In this case, the call_dtime variable was declared as DATETIME YEAR TO
MINUTE, so the character string must specify values for year, month, day, hour,
and minute time units. If the character string does not contain information for
all the declared time units, an error results. Similarly, an error results if a
delimiter is omitted, or if extraneous blanks appear within the string.

When a user of the 4GL program enters data in a DATETIME field of a screen
form, or during a PROMPT statement that expects a DATETIME value, the only
valid format is a numeric DATETIME, entered as an unquoted string. Any
entry in a DATETIME field must be a contiguous sequence of values for units
of time and delimiters, in the following format (or in some subset of it):

year-month-day hour:minute:second.fraction

Depending on the data type declaration of the DATETIME field, each of these
units of time can have values that combine traditional base-10, base-24, base-
60, and lunar calendar values from clocks and calendars.
INFORMIX-4GL Statements 3-303

DEC
Values that users enter in a DATETIME field of the 4GL form need not include
all the declared time units, but users cannot enter data as DATETIME literals,
a format that is valid only within 4GL statements and in the data type decla-
rations of FORMONLY DATETIME fields of form specification files.

All time-unit values of a DATETIME data type are two-digit numbers, except
for the year and fraction values. The year is stored as four digits. The fraction
requires n digits, for 1 ≤ n ≤ 5, rounded up to an even number. You can use
the following formula (rounded up to a whole number of bytes) to calculate
the number of bytes required to store a DATETIME value:

((total number of digits for all time units)/2) + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four
for year, two for month, and two for day), or ((8/2) + 1) = 5 bytes of storage.
For information on using DATETIME values in time expressions and in 4GL
Boolean expressions, see the section “Expressions of 4GL” on page 3-326.

DEC
The DEC keyword is a synonym for DECIMAL.

DECIMAL
The DECIMAL data type stores values as decimal numbers, up to 32 signifi-
cant digits. As the declaration syntax for simple data types on page 3-293
indicates, you can optionally specify the precision (the number of significant
digits) and the scale (the number of digits to the right of the decimal point).
For example, “DECIMAL (14,2)” specifies a total of 14 significant digits, two of
which describe the fractional part of the value.

When you specify both the precision and scale, the 4GL program can manip-
ulate the DECIMAL variable or constant with fixed-point arithmetic.
If the data type declaration specifies neither the precision nor the scale, the
default is DECIMAL(16), a floating-point decimal with a precision of 16 digits.
If you specify only one parameter, this is interpreted as the precision of a
floating-point number that can range in absolute value from 10-128 to 10126.

The largest absolute value that you can store without an error in a DECIMAL
variable is 10 p-s -10 -s. Here p is the precision, and s is the scale. Values with
an absolute value less than 0.5 × 10-s are stored as zero. You cannot specify p
nor s for a FORMONLY DECIMAL field in a form; its precision is the smaller of
32 and (length - 2), where length is the field width in the screen layout.
3-304 INFORMIX-4GL Statements

DOUBLE PRECISION
DECIMAL (p,s) data types are useful for storing numbers with fractional parts
that must be calculated exactly, such as rates or percentages. Unless you are
developing a scientific or engineering application that explicitly controls for
measurement error, store floating-point numbers as DECIMAL(p,s) values.

When a user enters data in a SMALLFLOAT or FLOAT field, 4GL converts the
base-10 value to binary format for storage. Likewise, to display a FLOAT or
SMALLFLOAT number, 4GL reformats it from binary to base-10. Both conver-
sions can lead to inaccuracy. Thus, if a user enters 10.7 into a FLOAT field, it
might actually be stored as 10.699999 or as 10.700001 , depending on the
magnitude and the sign of the binary-to-decimal conversion error. This limi-
tation is a feature of digital computers, rather than of 4GL.

The following formulae calculate the storage needed (in bytes) for DECIMAL
values; you must round any fractional result up to the next whole number:

When scale is EVEN: (precision + 3) /2)
When scale is ODD: (precision + 4) /2)

For example, DECIMAL(15,2) requires ((15 + 3) / 2) = 9 bytes of storage.

DOUBLE PRECISION
The DOUBLE PRECISION keywords are a synonym for FLOAT.

FLOAT
The FLOAT data type stores values as double-precision floating-point binary
numbers with up to 16 significant digits. FLOAT corresponds to the double
data type in the C language. Values for the FLOAT data type have the same
range of values as the C double data type on your C compiler.

For compatibility with the ANSI standard for embedded SQL, you can declare
a whole number between 1 and 14 as the precision of a FLOAT data type, but
the actual precision is data-dependent and compiler-dependent.

A variable or constant of the FLOAT data type typically stores scientific or
engineering data that can only be calculated approximately. Since floating-
point numbers retain only their most significant digits, a value that is entered
into a FLOAT variable, constant, or database column can differ slightly from
the numeric value that a 4GL form or report displays.

This rounding error arises from how computers store floating-point numbers
internally. For example, you might enter a value of 1.1 into a FLOAT field.
After processing the 4GL statement, the program might display this value as
1.09999999 . This occurs in the typical case where the exact floating-point
INFORMIX-4GL Statements 3-305

INT
binary representation of a base-10 value requires an infinite number of digits
in the mantissa. The computer stores a finite number of digits, so it stores an
approximate value, with the least significant digits treated as zeros.

Statements of 4GL can specify FLOAT values as floating-point literals:

You can use uppercase or lowercase E as the exponent symbol; omitted signs
default to + (positive). If a number in another format (such as an integer or a
fixed-point decimal) is supplied in a .4gl file or from the keyboard when a
FLOAT value is expected, 4GL attempts data type conversion.

FLOAT data types usually require 8 bytes of memory storage. In reports and
screen displays, you can use the USING operator to format FLOAT values.
Unless you do so, the default scale in output is two (2) decimal digits.

INT
The INT keyword is a synonym for INTEGER.

INTEGER
The INTEGER data type stores whole numbers in a range from -2,147,483,647
to +2,147,483,647. The negative number -2,147,483,648 is a reserved
value that cannot be used. INTEGER values are stored as signed four-byte
binary integers, with a scale of zero. This data type is typically used to stores
counts, quantities, categories coded as natural numbers, and the like.

Arithmetic operations on binary integers are typically without rounding
error; these operations and sort comparisons are performed more efficiently
than on FLOAT or DECIMAL data. INTEGER values, however, can only store
data whose absolute value is less than 2 31. Any fractional part of the value is
discarded. If a value exceeds this numeric range, neither 4GL nor the database
engine can store the data value as an INTEGER data type.

-1234.56789e-3

exponentmantissa

sign of the mantissa sign of the exponent
3-306 INFORMIX-4GL Statements

INTERVAL
Note: INTEGER variables can store SERIAL values from the database. If a user
inserts a new row into the database, 4GL automatically assigns the next whole num-
ber in sequence to any field linked to a SERIAL column. Users do not need to enter
data into such fields. Once assigned, a SERIAL value cannot be changed.

INTERVAL
This data type stores spans of time, the differences between two points in time.
You can also use it to store quantities that are naturally measured in units of
time, such as age or sums of ages, estimated or actual time required for some
activity, or person-hours or person-years of effort attributed to some task.

An INTERVAL data value is stored as a DECIMAL number that includes a
contiguous sequence of values representing units of time. The INTERVAL
data types of 4GL fall into two classes, based on their precision:

• A year-month interval can represent a span of years and/or months

• A day-time interval can represent a span of days, hours, minutes, seconds,
and fractions of a second, or a contiguous subset of those time units.

Unlike DATETIME data types, which they somewhat resemble in their format,
INTERVAL data types can assume zero or negative values. The declaration of
an INTERVAL data type uses the following syntax:

INTERVAL Qualifiers

The INTERVAL qualifier specifies the precision and scale of an INTERVAL data
type, using a “first TO last” format to declare 4GL variables, named constants,
function and report parameters, and screen fields. It has the same syntax in
declarations of 4GL variables, named constants, and FORMONLY fields as for
INTERVAL columns of the database.

You must substitute one or two keywords from only one the following lists
for the first and last keywords of an INTERVAL qualifier:

YEAR-MONTH INTERVAL Keywords DAY-TIME INTERVAL Keywords
YEAR, MONTH DAY, HOUR, MINUTE, SECOND,

FRACTION

INTERVAL Qualifier
p. 3-349

INTERVAL
INFORMIX-4GL Statements 3-307

INTERVAL
As with DATETIME data types, you can declare INTERVAL data types to
include only the units that you need. INTERVAL represents a span of time
independent of an actual date, however, so you cannot mix keywords from
both lists in the same INTERVAL qualifier. Since the number of days in a
month depends on which month it is, an INTERVAL data value cannot com-
bine both months and days as units of time. For example, specifying “MONTH
TO MINUTE” as an INTERVAL qualifier would results in a compile-time error.

For any first keyword except FRACTION, you have the option of specifying a
precision of up to nine digits; otherwise the default precision is 2 digits, except
for YEAR, which defaults to four digits of precision. If an INTERVAL qualifier
specifies only a single unit of time, the first and last keywords are the same.
When the first and last keywords are both FRACTION, you can only specify
the scale after the last keyword.

When the last keyword is FRACTION, you can specify a scale of 1 to 5 digits;
otherwise, the scale defaults to three digits (thousandth of a second). For
example, the following are valid INTERVAL qualifiers:.

HOUR TO MINUTE MONTH(5) TO MONTH
FRACTION TO FRACTION(4) HOUR(9) TO FRACTION(5)

The keyword specifying the last term cannot represent a larger unit of time
than the first keyword. Thus, YEAR TO MONTH or HOUR TO HOUR are valid,
but HOUR TO DAY results in a compiler error, because the first keyword (here
HOUR) specifies a smaller unit of time than DAY, the last keyword.

After you declare an INTERVAL data type, a 4GL statement can assign it the
value of a time expression (page 3-347) that specifies an INTERVAL value. The
simplest way to do this is as an INTERVAL literal or as a character string. Both
formats require that you specify a numeric INTERVAL value.
3-308 INFORMIX-4GL Statements

INTERVAL
INTERVAL Literals and Delimiters

The INTERVAL literal format begins with the INTERVAL keyword, followed
by a pair of parentheses that enclose unsigned whole numbers (separated
by delimiters) to represent a consecutive sequence of year through fraction
values, or as a portion thereof. This must be followed by a valid INTERVAL
qualifier, specifying the first TO last keywords for the set of time units:

Numeric INTERVAL values use the same delimiters as DATETIME values,
except that month and day need no separator, since they cannot both appear
in the same INTERVAL value. Any time unit value in a numeric INTERVAL,
has a default precision of two digits, except for year, which defaults to four
digits, and fraction, which defaults to three. The INTERVAL qualifier can over-
ride these defaults for the first time unit, and for the scale of the fraction.

The following delimiters are required in INTERVAL values.

Delimiter Position within INTERVAL Value
hyphen (-) symbol Between the year, month, and day portions of the value.
blank () space Between the day and hour portions.
colon (:) symbol Between the hour, minute, and second portions.
decimal (.) point Between the second and fraction portions.

INTERVAL Qualifier
p. 3-307

Numeric INTERVAL Value
p. 3-355

INTERVAL Literal
p. 3-355

()INTERVAL
INFORMIX-4GL Statements 3-309

INTERVAL
For example, INTERVAL YEAR(3) TO MONTH values require one delimiter:

Similarly, INTERVAL DAY(6) TO FRACTION(2) values require four delimiters

:

INTERVAL literals can specify all the time units from the data type declara-
tion, or only the units that you need. For example, you can assign a value
qualified as HOUR TO MINUTE to a variable declared as DAY TO SECOND,
if the entered value contains information for a contiguous sequence of time
units. You cannot, however, assign only day and minute values; in this case,
the INTERVAL literal must also include a value (and delimiters) for hour.

The value for the first time units in an INTERVAL literal can have up to nine
digits of precision (except for FRACTION, which cannot include more than
five digits). If a first unit value to be entered is greater than the default num-
ber of digits for that time unit, however, you must explicitly identify the
number of significant digits that you are entering. For example, to specify an
INTERVAL of DAY TO HOUR that spans 162.5 days, you can use the format

INTERVAL (162 12) DAY(3) TO HOUR

To specify an INTERVAL literal in a 4GL statement, you must include numeric
values for both the first and last time units from the qualifier of the INTERVAL
literal, and also values for any intervening time units.

You can optionally specify the precision of the first time unit (and also a scale,
if the last keyword of the INTERVAL qualifier is FRACTION).

102-08 monthyear

hyphen

120815 12:42:06.01
fractionsecondhour minuteday

colonspace decimal point
3-310 INFORMIX-4GL Statements

INTERVAL
Character Strings as INTERVAL Values

You can also specify an INTERVAL value as a character string, indicating the
numeric values of the time units. In a 4GL source code module, this must be
enclosed between a pair of quotation(") marks, without the INTERVAL key-
word and without qualifiers, but with all the required delimiters. Unlike
INTERVAL literals, the character string must include information for all the
units of time declared in the INTERVAL qualifier. For example, the character
string in the next statement specifies a span of five years and six months:

LET long_time = "5-06"

Similarly, values entered as character strings into INTERVAL columns of the
database must include information for all time units that were declared for
that column. For example, the following INSERT statement shows an INTER-
VAL value entered as a character string:

INSERT into manufact (manu_code, manu_name, lead_time)
VALUES ("BRO", "Ball-Racquet Originals", "160")

Since the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one value, indicating the number of days
required. If the character string does not contain information for all the
declared time units, the database engine returns an error.

Data Entry by Users

When a user of the 4GL program enters data in an INTERVAL field of a form,
the only valid format is as an unquoted character string. Any entry into an
INTERVAL field must be a contiguous sequence of values for units of time and
separators, in one of these two formats (or in some subset of one):

year- month
day hour: minute: second. fraction

Depending on the data type declaration of the INTERVAL field, each of these
units of time (except the first) is restricted to values that combine traditional
base-10, base-24, base-60, and lunar calendar values from clocks and calen-
dars. The first value can have up to nine digits, unless FRACTION is the first
unit of time. (If FRACTION is the first time unit, the maximum scale is 5 digits.)

Values that users enter in a INTERVAL field of a 4GL form need not include all
the declared time units, but users cannot enter data as INTERVAL literals, a
format that is valid only within 4GL statements and in data type declarations
of FORMONLY fields of data type INTERVAL in form specification files.
INFORMIX-4GL Statements 3-311

MONEY
By default, all values for time units in a numeric INTERVAL are two-digit
numbers except for the year and fraction values. The year value is stored as
four digits. The fraction value requires n digits where 1 ≤ n ≤ 5, rounded up
to an even whole number. You can use the following formula (rounded up to
a whole number of bytes) to calculate the number of bytes required for an
INTERVAL value:

total number of digits for all time units)/2) + 1

For example, a YEAR TO MONTH qualifier requires a total of six digits (four
for year and two for month), or ((6/2) + 1) = 4 bytes of storage.

For information on using INTERVAL data in arithmetic and relational
operations, see the section “Expressions of 4GL” on page 3-326.

MONEY
The MONEY data type stores currency amounts. Like the DECIMAL data type,
the MONEY data type stores fixed-point numbers, up to a maximum of 32
significant digits. As the syntax diagram for simple data type declarations
indicates (page 3-293), you can optionally include one or two whole numbers
to specify the precision (the number of significant digits) and the scale (the
number of digits to the right of the decimal point).

Unlike the DECIMAL data type (page 3-304), which stores floating-point
numbers if its data-type declaration specifies neither scale nor precision,
MONEY values are always stored as fixed-point decimal numbers. If you
declare a MONEY data type with only one parameter, then 4GL interprets that
parameter as the precision. By default, the scale is 2, so the data type
MONEY(p) is stored internally as DECIMAL(p,2), for p the precision (1 ≤ p ≤ 32).
If no parameters are specified, MONEY is interpreted as DECIMAL(16,2). This
specifies a total of 16 significant digits, two of which describe the fractional
part of the currency value.

The largest absolute value that you can store without error as a MONEY data
type is 10p-s -10-s. Here p is the precision, and s is the scale. Values with an
absolute value less than 0.5 x 10-s are stored as zero. You cannot specify the
precision nor the scale of a FORMONLY MONEY field in an 4GL form; here the
precision defaults to the smaller of 32 or (length - 2), for length the field length
from the SCREEN section layout.

On the screen, MONEY values are displayed with a currency symbol, by
default, a dollar ($) sign, and a decimal (.) point. You can change the default
display format for MONEY values by changing the DBMONEY environment
variable. 4GL statements and keyboard input by users to fields of screen
forms do not need to include currency symbols in literal MONEY values.
3-312 INFORMIX-4GL Statements

NUMERIC
The same formulae as for DECIMAL values (page 3-304) apply to MONEY
data types; round any fractional result up to the next whole number:

When scale is EVEN: (precision + 3) /2 ; When scale is ODD: (precision + 4) /2

For example, a MONEY(13,2) variable has a precision of 13 and a scale of 2.
This requires ((13 + 3) /2) = 8 bytes of storage.

NUMERIC
The NUMERIC keyword is a synonym for DECIMAL. (When the word numeric
appears in lowercase characters in this manual, it is always the adjective
formed from the noun “number,” rather than the name of a data type.)

REAL
The REAL keyword is a synonym for SMALLFLOAT. (When the phrase real
number appears in lowercase characters in this manual, it denotes a number
that is neither imaginary nor transfinite, rather than the name of a data type.)

RECORD
The RECORD data type stores an ordered set of values. Within each of these
sets (called a program record), the values can be of any 4GL data type, or any
combination of data types in a fixed order, including the simple data types
(page 3-295), large binary data types (BYTE, TEXT), and structured data types
(ARRAY, RECORD). A component variable in a record is called a member.
This is the data type declaration syntax for RECORD variables:

member is a name that you declare for a member variable of the record.

table is the SQL identifier of a database table, synonym, or view.

You can use the LIKE keyword after the name of a member variable to specify
that the variable the same data type as some column of a database table. If
you do not specify explicit member names, and use an asterisk (*) symbol

Data Type Declaration
p. 3-67

member END RECORD

,
RECORD Data Type

RECORD

table .*LIKE

Table Qualifier
p. 3-361
INFORMIX-4GL Statements 3-313

RECORD
after a table name, you declare a record with members that have the same
identifiers as the columns in table; their 4GL data types correspond to the fixed
sequence of SQL data types in an entire row of the table. (Any SERIAL column
in table corresponds to a record member of data type INTEGER.)

This example uses the LIKE keyword to declare two program records, one
of which contains a member variable of the RECORD data type called nested:

DEFINE
p_customer RECORD LIKE informix.customer.*,
p_orders RECORD

order_num LIKE informix.orders.order_num,
nested RECORD a LIKE informix.items.item_num,

b LIKE informix.stock.unit_descr
END RECORD

END RECORD

If table is a view, the column cannot be based upon an aggregate. You cannot
specify table.* if table is a view that contains an aggregate column.

In an ANSI-compliant database, you must qualify the table name with the
owner prefix, if the program will be run by users other than owner. If the table
is an external or external, distributed table, its name must be qualified by the
name of the remote database and by the name of the database server.

Referencing Record Members

If record is the identifier that you declare for a program record in a DEFINE
statement, or the name of a screen record in a 4GL form, you can use the fol-
lowing notation to reference members of the record in 4GL statements:

• The notation record.member refers to an individual member of a record,
 where member is the identifier of the member.

• The notation record.first THRU record.last refers to a consecutive subset of
members, from record.first through record.last inclusive. Here first is an
identifier that was listed before last among the explicit or implicit member
names in the RECORD declaration; see page 3-363. You can also use the
keyword THROUGH as a synonym for THRU.

• The notation record.* refers to the entire record.
3-314 INFORMIX-4GL Statements

SMALLFLOAT
Several restrictions apply when you reference members of a record:

• You cannot use THRU nor THROUGH to indicate a partial list of screen
record members when displaying or entering data in a 4GL screen form.

• You cannot use the THRU, THROUGH, nor .* to reference a program record
that contains an array among its members. (But you can use these to spec-
ify all or part of a record that contains one or more records as members.)

• You cannot use THRU, THROUGH, nor .* notation in a SELECT or INSERT
variable list in a quoted string within the PREPARE statement. (You can,
however, use the .* notation to specify a program record in the variable list
of an INSERT or SELECT clause of the DECLARE statement.)

A program record whose members correspond in number, order, and data
type compatibility to a database table or to a screen record (as described in
Chapter 6) can be useful for transferring data from the database to the screen,
to reports, or to functions of the 4GL program.

SMALLFLOAT
The SMALLFLOAT data type stores values as single-precision floating-point
binary numbers, with up to 8 significant digits. The range of SMALLFLOAT
values is the same as for the float data type on your C compiler. The storage
requirement is usually 4 bytes. The SMALLFLOAT data type typically stores
scientific or engineering data that can only be calculated approximately. Since
floating-point numbers retain only their most significant digits, a value that
is entered into a SMALLFLOAT variable, constant, or column can differ
slightly from the base-10 value that an 4GL form or 4GL report displays.

This error arises from the internal storage format of binary floating-point
numbers. For example, if you enter a value of 1.1 into a SMALLFLOAT field
and, after processing the 4GL statement, the screen might display this value
as 1.1000001 . This occurs in the typical case where the exact floating-point
binary representation of a base-10 value requires an infinite number of digits
in the mantissa. A computer stores only a finite number of digits, so it stores
an approximate value, with the least-significant digits treated as zeros.
INFORMIX-4GL Statements 3-315

SMALLINT
Statements of 4GL can specify SMALLFLOAT values as floating-point literals,
using the following format:

You can use uppercase or lowercase E as the exponent symbol; omitted signs
default to + (positive). If a literal value in another format (such as an integer
or a fixed-point decimal) is supplied from the keyboard into a SMALLFLOAT
field, or in a statement, 4GL attempts data type conversion.
fixed-point decimal) is supplied in a .4-point decimal) is supplied from the
keyboard into a SMALLFLOAT field, or in a statement, 4GL attempts data type
conversion.

In reports and screen displays, the USING operator can format SMALLFLOAT
values. Unless you do so, the default scale in output is two (2) digits.

SMALLINT
The SMALLINT data type stores data as signed two-byte binary integers.
Values must be whole numbers within the range from -32,767 to +32,767.
Any fractional part of the data value is discarded. If a value lies outside this
range, you cannot store it in a SMALLINT variable or database column.
(The negative value -32,768 is reserved; it cannot be assigned to a SMALLINT
variable, constant, or database column, nor entered into a SMALLINT field.)

You can use SMALLINT variables, constants, and FORMONLY fields of screen
forms to store, manipulate, and display data that can be represented as whole
numbers of an absolute value less than 2 15. This data type typically stores
small whole numbers, Boolean values, ranks, 4-digit codes, or measurements
that classify data into a small number of numerically-coded categories. Since
a SMALLINT data type requires only 2 bytes of storage, arithmetic operations
in number expressions can be done very efficiently, provided that the values
of the operands lie within the somewhat limited range of SMALLINT values.

-1234.5e-3
exponent

sign of the exponentsign of the mantissa mantissa
3-316 INFORMIX-4GL Statements

TEXT
TEXT
The TEXT data type stores character data in ASCII strings. TEXT resembles the
BYTE data type, but 4GL supports features to display TEXT variables whose
values are restricted to combinations of printable ASCII characters and the
following control characters:

• TAB (= CONTROL-I)

• NEWLINE (= CONTROL-J)

• FORMFEED (= CONTROL-L)

Note: If you include other non-printable characters in a TEXT string, the features
of 4GL for displaying TEXT values may not operate correctly; see page 3-345.

Character strings stored as TEXT variables have a theoretical limit of 2 31

bytes, and a practical limit determined by the available storage on your
system. The INFORMIX-SE database engine does not support TEXT columns,
but regardless of the engine, you can declare 4GL variables of type TEXT.

You can use a TEXT variable to store, retrieve, or update the contents of a
TEXT database column, or to reference a file that you wish to display to users
of the 4GL program through a text editor. After you declare a TEXT data type,
you must use the LOCATE statement to specify the storage location.

When you retrieve a value from a TEXT column, you can assign all or part of
it to a variable. Use bracket ([]) symbols and comma-separated subscripts
to reference only a specified part of a TEXT value, as in the following example:

SELECT cat_description [1,75] INTO cat_nap FROM catalog
WHERE catalog_num = 10001

This reads the first 75 bytes of the cat_description column of the row with the
catalog number 10001, and stores these data in the cat_nap program variable.

Restrictions on TEXT Variables

In an 4GL form, a field linked to a TEXT column (or a FORMONLY field of type
TEXT) only displays as many characters as can fit in the field. To display TEXT
values longer than the screen field, or to edit a TEXT value, you must assign
the PROGRAM attribute to the TEXT field. The WORDWRAP attribute can dis-
play the initial characters of a TEXT value, up to the last segment of the field,
but cannot edit a value in a TEXT field. No other 4GL field attribute (except
COLOR) can reference the value of a TEXT field.
INFORMIX-4GL Statements 3-317

VARCHAR
In a CALL statement, TEXT arguments are passed by reference, rather than by
value (page 3-18). You cannot use the DISPLAY statement to display a TEXT
value. You cannot use the LET statement to assign any value (except NULL)
to a TEXT variable.

Aggregate report functions (page 6-46) cannot specify TEXT values as argu-
ments. In 4GL expression (page 3-326), you can only reference TEXT variables
to test for NULL values, or as an operand of the WORDWRAP operator.

VARCHAR
The VARCHAR data type stores character strings of varying length. As the
syntax diagram for simple data type declarations indicates (page 3-293), you
can optionally specify the maximum size of data string, and the minimum stor-
age reserved in memory. The INFORMIX-SE engine does not support this data
type, but you can declare 4GL VARCHAR variables.

The declared maximum size of VARCHAR data types can range from 1 to 255.
If you specify no maximum size, the default is 1. You can store shorter char-
acter strings than the maximum size, but not longer strings. In a form speci-
fication file, you cannot specify size parameters for a FORMONLY VARCHAR
field; here the maximum size defaults to the field length in the screen layout.

The minimum reserved size can range from 0 to 255 bytes, but this cannot be
greater than the declared maximum size. (Like the precision specification in
FLOAT or DOUBLE PRECISION data type declarations, 4GL accepts this value
for compatibility with SQL syntax, but does not use this value.)

When you assign a value to a VARCHAR variable, only the data characters are
stored, but neither 4GL nor the database engine strips a VARCHAR value of
user-entered trailing blanks. Unlike CHAR values, VARCHAR values are not
padded with blanks to the declared maximum size.

VARCHAR values are compared to CHAR values and to other VARCHAR
values in 4GL Boolean expressions in the same way that CHAR values are
compared: the shorter value is padded on the right with spaces until the
values have equal lengths. Then they are compared for the full length.
3-318 INFORMIX-4GL Statements

Data Type Conversion
Data Type Conversion
4GL can assign the value of a number, character string, or point in time to a
variable of a different data type. 4GL performs data-type conversion without
objection when the process makes sense. If you assign a number expression
to a CHAR variable, for example, 4GL converts the resulting number to a
string. In an arithmetic expression, 4GL converts the string representation of a
number or of a date to an appropriate number or date.

An error is issued only if 4GL cannot make the conversion. For example, it
converts the string “123.456 ” to the number 123.456 in an arithmetic
expression, but adding the string “John” to a number produces an error.

The global status variable is not reset when a conversion error occurs, unless
you specify the ANY ERROR keywords (without CONTINUE) in a WHENEVER
compiler directive, or include the -ANYERR command-line argument.

Converting from Number to Number

When you pass a value from one number data type to another, the destination
data type must be able to store all of the source value. For example, if you
assign an INTEGER value to a SMALLINT variable, the conversion will fail if
the absolute value is larger than 32,767. The same situation can occur if you
attempt to transfer data from FLOAT or SMALLFLOAT variables or database
columns to INTEGER, SMALLINT, or DECIMAL data types.

Page 3-325 lists the kinds of errors that you might encounter when you con-
vert values from one number data type to another. For example, if you con-
vert a FLOAT value to DECIMAL(4,2), 4GL or the database engine rounds off

When accessing an NLS database in the standard way (Implicit NLS), all
character data in the database is sorted and compared according to the
locale established at the time of database creation. For example, the 4GL
user cannot create character data columns that sort in US English if the
database locale (the locale the database was created in) is non-US-English.
Although character columns defined by a 4GL program are defined within
the program as type CHAR (or VARCHAR, if variable-length), they are
interpreted by the server as type NCHAR (or NVARCHAR) if the database
is non-US-English. This process is known as implicit mapping.

4GL supports the Implicit and Open NLS environments. Explicit NLS is not
supported in 4GL. For more information, see Appendix E, “Native Lan-
guage Support Within INFORMIX-4GL.”

NLS
INFORMIX-4GL Statements 3-319

Data Type Conversion
the floating-point value before storing it as a fixed-point number. This can
sometimes result in overflow or rounding error, depending on the declared
precision of the DECIMAL data type.

The SQLAWARN[5] character of the global SQLCA record is set to W after any
FLOAT or SMALLFLOAT value is converted to a DECIMAL value.

Converting Numbers in Arithmetic Operations

INFORMIX-4GL performs all arithmetic operations on DECIMAL values,
regardless of the declared data types of the operands. The data type of the
receiving variable or constant determines the format of the stored or printed
result. The following rules apply to the precision and scale of the DECIMAL
variable that results from an arithmetic operation on two numbers:

• All operands, if not already DECIMAL, are converted to DECIMAL, and the
result of the arithmetic operation is always a DECIMAL:

Source Operand Converted Operand
FLOAT DECIMAL(16)
INTEGER DECIMAL(10,0)
MONEY(p) DECIMAL(p,2)
SMALLFLOAT DECIMAL(8)
SMALLINT DECIMAL(5,0)

• In addition and subtraction, INFORMIX-4GL adds trailing zeros to the
operand with the smaller scale, until the scales are equal.

• If the data type of the result of an arithmetic operation requires the loss of
significant digits, then INFORMIX-4GL reports an error.

• Leading or trailing zeros are not considered significant digits, and do not
contribute to the determination of precision and scale.

• The precision and scale of the result of an arithmetic operation depend
on the precision and scale of the operands and on the type of arithmetic
expression. The rules of 4GL are summarized in the chart that follows for
arithmetic with operands that have a definite scale. If one operand has no
scale (that is, a floating decimal), the result is a floating decimal.

In this chart, p1 and s1 represent the precision and scale of the first operand,
and p2 and s2 represent the precision and scale of the second operand.
3-320 INFORMIX-4GL Statements

Data Type Conversion
Operation Precision and Scale of Returned Value
Addition and Precision: MIN(32, MAX(p1 - s1, p2 - s2) + MAX(s1, s2) + 1)
Subtraction Scale: MAX(s1, s2)

Multiplication Precision: MIN(32, p1+ p2)
Scale: s1 + s2

Division Precision: 32
Scale: MAX(0, 32 - p1 + s1 - s2)

The USING operator can override the default scale when output is displayed.

Converting Between DATE and DATETIME

You can convert DATE values to DATETIME values. If the DATETIME precision
includes time units smaller than day, however, INFORMIX-4GL either ignores
the time-of-day units, or else fills them with zeros, depending on the context.
The examples that follow illustrate how these two data types are converted;
it is assumed here that the default display format for DATE values is
mm/dd/yyyy:

• If a DATE value is specified where a DATETIME YEAR TO DAY is expected,
4GL converts the given DATE value to a DATETIME value. For example,
08/15/1993 becomes 1993-08-15 .

• If a DATETIME YEAR TO DAY value is specified where a DATE is expected,
then 1993-08-15 becomes 08/15/1993 .

• If a DATE value is specified where a DATETIME YEAR TO FRACTION (or TO
SECOND, TO MINUTE, or TO HOUR) is expected, then 4GL converts the
DATE value to a DATETIME value, and fills any smaller DATETIME units
with zeros. Thus, 08/15/1993 becomes 1993-08-15 00:00:00 .

• If a DATETIME YEAR TO SECOND to DATE, value is specified where a
DATE is expected, then 4GL converts the DATETIME value to a DATE
value, but drops any units more precise than DAY. Thus, 1993-08-15
12:31:37 becomes 08/15/1993 .

The EXTEND() operator can return a DATETIME value from a DATE operand.
INFORMIX-4GL Statements 3-321

Data Type Conversion
Converting CHAR to DATETIME or INTERVAL Data Types

You can specify DATETIME and INTERVAL data in the literal forms described
in previous sections or as quoted strings. The next examples illustrate both
formats for December 5, 1974, and for a time interval of nearly 18 days:

DEFINE mytime DATETIME YEAR TO DAY,
myval INTERVAL DAY TO SECOND

LET mytime = DATETIME(74-12-5) YEAR TO DAY
LET mytime = "74-12-5"

LET myval = INTERVAL(17 21:15:30) DAY TO SECOND
LET myval = "17 21:15:30"

Values that are specified as suitably formatted character strings are automat-
ically converted into DATETIME or INTERVAL values. You can use character
strings whenever you specify information for all time units declared for that
DATETIME or INTERVAL variable or named constant.

When a character string is converted into a DATETIME or INTERVAL value,
4GL assumes that the character string includes information about all the
declared time units. You cannot use character strings to enter DATETIME or
INTERVAL values for a subset of time units, because this produces ambigu-
ous values. If the character string does not contain information for all time
units, 4GL returns an error, as in these examples:

DEFINE tyme DATETIME YEAR TO DAY,
mynt INTERVAL DAY TO SECOND

LET tyme = DATETIME(5-12) MONTH TO DAY --Valid
LET tyme = "5-12" --Error!

LET mynt = INTERVAL(11:15) HOUR TO MINUTE --Valid
LET mynt = "11:15" --Error!

The previous DATETIME example (variable tyme) assigns a MONTH TO DAY
value to a variable declared as YEAR TO DAY. Entering only these values is
valid in the first LET statement, because the qualifier of the DATETIME literal
specifies that there is no year data. In this case, 4GL automatically supplies the
value of the current year. The character string, however, does not indicate
what information is omitted; 4GL does not know whether the “5-12 ” refers
to year and month, or month and day, so it returns an error.
3-322 INFORMIX-4GL Statements

Data Type Conversion
The previous INTERVAL example (variable mynt) assigns an HOUR TO
MINUTE value to a variable declared as DAY TO SECOND. The first LET
statement simply pads the value with zeros for day and second. The second
LET statement produces a conversion error, however, since 4GL does not
know whether the “11:15 ” specification means HOUR TO MINUTE or
MINUTE TO SECOND.

Converting Between Number and Character Data Types

You can store a CHAR or VARCHAR value in a number variable and vice versa.
But if the CHAR or VARCHAR value contains any characters that are not valid
in a number data type (for example, the letters l or Oinstead of the digits 1
or 0), then INFORMIX-4GL returns a data type conversion error.

Converting Large Binary Data Types

You can store a TEXT value in a BYTE data type. Space permitting, you can
also store all or part of a TEXT value in a CHAR or VARCHAR variable. No
other data type conversions involving large binary data types are supported
directly by INFORMIX-4GL.

If NLS is active and you convert numeric or monetary values by using the
LET statement, the conversion process inserts locale-specific separators
and currency symbols into the created strings, not US English separators
and currency symbols. Monetary values take on separators and currency
symbols specified by LC_MONETARY. Numeric values take on separators
specified by LC_NUMERIC. This happens regardless of you including a
USING clause in the LET statement. However, if DBFORMAT or DBMONEY
is set, these settings override settings in LC_ variables.

NLS
INFORMIX-4GL Statements 3-323

Summary of Compatible 4GL Data Types
Summary of Compatible 4GL Data Types
The following table shows which pairs of 4GL data types are compatible.

• Unshaded cells show the types of values (listed in the top row) that 4GL
can assign to each type of variable (listed in the left-hand column).

• Shaded cells indicate incompatible pairs of data types, for which
INFORMIX-4GL does not support automatic data type conversion.

Symbols in cells refer to notes on the next page. These apply when the data
types of the passed value and of the receiving variable are not identical:

• Light circles (➀) indicate restrictions that can result in conversion failure,
or in discrepancies between the passed value and the receiving variable.

• Dark circles (➊) indicate features that typically do not cause conversion
errors, but that may produce unexpected data formats or values.

This table also applies to simple members of RECORD variables and to simple
elements of ARRAY variables. INFORMIX-4GL does not support automatic
data-type conversion of values of the BYTE or TEXT data types.

Value to be
Passed:

Receiving
Data Type

C
H

A
R

V
A

R
C

H
A

R

IN
T

E
G

E
R

S
M

A
L

L
IN

T

FL
O

A
T

S
M

A
L

L
FL

O
A

T

D
E

C
IM

A
L

M
O

N
E

Y

D
A

T
E

D
A

T
E

T
IM

E

IN
T

E
R

V
A

L

CHAR ➀ ➀ ➀ ➀ ➀ ➀ ➀ ➀➊ ➀➋ ➀ ➀

VARCHAR ➀ ➀ ➀ ➀ ➀ ➀ ➀ ➀➊ ➀➋ ➀ ➀

INTEGER ➁➂ ➁➂ ➂ ➃ ➂➃ ➂➃ ➂➃ ➍

SMALLINT ➁➂ ➁➂ ➂ ➂ ➃ ➂ ➃ ➂➃ ➂➃ ➂ ➍

FLOAT ➁➂➄ ➁➂➄ ➌ ➌ ➂ ➂ ➍

SMALLFLOAT ➁➂➄ ➁➂➄ ➌➄ ➌ ➄ ➂ ➄ ➂ ➄ ➍ ➄

DECIMAL ➁➂➅ ➁➂➅ ➂ ➂ ➂ ➅ ➂ ➅ ➂➅ ➂➅ ➂ ➍

MONEY ➁➂➅ ➁➂➅ ➂ ➂ ➂ ➅ ➂➅ ➂➅ ➂➅ ➂ ➍

DATE ➁ ➁ ➍ ➍ ➂➃➍ ➂➃➍ ➂➃➍ ➂➃➍ ➎ ➐

DATETIME ➁ ➁ ➏ ➐ ➆ ➐

INTERVAL ➁ ➁ ➂➆
3-324 INFORMIX-4GL Statements

Summary of Compatible 4GL Data Types
Notes on Automatic Data Type Conversion

In the previous table, numbers within light circles (➀) indicate restrictions
that can cause the data type conversion to fail, or that can sometimes result
in discrepancies between the passed value and the receiving variable:

➀ If the result of converting a value to a character string is longer than the
receiving variable, then the character string is truncated from the right.

➁ Character string values must depict a literal of the receiving data type.

➂ If the value exceeds the range of the receiving data type, then an overflow
error occurs.

➃ Any fraction is truncated.

➄ If the passed value contains more significant digits than the receiving
data type supports, then low-order digits are discarded.

➅ If the passed value contains more fractional digits than the receiving data
type supports, then low-order digits are discarded.

➆ Differences between qualifiers may cause truncation from the left or right.

Numbers in dark circles (➊) indicate less critical data-type conversion
features. These are not associated with error messages, but they can result in
the assignment of unexpected values, or of values with unexpected formats:

➊ DBMONEY controls the format of the converted string.

➋ DBDATE controls the format of the converted string.

 ➌ Rounding error may produce an assigned value with a fractional part.

➍ An integer value corresponding to a count of days is assigned.

➎ An implicit EXTEND (value, YEAR TO DAY) is performed by 4GL.

➏ The DATE becomes a DATETIME YEAR TO DAY literal before assignment.

➐ If the passed value has less precision than the receiving variable, then any
missing time unit values are obtained from the system clock.

You may wish to avoid writing code that applies automatic conversion to
DATETIME variables declared with time units smaller than YEAR as the first
keyword of the DATETIME qualifier (page 3-349), unless default values that
feature (➐) assigns from the system clock are useful in your application.
INFORMIX-4GL Statements 3-325

Expressions of 4GL
Expressions of 4GL
A 4GL expression is a sequence of operands, operators, and parentheses
that INFORMIX-4GL can evaluate as a single value.

Usage
Statements, functions, form specifications, operators, and expressions can
have expressions as arguments, components, or operands. The context where
an expression appears, as well as its syntax, determines the data type of its
returned value. It is convenient to classify 4GL expressions into the following
five categories, based on the data type of what they return:

Boolean a value that is either TRUE or FALSE or NULL

Integer a whole-number value of data type INT or SMALLINT

Number a value of any number data type, as listed on page 3-295

Character a character string of data type CHAR or VARCHAR

Time a value of data type DATE, DATETIME, or INTERVAL

In this manual, if the term “4GL expression” is not qualified as one of these five
specific data types, then the expression can be any of these data types.

As the diagram suggests, 4GL Boolean expressions are special cases of integer
expressions, and integer expressions are a logical subset of number expres-
sions. You can substitute a 4GL Boolean or integer expression where a num-
ber expression is valid (unless this results in an attempt to divide by zero).

Character Expression
p. 3-343

Number Expression
p. 3-341.

Integer Expression
p. 3-338

Time Expression
p. 3-347

4GL Boolean
Expression

p. 3-333

4GL
Expression

4GL Expression)(
3-326 INFORMIX-4GL Statements

Components of 4GL Expressions
The topics that are discussed in this section include the following:

Topic Page
Components of 4GL Expressions 3-327
4GL Boolean Expressionss 3-333
Integer Expressions 3-338
Number Expressions 3-341
Character Expressions 3-343
Time Expressions 3-347

Components of 4GL Expressions
An expression of 4GL can include the following components:

• Operators, as listed on the next page (and on page 4-10)

• Operands, including the following:

o Other 4GL expressions (page 3-326)

o Named values (page 3-331)

o Function calls returning a single value (page 3-332)

o Literal constants (pages 3-340, 3-342, 3-343, 3-349, 3-351, and 3-355)

o Field names (3-328, 3-359)

• Parentheses, to override the default precedence of operators (page 3-328).

Parentheses in 4GL Expressions

You can use parentheses (()) as you would in algebra to override the
default order of precedence (page 3-328) of 4GL operators. In mathematics,
this use of parentheses represents the “associative” operator. It is, however, a
convention in computer languages to regard this use of parentheses symbols
as delimiters, rather than as operators. (Do not confuse this use of parentheses
to specify operator precedence with parentheses to enclose arguments in func-
tion calls, or to delimit other lists.)

Operators in 4GL Expressions

The operators listed on the next page can appear in 4GL expressions.
Expressions with several operators are evaluated according to precedence,
from highest (13) to lowest (1), as indicated in the left-hand (P) column.
The fourth column (A) indicates the associativity, if any, of each operator.
See the page references in the right-hand columns of the following tables for
additional information about individual operators of INFORMIX-4GL.
INFORMIX-4GL Statements 3-327

Components of 4GL Expressions
P values are ordinal numbers that may change if future releases add new
operators. Also of lowest precedence (P = 1) are these built-in operators:
• The field operators FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()

• The built-in report operators SPACE, LINENO, and PAGENO

Precedence (P) and Associativity (A) of 4GL Operators

P Operator Description A Example Page

13 .
[]
()

record membership
array index or substring
function call

left
left
none

myrec.memb
ar[i, 6, k][2,(integer-expr)]
myfun(var1, expr)

3-313
3-344
3-332

12 UNITS single-qualifier interval left (integer-expr) UNITS DAYS 3-347

11 +
-

unary plus
unary minus

right
right

+ (number-expr)
- numbarray_var3[i, j, k]

3-341,
3-341

10 * *
MOD

exponentiation (by integer)
modulus (of integer)

left
left

(number-expr) ** (integer-expr)
(integer-expr) MOD (integer-expr)

3-320,
3-339

9 *
/

multiplication
division

left
left

x * (number-expr)
(number-expr) / arr[y]

3-320,
3-339

8 +
-

addition
subtraction

left
left

(number-expr) + (number-expr)
(x - y) - (number-expr)

3-320,
3-339

7 LIKE
MATCHES

string comparison
string comparison

right
right

(character-expr) LIKE "%z_%"
(character-
expr) MATCHES"*z?"

3-335
3-335

6 <
<=

= or ==
>=
>

!= or <>

test for: less than
less than or equal to
equal to
greater than or equal to
greater than
not equal to

left
left
left
left
left
left

(expr1) < (expr2)
x <= yourfun(y,z)
x = expr
x >= FALSE
var1 > expr
myrec.memb<>length(var1)

3-334
3-334
3-334
3-334
3-334
3-334

5 IS NULL
IS NOT NULL

test for: NULL
test for: NULL

left
left

x IS NULL
expr IS NOT NULL

3-336
3-336

4 NOT logical inverse left NOT ((expr) IN (y,DATE)) 3-333

3 AND logical union left expr1 AND fun(expr2,-y) 3-333

2 OR logical alternation left LENGTH(expr1,j) OR expr2 3-333

1 ASCII
CLIPPED
COLUMN
SPACES
USING

WORDWRAP

return ASCII character
delete trailing blanks
begin character display
insert blank spaces
format character string
multiple line text display

right
right
right
right
right
right

LET x = ASCII (integer-expr)
DISPLAY poodle CLIPPED
DISPLAY COLUMN 58, " 30"
PRINT (integer-expr) SPACES
TODAY USING "yy/mm/dd"
PRINT odyssey WORDWRAP

3-344
3-344
3-344
3-344
3-344
3-344
3-328 INFORMIX-4GL Statements

Components of 4GL Expressions
• The built-in time operators CURRENT, DATE, DATE(), DAY(), EXTEND(),
MDY(), MONTH(), TIME, TODAY, WEEKDAY(), and YEAR()

See the following table and Chapter 4 for more about the operators of 4GL.

Data Types of Operands and of Returned Values

Expression Left (= x) Right (= y) Returned Value Page

x . y
w [x , y]

(y)

RECORD
INT or SMALLINT

Any
INT or SMALLINT
Any

Same as y
Any or Character
Any

3-313
3-344
3-332

x UNITS INT or SMALLINT INTERVAL 4-89

+ y
- y

Number or INTERVAL
Number or INTERVAL

Same as y
Same as y

3-341,
3-347

x * * y
x MOD y

Number
INT or SMALLINT

INT or SMALLINT
INT or SMALLINT

Number
INT or SMALLINT

3-341,
3-356

x * y
x / y

Number or INTERVAL
Number or INTERVAL

Number
Number

Number or INTERVAL
Number or INTERVAL

3-341,
3-356

x + y
x - y

Number or Time
Number or Time

Number or Time
Number or Time

Number or Time
Number or Time

3-341,
3-356

x LIKE y
x MATCHES y

Character
Character

Character
Character

Boolean
Boolean

4-33
4-33

x < y
x <= y

x = y or x == y
x >= y
x > y

x != y or x <> y

Any simple data type
Any simple data type
Any simple data type
Any simple data type
Any simple data type
Any simple data type

Same as x
Same as x
Same as x
Same as x
Same as x
Same as x

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

3-358
3-358
3-358
3-358
3-358
3-358

x IS NULL
x IS NOT NULL

Any
Any

Boolean
Boolean

4-33
4-33

NOT y Boolean Boolean 4-31

x AND y Boolean Boolean Boolean 4-31

x OR y Boolean Boolean Boolean 4-31

ASCII y
x CLIPPED

COLUMN y
x SPACES
x USING " y"

x WORDWRAP

Character

INT or SMALLINT
Char.,DATE,MONEY
Character

INT or SMALLINT

INT or SMALLINT

Character

Character
Character
Character
Character
Character
Character

4-28
4-38
4-40
4-82
4-91
4-102
INFORMIX-4GL Statements 3-329

Components of 4GL Expressions
Where no data type is listed, the operator has no left (or else right) operand.
If an operand is not of the data type(s) listed here for a given operator, then
4GL attempts data type conversion, as summarized on page 3-324.

Most 4GL operators do not support RECORD nor ARRAY operands, but do
accept a simple variable operand that is an array element or a record member.

Differences Between 4GL and SQL Expressions

Expressions in SQL statements (and in SPL statements) are evaluated by the
database engine, not 4GL. The set of operators that can appear in SQL or SPL
expressions resembles the set of 4GL operators, but they are not identical.

A 4GL program can include SQL operators, but some are restricted to SQL
statements. Similarly, some SQL and SPL operands are not valid in 4GL
expressions. The SQL identifiers of databases, tables, or columns can appear in
a LIKE clause or field name (page 3-359) in 4GL statements, but these SQL and
SPL operands and operators cannot appear in other 4GL expressions:

• SQL identifiers, such as column names

• The names of SPL variables

• The SQL keywords USER and ROWID

• Built-in or aggregate SQL functions that are not part of 4GL

• The || string concatenation operator

• The BETWEEN ... AND and IN operators (except in form specification files)

• The EXISTS, ALL, ANY, or SOME keywords of SQL Boolean expressions

Conversely, you cannot include the following INFORMIX-4GL operators in
SQL or SPL expressions:

• The member-selection (.) operator for records

• The arithmetic operators for exponentiation (**) and modulus (MOD)

• The string operators ASCII, COLUMN, SPACE, SPACES, and WORDWRAP

• The field operators FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD()

• The report operators LINENO and PAGENO

• The time operators DATE and TIME

See the Informix Guide to SQL: Reference for the valid syntax of SQL expressions
and of SPL expressions.
3-330 INFORMIX-4GL Statements

Components of 4GL Expressions
Operands in 4GL Expressions

Operands of 4GL expressions can be any of the following:

• Other 4GL expressions (page 3-326)

• Named values (page 3-331)

• Function calls that return one value (page 3-332)

• Literal constants (pages 3-340, 3-342, 3-343, 3-349, 3-351, and 3-355)

Sections that follow describe these operands of 4GL expressions.

Named Values as Operands

A 4GL expression can include the name of a variable of any simple data type
(as identified on page 3-294) or the constants TRUE or FALSE. The variable can
also be a simple member of a record, or a simple element of an array:

array is the name of a structured variable of the ARRAY data type.
The comma-separated expression list specifies the index of an
element within the declared size of the array.

constant is the name of the built-in constant TRUE or FALSE.

record is the name of a structured variable of the RECORD data type.

variable is the name of a 4GL program variable.

In two special cases, other identifiers can be operands in 4GL expressions:

• Conditional COLOR attributes in form specification files can use a field tag
where a named value is valid in the syntax of a 4GL Boolean expression.

• The built-in FIELD_TOUCHED(), GET_FLDBUF(), and INFIELD() operators
can take field names (page 3-359) as operands. See Chapter 4 for the syntax
of these field operators.

Named Value

Integer
Expression

p. 3-338

,

[array]

constant

3

record .

variable
INFORMIX-4GL Statements 3-331

Components of 4GL Expressions
If the variable is a member of a record, qualify it with the record name prefix,
separated by the period (.) symbol as the record membership operator.

Variables of the BYTE or TEXT data types cannot appear in expressions, except
as operands of the IS NULL or IS NOT NULL operators (pages 3-336 and 4-33)
or (for TEXT variables only) the WORDWRAP operator (pages 4-102 and 6-50).

Function Calls as Operands

A 4GL expression can include calls to functions that return exactly one value:

function is the name of a function. The parentheses are required, regardless
of whether the function takes any arguments.

The function can be a programmer-defined or built-in function, provided
that it returns a single value of a data type that is valid in the expression.
(Function calls as arguments can return multiple values.)

See the FUNCTION statement (page 3-111) or Chapter 4 for more information
about declaring, defining, and invoking INFORMIX-4GL functions.

Expressions as Operands

Two expressions cannot appear consecutively without some separator, but
you can nest expressions within expressions. In any context, however, the
complexity of a 4GL expression is restricted. If an error message indicates that
an expression is too complex, you should substitute two or more simpler
expressions that 4GL can evaluate, and then combine these values.

If an expression returns a different data type from what 4GL expects in the
context, 4GL attempts data type conversion, as summarized on page 3-324.

Function Call

,
function

4GL
Expression

p. 3-326

()
3-332 INFORMIX-4GL Statements

4GL Boolean Expressions
4GL Boolean Expressions
A 4GL Boolean expression is one that returns either TRUE (defined as 1) or
FALSE (defined as 0) or NULL. The syntax of Boolean expressions in 4GL state-
ments is not identical to that of Boolean conditions in SQL statements. Boolean
expressions of INFORMIX-4GL have the following syntax:

Any type of expression can be a 4GL Boolean expression. You can use an INT
or SMALLINT variable to store the returned value.

Logical Operators

The logical operators AND, OR, and NOT combine Boolean values into a single
4GL Boolean expression. AND, OR, and NOT produce the following results
(where the symbol T means TRUE, F means FALSE, and ? means NULL):

AND T F ? OR T F ? NOT
T T F ? T T T T T F
F F F F F T F ? F T
? ? F ? ? T ? ? ? ?

NOT

OR

4GL Boolean
Expression

Boolean Comparison

TRUE

AND

Set Membership Test
p. 3-337

NULL Test
p. 3-336

String Comparison
p. 3-335

4GL Expression
p. 3-326

Boolean
Comparison

Relational Comparison
p. 3-334

Function Call
p. 3-332

FALSE
INFORMIX-4GL Statements 3-333

4GL Boolean Expressions
If one or both operands of a logical operator have NULL values, the result can
in some cases also be NULL. For example, if var1 = 0 and var2 = NULL, then

LET x = var1 OR var2

assigns to the variable x a NULL value. The NOT operator is recursive.

Boolean Comparisons

Boolean comparisons use relational operators to test any type of expression for
equality or inequality. You can also use the IS NULL operator to test for NULL
values, or the MATCHES or LIKE operator to compare character strings.

Boolean expressions in the CASE, IF, or WHILE statements, or in the WHERE
clause of a COLOR attribute specification return FALSE if any element of the
comparison is NULL, unless it is the operand of the IS NULL operator.

Relational Comparisons

This is the syntax for relational comparisons in 4GL Boolean expressions:

Boolean expressions in 4GL statements can use these relational operators
(=, ==, <, >, <=, >=, <>, or !=, as defined on page 3-328) to compare operands.
For example, each of these comparisons evaluates to TRUE or FALSE:

Use a NULL test (page 3-337) if you want to detect and exclude NULL values
from Boolean comparisons. In this CASE statement fragment, the value of the
comparison is NULL if the value of salary or of last_raise is NULL:

WHEN salary * last_raise < 25000

Expression Value

(2+5)* 3 = 18 FALSE

14 <= 16 TRUE

"James" = "Jones" FALSE

Relational
Comparison

<
>

<=
>=
<>
!=

4GL Expression
p. 3-326

4GL Expression
p. 3-326

=

3-334 INFORMIX-4GL Statements

4GL Boolean Expressions
The LIKE and MATCHES Operators

In character string comparisons, you can use the LIKE or MATCHES operators
to test whether a character value matches a quoted string that can include
wildcard characters. If either operand evaluates to NULL, then the entire string
comparison evaluates to NULL. Use a NULL test (page 3-337) if you want to
detect and exclude NULL values.

You can use the following syntax to compare character strings:

char is a single ASCII character, enclosed between a pair of single (’)
or double (") quotation marks, to specify an escape symbol.

criterion is a character expression (page 3-343). The string that it returns
can include literal characters, wildcards, and other symbols.

MATCHES and LIKE support different wildcards. If you use MATCHES, you
can include the following wildcard characters in the right-hand operand:

The following WHERE clause tests the contents of character field field007 for
the string ten . Here the * wildcards specify that the comparison is TRUE if
ten is found alone or in a longer string, such as often or tennis shoe :

COLOR = RED WHERE field007 MATCHES "*ten*"

Symbol Effect

* An asterisk (*) matches a string of any length (including zero characters).

? A question mark (?) matches any single character.

[] Square brackets ([]) match any of the enclosed characters.

- A hyphen (-) between characters in brackets means a range in the ASCII
collating sequence. For example, [a-z] matches any lowercase letter.

^ A caret (^) as the first character in the brackets matches any character
that is not listed. For example, [^abc] matches any character except a, b,
or c .

\ A backslash (\) causes 4GL to treat the next character as a literal
character, even if it is one of the special symbols in this list. For example,
you can match * or ? by * or \? in the string.

MATCHES

LIKENOT

Character
Expression

p. 3-343

criterion

ESCAPE " char"

String Comparison
INFORMIX-4GL Statements 3-335

4GL Boolean Expressions
If you use the operator LIKE to compare strings, then the wildcard symbols
of MATCHES have no special significance, but you can use the following
wildcard characters of LIKE within the right-hand quoted string:

The next example tests for the string ten in the character variable string,
either alone or in a longer string:

IF string LIKE "%ten%"

The next example tests whether a substring of a character variable (or else an
element of a two-dimensional array) contains an underscore symbol. The
backslash is necessary, because underscore is a wildcard symbol with LIKE.

IF horray[3,8] LIKE "%_%" WHERE >> out.a

You can replace backslash as the literal symbol. If you include an ESCAPE char
clause in a LIKE or MATCHES specification, then INFORMIX-4GL interprets the
next character that follows char as a literal in the preceding character expres-
sion, even if that character corresponds to a special symbol of the LIKE or
MATCHES operator. The double quote (") symbol cannot be char.

For example, if you specify ESCAPE z , the characters z_ and z? in a string
represent the literal character _ and ?, rather than wildcards. Similarly, char-
acters z% and z* represent the characters % and * . Finally, the characters zz
in the string represent the single character z . The following expression is
TRUE if the variable company does not include the underscore character:

NOT company LIKE "%z_%" ESCAPE "z"

The NULL Test

If any operand of a 4GL Boolean comparison or is NULL, then the value of the
comparison is FALSE (rather than NULL), unless the IS NULL keywords are
also included in the expression. Applying the NOT or IS NOT NULL operator
to a NULL operand does not change its FALSE evaluation.

Symbol Effect

% A percent sign (%) matches zero or more characters.

_ An underscore (_) matches any single character.

\ A backslash (\) causes 4GL to treat the next character as a literal (so you
can match % or _ by \% or _).

NLS If you are using NLS, the evaluation of logical comparisons and MATCHES,
LIKE, and BETWEEN expressions containing character arguments is
dependent on LANG and LC_COLLATE settings in an NLS database.
3-336 INFORMIX-4GL Statements

4GL Boolean Expressions
If you need to process NULL values in a different way from other values,
you can use the IS NULL operator to test for NULL value. It has this syntax:

BLOB variable is the name of a variable of the BYTE or TEXT data type.

Without the NOT keyword, this comparison returns TRUE if the operand has
a NULL value. Otherwise, it returns FALSE.

If you also include the NOT keyword after IS, this comparison returns FALSE
if the operand has a NULL value. Otherwise, it returns TRUE.

Note: The NULL test (like the WORDWRAP string operator with TEXT variables) is
an exception to the general rule that variables of the BYTE or TEXT data types cannot
appear in 4GL expressions.

Set Membership Test

The IN() operator cannot appear in any 4GL statements that is not also an
SQL statement, but it can appear in the COLOR attribute specification of a 4GL
form. This is the syntax of the IN() operator to test for set membership:

If you omit the NOT operator, this test returns TRUE if any expression in the
comma-separated list at the right matches the expression on the left.

If you include the NOT operator, the test returns FALSE if no expression in the
list matches the expression on the left.

The list of members must be in parentheses. (Like a DATETIME or INTERVAL
literal, the IN() operator requires parentheses but is not a function call.)

Data Type Compatibility

You may get unexpected results if you use relational operators with expres-
sions of dissimilar data types. In general, you can compare numbers with
numbers, character strings with strings, and time values with time values.

NULL Test

4GL Expression
p. 3-326

IS NULL

NOT
blob variable

Set Membership Test

4GL Expression
p. 3-326

IN 4GL Expression
p. 3-326

()
,

NOT
INFORMIX-4GL Statements 3-337

Integer Expressions
If a time expression operand of a 4GL Boolean expression is of the INTERVAL
data type, then any other time expression that is compared to it by a relational
operator must also be an INTERVAL value. You cannot compare a span of
time (an INTERVAL value) with a point in time (a DATE or DATETIME value).
See the section “Data Type Conversion” on page 3-319 for additional infor-
mation about data type compatibility in expressions.

Evaluating 4GL Boolean Expressions

In contexts where a 4GL Boolean expression is expected, INFORMIX-4GL
applies the following rules after it evaluates the expression:

• If the value is a non-zero real number (or a character string representing
a non-zero number) or a non-zero INTERVAL, or any DATE or DATETIME
value, or a TRUE value returned by a Boolean function like INFIELD(), or
the integer constant TRUE, then the 4GL Boolean value is TRUE.

• If the value is NULL, but the expression is the operand of the IS NULL key-
words, then the value of the 4GL Boolean expression is TRUE.

• If the value is NULL, and the expression is not an operand of a NULL test,
nor an element in any Boolean comparison (page 3-334) or conditional
statement of 4GL (IF, CASE, WHILE), then the expression returns NULL.

• Otherwise, the 4GL Boolean expression is evaluated as FALSE.

Integer Expressions
An integer expression returns a whole number. It has this syntax:

MOD

**

+

-

*
/

Literal Integer
p. 3-340

Function Call
p. 3-332

Named Value
p. 3-331

-
+

Case II: Differences between DATE values

Case I: Pure integers

4GL Boolean
Expression

p. 3-333

-DATE Value
p. 3-347

DATE Value
p. 3-347

Integer
Expression
3-338 INFORMIX-4GL Statements

Integer Expressions
Here any function call or named value returns an integer. Logical restrictions
on using DATE values as integer expressions are discussed on page 3-356.

Integer expressions can be components of expressions of every other type.
Like Boolean expressions (page 3-333), integer expressions are a logical sub-
set of number expressions (page 3-341), but they are separately described here
because some 4GL operators, statements, form specifications, operators, and
built-in functions are restricted to integer values, or to positive integers.

Binary Arithmetic Operators

Six binary arithmetic operators can appear in an integer expression, and can
take integer expressions as both the right-hand and left-hand operands:

Operator Symbol Operator Name Name of Result Precedence
** exponentiation power 12
mod modulus integer remainder 12
* multiplication product 11
/ division quotient 11
+ addition sum 10
- subtraction difference 10

Note: All arithmetic calculations are performed after converting both operands
to DECIMAL values (but MOD operands are first converted to INTEGER).

If an expression has several operators of the same precedence, 4GL processes
them from left to right. See page 3-328 for the complete “Precedence” scale
for INFORMIX-4GL operators. If any operand of an arithmetic expression is a
NULL value, then the entire expression returns NULL.

An integer expression specifying an array element or the right-hand MOD
operand cannot include exponentiation (**) nor modulus (MOD) operators,
and cannot be zero. The right-hand integer expression operand of the exponen-
tiation (**) operator cannot be negative. You cannot use “mod” as a 4GL
identifier.

If both operands of the division (/) operator have INT or SMALLINT data
types, 4GL discards any fractional portion of the quotient. An error occurs if
the right-hand operand of the division operator evaluates to zero. With some
restrictions, 4GL also supports these binary arithmetic operators in number
expressions (page 3-341) and in some time expressions (page 3-347).

Differences between two DATE values (page 3-338) are integer expressions.
To convert these to type INTERVAL, apply the UNITS DAY operator explicitly.
INFORMIX-4GL Statements 3-339

Integer Expressions
If you include an 4GL Boolean expression in a context where 4GL expects
a number, the Boolean expression is evaluated, and then converted to an
integer by the rules: TRUE = 1 and FALSE = 0. An error results if you attempt
to divide by zero.

Unary Arithmetic Operators

You can use plus (+) and minus (-) symbols at the left are unary operators to
indicate the sign of the expression, or the sign of a component number. For
unsigned values, the default is positive (+). Use parentheses (()) to sepa-
rate the subtraction operator (-) from any immediately following unary
minus sign, as in “minuend -(- subtrahend),” unless you want 4GL to
interpret the ‘‘-- ’’ symbols as a comment indicator.

The same rules apply to plus (+) and minus (-) unary operators used with
number expressions, and with time expressions that return INTERVAL values.

The unary plus (+) and minus (-) operators are recursive.

Literal Integers

You must write literal integers in base-10 notation, without embedded blank
spaces or commas, and without a decimal point:

digit is any of the symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, or 0.

You can precede the integer with unary minus (-) or plus (+) signs:

15 -12 13938 +4

digit

-
+

Literal
Integer
3-340 INFORMIX-4GL Statements

Number Expressions
Number Expressions
A number expression is a specification that evaluates to a real number.

Here the function call or named value must return a real number of data type
DECIMAL, FLOAT, INTEGER, MONEY, SMALLFLOAT, or SMALLINT.

If any operand of an arithmetic operator in a number expression is a NULL
value, then 4GL evaluates the entire expression as a NULL value. The range of
values in a number expression is that of the receiving data type.

Arithmetic Operators

The sections “Binary Arithmetic Operators” on page 3-339 and “Unary
Arithmetic Operators” on page 3-340 apply to number expressions. 4GL con-
verts any modulus (MOD) operand or right-hand operand of the exponentia-
tion (**) operator to INTEGER before conversion to DECIMAL for evaluation;
this feature has the effect of discarding any fractional part of the operands.

If both operands are INTEGER, SMALLINT or DATE data types, then the result
of any arithmetic operation (including division) is a whole number. If either
operand is of data type DECIMAL, FLOAT, MONEY, or SMALLFLOAT, then the
returned value may include a fractional part, except in MOD operations.

MOD

**

+

-

*
/

4GL Boolean
Expression

p. 3-333

Literal Number

Number
Expression

Function Call
p. 3-332

Named Value
p. 3-331-

+

Integer
Expression

p. 3-338
INFORMIX-4GL Statements 3-341

Number Expressions
Literal Numbers

A literal number is the base-10 representation of a real number, written
as an integer, as a fixed-point decimal number, or in exponential notation.

digit is any of the symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, or 0.

This cannot include any comma (,) nor blank (= ASCII 32) character. The
unary plus or a minus sign can precede a literal number or exponent.

There are three kinds of literal numbers:

• Integer literals (page 3-340) can exactly represent INTEGER and SMALLINT
values. Literal integers have no decimal points, as in these example:

10 -27 25567

• Fixed-point decimal literals can exactly represent DECIMAL(p,s) and MONEY
values. These can include a decimal point. Some examples follow:

123.456 .00123456 -123456.0

• Floating-point literals can exactly represent FLOAT, SMALLFLOAT, and
DECIMAL(p) values. These literals contain a decimal point and/or
exponential notation. These are examples of floating-point literals:

123.456e4 -1.23456e2 -123456.0e-3

When you use a literal number to represent a MONEY value, do not precede
it with a currency symbol. Currency symbols are displayed by 4GL when
MONEY values appear in a form or in a report, using whatever the DBMONEY
or DBFORMAT environment variable specifies, or else the default $ symbol.

4GL automatically attempts data-type conversion when a literal number is in
a different format from the expected data type. If you include a character
value in a context that requires a number expression, 4GL attempts to convert
the string to a number. (Page 3-324 summarizes data type conversion.)

digit

E-
+

digit

e

Literal
Number

. digit

. -

+

3-342 INFORMIX-4GL Statements

Character Expressions
You may get unexpected results, however, if a literal number in an 4GL
Boolean expression is not in a format that can exactly represent the data type
of another value with which it is compared by a relational operator. Because
of rounding error, for example, relational operators generally cannot return
TRUE if one operand returns a FLOAT value, and the other an INTEGER.

Similarly, you will get unpredictable (but probably useless) results if you use
literal binary, hexadecimal, or other numbers that are not base-10 where 4GL
expects a number expression. You must convert such numbers to a base-10
format before you can use them in a number expression.

Character Expressions
A character expression is a specification that evaluates to a character string.

character is one or more characters enclosed between two single (’) or
double (") quotation marks. (This is sometimes called a
“character string,” a “quoted string,” or a “string literal.”)

format-string is a quoted string of symbols to specify how 4GL displays the
returned character value. (See page 4-91 for details.)

Here the function call or named value returns a CHAR or VARCHAR value.
No variable in a character expression can be of the TEXT data type, except in
a NULL test (page 3-336), or as a WORDWRAP operand in a PRINT statement
of a 4GL report. As in any 4GL statement or expression, you cannot reference
a named value outside its scope of reference. (See page 2-11.)

Integer
Expression

p. 3-338

Integer
Expression

p. 3-338

CLIPPED USING " format-string"Function Call
p. 3-332

Named Value
p. 3-331

character

[]

,

" "

Character
Expression
INFORMIX-4GL Statements 3-343

Character Expressions
If a character expression includes a 4GL variable or function whose value is
neither of type CHAR nor VARCHAR, 4GL attempts to convert the value to a
character string. For example, the following program fragment

VARIABLE I INTEGER,
J, K CHAR(5)

LET I = 4*8
LET J = "FAX"
LET K = J CLIPPED,I

stores the character string “FAX32” in the CHAR variable K.

The maximum length of a string value is the same as for the declared data
type: up to 32,767 characters for CHAR values, and up to 255 for VARCHAR.
(Some 4GL features cannot be applied to strings longer than 512 characters.)

If character expressions are operands of a relational operator (page 3-334),
4GL evaluates both character expressions, and then compares the returned
values according to their position within the ASCII collating sequence.

Arrays and Substrings

Any integer expressions in brackets that follow the name of an array must eval-
uate to a positive number within a range from 1 to the declared size of the
array. For example, SQLCA.SQLCAWARN[6] specifies the sixth element of
character array SQLCAWARN within the SQLCA global record.

The pair of integer expressions that can follow a character expression specify a
substring. The first value cannot be larger than the second. Both must be pos-
itive, and no larger than the string length (or the receiving data type). For
example, name[1,4] specifies the first four characters of a program variable
called name.

Neither the exponentiation (**) nor modulus (MOD) operators can appear in
an integer expression that specifies an array element or a substring, but paren-
theses (()) and the other arithmetic operators (+, - , * , /) are permitted.

String Operators

You can use the USING keyword, followed by a format string, to impose a
specific format on the character string to which an expression evaluates, or
upon any components of a concatenated character expression. (4GL forms
and reports support additional features for formatting character values.)
3-344 INFORMIX-4GL Statements

Character Expressions
To discard trailing blanks from a character value, apply the CLIPPED
operator to the expression, or to any components of a concatenated character
expression. See also the WORDWRAP field attribute in forms (page 5-57), and
the WORDWRAP operator in 4GL reports (pages page 4-102 and page 6-50),
for more information about handling blank characters in character values.)

You can insert blanks in DISPLAY or PRINT statements by using the SPACE or
COLUMN operators; these are described in Chapter 4. The keyword SPACES
is a synonym for SPACE.

You can use the ASCII operator in DISPLAY or PRINT statements. This takes
an integer expression as its operand, and returns a single-character string,
corresponding to the specified ASCII character. See Chapter 4 for details.

Non-Printable Characters

INFORMIX-4GL regards the following as the printable ASCII characters:

• TAB (= CONTROL-I)

• NEWLINE (= CONTROL-J)

• FORMFEED (= CONTROL-L)

• ASCII 32 (= blank) through ASCII 126 (= ~)

For the ASCII characters and their numeric codes, see Appendix G. Any other
characters are non-printable. Character strings that include one or more non-
printable characters (for example, packed fields) can be operands or returned
values of character expressions. They can be stored in 4GL variables or in
database columns of the CHAR, VARCHAR, and TEXT data types.

You should be aware, however, that many 4GL features for manipulating
character strings were designed for printable characters only. If you create
4GL applications that use character expressions, character variables, or char-
acter columns to manipulate unprintable characters, you may encounter
unexpected results. The following are examples of problems that you risk
when CHAR, TEXT, and VARCHAR values include non-printable characters.

• Behavior of I/O and formatting features like the WORDWRAP attribute or
the DISPLAY or PRINT statements is designed and documented for print-
able characters only. It may be difficult to describe or to predict the effects
of data with non-printable characters with these I/O features, but the
users of your application are unlikely to enjoy the results.

• Strings with unprintable characters can have unpredictable results when
output to I/O devices. For example, some sequences of non-printable
characters can cause terminals to misposition the cursor, clear the display,
modify terminal attributes, or otherwise make the screen unreadable.
INFORMIX-4GL Statements 3-345

Character Expressions
• For another example, CONTROL-D (= ASCII 4) and CONTROL-Z (= ASCII
26) in output from a report can be interpreted as logical end-of-file, caus-
ing the report to stop printing prematurely.

• If you store a zero byte (ASCII 0) in a CHAR or VARCHAR variable or col-
umn, it might be treated as a string terminator by some operators, but as
data by others; and this behavior might vary between the Rapid Devel-
opment Version and the C Compiler Version of INFORMIX-4GL, or even
between database engines.

If you encounter these or related difficulties in processing non-printable
characters, you might consider storing such values as BYTE data types.

The DBAPICODE environment variable lets computer peripherals that use
a character set that is different from that of the database communicate
with the database.

DBAPICODE specifies the character-mapping file between the peripheral
and the database’s character set. In NLS databases, the database character
set is defined in the LC_CTYPE environment variable stored in the data-
base locale. In non-NLS databases, the database character set is the default
8-bit character set.

Note that the NLS variable LC_COLLATE specifies the sort order for data
containing characters that are outside the ASCII range but within the legal
character set for the NLS locale. Note also that the NLS variable LC_CTYPE
specifies a legal set of characters that can appear in identifiers.

For more information, see Appendix E, “Native Language Support
Within INFORMIX-4GL.”

NLS
3-346 INFORMIX-4GL Statements

Time Expressions
Time Expressions
A time expression is a specification that INFORMIX-4GL can evaluate as a DATE,
DATETIME, or INTERVAL value.

As the diagram suggests, the DATE data type is a logical subset of DATETIME.
4GL rules for arithmetic, however, are not identical for DATE and DATETIME
operands (page 3-356), and formatting features like USING (page 4-91) or the
FORMAT (page 5-42) and PICTURE attributes (page 5-48) treat DATETIME and
DATE values differently.

The time data types are logically related because they express values as units
of time. But unlike the number data types (page 3-295) or the character data
types (page 3-296), within which 4GL generally supports automatic data type
conversion (aside from restrictions based on truncation, overflow, or under-
flow), conversion among time data types is more limited. In contexts where
a time expression is required, DATETIME or DATE values can sometimes be
substituted for one another. INTERVAL values, however, which represent
one-dimensional spans of time, cannot be converted to DATETIME or DATE
values, because these represent zero-dimensional points in time.

In addition, if the declared precision of an INTERVAL value includes years or
months, then automatic conversion to an INTERVAL having smaller time units
(like days, hours, minutes, or seconds) is not available. See also page 3-324.

Time Expression

INTERVAL Value
p. 3-348

DATETIME Value
p. 3-348

DATE Value
p. 3-348
INFORMIX-4GL Statements 3-347

Time Expressions
Each of the three types of time expressions has its own syntax:

format string is a quoted character string to specify a DATE display format.

keyword is YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or FRACTION.

In each case, the function call or named value must return a single value of the
corresponding data type. Chapter 4 describes built-in operators like UNITS.

,

"

 TODAY

DATE
Value

USING " format string"Function Call
p. 3-332

Named Value
p. 3-331

Case I: Expressions that return a DATE value:

Case II: Expressions that return a DATETIME value:DATETIME
Value

EXTEND (

CURRENT DATETIME Qualifier
p. 3-349

)DATETIME
Value

DATE Value

DATETIME Literal
p. 3-351

Numeric Date and Time
p. 3-351

""

Function Call
p. 3-332

Named Value
p. 3-331

Numeric Date
p. 3-349

DATETIME Qualifier
p. 3-349

Case III: Expressions that return an INTERVAL value:INTERVAL
Value

INTERVAL Literal
p. 3-355

Numeric Time Interval
p. 3-355

""

Function Call
p. 3-332

Named Value
p. 3-331

Integer Expression
p. 3-338

-

+

"

UNITS keyword
3-348 INFORMIX-4GL Statements

Time Expressions
Numeric Date

A numeric date represents a DATE value as a quoted string of digits:

The digits must represent a valid calendar date. You can use 6 (moddyy) or
8 (moddyyyy) digits, with blank, slash (/), hyphen (-), or no symbol as the
separator. Here mo, dd, and yyyy have the same meanings as on page 3-351.
The DBDATE environment variable can change the order of time units, and
can specify other separators. Like the USING operator or the FORMAT field
attribute, DBDATE can also specify how 4GL displays DATE values.

If you omit the quotation marks where a DATE is expected, 4GL attempts to
evaluate your specification as a literal integer or as an integer expression that
specifies count of days; the result may not be useful.

DATETIME Qualifier

The DATETIME qualifier specifies the precision and scale of a DATETIME value.
It has the same syntax as for DATETIME database columns:

scale is a whole number from 1 to 5, enclosed between parentheses. This
specifies the number of decimal digits for fractions of a second. If you
omit the scale specification, the default scale is 3 digits.

yymo

yyyyseparator dd separator

Numeric Date

YEAR

MONTH

DAY

MINUTE

SECOND

FRACTION

HOUR

(3)
(scale)

DATETIME
Qualifier

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

TO YEAR

TO MONTH
INFORMIX-4GL Statements 3-349

Time Expressions
Specify the largest time unit in the DATETIME as the first keyword. After
the TO, specify the smallest time unit as the second keyword. These time units
imply that these time units can be recorded in the DATETIME value:

YEAR is a year, numbered from 1 to 9999.

MONTH is a month, numbered from 1 to 12.

DAY is a day, numbered from 1 to 31, as appropriate to its month.

HOUR is an hour, numbered from 0 (midnight) to 23.

MINUTE is a minute, numbered from 0 to 59.

SECOND is a second, numbered from 0 to 59.

FRACTION is a fraction of a second, with up to five (5) decimal places.
The default precision is three digits (thousandth of a second).

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify non-default
precision (except for FRACTION when it is the smallest unit in the qualifier).
Here are some examples of DATETIME qualifiers:

YEAR TO MINUTE MONTH TO MONTH
DAY TO FRACTION(4) MONTH TO DAY
3-350 INFORMIX-4GL Statements

Time Expressions
DATETIME Literal

A DATETIME literal is the representation of a DATETIME value as the numeric
date and time, or a portion thereof, followed by a DATETIME qualifier:

dd is the number of the day of the month, from 1 to 31.

fffff is the fraction of a second, in up to 5 digits, as set by the precision
specified for the FRACTION time units in the DATETIME qualifier.

hh is the hour (from a 24-hour clock), from 0 (= midnight) to 23.

mi is the minute of the hour, from 0 to 59.

mo is a number from 1 to 12, representing a month.

space is a blank space (ASCII 32), entered by pressing the SPACEBAR.

ss is the second of the minute, from 0 to 59.

yyyy is a number from 1 to 9999, representing a year. If you use only two
digits, 19 is assumed as the first part of the year, as in 1993 .

yyyy

-
mo

-
dd

space

hh

mi

ss

fffff

:

.

:

DATETIME Qualifier
p. 3-349

Numeric Date
and Time

DATETIME ()

Numeric Date and Time

DATETIME Literal
INFORMIX-4GL Statements 3-351

Time Expressions
An error results if you omit any required separator or includes values for
units outside the range specified by the qualifier. Here are some examples:

DATETIME (93-3-6) YEAR TO DAY
DATETIME (09:55:30.825) HOUR TO FRACTION
DATETIME (93-5) YEAR TO MONTH

Here is an example of a DATETIME literal used in an arithmetic expression as
an operand of the EXTEND operator:

EXTEND (DATETIME (1993-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE
3-352 INFORMIX-4GL Statements

Time Expressions
INTERVAL Qualifier

The INTERVAL qualifier specifies the precision and scale of an INTERVAL
value. It has the same syntax in 4GL as for INTERVAL database columns:

scale is the number of decimal digits to record fractions of a second in
a span of time. The default is three digits; the maximum is five.

precision is the number of digits in the largest number of months, days,
hours, minutes, or seconds that the interval can include.
The default number of digits is two; the maximum is nine.

y- precision is the number of digits in the largest number of years that the
interval can include. The default is four; the maximum is nine.

Specify the largest time unit in the INTERVAL as the first keyword. After the
TO, specify the smallest time unit as the second keyword. If the first time unit
keyword is YEAR or MONTH, the second cannot be smaller than MONTH.

DAY

MINUTE

SECOND

FRACTION

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

HOUR

(precision)

(precision)

(precision)

(precision)

(scale)

YEAR

MONTH

TO YEAR

TO MONTH

(y-precision)

(precision)

(2)

(2)

(2)

(2)

(2)

(4)

(3)Case II: Time units greater than DAY

Case I: Time units smaller than MONTH
INTERVAL
Qualifier
INFORMIX-4GL Statements 3-353

Time Expressions
The following examples of an INTERVAL qualifier are both YEAR to MONTH.
The first example can record a span of up to 999 years, because 3 is the preci-
sion of the YEAR units. The second example uses the default precision for the
YEAR units; it can record a span of up to 9,999 years and 11 months.

YEAR (3) TO MONTH
YEAR TO MONTH

When you intend for a value to contain only one kind of time unit, the first
and last keywords in the qualifier are the same. For example, an interval of
whole years that is qualified as YEAR TO YEAR can record a span of up to
9,999 years, the default precision. Similarly, the qualifier YEAR (5) TO YEAR
can record a span of up to 99,999 years.

The following examples show several forms of INTERVAL qualifiers:

YEAR(5) TO MONTH
DAY (5) TO FRACTION(2)
DAY TO DAY
FRACTION TO FRACTION (4)

The option to specify a non-default precision or y-precision (as distinct from the
scale) is a feature that INTERVAL variables do not share with DATETIME
variables. An error results if you attempt to do this when you declare a
DATETIME variable, specify DATETIME literal, or call the EXTEND operator.
3-354 INFORMIX-4GL Statements

Time Expressions
INTERVAL Literal

An INTERVAL literal represents a span of time as a numeric representation
of its chronological units, followed by an INTERVAL qualifier.

dd is the number of days.

fffff is the fraction of a second in up to five digits, depending on the
precision of the fractional portion in the INTERVAL qualifier.

hh is the number of hours.

mi is the number of minutes.

mo is the number of months, in two digits.

space is a blank space (= ASCII 32), made by pressing the spacebar.

ss is the number of seconds.

yyyy is the number of years.

For all time units except years and fractions-of-a-second, the maximum num-
ber of digits allowed is two, unless this is the first time unit, and the precision
is specified differently by the INTERVAL qualifier. (For years, the default max-
imum number of digits is four, unless this is the first time unit, and some
other precision is specified by the INTERVAL qualifier.

Numeric Time Interval

INTERVAL
Literal

()Numeric Time IntervalINTERVAL
INTERVAL
Qualifier
p. 3-307

Case II: Time units greater than DAY

Case I: Time units smaller than MONTH
dd

space

hh

mi

ss

fffff

.

-

:

:

yyyy

-
mo

-

INFORMIX-4GL Statements 3-355

Time Expressions
Neither the numeric values nor the qualifier can combine units of time that
are smaller than month with month or year time units.

An error results if an INTERVAL literal omits any required field separator, or
includes values for units outside the range specified by the field qualifiers.
Some examples of INTERVAL literal values follow:

INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40-5) DAY TO HOUR

Arithmetic Operations on Time Values

Time expressions can be operands of some arithmetic operators. These
expressions return a DATE value:

All the other binary arithmetic operators (page 3-341) also accept DATE oper-
ands, equivalent to the count of days since December 31, 1899, but the values
returned (except from a DATE expression as the left-hand MOD operand) are
meaningless in most applications.

Note: DATE and DATETIME values have no true zero point; they lie on “interval”
scales. Such scales support addition and subtraction, as well as relational operators
(page 3-334), but multiplication, division, and exponentiation are undefined.

The difference between two DATE values is an INTEGER value, representing
the positive or negative number of days between the two calendar dates.
You must explicitly apply the UNITS DAY operator to the difference between
DATE values, if you wish to store the result as an INTERVAL value.

DATE Value
p. 3-348

-

-

+

Integer
Expression

p. 3-338
DATE Value

p. 3-348

+

Integer
Expression

p. 3-338
3-356 INFORMIX-4GL Statements

Time Expressions
This is the syntax for arithmetic expressions that return a DATETIME value:

Do not write expressions that specify the sum (+) of two DATE or DATETIME
values, nor a difference (-) whose second operand is a DATE or DATETIME
value, and whose first operand is an INTERVAL value.

This is the syntax for arithmetic expressions that return an INTERVAL value:

The difference between two DATETIME values (or a DATETIME and a DATE
value, but not two DATE values) is an INTERVAL value. If the operands have
different qualifiers, the result has the qualifier of the first operand.

An expression cannot combine an INTERVAL value of precision in the range
YEAR to MONTH with another of precision in the DAY to FRACTION range.
Similarly, you cannot combine an INTERVAL value with a DATETIME or DATE
value that has different qualifiers. You must use the EXTEND function to
change the DATE or DATETIME qualifier to match that of the INTERVAL.

If the first operand of an arithmetic expression is a time expression that
includes the UNITS operator, you must enclose that operand in parentheses.

DATETIME Value
p. 3-348

DATE Value
p. 3-348

INTERVAL Value
p. 3-347

()INTERVAL Value
p. 3-347

-
+

() DATETIME Value
p. 3-348

INTERVAL Value
p. 3-347

INTERVAL Value
p. 3-347

DATE Value
p. 3-348

+

DATETIME Value
p. 3-348

INTERVAL Value
p. 3-347

()INTERVAL Value
p. 3-347

-
+()

DATETIME Value
p. 3-348

DATE Value
p. 3-348

/

-

*

INTERVAL Value
p. 3-347

INTERVAL Value
p. 3-347

-DATE Value
p. 3-348

Number Expression
p. 3-341
INFORMIX-4GL Statements 3-357

Time Expressions
If any component of an time expression is a NULL value, INFORMIX-4GL eval-
uates the entire expression as a NULL value, unless the NULL value is
an operand of the IS NULL or IS NOT NULL keywords.

Relational Operators and Time Values

Time expression operands of relational operators (page 3-334) follow these rules:

• Comparison x < y is TRUE when x is a briefer INTERVAL span than y,
or when x is an earlier DATE or DATETIME value than y.

• Comparison x > y is TRUE when x is a longer INTERVAL span than y,
or when x is a later DATE or DATETIME value than y.

• You cannot mix INTERVAL operands with DATE or DATETIME operands,
but you can compare DATE and DATETIME expressions with each other.
3-358 INFORMIX-4GL Statements

Field Clause
Field Clause
The field clause specifies one or more screen fields or screen records.

field is a field name, as declared in the ATTRIBUTES section of the
form specification file.

line is an integer expression, enclosed within brackets, to specify a
record within the screen array. Here 1 ≤ line ≤ size, for size the
array size that is declared in the INSTRUCTIONS section. If you
omit the [line] specification, the default is the first record.

screen array is the 4GL identifier that you declared for a screen array in the
INSTRUCTIONS section of the form specification file.

screen record is the 4GL identifier that you declared for a screen record, or
else a table reference (as the name of a default screen record).

table reference is the name, alias, or synonym of a database table or view.

Usage
A table reference cannot include table qualifiers. You must declare an alias in
the form specification file, as described on page 5-19, for any table reference
that requires a qualifying prefix (such as database, server, or owner). Here the
FORMONLY keyword (page 5-24) acts like a table reference for fields that are
not associated with a database column.

You can use the asterisk (*) symbol to specify every field in a screen record.

Some contexts, such as the NEXT FIELD clause, support only a single-field
subset of this syntax. In these contexts, the THRU or THROUGH keyword,
asterisk notation, and comma-separated list of field names are not valid.

 Field Clause

,

. *

field

THRU
Notation

3-363

 line[]
[1]

table reference

screen record

screen array

FORMONLY
INFORMIX-4GL Statements 3-359

Field Clause
You can specify one or more of the following in the field clause:

• A field name without qualifiers (field) if this name is unique in the form

• A field name, qualified by a table reference (FORMONLY. field or
table.field)

• An individual member of a screen record (record. field)

• An individual field within a screen array (array [line] . field)

• A set of consecutive fields in a screen record (by the THRU notation)

• An entire screen record (record. *)

• The first screen record in a screen array (array. *)

• Any entire record within a screen array (array [line] .*)

The FIELD_TOUCHED() operator in a CONSTRUCT or INPUT statement recog-
nizes a subset of this field clause syntax; it does not support the [line] notation
to specify an individual screen record within a screen array.

The field list of a SCREEN RECORD specification in the INSTRUCTIONS section
of a screen form can include the THRU or THROUGH keywords (page 3-363).
Chapter 4 describes how to declare screen records and screen arrays.

The following INPUT statement illustrates how to specify a field name:

INPUT p_customer.fname, p_customer.lname FROM fname, lname

The following SCROLL statement moves the displayed values in all the fields
the s_orders screen array downwards by two lines. Any values are cleared
from the first two screen records; any values in the two screen records that are
closest to the bottom of the 4GL screen or other 4GL windows are no longer
visible:

SCROLL s_orders.* DOWN 2

The next SCROLL statement moves the displayed values in two of the fields
of the s_orders screen array towards the top of the 4GL screen for every
screen record. Any other fields of the s_orders array are not affected:

SCROLL s_orders.stock_num, s_orders.unit_descr UP 2

The following CLEAR statement clears one record of a screen array. In this
example, the integer value of the idx variable determines which screen record
is cleared:

CLEAR s_items[idx].*

References
CLEAR, CONSTRUCT, DISPLAY, INPUT, INPUT ARRAY, SCROLL, THRU
3-360 INFORMIX-4GL Statements

Table Qualifiers
Table Qualifiers
Statements that reference database tables, views, or synonyms (either alone,
or as qualifiers of database column names) can include table qualifiers:

database is the name of a database containing the table, view, or synonym.

owner is the login name of the owner of the table, view, or synonym
whose identifier immediately follows the table qualifier.

server is the name of the host system where database resides. Blank spaces
are not valid after the @ symbol.

Usage
Table qualifiers can appear in SQL and other 4GL statements, and in table
alias declarations (page 5-19) in the TABLES section of form specifications.
You cannot, however, prefix a table alias or a field name with a table qualifier.
Except in table alias declarations within the TABLES section, you cannot
include table qualifiers anywhere in a form specification file.

Owner Naming

The qualifier can specify the login name of the owner of the table. You must
specify owner if table.column is not a unique identifier within its database.

VALIDATE var1, var2, var3 LIKE les.t1.c1, t2.c2, sasha.t3.c3

You can include the owner name in a database that is not ANSI-compliant.
If the owner is incorrect, however, 4GL generates an error. For more informa-
tion, see the section “Owner Naming” in the Informix Guide to SQL: Reference.

@server

database

OL

:
owner.

" owner."

Table Qualifier

In an ANSI-compliant database, you must qualify each table name with
that of the owner of the table (owner.table). The only exception is that you
can omit the owner prefix for any tables that you own. For example, if Les
owns table t1, you own table t2, and Sasha owns table t3, then you could
use the following statement to reference three columns in those tables:

ANSI
INFORMIX-4GL Statements 3-361

Table Qualifiers
Database References

The LIKE clause of 4GL statements like DEFINE, INITIALIZE, and VALIDATE
can use this database: or database@server: notation in table qualifiers to specify
tables in a database other than the default database (page 3-59). Without such
qualifiers, 4GL looks for the table in the default database. Even if the table
qualifier includes a database reference, however, the LIKE clause will fail
unless you also include a DATABASE statement before the first program block
in the same module to specify a default database.

The current database is the database specified by the most recently executed
DATABASE statement in a MAIN or FUNCTION program block in the same
module. 4GL programs can include SELECT statements that query a table in
an INFORMIX-OnLine database that is not the current database, but they can-
not insert, update, nor delete rows from any table that is not in the current
database.

If the current database is supported by the INFORMIX-OnLine database
engine, a table reference can also include @server to specify the name of
another host system on which a table resides.

LOAD FROM "fyl" INSERT INTO dbas@hostile:woody.table42

References
DATABASE, DEFINE, INITIALIZE, LOAD, VALIDATE, UNLOAD

Only the databases stored in your current directory, or in a directory
specified in your DBPATH environment variable, are recognized. Table
qualifiers cannot include references to an INFORMIX-SE database.

SE

If the current database is ANSI-compliant, a run-time error results
if you attempt to query a remote database that is not ANSI-compliant.

ANSI
3-362 INFORMIX-4GL Statements

THRU or THROUGH Keywords and .* Notation
THRU or THROUGH Keywords and .* Notation
To list consecutive set members in the same order as in their declaration, you
can use the .* notation to specify the entire set, or you can use the keyword
THRU (or THROUGH, its synonym) to specify a subset of consecutive items:

first is the name of some member variable or field of the record.

last is a variable or field that was declared later than first.

same is the name of the same record or table that qualified first.

Usage
These notational devices in 4GL statements can simplify lists of structured
sets of fields of a screen record, or member variables of a program record.
(The columns of a database table can be referenced by the asterisk notation,
but you cannot use THRU nor THROUGH to specify a partial list of columns.)

If the ALTER TABLE statement has changed the order, the names, the data
types, or the number of the columns in table since you compiled your pro-
gram, then you might need to modify your program and its screen forms that
reference that table before you can use these notational devices.

The notation record.member refers to an individual member variable of a 4GL
program record, or a field of a 4GL screen record. The record.* notation refers
to the entire program record or screen record. Here record can be the name,
alias, or synonym of a table or view, or the name of a program record or of a
screen record, or the FORMONLY keyword.

The THRU (or equivalently, THROUGH) notation can specify a partial list of
the members of a program record or screen record. The notation record.first
THRU record.last refers to a consecutive subset of members of the record, from
first through last inclusive, where first appears sooner than last in the data
type declaration of a program record, or else in the ATTRIBUTES section of the
form specification file (for screen records).

THROUGH same.lastfirst

THRU

THRU
Notation
INFORMIX-4GL Statements 3-363

THRU or THROUGH Keywords and .* Notation
These notations are a shorthand for writing out a full or partial list of set
members, with comma (,) separating individual items in the list; this is the
form to which 4GL expands these notations. Here are two examples:

INITIALIZE pr_rec.member4 THRU pr_rec.member8 TO NULL
DISPLAY pr_rec.* TO sc_rec.*

The INITIALIZE statement above sets to NULL the values of 4GL variables
pr_rec.member4, pr_rec.member5, pr_rec.member6, pr_rec.member7,
and pr_rec.member8. The DISPLAY statement lists the entire record pr_rec in
the screen fields that comprise the screen record sc_rec.

The order of record members within the expanded list is the same order that
they had when they were declared, from first to last. For a screen record, this is
the order of their field descriptions in the ATTRIBUTES section. For example,
suppose that the following appeared in the form specification file:

 ATTRIBUTES
 ...
 f002=tab3.aa;
 f003=tab3.bb;
 f004=tab3.cc;
 f005=tab2.aa;
 f006=tab2.bb;
 f007=tab1.aa;
 f008=tab1.bb;
 f009=tab1.cc;
 ...
 INSTRUCTIONS
 SCREEN RECORD sc_rec (tab3.cc THRU tab1.bb)

The previous fragment of a form specification file implies the following
ordered list of field names within the screen record sc_rec:

tab3.cc tab2.aa tab2.bb tab1.aa tab1.bb

Note: The order of fields in the screen record depends on the physical order of field
descriptions in the ATTRIBUTES section, and on the SCREEN RECORD specification.
The Form Compiler ignores the physical arrangement of fields in the screen layout,
the order of table names in the TABLES section, the CONSTRAINED and UNCON-
STRAINED keywords of the OPTIONS statement, and the lexicographic order of the
table names or field names when it processes the declaration of a screen record. For
more information about default and non-default screen records, see page 5-63.
3-364 INFORMIX-4GL Statements

THRU or THROUGH Keywords and .* Notation
Restrictions on the THRU, THROUGH, and .* Notations

The THRU, THROUGH, or .* notation can appear in any list of columns,
fields, or member variables, with the following exceptions:

• You cannot use THRU nor THROUGH in reference to columns of database
tables. There is no shorthand for a partial listing of columns of a table.

• You cannot use THRU nor THROUGH to indicate a partial list of screen
record members while the program displays or enters data in a form.

• You cannot use THRU, THROUGH, nor .* in a quoted string to specify the
variable list of a SELECT or INSERT clause in the PREPARE statement.

• You cannot use THRU, THROUGH, or the .* notation to reference a
program record that contains an array member. (But these notations can
specify all or part of a record that contains records as members.)

• An exception to the general rule of .* expanding to a list of all column
names occurs when .* appears in an UPDATE statement. Here any
columns of the SERIAL data type are excluded from the expanded list.
For example, the following UPDATE statement:

UPDATE table1 SET table1.* = program_rec.*

is equivalent to the expanded syntax:

 UPDATE table1 SET table1.col1 = program_rec.member1,
table1.col2 = program_rec.member2, ...

and so forth to the last column, but with any SERIAL column omitted.

References
CLEAR, CONSTRUCT, DISPLAY, FUNCTION, INPUT, INPUT ARRAY, REPORT,
SCROLL
INFORMIX-4GL Statements 3-365

THRU or THROUGH Keywords and .* Notation
3-366 INFORMIX-4GL Statements

Chapter
4

Built-In Functions
and Operators
Functions in 4GL Programs 5

Built-In 4GL Functions 5
Built-In SQL Functions 6
C Functions 6
ESQL/C Functions 7
Programmer-Defined 4GL Functions 7
Invoking Functions 8

Operators of 4GL 10

Syntax of Built-In Functions and Operators 11
Aggregate Report Functions 13

The GROUP Keyword 14
The WHERE Clause 14
The MIN() and MAX() Functions 14
The AVG() and SUM() Functions 14
The COUNT (*) and PERCENT (*) Functions 14

ARG_VAL() 16
Arithmetic Operators 18

Unary Arithmetic Operators 19
Binary Arithmetic Operators 19
Exponentiation (**) Operator 21
Modulus (MOD) Operator 22
Multiplication (*) and Division (/) Operators 22
Addition (-) and Subtraction (+) Operators 22

ARR_COUNT() 24
ARR_CURR() 26
ASCII 28

Boolean Operators 30
Logical Operators 31
Boolean Comparisons 31
Relational Operators 32
The NULL Test 33
The LIKE and MATCHES Operators 33
Set Membership and Range Tests 35

CLIPPED 38
COLUMN 40
CURRENT 42
DATE 44
DATE() 45
DAY() 46
DOWNSHIFT() 47
ERR_GET() 48
ERR_PRINT() 49
ERR_QUIT() 50
ERRORLOG() 51
EXTEND() 53
FGL_DRAWBOX() 56
FGL_GETENV() 58
FGL_KEYVAL() 60
FGL_LASTKEY () 62
FIELD_TOUCHED() 64
GET_FLDBUF() 66
INFIELD() 69
LENGTH() 71
LINENO 73
MDY() 74
MONTH() 75
NUM_ARGS() 76
PAGENO 77
SCR_LINE() 78
SET_COUNT() 80
SHOWHELP() 81
SPACE 82
SQLEXIT() 83
STARTLOG() 84
TIME 86
TODAY 87
UNITS 89
UPSHIFT() 90
4-2 Built-In Functions and Operators

USING 91
USING Operator Examples 96

WEEKDAY() 100
WORDWRAP 102
YEAR() 104
Built-In Functions and Operators 4-3

4-4 Built-In Functions and Operators

Functions in 4GL Programs
In 4GL, a function is a named collection of statements that performs a task.
(In some programming languages, terms like method, subroutine, or procedure
correspond to a “function” in 4GL.) If you need to repeat the same series of
operations, you can call the same function several times, rather than specify
the same steps for each repetition. This construct supports the structured pro-
gramming design goal of segmenting source code modules into logical units,
each of which has only a single entry point and controlled exit points.

The FUNCTION statement (page 3-111) can define functions. 4GL programs
can invoke the following types of functions:

• Programmer-defined 4GL functions

• 4GL built-in functions

• SQL built-in functions

• C functions

• ESQL/C functions (if you have the INFORMIX-ESQL/C product)

Programmer-defined 4GL functions are described briefly on page 4-7, and
in greater detail on page 3-111. The other types of functions that you can call
from a 4GL program are briefly discussed on the next two pages.

Built-In 4GL Functions
The built-in functions of 4GL are predefined functions that support features
of the INFORMIX-4GL language. Except for the fact that no FUNCTION
definition is required, built-in functions behave exactly like the 4GL functions
that you define with the FUNCTION statement:

• You can invoke them with the CALL statement. (If they return a single
value, they can appear without CALL in 4GL expressions.)

• They require parentheses (()), even if the argument list is empty.

• You cannot invoke them from SQL statements.

• You can invoke them from a C program.
Built-In Functions and Operators 4-5

Built-In SQL Functions
If you use the FUNCTION statement to define a function with the same name
as a built-in function, then your program cannot invoke the built-in function.
Each of the following 4GL built-in functions is described in this chapter.

ARG_VAL(int-expr) FGL_KEYVAL(char-expr)
ARR_COUNT() FGL_LASTKEY()
ARR_CURR(char-expr) LENGTH(char-expr)
DOWNSHIFT(char-expr) NUM_ARGS()
ERR_GET(int-expr) SCR_LINE()
ERR_PRINT(int-expr) SET_COUNT(int-expr)
ERR_QUIT(int-expr) SHOWHELP(int-expr)
ERRORLOG(char-expr) SQLEXIT()
FGL_DRAWBOX(nlines, ncols, begy, begx, color) STARTLOG(" filename. filetype")
FGL_GETENV(char-expr) UPSHIFT(char-expr)

Each argument of FGL_DRAWBOX() is an integer expression (page 3-338),
except color, which can also be a keyword to specify a color (page 3-290). You
can also use 4GL aggregate functions (page 4-13), but only in REPORT program
blocks. These aggregates, which include AVG(), COUNT(*), MAX(), MIN(),
PERCENT(*), and SUM(), cannot be operands in 4GL expressions.

Built-In SQL Functions
Informix database engines support built-in SQL functions, some of which
have the same names as built-in 4GL functions or operators. The built-in SQL
functions can appear only in SQL statements, but not in other 4GL statements.
(The Informix Guide to SQL: Reference describes SQL functions.)

Note: Versions of Informix database engines later than 4.1 support stored
procedures. These resemble functions that are executed by the database engine. This
version of 4GL does not provide direct support for the EXECUTE PROCEDURE state-
ment of SQL. You must use the PREPARE statement if you want to execute a stored
procedure from a program that you create with this release of 4GL.

C Functions
You can use the CALL statement or an expression to invoke properly-written
C language functions within an INFORMIX-4GL program. Such functions are
often helpful for specialized tasks that are not easily written in 4GL, such as
processing binary I/O. For information on the application program interface
(API) of 4GL to the C programming language, see Appendix C.

Unlike INFORMIX-4GL identifiers, names of C functions are case-sensitive.
They must typically appear in lowercase letters within the function call.
4-6 Built-In Functions and Operators

ESQL/C Functions
ESQL/C Functions
If you have the INFORMIX-ESQL/C product, your 4GL program can also call
compiled ESQL/C functions that you write, as well as ESQL/C library func-
tions. See “Running Programs that Call C Functions” on page 1-70.

Programmer-Defined 4GL Functions
The FUNCTION program block begins with the FUNCTION keyword and
ends with the END FUNCTION keywords. These enclose a program block of
the 4GL statements that compose the function, and that are executed when
the function is invoked. This is the syntax of the FUNCTION statement:

argument is the name of a formal argument to the function.

function is the name that you declare for the function.

statement is an SQL statement or other 4GL statement.

The left-hand portion of this diagram, including the identifier of the function
and the list of formal arguments, is sometimes called the function prototype
(page 3-112). This resembles the prototype of a report (page 6-6).

Names of functions must be unique among the names of functions, reports,
and global variables within the program, and cannot be the same as any of
the formal arguments of the same function. See “FUNCTION” on page 3-111
for details of how to define 4GL functions.

The right-hand portion of this diagram, including the declarations of formal
arguments and of local variables, and the statement block, is sometimes called
the FUNCTION program block. This can include any executable statement of
SQL or 4GL except the report execution statements (page 3-14). The entire
FUNCTION program block must be defined within a single source module.

No other FUNCTION, REPORT, nor MAIN program block can be included in a
FUNCTION definition, but it can include statements that produce a report, or
call a function, or execute a RUN statement that invokes another program.

FUNCTION function () END FUNCTION

argument

,

RETURN
Statement
p. 3-263

statement) DEFINE
Statement

p. 3-65
Built-In Functions and Operators 4-7

Invoking Functions
Invoking Functions
Except for SQL functions, which are called in SQL expressions (page 3-330),
4GL programs can use the CALL statement (page 3-16) to invoke functions.
In some contexts, however, you can also call functions implicitly:

• If a function returns a single value, then you can invoke the function
simply by specifying its name (and any required arguments) within an
expression where a value of the returned data type is valid.

• The exception-handling features of 4GL can automatically invoke a
function that you specify in the CALL clause of the WHENEVER statement.

Passing Arguments and Returning Values

The program block containing the CALL statement or expression that invokes
a function is called the calling routine. Functions can receive information from
(and return values to) the calling routine. In the typical case where this is
a different program block, values from the calling routine and from other
program blocks are visible to the function only through global or module
variables (page 3-65), or through the argument list of the calling statement.

For most data types, the RETURN statement (page 3-263) in the function and
RETURNING clause (page 3-19) of the CALL statement specify any values that
the function returns to the calling routine. This mechanism for communica-
tion between the function and its calling routine is called passing by value.

Arguments of blob data types BYTE or TEXT are processed in a different way,
called passing by reference. The BYTE or TEXT variables appear in the argument
list of the calling statement, but what is passed to the function is a pointer to
the variables. The RETURN statement and RETURNING clause cannot include
blob variables. (The built-in 4GL functions that are described in this chapter
all pass their arguments by value, rather than by reference.)

Invoking SQL Functions

You can invoke predefined SQL functions and operators in 4GL programs, but
only within SQL statements. (See the description of function expressions in
the Informix Guide to SQL: Reference for information about SQL functions.) For
example, the USER operator of SQL can appear in a SELECT statement:

DEFINE usr_id CHAR(9)
...
SELECT USER INTO usr_id FROM systables WHERE tabid = 1
4-8 Built-In Functions and Operators

Operators of 4GL
Note: Some built-in 4GL functions and operators have the same names as
SQL functions or operators. For example, CURRENT, DATE(), DAY(), EXTEND(),
LENGTH(), MDY(), MONTH(), WEEKDAY(), YEAR(), and the relational operators
(page 4-32) are features of both 4GL and SQL. You will generally encounter a com-
pile-time or link-time error, however, if a statement that is not an SQL statement
references an SQL function or operator that is not also a 4GL function or operator.

Built-in SQL functions and operators like USER cannot appear in other 4GL
statements, however, that are not SQL statements. If a program requires the
functionality of USER in a non-SQL statement like PROMPT, for example, then
you must first use FUNCTION to define an equivalent 4GL function:

FUNCTION get_user()
DEFINE uid LIKE informix.sysusers.username
SELECT USER INTO uid FROM informix.systables

WHERE tabname = "systables"
-- row is sure to exist and to be singular

RETURN uid
END FUNCTION

To require no cursor, the SELECT statement in this example must be written
so that it returns only one row. Here the get_user() function selects the row
of systables that names itself, because this row it is sure to exist and to be
unique. (The owner name “informix” is required to reference tables of the
system catalog only in an ANSI-compliant database, but it is valid in any SQL
database where it is an owner name.)

Operators of 4GL
The operators support features of INFORMIX-4GL that in earlier releases were
called “built-in functions.” The operators are different in several ways from
4GL functions:

• Except for GET_FLDBUF(), the CALL statement cannot invoke them.

• Some operators can take special non-alphanumeric symbols as operands.

• Some can be used in SQL statements.

• You cannot reference them from a C program.

Despite these differences, the operators are described in this chapter, since
they resemble the built-in 4GL functions in their syntax and behavior. Oper-
ators that return a single value can be operands in expressions.
Built-In Functions and Operators 4-9

Syntax of Built-In Functions and Operators
You can use the FUNCTION statement to define a 4GL function with the same
name as an operator. In this case, only the operator, not the function, is visible
as an operand in a 4GL expression. For example:

let dt = mdy(1,2,3) --built-in MDY() operator
call mdy(1,2,3) --programmer-defined MDY() function

You can use the CALL statement, however, to invoke a function that has
the same name as an operator.

The following operators of 4GL are described in this chapter:

ASCII int-expr LENGTH(char-expr)
char-expr CLIPPED LINENO
COLUMN integer MDY(int-expr, int-expr, int-expr)
CURRENT MONTH(date-expression)
CURRENT qualifier PAGENO
DATE int-expr SPACE
DATE (date-expression) int-expr SPACES
DAY(date-expression) TIME
EXTEND(value) TODAY
EXTEND(value, qualifier) int-expr UNITS time-keyword
FIELD_TOUCHED(field-list) expression USING format-string
GET_FLDBUF(field-list) WEEKDAY (date-expression)
INFIELD(field) YEAR (date-expression)

Note: These operators and additional arithmetic, logical, and relational operators are
included in this chapter as a convenience, so that you can find syntax articles without
classifying a given feature as a function or as an operator.

Syntax of Built-In Functions and Operators
Operators that are represented by non-alphabetic symbols are grouped in
this chapter under the headings “Arithmetic Operators” on page 4-18 and
“Relational Operators” on page 4-32.

The relational operators can appear in expressions whose returned values are
either TRUE, FALSE, or NULL. The section “Boolean Operators” on page 4-30
describes the operators of 4GL that can return only these Boolean values. The
various aggregates that can appear in a REPORT definition are themselves
aggregated in the section “Aggregate Report Functions” on page 4-13.

For a general discussion of INFORMIX-4GL operators, see page 3-327.
4-10 Built-In Functions and Operators

Syntax of Built-In Functions and Operators
Sections that follow describe these arithmetic and relational operators:

Symbol Description Page Symbol Description Page

+ Addition 4-22 < Less than 4-31
/ Division 4-22 <= Not greater than 4-31
** Exponentiation 4-21 = or == Equal to 4-31
MOD Modulus 4-21 != or <> Not equal to 4-31
* Multiplication 4-22 >= Not less than 4-31
- Subtraction 4-22 > Greater than 4-31
Built-In Functions and Operators 4-11

Syntax of Built-In Functions and Operators
Additional sections describe these built-in functions and operators of 4GL:

† Valid only in the FORMAT section of a REPORT program block.

‡ Valid only in the COLOR attribute of a form specification, and in SQL statements.

Built-in Functions Page Operators Page

ARG_VAL() 4-16 AND 4-30
ARR_COUNT() 4-24 ASCII 4-28
ARR_CURR() 4-26 ‡ BETWEEN . . . AND 4-35

† AVG() 4-13 CLIPPED 4-38
† COUNT(*) 4-13 COLUMN 4-40

DOWNSHIFT() 4-47 CURRENT 4-42
ERR_GET() 4-48 DATE 4-44
ERR_PRINT() 4-49 DATE() 4-45
ERR_QUIT() 4-50 DAY() 4-46
ERRORLOG() 4-51 EXTEND() 4-53
FGL_DRAWBOX() 4-56 FIELD_TOUCHED() 4-64
FGL_GETENV() 4-58 GET_FLDBUF() 4-66
FGL_KEYVAL() 4-60 ‡ IN() 4-35
FGL_LASTKEY() 4-62 INFIELD() 4-69
LENGTH() 4-71 IS NULL 4-33

† MAX() 4-13 LIKE 4-33
† MIN() 4-13 † LINENO 4-72

NUM_ARGS() 4-76 MATCHES 4-33
† PERCENT(*) 4-13 MDY() 4-74

SCR_LINE() 4-78 MONTH() 4-75
SET_COUNT() 4-80 NOT 4-30
SHOWHELP() 4-81 OR 4-30
SQLEXIT() 4-83 † PAGENO 4-77
STARTLOG() 4-84 SPACE or SPACES 4-82

† SUM() 4-13 TIME 4-86
UPSHIFT() 4-90 TODAY 4-87

UNITS 4-89
USING 4-91
WEEKDAY() 4-100

† WORDWRAP 4-102
YEAR() 4-104
4-12 Built-In Functions and Operators

Aggregate Report Functions
Aggregate Report Functions
Each aggregate report function of 4GL returns a value summarizing data
from all the input records, or from a specified group of input records. The
4GL report aggregates are not valid outside of a REPORT program block.

Usage
The 4GL report aggregates resemble the SQL aggregates that can appear in
SELECT or DELETE statements, but their syntax is not identical; see page 4-15.
Aggregate report functions cannot appear as operands of 4GL expressions,
and cannot be nested. That is, no expression within a report aggregate can
include a report aggregate.

An error typically occurs if you attempt to use the name of an aggregate as
an identifier. Programmer-defined functions to calculate the same statistics
can be invoked from within or outside of REPORT definitions, but you must
declare other names for such functions.

Variables of large or structured data types (page 3-296) cannot be arguments
to these functions. You can, however, specify the name of a simple variable
(page 3-294) that is a member of a record, or that is an element of an array.

AVG(), SUM(), MIN(), and MAX() ignore records with NULL values for their
argument, but each returns NULL if all records have a NULL value.

If an aggregate value that depends on all records of the report appears any-
where except in the ON LAST ROW control block, then each variable in that
aggregate or WHERE clause must also appear in the list of formal arguments
of the report. (Examples of aggregates that depend on all records include
using GROUP COUNT(*) anywhere in a report, or using any aggregate with-
out the GROUP keyword anywhere outside the ON LAST ROW control block.)

4GL stores intermediate results for aggregates in temporary tables. An error
results if no database is open, because the temporary table cannot be created.

GROUP

 PERCENT

COUNT

AVG

SUM

MAX

()Number Expression
p. 3-341

()

INTERVAL Value
p. 3-347

WHERE 4GL Boolean
Expression

p. 3-333

4GL Expression
p. 3-326

()

(*)

MIN
Built-In Functions and Operators 4-13

Aggregate Report Functions
The GROUP Keyword

This optional keyword causes the aggregate function to include data only
for a group of records that have the same value on a variable that you specify
in an AFTER GROUP OF control block.

An aggregate can include the GROUP keyword only within an
AFTER GROUP OF control block. If you need the value of a GROUP
report aggregate elsewhere, you must use the LET statement within
the AFTER GROUP OF control block to store the value in a variable of
appropriate scope of reference.

The WHERE Clause

The optional WHERE keyword selects among the records passed to the report,
including only those for which a Boolean expression (page 3-333) is TRUE.
Conditional aggregates are calculated on the first pass, when the records are
read, and printed on the second pass. You cannot use aggregates in a loop,
such as FOR or WHILE, where the WHERE clause changes dynamically.

The MIN() and MAX() Functions

These evaluate as the minimum value and maximum value (respectively) of
the expression among all records, or among records qualified by the optional
WHERE clause or GROUP keyword. For character data, greater than means
“after” in the ASCII collating sequence, where a> A> 1, and less than means
“before” in the ASCII sequence, where 1< A< a. For DATE or DATETIME
data, greater than means “later” and less than means “earlier” in time.
See Appendix G for a listing of the ASCII collating sequence.

The AVG() and SUM() Functions

These evaluate as the average (that is, the arithmetic mean value) and the total
(respectively) of the expression among all records, or among records
qualified by the optional WHERE clause or GROUP keyword. The expression
(in parentheses) that AVG() or SUM() evaluates must return a 4GL variable or
expression of a number or INTERVAL data type.

The COUNT (*) and PERCENT (*) Functions

These are evaluated, respectively, as the total number of records qualified by
the optional WHERE clause, and as a percentage of the total number of records
in the report. You must include the (*) symbols. Like the other report
aggregates, PERCENT(*) and COUNT(*) cannot be used within an expression.
4-14 Built-In Functions and Operators

Aggregate Report Functions
The following fragment of a REPORT routine uses the AFTER GROUP OF
control block and GROUP keyword to form sets of records according to how
many items are in each order. The last PRINT statement calculates the total
price of each order, then adds a shipping charge, and prints the result.

AFTER GROUP OF number
SKIP 1 LINE
PRINT 4 SPACES, "Shipping charges for the order: ",

ship_charge USING "$$$$.&&"
PRINT 4 SPACES, "Count of small orders: ",

COUNT(*) WHERE total_price < 200.00 USING "##,###"
SKIP 1 LINE
PRINT 5 SPACES, "Total amount for the order: ",

ship_charge + GROUP SUM(total_price) USING "$$,$$$,$$$.&&"

With no WHERE clause, GROUP SUM here combines every item in the group.

Differences Between the 4GL and SQL Aggregates

The Informix Guide to SQL: Reference describes the syntax of the SQL aggregate
functions. The following are the major differences between the 4GL report
aggregates and aggregate functions that Informix database engines support:

• Only 4GL report aggregates can use the PERCENT(*) or GROUP keywords.

• Only SQL aggregates can use ALL, DISTINCT, or UNIQUE as keywords.

• In 4GL reports, COUNT can only take an asterisk (*) symbol as its argu-
ment; but in SELECT or DELETE statements of SQL, the COUNT aggregate
can also use a column name or an SQL expression as its argument.

Only SQL aggregate functions can use database column names as arguments,
but this syntax difference is not of much practical importance. (Operands in
the expressions that you specify as arguments for 4GL report aggregates can
be program variables that contain values from database columns.)

References
LINENO, PAGENO, WORDWRAP
Built-In Functions and Operators 4-15

ARG_VAL()
ARG_VAL()
The ARG_VAL() function returns a specified argument from the command
line that invoked the current 4GL application program. It can also return the
name of the current program.

ordinal is an integer expression that evaluates to a non-negative whole
number no larger than the number of arguments of the program.
(See the syntax of “Integer Expressions” on page 3-338.)

Usage
This function provides a mechanism for passing values to the 4GL program
through the command line that invokes the program. You can design a 4GL
program to expect or to allow arguments after the name of the program in the
command line.

Use the ARG_VAL() function to retrieve individual arguments during
program execution. (You can also use the NUM_ARGS() function to determine
how many arguments follow the program name on the command line.)

If 1 ≤ ordinal = n, then ARG_VAL(n) returns the nth command-line argument
as a character string. The value of ordinal must be between 0 and the value
returned by NUM_ARGS (), the number of command-line arguments.

The expression ARG_VAL(0) returns the name of the 4GL application program.

Using ARG_VAL() with NUM_ARGS()

The built-in ARG_VAL() and NUM_ARGS() functions can pass data to a
compiled 4GL program from the command line that invoked the program.

For example, suppose that the 4GL program called myprog can accept one or
more login names as command-line arguments. Then both of the following
command lines include the same four arguments:

myprog.4gi joe bob sue les (C compiler version)
fglgo myprog joe bob sue les (RDS version)

ordinalARG_VAL ()
4-16 Built-In Functions and Operators

ARG_VAL()
In either case, statements in the following program fragment use the
ARG_VAL() function to store in an array of CHAR variables all the names
that the user who invoked myprog entered as command-line arguments:

VARIABLE args ARRAY[8] OF CHAR(10),
i SMALLINT

. . .
FOR i = 1 TO NUM_ARGS()

LET args[i] = ARG_VAL(i)
END FOR

After the command-line arguments listed above, the NUM_ARGS() function
returns the value 4. Executing the LET statements in the FOR loop assigns the
following values to elements of the args array:

Variable Value
args[1] joe
args[2] bob
args[3] sue
args[4] les

Reference
NUM_ARGS()
Built-In Functions and Operators 4-17

Arithmetic Operators
Arithmetic Operators
The 4GL arithmetic operators perform arithmetic operations on operands of
number data types (and in some cases, of time data types).

This is the syntax for arithmetic expressions that return a number value:

This is the syntax for arithmetic expressions that return a DATE value:

This is the syntax for arithmetic expressions that return a DATETIME value:

Number
Expression

MOD

**

+

-

*
/

Literal Number
p. 3-342

Function Call
p. 3-332

Variable
p. 3-331

-
+

DATE Value
p. 3-347

DATE Value
p. 3-347

-

Case II: Differences between
DATE values

Case I: Real numbers

4GL Boolean
Expression

p. 3-333

Number
Expression

Time
Expression Case I: Returning a DATE value

-
+
-
+

Integer Expression
p. 3-338

DATE Value
p. 3-347

DATE Value
p. 3-347

Integer Expression
p. 3-338

Time
Expression Case II: Returning a DATETIME value

DATETIME Value
p. 3-347

DATE Value
p. 3-347

INTERVAL Value
p. 3-347

DATETIME Value
p. 3-347

+INTERVAL Value
p. 3-347

DATE Value
p. 3-347

-
+

4-18 Built-In Functions and Operators

Arithmetic Operators
This is the syntax for arithmetic expressions that return an INTERVAL value:

Usage
If any component of an expression that includes an arithmetic operator is a
NULL value, then the entire expression returns NULL, unless the NULL value
is an operand of the IS NULL or IS NOT NULL operators.

Unary Arithmetic Operators

At the left of expressions that return a number or INTERVAL value, plus (+)
and minus (-) symbols can appear as unary operators to specify the sign. For
unsigned values, the default is positive (+). The number data types of 4GL
are DECIMAL, FLOAT, INTEGER, MONEY, SMALLFLOAT, and SMALLINT.

Unary plus (+) and minus (-) operators are recursive. Parentheses (())
must separate the subtraction (-) operator from any immediately following
unary minus sign, as in ‘‘minuend -(-subtrahend) ,’’ unless you want
4GL to interpret the “--” symbols as a comment indicator.

Binary Arithmetic Operators

Six binary arithmetic operators can appear in number expressions. As the dia-
grams above indicate, four of these (* , / , +, and -) also can appear in time
(DATE, DATETIME, and INTERVAL) expressions. The MOD and exponentia-
tion (**) operators accept some DATE values as operands, but such expres-
sions may return values that are very difficult to interpret.

DATETIME Value
p. 3-347

INTERVAL Value
p. 3-347

()INTERVAL Value
p. 3-347

-

+
()

DATETIME Value
p. 3-347

DATE Value
p. 3-347

/

-

*

INTERVAL Value
p. 3-347

INTERVAL Value
p. 3-347

-DATE Value
p. 3-347

Number Expression
p. 3-341

Time
Expression Case III: Returning an INTERVAL value

-
+

Built-In Functions and Operators 4-19

Arithmetic Operators
Operator Symbol Operator Name Name of Result Precedence
** exponentiation power 12
mod modulus remainder 12
* multiplication product 11
/ division quotient 11
+ addition sum 10
- subtraction difference 10

Note: 4GL performs calculations with binary arithmetic operators of number data
types after automatically converting both operands to DECIMAL values.

The following table shows the precedence (P) and data types of operands
and of returned values for both unary and binary arithmetic operators. Time
operands not listed here produce either errors or meaningless results.

Note: Page 3-328 lists the precedence of all 4GL operators; the operators that are not
listed on that page have a precedence of 1. These precedence (P) values are ordinal
numbers to show relative ranks; future releases of INFORMIX-4GL may introduce
additional operators, at which time these precedence values may change.

P Expression Left (= x) Right (= y) Returned
Value

13 + y
- y

Number or INTERVAL
Number or INTERVAL

Same as y
Same as y

12 x * * y
x MOD y

Number
INT or SMALLINT

INT or SMALLINT
INT or SMALLINT

Same as y
Same as y

11 x * y
x / y

Number or INTERVAL
Number or INTERVAL

Number
Number

Same as x
Same as x

10 x + y
x + y
x + y
x + y
x + y
x + y
x - y
x - y
x - y
x - y
x - y
x - y
x - y

Number
INT or SMALLINT
DATE
DATE or DATETIME
INTERVAL
INTERVAL
Number
INT or SMALLINT
DATE
DATE or DATETIME
DATE or DATETIME
DATETIME
INTERVAL
DATE

Number
DATE
INT or SMALLINT
INTERVAL
DATE or DATETIME
INTERVAL
Number
DATE
INT or SMALLINT
INTERVAL
DATETIME
DATE
INTERVAL
DATE

Number
DATE
DATE
DATETIME
DATETIME
INTERVAL
Number
DATE
DATE
DATETIME
INTERVAL
INTERVAL
INTERVAL
INT
4-20 Built-In Functions and Operators

Arithmetic Operators
Variables used as arithmetic operands can only be of simple data types
(page 3-294). Structured (ARRAY or RECORD) or blob (BYTE or TEXT) values
are not valid operands. The range of returned values is that of the returned
data type.

If a 4GL Boolean expression is an arithmetic operand, 4GL evaluates it and
then converts it to an integer by these rules: TRUE = 1 and FALSE = 0. If the
Boolean expression returns a NULL value, so does the arithmetic expression.

Restrictions on Time Operands

If the first operand of an arithmetic expression includes the UNITS operator
(page 4-89), then you must enclose that operand within parentheses.

An expression cannot combine an INTERVAL value of precision in the range
YEAR to MONTH with another in the DAY to FRACTION range, nor combine
an INTERVAL value with a DATETIME or DATE value that has different qual-
ifiers. You must explicitly use the EXTEND operator (page 4-53) to change the
DATE or DATETIME precision to match that of the INTERVAL operand.

You can use DATE operands in addition and subtraction, but not the sum
of two DATE values. All the other binary arithmetic operators (page 4-19)
also accept DATE operands, equivalent to the count of days since
December 31, 1899; but the values returned (except from a DATE expression
as the left-hand MOD operand) are meaningless in most applications.

Note: DATE and DATETIME values have no true zero point. Such values logically
support addition, subtraction, and the relational operators (page 4-32), but division,
multiplication, and exponentiation are logically undefined for these data types.

Exponentiation (**) Operator

The exponentiation (**) operator returns a value calculated by raising
the left-hand operand to a power corresponding to the integer part of the
right-hand operand. This right-hand operand cannot have a negative value.

An expression specifying the right-hand MOD operand cannot include
the exponentiation (**) operator.

Before conversion to DECIMAL for evaluation, 4GL converts the right-hand
operand of the exponentiation (**) operator to an INTEGER value. Any
fractional part is discarded.
Built-In Functions and Operators 4-21

Arithmetic Operators
Modulus (MOD) Operator

The modulus (MOD) operator returns the remainder from integer division
when the integer part of the left-hand operator is divided by the integer part
of the right-hand operator. For example, if y = 7.76 and z = 2.95, then

LET x = y MOD z

assigns to x the value 1, the integer part of the remainder of 7 divided by 2.

In 4GL programs, MOD is a reserved word. Do not use it as a 4GL identifier.

An expression specifying the right-hand MOD operand cannot include the
exponentiation (**) nor modulus (MOD) operators, and cannot be zero.

Before conversion to DECIMAL for evaluation, 4GL converts any operand of
MOD that is not of the INTEGER or SMALLINT data types to an INTEGER value
by truncation. Any fractional part is discarded.

Multiplication (*) and Division (/) Operators

The multiplication (*) operator returns the scalar product of its left-hand and
right-hand operands.

The division operator returns the quotient of its left-hand operand divided
by its right-hand operand. An error is returned if the right-hand operand (the
divisor) evaluates to zero.

If both operands of the division (/) operator have INT or SMALLINT data
types, then 4GL discards any fractional portion of the quotient.

For multiplication and division, if the left-hand operand has an INTERVAL
value, the result is an INTERVAL value of the same precision. (The right-hand
operand must be an expression that returns a number data type.)

Addition (-) and Subtraction (+) Operators

The addition (+) and subtraction (-) operators return the algebraic sum and
difference, respectively, between their left- and right-hand operands.

Do not write expressions that specify the sum (+) of two DATE or DATETIME
values, nor a difference (-) whose second operand is a DATE or DATETIME
value, and whose first operand is an INTERVAL value.

The difference between two DATETIME values (or a DATETIME and a DATE
value, but not two DATE values) is an INTERVAL value. If the operands have
different qualifiers, the result has the qualifier of the first operand.
4-22 Built-In Functions and Operators

Arithmetic Operators
The difference between two DATE values is an INTEGER value, representing
the positive or negative number of days between the two calendar dates.
You must explicitly apply the UNITS DAY operator to the difference between
DATE values, if you wish to store the result as an INTERVAL value.

References
 Aggregate Report Functions, Boolean Operators, EXTEND, UNITS
Built-In Functions and Operators 4-23

ARR_COUNT()
ARR_COUNT()
The ARR_COUNT() function returns a positive whole number, typically
representing how many records were entered in a program array during
or after execution of the INPUT ARRAY statement.

Usage
You can use ARR_COUNT() to determine the number of program records that
are currently stored in a program array. In typical 4GL applications, these
records correspond to values from the active set of retrieved database rows
from the most recent query. By first calling the SET_COUNT() function
(page 4-80), you can set an upper limit on the value that ARR_COUNT()
returns.

ARR_COUNT() returns a positive integer, corresponding to the index of the
furthest record within the program array that the screen cursor accessed. Not
all the rows “counted” by ARR_COUNT() necessarily contain data (for exam-
ple, if the user presses the Down arrow key more times than there are rows
of data). If SET_COUNT() was explicitly called, ARR_COUNT() returns the
greater of these two values: the argument of SET_COUNT(), or the highest
value attained by the array index.

The insert_items() function in the following example uses the value
returned by ARR_COUNT() to set the upper limit in a FOR statement:

FUNCTION insert_items()
DEFINE counter SMALLINT
FOR counte r = 1 TO ARR_COUNT()

INSERT INTO items
VALUES (p_items[counter].item_num,

p_orders.order_num,
p_items[counter].stock_num,
p_items[counter].manu_code,
p_items[counter].quantity,
p_items[counter].total_price)

END FOR
END FUNCTION

The following example makes use of ARR_COUNT() and the related built-in
functions ARR_ CURR() and SCR_LINE() to assign values to variables within
the BEFORE ROW clause of an INPUT ARRAY WITHOUT DEFAULTS statement.

ARR_COUNT()
4-24 Built-In Functions and Operators

ARR_COUNT()
By calling these functions in BEFORE ROW, the respective variables are
evaluated each time the cursor moves to a new line and are available within
other clauses of the INPUT ARRAY statement.

INPUT ARRAY ga_manuf WITHOUT DEFAULTS FROM sa_manuf.*
BEFORE ROW

LET curr_pa = ARR_CURR()
LET curr_sa SCR_LINE()
LET total_pa = ARR_COUNT()

It is then possible, for example, in a later statement within INPUT ARRAY,
to have a statement such as the following, which tests whether the cursor
is at the last position in the screen array:

IF curr_pa <> total_pa THEN ...

References
ARR_CURR(), SCR_LINE(), SET_COUNT()
Built-In Functions and Operators 4-25

ARR_CURR()
ARR_CURR()
During or immediately after the INPUT ARRAY or DISPLAY ARRAY statement
the ARR_CURR() function returns the number of the program record within
the program array that is displayed in the current line of a screen array.

Usage
The current line of a screen array is the line that displays the screen cursor
at the beginning of a BEFORE ROW or AFTER ROW clause.

The ARR_CURR() function returns an integer value. The first row of the
program array and the first line (that is, topmost) of the screen array are both
numbered 1. The built-in functions ARR_CURR() and SCR_LINE() can return
different values if the program array is larger than the screen array.

You can pass ARR_CURR() as an argument when you call a function. In this
way the function receives as its argument the current record of whatever
array is referenced in the INPUT ARRAY or DISPLAY ARRAY statement.

The ARR_CURR() function can be used to force a FOR loop to begin beyond
the first line of an array by setting a variable to ARR_CURR() and then using
that variable as the starting value for the FOR loop.

The following program segment tests the user input for duplication of what
should be a unique column. If the field duplicates an existing item, the
program instructs the user to try again.

INPUT ARRAY ga_manufact FROM sa_manufact.*
AFTER FIELD manu_code

IF pk_check(ARR_CURR()) THEN
ERROR "This code already exists. Re-enter",
" or press F2 to delete this entry."
NEXT FIELD manu_code

END IF
END INPUT

ARR_CURR()
4-26 Built-In Functions and Operators

ARR_CURR()
In this example, the value returned by ARR_CURR() is then passed to function
pk_check(), where it is stored in the local variable el_pa, serving as an index
to the global array ga_manufact:

FUNCTION pk_check(el_pa) --verifies primary key
DEFINE el_pa, manu_count INT
SELECT COUNT(*) INTO manu_count

FROM manufact
WHERE manufact.manu_code = ga_manufact[el_pa].manucode

IF manu_count >= 1
THEN RETURN TRUE
ELSE RETURN FALSE

END IF
END FUNCTION

The ARR_CURR() function is frequently used in conjunction with a
DISPLAY ARRAY statement in pop-up windows to return the user’s selection.

The following example allows users to choose supplier codes for shoes in
an order form. The user chooses among eight possibilities. The choice is
returned and displayed on a form. The variables pa_supplier and elem_pa
are locally defined. The variable gr_shoes is a global record associated with
an INPUT statement.

OPEN WINDOW w_supplier AT 3,50
WITH FORM "f_popscode"
ATTRIBUTE (BORDER, REVERSE)

DISPLAY "Press ESC to select." AT 1,1
DISPLAY "Use arrow keys to move." at 2,1
CALL SET_COUNT(8)
DISPLAY ARRAY pa_supplier TO sa_supplier.*

LET elem_pa = ARR_CURR()
LET gr_shoes.supply_code = pa_supplier[elem_pa].s_code

CLOSE WINDOW w_supplier
DISPLAY BY NAME gr_shoes.supply_code

References
ARR_COUNT(), SCR_LINE()
Built-In Functions and Operators 4-27

ASCII
ASCII
The ASCII operator converts an integer operand into its corresponding ASCII
character.

number is an integer expression (page 3-338) that returns a positive whole
number within the range of ASCII values.

Usage
You can use the ASCII operator to evaluate an integer to a single character.
This operator is especially useful if you need to display CONTROL characters.

The following DISPLAY statement rings the terminal bell (ASCII value of 7).

DEFINE bell CHAR(1)
LET bell = ASCII 7
DISPLAY bell

The next REPORT program block fragments show how to implement special
printer or terminal functions. They assume that, when the printer receives the
sequence of ASCII characters 9, 11, and 1, it will start printing in red, and
when it receives 9, 11, and 0, it will revert to black printing. The values used
in the example are hypothetical; refer to your printer or terminal manual for
information on your printer or terminal.

FORMAT
FIRST PAGE HEADER

LET red_on = ASCII 9, ASCII 11, ASCII 1
LET red_off = ASCII 9, ASCII 11, ASCII 0

ON EVERY ROW
...

PRINT red_on,
"Your bill is overdue.", red_off

Caution: 4GL cannot distinguish printable and non-printable ASCII characters. Be
sure to account for the non-printing characters when using the COLUMN operator
to format your page. Since various devices differ in outputting spaces with control
characters, you may have to use trial and error to line up columns when you output
control characters.

ASCII number
4-28 Built-In Functions and Operators

ASCII
The ASCII Operator in PRINT Statements

To print a NULL character in a report, call the ASCII operator with 0 in a PRINT
statement. For example, the following statement prints the NULL character:

PRINT ASCII 0

ASCII 0 only displays the NULL character within the PRINT statement. If you
specify ASCII 0 in other contexts, it returns a blank space.

References
FGL_KEYVAL(), FGL_LASTKEY()
Built-In Functions and Operators 4-29

Boolean Operators
Boolean Operators
A 4GL Boolean operator returns TRUE (= 1), FALSE (= 0) or NULL. They closely
resemble the set of SQL Boolean operators, but some are not identical.

Usage
The Boolean operators include the logical operators AND, OR, and NOT, and
operators for Boolean comparisons, as described in the sections that follow.

NOT

OR

4GL Boolean
Expression

Boolean Comparison

TRUE

AND

Set Membership Test
p. 4-35

NULL Test
p. 4-33

String Comparison
p. 4-33

4GL Expression
p. 3-326

Boolean
Comparison

Relational Comparison
p. 4-32

FALSE

Function Call
p. 3-332
4-30 Built-In Functions and Operators

Boolean Operators
Logical Operators

The logical operators AND, OR, and NOT combine Boolean values into a single
4GL Boolean expression. AND, OR, and NOT produce the following results
(where the symbol T means TRUE, F means FALSE, and ? means NULL):

When one or both arguments of a logical operator are NULL, the result can in
some cases also be NULL. For example, if var1 = 0 and var2 = NULL, then

LET x = var1 OR var2

assigns to the variable x a NULL value. The NOT operator is recursive.

Boolean Comparisons

Boolean comparisons can use the following Boolean operators:

• Relational operators to test for equality or inequality

• IS NULL to test for NULL values

• LIKE or MATCHES to compare character strings

• IN or BETWEEN . . . AND to test for set membership or for range.

Note: The IN and BETWEEN . . . AND operators are valid only in SQL statements.
They cause a compile-time error if you include them in other 4GL statements. They
are included here, however, because they are valid in the WHERE clause of a form
specification file that includes the COLOR attribute (page 5-32).

Boolean expressions in the CASE, IF, or WHILE statements (or in the WHERE
clause of a COLOR attribute specification) return FALSE if any element of the
comparison is NULL, unless it is the operand of the IS NULL operator.

AND T F ? OR T F ? NOT
T T F ? T T T T T F
F F F F F T F ? F T
? ? F ? ? T ? ? ? ?
Built-In Functions and Operators 4-31

Boolean Operators
Relational Operators

This is the syntax for relational comparisons in 4GL Boolean expressions:

Boolean expressions in 4GL statements can use these relational operators
(=, ==, <, >, <=, >=, <>, or !=, as defined on page 4-37) to compare operands.
For example, each of these comparisons returns TRUE or FALSE:

Use a NULL test (page 4-33) if you want to detect and exclude NULL
values from Boolean comparisons. In this CASE statement fragment, the
value of the comparison is NULL if the value of salary or of last_raise is
NULL:

WHEN salary * last_raise < 25000

For character expressions, the result depends on the position of the initial
character of each operand within the ASCII collating sequence.

For number expressions, the result of a relational comparison reflects the
position of the two operands on the real line.

Relational comparisons of time expression operands follow these rules:

• Comparison x < y is TRUE when x is a briefer INTERVAL span than y,
or when x is an earlier DATE or DATETIME value than y.

• Comparison x > y is TRUE when x is a longer INTERVAL span than y,
or when x is a later DATE or DATETIME value than y.

• You cannot mix INTERVAL operands with DATE or DATETIME operands,
but you can compare DATE and DATETIME expressions with each other.

 Expression Value

(2+5)* 3 = 18 FALSE

14 <= 16 TRUE

“James” = “Jones” FALSE

Relational
Comparison

=

<
>

<=
>=
<>
!=

4GL Expression
p. 3-326

4GL Expression
p. 3-326
4-32 Built-In Functions and Operators

Boolean Operators
The NULL Test

If any operand of a 4GL Boolean comparison or is NULL, then the value of
the comparison is FALSE (rather than NULL), unless the IS NULL keywords
are also included in the expression. Applying the NOT operator to a NULL
value does not change its FALSE evaluation.

If you need to process expressions with NULL values in a different way from
other values, you can use the IS NULL keywords to test for NULL value

blob variable is the name of a variable of the BYTE or TEXT data type.

Without the NOT keyword, the comparison returns TRUE if the operand has
a NULL value. If you include the NOT keyword, the comparison returns TRUE
if the value of the operand is not NULL. Otherwise, it returns FALSE.

Note: The NULL test (like the WORDWRAP string operator with TEXT variables) is
an exception to the general rule that variables of the BYTE or TEXT data types cannot
appear as operands in 4GL expressions.

The LIKE and MATCHES Operators

The LIKE or MATCHES operators test whether a character value matches a
quoted string that can include wildcard characters. If an operand has a NULL
value, then the entire string comparison returns NULL. Use a NULL test (as in
the previous section) if you want to detect and exclude NULL values.

You can use the following syntax to compare character strings:

char is a single ASCII character, enclosed between a pair of single (")
or double (") quotation marks, to specify an escape symbol.

criterion is a character expression (3-343). The string that it returns can
include literal characters, wildcards, and other symbols.

NULL
Test

NOT

4GL Expression
p. 3-326

IS NULL

blob variable

String Comparison

ESCAPE " char"
MATCHES

LIKENOT

Character
Expression

p. 3-343

criterion

" char"
Built-In Functions and Operators 4-33

Boolean Operators
MATCHES and LIKE support different wildcards. If you use MATCHES, you
can include the following wildcard characters in the right-hand operand:

The following WHERE clause tests the contents of character field field007 for
the string ten . Here the * wildcards specify that the comparison is TRUE if
ten is found alone or in a longer string, such as often or tennis shoe :

COLOR = RED WHERE field007 MATCHES "*ten*"

If you use the keyword LIKE to compare strings, then the wildcard symbols
of MATCHES have no special significance, but you can use the following
wildcard characters of LIKE within the right-hand quoted string:

The next example tests for the string ten in the character variable string,
either alone or in a longer string:

IF string LIKE "%ten%"

The next example tests whether a substring of a character variable (or else an
element of a two-dimensional array) contains an underscore symbol. The
backslash is necessary, because underscore is a wildcard symbol with LIKE.

IF horray[3,8] LIKE "%_%" WHERE >> out.a

You can replace backslash as the literal symbol. If you include an ESCAPE char
clause in a LIKE or MATCHES specification, then INFORMIX-4GL interprets the
next character that follows char as a literal in the preceding character expres-
sion, even if that character corresponds to a special symbol of the LIKE or
MATCHES keyword. The double quote (") symbol cannot be char.

Symbol Effect

* An asterisk (*) matches any string of zero or more characters.
? A question mark (?) matches any single character.
[] Square brackets ([]) match any of the enclosed characters.
- A hyphen (-) between characters in brackets means a range in the ASCII

collating sequence. For example, [a-z] matches any lowercase letter.
^ An initial caret (^) in the brackets matches any character that is not listed.

For example, [^abc] matches any character except a, b, or c .
\ Backslash (\) causes 4GL to treat the next character as a literal character,

even if it is one of the special symbols in this list. For example, you can
match * or ? by * or \? in the string.

Symbol Effect

% A percent sign (%) matches zero or more characters.
_ An underscore (_) matches any single character.
\ A backslash (\) causes 4GL to treat the next character as a literal (so you

can match % or _ by \% or _).
4-34 Built-In Functions and Operators

Boolean Operators
For example, if you specify ESCAPE z , the characters z_ and z? in a string
stand for the literal character _ and ?, rather than wildcards. Similarly, char-
acters z% and z* stand for the characters % and * . Finally, the characters zz
in the string stand for the single character z . The following expression is
TRUE if the variable company does not include the underscore character:

NOT company LIKE "%z_%" ESCAPE "z"

Set Membership and Range Tests

The BETWEEN . . . AND and IN() operators that test for set membership or
range are supported in three contexts:

• In SQL statements

• In the WHERE clause of the COLOR attribute in 4GL form specifications

• In the condition column of the syscolatt table

They are not valid in 4GL statements that are not also SQL statements.

This is the syntax for using the IN() operator to test for set membership:

If you omit the NOT keyword, this returns TRUE if any expression in the list
(within parentheses) at the right matches the expression on the left.

If you include the NOT keyword, the test evaluates as FALSE if no expression
in the list matches the expression on the left.

This is the syntax for the BETWEEN . . . AND operators to test whether a value
is included within a specified range (or an inclusive interval on the real line):

Operands must return compatible data types. Values returned by the second
(O2) and third (O3) operands that define the range must follow these rules:

• For number or INTERVAL values, O2 must be less than or equal to O3.

• For DATE and DATETIME values, O2 must be no later than O3.

Set Membership Test

NOT

4GL Expression
p. 3-326

IN 4GL Expression
p. 3-326

()
,

Set Membership Test

NOT

BETWEEN AND 4GL Expression
p. 3-326

4GL Expression
p. 3-326

4GL Expression
p. 3-326
Built-In Functions and Operators 4-35

Boolean Operators
• For character strings, O2 must be earlier than O3 in the ASCII collating
sequence. (This is listed in Appendix G.)

If you omit the NOT keyword, this test evaluates as TRUE if the first operand
has a value not less than the second operand, nor greater than the third. If you
include the NOT keyword, the test evaluates as FALSE if the first operand has
a value outside the specified range.

Data Type Compatibility

You may get unexpected results if you use relational operators with expres-
sions of dissimilar data types. In general, you can compare numbers with
numbers, character strings with strings, and time values with time values.

If a time expression operand of a 4GL Boolean expression is of the INTERVAL
data type, then any other time expression that is compared to it by a relational
operator must also be an INTERVAL value. You cannot compare a span of
time (an INTERVAL value) with a point in time (a DATE or DATETIME value).
For additional information about data type compatibility in expressions, see
the section “Data Type Conversion” on page 3-319.

Evaluating 4GL Boolean Expressions

In contexts where a 4GL Boolean expression is expected, INFORMIX-4GL
applies the following rules after it evaluates the expression:

• If the value is a non-zero real number (or a character string representing
one) or a non-zero INTERVAL, or any DATE or DATETIME value, or a TRUE
value returned by a built-in Boolean function or operator like INFIELD(),
or the integer constant TRUE, then the 4GL Boolean value is TRUE.

• If the value is NULL, but the expression is the operand of the IS NULL
keywords, then the value of the 4GL Boolean expression is TRUE.

• If the value is NULL, and the expression is not an operand of a NULL test,
nor an element in any Boolean comparison or conditional statement of
4GL (IF, CASE, WHILE), then the expression returns NULL.

• Otherwise, the 4GL Boolean expression is evaluated as FALSE.
4-36 Built-In Functions and Operators

Boolean Operators
If a Boolean expression has several operators, they are processed according
to their precedence. Operators that have the same precedence are processed
from left to right. For the Boolean operators of 4GL, the following table lists
their precedence (P) and summarizes the data types of their operands.

Note: Page 3-328 lists the precedence of all 4GL operators. These relative precedence
(P) values are ordinal numbers; future releases of INFORMIX-4GL may introduce
additional operators, at which time these precedence values may change.

Besides the Boolean operators that are listed in this table, the built-in 4GL
operators FIELD_TOUCHED() and INFIELD() also return Boolean values.
Their precedence is lower (P = 1) than that of the OR operator. They can use
the name of a field in the current form as their operand. Both the INFIELD()
and FIELD_TOUCHED() operators are described later in this chapter.

References
FIELD_TOUCHED(), INFIELD()

P Description Expression Left (= x) Right (= y) Returns

9 string comparison
string comparison

x LIKE y
x MATCHES y

Character
Character

Character
Character

Boolean
Boolean

8 test for: less than
less than or equal to
equal to
greater than or equal to
greater than
not equal to

x < y
x <= y

x = y or x == y
x >= y
x > y

x != y or x <> y

Any simple data type
Any simple data type
Any simple data type
Any simple data type
Any simple data type
Any simple data type

Same as x
Same as x
Same as x
Same as x
Same as x
Same as x

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

7 test for: set membership x IN (y) Any Any Boolean

6 test for: range x BETWEEN y AND z Any Same as x Boolean

5 test for: NULL
test for: NULL

x IS NULL
x IS NOT NULL

Any
Any

Boolean
Boolean

4 logical inverse NOT y Boolean Boolean

3 logical intersection x AND y Boolean Boolean Boolean

2 logical union x OR y Boolean Boolean Boolean

1 test whether field edited
test for current field

FIELD_TOUCHED(y)
INFIELD(y)

Field name
Field name

Boolean
Boolean
Built-In Functions and Operators 4-37

CLIPPED
CLIPPED
The CLIPPED operator takes a character operand and returns the same
character value, but without any trailing blank spaces (that is, ASCII 32).

Usage
The CLIPPED operator follows the character expression operand that you
want to display without trailing blanks. Character expressions often have a
data length less than their total size. The following DISPLAY statement, for
example, would produce output that included 200 trailing blanks if CLIPPED
were omitted, but displays only 22 characters when CLIPPED is included:

DEFINE string CHAR(222)
LET string = “Two hundred characters”
DISPLAY string CLIPPED

The CLIPPED operator can be useful in situations like the following:

• After a variable name in a DISPLAY, ERROR, LET, MESSAGE, or PROMPT
statement, or in a PRINT statement of a REPORT program block.

• When concatenating several character expression into a single string.

• When comparing two or more character expressions and one or more of
them is already clipped.

The CLIPPED operator can affect the value of a character variable within an
expression. CLIPPED does not affect the value when it is stored in a variable
(unless you are concatenating CLIPPED values together). For example, if
CHAR variable b contains a string that is shorter than the declared length of
CHAR variable a, the following LET statement pads a with trailing blanks,
despite the CLIPPED operator:

LET a = b CLIPPED

Note: To discard trailing blanks from a string of fewer than 255 characters, use a
VARCHAR variable to store the string. For example, if CHAR variable b contains a
string value no longer than the declared maximum size of VARCHAR variable a, then
the following statement discards any trailing blanks from what it stored in a:

LET a = b

Character Expression
p. 3-343

CLIPPED
4-38 Built-In Functions and Operators

CLIPPED
The following program fragment is from a REPORT program block that prints
mailing labels.

FORMAT
ON EVERY ROW

IF (city IS NOT NULL)
AND (state IS NOT NULL) THEN
PRINT fname CLIPPED, 1 SPACE, lname
PRINT company
PRINT address1
IF (address2 IS NOT NULL) THEN

PRINT address2
END IF

PRINT city CLIPPED, " , " , state,
2 SPACES, zipcode
SKIP TO TOP OF PAGE

END IF

The following program fragment is from a report driver. Here CLIPPED is
used to cosmetically improve the text of a MESSAGE statement that includes
a filename stored in a character variable:

DEFINE file_name CHAR(60)
PROMPT " Enter drive, pathname, ",

"and file name for Book Report:" FOR file_name
IF (file_name IS NULL) THEN

LET file_name = "book.out"
END IF
MESSAGE "Printing Book Report to ", file_name CLIPPED,

" --Please wait."

Reference
USING
Built-In Functions and Operators 4-39

COLUMN
COLUMN
COLUMN specifies the position in the current line of a report where output of
the next value in a PRINT statement begins, or the position on the 4GL screen
for the next value in a DISPLAY statement.

left-offset is an integer expression (page 3-338) in a report, or else a literal
integer (page 3-340) in a DISPLAY statement, to specify where the
next character of output will appear.

Usage
The left-offset specifies a character position offset from the left margin of the
4GL screen or the currently executing 4GL report. In a report, this cannot be
greater than the arithmetic difference (right margin - left margin) for explicit
or default values in the OUTPUT section of the REPORT program block
(page 6-9). See the description of integer expressions (page 3-338) for the syn-
tax of 4GL expressions that return whole numbers.

Unless you use the keyword CLIPPED or USING, the PRINT statement (and the
DISPLAY statement when no form is open) display 4GL variables with widths
(including any sign) that depend on their declared data types:

Data Type Default Display Width (in characters)
CHAR The length from the data-type declaration
DATE 10
DATETIME From 2 to 25, as implied in the data-type declaration
DECIMAL (2 + m), for m the precision from the data-type declaration
FLOAT 14
INTEGER 11
INTERVAL From 3 to 25, as implied in the data-type declaration
MONEY (3 + m), for m the precision from the data-type declaration
SMALLFLOAT 14
SMALLINT 6
VARCHAR The maximum length from the data-type declaration

In a REPORT program block, or in a DISPLAY statement that outputs data
to the 4GL screen, you can use the COLUMN operator to control precisely the
location of items within a line. This is often a requirement for the output of
tabular information, and it is convenient for many other uses.

If the printing position in the current line is already beyond the specified
left-offset, the COLUMN operator has no effect.

COLUMN left-offset
4-40 Built-In Functions and Operators

COLUMN
COLUMN in DISPLAY Statements

4GL calculates the left-offset from the first character position of the 4GL
screen. In the following statements, for example,

DISPLAY "NUMBER", COLUMN 12, "NAME", COLUMN 35,
"CITY", COLUMN 57, "ZIP", COLUMN 65, "PHONE"

DISPLAY ASCII 13, customer_num, COLUMN 12, fname CLIPPED,
ASCII 32, lname CLIPPED, COLUMN 35, city CLIPPED,
", ", state, COLUMN 57, zipcode, COLUMN 65, phone

both the string NAME and the 4GL variable fname are each displayed with
their first (left-most) character in the 12th character position on the 4GL
screen. Output from each DISPLAY statement begins on a new line.

Note: You cannot use COLUMN to send output to a screen form. Any DISPLAY
statement that includes the COLUMN operator cannot also include the AT, TO, BY
NAME, or ATTRIBUTE clause. When you include the COLUMN operator in a
DISPLAY statement, you must specify a literal integer as the left-offset, rather than
an integer expression.

COLUMN in PRINT Statements

When you use the PRINT statement in the FORMAT section of a report, by
default items are printed one following the other, separated by spaces. The
COLUMN operator can override this default positioning. 4GL calculates the
left-offset from the left margin that you set in the OUTPUT section. If no left
margin is specified, the left-offset is counted from the left margin of the page.
If the following PRINT statements (with COLUMN and SPACE specifications)
were part of a report that sent output to the 4GL screen, the output would
resemble that of the DISPLAY statements in the previous example:

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35,

"CITY", COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT customer_num, COLUMN 12, fname CLIPPED,

1 SPACE, lname CLIPPED, COLUMN 35, city CLIPPED,
", ", state, COLUMN 57, zipcode, COLUMN 65, phone

References
ASCII, CLIPPED, SPACE, USING
Built-In Functions and Operators 4-41

CURRENT
CURRENT
The CURRENT operator returns the current date and time-of-day from
the system clock as a DATETIME value of a specified or default precision.

Usage
The CURRENT operator reads the date and time from the system clock.

You can optionally specify the precision of the returned value by including
a qualifier of the form first TO last, for first and last keywords from this list:

YEAR MONTH DAY
HOUR MINUTE SECOND FRACTION (n)

The first keyword must specify a DATETIME value that is the same as or more
significant than the last keyword. That is, the following expression is valid:

CURRENT YEAR TO DAY

But this expression is not valid:

CURRENT MINUTE TO HOUR

If FRACTION is the last keyword, you can include a digit n in parentheses,
to specify the number of digits of scale (up to 5) of the seconds value.

If no qualifier is specified, the default qualifier is YEAR TO FRACTION(3).

If CURRENT is executed more than once in a statement, identical values may
be returned at each call. Similarly, the order in which the CURRENT operator
is executed in a statement cannot be predicted. For this reason, you should
not attempt to use this operator to mark the execution of the start, the end,
or any specific point in a 4GL statement.

The CURRENT operator can be used both in SQL statements and in other 4GL
statements. The following example is from an SQL statement:

SELECT prog_title FROM tv_programs
WHERE air_date > CURRENT YEAR TO DAY

DATETIME Qualifier
p. 3-349

CURRENT
4-42 Built-In Functions and Operators

CURRENT
This is an example from a form specification file:

ATTRIBUTES -- FORM4GL field

timestamp = FORMONLY.tmstmp TYPE DATETIME HOUR TO SECOND,
DEFAULT = CURRENT HOUR TO SECOND;

The next example is from a report:

PAGE HEADER -- Report control block
PRINT COLUMN 40, CURRENT MONTH TO MONTH,

COLUMN 42, "/",
COLUMN 43, CURRENT DAY TO DAY,
COLUMN 45, "/",
COLUMN 46, CURRENT YEAR TO YEAR

The last example would not produce the correct results if its execution
spanned midnight.

References
DATE, EXTEND(), TIME, TODAY
Built-In Functions and Operators 4-43

DATE
DATE
The DATE operator returns a character representation of the current date.

Usage
The DATE operator reads the system clock, and displays the current date in
this format:

weekday month day year

as a character string, where:

weekday is a 3-character abbreviation of the name of the day of the week.

month is a 3-character abbreviation of the name of the month.

day is a 2-digit representation of the day of the month.

year is a 4-digit representation of the year.

The following example uses the DATE operator to display the current date:

VARIABLE p_date CHAR(15)
LET p_date = DATE
. . .
DISPLAY “Today is “, p_date AT 5,14

On Sunday, December 5th, 1993, this example would display the string:

Today is Sun Dec 5 1993

The effect of the DATE operator is sensitive to the time of execution and to the
accuracy of the system clock.

An alternative way to format a DATE value as a character string is to use the
FORMAT field attribute in a screen form (page 5-42), or to use the USING oper-
ator (page 4-94).

References
CURRENT, DATE(), TIME, TODAY, USING

DATE

4GL can display language-specific month name and day name abbrevia-
tions. This requires the installation of message files in a subdirectory of
$INFORMIXDIR/msg, and subsequent reference to that subdirectory by
way of the environment variable DBLANG. For example, the weekday por-
tion of the date string in a Spanish locale translates the day Saturday into
the day name abbreviation Sab, which stands for Sabado (the Spanish
word for Saturday). For more information on NLS, see Appendix E.

NLS
4-44 Built-In Functions and Operators

DATE()
DATE()
The DATE() operator can take a CHAR, VARCHAR, DATETIME, INTEGER,
or SMALLINT argument and return the corresponding DATE value.

Usage
The DATE() operator is useful for data type conversion to a DATE value,
or to a count of days since the beginning of the last year of the 19th century:

• Convert a properly formatted character string representation of a numeric
date (page 3-349) to a DATE value. (The default format is “mm/dd/yy”
but the DBDATE environment variable can change this default.)

• Converting a DATETIME value to a negative or positive integer.
The returned integer corresponds to the number of days between the
specified date and December 31, 1899.

• Obtaining a DATE value from a negative or positive integer, measuring
the number of days between the specified date and December 31, 1899.

The following program fragment illustrates uses of the DATE() operator:

DEFINE d DATE
DEFINE dt DATETIME YEAR TO DAY

LET d = DATE (" 11/20/99 ") -- this requires the default DATE format
LET d = DATE (" 1999-11-02 ") -- this requires that DBDATE be set to Y4MD-
LET d = DATE (" 02:99:11 ") -- this requires that DBDATE be set to DY2M:

LET d = DATE(d) -- The operand can be a DATE variable, as here,
-- or the integer number of days since the last day of the year 1899
LET d = DATE (0) -- result: 12/31/1899
LET d = DATE (34000) -- result: 2/1/1993
-- Or the operand can be a DATETIME type
LET dt = CURRENT
LET d = DATE (dt) -- result is today's date
LET d = DATE(CURRENT) -- same result as previous

References
CURRENT, DATE, MDY(), TODAY, UNITS

DATE DATETIME Value
p. 3-347

Character Expression
p. 3-343

Integer Expression
p. 3-338

)(
Built-In Functions and Operators 4-45

DAY()
DAY()
The DAY() operator returns a positive integer, corresponding to the day
portion of the value of its DATE or DATETIME operand.

Usage
The DAY() operator can extract an integer value for the day of the month
from a DATETIME or DATE operand. This feature is helpful in some
applications, because INTEGER values are easier than DATETIME or DATE
values to manipulate with arithmetic operators.

The following program fragment extracts the day of the month from
a DATETIME literal:

DEFINE d_var INTEGER,
date_var DATETIME YEAR TO SECOND

LET date_var = DATETIME (89-12-09 18:47:32) YEAR TO SECOND
LET d_var = DAY(date_var)
DISPLAY "The day of the month is: ", d_var USING "##"

References
MONTH(), WEEKDAY(), YEAR()

DAY DATETIME Value
p. 3-347

DATE Value
p. 3-347

()
4-46 Built-In Functions and Operators

DOWNSHIFT()
DOWNSHIFT()
The DOWNSHIFT() function returns a string value in which all uppercase
characters in its argument are converted to lowercase.

Usage
The DOWNSHIFT() function is typically called to regularize character data.
You might use it, for example, to prevent the state abbreviation “TX,” “Tx ,”
or “tx ” from resulting in different values, if these were logically equivalent
in the context of your application.

Non-alphabetic or lowercase characters are not altered by DOWNSHIFT().
The maximum data length of the returned character string value is 511 bytes.

You can use the DOWNSHIFT() function in an expression (where such usage
is allowed), or you can assign the value returned by the function to a variable.

In the following example, suppose that the CHAR value GEAR_4 is stored in
the program variable p_string. The following statement takes the value of the
expression DOWNSHIFT(p_string), namely gear_4 , and assigns it to another
CHAR variable called d_str:

LET d_str = DOWNSHIFT(p_string)

See also the DOWNSHIFT field attribute in Chapter 5.

Reference
UPSHIFT()

DOWNSHIFT)(Character Expression
p. 3-343

When NLS is active, the results of conversion between uppercase and low-
ercase are appropriate to the national language in use, as defined by the
LC_CTYPE environment variable.

NLS
Built-In Functions and Operators 4-47

ERR_GET()
4

ERR_GET()
The ERR_GET() function returns a character string containing the text
of the 4GL or SQL error message whose number you specify as its argument.

Usage
This is a possible sequence of steps for logging system error messages:

1. Use a WHENEVER ERROR CONTINUE compiler directive (page 3-281).

2. Call STARTLOG() to open or create an error log file (page 4-83).

3. Test the value of the global status variable to see if it is less than zero.

4. If status is negative, call ERR_GET() to retrieve the error text.

5. Call ERRORLOG() to make an entry into the error log file (page 4-51).

Note: If WHENEVER ERROR CONTINUE is not in effect, then the STARTLOG()
function (step 2 above) automatically records the error text in the default error record,
and your program does not need to invoke ERR_GET() explicitly.

ERR_GET() is most useful when you are developing a program. The message
that it returns is probably not helpful to the user of your 4GL application.

The argument of ERR_GET() is typically the value of the status variable,
which is affected by both SQL and 4GL errors, or else a member of the global
SQLCA.SQLCODE record. See “Exception Handling” on page 2-23.

The LET statement in the following program fragment assigns the text of a
4GL error message to errtext, a CHAR variable:

LET op_status = STATUS
IF op_statu s < 0 THEN LET errtext = ERR_GET(op_status)
END IF

(Here the value of status is first assigned to a variable, op_status, rather than
testing ERR_GET(status) directly. Otherwise, the value of status normally
would be zero, reflecting the success of the ERR_GET(status) function call.)

References
ERR_PRINT(), ERR_QUIT(), ERRORLOG(), STARTLOG()

)ERR_GET (Integer Expression
p. 3-338
-48 Built-In Functions and Operators

ERR_PRINT()
ERR_PRINT()
The ERR_PRINT() function displays on the Error line the text of an SQL
or 4GL error message, corresponding to a negative integer argument.

Usage
The argument of ERR_PRINT() specifies an error message number. This must
be less than zero. It is typically the value of the global status variable, which
is affected by both SQL and 4GL errors. For SQL errors only, you can examine
the global SQLCA.SQLCODE record. Both SQLCA.SQLCODE and status are
described in “Error Handling with SQLCA” on page 2-23.

ERR_PRINT() is most useful when you are developing a 4GL program. The
message that it returns is probably not helpful to the user of your application.

The following program segment sends any error message to the Error line:

LET op_status = STATUS
IF op_statu s < 0 THEN

CALL ERR_PRINT(op_status)
END IF

(Here the value of status is first assigned to a variable, op_status, rather than
calling ERR_PRINT(status) directly. Otherwise, the value of status normally
would be zero, reflecting the success of the ERR_PRINT(status) function call.)

Like the ERR_GET() function (page 4-48), the ERR_PRINT() function cannot be
invoked when the database is not ANSI-compliant, unless you first include
the WHENEVER ERROR CONTINUE compiler directive to prevent the error
from terminating program execution. In an ANSI-compliant database, the
default action after an error has been detected is CONTINUE; see page 3-285.
See also the section “Exception Handling” on page 2-23 for information
about trapping run-time errors in 4GL programs.

References
ERR_GET(), ERR_QUIT(), ERRORLOG(), STARTLOG()

CALL ERR_PRINT)Integer Expression
p. 3-338

(

Built-In Functions and Operators 4-49

ERR_QUIT()
ERR_QUIT()
The ERR_QUIT() function displays on the Error line the text of an SQL or
4GL error message, corresponding to a negative integer argument, and then
terminates the program.

Usage
The argument of ERR_QUIT() specifies an error message number. This must
be less than zero. It is typically the value of the global status variable, which
is affected by both SQL and 4GL errors. For SQL errors only, you can examine
the global SQLCA.SQLCODE record. Both SQLCA.SQLCODE and status are
described in “Error Handling with SQLCA” on page 2-23.

The ERR_QUIT() function is identical to the ERR_PRINT() function, except that
ERR_QUIT() terminates execution once the message is printed. ERR_QUIT() is
primarily useful when you are developing a 4GL program. The message that
it returns is probably not helpful to the user of your application.

If an error occurs, the following statements display the error message on the
Error line, and then terminate program execution:

IF STATUS < 0 THEN
CALL ERR_QUIT(STATUS)

END IF

The ERR_QUIT() function cannot be invoked when the database is not
ANSI-compliant, unless you first include the WHENEVER ERROR CONTINUE
compiler directive to prevent the error from terminating program execution.

If you specify the WHENEVER ANY ERROR CONTINUE compiler directive
(or equivalently, the anyerr command-line flag), then status is reset after
certain additional 4GL statements, as described on page 3-283. See also the
section “Exception Handling” on page 2-23 for information about trapping
run-time errors in 4GL programs, and about fatal errors that cannot be
trapped.

References
ERR_GET(), ERR_PRINT(), ERRORLOG(), STARTLOG()

CALL ERR_QUIT)(Integer Expression
p. 3-338
4-50 Built-In Functions and Operators

ERRORLOG()
ERRORLOG()
The ERRORLOG() function copies its argument into the current error log file.

Usage
If you simply invoke the STARTLOG() function, error records that 4GL
appends to the error log after each subsequent error have this format:

Date: 03/06/94 Time: 12:20:20
Program error at "stock_one.4gl", line number 89.
SQL statement error number -239.
Could not insert new row - duplicate value in a UNIQUE INDEX column.
SYSTEM error number -100
ISAM error: duplicate value for a record with unique key.

You can use the ERRORLOG() function to supplement default error records
with additional information. Entries that ERRORLOG() makes in the error log
file automatically include the date and time when the error was recorded.

This is a typical sequence of steps for logging system error messages:

1. Use a WHENEVER ERROR CONTINUE compiler directive (page 3-281).

2. Call STARTLOG() to open or create an error log file (page 4-83).

3. Test the value of the global status variable to see if it is negative.

4. If this value is < 0, call ERR_GET() to retrieve the error text (page 4-51).

5. Call ERRORLOG() to make an entry into the error log file.

Note: In an ANSI-compliant database, WHENEVER ERROR CONTINUE is in effect
by default, unless you specify some other action for error conditions.

You can use the ERRORLOG() function to identify errors in programs that you
are developing and to customize error handling. Even after implementation,
some errors, such as those relating to permissions and locking, are sometimes
unavoidable. These can be trapped and recorded by these logging functions.

Error logging functions can be used together with other 4GL features for
instrumenting a program, by tracking the way that the program is used. This
is not only valuable for improving the program, but also for recording work
habits and detecting attempts to breach security. See the INFORMIX-4GL by
Example book for a detailed example of a program with this functionality.

CALL ERRORLOG)(Character Expression
p. 3-343
Built-In Functions and Operators 4-51

ERRORLOG()
The following program fragment calls STARTLOG() in the MAIN program
block. Here the ERRORLOG() function has a string constant argument:

CALL STARTLOG("\\usr\\catherine\\error.log")
...
FUNCTION start_menu()
CALL ERRORLOG("Entering start_menu function")

For a database that is not ANSI-compliant, WHENEVER ERROR CONTINUE
can prevent the first SQL error from terminating program execution; but this
compiler directive suppresses the automatic recording of errors by the
STARTLOG() built-in function. If WHENEVER ERROR CONTINUE is in effect,
you can make explicit calls to ERRORLOG(), however, to maintain the error
log. (The other options of WHENEVER, namely STOP, CALL, and GOTO, do
not interfere with the logging of STARTLOG() error records.)

The following example illustrates the use of ERR_GET(), ERRORLOG(), and
the WHENEVER ERROR CONTINUE compiler directive. It assumes that an
error log file has already been created or initialized by STARTLOG():

FUNCTION add_cust()
DEFINE errvar CHAR(80)
WHENEVER ERROR CONTINUE
INPUT BY NAME gr_customer.*
INSERT INTO customer VALUES (gr_customer.*)
IF STATUS < 0 THEN

LET errvar = ERR_GET(STATUS)
CALL ERRORLOG(errvar CLIPPED)

END IF
END FUNCTION

If its argument is not a character data type (for example, if it is a DECIMAL
variable), invoking the ERRORLOG() function may produce a fatal error.

References
ERR_GET(), ERR_PRINT(), ERR_QUIT(), STARTLOG()
4-52 Built-In Functions and Operators

EXTEND()
EXTEND()
The EXTEND() operator converts an expression that returns a DATETIME
or DATE value to a DATETIME value of a specified precision and scale.

Usage
The EXTEND() operator returns the value of its DATE or DATETIME operand,
but with an adjusted precision that you can specify by a DATETIME qualifier.
The operand can be a time expression of any valid precision. If it is a character
string, it must consists of valid and unambiguous time unit values and
separators, but with these restrictions:

• It cannot be a character string in DATE format, such as "12/12/93" .

• It cannot be an ambiguous numeric DATETIME value, such as "05:06"

or "05-06" whose time units are ambiguous.

• It cannot be a time expression that returns an INTERVAL value.

DATETIME Qualifiers

A qualifier can specify the precision of the result (and the scale, if FRACTION
is the last keyword in the qualifier). The qualifier follows a comma, and is of
the form first TO last, where first and last are keywords to specify (respec-
tively) the largest and smallest time unit in the result. Both can be the same.

If no qualifier is specified, then the following defaults are in effect, based on
the explicit or default precision of the DATE or DATETIME operand:

• The default qualifier that EXTEND() applies to a DATETIME operand is
YEAR TO FRACTION(3).

• The default qualifier for a DATE operand is YEAR TO DAY.

The section “DATETIME Qualifier” on page 3-349 describes the syntax of the
YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and FRACTION keywords in
DATETIME qualifiers.

The following rules are in effect for DATETIME qualifiers that you specify as
EXTEND() operands:

EXTEND ()DATETIME Value
p. 3-348

DATE Value
p. 3-348

, DATETIME
Qualifier
p. 3-349
Built-In Functions and Operators 4-53

EXTEND()
• If a first TO last qualifier is specified, the first keyword must specify a time
unit that is more significant than or equal to the last keyword.

• If the first keyword specifies a time unit larger than any in the operand,
omitted unit(s) are filled with values from the system clock-calendar.
In the following fragment, the first keyword specifies a time unit more
significant than any in t_stamp, so the current year would be used.

DEFINE t_stamp DATETIME MONTH TO DAY
DEFINE annual DATETIME YEAR TO MINUTE

...
LET t_stamp = "1993-12-04 17"
LET annual = EXTEND(t_stamp, YEAR TO MINUTE)

• If the last keyword specifies a smaller time unit than any in the operand,
the new time units are filled in with constant values according to the
following rules: A missing MONTH or DAY is filled in with 1, and any
missing HOUR, MINUTE, SECOND, or FRACTION is filled in with 0.

• If the operand contains time units outside the precision specified by the
qualifier, the unspecified time units are discarded. For example, if you
specify first TO last as DAY TO HOUR, then any information about MONTH
in the DATETIME operand is not used in the result.

Using EXTEND with Arithmetic Operators

If the precision of an INTERVAL value includes a time unit that is not present
in a DATETIME or DATE value, you cannot combine the two values directly
with the addition (+) or subtraction (-) operators. You must first use the
EXTEND() operator to return an adjusted DATETIME value on which to
perform the arithmetic operation.

For example, you cannot directly subtract the 720-minute INTERVAL value in
the next example from the DATETIME value that has a precision from YEAR
to DAY. You can perform this calculating by using the EXTEND() operator:

EXTEND (DATETIME (1989-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE(3) TO MINUTE
--result: DATETIME (1989-07-31 12:00) YEAR TO MINUTE

Here the EXTEND() operator returns a DATETIME value whose precision is
expanded from YEAR TO DAY to YEAR TO MINUTE. This adjustment allows
4GL to evaluate the arithmetic expression. The result of the subtraction has
the extended precision of YEAR TO MINUTE from the first operand.
4-54 Built-In Functions and Operators

EXTEND()
In the next example, fragments of a report definition use DATE values as
operands in expressions that return DATETIME values. Output from these
PRINT statements would in fact be the numeric date and time (page 3-351),
without the DATETIME keywords and qualifiers that are included here to
show the precision of the values that the arithmetic expressions return.

DEFINE calendar DATE
LET calendar = "05/18/1990"
PRINT (calendar - INTERVAL (5-5) YEAR TO MONTH)
--result: DATETIME (1984-12-18) YEAR TO DAY
PRINT (EXTEND(calendar, YEAR TO HOUR)

- INTERVAL (4 8) DAY TO HOUR)
--result: DATETIME (1990-05-13 16) YEAR TO HOUR

You cannot directly combine a DATE with an INTERVAL value whose last
qualifier is smaller than DAY. But as the previous example shows, you can use
the EXTEND() operator to convert the value in a DATE column or variable to
a DATETIME value that includes all the fields of the INTERVAL operand.

In the next example, the INTERVAL variable how_old includes fields that are
not present in the DATETIME variable t_stamp, so the EXTEND() operator is
required in the expression that calculates the sum of their values.

DEFINE t_stamp DATETIME YEAR TO HOUR
DEFINE age DATETIME DAY TO MINUTE
DEFINE how_old INTERVAL DAY TO MINUTE

LET t_stamp = "1989-12-04 17"
LET how_old = INTERVAL (28 9:25) DAY TO MINUTE
LET age = EXTEND(t_stamp, DAY TO MINUTE) + how_old

Note: In SQL statements, you can include a similar EXTEND() operator of SQL,
whose first argument can be the name of a DATETIME or DATE database column.

Reference
UNITS
Built-In Functions and Operators 4-55

FGL_DRAWBOX()
FGL_DRAWBOX()
The FGL_DRAWBOX() function displays a rectangle of a specified size.

color is an integer expression (page 3-338) that returns a positive whole
number, specifying a foreground color code.

height is an integer expression, specifying the number of screen lines
occupied by the rectangle.

left-offset is an integer expression, specifying the horizontal coordinate (in
characters) of the upper-left corner of the rectangle, where 1 is the
first (or left-most) character in a line of the current 4GL window.

line is an integer expression, specifying the vertical coordinate of the
upper-left corner, where 1 means the first (or topmost) line.

width is an integer expression, specifying the number of character
positions occupied by each line of the rectangle.

Usage
The FGL_DRAWBOX() function draws a rectangle with the upper left corner
at (line, left-offset) and the specified height and width. These dimensions must
have positive integer values, in units of lines and character positions, where
(0,0) is the upper-left corner of the current 4GL window. The optional color
number must correspond to one of the following foreground colors:

Color Foreground
Number Color
0 WHITE
1 YELLOW
2 MAGENTA
3 RED
4 CYAN
5 GREEN
6 BLUE
7 BLACK

These are the same color options that the upscol utility can specify in the
syscolatt table.

height , width , line , left-offset

,

)

color

FGL_DRAWBOX

)

4-56 Built-In Functions and Operators

FGL_DRAWBOX()
The default color is used when the color number is omitted. The color
argument is optional.

Like borders, the width of the line that draws the rectangle is fixed. This fixed
width cannot be specified nor modified when you invoke FGL_DRAWBOX().
Also like borders, 4GL draws the box with the characters defined in the term-
cap or terminfo files. You can specify alternative characters in these files.
Otherwise, 4GL uses the hyphen (-) for horizontal lines, the vertical bar (|) for
vertical lines, and the plus sign (+) for corners. If you want to assign the box
a color, you must be using termcap, since terminfo does not support color.
For complete information on termcap and terminfo, see Appendix F.

Rectangles drawn by FGL_DRAWBOX() are part of a displayed form. Each
time that you execute the corresponding DISPLAY FORM or OPEN WINDOW
... WITH FORM statement, you must also redraw the rectangle.

If you invoke FGL_DRAWBOX() several times to create a display in which
rectangles intersect, output from the most recent function call overlies any
previously drawn rectangles. Screen fields and reserved lines, however, have
a higher display priority than FGL_DRAWBOX() rectangles, regardless of the
order in which the fields, lines, and rectangles are drawn.

Note: In most applications, you should avoid drawing rectangles that intersect
or overlap any field or reserved line. Reserved lines (page 3-93) may be redrawn
frequently during user interaction statements, partially erasing any rectangles at the
intersections where they overlap the reserved lines. To avoid this problem, position
the rectangles so they do not overlap any reserved lines or screen fields.
Built-In Functions and Operators 4-57

FGL_GETENV()
FGL_GETENV()
The FGL_GETENV() function returns a character string, corresponding to the
value of an environment variable whose name you specify as the argument.

Usage
The argument of FGL_GETENV() must be a character expression that returns
the name of an environment variable. For example:

• Enclose the name of the environment variable within quotes. Thus, you
can identify the DBFORMAT environment variable as follows:

fgl_getenv("DBFORMAT")

• Assign the name of the environment variable to a character variable, and
then use that variable as the function argument. If you declare a CHAR or
VARCHAR variable called env_var and then assign to it the name of an
environment variable, a FGL_GETENV() function call could look like this:

fgl_getenv(env_var)

If the argument is a character variable, be sure to declare it with sufficient
size to store the character value returned by the FGL_GETENV() function.
Otherwise, 4GL truncates the returned value.

If the specified environment variable is not defined, then FGL_GETENV()
returns a NULL value. If the environment variable is defined, but does not
have a value assigned to it, then FGL_GETENV() returns blank spaces.

You can use the FGL_GETENV() function anywhere within a 4GL program
to examine the value of an environment variable.

The following program segment displays the value of the INFORMIXDIR
environment variable. The environment variable is identified in the
FGL_GETENV() call by enclosing the name INFORMIXDIR between quotes:

DEFINE path CHAR(64)
...
LET path = fgl_getenv("INFORMIXDIR")
DISPLAY "Informix installed in ", path CLIPPED

)FGL_GETENV (Character Expression
p. 3-343
4-58 Built-In Functions and Operators

FGL_GETENV()
The next example also displays the value of the INFORMIXDIR environment
variable. In this case, the environment variable is identified by the env_var
character variable, and its contents are stored in a variable called path:

DEFINE env_var CHAR(25),
path CHAR(64)

...
LET env_var = "INFORMIXDIR"
LET path = fgl_getenv(env_var)
DISPLAY "Informix installed in ", path CLIPPED

The following example examines the environment to see if the DBANSIWARN
environment variable is currently set:

DEFINE dbansi_flag SMALLINT
...
IF (fgl_getenv("DBANSIWARN") IS NOT NULL) THEN

LET dbansi_flag = 1
END IF

For descriptions of the environment variables that control features of the
database engine, see the Informix Guide to SQL: Reference. For descriptions of
environment variables that can affect the visual displays of 4GL programs,
see Appendix D.
Built-In Functions and Operators 4-59

FGL_KEYVAL()
FGL_KEYVAL()
Function FGL_KEYVAL() returns the integer code of a logical or physical key.

Usage
The character expression argument of FGL_KEYVAL() must evaluate to one
of the following names of physical or logical keys:

• Letters. (Both upper and lowercase letters are valid, but 4GL does not
distinguish between them.)

• Symbols (such as !, @, and #) These must be enclosed in quotation marks.

• Any of these keywords (in uppercase or lowercase letters):

ACCEPT HELP NEXT or RETURN or ENTER
DELETE INSERT NEXTPAGE RIGHT
DOWN INTERRUPT PREVIOUS or TAB
ESC or ESCAPE LEFT PREVPAGE UP

F1 through F64

CONTROL-char (except A, D, H, I, J, L, M, R, or X)

Enclose the argument in quotes. If you specify a single, alphabetic character,
FGL_KEYVAL() considers the case of the character. (This is an exception to the
general rule that the INFORMIX-4GL language is not case-sensitive outside of
quoted strings.) In all other instances, FGL_KEYVAL() ignores the lettercase
of its argument, which you can type in either uppercase or lowercase. If the
character expression argument is invalid, the function returns NULL.

Note: The term “key” in this section refers to a physical element of the keyboard,
or to its logical effect, rather than to the SQL construct of the same name.

Using FGL_KEYVAL() with FGL_LASTKEY()

The FGL_KEYVAL() function can be used in form-related statements to
examine a value returned by the FGL_LASTKEY() function, as described on
page 4-62. By comparing the code returned by FGL_KEYVAL() with what the
FGL_LASTKEY() function returns, you can determine whether the last key
that the user pressed was a specified logical or physical key.

FGL_KEYVAL ")(" Character Expression
p. 3-343
4-60 Built-In Functions and Operators

FGL_KEYVAL()
The FGL_KEYVAL() function is typically used in conditional statements and
Boolean comparisons:

DEFINE key_var INTEGER
...
INPUT BY NAME p_customer.fname THRU p_customer.phone

...
AFTER FIELD phone

IF FGL_LASTKEY() = FGL_KEYVAL("f1") THEN
...

END IF
END INPUT

This example displays a message and moves the cursor to the manu_code
field if the user presses the Up arrow key to leave the stock_num field:

CONSTRUCT query_1 ON stock.* FROM s_stock.*
...
AFTER FIELD stock_num

IF FGL_LASTKEY() = FGL_KEYVAL("up") THEN
DISPLAY "You cannot move up from here."
NEXT FIELD manu_code

END IF
...

END CONSTRUCT

To determine whether the user performed some action, such as inserting
a row, specify the logical name of the action (such as “INSERT”), not that of
the physical key (such as “F1”). For example, the logical name of the default
Accept key is ESCAPE. To test if the key most recently pressed by the user
was the Accept key, you should specify FGL_KEYVAL(“ ACCEPT”), not
FGL_KEYVAL(“ escape”) nor FGL_KEYVAL(“ ESC”). Otherwise, if some key
other than ESCAPE is set as the Accept key and the user presses that key,
then function FGL_LASTKEY() does not returns a code equal to
FGL_KEYVAL(“ ESCAPE”).

The value returned by FGL_LASTKEY() is undefined in a MENU statement.

References
ASCII, FGL_LASTKEY()
Built-In Functions and Operators 4-61

FGL_LASTKEY ()
FGL_LASTKEY ()
The FGL_LASTKEY() function returns an INTEGER code, corresponding to
the logical key that the user most recently typed in a field of a screen form.

Usage
The FGL_LASTKEY() function returns a numeric code for the last keystroke by
the user before FGL_LASTKEY() was called. For example, if the last key that
the user entered was the lowercase s , the FGL_LASTKEY() function returns
115. Appendix A lists the numeric codes for all the ASCII characters.

The value returned by FGL_LASTKEY() is undefined in a MENU statement.

Note: The term “key” in this section refers to a physical element of the keyboard of a
terminal, or to its logical effect, rather than to the SQL construct of the same name.

Using FGL_LASTKEY() with FGL_KEYVAL()

You do not need to know the coding of the keys to use FGL_LASTKEY(). The
built-in FGL_KEYVAL() function, as described on page 4-60, can return a code
to compare with the value returned by FGL_LASTKEY(). The FGL_KEYVAL()
function lets you compare the last key that the user pressed with a logical or
physical key. For example, to check if the user pressed the Accept key, you
would compare FGL_LASTKEY() with the value FGL_KEYVAL(“ accept”).

For example, the following CONSTRUCT statement checks the value of the
last key that the user entered in each field. If the user last pressed the RETURN
key, then the program displays a message in the Error line:

CONSTRUCT query_1 ON stock.* FROM s_stock.*
BEFORE CONSTRUCT

DISPLAY "Use the TAB key to move ",
"between the fields." AT 1,1

AFTER FIELD stock_num, manu_code, description,
unit_price, unit, unit_descr

IF FGL_LASTKEY() = FGL_KEYVAL("return") THEN
ERROR "Use the TAB key to move the cursor ",

"between the fields."
END IF

END CONSTRUCT

Here (as in ON KEY clauses), RETURN is a synonym for ENTER.

FGL_LASTKEY ()
4-62 Built-In Functions and Operators

FGL_LASTKEY ()
The following example demonstrates using the FGL_LASTKEY() function
after a PROMPT statement that expects the user to respond to the prompt with
a single keystroke. The FGL_LASTKEY() function returns the code of the key
the user pressed to the program. The FGL_LASTKEY() function compares the
code with the code for the RETURN key. If an exact match occurs, 4GL calls the
continue() function. If a match does not occur, because the user pressed a key
other than RETURN, then 4GL calls the quit() function:

DEFINE value CHAR,
key INTEGER

PROMPT "Press the RETURN key to continue. ",
"Press any other key to quit." FOR CHAR value

LET key = FGL_LASTKEY()
IF key = FGL_LASTKEY("return") THEN

CALL continue()
ELSE

CALL quit()
END IF

AUTONEXT Fields

If FGL_LASTKEY() is invoked after the user enters a value in a field with the
AUTONEXT attribute (page 5-30), 4GL returns the code of the last key that the
user entered, regardless of any processing done in the AFTER FIELD or
BEFORE FIELD clause.

References
ASCII, FGL_KEYVAL()
Built-In Functions and Operators 4-63

FIELD_TOUCHED()
FIELD_TOUCHED()
The FIELD_TOUCHED() operator tests whether the user has made any change
in a specified field (or list of fields) of the current 4GL form. (This operator can
only appear within CONSTRUCT, INPUT, or INPUT ARRAY statements.)

field is a field identifier (from the ATTRIBUTES section of the form
specification file).

screen array is the 4GL identifier that you declared for a screen array in the
INSTRUCTIONS section of the form specification file.

screen record is the 4GL identifier that you declared for a screen record.

table reference is a table name, alias, or synonym (or FORMONLY keyword).

Usage
The FIELD_TOUCHED() operator returns a Boolean value TRUE (meaning that
the user made a change to the field) when a DISPLAY statement displays data
in any of the specified fields, or the user presses any of the following keys:

• A printable character (including the Spacebar)

• CONTROL-X (character delete)

• CONTROL-D (clear to end of field)

After any of these keystrokes, the FIELD_TOUCHED() operator returns TRUE,
regardless of whether the keystroke has changed the value in the field.

Otherwise, the FIELD_TOUCHED() operator returns FALSE if none of the
specified fields are edited. Moving through a field (by pressing RETURN, TAB,
or the Arrow keys) does not mark a field as “touched.”

 Field Clause

,

()

 Field Clause

(subset)

(subset)
field

screen record

table reference

screen array

*.

FIELD_TOUCHED
4-64 Built-In Functions and Operators

FIELD_TOUCHED()
The FIELD_TOUCHED() operator is valid only in CONSTRUCT, INPUT, and
INPUT ARRAY statements. When you use it in an INPUT ARRAY statement,
4GL assumes that you are referring to the current screen record. You cannot
specify a subscript to access a record in different row of the screen array.

This operator does not register the effect of 4GL statements that appear in a
BEFORE CONSTRUCT or BEFORE INPUT clause. You can assign values to fields
in these clauses without marking the fields as touched.

In the following program fragment, an IF statement tests whether the user
has entered a value into any form field. If no field has been touched, the pro-
gram prompts the user to indicate whether to retrieve all customer records.
If the user types N or n, the CONTINUE CONSTRUCT statement is executed,
and the cursor is positioned in the form, giving the user another opportunity
to enter selection criteria. If the user types any other key, the program termi-
nates the IF statement and reaches the END CONSTRUCT keywords.

CONSTRUCT BY NAME query1 ON customer.*
...

AFTER CONSTRUCT
IF NOT FIELD_TOUCHED(customer.*) THEN

PROMPT "Do you really want to see ",
"all customer rows? (y/n)"
FOR CHAR answer

IF answer MATCHES "[Nn]" THEN
CONTINUE CONSTRUCT

END IF
END IF

END CONSTRUCT

Note: This is not as dependable as testing whether query1 = " 1=1" after the END
CONSTRUCT keywords, because the user may have left all the fields blank after first
entering and then deleting query criteria in some field. In that case, the resulting
Boolean expression (" 1=1") can retrieve all rows, but FIELD_TOUCHED() returns
TRUE, and the PROMPT statement is not executed. See “Searching for All Rows” on
page 3-50 for additional information.

References
Boolean Operators, FGL_KEYVAL(), FGL_LASTKEY(), GET_FLDBUF(),
INFIELD()
Built-In Functions and Operators 4-65

GET_FLDBUF()
GET_FLDBUF()
The GET_FLDBUF() operator returns the character values of the contents of
one or more fields in the currently active screen form. (This operator can only
appear within the CONSTRUCT, INPUT, or INPUT ARRAY statements of 4GL.)

field is the name of a field in the current screen form.

program record is the name of a program record, whose members are
character variables to store values from the specified fields.

screen-array is the name of a screen array that was defined in the
INSTRUCTIONS section of the form specification file.

screen-record is the name of a screen record that is explicitly or implicitly
defined in the form specification file.

table reference is the unqualified name, alias, or synonym of a database
table or view, or else the keyword FORMONLY.

variable is a name within a list of one or more character variables,
separated by commas. Variables must correspond in number
and position with the list of fields in the field clause.

Usage
GET_FLDBUF() operates on a list of one or more fields. For example, this
LET statement assigns the value in the lname field to the lbuff variable:

LET lbuff = GET_FLDBUF(lname)

,

field

screen record

table reference

screen array

.

GET_FLDBUF ()

program record .*
variable

,

RETURNING()CALL GET_FLDBUF
 Field Clause

(subset)
p. 4-64

Case I:
(single field)

Case II:
(multiple fields)
4-66 Built-In Functions and Operators

GET_FLDBUF()
To specify a list of several field names as operands of GET_FLDBUF(), you
must use the CALL statement with the RETURNING clause. Insert commas
to separate successive field names and successive variables:

CALL GET_FLDBUF(c_num, company, lname)
RETURNING p_cnum, p_company, p_lname

The following statement returns a set of character values corresponding to
the contents of the s_customer screen record and assigns these values to the
p_customer program record:

CALL GET_FLDBUF(s_customer.*) RETURNING p_customer. *

(The first asterisk (*) specifies all the fields in the s_customer screen-record;
the second specifies all the members of the s_customer program record.)

You can use the GET_FLDBUF() operator to assist a user when entering a
value in a field. For example, if you have an input field for last names, you
can include an ON KEY clause that lets a user enter the first few characters of
the desired last name. If the user calls the ON KEY clause, 4GL displays a list
of last names that begin with the characters entered. The user can then choose
a last name from the list. The following program fragment demonstrates this
use of the GET_FLDBUF() operator:

DEFINE lname, myquery, partial_name CHAR(20),
tw ARRAY[10] OF CHAR(20),
a INTEGER

...
INPUT BY NAME lname

ON KEY (CONTROL-P)
LET partial_name = GET_FLDBUF(lname)
LET myquery = "SELECT lname FROM teltab ",

"WHERE lname MATCHES \"", partial_name CLIPPED, "*\""
OPEN WINDOW w1 AT 5,5 WITH FORM "tel_form"

ATTRIBUTE (BORDER)
DISPLAY partial_name AT 1,1
PREPARE mysubquery FROM myquery
DECLARE q1 CURSOR FOR mysubquery
LET a = 0
FOREACH q1 INTO lname

LET a = a + 1
...

END FOREACH
DISPLAY a TO ncount
IF (a = 0) THEN

PROMPT "Nothing beginning with these letters"
Built-In Functions and Operators 4-67

GET_FLDBUF()
FOR CHAR partial_name
ELSE

IF (a > 10) THEN LE T a = 10
END IF
CALL SET_COUNT(a)
DISPLAY ARRAY tw TO srec.*

END IF
...

END INPUT

If you assign the character string returned by the GET_FLDBUF() operator to
a variable that is not defined as a character data type, 4GL tries to convert the
string to the appropriate data type. Conversion is not possible in these cases:

• The field contains special characters (for example, date or currency
characters) that 4GL cannot convert.

• The GET_FLDBUF() operator is called from a CONSTRUCT statement and
the field contains comparison or range operators that 4GL cannot convert.

GET_FLDBUF() is valid only in CONSTRUCT, INPUT, and INPUT ARRAY state-
ments. When it encounters this operator in an INPUT ARRAY statement, 4GL
assumes that you are referring to the current row. You cannot use a subscript
within brackets to reference a different row of the screen array.

The following example uses the GET_FLDBUF() and FIELD_TOUCHED()
operators in an AFTER FIELD clause in a CONSTRUCT statement. The
FIELD_TOUCHED() operator checks whether the user has entered a value into
the zipcode field. If FIELD_TOUCHED() returns TRUE, then GET_FLDBUF()
retrieves the value entered into the field and assigns it to the p_zip program
variable. If the first character in the p_zip variable is not a 9, the program
displays an error, clears the field, and returns the cursor to the field.

CONSTRUCT BY NAME query1 ON customer.*
...
AFTER FIELD city

IF FIELD_TOUCHED(zipcode) THEN LET p_zip = GET_FLDBUF(zipcode)
IF p_zip[1,1] <> "9" THEN

ERROR "You can only search in section 9."
CLEAR zipcode
NEXT FIELD zipcode

END IF
END IF

References
FIELD_TOUCHED(), INFIELD()
4-68 Built-In Functions and Operators

INFIELD()
INFIELD()
The INFIELD() operator in CONSTRUCT, INPUT or INPUT ARRAY statements
tests whether its operand is the identifier of the current screen field.

field is the name of a field in the current screen form.

screen-array is the name of a screen array that you defined in the
INSTRUCTIONS section of the form specification file.

screen-record is the name of a screen record that is explicitly or implicitly
defined in the form specification file.

table reference is the unqualified name, alias, or synonym of a database
table or view, or else the keyword FORMONLY.

Usage
INFIELD() is a Boolean operator that returns the value TRUE if field is the
name of the current screen field. Otherwise, INFIELD() returns the value
FALSE. (For information on assigning a name to a display field of a screen
form, see “ATTRIBUTES Section” on page 5-20.)

Note: You must specify a field name, rather than a field tag, as the operand.

You can use INFIELD() during a CONSTRUCT, INPUT, or INPUT ARRAY state-
ment to take field-dependent actions. The INFIELD() operator is typically part
of an ON KEY clause, often in conjunction with the built-in function
SHOWHELP() to display Help messages to the user.

The next code fragment is from a program that uses INFIELD() to determine
whether to display a popup window:

ON KEY (CONTROL-F, F5)
IF INFIELD(customer_num) THEN

CALL cust_popup()

When a user presses either of two keys during the INPUT, the cust_popup()
function is invoked if the screen cursor is in the customer_num field.

field

screen record

table reference

screen array

.

INFIELD ()
Built-In Functions and Operators 4-69

INFIELD()
In the following fragment, call_flag and res_flag are the names of fields:

ON KEY (F2, CONTROL-E)
IF INFIELD(call_flag) OR INFIELD(res_flag) THEN

IF INFIELD (call_flag) THEN
LET fld_flag = "C"

ELSE --* user pressed F2 (CTRL-E) from res_flag
LET fld_flag = "R"

END IF
...
END IF

Subsequent code could use these field names to determine which column
of a row to edit.

In the following example, the INPUT statement uses the INFIELD() operator
with the SHOWHELP() function to display field-dependent Help messages.

INPUT gr_equip.* FROM sr_equip.*
ON KEY(CONTROL-B)

CASE
WHEN INFIELD(part_num)

CALL SHOWHELP(301)
WHEN INFIELD(part_name)

CALL SHOWHELP(302)
WHEN INFIELD(supplier)

CALL SHOWHELP(303)
...

END CASE
END INPUT

References
SCR_LINE(), SHOWHELP(), FIELD_TOUCHED(), GET_FLDBUF()
4-70 Built-In Functions and Operators

LENGTH()
LENGTH()
The LENGTH() function returns the number of bytes in its string argument
after deleting all trailing spaces.

Usage
The LENGTH() function returns an integer value, based on the length
(in bytes) of its character-expression argument.

Statements in the next example center a report title on an 80-column page:

LET title = "Invoice for ", fname CLIPPED,
" ", lname CLIPPED

LET offset = (80 - length(title))/2
PRINT COLUMN offset, title

The following are among the possible uses for the LENGTH() function:

• You can check whether a user has entered a database name and, if not, set
a default name.

• Check whether the user has supplied the name of a file to receive the out-
put from a report and, if not, set a default output.

• Use LENGTH(string) as the MAX() value in a FOR loop, and then check
each character in string for a specific character. For example, you can
check for “.” to determine whether a table name has a prefix.

LENGTH() is also useful as a check on user input. In the following example,
an IF statement is used to determine whether the user has responded to a
displayed message:

IF LENGTH (ans1) = 0 THEN
PROMPT "Press RETURN to continue: " FOR input_val

ELSE ...

LENGTH ()Character
Expression

p. 3-343
Built-In Functions and Operators 4-71

LENGTH()
Using LENGTH() in SQL Expressions

Unlike some other built-in functions of 4GL, you can use LENGTH() in SQL
statements, as well as in other 4GL statements. LENGTH() can also be called
from a C function. (That is, the database engine supports a function of the
same name and of similar functionality.)

In a SELECT or UPDATE statement, the argument of LENGTH() is the identi-
fier of a character column. In this context, LENGTH() returns the number of
bytes in the CLIPPED data value (for CHAR or VARCHAR columns) or the full
number of bytes (for TEXT and BYTE data types).

The LENGTH() function can also take the name of a database column as its
argument, but only within an SQL statement.

References
CLIPPED, USING

With the INFORMIX-SE engine, the LENGTH() function cannot reference
columns that correspond to VARCHAR, TEXT, nor BYTE data types.

SE
4-72 Built-In Functions and Operators

LINENO
LINENO
The LINENO operator returns the number of the line within the page that
is currently printing. (This operator can appear only in the FORMAT section
of a REPORT program block.)

Usage
This returns the value of the line number of the report line that is currently
printing. 4GL computes the line number by calculating the number of lines
from the top of the current page, including the TOP MARGIN.

For example, the following program fragment examines the value of
LINENO. If this value is less than 9, a PRINT statement formats and displays
it, beginning in the tenth character position after the left margin.

IF (LINENO > 9) THEN
PRINT COLUMN 10, LINENO USING "Line <<<"

END IF

You can specify LINENO in the PAGE HEADER, PAGE TRAILER, or other
report control blocks, to find the print position on the current page of a report.

INFORMIX-4GL cannot evaluate the LINENO operator outside the FORMAT
section of a REPORT program block. The value that LINENO returns must be
assigned to a variable that is not local to the report, if you need to reference
this value within some other program block of your 4GL application.

Reference
PAGENO

LINENO
Built-In Functions and Operators 4-73

MDY()
MDY()
The MDY() operator returns a value of the DATE data type from three integer
operands that represent the month, the day of the month, and the year.

Usage
The MDY() operator converts to a single DATE format a list of exactly three
valid integer expressions. The three expressions correspond with the month,
day, and year elements of a calendar date:

• The first expression must return an integer, representing the number of
the month (1-12).

• The second expression must return an integer, representing the number
of the day of the month (1-28, 29, 30, or 31, depending on the month).

• The third expression must return a four-digit integer, representing the
year.

An error results if you specify values outside the range of days and months
in the calendar, or if the number of operands is not three.

You must enclose the three integer expression operands within parentheses,
separated by commas, just as you would if MDY() were a function.

The value of the third expression cannot be the abbreviation for the year. For
example, 91 specifies a year in the first century, more than 1,900 years ago.

The following program uses MDY() to return a DATE value, which is then
assigned to a variable and displayed on the screen:

MAIN
DEFINE a_date DATE
LET a_date = MDY(12/2,3+2,1988)
DISPLAY a_date
END MAIN

Reference
DATE()

MDY (Integer Expression
p. 3-338

Integer Expression
p. 3-338

,), Integer Expression
p. 3-338
4-74 Built-In Functions and Operators

MONTH()
MONTH()
The MONTH() operator returns a positive whole number between 1 and 12,
corresponding to the month portion of a DATE or DATETIME operand.

Usage
The MONTH() operator extracts an integer value for the month in a DATE or
DATETIME value. You cannot specify an INTERVAL operand.

The following program extracts the month time unit from a DATETIME literal
expression. It evaluates MONTH(date_var) as an operand of a Boolean
expression to test whether the month is earlier in the year than March.

MAIN

DEFINE date_var DATETIME YEAR TO SECOND
DEFINE current_month CHAR(10)
DEFINE month_var INT

LET current_month = CURRENT MONTH TO MONTH
LET date_var = DATETIME(89-01-12 18:47:32) YEAR TO SECOND
LET month_var = MONTH(date_var)
DISPLAY "The current month is: ", current_month
DISPLAY "The month of interest is month number : ",

 month_var USING "##"
IF MONTH(date_var) < 3

THEN DISPLAY "Month of interest is Feb. or Jan.”
END IF

END MAIN

References
DATE(), DAY(), WEEKDAY(), YEAR()

MONTH ()DATETIME Value
p. 3-347

DATE Value
p. 3-347
Built-In Functions and Operators 4-75

NUM_ARGS()
NUM_ARGS()
The NUM_ARGS() function returns the number of command-line arguments
with which the current 4GL program is invoked.

Usage
The NUM_ARGS() function returns an integer, corresponding to the number
of command-line arguments that followed the name of your 4GL program
when the user invoked it.

You can use the ARG_VAL() built-in function to retrieve individual argu-
ments. By using NUM_ARGS() in conjunction with the ARG_VAL() function
(page 4-16), the program can pass command-line arguments to the MAIN
statement, or to whatever program block invokes the NUM_ARGS() and
ARG_VAL() functions.

In the following examples, each of the command lines includes three
arguments:

myprog.4gi kim sue joe (C Compiler version)
fglgo myprog kim sue joe (RDS version)

After either of these command lines, NUM_ARGS() sets 3 as the upper limit
of variable i in the FOR loop of the program fragment that follows.

DEFINE pa_args ARRAY[8] OF CHAR(10),
i SMALLINT

FOR i = 1 TO NUM_ARGS()
LET pa_args[i] = ARG_VAL(i)

END FOR

Reference
ARG_VAL()

NUM_ARGS ()
4-76 Built-In Functions and Operators

PAGENO
PAGENO
The PAGENO operator returns a positive whole number, corresponding
to the number of the page of report output that 4GL is currently printing.
(PAGENO is valid only in the FORMAT section of a REPORT program block.)

Usage
This returns a positive integer, whose value is the number of the page that
includes the current print position in the currently executing report.

For example, the following program fragment conditionally prints the value
returned by PAGENO, using the USING operator to format it, if this value is
less than 10,000.

IF (PAGENO < 10000) THEN
PRINT COLUMN 28, PAGENO USING "page <<<<"

END IF

You can include the PAGENO operator in PAGE HEADER or PAGE TRAILER
control blocks or in other control blocks of a report definition, to identify the
page numbers of output from a report.

4GL cannot evaluate the PAGENO operator outside the FORMAT section of a
REPORT program block. If some other program block of your 4GL application
needs to reference the value that PAGENO returns, the report must assign that
value to a variable whose scope of reference is not local to the report.

Reference
LINENO

PAGENO
Built-In Functions and Operators 4-77

SCR_LINE()
SCR_LINE()
The SCR_LINE() function returns a positive integer, corresponding
to the number of the current screen record in its screen array during
a DISPLAY ARRAY or INPUT ARRAY statement.

Usage
The current screen record is the line of a screen array that contains the screen
cursor at the beginning of a BEFORE ROW or AFTER ROW clause.

The first record of the program array and of the screen array are both
numbered 1. The built-in 4GL functions SCR_LINE() and ARR_CURR() can
return different values if the program array is larger than the screen array.

The following program fragment tests what the user enters, and rejects it if
the state field value indicates that the customer is not from California.

DEFINE pa_clients ARRAY[90] OF RECORD
fname CHAR(15),
lname CHAR(15),
state CHAR(2)
END RECORD,
curr_pa, curr_sc SMALLINT

INPUT ARRAY pa_clients FROM sa_clients.*
AFTER FIELD state

LET curr_pa = ARR_CURR()
LET curr_sc = SCR_LINE()
IF UPSHIFT(pa_clients[curr_pa].state) != "CA" THEN

ERROR "Policy for California clients only"
INITIALIZE pa_clients[curr_pa].* TO NULL
CLEAR scr_array[curr_sc].*
NEXT FIELD fname

END IF
END INPUT

The following example makes use of SCR_LINE() and of the related
ARR_CURR() built-in function to assign values to variables within the
BEFORE ROW clause of an INPUT ARRAY statement. Because these functions

SCR_LINE ()
4-78 Built-In Functions and Operators

SCR_LINE()
are invoked in the BEFORE ROW control block, the respective curr_pa and
curr_sa variables are evaluated each time that the cursor moves to a new line,
and are available within other clauses of the INPUT ARRAY statement.

INPUT ARRAY ga_items FROM sa_items.* HELP 62
BEFORE ROW

LET curr_pa = ARR_CURR()
LET curr_sa = SCR_LINE()

It is then possible, for example in a later statement within INPUT ARRAY, to
have a statement such as the following, which fills in the description and
unit_price fields on the screen:

DISPLAY
ga_items[curr_pa].description, ga_items[curr_pa].unit_price

TO
sa_items[curr_sa].description, sa_items[curr_sa].unit_price

References
ARR_COUNT(), ARR_CURR()
Built-In Functions and Operators 4-79

SET_COUNT()
SET_COUNT()
The SET_COUNT() function specifies the number of records that contain data
in a program array.

Usage
Before you use an INPUT ARRAY WITHOUT DEFAULTS or a DISPLAY ARRAY
statement, you must call the SET_COUNT() function with an integer argu-
ment to specify the total number of records in the program array. In typical
applications, these records contain retrieved values from the database.

The SET_COUNT() built-in function sets an initial value from which the
ARR_COUNT() function determines the total number of members in an array.
If you do not explicitly call ARR_COUNT(), a default value of zero is assigned.

In the following program fragment, the variable n_rows is an array index
that received its value in an earlier FOREACH loop. The index was initialized
with a value of 1, so the expression (n_rows -1) represents the number of
rows that were fetched from a database table in the FOREACH loop. The
expression SET_COUNT (n_rows - 1) tells INPUT ARRAY WITHOUT DEFAULTS
how many program records containing row values from the database are in
the program array, so it can determine how to control the screen array.

CALL SET_COUNT(n_rows - 1)
INPUT ARRAY pa_items WITHOUT DEFAULTS

FROM sa_items.*

If no INPUT ARRAY statement has been executed, and you do not call the
SET_COUNT () function, then the DISPLAY ARRAY or INPUT ARRAY WITH-
OUT DEFAULTS statement displays no records.

References
ARR_COUNT(), ARR_CURR()

CALL SET_COUNT Integer Expression
p. 3-338

)(
4-80 Built-In Functions and Operators

SHOWHELP()
SHOWHELP()
The SHOWHELP() function displays a Help message, corresponding
to its specified SMALLINT argument, from the current Help file.

Usage
The argument of SHOWHELP() identifies the number (between 1 and 32,767)
of a message in the Help file that was specified in the OPTIONS statement.

When it is called, SHOWHELP() opens the Help window (as described on
page 2-22), and displays the first (or only) page of the Help message text
below a ring menu of Help options. This menu is called the Help menu.

If the Help message is too long to fit on one page, the Screen option of the
Help menu can display the next page of the message. The Resume option
closes the Help window, and returns focus to the 4GL screen. (See also the
description of the mkmessage utility in Appendix B.)

In interactive statements like CONSTRUCT, INPUT, INPUT ARRAY, PROMPT,
or the COMMAND clause of a MENU statement, the effect of SHOWHELP()
resembles that of the Help key. The Help key, however, displays only the
message specified in the current HELP clause. The following example uses
INFIELD() with SHOWHELP() to display field-dependent Help messages:

INPUT ARRAY gr_equip.* FROM sa_equip.*
ON KEY(CONTROL-B)

CASE
WHEN INFIELD(part_num)

CALL SHOWHELP(301)
WHEN INFIELD(part_name)

CALL SHOWHELP(302)
WHEN INFIELD(supplier)

CALL SHOWHELP(303)
...

END CASE
END INPUT

Reference
INFIELD()

CALL SHOWHELP Integer Expression
p. 3-338

)(
Built-In Functions and Operators 4-81

SPACE
SPACE
The SPACE operator returns a string of a specified length, containing only
blank (ASCII 32) characters. The keyword SPACES is a synonym for SPACE.

relative offset is an integer expression (page 3-338) that returns a positive
number. This specifies the number of blank characters.

Usage
This returns a blank string of length relative offset, identical to a quoted string
containing the same number of blanks.

In a PRINT statement in the FORMAT section of a report definition, the SPACE
operator advances the character position by relative offset characters.

The following statements from a fragment of a report definition use the
SPACE operator to accomplish several tasks:

• To separate variables within two PRINT statements.

• To concatenate six (6) blank spaces to the string “=ZIP ”.

• To print the resulting string after the value of the variable zipcode.

FORMAT
ON EVERY ROW

LET mystring = (6 SPACES), "=ZIP"
PRINT fname, 2 SPACES, lname
PRINT company
PRINT address1
PRINT city, " , " , state, 2 SPACES, zipcode, mystring

In a DISPLAY statement, the SPACE operator inserts relative offset blank
characters into the output.

Outside PRINT statements, the relative offset operand and the SPACE (or
SPACES) keyword must appear within parentheses, as in the LET statement
of the previous example.

References
LINENO, PAGENO

SPACE

SPACES

relative offset
4-82 Built-In Functions and Operators

SQLEXIT()
SQLEXIT()
The SQLEXIT() function terminates the connection of the 4GL application
to the database server, and returns a status code of zero. (No compilation
error occurs if your application ignores this returned value.)

Usage
SQLEXIT() rolls back any open transaction, closes the current database,
and terminates the database connection. Its effect resembles that of the DIS-
CONNECT ALL statement of SQL. One difference is that DISCONNECT ALL
fails if there are any current transactions. If the current database is remote, or
if it uses transaction logging, first issue the CLOSE DATABASE statement
before calling SQLEXIT(). To verify that the rollback or database closure suc-
ceeded, examine the SQLCA record (page 2-23).

The following fragment of a MENU statement calls the SQLEXIT() function:

COMMAND "Disconnect"
CLOSE DATABASE
CALL SQLEXIT() RETURNING l_oeuf
HIDE OPTION ALL
SHOW OPTION "Connect"

If your 4GL code enables the user to invoke SQLEXIT(), as in this example,
and if it also traps error -854, then you can create groups of 4GL applications
that can emulate running concurrently in different 4GL screens while alter-
nately using the same connection to one or more databases.

Another use of SQLEXIT() is to disconnect from a local engine, so that you can
reset environment variables like DBDATE. After you change the environment
variables, use the DATABASE statement to reconnect to the database server.

You can also use SQLEXIT() to reduce database overhead in 4GL programs
that refer to a database only briefly and after long intervals, or that access a
database only during initialization.

CALL SQLEXIT ()
Built-In Functions and Operators 4-83

STARTLOG()
STARTLOG()
The STARTLOG() function opens an error log file.

filename is a quoted string to specify a filename (and optional pathname
and file extension) of the error log file.

variable is a variable of type CHAR or VARCHAR containing a filename
(and optional pathname and file extension) of the error log file.

Usage
The following is a typical sequence to implement error logging:

1. Call STARTLOG() in the MAIN program block to open or create an
error log file.

2. Use a LET statement with ERR_GET(status) to retrieve the error text
(page page 4-48) and to assign this value to a program variable.

3. Use ERRORLOG() to make an entry into the error log file (page page 4-51).

The last two steps are not needed, if you are satisfied with the error records
that are automatically produced after STARTLOG() has been invoked. After
you call the STARTLOG() function, a record of every subsequent error that
occurs during the execution of your program is written to the error log file,
provided that the WHENEVER ERROR CONTINUE statement (page 3-281) is
not in effect.

The error record consists of the date, time, source-module name and line
number, error number, and error message. You can also write your own
messages in the error log file by using the ERRORLOG() function (page 4-51).
If you invoke the STARTLOG() function, error records that 4GL appends to the
error log file after each subsequent error have the following format:

Date: 03/06/94 Time: 12:20:20
Program error at "stock_one.4gl", line number 89.
SQL statement error number -239.
Could not insert new row - duplicate value in a UNIQUE INDEX column.
SYSTEM error number -100
ISAM error: duplicate value for a record with unique key.

" filename"CALL STARTLOG ()
variable
4-84 Built-In Functions and Operators

STARTLOG()
With other 4GL features, the STARTLOG(), ERR_GET(), and ERRORLOG()
functions can be used for instrumenting a program, to track how the program
is used. This is not only valuable for improving the program, but also for
recording work habits and detecting attempts to breach security. Example 25
in INFORMIX-4GL by Example contains an example of this type of
functionality.

The following program fragment invokes the STARTLOG() built-in function,
specifying the name of the error log file in a quoted string that includes a
pathname and a file extension. The function definition includes a call to the
built-in ERRORLOG() function, which adds a message to the error log file.

CALL STARTLOG("/usr/arik/error.log")
...
FUNCTION start_menu()
CALL ERRORLOG("Entering start_menu function")
...
END FUNCTION

In a database that is ANSI-compliant, WHENEVER ERROR CONTINUE is the
default error-handling action when a run-time error condition is detected.

If the database is not ANSI-compliant, WHENEVER ERROR STOP is the default
error-handling action. WHENEVER ERROR CONTINUE can prevent the first
SQL error from terminating program execution. Another effect of this
compiler directive, however, is to suppress automatic recording of errors
by STARTLOG(). If WHENEVER ERROR CONTINUE is in effect, you can use
explicit calls to the ERRORLOG() function to maintain the error log. (The other
options of WHENEVER, namely STOP, CALL, and GOTO, do not interfere with
automatic logging of STARTLOG() error records.)

Specifying the Error Log File

If the argument of STARTLOG() is not the name of an existing file, then
STARTLOG() creates one. If the file already exists, STARTLOG() opens it, and
positions the file pointer so that subsequent error messages can be appended
to this file. For portable programs, the filename should be a variable, rather
than a literal string.

References
ERR_GET(), ERRORLOG()
Built-In Functions and Operators 4-85

TIME
TIME
The TIME operator reads the system clock and returns a character string
representing the current time-of-day.

Usage
TIME returns a character string, representing the current time in the format
hh:mi:ss, based on a 24-hour clock. (Here hh represents the hour, mi the minute,
and ss the second as 2-digit strings, with colon (:) symbols as separators.)

In the following example, the value returned by TIME is assigned to the
p_time variable and displayed:

DEFINE p_time char(15)
LET p_time = TIME

DISPLAY "The time is ", p_time

References
CURRENT, DATE, TODAY

TIME
4-86 Built-In Functions and Operators

TODAY
TODAY
The TODAY operator reads the system clock and returns a DATE value
that represents the current calendar date.

 Usage
TODAY is typically used in LET and PRINT statements to record the current
date in situations where the time of day (which CURRENT or TIME supplies)
is not necessary. Like the DATE, TIME, and CURRENT operators, the effect of
TODAY is sensitive to the time of execution and the accuracy of the system
clock-calendar.

The following example uses TODAY in a REPORT definition:

SKIP 1 LINE
PRINT COLUMN 15, "FROM: ", begin_date USING "mm/dd/yy",

COLUMN 35, "TO: ", end_date USING "mm/dd/yy"
PRINT COLUMN 15, "Report run date: ",

TODAY USING "mmm dd, yyyy"
SKIP 2 LINES
PRINT COLUMN 2, "ORDER DATE", COLUMN 15, "COMPANY",

COLUMN 35, "NAME", COLUMN 57, "NUMBER",
COLUMN 65, "AMOUNT"

TODAY

4GL can display language-specific month name and day name abbrevia-
tions. This requires the installation of message files in a subdirectory of
$INFORMIXDIR/msg, and subsequent reference to that subdirectory by
way of the environment variable DBLANG. For example, the weekday por-
tion of the date string in a Spanish locale translates the day Saturday into
the day name abbreviation Sab, which stands for Sabado (the Spanish
word for Saturday). For more information on NLS, see Appendix E.

NLS
Built-In Functions and Operators 4-87

TODAY
TODAY is sometimes useful in setting defaults and initial values in form
fields. The next code fragment initializes a field with the current date if the
field is empty. This takes place before the user enters data into the field:

INPUT gr_payord.paid_date FROM a_date
BEFORE FIELD a_date

IF gr_payord.paid_date IS NULL THEN
LET gr_payord.paid_date = TODAY

END IF

References
CURRENT, DATE, DATE(), TIME
4-88 Built-In Functions and Operators

UNITS
UNITS
The UNITS operator returns an INTERVAL value, based on a single time unit.

keyword is one of the following keywords to specify a time unit:

YEAR MONTH
DAY HOUR
MINUTE SECOND

FRACTION (n)

Here n is an integer, greater than zero but less than 6, to
specify the scale of the second.

Usage
The UNITS operator returns an INTERVAL value for a single unit of time, such
as DAY TO DAY, YEAR TO YEAR, or HOUR TO HOUR. If you substitute a num-
ber expression for the integer operand, any fractional part of the returned
value is discarded before the UNITS operator is applied.

The UNITS operator has a higher precedence than any arithmetic or Boolean
operator. You may need parentheses around its operand, if this is an expres-
sion that includes other operators. Any left-hand arithmetic operand that
includes the UNITS operator must be enclosed within parentheses.

In the following example, the user has specified a starting time for a meeting
(DATETIME value) as well as a value for the length of the meeting, which the
program has already converted to minutes (SMALLINT). Here the program
computes when the meeting will end (DATETIME value). UNITS in this case
allows you to add the SMALLINT value to the DATETIME value and get a new
DATETIME value.

LET end_time = (start_time + meeting_length) UNITS MINUTE

Because the difference between two DATE values is an integer count of days
(page 4-18) rather than an INTERVAL data type, you may wish to use the
UNITS operator to convert such differences explicitly to INTERVAL values:

LET lateness = (date_due - TODAY) UNITS DAYS

References
Arithmetic Operators

UNITS keywordInteger Expression
p. 3-338
Built-In Functions and Operators 4-89

UPSHIFT()
UPSHIFT()
The UPSHIFT() function takes a character-string argument and returns
a string in which any lowercase letters are converted to uppercase letters.

Usage
The UPSHIFT() function is most often used to regularize data, for example, to
prevent the state abbreviation “VA,” “Va,” or “va” from resulting in different
values, if these were logically equivalent in the context of your application.

You can use the UPSHIFT() function in an expression where a character string
is valid, in DISPLAY and PRINT statements, and in assignment statements.
(See also the UPSHIFT field attribute on page 5-54.)

Non-alphabetic or uppercase characters are not altered by UPSHIFT().
The maximum data length of the returned character string value is 511 bytes.

The following example demonstrates a function that was written to merge
two privilege strings. Its output preserves letters in preference to hyphens
(privileges over lack of privilege) and uppercase letters in preference to
lowercase (privileges WITH GRANT OPTION over those without).

FUNCTION merge_auth(oldauth, newauth)
DEFINE oldauth, newauth LIKE systabauth.tabauth, k SMALLINT
FOR k = 1 TO LENGTH(oldauth)

IF (oldauth[k] = "-") -- no privilege in this position
OR (UPSHIFT(oldauth[k]) = newauth[k])

-- new is "with grant option"
THEN LET oldauth[k] = newauth[k])
END IF

END FOR
RETURN oldauth

END FUNCTION

In the next example, the CHAR variables u_str and str are equivalent, except
that u_str substitutes uppercase letters for any lowercase letters in str.

LET u_str = UPSHIFT(str)

Reference
DOWNSHIFT()

UPSHIFT Character Expression
p. 3-343

)(

When NLS is active, the results of conversion between uppercase and
lowercase are appropriate to the national language in use, as defined by
the LC_CTYPE environment variable.

NLS
4-90 Built-In Functions and Operators

USING
USING
The USING operator specifies a character-string format for a number, MONEY,
or DATE operand, and returns the formatted value.

format-string is a quoted string that specifies how to format the returned
character string from the number or time expression. The
special symbols that the USING operator recognizes in the
format-string are described on page 4-92 for number values,
and on page 4-94 for DATE values.

Usage
With a number or MONEY operand, you can use the USING operator to align
decimal points or currency symbols, to right- or left-justify numbers, to put
negative numbers in parentheses, and to perform other formatting tasks.
USING can also convert a DATE operand to a variety of formats.

USING is typically used in DISPLAY or PRINT statements, but you can also use
it with LET to assign the formatted value to a character variable. If a value is
too large for the field, 4GL fills it with asterisks (*) to indicate an overflow.

Formatting Number Expressions
The USING operator takes precedence over the DBMONEY or DBFORMAT
environmental variables, and is required to display the thousands separator of
DBFORMAT. When 4GL displays a number value, it follows these rules:
• Displays the leading currency symbol (as set by DBFORMAT or DBMONEY)

for MONEY values. If the FORMAT attribute specifies a leading currency
symbol for other data types, then 4GL displays that symbol.

• Omits the thousands separators, unless they are specified by a FORMAT
attribute or by the USING operator.

• Displays the decimal separator, except for INT or SMALLINT values.
• Displays the trailing currency symbol (as set by DBFORMAT or DBMONEY)

for MONEY values, unless you specify a FORMAT attribute or the USING
operator. In this case, 4GL ignores the trailing currency symbol; the user
cannot enter a trailing currency symbol, and 4GL does not display it.

Number Expression
p. 3-347

Time Expression
p. 3-347

USING " format-string"
Built-In Functions and Operators 4-91

USING
The USING Formatting Symbols for Number Values

The format-string can include literals and special characters * & # < , . - + () $.
The following list describes the effects of these special formatting characters:

* This character fills with asterisks (*) any positions in the display field
that would otherwise be blank.

& This character fills with zeros any positions in the display field that
would otherwise be blank.

This character does not change any blank positions in the display field.
You can use this to specify a maximum width for a field.

< This character causes numbers in the field to be left-justified.

, This character is a literal. USING displays it as a comma (but displays no
comma unless there is a number to the left of it).

. This character is a literal. USING displays it as a period. You can only
have one decimal point (or period) in a number format string.

- This character is a literal. USING displays it as a minus sign when the
expression is less than zero, and otherwise as a blank. When you group
several minus signs in a row, a single minus sign floats immediately to
the left of the number being printed.

+ This character is a literal. USING displays it as a plus sign when the
expression is greater than or equal to zero, and as a minus sign when it
is less than zero. When you group several plus signs in a row, a single
plus sign floats immediately to the left of the displayed number.

(This character is a literal. USING displays it as a left parenthesis before
a negative number. It is the accounting parenthesis that is used in place of
a minus sign to indicate a negative number. When you group several
parentheses in a row, a single left parenthesis floats immediately to the
left of the number being printed.

) This is the accounting parenthesis that is used in place of a minus sign
to indicate a negative number. One of these characters generally closes
a format string that begins with a left parenthesis.

$ This character is a literal. USING displays it as a dollar sign. When you
group several dollar signs in a row, a single dollar sign floats immedi-
ately to the left of the number being printed.

The characters - + () $ float, meaning that when you specify multiple leading
occurrences of one of these characters, 4GL displays all of them as a single
character immediately to the left of the number that is being displayed.

Note: These are not identical to the formatting characters that you can specify in the
format-strings of the FORMAT (page 5-42) or PICTURE (page 5-48) field attributes.
4-92 Built-In Functions and Operators

USING
For examples of USING format strings for number expressions, see pages 4-97
through 4-99. Since format strings interact with data to produce visual effects,
you may find that the examples are easier to follow than the descriptions on
the previous page of USING format string characters.

The following example prints a MONEY value using a format string that
allows values up to $9,999,999.99 to be formatted correctly.

DEFINE mon_val MONEY(8,2)
LET mon_val = 23485.23
DISPLAY "The current balance is ", mon_val

USING "$#,###,##&.&&"

Executing this DISPLAY statement (with the value of mon_val set to 23485.23)
produces the following output:

The current balance is $ 23,485.23

The format string in this example fixes the currency symbol.

The format string in the previous example also uses the # and & fill charac-
ters. The # character provides blank fill for unused character positions, while
the & character provides zero filling. This format ensures that even if the
number is zero, any positions marked with & will appear as zero, not blank.

Dollar signs can be used instead of # characters, as in the following statement:

DISPLAY "The current balance is ",mon_val
USING "$$,$$$,$$&.&&"

In this example, the currency symbol floats with the size of the number,
so that it appears immediately to the left of the most significant digit in the
display. This would produce the following formatted output, if the value
of the mon_val variable were 23485.23:

The current balance is $23,485.23

By default, 4GL displays numbers right-justified. You can use the < symbol
in a USING format string to override this default. For example, specifying

DISPLAY "The current balance is ",mon_val
USING "$<<,<<<,<<&.&&"

produces the following output when the value of mon_val is 23485.23:

The current balance is $23,485.23
Built-In Functions and Operators 4-93

USING
Formatting DATE Values

If you use the USING operator to format a DATE value, USING takes
precedence over the DBDATE environment variable. The format-string for a
date can be a combination of the characters m, d, and y:

dd day of the month as a 2-digit number (01through 31 or less)
ddd day of the week as a 3-letter abbreviation (Sun through Sat)

mm month as a 2-digit number (01 through 12)
mmm month as a 3-letter abbreviation (Jan through Dec)

yy year as a 2-digit number in the 1900s (00 through 99)
yyyy year as a 4-digit number (0001 through 9999)

Here lowercase is required; uppercase D, M, or Y cannot be substituted.

Any other characters in a USING format-string for a DATE value are literals.
The following examples show valid formats for December 25, 1993:

Format String Formatted Result
"mmddyy" 122593
"ddmmyy" 251293
"yymmdd" 931225
"yy/mm/dd" 93/12/25
"yy mm dd" 93 12 25
"yy-mm-dd" 93-12-25
"mmm. dd, yyyy" Dec. 25, 1993
"mmm dd yyyy" Dec 25 1993
"yyyy dd mm" 1993 25 12
"mmm dd yyyy" Dec 25 1993
"ddd, mmm. dd, yyyy" Sat, Dec. 25, 1993
"(ddd) mmm. dd, yyyy" (Sat) Dec. 25, 1993

The following example is from a REPORT program block:

ON LAST ROW
SKIP 2 LINES
PRINT "Number of customers in ", state, " are ",

COUNT(*) USING "<<<<<"
PAGE TRAILER

PRINT COLUMN 35, "page ", PAGENO USING "<<<<"
4-94 Built-In Functions and Operators

USING
The following REPORT fragment illustrates several different formats:

SKIP 1 LINE
PRINT COLUMN 15, "FROM: ", begin_date USING "mm/dd/yy",

COLUMN 35, "TO: ", end_date USING "mm/dd/yy"
PRINT COLUMN 15, "Report run date: ",
TODAY USING "mmm dd, yyyy"

SKIP 2 LINES
PRINT COLUMN 2, "ORDER DATE", COLUMN 15, "COMPANY",

COLUMN 35, "NAME", COLUMN 57, "NUMBER",
COLUMN 65, "AMOUNT"
BEFORE GROUP OF days

SKIP 2 LINES
AFTER GROUP OF number

PRINT COLUMN 2, order_date, COLUMN 15, company CLIPPED,
COLUMN 35, fname CLIPPED, 1 SPACE, lname CLIPPED,
COLUMN 55, number USING "####",
COLUMN 60, GROUP SUM(total_price)

USING "$$,$$$,$$$.&&"
AFTER GROUP OF days

SKIP 1 LINE
PRINT COLUMN 21, "Total amount ordered for the day: ",

GROUP SUM(total_price) USING "$$$$,$$$,$$$.&&"
SKIP 1 LINE
PRINT COLUMN 15,

"==="
ON LAST ROW

SKIP 1 LINE
PRINT COLUMN 15,

"=="
SKIP 2 LINES
PRINT "Total Amount of orders: ", SUM(total_price)

USING "$$$$,$$$,$$$.&&"
PAGE TRAILER

PRINT COLUMN 28, PAGENO USING "page <<<<"
Built-In Functions and Operators 4-95

USING
USING Operator Examples

Displays on the following pages illustrate capabilities of the USING operator.
In these tables, b represents a blank or space.

When NLS is active, the setting in the NLS environment variables
LC_NUMERIC and LC_MONETARY affect the way the format string in the
USING expression is interpreted for numeric and monetary data. In the
format string, the period symbol is not a literal character but a placeholder
for the decimal separator specified by environment variables. Likewise,
the comma symbol is a placeholder for the thousands separator specified
by environment variables. The $ symbol is a placeholder for the leading
currency symbol. The @ symbol is a placeholder for the trailing currency
symbol. Thus, the format string $#,###.## formats the value 1234.56 as
£1,234.56 in an English locale but as f1.234,56 in a French locale. Note that
setting either DBFORMAT or DBMONEY overrides any settings in
LC_MONETARY or LC_NUMERIC. For complete information on using NLS,
see Appendix E.

The mmm and ddd specifiers in a format string can display language-spe-
cific month name and day name abbreviations. This requires the installa-
tion of message files in a subdirectory of $INFORMIXDIR/msg, and
subsequent reference to that subdirectory by way of the environment vari-
able DBLANG. For example, in a Spanish locale, the ddd specifier translates
the day Saturday into the day name abbreviation Sab, which stands for
Sabado (the Spanish word for Saturday). For more information on NLS,
see Appendix E.

NLS
4-96 Built-In Functions and Operators

USING
Format String Data Value Formatted Result
"#####" 0 bbbbb
"&&&&&" 0 00000
"$$$$$" 0 bbbb$
"*****" 0 *****
"<<<<<" 0 (NULL string)

"<<<,<<<" 12345 12,345
"<<<,<<<" 1234 1,234
"<<<,<<<" 123 123
"<<<,<<<" 12 12

"##,###" 12345 12,345
"##,###" 1234 b1,234
"##,###" 123 bbb123
"##,###" 12 bbbb12
"##,###" 1 bbbbb1
"##,###" -1 bbbbb1
"##,###" 0 bbbbbb

"&&,&&&" 12345 12,345
"&&,&&&" 1234 01,234
"&&,&&&" 123 000123
"&&,&&&" 12 000012
"&&,&&&" 1 000001
"&&,&&&" -1 000001
"&&,&&&" 0 000000

"&&,&&&.&&" 12345.67 12,345.67
"&&,&&&.&&" 1234.56 01,234.56
"&&,&&&.&&" 123.45 000123.45
"&&,&&&.&&" 0.01 000000.01
"$$,$$$" 12345 ****** (overflow)
"$$,$$$" 1234 $1,234
"$$,$$$" 123 bb$123
"$$,$$$" 12 bbb$12
"$$,$$$" 1 bbbb$1
"$$,$$$" 0 bbbbb$

"**,***" 12345 12,345
"**,***" 1234 *1,234
"**,***" 123 ***123
"**,***" 12 ****12
"**,***" 1 *****1
"**,***" 0 ******

Here the character b represents a blank or space.
Built-In Functions and Operators 4-97

USING
Format String Data Value Formatted Result
"##,###.##" 12345.67 12,345.67
"##,###.##" 1234.56 b1,234.56
"##,###.##" 123.45 bbb123.45
"##,###.##" 12.34 bbbb12.34
"##,###.##" 1.23 bbbbb1.23
"##,###.##" 0.12 bbbbb0.12
"##,###.##" 0.01 bbbbbb.01
"##,###.##" -0.01 bbbbbb.01
"##,###.##" -1 bbbbb1.00

"$$,$$$.$$" 12345.67 ********* (overflow)
"$$,$$$.$$" 1234.56 $1,234.56
"$$,$$$.##" 0.00 $.00
"$$,$$$.##" 1234.00 $1,234.00
"$$,$$$.&&" 0.00 $.00
"$$,$$$.&&" 1234.00 $1,234.00

"-$$$,$$$.&&" -12345.67 -$12,345.67
"-$$$,$$$.&&" -1234.56 -b$1,234.56
"-$$$,$$$.&&" -123.45 -bbb$123.45
"--$$,$$$.&&" -12345.67 -$12,345.67
"--$$,$$$.&&" -1234.56 -$1,234.56
"--$$,$$$.&&" -123.45 -bb$123.45
"--$$,$$$.&&" -12.34 -bbb$12.34
"--$$,$$$.&&" -1.23 -bbbb$1.23

"-##,###.##" -12345.67 -12,345.67
"-##,###.##" -123.45 -bbb123.45
"-##,###.##" -12.34 -bbbb12.34
"--#,###.##" -12.34 -bbb12.34
"---,###.##" -12.34 -bb12.34
"---,-##.##" -12.34 -12.34
"---,--#.##" -1.00 -1.00

"-##,###.##" 12345.67 12,345.67
"-##,###.##" 1234.56 1,234.56
"-##,###.##" 123.45 123.45
"-##,###.##" 12.34 12.34
"--#,###.##" 12.34 12.34
"---,###.##" 12.34 12.34
"---,-##.##" 12.34 12.34
"---,---.##" 1.00 1.00
"---,---.--" -.01 -.01
"---,---.&&" -.01 -.01

Here the character b represents a blank or space.
4-98 Built-In Functions and Operators

USING
Format String Data Value Formatted Result
"----,--$.&&" -12345.67 -$12,345.67
"----,--$.&&" -1234.56 -$1,234.56
"----,--$.&&" -123.45 -$123.45
"----,--$.&&" -12.34 -$12.34
"----,--$.&&" -1.23 -$1.23
"----,--$.&&" -.12 -$.12

"$***,***.&&" 12345.67 $*12,345.67
"$***,***.&&" 1234.56 $**1,234.56
"$***,***.&&" 123.45 $****123.45
"$***,***.&&" 12.34 $*****12.34
"$***,***.&&" 1.23 $******1.23
"$***,***.&&" .12 $*******.12

"($$$,$$$.&&)" -12345.67 ($12,345.67)
"($$$,$$$.&&)" -1234.56 (b$1,234.56)
"($$$,$$$.&&)" -123.45 (bbb$123.45)
"(($$,$$$.&&)" -12345.67 ($12,345.67)
"(($$,$$$.&&)" -1234.56 ($1,234.56)
"(($$,$$$.&&)" -123.45 (bb$123.45)
"(($$,$$$.&&)" -12.34 (bbb$12.34)
"(($$,$$$.&&)" -1.23 (bbbb$1.23)

"((((,(($.&&)" -12345.67 ($12,345.67)
"((((,(($.&&)" -1234.56 ($1,234.56)
"((((,(($.&&)" -123.45 ($123.45)
"((((,(($.&&)" -12.34 ($12.34)
"((((,(($.&&)" -1.23 ($1.23)
"((((,(($.&&)" -.12 ($.12)

"($$$,$$$.&&)" 12345.67 $12,345.67
"($$$,$$$.&&)" 1234.56 $1,234.56
"($$$,$$$.&&)" 123.45 $123.45
"(($$,$$$.&&)" 12345.67 $12,345.67
"(($$,$$$.&&)" 1234.56 $1,234.56
"(($$,$$$.&&)" 123.45 $123.45
"(($$,$$$.&&)" 12.34 $12.34
"(($$,$$$.&&)" 1.23 $1.23

"((((,(($.&&)" 12345.67 $12,345.67
"((((,(($.&&)" 1234.56 $1,234.56
"((((,(($.&&)" 123.45 $123.45
"((((,(($.&&)" 12.34 $12.34
"((((,(($.&&)" 1.23 $1.23
"((((,(($.&&)" .12 $.12

Here the character b represents a blank or space.
Built-In Functions and Operators 4-99

WEEKDAY()
WEEKDAY()
The WEEKDAY() operator returns a positive integer, corresponding
to the day of the week implied by its DATE or DATETIME operand.

Usage
WEEKDAY() accepts a DATETIME or DATE operand, and returns an integer in
the range 0 through 6. Here zero represents Sunday, 1 represents Monday,
and so on.

The following example demonstrates a function called from inside a FOR
loop. This function makes use of WEEKDAY, together with a CASE statement
to assign a three-letter day of the week abbreviation to each date in an array,
skipping weekends.

FOR i = 1 TO 10
CALL seize_theday(next_day)

RETURNING day_name, next_day
LET pa_days[i].dayo_week = day_name
LET pa_days[i].rdate = next_day
LET next_day = next_day + 1

END FOR
...
FUNCTION seize_theday(next_day)

DEFINE
week_day SMALLINT
day_name CHAR(3)
next_day DATE

LET week_day = WEEKDAY(next_day)
CASE week_day

WHEN 1
LET day_name = "Mon"

WHEN 2
LET day_name = "Tues"

WHEN 3
LET day_name = "Wed"

WHEN 4
LET day_name = "Thu"

WEEKDAY DATETIME Value
p. 3-347

DATE Value
p. 3-347

)(
4-100 Built-In Functions and Operators

WEEKDAY()
WHEN 5
LET day_name = "Fri"

WHEN 6
LET day_name = "Mon"
LET next_day = next_day + 2

WHEN 7
LET day_name = "Mon"
LET next_day = next_day + 1

END CASE
RETURN day_name, next_day

END FUNCTION -- seize_theday

This operator is useful for determining the day of the week from dates in
recent and future centuries. It should be used with caution, however, for
more remote dates, because of disagreements among the various calendar
systems used in different countries before the Gregorian year 1750.

For dates thousands of years in the past (for example, the death of Socrates),
it is difficult to verify that the sequential count of the seven days of the week
has been accurately maintained from antiquity up to the present.

The WEEKDAY() operator is among a group of built-in 4GL operators that
extract a single time unit value from a DATETIME or DATE value. These are
the “extraction” operators of 4GL that accepts a DATETIME or DATE operand:

In addition to these, the DATE() operator can extract the date portion
of a DATETIME value that has YEAR TO DAY or greater precision.

References
DATE(), DAY(), MONTH(), YEAR()

Operator Meaning of the Returned Integer

DAY() The day of the month
MONTH() The month
YEAR() The year
WEEKDAY() The day of the week
Built-In Functions and Operators 4-101

WORDWRAP
WORDWRAP
The WORDWRAP operator divides a long text string into segments that
appear in successive lines of a 4GL report. (This operator can appear only
in the PRINT statement in the FORMAT section of a REPORT program block.)

temporary is an integer expression (page 3-338) whose returned value
specifies the absolute position (in characters), counting from
the left edge of the page, of a temporary right margin.

TEXT variable is the name of a 4GL variable of the TEXT data type.

Usage
The WORDWRAP operator automatically “wraps” successive segments of
long character strings onto successive lines of output from a 4GL report. The
string value of any expression or TEXT variable that is too long to fit between
the current character position and the specified or default right margin is
divided into segments and displayed between temporary margins:

• The current character position becomes the temporary left margin.

• Unless you specify RIGHT MARGIN temporary, the right margin defaults to
132, or to the size from the RIGHT MARGIN clause of the OUTPUT section.

Specify WORDWRAP RIGHT MARGIN integer expression to set a temporary
right margin, counting from the left edge of the page. This cannot be smaller
than the current character position, nor greater than 132 (or else the size from
the RIGHT MARGIN clause of the OUTPUT section). The current character
position becomes the temporary left margin. These temporary values over-
ride the specified or default left and right margins from the OUTPUT section.

After the PRINT statement has executed, any explicit or default margins from
the OUTPUT section are restored. For more information about the PRINT
statement in 4GL reports, see page 6-42.

The following PRINT statement specifies a temporary left margin in column
10 and a temporary right margin in column 70 to display the character string
that is stored in the 4GL variable called mynovel:

print column 10, mynovel WORDWRAP RIGHT MARGIN 70

Character
Expression

p. 3-343 RIGHT MARGIN

TEXT variable

temporary

WORDWRAP
4-102 Built-In Functions and Operators

WORDWRAP
Tabs, Line Breaks, and Page Breaks with WORDWRAP

The data string can include printable ASCII characters. It can also include
the TAB (ASCII 9), Newline (ASCII 10), and RETURN (ASCII 13) characters that
partition the string into “words,” consisting of substrings of other printable
characters. Other non-printable characters may cause runtime errors. If the
data string cannot fit between the margins of the current line, 4GL breaks the
line at a word division, padding the line with blanks at the right.

From left to right, 4GL expands any TAB character to enough blank spaces to
reach the next TAB stop. By default, TAB stops are in every eighth column,
beginning at the left-hand edge of the page. If the next TAB stop or a string of
blank characters extends beyond the right margin, 4GL takes these actions:

• Print blank characters only to the right margin.

• Discard any remaining blank characters from the blank string or TAB.

• Start a new line at the temporary left margin.

• Process the next word.

4GL starts a new line when a word plus the next blank space cannot fit on the
current line. If all words are separated by a single space, this creates an even
left margin. 4GL applies the following rules (in descending order of prece-
dence) to the portion of the data string within the right margin:

• Break at any Newline, or RETURN, or Newline and RETURN pair.

• Break at the last blank (ASCII 32) or TAB character before the right margin.

• Break at the right margin, if no character farther to the left is a blank,
RETURN, TAB, or Newline character.

4GL maintains page discipline under the WORDWRAP option. If the string is
too long for the current page, 4GL executes the statements in any page trailer
and header control blocks before continuing output onto a new page.

Note: The WORDWRAP keyword can also specify a field attribute (page 5-57) that
supports data display and data entry in a multiple-segment field of a 4GL form.

References
LINENO, PAGENO, SPACES
Built-In Functions and Operators 4-103

YEAR()
YEAR()
The YEAR() operator returns an integer, corresponding to the year portion
of its DATE or DATETIME operand.

Usage
The YEAR() operator returns all the digits of the year value (1994 , not 94).
(See, however, the second example below, which illustrates how to obtain a
two-digit value like 94 from a four-digit year like 1994 .)

The following example extracts the current year and stores the value in a
variable.

LET y_var = YEAR(TODAY)

You can produce a two-digit year abbreviation by using the MOD (modulus)
operator:

LET birth_yr = (YEAR(birth_date)) MOD 100

In the right-hand expression, the MOD operator yields the year modulo 100,
the remainder when the value representing the actual year is divided by 100.

For example, if the value of birth_date is 09-16-1953 , the YEAR() operator
extracts the value 1953 , and the expression 1953 MOD 100 returns 53 . That
value is then assigned to birth_yr.

References
DATE(), DAY(), MONTH(), WEEKDAY()

YEAR ()DATETIME Value
p. 3-347

DATE Value
p. 3-347
4-104 Built-In Functions and Operators

Chapter
5

Screen Forms
4GL Forms 3

Form Drivers 3
Form Fields 4

Appearance of Fields 5
Navigation Among Form Fields 5
Disabled Form Fields 6

Structure of a Form Specification File 6

DATABASE Section 10
Database References in the DATABASE Section 11
The FORMONLY Option 11
The WITHOUT NULL INPUT Option 12

SCREEN Section 12
The SIZE Option 13
The Screen Layout 14
Display Fields 14
Literal Characters in Forms 15

Graphics Characters in Forms 16
Rectangles Within Forms 18

TABLES Section 18
Table Aliases 19

ATTRIBUTES Section 20
Fields Linked to Database Columns 21
FORMONLY Fields 24

The Data Type Specification 25
The NOT NULL Keywords 25

Multiple-Segment Fields 26
Field Attributes 27
Field Attribute Syntax 28
AUTONEXT 30

COLOR 31
Boolean Expressions in 4GL Form Specification Files 32

COMMENTS 36
DEFAULT 38
DISPLAY LIKE 40
DOWNSHIFT 41
FORMAT 42
INCLUDE 44
INVISIBLE 46
NOENTRY 47
PICTURE 48
PROGRAM 50
REQUIRED 52
REVERSE 53
UPSHIFT 54
VALIDATE LIKE 55
VERIFY 56
WORDWRAP 57

INSTRUCTIONS Section 63
Screen Records 63

Non-Default Screen Records 64
The List of Member Fields 65

Screen Arrays 66
Field Delimiters 68

Default Attributes 69
Precedence of Field Attribute Specifications 72
Default Attributes in an ANSI-Compliant Database 72

Creating and Compiling a Form 73
Compiling a Form Through the Programmer’s Environment 73
Compiling a Form Through the Operating System 74
Default Forms 75

Using PERFORM Forms in 4GL 77
5-2 Screen Forms

4GL Forms
A screen form is a visual display that can support input or output tasks in an
INFORMIX-4GL application. Before your 4GL program can use a screen form,
you must first create a form specification file. This is an ASCII source file that
describes the logical format of the screen form, and how to display data
values in the form at runtime. It must be compiled separately from the rest
of your source code. A compiled form can be used by many 4GL programs.

Most of this chapter describes the structure of a form specification file, and
the effect and syntax of its components. The section “Default Attributes” on
page 5-69 describes the syscolval and syscolatt tables that can specify for-
mats, validation rules, and default data values for fields. For information on
using the upscol utility to specify values in these tables, see Appendix B.
Additional sections in this chapter describe how to compile 4GL forms and
how to use forms designed for PERFORM, the screen transaction processor of
INFORMIX-SQL.

Form Drivers
To work with a compiled screen form, the application requires a form driver,
a logical set of 4GL statements that control the display of the form, that binds
its fields to 4GL variables, and that respond to actions by the user in fields.
The form driver can include 4GL screen interaction and data manipulation
statements to enter, retrieve, modify, or delete data in the database. The
emphasis of this chapter, however, is on how to create the form specification
file, rather than on how to design and implement the form driver.

Regardless of how you define them, there is no implicit relationship between
the values of program variables, form fields, and database columns. Even, for
example, if a 4GL variable lname is declared LIKE customer.lname, changes
to the variable do not imply any change in the column value. Relationships
among these entities must be specified in the logic of your form driver.
Screen Forms 5-3

Form Fields
Similarly, a 4GL form is only a template. FORM4GL reads the system catalog
at compile time to obtain the names and data types of any columns that are
referenced in the form specification file. After compilation, however, the form
loses its connection to the database. It can no longer distinguish the name of
a table or view from the name of a screen record.

It is up to you, the programmer, to determine what data a form displays, and
what to do with data that the user enters into the fields of a form. You must
indicate the binding explicitly in any 4GL statement that connects 4GL vari-
ables to screen forms or to database columns. The following statements, for
example, take input from a 4GL form, and insert the entered value from the
form into the database. (Here the @ sign in the INSERT statement tells 4GL that
the first lname is the SQL identifier of a database column.)

INPUT lname FROM customer.lname
INSERT INTO customer (@lname) VALUES (lname)

You can use interactive 4GL statements like OPEN FORM, OPEN WINDOW,
INPUT, DISPLAY FORM, CLEAR FORM, and CONSTRUCT in the form driver to
support data entry or data display through the 4GL form. Some statements
support temporary binding when a program variable and a screen field have
identical names. (See the individual 4GL statement descriptions in Chapter 3
for the appropriate syntax.) For example, the following statement could
replace the previous INPUT statement:

INPUT BY NAME lname

For more information about form drivers, refer to the later chapters of
INFORMIX-4GL Concepts and Use.

Form Fields
In a 4GL form, a field (sometimes called a screen field or form field) is an area
where the user of the application can view, enter, or edit data, depending on
its description in the form specification file and statements in the form driver.
This section discusses the appearance and behavior of form fields in 4GL.
5-4 Screen Forms

Form Fields
Appearance of Fields

The screen form contains display fields bounded by delimiters such as the
square brackets shown below.

Figure 5-1 The customer Form

The currently active form field contains a cursor. This is where text that you
type appears. For details of how to size and position fields in a form, see “Dis-
play Fields” on page 5-14. For information on assigning display and valida-
tion attributes to fields, see “Field Attribute Syntax” on page 5-28.

Navigation Among Form Fields

The order in which the cursor moves from field to field on a screen form is
determined by the order in which you list fields in the INPUT statement. Any
time before pressing RETURN in the last field, the user can use the Arrow keys
to move back through the fields and make corrections. The user can indicate
that data entry is complete by pressing the Accept key in any field, or by
pressing RETURN in the last field.

The FIELD ORDER setting in the OPTIONS statement determines where the
Arrow keys move the cursor. If FIELD ORDER CONSTRAINED is specified, the
Up Arrow key moves the cursor to the previous field and the Down Arrow
key moves the cursor to the next field. If FIELD ORDER UNCONSTRAINED is

- -
CUSTOMER FORM

Number: []

First Name: [] Last Name: []

Company: []

Address: []
[]

City: []

State: [] Zipcode: []

Telephone: []
- -
Screen Forms 5-5

Structure of a Form Specification File
specified, the Up Arrow key moves the cursor to the field above the current
cursor position and the Down Arrow key moves the cursor to the field below
the current cursor position.

Disabled Form Fields

When a form field is not included in a screen interaction statement like INPUT
or CONSTRUCT, or is specified as a NOENTRY field in a form file, it is disabled
during execution of that statement. The user cannot move the cursor to the
field. If the user attempts to enter the NOENTRY field by using the TAB or
Arrow keys, the cursor moves to the next field in traversal order, and any
appropriate BEFORE and AFTER clauses are executed.

Form fields are also disabled prior to execution of a screen interaction
statement like INPUT or CONSTRUCT. Data entered into the fields prior to the
execution of the interactive statement would otherwise be lost when the
statement initializes the fields.

Structure of a Form Specification File
A 4GL form specification file is an ASCII file (with file extension .per) that
you can create with a text editor or from within the 4GL Programmer’s Envi-
ronment. This file consists of three required sections (DATABASE, SCREEN,
and ATTRIBUTES) and it can also include two optional sections (TABLES and
INSTRUCTIONS). If present, these five sections must appear in the following
order:

• DATABASE Section: Each form specification file must begin with a
DATABASE section identifying the database (if any) on which the form is
based. This can be any database that your database engine can access,
including a remote database.

• SCREEN Section: The SCREEN section must appear next, showing the
dimensions and the exact layout of the logical elements of the form.
You must specify the position of one or more screen fields for data entry or
display, and any additional text or ornamental characters.

• TABLES Section: The TABLES section must follow the SCREEN section of
any form that references the identifier of a database column. This section
lists every table or view that contains columns that are referenced in the
ATTRIBUTES or INSTRUCTIONS sections. The TABLES section must also
declare an alias for any table name or synonym that requires an owner
qualifier, or that is an external table, or an external, distributed table.
5-6 Screen Forms

Structure of a Form Specification File
• ATTRIBUTES Section: The ATTRIBUTES section describes each field on
the form and assigns names to fields. Field descriptions can optionally
include field attributes to specify, for example, the appearance, acceptable
input values, on-screen comments, and default values for each field.

• INSTRUCTIONS Section: The INSTRUCTIONS section is optional. It can
specify screen arrays, and non-default screen records.

Each section must begin with the keyword for which it is named. After you
create a form specification file, you must compile it. The form driver of your
4GL application can then use 4GL variables to transfer information between
the database and the fields of the screen form.
Screen Forms 5-7

Structure of a Form Specification File
This is the syntax of a 4GL form specification:

The next five sections of this chapter identify the keywords and terms listed
in this diagram, and describe their syntax in detail.

ATTRIBUTES

TABLES

alias =

SCREEN { }Screen Layout
p. 5-14

DATABASE

INSTRUCTIONS Section

ATTRIBUTES Section

TABLES Section

SCREEN Section

DATABASE Section

FORMONLY

database

ATTRIBUTES
Section
p. 5-20

DATABASE
Section
p. 5-10

SCREEN
Section
p. 5-12 TABLES

Section
p. 5-18

INSTRUCTIONS
Section
p. 5-63

DATABASE Section
Database Reference

p. 5-11

Table Qualifier
p. 3-361

WITHOUT NULL INPUT

END

END

END

;

table

field tag =

SIZE lines BY characters

Field Description
p. 5-28

INSTRUCTIONS recordSCREEN RECORD

array

DELIMITERS

size END

()

"

[]

"opening-delimiter closing-delimiter

Field List
p. 5-64
5-8 Screen Forms

Structure of a Form Specification File
Figure 5-2 illustrates the overall structure of a form specification file:

DATABASE stores

SCREEN
{

CUSTOMER INFORMATION:
Customer Number: [c1] Telephone: [c10]

...

SHIPPING INFORMATION:
Customer P.O.: [o20]

Ship Date: [o21] Date Paid: [o22]
}

TABLES
customer orders items manufact

ATTRIBUTES
c1 = customer.customer_num

= orders.customer_num;
c10 = customer.phone, PICTURE = "###-###-####x#####";

...
o20 = orders.po_num;
o21 = orders.ship_date;
o22 = orders.paid_date;

INSTRUCTIONS
SCREEN RECORD sc_order[5] (orders.order_date THRU orders.paid_date)

Figure 5-2 Sections of a form specification file

In this example, the screen form has been designed to display columns from
several tables in the stores demonstration database, and includes all five of
the required and optional sections that are described in the pages that follow.

This example is incomplete, since it omits portions of the SCREEN and
ATTRIBUTES sections that describe some of the screen fields. The ellipsis
notation (. . .) in those sections is a typographic device to simplify this
illustration, rather than a valid specification for the form.
Screen Forms 5-9

DATABASE Section
DATABASE Section
The DATABASE section identifies the database, if any, containing tables
or views whose columns are referenced in the form specification file.

database is the SQL identifier of a database (page 3-58).

pathname is the directory path to the parent directory of the .dbs directory.

server is the name of the host system where database resides.

Usage
The DATABASE section is required, even if the screen form does not reference
any database columns or tables. You can specify no more than one database.

When compiling forms, 4GL uses the schema of tables from the specified
database to define the data types of fields in the form, and obtains default val-
ues and attributes from the syscolval and syscolatt tables in the default data-
base.

WITHOUT NULL INPUT

DATABASE FORMONLY

databaseDATABASE Section
Database Reference

DATABASE Section

DATABASE Section
Database Reference

" / / server / database"

database

database @server

OL

SE " / pathname / database @server"

" / / server / pathname / database"
5-10 Screen Forms

Database References in the DATABASE Section
Database References in the DATABASE Section
If the form specification file references any table or column names from a
database, the DATABASE section must specify exactly one database reference.
For the INFORMIX-OnLine engine, the following are all valid formats:

database
database@server
"//server/database"

The last format requires single quotation marks.

The next examples specify that columns or tables referenced in the TABLES,
ATTRIBUTES, or INSTRUCTIONS sections are in the stores2 database; the last
two DATABASE section examples specify mammoth as the OnLine server:

DATABASE stores2
DATABASE stores2@mammoth
DATABASE"//mammoth/stores2 "

For databases supported by the INFORMIX-SE database engine, the following
are all valid formats:

database
"/pathname/database@server"
"//server/pathname/database"

Single quotation marks around the last two formats are mandatory. Here
pathname is a pathname to the directory that contains database, and server is
the name of the host system where database resides.

For INFORMIX-SE, the following DATABASE sections illustrate these formats:

DATABASE newdb
DATABASE"/usr/projects/newdb@mammoth "
DATABASE"//mammoth/usr/projects/newdb "

The FORMONLY Option
It is possible to create a form that is not related to any database. To do so,
specify FORMONLY after the DATABASE keyword, and omit the TABLES
section (page 5-18). Also specify FORMONLY as the only table name in the
ATTRIBUTES section when you declare the name of each field (page 5-20).
Screen Forms 5-11

The WITHOUT NULL INPUT Option
The following example of a DATABASE section specifies that the screen form
is not associated with any database:

DATABASE FORMONLY

Compilation errors may result if FORMONLY appears in the DATABASE sec-
tion of a form that also specifies features that depend on information from the
system catalog or from the syscolval and syscolatt tables of a database.
Features of 4GL forms that depend on a database include:

• The TABLES section.

• Any field associated with a database column in the ATTRIBUTES section.

• Any FORMONLY field declared LIKE a column in the ATTRIBUTES section.

• DISPLAY LIKE or VALIDATE LIKE attributes in the ATTRIBUTES section.

The WITHOUT NULL INPUT Option
The WITHOUT NULL INPUT keywords indicate that database-name does not
support NULL values. Use this option only if you have elected to create and
work with a database that does not have NULL values.

For fields that have no other defaults, the WITHOUT NULL INPUT option
causes the form to display zeros as default values for number and INTERVAL
fields, and blanks for character fields. DATE values default to 12/31/1899 .
The default value for DATETIME fields is 1899-12-31 23:59:59.99999 .

SCREEN Section
The SCREEN section of the form specification file specifies the vertical and
horizontal dimensions of the physical screen, and the position of one or more
display fields and other information that will appear on the screen form. This
section is required. It has the following syntax:

lines is a literal integer that specifies how many lines of characters
(measured vertically) the form can display. The default is 24.

characters is a literal integer, specifying how many characters (measured
horizontally) a line can display. The default is the maximum
number of characters in any line of the screen layout (page 5-14).

SCREEN { }Screen Layout
p. 5-14

ENDSIZE lines BY characters
5-12 Screen Forms

The SIZE Option
Usage
The SCREEN keyword is required. As in other sections of a form specification,
the keyword END is optional.

A single pair of braces ({ }) symbols, immediately preceded and immedi-
ately followed by Newline characters, must enclose the screen-layout. Do not
use braces ({ }) as comment indicators within the SCREEN section.

The SIZE Option
If you omit the SIZE keyword, lines defaults to 24, and characters defaults to
the maximum number of characters in any line of your screen-layout. If you
specify a default form from within the Programmer’s Environment (as
described on page 5-75), the SIZE default values appear explicitly in the file.

Specify lines as the total height of the form. Four lines are reserved for the
system, so no more than (lines - 4) lines of the form can display data.

If the value of (lines - 4) is less than the number of lines in the screen-layout,
then FORM4GL splits your form into a new page after every (lines - 4) lines.
4GL does not support multiple-page forms, so any lines beyond the first page
will overlay the last line of the first page if your screen-layout is too large for
your screen. (To avoid this superimposition, you should create several form
specification files if you need to display more lines than can fit on one form.)

The form4gl command can override either or both of the lines or the characters
dimensions of the SCREEN section by specifying the following:

form4gl -l lines -c characters form-name

where lines is the height of the screen, characters is the width of the screen, and
form-name is the filename (without the .per extension) of a form specification
file. For complete information on the form4gl command, see “Compiling a
Form Through the Operating System” on page 5-74.

The portion of the SCREEN section between the braces symbols is called the
screen-layout. This shows the geometric arrangement of the logical screen. If
the SIZE clause or command line specifies dimensions that are too small for
the screen-layout, then FORM4GL issues a compile-time warning, but it pro-
duces the compiled form that your form specification file described.
Screen Forms 5-13

The Screen Layout
The Screen Layout
The screen layout of the SCREEN section must be enclosed between a pair of
braces ({ }), each in the first character position of an otherwise empty line.
The screen layout consists of display fields and (optionally) text characters.

field-tag is a 4GL identifier of no more than 50 characters within each field.
The length of a field tag cannot exceed the field width.

character is a printable character of text that will appear in the form.

Display Fields
Every 4GL form must include at least one field where data can appear in the
form. Use bracket ([]) symbols to delimit these fields in the screen layout.
Between delimiters, each field must have an identifying field tag (page 5-15).

Field Delimiters

Each field must be indicated by left and right delimiters to show the length
of the field and its position within the screen layout. Both delimiters must
appear on the same line. Usually you use left and right brackets to delimit
fields. However, if you want two fields to appear directly next to each other,
you can use the vertical bar to indicate the end of the first field and the begin-
ning of the second field. For complete information on using a vertical bar (|)
to delimit fields, see “Field Delimiters” on page 5-68.

Field Length

If you create a non-default form, you normally should set the width of each
display field in the SCREEN section to be equal to the width of the program
variable or the database column to which it corresponds.

A field corresponding to a number column in the database should be large
enough to contain the largest value in that column. If the field is too small to
display an assigned number, 4GL fills the field with asterisk (*) symbols to
indicate the overflow.

character

field-tag[]

[field-tag | field-tag]

Screen Layout
5-14 Screen Forms

Literal Characters in Forms
Fields intended to display character data can be shorter than the declared
length. INFORMIX-4GL fills a field from the left, and truncates from the right
any character string that is longer than the field to which it is assigned. By
using multiple-segment fields (page 5-26), you can display portions of a long
character value in successive lines of the form.

In a default form specification file, the widths of all fields are determined by
the data type of the corresponding columns in the database tables. (See the
section “Creating and Compiling a Form” on page 5-73 for more information
about default forms.) Default field widths are listed on page 5-75 for each
data type.

If you edit and modify the default form specification file or create a new file,
you can verify that the field widths match the data length requirements of the
corresponding character columns when you compile the form. For informa-
tion on compiling a form at the command line, see “Compiling a Form
Through the Operating System” on page 5-74.

Field Tags

Field tags must follow the rules for 4GL identifiers (page 2-9). The first char-
acter of a field tag must be a letter or underscore (_) symbol. Other characters
can be any combination of letters, digits, and underscores. Because
FORM4GL is not case-sensitive, both a1 and Al represent the same field tag.
Field tags cannot be referenced in 4GL statements. The ATTRIBUTES section
(page 5-20) declares a field name for each field tag.

The same field tag can appear at more than one position in the SCREEN sec-
tion only as part of a multiple-segment field (page 5-26), or as part of a screen
array (page 5-66). Otherwise, each field tag must be unique within a form.

You can give single-character fields the tags a through z (so a form can
include no more than 26 single-character fields.)

Literal Characters in Forms
A screen layout can specify strings of ASCII characters that always appear in
the screen form. These characters can label the form and its fields, or other-
wise improve the display. Text cannot overlap display fields, but the PICTURE
attribute (described in “Field Attribute Syntax” on page 5-28) can specify lit-
eral characters within CHAR fields.

The SCREEN section listed below appears in the orderform.per form specifi-
cation file in the stores demonstration application. This uses default screen
dimensions (24 by 80). Notice the use of textual information for field labels, a
Screen Forms 5-15

Literal Characters in Forms
screen title, and ornamental lines. (The “INSTRUCTIONS Section” later in
this chapter describes how repeated field tags are used in forms that define
screen arrays.)

Note: The backslash (\) symbol is not valid as a text character; FORM4GL attempts
to interpret it as the beginning of an escape sequence, and does not print it. In addi-
tion, your form may not compile correctly if you attempt to use either braces ({ and
}) or the field delimiter ([,] , and |) symbols as text characters in the screen layout.
FORM4GL interprets any pound (#) sign or double-hyphen (--) symbols in the
screen layout as literals, not as comment indicators.

Graphics Characters in Forms

You can include graphics characters in the SCREEN section to place boxes and
other rectangular shapes in a screen form. Use the following characters to
indicate the borders of one or more boxes on the form:

Symbol Purpose
p Use p to mark the upper-left corner.
q Use q to mark the upper-right corner.
b Use b to mark the lower-left corner.
d Use d to mark the lower-right corner.
- Use hyphens (-) to indicate horizontal line segments.
| Use vertical (|) bars to indicate vertical line segments.

SCREEN
{

ORDER FORM

Customer Number:[f000] Contact Name:[f001][f002]

Company Name:[f003]
Address:[f004][f005]

City:[f006] State:[a0] Zip Code:[f007]
Telephone:[f008]

Order No:[f009] Order Date:[f010] Purchase Order No:[f011]

Shipping Instructions:[f012]

Item No. Stock No. Code Description Quantity Price Total
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]

Running Total including Tax and Shipping Charges:[f019]
===
}
END
5-16 Screen Forms

Literal Characters in Forms
The meanings of these six special characters are derived from the gb or acsc
specifications in the termcap or terminfo files, respectively. INFORMIX-4GL
substitutes the corresponding graphics characters when you display the
compiled form.

Once the form has the desired configuration, use the \g string to indicate
when to begin graphics mode and when to end graphics mode.

Insert a \g string before the first p, q, d, b, hyphen, or vertical bar that repre-
sents a graphics character. To leave graphics mode, insert the string \g after
the p, q, d, b, hyphen, or vertical bar.

Do not insert a \g string into original white space of a screen layout. The
backslash should displace the first graphics character in the line, and push
the remaining characters to the right. The process of indicating graphics dis-
torts the appearance of a screen layout in the SCREEN section, compared to
the corresponding display of the screen form.

You can include other graphics characters in a form specification file. The
meaning, however, of a character other than the p, q, d, b, hyphen, and
vertical bar is terminal-dependent.

To use graphics characters, the system termcap or terminfo files must include
entries for the following variables:

termcap:

gs the escape sequence for entering graphics mode.

ge the escape sequence for leaving graphics mode.

gb the concatenated, ordered list of ASCII equivalents for the six graph-
ics characters used to draw the border.

terminfo:

smacs the escape sequence for entering graphics mode.

rmacs the escape sequence for leaving graphics mode.

acsc the concatenated, ordered list of ASCII equivalents for the six graph-
ics characters used to draw the border.

See Appendix F and the manual that comes with your terminal for informa-
tion about making changes to your termcap or terminfo files to support these
graphics characters.
Screen Forms 5-17

TABLES Section
Rectangles Within Forms

You can use the built-in FGL_DRAWBOX() function (page 4-56) to enclose
parts of the screen layout within rectangles. Rectangles that you draw with
FGL_DRAWBOX() are part of a displayed form. Each time that you execute the
corresponding DISPLAY FORM or OPEN WINDOW ... WITH FORM statement,
you must also redraw the rectangle. Avoid having the rectangle intersect any
field or any 4GL reserved line, because the rectangle will be broken at the
intersection when anything is displayed in the field or in the reserved line.

TABLES Section
The TABLES section lists the database tables that are referenced elsewhere
in the form specification file. You must list in this section any table, view,
or synonym that includes a column whose name is referenced in the form.

alias is the alias that replaces table in the form specification file.

table is the identifier or synonym of a table or view in its database.

Usage
If the DATABASE section specifies FORMONLY, no TABLES section is needed,
unless you give a field the VALIDATE LIKE or DISPLAY LIKE attribute in the
ATTRIBUTES section, or specify a FORMONLY field LIKE a database column.

Every database column referenced in the ATTRIBUTES section must be part
of some table specified in the TABLES section. The table identifier is the name
listed in the tabname column of the systables catalog, or else a synonym.

4GL allows you to specify up to 20 tables, but the actual limit on the number
of tables, views, and synonyms that you can reference in a form depends on
how your system is configured. The form specification file ORDERFORM.PER
in the demonstration application lists four tables:

TABLES customer orders items stock

TABLES

alias = END

TABLES Section

Table Qualifier
p. 3-361

table
5-18 Screen Forms

Table Aliases
The table cannot be a temporary table. If the form supports entry or update
of data in a view, then your 4GL application should test at run time whether
the view is updatable, especially if it is based upon other views.

The END keyword is optional.

Table Aliases
The TABLES section must declare an alias for the identifier of any table, view,
or synonym that requires a table qualifier (page 3-361). Table qualifiers can
specify the owner of a table, or a database (or database@server) that is different
from the database in the DATABASE section. In an ANSI-compliant database,
for example, you must qualify any table name with the owner prefix if the
form will be run by users other than owner. You do not need to specify alias,
unless the form will be used in an ANSI-compliant database by a user who
did not create table, or if the form references a table, view, or synonym whose
name is the same as another in the same database, so that the owner prefix is
required for an unambiguous reference.

The alias can be the same identifier as table. For example, stock can be the
alias for stores@naval:tom.stock. Except to assign an alias in the TABLES
section, a form specification file cannot qualify the name of a table. If a
qualifier is needed, you must use an alias from the TABLES section to
reference the table in other sections of the form specification file.

The same alias must also appear in screen interaction statements of 4GL that
reference screen fields that are linked to columns of a table that has an alias.
Statements in 4GL programs or in other sections of the form specification file
can reference screen fields as column, as alias. column, or as table. column, but
they cannot specify owner. table. column. You cannot specify table. column as a
field name if you define a different alias for table.

The following TABLES section specifies aliases for two tables:

TABLES tab1 = libdpt.booktab
tab2 = athdpt.balltab
Screen Forms 5-19

ATTRIBUTES Section
ATTRIBUTES Section
The ATTRIBUTES section specifies a field description that associates an identifier
and a data type with every field in the SCREEN section. You can also control
the behavior and appearance of each field by using field attributes to describe
how INFORMIX-4GL should display the field, supply a default value, limit the
values that can be entered, or set other parameters. Field attributes are
described in the section “Field Attribute Syntax” on page 5-28.

attribute is a string of keywords, identifiers, and symbols to specify
a field attribute, from among those listed on page 5-28.

column is the unqualified SQL identifier of a database column.

data type is any data type specification (page 3-293) except ARRAY
or RECORD.

field name is an identifier that you assign to a FORMONLY field (a field
that is not associated here with any database column).

field-tag is the field tag, as declared in the SCREEN section.

table is the name or alias of a database table, synonym, or view, as
declared in the TABLES section. This is not required, unless
several columns in different tables have the same name, or
the table is an external table.

column

FORMONLY. field name

data type NOT NULL

TYPE LIKE table .

ATTRIBUTES

, attribute

,

Field
Description

END

;field tag = Field Description
5-20 Screen Forms

Fields Linked to Database Columns
Usage
The ATTRIBUTES section must describe every field-tag from the SCREEN
section. The order in which you list the field tags determines the order of
fields in the default screen records that INFORMIX-4GL creates for each table.
(The INSTRUCTIONS section on page 5-63 describes screen records.)

The END keyword is optional. It is supported to provide compatibility with
form specification files for earlier versions of Informix products.

You can specify two kinds of field descriptions: those that associate a field tag
with the data type and with the default attributes of a database column, and
those that link field tags to FORMONLY fields.

Fields Linked to Database Columns
Unless a display field is FORMONLY, its field-description must specify the SQL
identifier of some database column as the name of the display field. Fields are
associated with database columns only during the compilation of the form
specification file. During the compilation process, FORM4GL examines two
optional tables, syscolval and syscolatt, for default values of the attributes
that you have associated with any columns of the database. (For a description
of these tables, see “Default Attributes” on page 5-69.)

After FORM4GL extracts any default attributes and identifies data types from
the system catalog, the association between fields and database columns is
broken, and the form cannot distinguish the name of a table or view from the
name of a screen record. The form driver in your 4GL program must mediate
between screen fields and database columns with program variables.

attribute is a string of keywords, identifiers, and symbols to specify
a field attribute, from among those listed on page 5-28.

column is the unqualified SQL identifier of a database column. This can
also appear in 4GL statements that reference the field.

field-tag is the field tag, as declared in the SCREEN section.

table is the name or alias of a database table, synonym, or view, as
declared in the TABLES section. Qualifiers are not allowed.

,
table .

attribute

;,
,

columnfield-tag =
Screen Forms 5-21

Fields Linked to Database Columns
Usage
Although you must include an ATTRIBUTES section that assigns at least
one name to every field-tag from the SCREEN section, you are not required
to specify any field attributes.

You are not required to specify table unless one of the following is true:

• The column identifier occurs in more than one table of the TABLES section.

• table is an external table.

If there is ambiguity, FORM4GL issues an error during compilation.

Because you can refer to field names collectively through a screen record built
upon all the fields linked to the same table, your forms may be easier to work
with if you specify table for each field. See the INSTRUCTIONS section
(page page 5-63) for more information about declaring screen records.

A screen field can display a portion of a character string by using subscripts
in the column specification. Subscripts are a pair of comma-separated integers
in square ([]) brackets to indicate starting and ending character positions
within a string value. But if you specify in the ATTRIBUTES section that two
fields are linked to the same character column in the database, you cannot
associate each field with a different substring of the same column.
5-22 Screen Forms

Fields Linked to Database Columns
The ATTRIBUTES section in the following file lists fields linked to columns in
the customer table. The UPSHIFT and PICTURE attributes that are assigned
here are described later in this chapter.

DATABASE stores

SCREEN
{

Customer Name:[f000][f001]
Address:[f002][f003]

City:[f004] State:[a0] Zip Code:[f005]
Telephone:[f006]

}

TABLES customer

ATTRIBUTES
f000 = customer.fname;
f001 = customer.lname;
f002 = customer.address1;
f003 = customer.address2;
f004 = customer.city;
a0 = customer.state, UPSHIFT;
f005 = customer.zipcode
f006 = customer.phone, PICTURE = "###-###-#### XXXXX";

Values from a column of data type BYTE are never displayed in a form; the
words <BYTE value> are shown in the corresponding display field to indi-
cate that the user cannot see the BYTE data. The following excerpt from a form
specification file shows a TEXT field resume and a BYTE field photo. In this
example, the BYTE field is short because only the words <BYTE value> are
displayed. Similarly, you do not need to include more than one line in a form
for a TEXT field. (page 5-50 describes the PROGRAM attribute that can display
TEXT or BYTE values.)

resume [f003]
photo [f004]

. . .
attributes
f003 = employee.resume
f004 = employee.photo
Screen Forms 5-23

FORMONLY Fields

;

FORMONLY Fields
FORMONLY fields are not associated with columns of any database table or
view. They can be used to enter or display the values of program variables.
If the DATABASE section specifies FORMONLY, this is the only kind of field
description that you can specify in the ATTRIBUTES section.

attribute is a string of keywords, identifiers, and symbols to specify
a field attribute, from among those listed on page 5-28.

column is the unqualified SQL identifier of a database column.

field name is an identifier that you assign to a FORMONLY field. This
can also appear in 4GL statements that reference the field.

field-tag is a field tag, as declared in the SCREEN section.

table is the name or alias of a table, synonym, or view, as declared
in the TABLES section. This is required if columns in different
tables of the TABLES section have the same name, or if table
references an external table or an external, distributed table.

Usage
Like other 4GL identifiers, field name cannot begin with a number. It can have
up to 50 characters, including letters, numbers, and underscore (_) symbols.

If you specify one or more FORMONLY fields, INFORMIX-4GL behaves as if
they formed a database table named formonly, with the field names as
column names. The following are examples of FORMONLY fields:

f021 = FORMONLY.manu_name;
f022 = FORMONLY.unit_price.TYPE.MONEY, COLOR = GREEN;
f023 = FORMONLY.unit_descr.TYPE.LIKE.orders.unit_descr;
f024 = FORMONLY.order_placed

TYPE DATETIME YEAR TO HOUR NOT NULL, DEFAULT = CURRENT

field-tag =FORMONLY. field name

, attribute

,column

NOT NULL

TYPE LIKE

 table .

4GL Data Type
(Subset) p. 3-295
5-24 Screen Forms

FORMONLY Fields
The Data Type Specification

The optional 4GL data type specification uses a restricted subset of the data
type declaration syntax that the DEFINE, ALTER TABLE, or CREATE TABLE
statements support. The data type cannot be declared here as a RECORD nor
as an ARRAY, even if 4GL uses the field to display values from a program
record or a program array; screen arrays are declared in another section of the
form specification file. (It also cannot be SERIAL, since SERIAL is an SQL data
type, and only 4GL data types are allowed here.)

If you do not specify any data type, then by default, FORM4GL treats the field
as type CHAR. Do not assign a length to CHAR, DECIMAL, or MONEY fields,
since field length is determined by the display width in the SCREEN section.
For example, the demonstration application uses the following FORMONLY
field to store the running total price for the order as items are entered:

f019 = formonly.t_price;

You are required to specify a data type only if you also specify an INCLUDE or
DEFAULT attribute for this field. 4GL performs any necessary data type con-
version for the corresponding program variable during input or display. 4GL
evaluates the LIKE clause at compile time, not at run time. If the database
schema changes, you may need to recompile a program that uses the LIKE
clause to describe a FORMONLY field in a form specification file.

Like a field linked to a database column, a FORMONLY field cannot display a
BYTE value directly. The form displays the string <BYTE value> to indicate
that the user cannot see the BYTE value. Similarly, it is not necessary to allo-
cate more than one line on a form for a FORMONLY field of data type TEXT.
You can assign the PROGRAM attribute (page 5-50) to a FORMONLY field to
display TEXT or BYTE values from 4GL variables.

The NOT NULL Keywords

The NOT NULL keywords specify that, if you reference this screen field in an
INPUT statement, then the user must enter a non-NULL value in the field.
(This is more restrictive than the REQUIRED attribute, described on page 5-52,
which permits the user to enter a NULL value.)

If the DATABASE section has the WITHOUT NULL INPUT clause (page 5-12),
the NOT NULL keyword instructs 4GL to use zero (number or INTERVAL data
types) or blanks (character data types) as the default value for this field in
INPUT statements. The default DATE value is 12/31/1899 . The default value
for DATETIME fields is 1899-12-31 23:59:59.99999 .
Screen Forms 5-25

Multiple-Segment Fields
Multiple-Segment Fields
If you need to enter or display long character strings from program variables,
you can specify multiple-segment fields that occupy several lines. To create a
multiple-segment field, repeat the same field tag in different fields of the lay-
out in the SCREEN section, typically on successive lines. You must also spec-
ify the WORDWRAP attribute for that field tag in the ATTRIBUTES section.
During input and display, 4GL treats these as segments of a single field.

The following example shows only the SCREEN and ATTRIBUTES sections of
a form specification file that specifies a multiple-segment field:

SCREEN SIZE 24 BY 80
{

title: [title]
author: [author]

synopsis: [synopsis]
[synopsis]
[synopsis]
[synopsis]
[synopsis]

}
. . .

ATTRIBUTES
title = booktab.title;
author = booktab.author;
synopsis = booktab.synopsis, WORDWRAP COMPRESS;

Here the screen field whose tag is synopsis appears in five physical segments
in the screen layout and has the WORDWRAP attribute. Its value is composed
of the physical segments, taken in top-to-bottom, left-to-right order. The field
should ordinarily be as long or longer than the program variable or database
column that it displays, so it can display all of the text. Users of your 4GL
application program may expect all segments to be the same size and laid out
in vertical alignment, as in the example, but that is not required. Segments
can be of different sizes, and distributed over the screen in any arrangement.

In the description of the field in the last line of the ATTRIBUTES section of the
previous example, the keyword WORDWRAP enables a multiple-line editor
when the form is open and the cursor enters the field. If you omit it, words
cannot flow from segment to segment of the field, and users must move the
cursor from field to field with Arrow keys or the ENTER key to edit values in
the form. (See the description of the WORDWRAP attribute for more informa-
tion about the multiple-line editor and about the COMPRESS keyword.)
5-26 Screen Forms

Field Attributes
Field Attributes
Like the ATTRIBUTE clause of various 4GL statements, the ATTRIBUTES
section of a form specification file can specify field attributes. These optional
descriptors can affect the appearance and behavior of individual fields in the
screen form. Attributes can specify the display when the cursor is in the field,
or can supply or restrict field values during data entry actions:

• Control cursor movement among fields (AUTONEXT).

• Set validation and default value field attributes, including the following:

DEFAULT NOENTRY VALIDATE LIKE
INCLUDE REQUIRED VERIFY

• Set formatting attributes, or automatically invoke a multiple-line editor for
entry and update of character data, or an external editor to view or modify
TEXT or BYTE values. The formatting attributes include the following:

COMMENTS FORMAT PROGRAM
DISPLAY LIKE LEFT UPSHIFT
DOWNSHIFT PICTURE WORDWRAP

• Set video display color attributes, including the following:

BLACK GREEN WHITE
BLUE MAGENTA YELLOW
CYAN RED

• Set video display intensity attributes, including the following:

BOLD INVISIBLE REVERSE
DIM NORMAL BLINK
UNDERLINE

A field can have no more than one color attribute, and several other attributes
are mutually exclusive (DIM and BOLD, UPSHIFT and DOWNSHIFT, NORMAL,
and REVERSE). Some field attributes are restricted to certain data types.
The DISPLAY LIKE and VALIDATE LIKE attributes have effects that depend on
compile-time values in files created by the upscol utility of 4GL, as described
later in this chapter (page 5-69).

FORM4GL recognizes the following field attributes:

AUTONEXT FORMAT REQUIRED
COLOR INCLUDE REVERSE
COMMENTS INVISIBLE UPSHIFT
DEFAULT NOENTRY VALIDATE LIKE
DISPLAY LIKE PICTURE VERIFY
DOWNSHIFT PROGRAM WORDWRAP
Screen Forms 5-27

Field Attribute Syntax
The effects of these field attributes are summarized here:

AUTONEXT Causes the cursor to advance automatically to the next field.

COLOR Specifies the color or intensity of values displayed in a field.

COMMENTS Specifies a message to display on the Comment line.

DEFAULT Assigns a default value to a field during data entry.

DISPLAY
LIKE

Assigns default attributes from table syscolatt. The upscol
utility creates this table, associating default attributes with
specific database columns.

DOWNSHIFT Converts to lowercase any uppercase character data.

FORMAT Formats DECIMAL, SMALLFLOAT, FLOAT, or DATE output.

INCLUDE Lists a set of acceptable values during data entry.

INVISIBLE Does not echo characters on the screen during data entry.

NOENTRY Prevents the user from entering data into the field.

PICTURE Imposes a data-entry format on CHAR or VARCHAR fields.

PROGRAM Invokes an external program to display TEXT or BYTE values.

REQUIRED Requires the user to supply some value during data entry.

REVERSE Causes values in the field to be displayed in reverse video.

UPSHIFT Converts to uppercase any lowercase character data.

VALIDATE
LIKE

Validates data entry with values from the syscolval table
that the upscol utility creates, associating default values
with specific database columns.

VERIFY Data must be entered twice when the database is modified.

WORDWRAP Invokes a multiple-line editor in multiple-segment fields,
so that the form can display character strings that are.
too long to fit within a single line of the form.

Each of these attributes is described in one of the sections that follow.

Field Attribute Syntax
Syntax for assigning each of these attributes is described in the sections that
follow. For simplicity, these use the following syntax diagram format:

Field Namefield-tag = , attribute
5-28 Screen Forms

Field Attribute Syntax
This format is simplified by ignoring fields with multiple attributes, and by
ignoring the required semicolon (;) that separates field descriptions. Here is
the complete syntax of a field description in the ATTRIBUTES section:

attribute is a string of keywords, identifiers, and symbols to specify
a field attribute, as described in the sections that follow.

column is the unqualified SQL identifier of a database column.

data type is any 4GL data type (page 3-293) except ARRAY or RECORD.

field name is an identifier that you assign to a FORMONLY field.

field-tag is the field tag that you declared in the SCREEN section.

table is the name or alias of a table, synonym, or view, as declared
in the TABLES section. This is required if columns in different
tables of the TABLES section have the same name, or if table
references an external table or an external, distributed table.

Note: If a form links a view to a screen field that permits data entry or data editing,
then it is the responsibility of the programmer to test at run time whether the view is
updatable, especially if the view is based upon another view.

Field Namefield-tag =

Field Name

, ; =

,

,

column

FORMONLY. field

data type NOT NULL

TYPE
name

LIKE table .

;

attribute
Screen Forms 5-29

AUTONEXT
AUTONEXT
The AUTONEXT attribute causes the cursor to advance automatically during
input to the next field when the current field is full.

field-tag is the field tag that you declared in the SCREEN section.

Usage
You specify the order of fields in each INPUT or INPUT ARRAY statement.
If the most recent OPTIONS statement specifies INPUT WRAP, the “next” field
after the last field is the first field.

AUTONEXT is particularly useful with character fields in which the input
data are of a standard length, such as numeric postal codes, or the abbrevia-
tions in the state table. It is also useful if a character field has a length of one,
since only one keystroke is required to enter data and move to the next field.

If data values entered in the field do not meet requirements of other field
attributes like INCLUDE or PICTURE, the cursor does not automatically move
to the next field, but remains in the current field.

The demonstration application uses the customer form to enter all the names
and addresses of the customers. The following excerpt from the ATTRIBUTES
section of the customer form uses the AUTONEXT attribute:

a0 = customer.state, DEFAULT = "CA", AUTONEXT;
f007 = customer.zipcode, AUTONEXT;
f008 = customer.phone;

When two characters are entered into the customer.state field (thus filling
the field), the cursor moves automatically to the beginning of the next screen
field (the customer.zipcode field). When five characters are entered into the
customer.zipcode field (filling this field), the cursor moves automatically to
the beginning of the next field (the customer.phone field).

field-tag = , AUTONEXTField Name
p. 5-28
5-30 Screen Forms

COLOR
COLOR
The COLOR attribute displays field text in a color or with other video
attributes, either unconditionally, or only if a Boolean expression is TRUE.

field-tag is the field tag that you declared in the SCREEN section.

display mode is one of the keywords to specify a color or an intensity. You can
specify zero or one color, and zero or more intensities from the
following lists:

Note: If you are using terminfo, the only color or intensities available
are REVERSE and UNDERLINE.

Usage
If you do not use the WHERE keyword to specify a 4GL Boolean expression,
then the intensity and/or color in your display mode list applies to the field.
This example specifies unconditionally that field text appears in red:

f000 = customer.customer_num, COLOR = RED LEFT;

Specifying Logical Conditions with the WHERE Option

You can also use the keywords, symbols, and operators that are allowed in
4GL Boolean expressions, including LIKE, MATCHES, TODAY, and CURRENT,
in a WHERE clause to specify conditional attributes. If the Boolean expression
evaluates as FALSE or NULL, then the field is displayed with default charac-
teristics, rather than with those specified by display mode. (See the section
“Default Attributes” on page 5-69.)

Color
Keywords

Intensity
Keywords

BLACK MAGENTA REVERSE

BLUE RED LEFT

CYAN WHITE BLINK

GREEN YELLOW UNDERLINE

Field Name
p. 5-28

field-tag = , COLOR = display
mode

WHERE Boolean
Expression

for 4GL Forms
p. 5-32
Screen Forms 5-31

COLOR
Boolean Expressions in 4GL Form Specification Files

This is the syntax of 4GL Boolean expressions in the WHERE clause of a
COLOR attribute specification.

char is a single ASCII character, enclosed between a pair of single (’) or
double (") quotation marks.

character is one or more literal or special characters, enclosed between two
single (’) or double (") quotation marks.

field tag is the field tag (page 5-15) of the current field.

IS

NOT

field tag

=
<
>

<=
>=
< >
!=

NOT

OR

FALSE

AND

4GL Expression
(Subset)
p. 3-326

BETWEEN

IN

AND

(

4GL
Expression

(Subset)
p. 3-326

4GL
Expression

(Subset)
p. 3-326

)

field tag

NOT

field tag

NULL

field tag

field tag

Boolean Expression
for 4GL Forms

Character
Expression

p. 3-343
ESCAPE " char"LIKE

 character" "MATCHES

4GL Expression
(Subset)
p. 3-326

4GL Expression
(Subset)
p. 3-326

TRUE

,

)(Boolean Expression
for 4GL Forms
5-32 Screen Forms

COLOR
In this diagram, terms for other 4GL expressions are restricted subsets. Except
for the constants TRUE and FALSE, you cannot reference the name of a
program variable in the WHERE clause of a COLOR attribute specification.
You can, however, include a field tag or a literal value wherever the name of a
variable can appear in a 4GL expression that is a component of the 4GL Bool-
ean expression, as described in the section “Expressions of 4GL” on
page 3-326.

If any component of a 4GL Boolean expression is NULL, then the value of the
entire 4GL Boolean expression is FALSE (rather than NULL), unless the IS
NULL keywords are also included in the expression. Applying the NOT oper-
ator to a NULL value does not change its FALSE evaluation. In the following
example, the value of the expression is FALSE if a NULL value appears in the
display field whose field tag is f004:

3.1415265 * f004 < 25000

If you include a field tag in a 4GL Boolean expression when you specify a con-
ditional COLOR attribute, INFORMIX-4GL replaces the field tag at run time
with the current value in the screen field, and then evaluates the expression.

If field tag references a field that is linked to a database column of data type
TEXT or BYTE, or to a FORMONLY field of either of those two data types, then
only the IS NOT NULL or IS NULL keywords can include that field tag in an
expression. The specified color or intensity is applied to the <TEXT value>
or <BYTE value> message, not to the TEXT or BYTE data value, since only
the PROGRAM attribute can display a blob value.

Specifying Ranges of Values and Set Membership

A Boolean expression to specify conditional COLOR attributes can include
SQL Boolean operators that are not valid in ordinary 4GL Boolean expres-
sions. You can use the BETWEEN . . . AND operator to specify a range of
number, time, or character values. Here the first expression cannot be greater
than the second (for number expressions), nor later than the second (for time
expressions), nor later in the ASCII collating sequence than the second (for char-
acter expressions). Appendix A lists the numeric values of ASCII characters.

The WHERE clause of a COLOR field description can also use the IN operator
to specify a comma-separated list (enclosed between parentheses) of values
with which to compare the field tag or expression.

(Chapter 3 describes the syntax of the BETWEEN . . . AND and IN Boolean
operators in conditional COLOR specifications for 4GL forms. See also the
Informix Guide to SQL: Reference for the complete syntax of Boolean expres-
sions in SQL statements.)
Screen Forms 5-33

COLOR
Data Type Compatibility

You may get unexpected results if you use relational operators or the
BETWEEN, AND, or IN operators with expressions of dissimilar data types.
In general, you can compare numbers with numbers, character strings with
character strings, and time values with time values.

If a time expression component of a 4GL Boolean expression is an INTERVAL
data type, then any other time expression that is compared to it by a relational
operator must also be an INTERVAL value. You cannot compare a span of
time (an INTERVAL value) with a point in time (a DATE or DATETIME value).

Data-Type Conversion in 4GL Boolean Expressions

If you specify a number, character, or time expression in a context where a
4GL Boolean expression is expected, INFORMIX-4GL applies the following
rules after evaluating the number, character, or time expression:

• If the value is a non-zero real number (or a character string representing
a non-zero number) or a non-zero INTERVAL, or any DATE or DATETIME
value, then the 4GL Boolean value is TRUE.

• If the value is NULL, and the IS NULL keywords are also included in the
expression, then the value of the 4GL Boolean expression is TRUE.

• Otherwise, the 4GL Boolean expression is FALSE.

The Display Modes

The display and intensity keywords of the COLOR attribute have the same
effects on a field as the same keywords of the upscol utility (page 5-69) or
ATTRIBUTES clause (page 3-290). The following table shows the effects of the
color attribute keywords on a monochrome terminal, as well as the effects of
the intensity attribute keywords on a color terminal:

Attribute Display Attribute Display
WHITE normal NORMAL white
YELLOW bold BOLD red
MAGENTA bold DIM blue
RED bold
CYAN dim
GREEN dim
BLUE dim
BLACK dim
5-34 Screen Forms

COLOR
The LEFT attribute produces a left-justified display in a screen field of any
number data type. It has no effect on fields of other data types. (Without the
COLOR = LEFT specification, number values are right-justified by default.)

The next lines specify display attributes if Boolean expressions are TRUE:

f001 = FORMONLY.late, COLOR = RED BLINK WHERE f001 < TODAY;
f002 = manufact.manu_code, COLOR = RED WHERE f002 = "HRO";
f003 = customer.lname, COLOR = RED WHERE f003 LIKE "Quinn";
f004 = mytab.col6, COLOR = GREEN WHERE f004 < 10000;
f005 = mytab.col9, COLOR = BLUE REVERSE WHERE f005 IS NULL,

COLOR = YELLOW WHERE f005 BETWEEN 5000 AND 10000,
COLOR = GREEN BLINK WHERE f005 > 10000;

The following expression is TRUE if the field f022 does not include the
underscore character:

NOT f022 LIKE "%z_%" ESCAPE "z"

Related Attributes
DISPLAY LIKE, INVISIBLE, REVERSE
Screen Forms 5-35

COMMENTS
COMMENTS
The COMMENTS attribute displays a message on the Comment line at the
bottom of the window. The message is displayed when the cursor moves
to the specified field, and is erased when the cursor moves to another field.

field-tag is the field tag that you declared in the SCREEN section.

message is a character string enclosed in quotation marks.

Usage
The message must appear between quotation (") marks on a single line of the
form specification file.

In the following example, the field description specifies a message for the
Comment line to display. The message will appear when the screen cursor
enters the field that is linked to the fname column of the customer table.
In the stores database, this column contains the first name of a customer:

c2 = customer.fname, comments =
"Please enter initial if available.";

The most common application of the COMMENTS attribute is to give informa-
tion or instructions to the user. This is particularly appropriate when the field
accepts only a limited set of values. (See the description of the INCLUDE
attribute later in this section for details of how to specify a range or a list of
acceptable values for data entry.)

4GL programs can use the same screen form to support several distinct tasks
(for example, data input and query by example). Do not specify the
COMMENTS attribute in a field description unless the message is appropriate
to all of the tasks in which the message can appear.

If the same field requires a different message for various tasks, you should
specify each message using the MESSAGE or DISPLAY statements, rather than
in the form specification file.

Field Name
p. 5-28

field-tag = , COMMENTS = " message"
5-36 Screen Forms

COMMENTS
The Position of the Comment Line

The default position of the Comment line in the 4GL screen is line 23. You can
reset this position with the OPTIONS statement.

The default position of the Comment line in a 4GL window is LAST. You can
reset this position in the OPTIONS statement, if you want the new position in
all 4GL windows. Alternatively, you can reset it in the ATTRIBUTE clause of
the appropriate OPEN WINDOW statement, if you want the new position in a
specific 4GL window. Chapter 3 describes the OPTIONS and OPEN WINDOW
statements.

Related Attribute
INCLUDE
Screen Forms 5-37

DEFAULT
DEFAULT
The DEFAULT attribute assigns a default value to a field during data entry.

field-tag is the field tag that you declared in the SCREEN section.

value is a default value for the field. This restricted expression cannot
reference any variable nor programmer-defined function.

Usage
Default values have no effect when you execute the INPUT statement using
the WITHOUT DEFAULTS option. In this case, 4GL displays the values in the
program variables list on the screen. The situation is the same for the INPUT
ARRAY statement, except that 4GL displays the default values when the user
inserts a new row.

If the field is FORMONLY, you must also specify a data type when you assign
the DEFAULT attribute to a field. (See “FORMONLY Fields” on page 5-24.)

If both the DEFAULT attribute and the REQUIRED attribute are assigned to the
same field, then the REQUIRED attribute is ignored.

If you do not use the WITHOUT NULL INPUT option in the DATABASE section,
all fields default to NULL values unless you use the DEFAULT attribute. If you
use the WITHOUT NULL INPUT option in the DATABASE section and you do
not use the DEFAULT attribute, then character fields default to blanks, num-
ber and INTERVAL fields to 0, and MONEY fields to $0.00 . The default DATE
value is 12/31/1899 . The default DATETIME value is 1899-12-31

23:59:59.99999 .

You cannot assign the DEFAULT attribute to fields of data type TEXT or BYTE.

Literal Values

The value can be a quoted string, a literal number (page 3-342), a literal DATE
value (page 3-349), a literal DATETIME value (page 3-351), a literal INTERVAL
value (page 3-355), or a built-in function or operator (page 4-11) that returns
a single value of a data type compatible with that of the field.

If you include in the value list a character string that contains a blank space,
a comma(,) symbol, or any special characters, or a string that does not begin
with a letter, then you must enclose the entire string in quotation (") marks.

Field Name
p. 5-28

field-tag ,= DEFAULT = value
5-38 Screen Forms

DEFAULT
(If you omit the quotation marks, any uppercase letters are downshifted.)

For a DATE field, you must enclose any literal value in quotes ("). For a
DATETIME or INTERVAL, field, you can enclose value in quotation (") marks,
or you can enter it as an unquoted literal:

DATETIME (data-value) qualifier
INTERVAL (data-value) qualifier
- INTERVAL (data-value) qualifier

Pages 3-349 through 3-355 describe DATETIME and INTERVAL literals.

Built-In 4GL Operators and Functions as Values

Besides these literal values, you can also specify a built-in 4GL function or
operator that returns a single value of the appropriate data type. Arguments
or operands must be a literal value, a built-in 4GL function or operator that
returns a single value, or the named constants TRUE or FALSE. For example,
a default value of data type INTERVAL can be specified in the format:

integer UNITS time-unit

Here integer can be a positive or negative literal integer (page 3-340), or an
expression in parentheses that evaluates to an integer, and time-unit is a key-
word from an INTERVAL qualifier, such as MONTH, DAY, HOUR, and so forth.
(This must be consistent with the explicit or implied data type declaration of
the field; do not, for example, specify YEAR or MONTH as the time-unit for a
DAY TO FRACTION field.)

Use the TODAY operator as the value to assign the current date as the default
value of a DATE field. Use the CURRENT operator as the value to assign the
current date and time as the default for a DATETIME field. (4GL does not
assign these values automatically as defaults, so you must specify them
explicitly.) These are evaluated at run time, not at compile time.

The following field descriptions specify DEFAULT values:

c8 = state, UPSHIFT, AUTONEXT,
DEFAULT = "CA";

o12 = order_date, DEFAULT = TODAY;
f019 = FORMONLY.timestamp TYPE DATETIME YEAR TO DAY

COLOR = RED, DEFAULT = CURRENT;

Related Attributes
INCLUDE, REQUIRED, VALIDATE LIKE
Screen Forms 5-39

DISPLAY LIKE
DISPLAY LIKE
The DISPLAY LIKE attribute applies the attributes that the upscol utility
assigned to a specified column in the syscolatt table to a field.

field-tag is the field tag that you declared in the SCREEN section.

table is the unqualified name or the alias of a database table, synonym,
or view, as declared in the TABLE section. (This is not required
unless several columns in different tables have the same name, or
if the table is an external table or an external, distributed table.)

column is the name of a column in table, or (if you omit table) the unique
identifier of a column in one of the tables that you declared in the
TABLES section.

Usage
Specifying this attribute is equivalent to listing all the attributes that are
assigned to table.column in the syscolatt table. (The section “Default
Attributes” on page 5-69 describes the syscolatt table. See also the descrip-
tion of the upscol utility in Appendix B.)

You do not need to specify the DISPLAY LIKE attribute if the field is linked to
table.column in the Field Name specification.

You cannot specify a column of data type BYTE as table.column.

The following example instructs INFORMIX-4GL to apply the default display
attributes of the items.total_price column to a FORMONLY field.

s12 = FORMONLY.total, DISPLAY LIKE items.total_price;

4GL evaluates the LIKE clause at compile time, not at run time. If the database
schema changes, you may need to recompile a program that uses the LIKE
clause. Even if all of the fields in the form are FORMONLY, this attribute
requires FORM4GL to access the database that contains table.

Related Attribute
VALIDATE LIKE

Field Name
p. 5-28

field-tag = , DISPLAY LIKE column

table .
5-40 Screen Forms

DOWNSHIFT
DOWNSHIFT
Assign the DOWNSHIFT attribute to a character field when you want INFOR-
MIX-4GL to convert uppercase letters entered by the user to lowercase letters,
both on the screen and in the corresponding program variable.

field-tag is the field tag that you declared in the SCREEN section.

Usage
Because uppercase and lowercase letters have different ASCII values, storing
character strings in one or the other format can simplify sorting and querying
a database.

By specifying the DOWNSHIFT attribute, you instruct INFORMIX-4GL to
convert character input data to lowercase letters in the program variable.

The maximum length of a character value to which you can apply the
DOWNSHIFT attribute is 511 characters.

Related Attribute
UPSHIFT

Field Name
p. 5-28

field-tag = , DOWN SHIFT

When NLS is active, the results of conversion between uppercase and low-
ercase are appropriate to the national language in use, as defined by the
LC_CTYPE environment variable.

NLS
Screen Forms 5-41

FORMAT
FORMAT
You can use the FORMAT attribute with a DECIMAL, SMALLFLOAT, FLOAT, or
DATE field to control the format of output displays.

field-tag is the field tag that you declared in the SCREEN section.

format-string is a string of characters to specify a data display format. You
must enclose format-string within quotation (") marks.

Usage
This attribute can format data that the application displays in the field. (Use
the PICTURE attribute to format data that are entered in the field by the user.)
INFORMIX-4GL displays the data right-justified in the field.

 If the format-string is smaller than the field width, FORM4GL issues a com-
pile-time warning, but the form is usable.

Formatting DATE Values

For DATE data types, INFORMIX-4GL recognizes the following symbols as
special in the format-string:

mm produces the two-digit representation of the month; for example,
Jan = 01 , Feb = 02 , and so on.

mmm produces a three-letter English language abbreviation of the
month; for example, Jan , Feb, and so on.

dd produces the two-digit representation of the day of the month.

ddd produces a three-letter English language abbreviation of the day
of the week; for example, Mon, Tue, and so on.

yy produces the two-digit representation of the year, discarding the
leading digits. The year 2003, for example, would appear as 03 .

yyyy produces a four-digit representation of the year.

For DATE fields, FORM4GL interprets any other characters as literals, and dis-
plays them wherever you place them within format-string.

field-tag = , FORMAT = " format-string"Field Name
p. 5-28
5-42 Screen Forms

FORMAT
Here are some example format strings and their corresponding display
formats for DATE fields that display the 15th day of September, 1993:

Input Result
no FORMAT attribute 09/15/1993
FORMAT = “mm/dd/yy” 09/15/93
FORMAT = “mmm dd, yyyy” Sep 15, 1993
FORMAT = “yymmdd” 930915
FORMAT = “dd-mm-yy” 15-09-93
FORMAT = “(ddd.) mmm. dd, yyyy” (Wed.) Sep. 15, 1993

Formatting Number Values

For DECIMAL, SMALLFLOAT, or FLOAT data types, the format-string consists
of pound signs (#) that represent digits, and a decimal point. For example,
“###.##” produces at least three places to the left of the decimal point and
exactly two to the right.

If the actual number displayed requires fewer characters than the format-
string, 4GL right-justifies it, and pads the left with blanks.

If necessary to satisfy the format string, 4GL rounds number values before it
displays them.

Related Attribute
PICTURE

When NLS is active, the setting in the NLS environment variable
LC_NUMERIC affects the way the format string in the FORMAT attribute is
interpreted for numeric data. In the format string, the period symbol (.) is
not a literal character but a placeholder for the decimal separator specified
by environment variables. Likewise, the comma symbol (,) is a place-
holder for the thousands separator specified by environment variables.
Thus, the format string #,###.## formats the value 1234.56 as 1,234.56 in a
US English locale but as 1.234,56 in a German locale.

The mmm and ddd specifiers in a format string can display language-spe-
cific month name and day name abbreviations. This requires the installa-
tion of message files in a subdirectory of $INFORMIXDIR/msg, and
subsequent reference to that subdirectory by way of the environment vari-
able DBLANG. For example, in a Spanish locale, the ddd specifier translates
the day Saturday into the day name abbreviation Sab, which stands for
Sabado (the Spanish word for Saturday). For more information on NLS,
see Appendix E.

NLS
Screen Forms 5-43

INCLUDE
INCLUDE
The INCLUDE attribute specifies acceptable values for a field, and causes 4GL
to check at run time before accepting an input value.

field-tag is the field tag that you declared in the SCREEN section.

value is an element in a comma-separated list (within parentheses) of
values (value1, value2, . . .), or a range of values (value1 TO value2),
or any combination of individual values and ranges.

Usage
Each value is a restricted expression that cannot include the name of any 4GL
variable nor programmer-defined function. It can include literal values,
built-in functions and operators (page 4-11), and the constants TRUE and
FALSE. The same rules for DEFAULT attribute values (page 5-38) also apply
to INCLUDE values. TEXT fields and BYTE fields cannot have this attribute.

If a field has the INCLUDE attribute, the user must enter an acceptable value
(from the value list) before INFORMIX-4GL accepts a new row. If the value list
does not include the default value, then the INCLUDE attribute behaves like
the REQUIRED attribute, and an acceptable entry is required. Include the
NULL keyword in the value list to specify that it is acceptable for the user to
press the ENTER key without entering any value.

f006 = survey.item06, INCLUDE = (NULL, "YES", "NO");

In this example, the NULL keyword allows the user to enter nothing. You can-
not specify this by substituting a string of blanks for the NULL keyword here,
since a NULL character value is different from ASCII 32, the blank character.

Including a COMMENTS attribute to describe acceptable values makes data
entry easier, since you can display a message to advise the user of whatever
restrictions you have imposed on data entry:

i18 = items.quantity, INCLUDE = (1 TO 50),
COMMENTS = "Acceptable values are 1 through 50";

INCLUDE = (

 TO

)

,

NULL

value

value

field-tag = ,Field Name
p. 5-28
5-44 Screen Forms

INCLUDE
If you include in the value list a character string that contains a blank space,
a comma (,) symbol, or any special characters, or a string that does not begin
with a letter, then you must enclose the entire string in quotation (") marks.
(If you omit the quotation marks, any uppercase letters are downshifted.)

Ranges of Values

You can use the TO keyword to specify an inclusive range of acceptable val-
ues. For example, ranges in the following field description include the postal
abbreviations for the names of the contiguous states of the United States:

i20 = customer.state,
INCLUDE = (NULL, "AL" TO "GA", "IA" TO "WY"),
COMMENTS = "No Alaska (AK) or Hawaii (HI) addresses here.";

When you specify a range of values, the lower value must appear first.
The meaning of “lower” depends on the data type of the field:

• For number or INTERVAL fields, this is the larger (or only) negative value,
or (if neither value is negative) the value closer to zero.

• For other time fields, it is the earlier DATE or DATETIME value.

• For character fields, the “lower” value is the string that starts with a
character closer to the beginning of the ASCII collating sequence.
(See Appendix G for a listing of the ASCII collating sequence.)

In a number field, for example, the range “5 TO 10” is valid. In a character
field, however, it produces a compile-time error. (The character string “10” is
less than “5” because 1 comes before 5 in the ASCII collating sequence.)

FORMONLY Fields

You must specify a data type when you assign the INCLUDE attribute to a
FORMONLY field (page 5-24). The TYPE clause is required in the following
example, rather than optional:

f006 = FORMONLY.item07 TYPE CHAR(*),
INCLUDE = (NULL, "PERHAPS", "MAYBE");

Related Attributes
COMMENTS, DEFAULT, REQUIRED
Screen Forms 5-45

INVISIBLE
INVISIBLE
The INVISIBLE attribute prevents user-entered data from being echoed on the
screen during CONSTRUCT, INPUT, INPUT ARRAY, or PROMPT statement.

field-tag is the field tag that you declared in the SCREEN section.

Usage
Characters that the user enters in a field with this attribute are not displayed
during data entry, but the cursor moves through the field as the user types.
No other aspects of data entry are affected by the INVISIBLE attribute.

The following example illustrates the use of the INVISIBLE attribute:

i001 = FORMONLY.secret_password TYPE LIKE state.sname,
INVISIBLE,
COMMENTS = "Enter your secret password.";

If you specify INVISIBLE and any other display attribute for a field, then
4GL ignores the INVISIBLE attribute.

The INVISIBLE attribute has no effect on editing BYTE or TEXT fields.

This attribute does not prevent a DISPLAY, DISPLAY ARRAY, DISPLAY FORM,
MESSAGE, or OPEN WINDOW statement from displaying data in the field.

Specify the INVISIBLE attribute, rather than COLOR = BLACK, if you do not
want the field to display what the user types during data entry. (The BLACK
color attribute displays black characters on a color or monochrome terminal.)

Related Attribute
COLOR

field-tag = , INVISIBLEField Name
p. 5-28
5-46 Screen Forms

NOENTRY
NOENTRY
The NOENTRY attribute prevents data entry into the field during an INPUT
or INPUT ARRAY statement.

field-tag is the field tag that you declared in the SCREEN section.

Usage
The following example illustrates the use of the NOENTRY attribute:

i13 = stock.stock_num, NOENTRY;

When the user enters data into the stock table, the stock_num column is not
available, since this SERIAL column gets its value from the database engine
during the INSERT statement.

The NOENTRY attribute does not prevent data entry into a field during
a CONSTRUCT statement (for a query by example).

Related Attribute
INVISIBLE

Field Name
p. 5-28field-tag = , NOENTRY
Screen Forms 5-47

PICTURE
PICTURE
The PICTURE attribute specifies a character pattern for data entry into a text
field, and prevents entry of values that conflict with the specified pattern.

field-tag is the field tag that you declared in the SCREEN section.

format-string is a string of characters to specify a character pattern for data
entry. This must be enclosed within quotation (") marks.

Usage
A format-string can include literals and these three special symbols:

Symbol Meaning
A Any letter
Any digit
X Any character

4GL treats any other character in the format-string as a literal. The cursor skips
over any literals during data entry. 4GL displays the literal characters in the
display field and leaves blanks elsewhere.

For example, the field specification

c10 = customer.phone,
picture = "###-###-####x#####";

displays these symbols in the customer.phone field before data entry:

[- - x]

If the user attempts to enter a character that conflicts with the format-string,
then the terminal beeps, and 4GL does not echo the character on the screen.

The format-string must fill the entire width of the display field. The PICTURE
attribute, however, does not require data entry into the entire field. It only
requires that whatever characters are entered conform to format-string.

field-tag = , PICTURE " format-string"Field Name
p. 5-28

=

5-48 Screen Forms

PICTURE
When PICTURE specifies input formats for DATETIME or INTERVAL fields,
FORM4GL does not check the syntax of format-string, but your form will work
if the syntax is correct. Any error in format-string, however, such as an incor-
rect field separator, produces a run-time error.

As another example, if you specify a field for part numbers like this

f1 = part_no, picture = "AA#####-AA(X)";

then INFORMIX-4GL accepts any of the following inputs:

LF49367-BB(*)
TG38524-AS(3)
YG67489-ZZ(D)

The user does not enter the “-” nor the parentheses, but INFORMIX-4GL
includes them in the string that it passes to the program variable.

Editing Keys During Data Entry

INFORMIX-4GL supports CONTROL-D and CONTROL-X in fields that specify
the PICTURE attribute:

• CONTROL-D deletes characters from the current cursor position to the end
of the field.

• CONTROL-X deletes the current character.

Related Attribute
FORMAT

The PICTURE attribute is not affected by NLS environment variables
because it only formats character information.

NLS
Screen Forms 5-49

PROGRAM
PROGRAM
The PROGRAM attribute can specify an external application program to work
with screen fields of data type TEXT or BYTE.

command is a command string (or the name of a shell script) that invokes
an editing program, enclosed within quotes.

field-tag is the field tag that you declared in the SCREEN section.

Usage
You can assign the PROGRAM attribute to a BYTE or TEXT field to call an exter-
nal program to work with the TEXT or BYTE values. Users of the application
invoke the external program by pressing the exclamation (!) point key while
the screen cursor is in a blob field. The external program then takes over con-
trol of the screen. When the user exits from the external program, the form is
redisplayed, with any display attributes besides PROGRAM in effect.

For example, this field description designates vi as the external editor of a
multiple-segment TEXT field that also has the WORDWRAP attribute:

f010 = personnel.resume, WORDWRAP, PROGRAM = "vi";

Here the WORDWRAP attribute (described on page 5-57) specifies that as
much of the TEXT value as possible be displayed in successive segments of
the multiple-segment field when the form is displayed with a value in the
field; the WORDWRAP editor cannot be used to edit a TEXT value.

If the user moves the cursor into the field whose tag is f010 in the same
example and presses the ! key, the form is cleared from the screen. Now the
user can run the vi utility to create, examine, or modify the TEXT value. When
the vi editing session ends, the screen form is restored on the screen, and con-
trol returns to the 4GL application.

When a display field is of data type TEXT, but the screen cursor is not in that
field, the INFORMIX-4GL application program can display as many of the
leading characters of a TEXT data value as can fit in the screen field. (If the
field is of data type BYTE, then INFORMIX-4GL displays <BYTE value> in the
field.) This behavior is independent of the PROGRAM attribute.

field-tag = , PROGRAM = " command "Field Name
p. 5-28
5-50 Screen Forms

PROGRAM
Default Editors

If a user moves the cursor into a TEXT field and presses the exclamation (!)
point key in the first character position of the field, INFORMIX-4GL attempts
to invoke an external program. The program invoked for a TEXT field is
chosen from among the following, in descending order of priority:

• The program (if any) identified by the PROGRAM =”command” attribute
specification for the field.

• The program (if any) named in the DBEDIT environment variable.

• The default editor, which depends on the host operating system.

Specify the editor to use with the DBEDIT environment variable; this variable
should contain the name of a UNIX application such as vi or emacs. When the
user exits the editor, control returns to the 4GL screen.

4GL applications that display or modify a value in a BYTE field must use the
PROGRAM attribute explicitly to assign an editor. For BYTE fields, the default
editor is not called, and the DBEDIT variable is not examined.

The Command String

Before invoking the program, your application copies the BYTE or TEXT field
to a temporary disk file. It then issues a system command composed of the
command that you specify after the PROGRAM keyword, followed by the
name of the temporary file.

The command string can be longer than a single word. You can add additional
command parameters. The command can also be the name of a shell script,
so that you can initiate a whole series of actions.

Your 4GL program needs to execute an INSERT or UPDATE statement using
the appropriate program variables after input is terminated. For example,
you would use a statement like one of the following:

INSERT INTO mytable (textcol, bytecol)
VALUES (p_texdata, p_bytdata)

UPDATE mytable SET (textcol, bytecol) = (p_texdata, p_bytdata)
Screen Forms 5-51

REQUIRED
REQUIRED
The REQUIRED attribute forces the user to enter data into the field during
an INPUT or INPUT ARRAY statement.

field-tag is the field tag that you declared in the SCREEN section.

Usage
The REQUIRED keyword is effective only when the field name occurs in the list
of screen fields of an INPUT or INPUT ARRAY statement. For example,
suppose the ATTRIBUTES section includes the following field description:

o20 = orders.po_num, REQUIRED;

Because of the REQUIRED specification, 4GL requires the entry of a purchase
order value when the form is used to collect information for a new order.

You cannot specify a default value for a REQUIRED field. If both the
REQUIRED and the DEFAULT attributes are assigned to the same field, then
4GL assumes that the DEFAULT value satisfies the REQUIRED attribute.

This attribute requires only that the user enter a printable character in the
field. If the user subsequently erases the entry during the same input, 4GL
considers the REQUIRED attribute satisfied. If you want to insist on a non-
NULL entry, specify that the field is FORMONLY and NOT NULL.

Related Attribute
NOENTRY

Field Name
p. 5-28

field-tag = , REQUIRED
5-52 Screen Forms

REVERSE
REVERSE
The REVERSE attribute displays any value in the field in reverse video (dark
characters in a bright field).

field-tag is the field tag that you declared in the SCREEN section.

Usage
The following example specifies that a field linked to the customer_num
column displays data in reverse (sometimes called “inverse”) video:

f000 = customer.customer_num, REVERSE;

On terminals that do not support reverse video, fields having the REVERSE
attribute are enclosed between angle brackets (< >) symbols.

The REVERSE attribute disables any other COLOR attribute for the same field.

Related Attribute
COLOR

Field Name
p. 5-28

field-tag = , REVERSE
Screen Forms 5-53

UPSHIFT
UPSHIFT
During data entry in a character field, the UPSHIFT attribute converts
lowercase letters to uppercase letters, both on the screen display, and
in the 4GL program variable that stores the contents of that field.

field-tag is the field tag that you declared in the SCREEN section.

Usage
Because uppercase and lowercase letters have different ASCII values, storing
all character strings in one or the other format can simplify sorting and
querying a database.

The following example includes UPSHIFT in the attribute list of a field:

c8 = state, UPSHIFT, AUTONEXT,
INCLUDE = ("CA", "OR", "NV", "WA"),
DEFAULT = "CA" ;

Because of the UPSHIFT attribute, INFORMIX-4GL enters uppercase characters
in the state field regardless of the case used to enter them.

The AUTONEXT attribute tells INFORMIX-4GL to move automatically to the
next field once you type the total number of characters allowed for the field
(in this instance, two characters). The INCLUDE attribute restricts entry in this
field to the characters CA, OR, NV, or WA only. The DEFAULT value for the field
is CA.

Related Attribute
DOWNSHIFT

Field Name
p. 5-28

field-tag = , UPSHIFT

When NLS is active, the results of conversion between uppercase and low-
ercase are appropriate to the national language in use, as defined by the
LC_CTYPE environment variable.

NLS
5-54 Screen Forms

VALIDATE LIKE
VALIDATE LIKE
The VALIDATE LIKE attribute instructs 4GL to validate the data entered into
the field, using the validation rules that the upscol utility assigned to the
specified database column in the syscolval table.

column is the name of a column in table, or (if you omit table) the unique
identifier of a column in one of the tables that you declared in the
TABLES section.

field-tag is the field tag that you declared in the SCREEN section.

table is the unqualified name or the alias of a database table, synonym,
or view, as declared in the TABLE section. (This is not required
unless several columns in different tables have the same name, or
if the table is an external table or an external, distributed table.)

Usage
This attribute is equivalent to listing all the attributes that you have assigned
to table.column in the syscolval table. “Default Attributes” on page 5-69
describes the syscolval table, and the effects of this table in an ANSI-compli-
ant database. The following example assigns the default attributes of the cus-
tomer.state column to a FORMONLY field:

s13 = FORMONLY.state, VALIDATE LIKE customer.state;

The restrictions on the DISPLAY LIKE attribute also apply to this attribute.
You do not need the VALIDATE LIKE attribute if table.column is the same as
field name. You cannot specify a column of data type BYTE as table.column.

Even if all of the fields in the form are FORMONLY, this attribute requires
FORM4GL to access the database that contains table.

Related Attribute
DISPLAY LIKE

Field Name
p. 5-28

field-tag = , VALIDATE LIKE column

table .
Screen Forms 5-55

VERIFY
VERIFY
The VERIFY attribute requires users to enter data into the field twice, in order
to reduce the probability of erroneous data entry.

field-tag is the field tag that you declared in the SCREEN section.

Usage
Since some data are critical, this attribute supplies an additional step in data
entry to ensure the integrity of your data. After the user enters a value into a
VERIFY field and presses ENTER, 4GL erases the field and requests reentry of
the value. The user must enter exactly the same data each time, character for
character: 15000 is not exactly the same as 15000.00 .

For example, if you specify a field for salary information in this way

s10 = quantity, VERIFY;

then 4GL requires entry of exactly the same data twice. An error message
appears if the user does not enter the same keystrokes.

The VERIFY attribute takes effect while INPUT, INPUT ARRAY, or UPDATE
statements of 4GL are executing. It has no effect on CONSTRUCT statements.

Related Attributes
INCLUDE, REQUIRED, VALIDATE LIKE

field-tag = , VERIFYField Name
p. 5-28
5-56 Screen Forms

WORDWRAP
WORDWRAP
In a multiple-segment field, the WORDWRAP attribute enables a multiple-line
editor. This can “wrap” long character strings to the next line of a multiple-
segment field for data entry, data editing, and data display.

field-tag is the field tag that you declared in the SCREEN section,
where it appears in two or more field segments.

Usage
If the same field tag is repeated in two or more locations in the screen layout,
this attribute instructs INFORMIX-4GL to treat all the instances of that field tag
as successive segments of a multiple-segment field (page 5-26). These can dis-
play data strings that are too long to fit on a single line of the screen form. For
example, the following excerpt from a form specification file shows a VAR-
CHAR field linked to the history column in the employee table.

history [f002]
[f002]
[f002]

attributes
f002 = employee.history, WORDWRAP COMPRESS;

4GL replaces each set of multiple-segment fields with a single WORDWRAP
field of a rectangular shape. The COMPRESS keyword option is applied to this
field, and the delimiters are replaced with blank spaces.

WORDWRAP,Field Name
p. 5-28

field-tag =

 COMPRESS

 NONCOMPRESS
Screen Forms 5-57

WORDWRAP
A multiple-segment field can also have an irregular shape like the following:

If the lines of the multiple-segment field are not contiguous, or if the field has
an irregular shape, as in the previous example, the WORDWRAP field that
results is based on the maximum height and width of the multiple-segment
field as a unit. The resulting WORDWRAP field can overlap or be overlapped
by labels or individual form fields. To prevent such unpredictable effects,
consolidate the segments of multiple-segment fields into rectangular shapes.

When a variable is bound to the WORDWRAP field during INPUT, only the
number of characters allowed by the bound variable can be entered. If neces-
sary, text in the field scrolls to allow the full number of characters to be
entered. Data compression takes place before storage in the bound variable.

Data Entry and Editing with WORDWRAP

When text is entered into a multiple-segment field whose attributes include
WORDWRAP, INFORMIX-4GL breaks character strings into segments at blanks
(if it can), padding field segments with blanks at the right. Where possible,
contiguous non-blank substrings (here called “words”) within a string are
not broken at field segment boundaries.

When keyboard input reaches the end of a line, the multiple-line editor
brings the current word down to the next field segment, moving text down
to subsequent lines as necessary. (The “next” field segment is determined by
the left-to-right, top-to-bottom order of field segments within the screen lay-
out.) When the user deletes text, the editor pulls words up from lower field
segments whenever it can.

Data Display with WORDWRAP

If a CHAR, VARCHAR, or TEXT value is displayed in a multiple-segment field,
INFORMIX-4GL displays the first data character in the first character position
of the first segment, and displays consecutive data characters in successive
positions to the right. If the entire data string is too long to fit in the first field
5-58 Screen Forms

WORDWRAP
segment, INFORMIX-4GL continues the display in the next field segment,
dividing the data string at blank characters. This process continues until all
the field segments are filled, or until the end of the data string is reached.

The WORDWRAP attribute displays a TEXT field so that it fits into the form
without any field segments beginning with a blank. For a TEXT field, the
WORDWRAP attribute only affects how the value is displayed; WORDWRAP
does not enable the multiple-line editor. To let users edit a TEXT field, you
must use the PROGRAM attribute to indicate the name of an external editor.

Displaying Program Variables with WORDWRAP

Text in WORDWRAP fields can include printable ASCII characters, the TAB
(ASCII 9) character, and the NEWLINE (ASCII 10) character. These are retained
in the program variable. Other non-printable characters may result in run-
time errors. The TAB character aligns the display at the next tab stop, while
NEWLINE continues the display at the start of the next line. By default, tab
stops are in every eighth column, beginning at the left-hand edge of the field.

Ordinarily, the length of the variable should not be greater than the total
length of all the field segments. If data are longer than the field (or if too much
padding is required for WORDWRAP), 4GL fills the field and discards the
excess data. This displays a long variable in summary form. If a truncated
variable is used to update the database, however, characters are lost.

The editor distinguishes between intentional blanks (from the database or
typed by the user) and editor blanks (inserted at the ends of lines for word-
wrap or to align after a NEWLINE). Intentional blanks are retained as part of
the data. Editor blanks are inserted and deleted automatically as required.

When designing a multiple-segment field, you should allow room for editor
blanks, over and above the data length. The expected number of editor
blanks is half the length of an average word per segment. Text that requires
more space than you expect might be truncated after the final field segment.

The COMPRESS Option of WORDWRAP

The COMPRESS keyword prevents blanks produced by the editor from being
included in the program variable. COMPRESS is applied by default and
causes truncation to occur if the sum of intentional characters exceeds the
field or column size. Because of editing blanks in the WORDWRAP field, the
stored value may not correspond exactly to its multiple-line display, so a 4GL
report generally cannot display the data in identical form.
Screen Forms 5-59

WORDWRAP
In the following fragment of a form specification file, a CHAR value in the col-
umn charcolm is displayed in the multiple-segment field whose tag is mlf.

SC0REEN SIZE 24 by 80
{
Enter text:

[mlf]
[mlf]

. . .
[mlf]
[mlf]

}

TABLES table t . . .

ATTRIBUTES
mlf = tablet.charcolm, WORDWRAP COMPRESS;

If the data string is too long to fit in the first line, successive segments are dis-
played in successive lines, until all of the lines are filled, or until the last text
character is displayed (whichever happens first).

If the form is used to insert data into tablet.charcolm, the keyword
COMPRESS specifies that INFORMIX-4GL will not store editor blanks.

WORDWRAP Editing Keys

When data are entered or updated in a WORDWRAP field, the user can use
keys to move the screen cursor over the data, and to insert, delete, and type
over the data. The cursor never pauses on editor blanks.

The editor has two modes, insert (to add data at the cursor) and typeover (to
replace existing data with entered data). You cannot overwrite a NEWLINE.
If the cursor in typeover mode encounters a NEWLINE character, the cursor
mode automatically changes to insert, “pushing” the NEWLINE character to
the right. Some keystrokes behave differently in the two modes.

When it first enters a multiple-segment field, the cursor is positioned on the
first character of the first field segment, and the editing mode is set to typeover.
The cursor movement keys are as follows:

ENTER leaves the entire multiple-segment field, and goes to the first
character of the next field.

BACKSPACE
 or
LEFT ARROW

moves left one character, unless at the left edge of a field seg-
ment. From the left edge of the first segment, these either
move to the first character of the preceding field, or only
5-60 Screen Forms

WORDWRAP
beep, depending on whether INPUT WRAP is in effect. (Input
wrap mode is controlled by the OPTIONS statement.) From
the left edge of a lower field segment, these keys move to the
rightmost intentional character of the previous field
segment.

RIGHT ARROW moves right one character, unless at the rightmost inten-
tional character in a segment. From the rightmost intentional
character of the last segment, this either moves to the first
character of the next field, or only beeps, depending on
INPUT WRAP mode. From the rightmost intentional charac-
ter of a higher segment, this moves to the first intentional
character in a lower segment.

UP ARROW moves from the topmost segment to the first character of the
preceding field. From a lower segment, this moves to the
character in the same column of the next higher segment,
jogging left, if required, to avoid editor blanks, or if it
encounters a TAB.

DOWN ARROW moves from the lowest segment to the first character of the
next field. From a higher segment, moves to the character in
the same column in the next lower segment, jogging left if
required to avoid editor blanks, or if it encounters a TAB.

TAB enters a TAB character, in insert mode, and moves the cursor
to the next TAB stop. This can cause following text to jump
right to align at a TAB stop. In typeover mode, this moves the
cursor to the next TAB stop that falls on an intentional char-
acter, going to the next field segment if required.

The character keys enter data. Any following data shifts right, and words can
move down to subsequent segments. This can result in characters being dis-
carded from the final field segment. These keystrokes can also alter data:

CONTROL-A switches between typeover and insert mode.

CONTROL-X deletes the character under the cursor, possibly causing
words to be pulled up from subsequent segments.

CONTROL-D deletes all text from the cursor to the end of the multiple-line
field (not merely to the end of the current field segment).

CONTROL-N inserts a NEWLINE character, causing subsequent text to
align at the first column of the next segment of the field, and
possibly moving words down to subsequent segments. This
can result in characters being discarded from the final
segment of the field.
Screen Forms 5-61

WORDWRAP
Non-WORDWRAP Displays

The appearance of a character value on the screen can vary, depending on
whether or not it is displayed in a multiple-segment WORDWRAP field. For
instance, if a value that was entered using WORDWRAP is displayed without
this attribute, words will generally be broken, not wrapped, and TAB and
NEWLINE characters will be displayed as question (?) marks. These differ-
ences do not represent any loss of data, but only a different mode of display.
(You can view this effect, for example, if you also have INFORMIX-SQL
installed on your system, and you use the Query Language Menu to display
character data values that were entered using WORDWRAP.)

If a value prepared under the multiple-line editor is again edited without
WORDWRAP, however, some formatting may be lost. For example, a user
might type over a TAB or NEWLINE character, not realizing what it was.
Similarly, a user might remove a blank from the first column of a line, and
thus join a word to the last word on the previous line. These mistakes will be
visible when the value is next displayed in a WORDWRAP field or in a 4GL
report that uses the WORDWRAP operator.
5-62 Screen Forms

INSTRUCTIONS Section
INSTRUCTIONS Section
The INSTRUCTIONS section is the optional final section of a form specification
file. You can use this section to declare non-default screen records and screen
arrays. The INSTRUCTIONS section appears after the last field description
(or after the optional END keyword) of the ATTRIBUTES section.

array is the 4GL identifier for the screen array. (It is also the name
of the screen record that comprises each line of the array.)

closing-
delimiter

is the closing field delimiter.

opening-
delimiter

is the opening field delimiter.

record is the 4GL identifier that you declare for the screen record.

size is a literal integer (page 3-340), enclosed in square ([])
brackets, to specify the number of screen records in the
screen array.

The END keyword is optional and provides compatibility with earlier Infor-
mix products.

Screen Records
A screen record is a group of fields that screen-interaction statements of the
INFORMIX-4GL program can reference as a single object. By establishing a
correspondence between a set of screen fields (the screen record) and a set of
4GL variables (typically a program record), you can pass values between the
program and the fields of the screen record. In many applications, it is conve-
nient to define a screen record that corresponds to a row of a database table.

INSTRUCTIONS Section

INSTRUCTIONS recordSCREEN RECORD

array

DELIMITERS

size END

()

"

[]

"opening-delimiter closing-delimiter

Field List
p. 5-64
Screen Forms 5-63

Screen Records
Default Screen Records

INFORMIX-4GL recognizes default screen records that consist of all the screen
fields linked to the same database table within a given form. FORM4GL auto-
matically creates a default record for each table that is used to reference a field
in the ATTRIBUTES section. The components of the default record correspond
to the set of display fields that are linked to columns in that table.

The name of the default screen record is the table name (or the alias, if you
declared an alias for that table in the TABLES section). For example, all the
fields linked to columns of the customer table constitute a default screen
record whose name is customer. If a form includes one or more FORMONLY
fields, those fields comprise a default screen record called formonly.

Non-Default Screen Records

The INSTRUCTIONS section of a form specification file can declare non-default
screen records. You use the SCREEN RECORD keywords of the INSTRUCTIONS
section to declare a name for the screen record, and to specify a list of fields
that are members of the screen record. A record declaration has this syntax:

first is a field name that you declared in the ATTRIBUTES section.

last is a field name that you declared later than first.

record is the 4GL identifier that you declare for the screen record.

table reference is a table name, alias, or synonym (or FORMONLY keyword).

The field name is the SQL identifier of a database column linked to the field,
unless you specify FORMONLY as the table reference.

The record name of a non-default screen record can have up to 50 characters,
and must comply with the rules for 4GL identifiers (page 2-9).

SCREEN RECORD record

table

,

reference *

first

last

THROUGH
reference
table

THRU

()
Screen
Record

.

.

Field
List

Field
List
5-64 Screen Forms

Screen Records
Like the name of a screen field, the identifier of a screen record must be
unique within the form, and has a scope that is restricted to when its form
is open. Statements can reference record only when the screen form that
includes it is being displayed. FORM4GL returns an error if record is the same
as the name or alias of a table in the TABLE section.

The List of Member Fields

The fields within a screen record are called members of the record. The list of
member fields must be enclosed within a pair of parenthesis (()) symbols.
Use comma (,) symbols to separate elements of the list of field names.

You must specify the table qualifier if the field name is not unique among the
fields in the ATTRIBUTES section, or if table is a required alias (as described in
the description of the TABLES section, page 5-18). Otherwise, table is optional,
but including it may make the form specification file easier to read.

A screen record can include screen fields whose identifiers have different
table specifications (including the FORMONLY keyword). You can use the
notation table.* to include default screen records in the list of fields:

SCREEN RECORD worlds_record
(items.*, customer.*, state.code, FORMONLY.total)

Here the * symbols represents all of the fields in the form that the ATTRIBUTES
section associated with columns in the items and state tables. These fields do
not necessarily correspond to all of the columns in these tables, unless the
form includes fields that are linked to all of the columns.

You can use the keyword THRU to specify consecutive fields, in the order of
their listing in the ATTRIBUTES section from field name 1 to field name2,
inclusive. (The keyword THROUGH is a synonym for THRU.) For example,
the following instruction creates a screen record called address from fields
linked to some columns of the customer table. This record can simplify 4GL
statements to update customer address and telephone data.

SCREEN RECORD address
(customer.address1 THRU customer.phone)

The order of fields in the portion of a screen record specified by the table.* or
THRU notation is the order of the field names within the ATTRIBUTES section.
Screen Forms 5-65

Screen Arrays
Screen Arrays
A screen array is usually a repetitive array of fields in the screen layout, each
containing identical groups of screen fields. Each “row” of a screen array is a
screen record. Each “column” of a screen array consists of fields with the
same field tag in the SCREEN section of the form specification file.

You must declare screen arrays in the INSTRUCTIONS section, using syntax
like the syntax described for a screen record in the previous section, but with
an additional parameter to specify the number of screen records in the array:

array is the 4GL identifier for the screen array. (It is also the identifier of the
screen record that comprises each line of the array.)

size is a literal integer (page 3-340), enclosed in square ([]) brackets, to
specify how many screen records are in the screen array.

The size should be the number of lines in the logical form where the set of
fields that comprise each screen record is repeated within the screen array.
For example, a SCREEN section might represented a screen array like this:

SCREEN
{

CARRIER FLIGHT ARRIVES DEPARTS
[f00001] [f00002] [f0003] [f0004]
[f00001] [f00002] [f0003] [f0004]
[f00001] [f00002] [f0003] [f0004]

}

This requires a size of [3]. Except for the size parameter, syntax for specifying
the identifier and the field names of a screen array is the same as for a simple
screen record (page 5-64). Unlike 4GL program arrays, which can have up to
3 dimensions, every 4GL screen array has exactly one dimension.

The next example declares an array of six records, each of which includes two
default screen records, namely the manufact.* and state.* screen records:

SCREEN RECORD mant_array [6]
(manufact.*, state.*, cust_calls.user_id,

FORMONLY.delta)

Screen Array

SCREEN RECORD array []size ()Field List
p. 5-64
5-66 Screen Forms

Screen Arrays
To illustrate the declaration of a typical screen array in more detail, consider
the following fragment of a form specification file:

SCREEN
{
...
Item 1 [p][q][u][t]
Item 2 [p][q][u][t]
Item 3 [p][q][u][t]
Item 4 [p][q][u][t]
Item 5 [p][q][u][t]
}
TABLES orders items stock
ATTRIBUTES
...
p = stock.stock_num;
q = items.quantity;
u = stock.unit_price;
t = items.total_price;
...
INSTRUCTIONS
SCREEN RECORD sc_items[5] (stock.stock_num,

items.quantity, stock.unit_price,
items.total_price)

The sc_items screen array has five rows and four columns, and includes
fields linked to columns from two database tables. Rows are numbered from
1 to 5. The screen record that follows the display label Item 3 in the screen
layout, for example, can be referenced as sc_items[3] in a 4GL statement.

If there are no other columns of the items table in the form, the default
screen record items contains two fields, corresponding to the items.quantity
and items.total_price fields that are linked to columns of the items table.

If a screen array contains a default screen record, you can reference its fields
in specific lines of the screen array (such as items[5] for the q and t fields in
the last line), as if you had declared an array of records linked to that table.

You can reference array-name in the DISPLAY, DISPLAY ARRAY, INPUT, INPUT
ARRAY, and SCROLL statements of INFORMIX-4GL, but only when the screen
form that includes the screen array is the current form.

Screen records and screen arrays can display program records. If the fields in
the screen record have the same sequence of data types as the columns in a
database table, you can use the screen record to simplify 4GL operations that
pass values between program variables and rows of the database.
Screen Forms 5-67

Field Delimiters
Field Delimiters
You can change the delimiters that INFORMIX-4GL uses to enclose fields
when the form appears on the screen from brackets ([]) to any other print-
able character, including blank spaces. The DELIMITERS instruction tells
INFORMIX-4GL what symbols to use as field delimiters when it displays the
form on the screen. The opening and closing delimiter marks must be
enclosed within quotation (") marks.

The following specifications display < and > as opening and closing delimit-
ers of screen fields:

INSTRUCTIONS
DELIMITERS "<>"

END

Each delimiter occupies a space, so two fields on the same line are ordinarily
separated by at least two spaces. If you want only one space between consec-
utive screen fields, follow these two steps:

1. In the SCREEN section, substitute a vertical bar (|) for paired
back-to-back (][) brackets that separate adjacent fields.

2. In the INSTRUCTIONS section, define some symbol as both the beginning
and ending delimiter. For example, you could specify
"| |" or "/ /" or ": :" or " " (blanks).

The following specifications substitute | for][between adjacent fields in the
same line of the screen layout, and display a colon (:) as both the opening
and closing delimiter:

SCREEN
{

. . .
Full Name-[f011 |f012]

. . .
}

. . .
INSTRUCTIONS

DELIMITERS "::"

Here the fields whose tags are f011 and f012 will be displayed as:

Full Name-: | :
5-68 Screen Forms

Default Attributes
If you substitute blanks for colons as DELIMITERS symbols, field boundaries
are not marked (or are only marked if they have attributes that contrast with
the surrounding background).

Note: FORM4GL requires brackets ([]) in the SCREEN section of a form
specification file, regardless of any DELIMITERS instruction.

Default Attributes
Field attributes can also be specified in two special tables in the database,
syscolval and syscolatt. These tables are maintained by the upscol utility, as
described in Appendix B. FORM4GL searches these tables for default valida-
tion and display attribute specifications. It applies these to form fields whose
names match the names of the specified database columns, or that reference
these columns in the DISPLAY LIKE or VALIDATE LIKE attribute specifica-
tions.

FORM4GL adds the attributes from these tables to any attributes that are
listed in the form specification file. In case of conflict, attributes from the form
specification file take priority. 4GL applies the resulting set of field attributes
during execution of INPUT and INPUT ARRAY statements (by using
syscolval), and during execution of DISPLAY and DISPLAY ARRAY state-
ments (by using syscolatt). The schema of each of these tables follows:

syscolval syscolatt
tabname char(18) tabname char(18)
colname char(18) colname char(18)
attrname char(10) seqno serial
attrval char(64) color smallint

inverse char(1)
underline char(1)
blink char(1)
left char(1)
def_format char(64)
condition char(64)
Screen Forms 5-69

Default Attributes
Here tabname and colname are the names of the table and column to which
the attributes apply. Here colname cannot be a BYTE nor TEXT column. Valid
values for the attrname and attrval columns in syscolval are these:

attrname attrval
AUTONEXT YES, NO (the default)
COMMENTS as in this chapter
DEFAULT as in this chapter
INCLUDE as in this chapter
PICTURE as in this chapter
SHIFT UP, DOWN, NO (the default)
VERIFY YES, NO (the default)

The color column in syscolatt stores an integer that describes color (for color
terminals) or intensities (for monochrome terminals).

The next table shows the displays specified by each value of color, and the
correspondence between default color names, number codes, and intensities:

The background for colors is BLACK in all cases. The † signifies that, if the
keyword BOLD is specified as the attribute, the field is displayed as RED on a
color screen; or, if the keyword DIM is specified as the attribute, the field is
displayed as BLUE on a color screen.

The values for inverse, underline, blink and left are Y (yes) and N (no). The
default for each of these columns is N, that is, normal display (bright charac-
ters in a dark field), no underline, steady font, and right-justified numbers.
Which of these attributes can be displayed simultaneously with the color
combinations or with each other is terminal-dependent.

Number Color
Terminal

Monochrome
Terminal

0 White Normal

1 Yellow Bold

2 Magenta Bold

3 Red Bold†
4 Cyan Dim

5 Green Dim

6 Blue Dim†
7 Black Dim
5-70 Screen Forms

Default Attributes
The def_format column takes the same string that you would enter for the
FORMAT attribute in a screen form. Do not use quotation marks.

The condition column takes string values that are a restricted set of the
WHERE clauses of a SELECT statement, except that the WHERE keyword and
the column name are omitted. INFORMIX-4GL assumes that the value in the
column identified by tabname and colname is the subject of all comparisons.

Examples of valid entries for the condition column follow:

<= 100 MATCHES "[A-M]*" BETWEEN 101 AND 1000
IN ("CA", "OR", "WA") >= 1001 NOT LIKE "%analyst%"

The VALIDATE statement (page 3-278) compares the members of a program
record or variable list to the validation rules in syscolval. The INITIALIZE
statement (page 3-125) can read the default values in syscolval for a list of
columns, and assign these values to a corresponding list of 4GL variables.

Some statements (including CONSTRUCT, DISPLAY, DISPLAY ARRAY, ERROR,
INPUT, INPUT ARRAY, MESSAGE, PROMPT, OPEN WINDOW, and OPTIONS)
support an ATTRIBUTE clause (page 3-290) that can specify color and inten-
sity attributes. These attributes are also supported by the syscolatt table and
by the COLOR keyword in the ATTRIBUTES section:

Here the “=” symbol indicates how monochrome terminals interpret color
keywords. On color terminals, NORMAL is displayed as WHITE; BOLD as
RED; and DIM as BLUE.

You can override default attributes in syscolatt by assigning other attributes
in the form specification file, or in the ATTRIBUTE clause of the CONSTRUCT,
DISPLAY, DISPLAY ARRAY, INPUT, or INPUT ARRAY statement. If the current
4GL statement is one of these, and includes an ATTRIBUTE clause, then the
field displays only the attributes that are specified in that clause. For exam-
ple, if a column is designated as RED and BLINK in syscolatt, or in the form
specification file, and your 4GL program executes the statement

 DISPLAY . . . ATTRIBUTE BLUE

the field has only the BLUE attribute, not blinking BLUE. If an ATTRIBUTE
clause is present in the currently executing statement, there is no implicit
carry-over of display attributes from the compiled form (except FORMAT).

CYAN = DIM GREEN = DIM REVERSE = REVERSE

BLUE = DIM YELLOW = BOLD UNDERLINE = UNDERLINE

MAGENTA = BOLD RED = BOLD BLINK = BLINK

WHITE = NORMAL BLACK = DIM
Screen Forms 5-71

Precedence of Field Attribute Specifications
Precedence of Field Attribute Specifications
INFORMIX-4GL uses these rules of precedence (highest to lowest) to resolve
any conflicts among multiply-defined display attribute specifications:

1. The ATTRIBUTE clause of the current 4GL statement.

2. The field descriptions in the ATTRIBUTES section of the current form.

3. The default attributes specified in the syscolatt table of any fields linked
to database columns. To modify the syscolatt table, use the upscol utility.
For information on using this utility, see Appendix B.

4. The ATTRIBUTE clause of the most recent OPTIONS statement.

5. The ATTRIBUTE clause of the current form in the most recent DISPLAY
FORM statement.

6. The ATTRIBUTE clause of the current 4GL window in the most recent
OPEN WINDOW statement.

Default Attributes in an ANSI-Compliant Database
In a database that is not ANSI-compliant, the default screen attributes and
validation criteria that you specify with the upscol utility are stored in two
tables, syscolval and syscolatt. If these tables specify default values or
attributes for a database column, those defaults are available to every user of
a form that references the column.

In an ANSI-compliant database, however, the separate owner.syscolval and
owner.syscolatt tables are created for each user of the upscol utility. These
tables store the default specifications of that individual user. Which set of
tables is used by FORM4GL depends on the nature of the request.

If the TABLES section specifies a table alias for owner.table, FORM4GL uses the
upscol tables of the owner of table. If that user owns no upscol tables, no
defaults are assigned to fields associated with that table alias. If the TABLES
section of the form does not specify a table alias that includes the owner of a
database table, the upscol tables owned by the user running FORM4GL are
applied to fields associated with that database table, unless the user owns no
upscol tables. In the ATTRIBUTES section, field descriptions of the forms

field-tag = . . . DISPLAY LIKE table.column
field-tag = . . . VALIDATE LIKE table.column

use upscol tables (if they exist) owned by whoever runs FORM4GL, unless
table is an alias that specifies a different owner. If table is an alias for
owner.table, FORM4GL uses the upscol tables of the owner specified by table,
if they exist. If no upscol tables exist, then the DISPLAY LIKE and
5-72 Screen Forms

Creating and Compiling a Form
VALIDATE LIKE attributes have no effect. If owner is not the correct owner,
the compilation fails and an error message is issued. See also the INITIALIZE
(page 3-125) and VALIDATE (page 3-278) statements.

Creating and Compiling a Form
For your 4GL program to work with a screen form, you must create a form
specification file that conforms to the syntax described earlier in this chapter,
and then compile the form. You can compile the form in one of two ways:
from within the Programmer’s Environment or at the command line. Both
methods require that the database and any tables referenced in the form
already exist, and that the database engine be running and able to access the
database. These methods of compiling a form are described below. Also, a
section on using default forms is included.

Compiling a Form Through the Programmer’s
Environment

To create a screen form using the Programmer’s Environment (which is
described in Chapter 1), you must follow these steps:

1. At the system prompt, enter i4gl if you have the C Compiler Version,
or r4gl if you have the Rapid Development System.

2. Select Form and then Generate from the menu. (Alternatively, you can
select the New option. INFORMIX-4GL prompts you for a form name,
prompts you for an editor if you have not already selected one, and
invokes that editor with an empty form specification file. Now you must
enter form specifications. The Generate option is usually a more efficient
way to create a customized form.)

3. Enter the name of the database and the name that you want to assign to
the form (for example, myform). INFORMIX-4GL asks you for the names
of the tables whose columns you want in your form. After you select the
tables, FORM4GL creates a default form specification file, as well as a
compiled default form, and then displays the FORM Design Menu.

4. The default form specification file formats the screen as a list of all the
columns in the tables that you entered in Step 3. It does not provide any
special instructions to INFORMIX-4GL about how to display the data.
Select the Modify option, and INFORMIX-4GL presents the MODIFY
FORM Screen. Select the default form specification (given as myform
earlier), and INFORMIX-4GL calls a system editor to display the file. Edit
the default form specification file to produce your customized screen
Screen Forms 5-73

Compiling a Form Through the Operating System
form and associated instructions. (You can specify an editor using the
DBEDIT environment variable. This is fully explained in Appendix D.)
When you save your file and quit the editor, you return to the
MODIFY FORM Menu.

5. Select Compile. If your form specification file successfully compiles,
FORM4GL creates a form file with the extension .frm (for example,
myform.frm). Go on to Step 7. If your form specification file does not
compile successfully, go on to Step 6.

6. Select the Correct option from the COMPILE FORM Menu. INFORMIX-4GL
again calls your editor to display the form specification file, with the com-
pilation errors marked. When correcting your errors, you need not delete
the error messages. INFORMIX-4GL does that for you. Save the file and go
to Step 5.

7. Save your form specification file with the Save-and-exit option.

Compiling a Form Through the Operating System
The FORM4GL command line has the following syntax:

characters is an integer that specifies the width of the form in charac-
ters. (The default is the number of characters in the longest
line of the screen layout, as specified in the SCREEN section.)

form-name is the name of the form specification file (without the .per
extension).

lines is an integer that specifies the height of the form in lines of
characters that the terminal can display. (The default is 24.)

Use the -v option to have the compiler verify that the screen fields are as wide
as any corresponding character fields specified in the ATTRIBUTES section.
Use the -d option to generate a default form specification file. When you use
this option, the compiler prompts you for the names of your form file, data-
base, and tables. For more information, see the next section, “Default Forms.”

-l lines -c characters

form-name

-V

-d

form4gl

-q

database-
name

form-name

table-
name
5-74 Screen Forms

Default Forms
To create a customized screen form directly from the operating system,
follow these steps:

1. Create a default form specification file by entering the command

form4gl -d

at the operating system prompt. FORM4GL asks for the name of your
form specification file, the name of your database, and the name of a table
whose columns you want in your form. It continues to ask for another
table name until you enter a RETURN for the name of a table. FORM4GL
then creates a default form specification file and appends the
extension .per to its name. It also creates a compiled default form with
the extension .frm.

2. Use the system editor to modify the default form specification file to meet
your specifications. If, as an alternative, you create a new form specifica-
tion file and skip Step 1, be sure to give the filename the extension .per.

3. Enter a command of the form:

form4gl myform

Here myform is the name of your form specification file (without the .per
extension).

If the compilation is successful, FORM4GL creates a compiled form file
called myform.frm and you are finished creating your customized screen
form. If not, FORM4GL instead creates a file named myform.err, and you
need to go on to Step 4.

4. Review the file myform.err to discover the compilation errors. Make
corrections in the file myform.per. Go to Step 3.

Default Forms
For many applications, it is convenient to create a default form, and then edit
this to satisfy your specific application requirements. When you create a
default form, you must specify its filename, a database name, and the name
of at least one table whose columns are to be linked to fields in the form.

The width of a display field is the number of characters that can be placed
between the delimiters. In a default form specification, FORM4GL assigns
lengths to fields according to the declared data type of the column:
Screen Forms 5-75

Default Forms
Data Type Default Field Width (in characters)
BYTE 12.
CHAR MIN (57, n), for n the length from the data-type declaration.
DATE 10.
DATETIME From 2 to 25, as implied in data-type declaration. Each unit of

time = 2 (except YEAR and FRACTION); every separator = 1.
DECIMAL (2 + m), for m the precision from the data-type declaration.
FLOAT 14.
INTEGER 11.
INTERVAL From 3 to 25 (as implied in data-type declaration, plus one).
MONEY (3 + m), for m the precision from the data-type declaration.
SMALLINT 6.
SMALLFLOAT 14.
TEXT 12.
VARCHAR MIN (57, n), for n the maximum length from the declaration.

SERIAL columns are linked to INTEGER fields. Field length is not directly
related to the data display in BYTE and TEXT fields, both of which require the
PROGRAM attribute to invoke an external program or editor. The 4GL form
can display as many TEXT characters as fit in the field, and displays the string
“<BYTE value> ” in a BYTE field. (For details of displaying blob values, see
the description of the PROGRAM field attribute on page 5-50.)

If you edit a default form, make sure that the fields are wide enough to
accommodate the widest value that might be entered or displayed.To prevent
INFORMIX-4GL from truncating displayed data, follow these rules:

• Make character fields as wide as the corresponding database column.
You can use multiple-segment fields to display long strings (page 5-26).

• Make number, DATETIME, and INTERVAL fields wide enough to accom-
modate the largest displayed value.

Default field tags like f000 are assigned to the first display field, f001 to the
second, and so on, by FORM4GL. It assigns a field tag like a0 to any two- or
three-character field that cannot accommodate a four-character default field
tag. Up to 26 single-character fields can be assigned the single-characters a,
b, c, and so forth, as default field tags.

The default screen layout has as many lines as the number of columns in the
tables. Each line of the screen layout contains a single field, beginning in the
20th character position. FORM4GL uses column names as default field labels,
appearing to the left of each field. The next example shows a default form
that is based only on the customer table of the stores2 database:
5-76 Screen Forms

Using PERFORM Forms in 4GL
database stores
screen size 24 by 80
{
customer_num [f000]
fname [f001]
lname [f002]
company [f003]
address1 [f004]
address2 [f005]
city [f006]
state [a0]
zipcode [f007]
phone [f008]
}
end
tables
customer
attributes
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state;
f007 = customer.zipcode;
f008 = customer.phone;
end

If the number of fields is greater than (lines - 4), you must edit the default
file, either to increase the lines value after the SIZE keyword (if the screen size
permits this), or else to reduce the number of lines in the screen layout.

Using PERFORM Forms in 4GL
The syntax of forms that work with the FORM4GL is different in
several significant ways from the syntax of PERFORM, the screen form gener-
ation utility of INFORMIX-SQL. You can use PERFORM forms with 4GL, but
you must first recompile them using FORM4GL. In addition, not all PERFORM
features are operative. You must also use 4GL user-interaction statements like
OPEN FORM, OPEN WINDOW, INPUT, DISPLAY FORM, CLEAR FORM, or CON-
STRUCT to write a “form driver” to support data entry or data display
through the 4GL form.
Screen Forms 5-77

Using PERFORM Forms in 4GL
If you have designed forms for the PERFORM screen transaction program of
INFORMIX-SQL, you need to know how those forms behave when used with
4GL. The following features differ between PERFORM and 4GL:

• Only the DELIMITERS keyword in the INSTRUCTIONS section of a
PERFORM form is supported by 4GL. Other keywords in that section are
ignored. To support other INSTRUCTIONS features of PERFORM requires
coding in your 4GL program. (See the BEFORE and AFTER clauses of the
INPUT statement.)

• 4GL does not support multiple-page forms (those with more than one
screen layout); these produce undesirable overlays. (Use multiple 4GL
forms to produce the effects of forms that have several pages.)

• There is no concept of “current table” in 4GL. A single INPUT or INPUT
ARRAY statement allows you to enter data into fields that correspond to
columns in different tables.

• Joins defined in the PERFORM form are ignored in 4GL. You can associate
two field names with the same field tag, using the same notation as in a
PERFORM join, but no join is effected. On the other hand, you can create
more complex joins and look-ups in 4GL using the full power of SQL.

• The PERFORM attributes LOOKUP, NOUPDATE, QUERYCLEAR, RIGHT,
and ZEROFILL are inoperative in 4GL. The DISPLAY, DISPLAY ARRAY, DIS-
PLAY FORM, MESSAGE, and OPEN WINDOW statements of 4GL all ignore
the INVISIBLE attribute (page 5-46).

• The conditions of a COLOR attribute cannot reference other field tags nor
aggregate functions.

• The default attributes listed in syscolval and syscolatt do not apply to
your PERFORM forms, unless you recompile the forms with FORM4GL.
5-78 Screen Forms

Chapter
6

INFORMIX-4GL
Reports
Output from 4GL Programs 3

Features of 4GL Reports 3

Producing 4GL Reports 4
The Report Driver 5
The REPORT Definition 5

The Report Prototype 6
Components of the Report Definition 7

DEFINE Section 8

OUTPUT Section 9
The BOTTOM MARGIN Clause 11
The LEFT MARGIN Clause 12
The PAGE LENGTH Clause 12
The REPORT TO Clause 13
The RIGHT MARGIN Clause 14
The TOP MARGIN Clause 16
The TOP OF PAGE Clause 17

ORDER BY Section 18
The Sort List 19
The Sequence of Execution of GROUP OF Control

Blocks 20
The EXTERNAL Keyword 22

FORMAT Section 23
EVERY ROW 24

FORMAT Section Control Blocks 27
AFTER GROUP OF 29

The Order of Processing AFTER GROUP OF Control Blocks 29
The GROUP Keyword in Aggregate Functions 30

BEFORE GROUP OF 31
The Order of Processing BEFORE GROUP OF Control Blocks 31

FIRST PAGE HEADER 33
Displaying Titles and Headings 33
Restrictions on the List of Statements 34

ON EVERY ROW 34
Group Control Blocks 35

ON LAST ROW 36
PAGE HEADER 37
PAGE TRAILER 38

Restrictions on the List of Statements 38

Statements in REPORT Control Blocks 39
NEED 40
PAUSE 41
PRINT 42

The FILE Option 44
The Character Position 44
The Expression List 45
Aggregate Report Functions 46
The ASCII Operator 47
The COLUMN Operator 48
The LINENO Operator 48
The PAGENO Operator 48
The SPACE or SPACES Operator 49
The WORDWRAP Operator 50

SKIP 52
Restrictions on SKIP Statements 52
6-2 INFORMIX-4GL Reports

Output from 4GL Programs
INFORMIX-4GL offers several features to output values from an SQL
database or from 4GL program variables, including the following:

• Output of unformatted database rows to an ASCII file by using
the UNLOAD statement (page 3-274).

• Direct screen output by using DISPLAY statements to display values that
the SELECT statement has retrieved from the database and stored in 4GL
program variables. (The SELECT statement is described in the Informix
Guide to SQL: Reference.)

• Output to a 4GL form (as described in Chapter 5) through the DISPLAY
or DISPLAY ARRAY statements.

• Output to a reserved line (page 3-93) of 4GL through the ERROR, PROMPT,
MENU, or MESSAGE statement, or the COMMENTS attribute (page 5-36).

• Output of TEXT or BYTE values to an external editor that you specify
through the PROGRAM field attribute of a 4GL form (page 5-50).

• Output to the screen (page 6-14) or to a file from a 4GL report.

This chapter describes 4GL reports, the method of producing output that
offers the greatest formatting flexibility.

Features of 4GL Reports
For relational database management applications, INFORMIX-4GL includes
a general-purpose report writer that supports the following features:

• Full control over page layout for your 4GL report. This includes first-page
headers that differ from headers on subsequent pages, page trailers,
columnar data presentation, special formatting before and after groups
of sorted data, and data-dependent conditional formatting.

• Facilities for creating the report either from the rows returned by a cursor
or from input records assembled from any other source, such as output
from several different SELECT statements.
INFORMIX-4GL Reports 6-3

Producing 4GL Reports
• Control blocks for manipulating data returned by the cursor on a row-by-
row basis, either before or after the row is formatted by the report.

• Aggregate functions that enable you to calculate and display frequencies,
percentages, sums, averages, maxima, and minima.

• The USING operator and other built-in 4GL functions for formatting and
displaying information in the report.

• The WORDWRAP operator to format long character strings that occupy
multiple lines of output from the report.

• The option to update the database or execute any sequence of SQL and
other 4GL statements while writing a report, if the intermediate values
calculated by the report meet specified criteria. For example, you could
even write an alert message containing a second report.

This chapter describes how to write REPORT definitions, and how to use them
to format data sets.

Producing 4GL Reports
Many relational database management applications are designed to produce
a report that contains information from the database. A 4GL report can
arrange and format the data according to your instructions, and display the
output on the screen, or send it to a printer, or store it as a file for future use.
To write a report, a 4GL program must include two distinct components:

• The report driver specifies what data the report includes.

• The REPORT routine (also called the report definition) formats the data.

The report driver (also called the calling routine) retrieves the specified rows
from a database, stores their values in program variables, and sends these,
one input record at a time, to the REPORT definition. After the last input
record has been received and formatted, 4GL calculates any aggregate values
(such as frequency counts, sums, or averages) that are based on all the data,
and then sends the entire report to some output device.

By separating the two tasks of data retrieval and data formatting in this way,
4GL simplifies the production of recurrent reports, as well as the application
of the same report format to different data sets.
6-4 INFORMIX-4GL Reports

The Report Driver
The Report Driver
The report driver invokes the report, retrieves data, and sends the data (as
input records) to be formatted by the REPORT program block. A report driver
can be part of the MAIN program block, or in one or more 4GL functions. It
requires special-purpose statements to interface with the REPORT definition:

• START REPORT

• OUTPUT TO REPORT

• FINISH REPORT

These elements of the report driver can appear in different program blocks,
but they are typically embedded within a FOR, FOREACH, or WHILE loop:

• Uses START REPORT (page 3-271) to initialize the report.

• Begins a FOR, FOREACH, or WHILE loop to control the repeated fetching
of rows, and the creation of input records for storing the retrieved data.

• Uses OUTPUT TO REPORT (page 3-242) to pass input records to the report.

• Terminates the loop (with the END FOR, END FOREACH, or END WHILE
keywords) after all the desired values have been passed to the report.

• Uses FINISH REPORT (page 3-100) to execute any ON LAST ROW control
block and to activate any two-pass report processing (page 6-22).

The REPORT Definition
The REPORT definition formats input records. Like the FUNCTION or MAIN
statement, it is a program block. It can contain control blocks with statements
for producing headers, footers, and calculating aggregate values.

END WHILE

, FINISH REPORT
p. 3-100

OUTPUT TO REPORT
p. 3-242

OUTPUT TO REPORT
p. 3-242

OUTPUT TO REPORT
p. 3-242

OUTPUT TO REPORT
p. 3-242

START REPORT
p. 3-271

END FOREACH

END FORFOR statement
p. 3-102

WHILE statement
p. 3-287

FOREACH statement
p. 3-105
INFORMIX-4GL Reports 6-5

The REPORT Definition
From the report driver, the REPORT definition receives data in sets called
input records. These can include program records, but other data types
(including built-in and programmer-defined classes) are also supported. Each
input record is formatted and printed, as specified by control blocks and
statements within the REPORT definition. Most 4GL statements and functions
can be included in a REPORT definition, and certain specialized statements
and operators for formatting output can appear only in a REPORT definition.

The REPORT program block has the following syntax:

argument is the name of a formal argument that the driver passes to the
report. The list of identifiers is called the argument list. (You can
include arguments of the RECORD data type in this list, but you
cannot append the .* symbols here to the name of the record.)

report is the 4GL identifier that you declare here for the report.

To format input records, a typical REPORT definition performs these actions:

• Specifies a REPORT prototype to declare the report name and the names of
the formal arguments of the input records that the report will format.

• Uses a DEFINE section to declare formal arguments and local variables.

• Uses control blocks within the FORMAT section to produce headers,
footers, and formatted output of the data in the input records.

• Terminates processing the data with the END REPORT keywords.

In a typical RDBMS application, the input records that the report formats con-
tain values that SQL statements retrieved from the database, but a 4GL report
can also process input records that were not derived from the database.

The Report Prototype

The report name and the argument list (enclosed in parentheses) are called the
report prototype. In its syntax, it resembles a function prototype (page 3-112).

REPORT END REPORT)

argument DEFINE
Section
p. 6-8

)

(FORMAT
Section
p. 6-23

OUTPUT
Section
p. 6-9

ORDER BY
Section
p. 6-18

,
report
6-6 INFORMIX-4GL Reports

The REPORT Definition
You must declare the name of the report and (between parentheses) the names
of all the arguments that contain the data that the driver passes to the report:

REPORT mcbeth_report (sound,fury)

A formal argument cannot be an ARRAY variable, nor a RECORD variable that
contains an ARRAY member. Unless the argument list is empty, its arguments
must be declared in the DEFINE section (page 6-8) as local variables. You must
specify a argument list whenever any of the conditions are true that are listed
on the next page for declaring report arguments:

If you do not specify any variables in the argument list, you can print text
from the control blocks, but the only data that the report can include must be
contained in module variables or global variables.

Components of the Report Definition

The REPORT definition is composed of up to four sections. If any of the first
three are included, they must appear in the following order:

• DEFINE Section: This section declares the data types of local variables
used within the report, and of any variables (the input records) that are
passed as arguments to the report by the calling statement. Reports with-
out arguments or local variables do not require a DEFINE section.

• OUTPUT Section: Output from the report consists of successive pages,
each containing a fixed number of lines whose margins and maximum
number of characters is fixed. This section can set margin and page size
values, and can also specify where to send the formatted output.

• ORDER BY Section: This section specifies the variables on records are to
be sorted. It is required if the report driver does not send sorted data to
the report. The specified sort order determines the order in which 4GL
processes any GROUP OF control blocks in the FORMAT section.

• FORMAT Section: This section is required. It specifies the appearance of
the report, including page headers, page trailers, and aggregate functions
of the data. It can also contain control blocks that specify actions to take
before or after specific groups of rows are processed. (Alternatively, it can
produce a default report by only specifying FORMAT EVERY ROW.)

Each of these four sections begins with the keyword for which it is named.
These elements of a REPORT definition are described in sections that follow.

Line MAIN or FUNCTION, the REPORT definition must appear outside any
other program block. It must begin with the REPORT statement, and must end
with the END REPORT keywords. The FORMAT section is always required.
You can include other sections as needed.
INFORMIX-4GL Reports 6-7

DEFINE Section
DEFINE Section
This section declares a data type for each formal argument in the REPORT
prototype, and for any additional local variables that can be referenced only
within the REPORT program block. The DEFINE section is required if you pass
arguments to the report, or if you reference local variables in the report.

variable is the name of a local variable or formal argument of the report.

Usage
For declaring local variables, the same rules apply to the DEFINE section as to
the DEFINE statement (page 3-65) in MAIN and FUNCTION program blocks.
Two exceptions, however, restrict the data types of formal arguments:

• Report argument cannot be of type ARRAY.

• Report argument cannot be records that include ARRAY members.

You must include arguments in the report prototype (page 6-6), and declare
them in the DEFINE section, if any of the following conditions are true:

• If you specify FORMAT EVERY ROW to create a default report (page 6-24).
In this case, you must pass all the values for each record of the report.

• If an ORDER BY section (page 6-18) is included. In this case, you must pass
all the values that ORDER BY references, for each record of the report.

• If an aggregate that depends on all records of the report appears any-
where except in the ON LAST ROW control block (page 6-36), you must
pass each of the records of the report through the argument list. Examples
of aggregates dependent on all records include using GROUP PERCENT(*)
(page 6-47) anywhere in a report, or using any aggregate without the
GROUP keyword anywhere outside the ON LAST ROW control block.

• If you use the AFTER GROUP OF control block (page 6-29). In this case, you
must pass at least the arguments that are named in that control block.

If you use the LIKE keyword (page 3-69) to specify data types indirectly, the
DATABASE statement must appear before the first program block of the same
module that includes the REPORT definition, as described on page 3-59.

If the DEFINE section declares a variable or argument with the same identifier
as a global or module variable, that global or module variable is not visible
in the report. See also the DEFINE statement (page 3-65).

DEFINE

,

variable data typeData Type Declaration
(Subset) p. 3-67
6-8 INFORMIX-4GL Reports

OUTPUT Section
OUTPUT Section
The OUTPUT section is an optional section that can specify the number of
lines on each page of report output and the sizes of the margins. Without the
OUTPUT section, the report uses default values to format each page.

command is a quoted string, specifying a program, shell script, or command
line to receive the output from the report.

filename is a quoted string, specifying the name of a file to receive the
report output. The filename can also include a pathname.

size is a literal integer (page 3-340) that specifies the vertical height (in
lines) of the page or of the top or bottom margin, or the horizontal
width (in characters) of the left or right margin.

string is a quoted string, specifying the page-eject character sequence.

variable is the name of a CHAR or VARCHAR variable that contains a shell
script or command line to receive the output from the report.

Usage
This section can direct the output from the report to a file or to a printer as the
default output destination. The report driver can override this default by
specifying another destination in the TO clause of the START REPORT state-
ment (page 3-271). If output goes to the printer, the TOP OF PAGE clause can
specify a page-eject sequence (page 6-17) to begin each new page of report
output, rather than padding each page with blank lines.

The specification after the PIPE keyword (page 6-13) identifies a program,
shell script, or command line to receive the output from the report.

OUTPUT REPORT TO " filename "

BOTTOM

RIGHT

TOP

LEFT

PAGE LENGTH

TOP OF PAGE

PIPE

MARGIN

" command "

" string "

variable

size

PRINTER

1

1

1

1

1

1

1

INFORMIX-4GL Reports 6-9

OUTPUT Section
The LENGTH and MARGIN clauses specify the height of each page of output
(see page 6-12) or the top margin (page 6-16) or bottom margin (page 6-11),
or the width of the left margin (page 6-12) or right margin (page 6-14).

The TOP OF PAGE clause specifies a 1- or 2-character page-eject sequence for
the default printer (page 6-17).

The OUTPUT section consists of the OUTPUT keyword, followed by one or
more specifications. The OUTPUT section has the following structure

• The REPORT TO clause specifies a default destination for output. If you
omit this clause, the default is to the screen (page 6-13).

• The TOP OF PAGE clause specifies the character string that causes the
printer that produces a physical copy of the report to eject a page.

The next five clauses specify the physical dimensions of a 4GL report page:

• The LEFT MARGIN clause specifies how many blank spaces to include at
the beginning of each new line of output. The default is 5 blank spaces.

• The RIGHT MARGIN clause specifies the maximum number of characters
in each line of output, including the left margin. If you omit this but spec-
ify FORMAT EVERY ROW, the default is 132 character positions wide.

{

{

{

{
{

PAGE
LENGTH

LEFT MARGIN size

TOP MARGIN size

OM MARGIN size

RIGHT MARGIN size

size

PAGE LENGTH

LEFT MARGIN size (default = 5 characters)

MARGIN size

MARGIN size

RIGHT MARGIN size (default = 132 lines)

size (default = 66 lines)

(default = 3 lines)

(default = 3 lines)

TOP

BOTTOM

(for default reports or PRINT WORDWRAP only)
6-10 INFORMIX-4GL Reports

OUTPUT Section
• The TOP MARGIN clause specifies how many blank lines appear above the
first line of text on each page of output. The default is 3 blank lines.

• The BOTTOM MARGIN clause specifies how many blank lines follow the
last line of output on each page. The default is 3 blank lines.

• The PAGE LENGTH clause specifies the total number of lines on each
page, including data, the margins, and any page headers or page trailers
from the FORMAT section. The default page length is 66 lines.

Sections that follow describe these OUTPUT statements in alphabetical order.

The BOTTOM MARGIN Clause

This clause sets a bottom margin for each page of the report.

size is a literal integer (page 3-340) that specifies the non-negative
vertical height (in lines) of the bottom margin of each page.

The bottom margin appears as size blank lines below any output specified by
the PAGE TRAILER control block of the FORMAT section. If you do not include
a BOTTOM MARGIN specification, the default bottom margin is three lines,
meaning that at least three lines are left blank at the end of each page.

The following BOTTOM MARGIN specification instructs INFORMIX-4GL to
continue printing to the bottom of each page.

OUTPUT
REPORT TO "sendthis.out"
TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH 6

BOTTOM MARGIN size
INFORMIX-4GL Reports 6-11

OUTPUT Section
The LEFT MARGIN Clause

This clause sets the width of a left margin for each line of the report.

size is a literal integer (page 3-340) that specifies the non-negative width
(in character positions) of the left margin of each page.

Output begins in the (size + 1) character position. Measurements indicated by
arguments to the COLUMN function are always relative to the margin set by
LEFT MARGIN. If you do not include a LEFT MARGIN clause, the default value
for the left margin is five character positions; any output of data begins in the
6th character position.

The following LEFT MARGIN specification instructs INFORMIX-4GL to begin
printing each line of the report as far to the left as possible.

OUTPUT
REPORT TO "about.out"
LEFT MARGIN 0
PAGE LENGTH 6

The PAGE LENGTH Clause

This clause specifies the number of lines on each page of the report.

size is a literal integer (page 3-340) that specifies the non-negative height
(in lines) of each page, including top and bottom margins.

If you omit the PAGE LENGTH specification, the default page length is 66
lines. The next example specifies a PAGE LENGTH value of twenty-two lines:

OUTPUT
PAGE LENGTH 22
BOTTOM MARGIN 0

Depending on your font size, 22 lines is the maximum length that you can use
on some systems with the PAUSE statement without causing undesirable
scrolling.

LEFT MARGIN size

PAGE LENGTH size
6-12 INFORMIX-4GL Reports

OUTPUT Section
The REPORT TO Clause

This clause specifies a default destination for output from the report. This
destination can be a file, an operating system pipe, or the system printer.

command is a quoted string, specifying a program, shell script, or command
line to receive the output from the report.

filename is a quoted string, containing the name of a file to receive the
report output. This filename can also include a pathname.

variable is the name of a CHAR or VARCHAR variable that contains a shell
script or command line to receive the output from the report.

If a valid START REPORT statement includes a TO clause directing output of
the report to some destination, that destination takes precedence, and any
REPORT TO clause in the OUTPUT section has no effect.

Sending Report Output to a Pipe

The specification after the PIPE keyword must return the name of a program,
shell script, or command line that is to receive the report output. This can also
include command-line arguments.

The REPORT TO PIPE option can direct the output to a program that sends the
output to the correct printer, or to some other process.

The following OUTPUT section directs the report output to the more utility:

OUTPUT
REPORT TO PIPE "more"

REPORT TO " filename "

PIPE " command "
variable

PRINTER
INFORMIX-4GL Reports 6-13

OUTPUT Section
Sending Report Output to a Printer

If you specify REPORT TO PRINTER, INFORMIX-4GL sends the report to the
program named in the DBPRINT environment variable. If you do not set
the DBPRINT environment variable, the report is sent to your default printer.
For example, the following code segment sends report output to the printer:

OUTPUT
REPORT TO PRINTER

Sending Report Output to a File

To send the report to a printer other than the system printer, use the REPORT
TO “filename” option to send output to a file, and then send the file to a printer
of your choice. The next example of an OUTPUT section directs the report out-
put to the label.out file.

OUTPUT
REPORT TO "label.out"
LEFT MARGIN 0
TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH 6

Sending Report Output to the Screen

Output is directed to the screen if both the REPORT TO clause and the TO
clause of the START REPORT statement are omitted. To pause the display of
the report after each screenful of output, include the PAUSE statement in the
PAGE HEADER or PAGE TRAILER block of the report. The PAUSE statements
waits for the user to press the RETURN key before displaying more output.
For more information on the PAUSE statement, see page 6-41.

The RIGHT MARGIN Clause

This sets the right margin for each line of a default report (one that specifies
EVERY ROW in the FORMAT section) or of a PRINT WORDWRAP statement.
6-14 INFORMIX-4GL Reports

OUTPUT Section
This is the syntax of the RIGHT MARGIN clause:

size is a literal integer (page 3-340) that specifies the maximum
number of characters on each line, including the left margin.

This clause sets the right margin by specifying a line width, in characters. The
size is not dependent on the LEFT MARGIN, but starts its count from the left
edge of the page, so that the width of the LEFT MARGIN is included in the size
of RIGHT MARGIN. The 132-character default size is effective only when:

• The RIGHT MARGIN clause is omitted from the OUTPUT section, and

• The FORMAT section contains the EVERY ROW specification for a default
report format, or else a PRINT statement with WORDWRAP is executing.

A default EVERY ROW report lists the variable names across the top of the
page, and presents the data in columns beneath these headings. If there is not
sufficient room between left- and right-margins to do this, INFORMIX-4GL
produces a two-column output format that lists the variable name and the data
value of each output record on each line of output.

The following example illustrates a RIGHT MARGIN clause. After processing
the OUTPUT section, INFORMIX-4GL sets a maximum line width of 70, and
does not allow text to be printed to the right of the 70th character position:

REPORT simple(customer)
DEFINE customer LIKE customer.*
OUTPUT

RIGHT MARGIN 70
FORMAT

EVERY ROW
END REPORT

Setting a Temporary Line Width with WORDWRAP

The PRINT statement in the FORMAT section can also include a WORDWRAP
RIGHT MARGIN clause. This sets a temporary right margin that cannot be
larger than the explicit or default right margin of the OUTPUT section.
While its PRINT statement is executing, this temporary line width overrides
the explicit or default right margin from the OUTPUT section. After the PRINT
statement completes execution, the explicit or default RIGHT MARGIN size
from the OUTPUT section is restored as the maximum line width.

RIGHT MARGIN size
INFORMIX-4GL Reports 6-15

OUTPUT Section
The TOP MARGIN Clause

This clause sets a top margin for each page of the report.

size is a literal integer (page 3-340) that specifies the vertical height
(in lines) of the top margin of each page.

The number of blank lines specified as the top margin size appears in report
output above any page header that you specify in a PAGE HEADER or FIRST
PAGE HEADER control block of the FORMAT section.

If you omit the TOP MARGIN specification, then the default top margin is
three lines, and any page header begins in the fourth line.

The sum of the size values that you specify as your top and bottom margins,
plus the number of lines (if any) for the page header and trailer, represents
the portion of each page that is not available for displaying data. Unless the
page length is greater than this total, your report cannot display any records.

TOP MARGIN size

PAGE LENGTH

TOPMARGIN size

BOTTOM MARGIN size

RIGHT MARGIN size (for default reports or PRINT WORDWRAP only)

size

Begin output from

FIRST PAGE HEADER

End output from

PAGE HEADER or

PAGE TRAILER

LEFT MARGIN size
6-16 INFORMIX-4GL Reports

OUTPUT Section
The following TOP MARGIN clause begin printing at the top of each page:

OUTPUT
TOP MARGIN 0
PAGE LENGTH 65

The TOP OF PAGE Clause

This optional clause identifies the page-eject character sequence for a printer.

string is a quoted string that begins with the page-eject character.

If you include the TOP OF PAGE clause, 4GL uses the specified page-eject char-
acter to set up new pages. For example, the TOP OF PAGE clause in the follow-
ing example specifies CONTROL-L as the page-eject character:

REPORT labels_report (rl)
DEFINE rl RECORD LIKE customer.*

OUTPUT
TOP OF PAGE "^L"
REPORT TO "r_out"

On many printers, this string is “^L”, the ASCII form-feed character. 4GL uses
the first character of the string as the TOP OF PAGE character, unless it is the
caret (^) character. In this case, 4GL interprets the second character as a con-
trol character. (If you are not sure of what character string to specify for a
given printer, refer to the documentation of that printer.)

If the report definition includes the TOP OF PAGE clause, all page breaks in
the output are initiated by using the specified page-eject character, rather
than by padding with blank lines. If no TOP OF PAGE clause is included, then
LINEFEED characters are used (before the page trailer) to pad each page to the
proper length before each page break.

TOP OF PAGE " string "
INFORMIX-4GL Reports 6-17

ORDER BY Section
New Pages of Report Output

In the output from the report, 4GL includes blank line padding (or else the
page-eject character, if you specify this in the string) to advance to the next
page whenever the program causes a new page of output to be set up. New
pages can be initiated by any of the following conditions:

• PRINT attempts to print on a page that is already full.

• SKIP TO TOP OF PAGE is executed.

• SKIP n LINES specifies more lines than are available on the current page.

• NEED specifies more lines than are available on the current page.

If you omit the TOP OF PAGE clause, 4GL fills the remaining lines of the
current page with LINEFEED characters when a new page is set up.

ORDER BY Section
The ORDER BY section specifies how to sort input records, and determines the
sequence of execution of GROUP OF control blocks in the FORMAT section.

argument is the name of an argument from the report prototype (page 6-6).
The list of variables that you specify here is called the sort list.

Usage
The ORDER BY section specifies a sort list for the input records. Include this
section if values that the REPORT definition receives from the report driver
are significant in determining how BEFORE GROUP OF or AFTER GROUP OF
control blocks will process the data in the formatted report output.

If you omit the ORDER BY section, 4GL processes input records in the order
that they are received from the report driver, and processes any GROUP OF
control blocks in their order of appearance in the FORMAT section. If records
are not sorted in the report driver, the GROUP OF control blocks (pages 6-29
and 6-31) may be executed at random intervals (that is, after any input
record), because unsorted values tend to change from record to record.

EXTERNAL

BY argument

ASC

DESC

,

ORDER
6-18 INFORMIX-4GL Reports

ORDER BY Section
If you specify only one variable in the GROUP OF control blocks, and the
input records are already sorted in sequence on that variable by the SELECT
statement, then you do not need to include an ORDER BY section in the report.

The Sort List

The list of variables in the ORDER BY section specifies the order in which 4GL
sorts the input records. You can only sort on the variables that appear in the
argument list of the REPORT statement. The following program fragment, for
example, sorts output in ascending order of stock_tot values:

REPORT r_invoice (c, stock_tot)
DEFINE c RECORD LIKE customer.*,

stock_tot SMALLINT

ORDER BY stock_tot

If you include more than one variable in the sort list, 4GL uses the left-to-right
sequence of variables as the order of decreasing precedence. Unless the DESC
keyword is specified, records are sorted in ascending (lowest-to-highest) order
by values of the first (highest priority) variable. Records having the same
value for the first variable are ordered by values of the second variable, and
so on. Records with the same values on all but the last (lowest priority) vari-
able in the sort list are ordered by that variable.

If you specify the DESC keyword, the report sorts records in descending order
(highest-to-lowest) of values for the specified variable(s).

The next program fragment sorts records first by zipcode, and then within
the same zipcode by comp_name, and within comp_name by address1:

REPORT labels_rpt(c)
DEFINE c RECORD LIKE custome.*
ORDER BY c.zipcode, c.comp_name, c.address1

You can also sort the records by specifying a sort list in the ORDER BY clause
of the SELECT statement (in the report driver). If you specify sort lists in both
the report driver and the REPORT definition, the sort list in the ORDER BY sec-
tion of the REPORT takes precedence.

You should use the ORDER BY clause of the SELECT statement instead of the
ORDER BY section if the input records come from database rows returned by
only one cursor.
INFORMIX-4GL Reports 6-19

ORDER BY Section
Even if the REPORT definition receives records sorted by the report driver,
you may wish to specify ORDER EXTERNAL BY to specify the exact order in
which GROUP OF control blocks are processed. The EXTERNAL keyword
(page 6-22) can prevent the input records from being sorted again.

The Sequence of Execution of GROUP OF Control Blocks

The ORDER BY section determines the order in which 4GL processes BEFORE
GROUP OF and AFTER GROUP OF control blocks (pages 6-29 and 6-31). If you
omit the ORDER BY section, 4GL processes any GROUP OF control blocks in
the lexical order of their appearance within the FORMAT section.

If you include an ORDER BY section, and the FORMAT section contains more
than one BEFORE GROUP OF or AFTER GROUP OF control block, then the
order in which these control blocks are executed is determined by the sort list
in the ORDER BY section. In this case, their order within the FORMAT section
is not significant, because the sort list overrides their lexical order.

4GL processes all the statements in a BEFORE GROUP OF or AFTER GROUP OF
control block on these occasions:

• Each time that the value of the current group variable changes.

• Each time that the value of a higher-priority variable changes.

How often the value of the group variable changes depends in part on
whether the input records have been sorted:

• If the records are sorted, AFTER GROUP OF executes after 4GL processes
the last record of the group of records; BEFORE GROUP OF executes before
4GL processes the first records with the same value for the group variable.

• If the records are not sorted, the BEFORE GROUP OF and AFTER GROUP OF
control blocks may be executed before and after each record, because the
value of the group variable may change with each record. All the AFTER
GROUP OF and BEFORE GROUP OF control blocks are executed in the
same lexical order in which they appear in the FORMAT section.

The following program illustrates how the ORDER BY section and the
GROUP OF control blocks interact:

MAIN
START REPORT sample_rpt TO "sample.out"
OUTPUT TO REPORT sample_rpt (1,1,1)
OUTPUT TO REPORT sample_rpt (2,2,2)
FINISH REPORT sample_rtp

END MAIN
6-20 INFORMIX-4GL Reports

ORDER BY Section
REPORT sample_rpt (a,b,c)
DEFINE a,b,c, col INTEGER
ORDER EXTERNAL BY a,b,c
FORMAT

FIRST PAGE HEADER
LET col = 0

ON EVERY ROW
PRINT COLUMN col, "**rec**", a,b,c

AFTER GROUP OF c
PRINT COLUMN col, "after c"
LET col = col - 4

AFTER GROUP OF a
PRINT COLUMN col, "after a"
LET col = col - 4

AFTER GROUP OF b
PRINT COLUMN col, "after b"
LET col = col -4

BEFORE GROUP OF b
LET col = col + 4
PRINT COLUMN col, "before b"

BEFORE GROUP OF a
LET col = col + 4
PRINT COLUMN col, "before a"

BEFORE GROUP OF c
LET col = col + 4
PRINT COLUMN col, "before c"

END REPORT

The sample_rpt report in the previous example produces output in a, b, c
order (for the BEFORE GROUP OF control blocks) and c, b, a order (for the
AFTER GROUP OF control blocks), based on the a, b, c order that the ORDER
BY section specifies:

before a
before b

before c
rec 1 1 1
after c
after b

after a
before a

before b
before c
rec 2 2 2
after c

after b
after a
INFORMIX-4GL Reports 6-21

ORDER BY Section
If you delete or comment out the ORDER BY section, however, the resulting
code would produce the following output, based on the physical sequence of
variables in GROUP OF control blocks (here c, a, b) in the FORMAT section:

before c
before a

before b
rec 1 1 1
after b

after a
after c
before c

before a
before b
rec 2 2 2
after b

after a
after c

The EXTERNAL Keyword

Specify ORDER EXTERNAL BY if the input records have already been sorted
by the SELECT statement. The list of variables after the keywords ORDER
EXTERNAL BY control the execution order of GROUP BY control blocks.

Without the EXTERNAL keyword, the report is a two-pass report, meaning that
4GL processes the set of input records twice. During the first pass, it sorts the
data and stores the sorted values in a temporary file in the database. During
the second pass, 4GL calculates any aggregate values, and produces output
from data in the temporary files.

With the EXTERNAL keyword, 4GL only needs to make a single pass through
the data: it does not need to build the temporary table in the database for sort-
ing the data. Specifying EXTERNAL to instruct 4GL not to sort the records
again may result in an improvement in performance.

In the previous code example, the EXTERNAL keyword in the ORDER BY
section instructs the report to accept the input records without sorting them.
Without this keyword, the report needs access to a database to create its tem-
porary table for sorting. (If no database is open and you run a two-pass
report, a run-time error occurs when 4GL cannot create the temporary table.)

If the input records for your report come sequenced in the desired order (for
example, from the rows returned by only one cursor), or if you want values
in descending order, you should use the ORDER BY clause in the SELECT state-
ment that is associated with the cursor. Then use the EXTERNAL keyword in
the ORDER BY section of your report.
6-22 INFORMIX-4GL Reports

FORMAT Section
FORMAT Section
A REPORT definition must contain a FORMAT section. The FORMAT section
determines what the output from the report will look like. It works with the
values that are passed to the REPORT program block through the argument
list, or with global or module variables in each record of the report. In a
source file, the FORMAT section begins with the FORMAT keyword, and ends
with the END REPORT keywords.

4GL supports two types of FORMAT sections. The simplest (a default report)
contains only the EVERY ROW keywords (page 6-24) between the FORMAT
and END REPORT keywords.

More complex FORMAT sections can contain control blocks, like ON EVERY
ROW or BEFORE GROUP OF, containing statements to execute while the report
is being processed. Control blocks can contain report execution statements
(page 6-39), and other executable 4GL statements that are not SQL statements.

Sections that follow describe the syntax of default FORMAT sections, of the
seven types of FORMAT section control blocks, and of the report execution
statements that can appear only within a control block. The FORMAT section
has the following structure:

END REPORT

BEFORE GROUP OF
p. 6-31

AFTER GROUP OF
p. 6-29

ON LAST ROW
p. 6-36

ON EVERY ROW
p. 6-34

PAGE TRAILER
p. 6-38

FIRST PAGE HEADER
p. 6-33

PAGE HEADER
p. 6-37

FORMAT EVERY ROW

1

1

1

1

1

INFORMIX-4GL Reports 6-23

FORMAT Section
If you do not use the EVERY ROW keywords to specify a default report, you
can combine one or more control blocks in any order within the FORMAT sec-
tion. Except for BEFORE GROUP OF and AFTER GROUP OF control blocks, each
type of control block must be unique within the report.

EVERY ROW

The EVERY ROW keywords specify a default output format, including every
input record that is passed to the report. If you use the EVERY ROW option,
no other statements or control blocks are valid.

Usage
This option formats the report in a simple default format, containing only the
values that are passed to the REPORT program block through its arguments,
and the names of the arguments.

You cannot modify the EVERY ROW statement with any of the statements
listed in the “Statements in REPORT Control Blocks” section later in this
chapter, nor can you include any control blocks in the FORMAT section. To
display every record in a format other than the default format, use the ON
EVERY ROW control block (as described in the “FORMAT Section Control
Blocks” on page 6-27.)

The following example of a report definition uses the EVERY ROW option:

REPORT minimal(customer)
DEFINE customer RECORD LIKE customer.*
FORMAT

EVERY ROW
END REPORT

EVERY ROW
6-24 INFORMIX-4GL Reports

FORMAT Section
Here is a portion of the output from the preceding default specification:

customer.customer_num 101
customer.fname Ludwig
customer.lname Pauli
customer.company All Sports Supplies
customer.address1 213 Erstwild Court
customer.address2
customer.city Sunnyvale
customer.state CA
customer.zipcode 94086
customer.phone 408-789-8075

customer.customer_num 102
customer.fname Carole
customer.lname Sadler
customer.company Sports Spot
customer.address1 785 Geary St
customer.address2
customer.city San Francisco
customer.state CA
customer.zipcode 94117
customer.phone 415-822-1289

Reports generated with the EVERY ROW option use as column headings the
names of the variables that the report driver passes as arguments at run time.
If all fields of each input records can fit horizontally on a single line, the
default report prints the names across the top of each page, and the values
beneath. Otherwise, it formats the report with the names down the left side
of the page and the values to the right, as in the previous example. When a
variable contains a NULL value, the default report prints only the name of the
variable, with nothing for the value.
INFORMIX-4GL Reports 6-25

FORMAT Section
The following is another example of a brief report specification that uses the
EVERY ROW statement. (Assume here that the cursor that retrieved the input
records for this report was declared with an ORDER BY clause, so that no
ORDER BY section is needed in this REPORT definition.)

DATABASE stores2

REPORT simple(order_num, customer_num, order_date)
DEFINE order_num LIKE orders.order_num,

customer_num LIKE orders.customer_num,
order_date LIKE orders.order_date

FORMAT
EVERY ROW

END REPORT

The following is part of the output from the preceding REPORT definition.

order_num customer_num order_date

1001 104 01/20/1993
1002 101 06/01/1993
1003 104 10/12/1993
1004 106 04/12/1993
1005 116 12/04/1993
1006 112 09/19/1993
1007 117 03/25/1993
1008 110 11/17/1993
1009 111 02/14/1993
1010 115 05/29/1993
1011 104 03/23/1993
1012 117 06/05/1993

You can use the RIGHT MARGIN statement in the OUTPUT section to control
the width of a report that uses the EVERY ROW statement.
6-26 INFORMIX-4GL Reports

FORMAT Section Control Blocks
FORMAT Section Control Blocks
Control blocks define the structure of a report, by specifying one or more state-
ments to be executed when specific parts of the report are processed. If no
data records are output to the report, then none of the statements in these
blocks are executed. (See page 6-39.) Each of the seven types of control blocks
is optional, but if you do not use the EVERY ROW keywords, you must
include at least one control block in the FORMAT section.

Control Block When Statements in Block Are Executed
FIRST PAGE HEADER before processing of the first page begins
PAGE HEADER before processing of the each subsequent page begins
BEFORE GROUP OF before processing a group of sorted records
ON EVERY ROW as each record is passed to the report
AFTER GROUP OF after processing a group of sorted records
PAGE TRAILER after processing of each page ends
ON LAST ROW after the last record is passed to the report

A report can include BEFORE GROUP OF, AFTER GROUP OF, and ON EVERY
ROW control blocks where the GROUP OF blocks reference the same variable.
In this case, when the value of the variable changes, the report processes all
BEFORE GROUP OF blocks before the ON EVERY ROW block, and the ON
EVERY ROW block before all AFTER GROUP OF blocks.

The sequence in which the BEFORE GROUP OF and AFTER GROUP OF control
blocks are executed depends upon the sort list in the ORDER BY section. For
example, assume that the ORDER BY section specifies a sort list of variables a,
b, and c in that order (as illustrated on page 6-20). 4GL processes the control
blocks in the following order, regardless of the physical sequence in which
these control blocks appear within the FORMAT section:

BEFORE GROUP OF a {1}
BEFORE GROUP OF b {2}

BEFORE GROUP OF c {3}
ON EVERY ROW {4}

AFTER GROUP OF c {3}
AFTER GROUP OF b {2}

AFTER GROUP OF a {1}

Figure 6-1 The Order of Group Processing, if “a,b,c” is the sort list in the ORDER BY Section
INFORMIX-4GL Reports 6-27

FORMAT Section Control Blocks
In this example, a control block may be executed multiple times relative to
any other block that is marked with a lower number in the right-hand col-
umn. Without an ORDER BY section, the default is the physical order of first
mention of the variables in either BEFORE or AFTER GROUP OF control blocks.

Note: New values assigned to variables in the PAGE HEADER control block are not
available until after the first PRINT, SKIP, or NEED statement is executed in an ON
EVERY ROW control block. This is done to guarantee that any group values printed
in the PAGE HEADER control block have the same values as in the ON EVERY ROW
control block. If a report written for release 4.0 or earlier of INFORMIX-4GL sets vari-
ables in the PAGE HEADER control block for use in the ON EVERY ROW control
block, output from the report may be different when run with release 4.1 or later.
6-28 INFORMIX-4GL Reports

AFTER GROUP OF
AFTER GROUP OF
The AFTER GROUP OF control block specifies the action that 4GL takes after it
processes a group of sorted records. Grouping is determined by the ORDER
BY specification in the SELECT statement or in the REPORT definition.

statement is a report execution statement (page 6-39) or other 4GL statement.

variable is the name of a formal argument to the REPORT definition. You
must pass at least the value of variable through the arguments.

Usage
A group of records is all of the input records that contain the same value for
the variable whose name follows the AFTER GROUP OF keywords. This group
variable must be passed through the report arguments. A report can include
no more than one AFTER GROUP OF control block for any group variable.

When 4GL executes the statements in a AFTER GROUP OF control block, local
variables have the values from the last record of the current group. From this
perspective, the AFTER GROUP OF control block could be thought of as the
“on last record of group” control block.

The Order of Processing AFTER GROUP OF Control Blocks

4GL executes the AFTER GROUP OF of control block on these occasions:

• Whenever the value of the group variable changes

• Whenever value of a higher-priority variable in the sort list changes.

• At the end of the report (after processing the last input record, but before
4GL executes any ON LAST ROW or PAGE TRAILER control blocks), each
AFTER GROUP OF of control block is executed in ascending priority.

The section “The Sort List” on page 6-19 describes how input records are
sorted according to a group variable (or a list of group variables), and the
order of precedence among several variables in the sort list. How often the
value of the group variable changes depends in part on whether the input
records have been sorted by the SELECT statement:

• If the records are already sorted, the AFTER GROUP OF block is executed
after 4GL processes the last record of the group of records.

• If the records are not sorted, the AFTER GROUP OF control blocks may be

AFTER GROUP OF variable statement
INFORMIX-4GL Reports 6-29

AFTER GROUP OF
executed after any record, because the value of the group variable may
change with each record. If the report includes no ORDER BY section
(page 6-18), all AFTER GROUP OF control blocks are executed in the same
order in which they appear in the FORMAT section.

The AFTER GROUP OF control block is designed to work with sorted data.
You can sort the records by specifying a sort list in either of the following:

• An ORDER BY section in the REPORT definition.

• The ORDER BY clause of the SELECT statement in the report driver.

To sort data in the REPORT definition (with an ORDER BY section), make sure
that the name of the group variable appears in both the ORDER BY section and
also in the AFTER GROUP OF control block.

To sort data in the ORDER BY clause of SELECT statement, do the following:

• Use the column name in the ORDER BY clause of the SELECT statement as
the group variable in the AFTER GROUP OF control block.

• If the report contains BEFORE or AFTER GROUP OF control blocks, make
sure that you include an ORDER EXTERNAL BY section in the report to
specify the precedence of variables in the sort list.

If you specify sort lists in both the report driver and in the report definition,
the sort list in the ORDER BY section of the REPORT takes precedence. The sort
list can include more than one variable. In this case, the report sorts the
records by values in the first variable (highest priority). Records having the
same value for the first variable are then ordered by the second variable, and
so on, until records having the same values on all other variables are ordered
by the last variable (lowest priority) in the sort list.

The GROUP Keyword in Aggregate Functions

In the AFTER GROUP OF control block, you can include the GROUP keyword
to qualify aggregate report functions like AVG(), SUM(), MIN(), or MAX():

AFTER GROUP OF r.order_num
PRINT "", r.order_date, 7 SPACES,

r.order_num USING "###&",
8 SPACES, r.ship_date, " ",
GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

AFTER GROUP OF r.customer_num
PRINT 42 SPACES, "-------------------"
PRINT 42 SPACES,

GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"
6-30 INFORMIX-4GL Reports

BEFORE GROUP OF
The GROUP keyword to qualify an aggregate function is only valid within the
AFTER GROUP OF control block. It is not valid, for example, in the BEFORE
GROUP OF control block: The aggregates report functions of 4GL are
described on pages 6-46 and 4-13.

After the last input record is processed, 4GL executes the AFTER GROUP OF
control blocks before it executes the ON LAST ROW control block.

BEFORE GROUP OF
The BEFORE GROUP OF control block specifies what action 4GL takes before
it processes a group of input records. Group hierarchy is determined by the
ORDER BY specification in the SELECT statement or in the REPORT definition.

statement is a report execution statement (page 6-39) or other 4GL statement.

variable is the name of a variable from the list of formal arguments to the
REPORT definition. You must pass at least the value of variable
through the arguments of the REPORT definition.

Usage
A group of records is all of the input records that contain the same value for
the variable specified after the BEFORE GROUP OF keywords. You can include
no more than one BEFORE GROUP OF control block for each group variable.

When 4GL executes the statements in a BEFORE GROUP OF control block, the
report variables have the values from the first record of the new group. From
this perspective, the BEFORE GROUP OF control block could be thought of as
the “on first record of group” control block.

The Order of Processing BEFORE GROUP OF Control Blocks

Each BEFORE GROUP OF block is executed in highest-to-lowest priority order
at the start of a report (after any FIRST PAGE HEADER or PAGE HEADER
control blocks, but before processing the first record), and on these occasions:

• Whenever the value of the group variable changes (after any
AFTER GROUP OF block for the old value completes execution).

• Whenever value of a higher-priority variable in the sort list changes (after
any AFTER GROUP OF block for the old value completes execution).

BEFORE GROUP OF variable statement
INFORMIX-4GL Reports 6-31

BEFORE GROUP OF
How often the value of the group variable changes depends in part on
whether the input records have been sorted by the SELECT statement:

• If the records are already sorted, the BEFORE GROUP OF block executes
before 4GL processes the first record of the group of records.

• If the records are not sorted, the BEFORE GROUP OF control blocks may be
executed after any record, because the value of the group variable may
change with each record. If the report includes no ORDER BY section
(6-18), all BEFORE GROUP OF control blocks are executed in the same
order in which they appear in the FORMAT section.

The BEFORE GROUP OF control block is designed to work with sorted data.
You can sort the records by specifying a sort list in either of the following:

• An ORDER BY section in the REPORT definition.

• The ORDER BY clause of the SELECT statement in the report driver.

To sort data in the REPORT definition (with an ORDER BY section), make sure
that the name of the group variable appears in both the ORDER BY section and
also in the BEFORE GROUP OF control block.

To sort data in the ORDER BY clause of SELECT statement, do the following:

• Use the column name in the ORDER BY clause of the SELECT statement as
the group variable in the BEFORE GROUP OF control block.

• If the report contains BEFORE or AFTER GROUP OF control blocks, make
sure that you include an ORDER EXTERNAL BY section in the report to
specify the precedence of variables in the sort list.

If you specify sort lists in both the report driver and in the report definition,
the sort list in the ORDER BY section of the REPORT takes precedence.

When 4GL starts to generate a report, it first executes the BEFORE GROUP OF
control blocks in descending order of priority before it executes the ON
EVERY ROW control block. (See also Figure 6-1 on page 6-27.)

If the report is not already at the top of the page, the SKIP TO TOP OF PAGE
statement in a BEFORE GROUP OF control block causes the output for each
group to start at the top of a page.

BEFORE GROUP OF r.customer_num
SKIP TO TOP OF PAGE
6-32 INFORMIX-4GL Reports

FIRST PAGE HEADER
FIRST PAGE HEADER
This control block specifies action that INFORMIX-4GL takes before it begins
processing the first input record.You can use it, for example, to specify what
(if any) information appears near the top of the first page of the report.

statement is a report execution statement (page 6-39) or other 4GL statement.

Usage
Because INFORMIX-4GL executes the FIRST PAGE HEADER control block before
it generates any output, you can use this control block to initialize variables
that you use in the FORMAT section. In the following example, from a report
that produces multiple labels across the page, the FIRST PAGE HEADER does
not display any information.

FIRST PAGE HEADER
{Nothing is displayed in this control block. It just

initializes variables that are used in the ON EVERY ROW
control block.}

{Initialize label counter.}
LET i = 1

{Determine label width; allow 8 spaces between labels).}
LET l_size = 72/count1

{Divide 8 spaces among the labels across the page.}
LET white = 8/count1

If a report driver includes START REPORT and FINISH REPORT statements,
but no data records are passed to the report, this control block is not executed.

Displaying Titles and Headings

As its name implies, you can also use a FIRST PAGE HEADER control block to
produce a title page, as well as column headings. On the first page of a report,
this control block overrides any PAGE HEADER control block. That is, if both
a FIRST PAGE HEADER and PAGE HEADER control block exist, output from
the first appears at the beginning of the first page, and output from the
second begins all subsequent pages.

FIRST PAGE HEADER statement
INFORMIX-4GL Reports 6-33

ON EVERY ROW
The TOP MARGIN (set in the OUTPUT section) determines how close the
header appears to the top of the page.

Restrictions on the List of Statements

The following restrictions apply to FIRST PAGE HEADER control blocks:

• You cannot include a SKIP integer LINES statement inside a loop within
this control block.

• The NEED statement is not valid within this control block.

• If you use an IF ... THEN ... ELSE statement within this control block, the
number of lines displayed by any PRINT statements following the THEN
keyword must be equal to the number of lines displayed by any PRINT
statements following the ELSE keyword.

• If you use a CASE, FOR, or WHILE statement that contains a PRINT state-
ment within this control block, you must terminate the PRINT statement
with a semicolon (;) symbol. The semicolon suppresses any LINEFEED
characters in the loop, keeping the number of lines in the header constant
from page to page.

• You cannot use a PRINT filename statement to read and display text from
a file within this control block.

Corresponding restrictions also apply to CASE, FOR, IF, NEED, SKIP, PRINT,
and WHILE statements in PAGE HEADER (page 6-37) and PAGE TRAILER
(page 6-38) control blocks.

ON EVERY ROW
The ON EVERY ROW control block specifies the action to be taken by 4GL
for every input record that is passed to the REPORT definition.

statement is a report execution statement (page 6-39) or other 4GL statement.

Usage
INFORMIX-4GL executes the statements within the ON EVERY ROW control
block for each new input record that is passed to the report.

ON EVERY ROW statement
6-34 INFORMIX-4GL Reports

ON EVERY ROW
The following example is from a report that lists all the customers, their
addresses, and their telephone numbers across the page:

ON EVERY ROW
PRINT customer_num USING "###&",

COLUMN 12, fname CLIPPED, 1 SPACE,
lname CLIPPED, COLUMN 35, city CLIPPED,
", " , state, COLUMN 57, zipcode,
COLUMN 65, phone

The next example displays information about items and their prices:

ON EVERY ROW
PRINT snum USING "##&", COLUMN 10, manu_code, COLUMN 18,

description CLIPPED, COLUMN 38, quantity USING "##&",
COLUMN 43, unit_price USING "$$$$.&&",
COLUMN 55, total_price USING "$$,$$$,$$$.&&"

The next example is from a mailing label report:

ON EVERY ROW
IF (city IS NOT NULL) AND

(state IS NOT NULL) THEN
PRINT fname CLIPPED, 1 SPACE, lname
PRINT company
PRINT address1
IF (address2 IS NOT NULL) THEN PRINT address2
PRINT city CLIPPED " , " , state, 2 SPACES, zipcode
SKIP TO TOP OF PAGE

END IF

4GL delays processing the PAGE HEADER control block (or the FIRST PAGE
HEADER control block, if it exists) until it encounters the first PRINT, SKIP,
or NEED statement in the ON EVERY ROW control block.

Group Control Blocks

If a BEFORE GROUP OF control block is triggered by a change in the value
of a variable, 4GL executes all appropriate BEFORE GROUP OF control blocks
(in the order of their priority) before it executes the ON EVERY ROW control
block. Similarly, if execution of an AFTER GROUP OF control block is triggered
by a change in the value of a variable, then 4GL executes all appropriate
AFTER GROUP OF control blocks (in the reverse order of their priority) before
it executes the ON EVERY ROW control block.
INFORMIX-4GL Reports 6-35

ON LAST ROW
ON LAST ROW
The ON LAST ROW control block specifies the action that 4GL is to take after
it processes the last input record that was passed to the REPORT definition
and encounters the FINISH REPORT statement.

statement is a report execution statement (page 6-39) or other 4GL statement.

Usage
The statements in the ON LAST ROW control block are executed after the
statements in the ON EVERY ROW and AFTER GROUP OF control blocks, if
these are present.

When 4GL processes the statements in an ON LAST ROW control block, the
variables that the report is processing still have the values from the final
record that the report processed. The ON LAST ROW control block can use
aggregate functions to display report totals, as in this example:

ON LAST ROW
SKIP 1 LINE
PRINT COLUMN 12, "TOTAL NUMBER OF CUSTOMERS:",

COLUMN 57, COUNT(*) USING "#&"

ON LAST ROW statement
6-36 INFORMIX-4GL Reports

PAGE HEADER
PAGE HEADER
The PAGE HEADER control block specifies the action that 4GL takes before it
begins processing each page of the report. It can specify what information, if
any, appears at the top of each new page of the report.

statement is a report execution statement (page 6-39) or other 4GL statement.

Usage
You can use a PAGE HEADER control block to display column headings. The
next example produces column headings for printing data across the page.

PAGE HEADER
PRINT "NUMBER",
COLUMN 12, "NAME",
COLUMN 35, "LOCATION",
COLUMN 57, "ZIP",
COLUMN 65, "PHONE"
SKIP 1 LINE

This control block is executed whenever a new page is added to the report.
The TOP MARGIN specification (in the OUTPUT section) affects how many
blank lines appear above the output produced by statements in the PAGE
HEADER control block. You can use the PAGENO operator in a PRINT
statement within a PAGE HEADER control block to display the current page
number automatically at the top of every page.

The FIRST PAGE HEADER control block overrides this control block on the
first page of a report.

New group values can appear in the PAGE HEADER control block when this
control block is executed after a simultaneous end-of-group and end-of-page
situation. 4GL delays the processing of the PAGE HEADER control block until
it encounters the first PRINT, SKIP, or NEED statement in the ON EVERY ROW,
BEFORE GROUP OF, or AFTER GROUP OF control block. This guarantees that
any group columns printed in the PAGE HEADER control block have the same
values as the columns printed in the ON EVERY ROW control block.

The same restrictions apply to CASE, FOR, IF, NEED, SKIP, PRINT, and WHILE
statements in the PAGE HEADER control block as apply to the FIRST PAGE
HEADER (page 6-34) and PAGE TRAILER (page 6-38) control blocks.

PAGE HEADER statement
INFORMIX-4GL Reports 6-37

PAGE TRAILER
PAGE TRAILER
The PAGE TRAILER control block specifies what information, if any, appears
at the bottom of each page of the report.

statement is a report execution statement (page 6-39) or other 4GL statement.

Usage
4GL executes the statements in the PAGE TRAILER control block before the
PAGE HEADER control block when a new page is needed. New pages can be
initiated by any of the following conditions:

• PRINT attempts to print on a page that is already full.

• SKIP TO TOP OF PAGE is executed.

• SKIP n LINES specifies more lines than are available on the current page.

• NEED specifies more lines than are available on the current page.

You can use the PAGENO operator in a PRINT statement within a PAGE
TRAILER control block to display the page number automatically at the bot-
tom of every page, as in the following example:

PAGE TRAILER
PRINT COLUMN 28,

PAGENO USING "page <<<<"

The BOTTOM MARGIN specification (in the OUTPUT section) affects how close
to the bottom of the page the output displays the page trailer.

Restrictions on the List of Statements

The number of lines produced by the PAGE TRAILER control block cannot
vary from page to page, and must be unambiguously expressed. See the list
of specific restrictions that apply to CASE, FOR, IF, NEED, SKIP, PRINT, and
WHILE statements in the FIRST PAGE HEADER (page 6-34) control block.

PAGE TRAILER statement

,

6-38 INFORMIX-4GL Reports

Statements in REPORT Control Blocks
Statements in REPORT Control Blocks
The control blocks determine when 4GL takes an action in a report; within
each control block, the statements determine what action 4GL takes. The list of
statements within a control block terminates when another control block
begins, or else when the END REPORT keywords that terminate the REPORT
program block are encountered. You can include most 4GL statements in a
control block, as well as several statements that can be used only in the
FORMAT section of a REPORT definition.

SQL Statements
The REPORT definition cannot include SQL statements. You can include any
SQL statements that the report requires in the report driver (page 6-5), rather
than in the REPORT program block.

Other INFORMIX-4GL Statements
The 4GL statements most frequently used in the control blocks of reports are
CASE, FOR, IF, LET, and WHILE. These statements have the same syntax that
they have elsewhere in 4GL applications, as Chapter 3 describes. (Remember
that any local variables referenced in such statements must be declared in the
DEFINE section of the REPORT definition.)

Statements Valid Only in the FORMAT Section
Four statements (sometimes called report execution statements), can appear
only in control blocks of the FORMAT section of a REPORT definition:

Statement Effect
NEED Forces a page break, unless some specified number of lines are

available on the current page of the report.

PAUSE Allows the user to control scrolling of screen output. (This statement
has no effect if output is sent to any destination except the screen.)

PRINT Appends a specified item to the output of the report.

SKIP Inserts blank lines into a report, or forces a page break.

Descriptions of these report execution statements follow.
INFORMIX-4GL Reports 6-39

NEED
NEED
This statement causes any subsequent display to start on the next page, if
fewer than the specified number of lines remain between the current line and
the bottom margin of the current page of report output.

lines is an integer expression (page 3-338) that returns a positive whole
number.

Usage
This statement has the effect of a conditional SKIP TO TOP OF PAGE statement,
the “condition” being that the number to which the integer expression eval-
uates is greater than the number of lines that remain on the current page.

The NEED statement can prevent the report from dividing parts of the output
that you want to keep together on a single page. In the following example,
the NEED statement causes the PRINT statement to send output to the next
page, unless at lease six lines remain on the current page:

AFTER GROUP OF r.order_num
NEED 6 LINES
PRINT " ",r.order_date, 7 SPACES,

GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

The lines value specifies how many lines must remain between the line above
the current character position and the bottom margin for the next PRINT
statement to produce output on the current page. If the number of remaining
lines on the page is less than lines, then 4GL prints both the PAGE TRAILER
and the PAGE HEADER.

The NEED statement does not include the BOTTOM MARGIN value when it
compares lines to the number of lines remaining on the current page.

The NEED statement is not valid in FIRST PAGE HEADER, PAGE HEADER, nor
PAGE TRAILER control blocks.

References
PAUSE, PRINT, REPORT, SKIP

NEED lines LINES
6-40 INFORMIX-4GL Reports

PAUSE
PAUSE
The PAUSE statement temporarily suspends output to the screen, until the
user presses RETURN.

string is a quoted string that PAUSE displays. If you do not supply a mes-
sage, PAUSE displays no message.

Usage
Output is sent by default to the screen unless the START REPORT statement or
the OUTPUT section specifies a destination for report output. The PAUSE
statement can be executed only if the report sends its output to the screen. It
has no effect if you include a TO clause in either of these contexts:

• In the OUTPUT section of the REPORT definition (page 6-13).

• In the START REPORT statement of the report driver (page 3-271).

Include the PAUSE statement in the PAGE HEADER or PAGE TRAILER block of
the report. For example, the following code causes INFORMIX-4GL to skip a
line and pause at the end of each page of report output displayed on the
screen.

PAGE TRAILER
SKIP 1 LINE
PAUSE "Press RETURN to display next screen."

References
NEED, PRINT, REPORT, SKIP

PAUSE

" string"
INFORMIX-4GL Reports 6-41

PRINT
PRINT
The PRINT statement produces output from a REPORT definition.

BYTE variable is the identifier of a 4GL variable of data type BYTE.

filename is a character string, enclosed between quotation (") marks,
and specifying the name of an ASCII file to include in the
output from the report. The filename can include a pathname.

left offset is an expression that evaluates to a positive whole number,
specifying a character position offset (from the left margin) no
greater than the difference (right margin - left margin).

relative offset is an expression that evaluates to a positive whole number,
specifying an offset (from the current character position) no
greater than the difference (right margin - current position).

temporary is an expression that evaluates to a positive whole number,
specifying the absolute position of a temporary right margin.

TEXT variable is the identifier of an 4GL variable of the TEXT data type.

See page 3-338 for the syntax of 4GL expressions like the left offset, relative
offset, and temporary terms that evaluate to integer values.

 PRINT 4GL Expression
p. 3-326

,

FILE

LINENO

PAGENO

COLUMN

SPACES

" filename"

WORDWRAP RIGHT MARGIN

left offset

temporary

Aggregate Report Functions

relative offset SPACE

 TEXT variable

 BYTE variable

;

Character
Expression

p. 3-343
6-42 INFORMIX-4GL Reports

PRINT
Usage
This statement can include character data in the form of an ASCII file, a TEXT
variable, or a comma-separated expression list of character expressions in the
output of the report. (For a TEXT variable or filename, you cannot specify addi-
tional output in the same PRINT statement.) You cannot display a BYTE value.
Unless its scope of reference is global or the current module, any program
variable in expression list must be declared in the DEFINE section.

Output is sent to the destination specified in the REPORT TO clause of the
OUTPUT section, or in the TO clause of the START REPORT statement of the
report driver. Otherwise, the screen (page 6-14) is the destination.

The following example is from the FORMAT section of a REPORT definition
that displays both quoted strings and values from rows of the customer table:

FIRST PAGE HEADER
PRINT COLUMN 30, "CUSTOMER LIST"
SKIP 2 LINES
PRINT "Listings for the State of ", thisstate
SKIP 2 LINES
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT customer_num USING "###&", COLUMN 12, fname CLIPPED,

1 SPACE, lname CLIPPED, COLUMN 35, city CLIPPED, ", " ,
state, COLUMN 57, zipcode, COLUMN 65, phone

When NLS is active, the settings in the NLS environment variables
LC_MONETARY and LC_NUMERIC affect the default numeric and mone-
tary formatting. For example, the number 2345.67 in a US English locale
prints as 2,345.67. With LC_NUMERIC set for the French locale, where the
thousands separator is the comma and the decimal separator the period,
the value prints as 2.345,67. Note that setting either DBFORMAT or
DBMONEY overrides any settings in LC_NUMERIC or LC_MONETARY.

NLS
INFORMIX-4GL Reports 6-43

PRINT
The FILE Option

The PRINT FILE statement reads the contents of the specified filename into the
report, beginning at the current character position. This permits you to insert
a multiple-line character string into the output of a report. The following
example uses the PRINT FILE statement to include the body of a form letter
from file occupant.let in the output of a report that generates letters:

PRINT "Dear", 1 SPACES, "fname",","
PRINT FILE "/usr/claire/occupant.let"

If filename stores the value of a TEXT variable, then the PRINT FILE
“ filename ” statement has the same effect as specifying PRINT variable.
(But only PRINT variable can include the WORDWRAP operator, as described
on page 6-50.)

The Character Position

PRINT statement output begins at the current character position, sometimes
called simply the “current position.” On each page of a report, the initial
default character position is the first character position in the first line. This
can be offset horizontally and vertically by margin and header specifications,
and by executing any of the following statements:

• The SKIP statement moves it down to the left margin of a new line.

• The NEED statement can conditionally move it to a new page.

• The PRINT statement moves it horizontally (and sometimes down).

Unless you use the keyword CLIPPED or USING, values are displayed with
widths (including any sign) that depend on their declared data types:

Data Type Default Display Width (in characters)
BYTE 12. (4GL displays the string “<byte value>” as the only output.)
CHAR The length from the data-type declaration.
DATE 10.
DATETIME From 2 to 25, as implied in the data-type declaration.
DECIMAL (2 + m), for m the precision from the data-type declaration.
FLOAT 14.
INTEGER 11.
INTERVAL From 3 to 25, as implied in the data-type declaration.
MONEY (3 + m), for m the precision from the data-type declaration.
SMALLFLOAT 14.
SMALLINT 6.
TEXT The data length of the character string.
VARCHAR The data length of the character string.
6-44 INFORMIX-4GL Reports

PRINT
Unless you specify the FILE or WORDWRAP option, the PRINT statement dis-
plays its output on a single line. This fragment displays output on two lines:

PRINT fname, lname
PRINT city, " , " , state, 2 SPACES, zipcode

If you terminate a PRINT statement with a semicolon (;) symbol, however,
you suppress the implicit LINEFEED character at the end of the line. The next
example has the same effect as the PRINT statements in the previous example:

PRINT fname;
PRINT lname
PRINT city, ", ";
PRINT state, 2 SPACES, zipcode

The Expression List

The expression list of a PRINT statement returns one or more values that can
be displayed as printable characters. The following built-in functions and
operators can appear in the expression list of PRINT. Some of these can appear
only in a REPORT program block. Letter superscripts indicate restrictions on
the context where some of the following can appear within an 4GL program.
(All of these built-in functions and operators are described in Chapter 4.)

ASCII DATE() MIN()s TIME
AVG()s DAY() MDY() TODAY
CLIPPED EXTEND() MONTH() UNITS
COLUMN GROUPr PAGENOr USING
COUNT(*)s LENGTH() PERCENT(*)r WEEKDAY()
CURRENT LINENOr SPACESr YEAR
DATE MAX()s SUM()s YEAR()

r You can use these expressions only within the FORMAT section of a REPORT definition.
(A description appears later in this section.)

s You can use these aggregate functions only in the FORMAT section of a REPORT, or in
statements of SQL. (Note that the PERCENT(*) aggregate cannot appear in these SQL
statement.)

If the expression list applies the USING operator to format a DATE or MONEY
value, the format-string of the USING operator (page 4-91) takes precedence
over the DBDATE, DBMONEY, or DBFORMAT environment variables.
INFORMIX-4GL Reports 6-45

PRINT
Aggregate Report Functions

Aggregate report functions summarize data from several records in a report.
The syntax and effects of aggregates in a report resemble those of SQL aggre-
gate functions, but are not identical. (See the Informix Guide to SQL: Reference
for the syntax of SQL aggregate functions in SQL statements.)

The expression (in parentheses) that SUM(), AVG(), MIN(), or MAX() takes as
an argument is typically of a number or INTERVAL data type; ARRAY, BYTE,
RECORD, or TEXT are not valid. The AVG(), SUM(), MIN(), and MAX() aggre-
gates ignore input records for which their arguments have NULL values, but
each returns NULL if every record has a NULL value for the argument.

The GROUP Keyword

This optional keyword causes the aggregate function to include data only for
a group of records that have the same value on a variable that you specify in
an AFTER GROUP OF control block. An aggregate function can only include
the GROUP keyword within an AFTER GROUP OF control block.

The WHERE Clause

The optional WHERE clause allows you to select among records passed to the
report, so that only records for which the Boolean expression is TRUE are
included. (See the section “4GL Boolean Expressions” on page 3-333.)

The AVG() and SUM() Aggregates

These evaluate as the average (that is, the arithmetic mean value) and the total
(respectively) of expression among all records, or among records qualified by
the optional WHERE clause and any GROUP specification.

GROUP

 PERCENT (*)
COUNT

AVG

SUM

MAX

MIN

()Number Expression
p. 3-341

 ()

INTERVAL Value
p. 3-347

WHERE
4GL Boolean
Expression

p. 3-333

4GL Expression
p. 3-326

 ()
6-46 INFORMIX-4GL Reports

PRINT
The COUNT (*) and PERCENT (*) Aggregates

These return, respectively, the total number of records qualified by the
optional WHERE clause, and the percentage of the total number of records in
the report. You must include the (*) symbols.

The following fragment of a REPORT definition uses the AFTER GROUP OF
control block and GROUP keyword to form sets of records according to how
many items are in each order. The last PRINT statement calculates the total
price of each order, then adds a shipping charge, and prints the result.

AFTER GROUP OF number
SKIP 1 LINE
PRINT 4 SPACES, "Shipping charges for the order: ",

ship_charge USING "$$$$.&&"
PRINT 4 SPACES, "Count of small orders: ",

count(*) WHERE total_price < 200.00 USING "##,###"
SKIP 1 LINE
PRINT 5 SPACES, "Total amount for the order: ",

ship_charge + GROUP SUM(total_price) USING "$$,$$$,$$$.&&"

Since no WHERE clause is specified, GROUP SUM() combines the total_price
of every item in the group comprising the order.

The MIN() and MAX() Aggregates

These evaluates as the minimum value and maximum value (respectively)
for expression among all records, or among records qualified by the optional
WHERE clause and any GROUP specification. For character data, greater than
means “after” in the ASCII collating sequence, where a> A> 1, and less than
means “before” in the ASCII sequence, where 1< A< a. For DATETIME or
DATE data, greater than means “later” and less than means “earlier” in time.
Appendix G lists the ASCII collating sequence.

The ASCII Operator

This returns the ASCII character whose numeric code you specify, just as
described in Chapter 4, with one exception: To print a NULL character in a
report, call the ASCII operator with 0 in a PRINT statement. For example, the
following statement prints the NULL character:

PRINT ASCII 0

ASCII 0 only displays a NULL character in the PRINT statement. In other
contexts, ASCII 0 returns a blank space. (See also the description of ASCII on
page 4-28.)
INFORMIX-4GL Reports 6-47

PRINT
The COLUMN Operator

The COLUMN operator can appear in PRINT statements to move the character
position forward within the current line. It has the following syntax:

left offset is an integer expression (page 3-338) that specifies a character
position offset (from the left margin) no greater than the difference
(right margin - left margin).

This moves the character position to the specified left offset, where 1 is the first
position after the left margin. If current position is greater than left offset, the
specification is ignored. (See also the description of COLUMN on page 4-40).

The LINENO Operator

This returns the value of the line number of the report line that is currently
printing. INFORMIX-4GL computes the line number by calculating the
number of lines from the top of the current page, including the TOP MARGIN.
In the following example, a PRINT statement instructs INFORMIX-4GL to
calculate and display the current line number, beginning in the tenth
character position after the left margin.

IF (LINENO > 9) THEN
PRINT COLUMN 10, LINENO USING "Line <<<"

END IF

The PAGENO Operator

This returns the value of the number of the page that INFORMIX-4GL is
currently printing. The next example conditionally prints the value of
PAGENO, using the USING operator to format it, if its value is less than 10,000.

IF (PAGENO < 10000) THEN
PRINT COLUMN 28, PAGENO USING "page <<<<"

END IF

You can use PAGENO in the PAGE HEADER or PAGE TRAILER, or in other con-
trol blocks, to number sequentially the pages of a report.

left offsetCOLUMN
6-48 INFORMIX-4GL Reports

PRINT
If you use the SQL aggregate COUNT(*) in the SELECT statement to find how
many records are returned by the query, and if the number of records that
appear on each page of output is both fixed and known, you can calculate the
total number of pages, as in the following example:

SELECT COUNT(*) num FROM customer INTO TEMP cnt
SELECT * FROM customer, cnt --Note temp table in FROM clause

--and no join is necessary
. . .

FORMAT
FIRST PAGE HEADER
LET y = cnt/50 --assumes 50 records per page; you must

--round up if there is a remainder.}
PAGE TRAILER
PRINT "Page ", PAGENO USING "<<" " of ", y USING "<<"

If the calculated number of pages were 20, the first page trailer would be:

Page 1 of 20

PAGENO is incremented with each page, so the last page trailer would be:

Page 20 of 20

The SPACE or SPACES Operator

relative offset is an integer expression (page 3-338) that returns a positive
number, specifying an offset (from the current character position)
no greater than the difference (right margin - current position).

SPACE

SPACES

relative offset
INFORMIX-4GL Reports 6-49

PRINT
This returns a string of blanks, equivalent to a quoted string containing the
specified number of blanks. Outside PRINT statements, SPACE (or SPACES)
and its operand must appear in parentheses. The following statements use
this operator to separate values in PRINT statements, to concatenate 6 blank
spaces to the string “=ZIP,” and to print the result after the variable zipcode:

FORMAT
ON EVERY ROW

LET mystring = (6 SPACES), "=ZIP"
PRINT fname, 2 SPACES, lname
PRINT company
PRINT address1
PRINT city, " , " , state, 2 SPACES, zipcode, mystring

The WORDWRAP Operator

temporary is a literal integer (page 3-340) specifying a character posi-
tion (from left edge of the page) of a temporary right margin.

TEXT variable is the name of a 4GL variable of the TEXT data type.

The WORDWRAP operator automatically wraps successive segments of long
character strings onto successive lines of report output. Any string value that
is too long to fit between the current position and the right margin is divided
into segments and displayed between temporary margins:

• The current character position becomes the temporary left margin.

• Unless you specify RIGHT MARGIN temporary, the right margin defaults to
132, or to the size from the RIGHT MARGIN clause of the OUTPUT section.

Specify WORDWRAP RIGHT MARGIN temporary to set a temporary right
margin, counting from the left edge of the page. This cannot be smaller than

the current character position, nor greater than 132 (or than the size from the
RIGHT MARGIN clause of the OUTPUT section). The current character posi-
tion becomes the temporary left margin. These temporary values override
the specified or default left and right margins from the OUTPUT section.

After the PRINT statement has executed, any explicit or default margins from
the OUTPUT section are restored.

Character Expression
p. 3-343

RIGHT MARGIN temporary
TEXT variable

WORDWRAP
6-50 INFORMIX-4GL Reports

PRINT
The following PRINT statement specifies a temporary left margin in column
10 and a temporary right margin in column 70 to display the character string
that is stored in the 4GL variable called mynovel:

PRINT COLUMN 10, mynovel WORDWRAP RIGHT MARGIN 70

Tabs, Line Breaks, and Page Breaks with WORDWRAP

The data string can include printable ASCII characters. It can also include the
TAB (ASCII 9), LINEFEED (ASCII 10), and ENTER (ASCII 13) characters to par-
tition the string into “words” consisting of substrings of other printable char-
acters. Other non-printable characters may cause runtime errors. If the data
string cannot fit between the margins of the current line, 4GL breaks the line
at a word division, padding line with blanks at the right.

From left to right, 4GL expands any TAB character to enough blank spaces to
reach the next TAB stop. By default, TAB stops are in every eighth column,
beginning at the left-hand edge of the page. If the next TAB stop or a string of
blank characters extends beyond the right margin, 4GL takes these actions:

• Prints blank characters only to the right margin.

• Discards any remaining blank characters from the blank string or TAB.

• Starts a new line at the temporary left margin.

• And processes the next word.

4GL starts a new line when a word plus the next blank space cannot fit on the
current line. If all words are separated by a single space, this creates an even
left margin. 4GL applies the following rules (in descending order of prece-
dence) to the portion of the data string within the right margin:

• Break at any LINEFEED, or ENTER, or LINEFEED, ENTER pair.

• Break at the last blank (ASCII 32) or TAB character before the right margin.

• Break at the right margin, if no character farther to the left is a blank,
ENTER, TAB, or LINEFEED character.

4GL maintains page discipline under the WORDWRAP option. If the string is
too long for the current page, 4GL executes the statements in any page trailer
and header control blocks before continuing output onto a new page.
INFORMIX-4GL Reports 6-51

SKIP
SKIP
The SKIP statement can insert a specified number of blank lines into the
output of a REPORT definition, or else advance the character position to
the top of the next page of report output.

integer is a literal integer (page 3-340) that specifies the number of lines.

Usage
The SKIP statement allows you to insert blank lines into report output, or to
skip to the top of the next page, as if you had included an equivalent number
of PRINT statements without specifying any expression list. The LINE and
LINES keywords are synonyms in the SKIP statement.

Output from any PAGE HEADER, or PAGE TRAILER control block appears in
its usual location. This program fragment prints names and addresses:

FIRST PAGE HEADER
PRINT COLUMN 30, "CUSTOMER LIST"
SKIP 2 LINES
PRINT "Listings for the State of ", thisstate
SKIP 2 LINES
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

PAGE HEADER
PRINT "NUMBER", COLUMN 12, "NAME", COLUMN 35, "LOCATION",

COLUMN 57, "ZIP", COLUMN 65, "PHONE"
SKIP 1 LINE

ON EVERY ROW
PRINT customer_num USING "####",
COLUMN 12, fname CLIPPED, 1 SPACE,

lname CLIPPED, COLUMN 35, city CLIPPED, " , " , state,
COLUMN 57, zipcode, COLUMN 65, phone

Restrictions on SKIP Statements

The SKIP LINES statement cannot appear within a CASE statement, a FOR
loop, nor a WHILE loop. The SKIP TO TOP OF PAGE statement cannot appear
in a FIRST PAGE HEADER, PAGE HEADER, nor PAGE TRAILER control block.

SKIP

integer

TO TOP OF PAGE

LINE

LINES
6-52 INFORMIX-4GL Reports

Appendix
A

The Demonstration
Database and
Application
The stores demonstration database contains a set of tables
that describe an imaginary business. You can access the
data in the stores demonstration database by the demon-
stration programs that appear in this book, as well as by
application programs that are listed in the documentation
of other Informix products. The stores demonstration data-
base is not MODE ANSI.

This appendix contains the following sections:

• Instructions for copying the demonstration database
and application.

• A description of the structure of the tables in the stores
demonstration database. For each table, the name and
the data type of each column are listed. Any indexes on
individual columns or on multiple columns are identi-
fied and classified as unique or as allowing duplicate
values.

• A graphic map of the tables in the stores demonstration
database, showing potential join columns.

• A discussion of the join columns that link some of the
tables in the stores demonstration database, and illus-
trates how you can use these relationships to obtain
information from multiple tables.

• A listing of the data contained in each table of the stores
demonstration database.

Making a Copy of the Demonstration Database
• The form specifications, INFORMIX-4GL source code modules, and help
message source code for the stores demonstration application.

Making a Copy of the Demonstration Database
To make a copy of the stores demonstration database, select a directory to
store the copy (often your home directory) and make it your current working
directory. At the system prompt, enter one of the following commands:

i4gldemo (for the INFORMIX-4GL C Compiler Version)
r4gldemo (for the INFORMIX-4GL Rapid Development System).

The program creates a subdirectory called stores.dbs in your current direc-
tory and places the stores demonstration database files there. It also copies all
the demonstration programs, forms, and help files into the current directory.
If you list the contents of your current directory, you will see filenames simi-
lar to these:

c_menu2.4gl ch7qry2.4gl ordmenu.4gl
ch10def.4gl ch7query.4gl report1.4gl
ch10def2.4gl ch7upd.4gl report2.4gl
ch10key.4gl cust.per report3.4gl
ch10key2.4gl custcur.per report4.4gl
ch10notf.4gl custhelp.ex report5.4gl
ch10when.4gl custhelp.msg report6.4gl
ch12cust.4gl custmenu.4gl report7.4gl
ch12ord.4gl customer.per stock1.per
ch7add.4gl ordcur.per wind1.4gl
ch7add2.4gl order.per wind2.4gl
ch7del.4gl

Restoring the Demonstration Database
As you work with your copy of the stores demonstration database, you may
change it in such a way that the illustrations in this manual no longer reflect
what you actually see on your screen. This can happen if you enter new infor-
mation into the demonstration database, delete the information that came
with the database, or alter the structure of the tables, forms, or reports.

You can restore the database to its original condition (upon which the exam-
ples are based) by recreating the database by entering one of the following
commands:

i4gldemo (for the INFORMIX-4GL C Compiler Version)
r4gldemo (for the INFORMIX-4GL Rapid Development System).
A-2 The Demonstration Database and Application

Structure of the Tables
If your INFORMIX-4GL software has been installed according to the instruc-
tions provided in your installation letter, the files that make up the stores
demonstration database are protected, so that you cannot make any changes
to the original copy of the database.

Structure of the Tables
The stores demonstration database contains information about a fictitious
sporting goods distributor that services stores in the Western United States.
This database includes the following tables:

• customer

• orders

• items

• stock

• catalog

• cust_calls

• manufact

• state

The customer Table
The customer table contains information about the retail stores that place
orders from the distributor. The columns of the customer table are as follows:

Column Data
Name Type Description
customer_num SERIAL(101) system-generated customer number
fname CHAR(15) first name of store’s representative
lname CHAR(15) last name of store’s representative
company CHAR(20) name of store
address1 CHAR(20) first line of store’s address
address2 CHAR(20) second line of store’s address
city CHAR(15) city
state CHAR(2) state
zipcode CHAR(5) zip code
phone CHAR(18) phone number

The customer_num column is indexed and must contain unique values. The
zipcode and state columns are indexed to allow duplicate values.
The Demonstration Database and Application A-3

The orders Table
The orders Table
The orders table contains information about orders placed by the
distributor’s customers. The columns of the orders table are as follows:

Column Data
Name Type Description
order_num SERIAL(1001) system-generated order number
order_date DATE date order entered
customer_num INTEGER customer number (from customer table)
ship_instruct CHAR(40) special shipping instructions
backlog CHAR(1) indicates order cannot be filled because the item

is backlogged:
y = yes
n = no

po_num CHAR(10) customer purchase order number
ship_date DATE shipping date
ship_weight DECIMAL(8,2) shipping weight
ship_charge MONEY(6) shipping charge
paid_date DATE date order paid

The order_num column is indexed and must contain unique values. The
customer_num column is indexed to allow duplicate values.

The items Table
An order can include one or more items. There is one row in the items table
for each item in an order. The columns of the items table are as follows:

Column Data
Name Type Description
item_num SMALLINT sequentially assigned item number for an order
order_num INTEGER order number (from orders table)
stock_num SMALLINT stock number for item (from stock table)
manu_code CHAR(3) manufacturer’s code for item ordered (from

manufact table)
quantity SMALLINT quantity ordered
total_price MONEY(8,2) quantity ordered × unit price = total price of item

The order_num column is indexed and allows duplicate values. A
multiple-column index for the stock_num and manu_code columns also
permits duplicate values.
A-4 The Demonstration Database and Application

The stock Table
The stock Table
The distributor carries 41 different types of sporting goods from various man-
ufacturers. More than one manufacturer can supply a sporting good. For
example, the distributor offers racer goggles from two manufacturers and
running shoes from six manufacturers.

The stock table is a catalog of the items sold by the distributor. The columns
of the stock table are as follows:

Column Data
Name Type Description
stock_num SMALLINT stock number that identifies type of item
manu_code CHAR(3) manufacturer’s code (from manufact table)
description CHAR(15) description of item
unit_price MONEY(6,2) unit price
unit CHAR(4) unit by which item is ordered:

each
pair
case
box

unit_descr CHAR(15) description of unit

The stock_num and manu_code columns are indexed and allow duplicate
values. A multiple-column index for both the stock_num and manu_code
columns allows only unique values.

The catalog Table
The catalog table describes each of the items in stock. Retail stores use this cat-
alog when placing orders with the distributor. The columns of the
catalog table are as follows:

Column Data
Name Type Description
catalog_num SERIAL(10001) system-generated catalog number
stock_num SMALLINT distributor’s stock number (from

stock table)
manu_code CHAR(3) manufacturer’s code (from manufact table)
cat_descr TEXT description of item
cat_picture BYTE picture of item (binary data)
cat_advert VARCHAR(255, 65) tag line underneath picture
The Demonstration Database and Application A-5

The cust_calls Table
The catalog_num column is indexed and must contain unique values. The
stock_num and manu_code columns allow duplicate values. A multiple-col-
umn index for the stock_num and manu_code columns allows only unique
values.

The catalog table appears only if you are using an INFORMIX-OnLine
database engine.

The cust_calls Table
All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of cus-
tomer calls. The columns of the cust_calls table are as follows:

Column Data
Name Type Description
customer_num INTEGER customer number (from customer

table)
call_dtime DATETIME YEAR TO MINUTE date and time call received
user_id CHAR(18) name of person logging call
call_code CHAR(1) type of call:

B = billing error
D = damaged goods
I = incorrect merchandise sent
L = late shipment
O = other

call_descr CHAR(240) description of call
res_dtime DATETIME YEAR TO MINUTE date and time call resolved
res_descr CHAR(240) description of how call was resolved

A multiple-column index for both the customer_num and call_dtime
columns allows only unique values. The customer_num column also has an
index that allows duplicate values.

The manufact Table
Information about the nine manufacturers whose sporting goods are han-
dled by the distributor is stored in the manufact table. The columns of the
manufact table are as follows:
A-6 The Demonstration Database and Application

The state Table
Column Data
Name Type Description
manu_code CHAR(3) manufacturer’s code
manu_name CHAR(15) name of manufacturer
lead_time INTERVAL DAY(3) TO DAY lead time for shipment of orders

The manu_code column has an index that requires unique values.

The state Table
The state table contains the names and postal abbreviations for the 50 states
of the United States. It includes the following two columns:

Column Data
Name Type Description
code CHAR(2) state code
sname CHAR(15) state name

The code column is indexed as unique.
The Demonstration Database and Application A-7

Map of the Demonstration Database
Map of the Demonstration Database
Figure A-1 displays the column names of the tables in the demonstration
database. Shading connecting a column in one table to a column in another
table indicates columns that contain the same information.

Figure A-1 Tables in the demonstration database

Join Columns that Link the Database
The tables of the demonstration database are linked together by the join
columns shown in Figure A-1 and identified in this section. You can use these
columns to retrieve and display information from several tables at once, as if
the information had been stored in a single table. Figure A-1 through Figure
A-8 show the join relationships among tables, and how information stored in
one table supplements information stored in others.

items

orders item_num catalog

order_num order_num stock catalog_num

customer cust_calls order_date stock_num stock_num stock_num manufact

customer_num customer_num customer_num manu_code manu_code manu_code manu_code

fname call_dtime ship_instruct quantity description cat_descr manu_name

lname user_id backlog total_price unit_price cat_picture lead_time

company call_code po_num unit cat_advert

address1 call_descr ship_date unit_descr

address2 res_dtime ship_weight

city res_descr ship_charge

state state paid_date

zipcode code

phone sname
A-8 The Demonstration Database and Application

Join Columns in the customer and orders Tables
Join Columns in the customer and orders Tables
The customer_num column joins the customer table and the orders table,
as shown in Figure A-2.

Figure A-2 Tables joined by the customer_num column

The customer table contains a customer_num column that holds a number
identifying a customer, along with columns for the customer’s name, com-
pany, address, and telephone number. For example, the row with information
about Anthony Higgins contains the number 104 in the customer_num
column. The orders table also contains a customer_num column that stores
the number of the customer who placed a particular order.

According to Figure A-2, customer 104 (Anthony Higgins) has placed two
orders since his customer number appears in two rows of the orders table.
Since the join relationship lets you select information from both tables, you
can retrieve Anthony Higgins’ name and address and information about his
orders at the same time.

customer_num fname lname
101 Ludwig Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins

order_num order_date customer_num
1001 05/20/1990 104
1002 05/21/1990 101
1003 05/22/1990 104
1004 05/22/1990 106

customer table
(detail)

orders table
(detail)
The Demonstration Database and Application A-9

Join Columns in the orders and items Tables
Join Columns in the orders and items Tables
The orders and items tables are linked by an order_num column that con-
tains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table.
Figure A-3 shows this relationship.

Figure A-3 Tables joined by the order_num column

order_num order_date customer_num
1001 05/20/1990 104
1002 05/21/1990 101
1003 05/22/1990 104

item_num order_num stock_num manu_code
1 1001 1 HRO
1 1002 4 HSK
2 1002 3 HSK
1 1003 9 ANZ
2 1003 8 ANZ
3 1003 5 ANZ

orders table
(detail)

items table
(detail)
A-10 The Demonstration Database and Application

Join Columns in the items and stock Tables
Join Columns in the items and stock Tables
The items table and the stock table are joined by two columns: the
stock_num column stores a stock number for an item, and the manu_code
column stores a code that identifies the manufacturer. You need both the stock
number and the manufacturer code to uniquely identify an item.
For example, the item with the stock number 1 and the manufacturer code
HRO is a Hero baseball glove, while the item with the stock number 1 and the
manufacturer code HSK is a Husky baseball glove.

The same stock number and manufacturer code can appear in more than
one row of the items table, if the same item belongs to separate orders, as
illustrated in Figure A-4.

Figure A-4 Tables joined by the stock_num and manu_code columns

item_num order_num stock_num manu_code
1 1001 1 HRO
1 1002 4 HSK
2 1002 3 HSK
1 1003 9 ANZ
2 1003 8 ANZ
3 1003 5 ANZ
1 1004 1 HRO

stock_num manu_code description
1 HRO baseball gloves
1 HSK baseball gloves 1

SMTbaseball gloves

items table
(detail)

stock table
(detail)
The Demonstration Database and Application A-11

Join Columns in the stock and catalog Tables
Join Columns in the stock and catalog Tables
The catalog table and the stock table are joined by two columns: the
stock_num column stores a stock number for an item, and the manu_code
column stores a code that identifies the manufacturer. You need both of these
columns to uniquely identify an item. Figure A-5 shows this relationship.

Figure A-5 Tables joined by the stock_num and manu_code columns

Join Columns in the stock and manufact Tables
The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. This
relationship is illustrated in Figure A-6.

Figure A-6 Tables joined by the manu_code column

stock_num manu_code description
1 HRO baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves

catalog_num stock_num manu_code
10001 1 HRO
10002 1 HSK
10003 1 SMT
10004 2 HRO

stock table
(detail)

catalog table
(detail)

stock_num manu_code description
1 HRO baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves

manu_code manu_name
NRG Norge
HSK Husky
HRO Hero

stock table
(detail)

manufact table
(detail)
A-12 The Demonstration Database and Application

Join Columns in the cust_calls and customer Tables
Join Columns in the cust_calls and customer Tables
The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a
problem or question. This relationship is illustrated in Figure A-7.

Figure A-7 Tables joined by the customer_num column

customer_num fname lname
101 Ludwig Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins
105 Raymond Vector
106 George Watson

customer_num call_dtime user_id
106 1990-06-12 08:20 maryj
127 1990-07-31 14:30 maryj
116 1990-11-28 13:34 mannyh
116 1989-12-21 11:24 mannyh

customer table
(detail)

cust_calls table
(detail)
The Demonstration Database and Application A-13

Join Columns in the state and customer Tables
Join Columns in the state and customer Tables
The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code will appear in several rows of the table, as shown in Figure A-8.

Figure A-8 Tables joined by the state/code column

Data in the Demonstration Database
The tables that follow display the data in the stores demonstration database.

customer_num fname lname ... state
101 Ludwig Pauli ... CA
102 Carole Sadler ... CA
103 Philip Currie ... CA

code sname
AK Alaska
AL Alabama
AR Arkansas
AZ Arizona
CA California

customer table
(detail)

state table
(detail)
A-14 The Demonstration Database and Application

Data in the Demonstration Database
The Demonstration Database and Application A-15

cu
st

om
er

 T
ab

le
cu

st
om

er
_n

u
m

fn
am

e
ln

am
e

co
m

p
an

y
ad

d
re

ss
1

ad
d

re
ss

2
ci

ty
st

at
e

zi
p

co
d

e
p

h
on

e

10
1

L
ud

w
ig

Pa
ul

i
A

ll
Sp

or
ts

 S
up

pl
ie

s
21

3
E

rs
tw

ild
 C

ou
rt

Su
nn

yv
al

e
C

A
94

08
6

40
8-

78
9-

80
75

10
2

C
ar

ol
e

Sa
d

le
r

Sp
or

ts
 S

po
t

78
5

G
ea

ry
 S

t
Sa

n
Fr

an
ci

sc
o

C
A

94
11

7
41

5-
82

2-
12

89
10

3
Ph

ili
p

C
ur

ri
e

Ph
il’

s
Sp

or
ts

65
4

Po
pl

ar
P.

 O
. B

ox
 3

49
8

Pa
lo

 A
lt

o
C

A
94

30
3

41
5-

32
8-

45
43

10
4

A
nt

ho
ny

H
ig

gi
ns

Pl
ay

 B
al

l!
E

as
t S

ho
pp

in
g

C
nt

r.
42

2
B

ay
 R

oa
d

R
ed

w
oo

d
 C

it
y

C
A

94
02

6
41

5-
36

8-
11

00
10

5
R

ay
m

on
d

V
ec

to
r

L
os

 A
lt

os
 S

po
rt

s
18

99
 L

a
L

om
a

D
ri

ve
L

os
 A

lt
os

C
A

94
02

2
41

5-
77

6-
32

49
10

6
G

eo
rg

e
W

at
so

n
W

at
so

n
&

 S
on

11
43

 C
ar

ve
r

Pl
ac

e
M

ou
nt

ai
n

V
ie

w
C

A
94

06
3

41
5-

38
9-

87
89

10
7

C
ha

rl
es

R
ea

m
A

th
le

ti
c

Su
pp

lie
s

41
 Jo

rd
an

 A
ve

nu
e

Pa
lo

 A
lt

o
C

A
94

30
4

41
5-

35
6-

98
76

10
8

D
on

al
d

Q
ui

nn
Q

ui
nn

’s
 S

po
rt

s
58

7
A

lv
ar

ad
o

R
ed

w
oo

d
 C

it
y

C
A

94
06

3
41

5-
54

4-
87

29
10

9
Ja

ne
M

ill
er

Sp
or

t S
tu

ff
M

ay
fa

ir
 M

ar
t

73
45

 R
os

s
B

lv
d

.
Su

nn
yv

al
e

C
A

94
08

6
40

8-
72

3-
87

89
11

0
R

oy
Ja

eg
er

A
A

 A
th

le
ti

cs
52

0
T

op
az

 W
ay

R
ed

w
oo

d
 C

it
y

C
A

94
06

2
41

5-
74

3-
36

11
11

1
Fr

an
ce

s
K

ey
es

Sp
or

ts
 C

en
te

r
31

99
 S

te
rl

in
g

C
ou

rt
Su

nn
yv

al
e

C
A

94
08

5
40

8-
27

7-
72

45
11

2
M

ar
ga

re
t

L
aw

so
n

R
un

ne
rs

 &
 O

th
er

s
23

4
W

ya
nd

ot
te

 W
ay

L
os

 A
lt

os
C

A
94

02
2

41
5-

88
7-

72
35

11
3

L
an

a
B

ea
tt

y
Sp

or
ts

to
w

n
65

4
O

ak
 G

ro
ve

M
en

lo
 P

ar
k

C
A

94
02

5
41

5-
35

6-
99

82
11

4
Fr

an
k

A
lb

er
ts

on
Sp

or
ti

ng
 P

la
ce

94
7

W
av

er
ly

 P
la

ce
R

ed
w

oo
d

 C
it

y
C

A
94

06
2

41
5-

88
6-

66
77

11
5

A
lf

re
d

G
ra

nt
G

ol
d

 M
ed

al
 S

po
rt

s
77

6
G

ar
y

A
ve

nu
e

M
en

lo
 P

ar
k

C
A

94
02

5
41

5-
35

6-
11

23
11

6
Je

an
Pa

rm
el

ee
O

ly
m

pi
c

C
it

y
11

04
 S

pi
no

sa
 D

ri
ve

M
ou

nt
ai

n
V

ie
w

C
A

94
04

0
41

5-
53

4-
88

22
11

7
A

rn
ol

d
Si

pe
s

K
id

s
K

or
ne

r
85

0
L

yt
to

n
C

ou
rt

R
ed

w
oo

d
 C

it
y

C
A

94
06

3
41

5-
24

5-
45

78
11

8
D

ic
k

B
ax

te
r

B
lu

e
R

ib
bo

n
Sp

or
ts

54
27

 C
ol

le
ge

O
ak

la
nd

C
A

94
60

9
41

5-
65

5-
00

11
11

9
B

ob
Sh

or
te

r
T

he
 T

ri
at

hl
et

es
 C

lu
b

24
05

 K
in

gs
 H

ig
hw

ay
C

he
rr

y
H

ill
N

J
08

00
2

60
9-

66
3-

60
79

12
0

Fr
ed

Je
w

el
l

C
en

tu
ry

 P
ro

 S
ho

p
66

27
 N

. 1
7t

h
W

ay
Ph

oe
ni

x
A

Z
85

01
6

60
2-

26
5-

87
54

12
1

Ja
so

n
W

al
la

ck
C

it
y

Sp
or

ts
L

ak
e

B
ilt

m
or

e
M

al
l

35
0

W
. 2

3r
d

 S
tr

ee
t

W
ilm

in
gt

on
D

E
19

89
8

30
2-

36
6-

75
11

12
2

C
at

hy
O

’B
ri

an
T

he
 S

po
rt

in
g

L
if

e
54

3
N

as
sa

u
St

re
et

Pr
in

ce
to

n
N

J
08

54
0

60
9-

34
2-

00
54

12
3

M
ar

vi
n

H
an

lo
n

B
ay

 S
po

rt
s

10
10

0
B

ay
 M

ea
d

ow
s

R
d

Su
it

e
10

20
Ja

ck
so

nv
iil

le
FL

32
25

6
90

4-
82

3-
42

39
12

4
C

hr
is

Pu
tn

um
Pu

tn
um

’s
 P

ut
te

rs
47

15
 S

.E
. A

d
am

s
B

lv
d

Su
it

e
90

9C
B

ar
tl

es
vi

lle
O

K
74

00
6

91
8-

35
5-

20
74

12
5

Ja
m

es
H

en
ry

T
ot

al
 F

it
ne

ss
 S

po
rt

s
14

50
 C

om
m

on
w

ea
lt

h
A

v
B

ri
gh

to
n

M
A

02
13

5
61

7-
23

2-
41

59
12

6
E

ile
en

N
ee

lie
N

ee
lie

’s
 D

is
co

un
t S

p
25

39
 S

ou
th

 U
ti

ca
 S

tr
D

en
ve

r
C

O
80

21
9

30
3-

93
6-

77
31

12
7

K
im

Sa
ti

fe
r

B
ig

 B
lu

e
B

ik
e

Sh
op

B
lu

e
Is

la
nd

 S
qu

ar
e

12
22

2
G

re
go

ry
 S

tr
ee

t
B

lu
e

Is
la

nd
N

Y
60

40
6

31
2-

94
4-

56
91

12
8

Fr
an

k
L

es
so

r
Ph

oe
ni

x
U

ni
ve

rs
it

y
A

th
le

ti
c

D
ep

ar
tm

en
t

18
17

 N
. T

ho
m

as
 R

oa
d

Ph
oe

ni
x

A
Z

85
00

8
60

2-
53

3-
18

17

Data in the Demonstration Database
items Table (1 of 2)
item_num order_num stock_num manu_code quantity total_price

1 1001 1 HRO 1 250.00
1 1002 4 HSK 1 960.00
2 1002 3 HSK 1 240.00
1 1003 9 ANZ 1 20.00
2 1003 8 ANZ 1 840.00
3 1003 5 ANZ 5 99.00
1 1004 1 HRO 1 250.00
2 1004 2 HRO 1 126.00
3 1004 3 HSK 1 240.00
4 1004 1 HSK 1 800.00
1 1005 5 NRG 10 280.00
2 1005 5 ANZ 10 198.00
3 1005 6 SMT 1 36.00
4 1005 6 ANZ 1 48.00
1 1006 5 SMT 5 125.00
2 1006 5 NRG 5 140.00
3 1006 5 ANZ 5 99.00
4 1006 6 SMT 1 36.00
5 1006 6 ANZ 1 48.00
1 1007 1 HRO 1 250.00
2 1007 2 HRO 1 126.00
3 1007 3 HSK 1 240.00
4 1007 4 HRO 1 480.00
5 1007 7 HRO 1 600.00
1 1008 8 ANZ 1 840.00
2 1008 9 ANZ 5 100.00
1 1009 1 SMT 1 450.00
1 1010 6 SMT 1 36.00
2 1010 6 ANZ 1 48.00
1 1011 5 ANZ 5 99.00
1 1012 8 ANZ 1 840.00
2 1012 9 ANZ 10 200.00
1 1013 5 ANZ 1 19.80
2 1013 6 SMT 1 36.00
3 1013 6 ANZ 1 48.00
4 1013 9 ANZ 2 40.00
1 1014 4 HSK 1 960.00
2 1014 4 HRO 1 480.00
1 1015 1 SMT 1 450.00
1 1016 101 SHM 2 136.00
2 1016 109 PRC 3 90.00
3 1016 110 HSK 1 308.00
4 1016 114 PRC 1 120.00
1 1017 201 NKL 4 150.00
2 1017 202 KAR 1 230.00
3 1017 301 SHM 2 204.00
1 1018 307 PRC 2 500.00
A-16 The Demonstration Database and Application

Data in the Demonstration Database
items Table (2 of 2)
item_num order_num stock_num manu_code quantity total_price

2 1018 302 KAR 3 15.00
3 1018 110 PRC 1 236.00
4 1018 5 SMT 4 100.00
5 1018 304 HRO 1 280.00
1 1019 111 SHM 3 1499.97
1 1020 204 KAR 2 90.00
2 1020 301 KAR 4 348.00
1 1021 201 NKL 2 75.00
2 1021 201 ANZ 3 225.00
3 1021 202 KAR 3 690.00
4 1021 205 ANZ 2 624.00
1 1022 309 HRO 1 40.00
2 1022 303 PRC 2 96.00
3 1022 6 ANZ 2 96.00
1 1023 103 PRC 2 40.00
2 1023 104 PRC 2 116.00
3 1023 105 SHM 1 80.00
4 1023 110 SHM 1 228.00
5 1023 304 ANZ 1 170.00
6 1023 306 SHM 1 190.00
The Demonstration Database and Application A-17

Data in the Demonstration Database
or
d

er
s

Ta
bl

e
or

d
er

_n
u

m
or

d
er

_d
at

e
cu

st
om

er
_n

u
m

sh
ip

_i
n

st
ru

ct
b

ac
k

lo
g

p
o_

n
u

m
sh

ip
_d

at
e

sh
ip

_w
ei

gh
t

sh
ip

_c
h

ar
ge

p
ai

d
_d

at
e

10
01

05
/

20
/

19
90

10
4

ex
pr

es
s

n
B

77
83

6
06

/
01

/
19

90
20

.4
0

10
.0

0
07

/
22

/
19

90
10

02
05

/
21

/
19

90
10

1
PO

 o
n

bo
x;

 d
el

iv
er

 b
ac

k
d

oo
r

on
ly

n
92

70
05

/
26

/
19

90
50

.6
0

15
.3

0
06

/
03

/
19

90
10

03
05

/
22

/
19

90
10

4
ex

pr
es

s
n

B
77

89
0

05
/

23
/

19
90

35
.6

0
10

.8
0

06
/

14
/

19
90

10
04

05
/

22
/

19
90

10
6

ri
ng

 b
el

l t
w

ic
e

y
80

06
05

/
30

/
19

90
95

.8
0

19
.2

0
10

05
05

/
24

/
19

90
11

6
ca

ll
be

fo
re

 d
el

iv
er

y
n

28
65

06
/

09
/

19
90

80
.8

0
16

.2
0

06
/

21
/

19
90

10
06

05
/

30
/

19
90

11
2

af
te

r
10

 a
m

y
Q

13
55

7
70

.8
0

14
.2

0
10

07
05

/
31

/
19

90
11

7
n

27
86

93
06

/
05

/
19

90
12

5.
90

25
.2

0
10

08
06

/
07

/
19

90
11

0
cl

os
ed

 M
on

d
ay

y
L

Z
23

0
07

/
06

/
19

90
45

.6
0

13
.8

0
07

/
21

/
19

90
10

09
06

/
14

/
19

90
11

1
ne

xt
 d

oo
r

to
 g

ro
ce

ry
n

47
45

06
/

21
/

19
90

20
.4

0
10

.0
0

08
/

21
/

19
90

10
10

06
/

17
/

19
90

11
5

d
el

iv
er

 7
76

 K
in

g
St

. i
f n

o
an

sw
er

n
42

9Q
06

/
29

/
19

90
40

.6
0

12
.3

0
08

/
22

/
19

90
10

11
06

/
18

/
19

90
10

4
ex

pr
es

s
n

B
77

89
7

07
/

03
/

19
90

10
.4

0
5.

00
08

/
29

/
19

90
10

12
06

/
18

/
19

90
11

7
n

27
87

01
06

/
29

/
19

90
70

.8
0

14
.2

0
10

13
06

/
22

/
19

90
10

4
ex

pr
es

s
n

B
77

93
0

07
/

10
/

19
90

60
.8

0
12

.2
0

07
/

31
/

19
90

10
14

06
/

25
/

19
90

10
6

ri
ng

 b
el

l,
ki

ck
 d

oo
r

lo
ud

ly
n

80
52

07
/

03
/

19
90

40
.6

0
12

.3
0

07
/

10
/

19
90

10
15

06
/

27
/

19
90

11
0

cl
os

ed
 M

on
d

ay
s

n
M

A
00

3
07

/
16

/
19

90
20

.6
0

6.
30

08
/

31
/

19
90

10
16

06
/

29
/

19
90

11
9

d
el

iv
er

y
en

tr
an

ce
 o

ff
 C

am
p

St
.

n
PC

67
82

07
/

12
/

19
90

35
.0

0
11

.8
0

10
17

07
/

09
/

19
90

12
0

N
or

th
 s

id
e

of
 c

lu
bh

ou
se

n
D

M
35

43
31

07
/

13
/

19
90

60
.0

0
18

.0
0

10
18

07
/

10
/

19
90

12
1

SW
 c

or
ne

r
of

 B
ilt

m
or

e
M

al
l

n
S2

29
42

07
/

13
/

19
90

70
.5

0
20

.0
0

08
/

06
/

19
90

10
19

07
/

11
/

19
90

12
2

cl
os

ed
 ti

l n
oo

n
M

on
d

ay
s

n
Z

55
70

9
07

/
16

/
19

90
90

.0
0

23
.0

0
08

/
06

/
19

90
10

20
07

/
11

/
19

90
12

3
ex

pr
es

s
n

W
22

86
07

/
16

/
19

90
14

.0
0

8.
50

09
/

20
/

19
90

10
21

07
/

23
/

19
90

12
4

as
k

fo
r

E
la

in
e

n
C

32
88

07
/

25
/

19
90

40
.0

0
12

.0
0

08
/

22
/

19
90

10
22

07
/

24
/

19
90

12
6

ex
pr

es
s

n
W

99
25

07
/

30
/

19
90

15
.0

0
13

.0
0

09
/

02
/

19
90

10
23

07
/

24
/

19
90

12
7

no
 d

el
iv

er
ie

s
af

te
r

3
p.

m
.

n
K

F2
96

1
07

/
30

/
19

90
60

.0
0

18
.0

0
08

/
22

/
19

90

or
d

er
s

Ta
bl

e

A-18 The Demonstration Database and Application

Data in the Demonstration Database
stock Table (1 of 2)
stock_num manu_code description unit_price unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case
1 HSK baseball gloves 800.00 case 10 gloves/case
1 SMT baseball gloves 450.00 case 10 gloves/case
2 HRO baseball 126.00 case 24/case
3 HSK baseball bat 240.00 case 12/case
4 HSK football 960.00 case 24/case
4 HRO football 480.00 case 24/case
5 NRG tennis racquet 28.00 each each
5 SMT tennis racquet 25.00 each each
5 ANZ tennis racquet 19.80 each each
6 SMT tennis ball 36.00 case 24 cans/case
6 ANZ tennis ball 48.00 case 24 cans/case
7 HRO basketball 600.00 case 24/case
8 ANZ volleyball 840.00 case 24/case
9 ANZ volleyball net 20.00 each each

101 PRC bicycle tires 88.00 box 4/box
101 SHM bicycle tires 68.00 box 4/box
102 SHM bicycle brakes 220.00 case 4 sets/case
102 PRC bicycle brakes 480.00 case 4 sets/case
103 PRC front derailleur 20.00 each each
104 PRC rear derailleur 58.00 each each
105 PRC bicycle wheels 53.00 pair pair
105 SHM bicycle wheels 80.00 pair pair
106 PRC bicycle stem 23.00 each each
107 PRC bicycle saddle 70.00 pair pair
108 SHM crankset 45.00 each each
109 PRC pedal binding 30.00 case 6 pairs/case
109 SHM pedal binding 200.00 case 4 pairs/case
110 PRC helmet 236.00 case 4/case
110 ANZ helmet 244.00 case 4/case
110 SHM helmet 228.00 case 4/case
110 HRO helmet 260.00 case 4/case
110 HSK helmet 308.00 case 4/case
111 SHM 10-spd, assmbld 499.99 each each
112 SHM 12-spd, assmbld 549.00 each each
113 SHM 18-spd, assmbld 685.90 each each
114 PRC bicycle gloves 120.00 case 10 pairs/case
The Demonstration Database and Application A-19

Data in the Demonstration Database
stock Table (2 of 2)
stock_num manu_code description unit_price unit unit_descr

201 NKL golf shoes 37.50 each each
201 ANZ golf shoes 75.00 each each
201 KAR golf shoes 90.00 each each
202 NKL metal woods 174.00 case 2 sets/case
202 KAR std woods 230.00 case 2 sets/case
203 NKL irons/wedges 670.00 case 2 sets/case
204 KAR putter 45.00 each each
205 NKL 3 golf balls 312.00 case 24/case
205 ANZ 3 golf balls 312.00 case 24/case
205 HRO 3 golf balls 312.00 case 24/case
301 NKL running shoes 97.00 each each
301 HRO running shoes 42.50 each each
301 SHM running shoes 102.00 each each
301 PRC running shoes 75.00 each each
301 KAR running shoes 87.00 each each
301 ANZ running shoes 95.00 each each
302 HRO ice pack 4.50 each each
302 KAR ice pack 5.00 each each
303 PRC socks 48.00 box 24 pairs/box
303 KAR socks 36.00 box 24 pair/box
304 ANZ watch 170.00 box 10/box
304 HRO watch 280.00 box 10/box
305 HRO first-aid kit 48.00 case 4/case
306 PRC tandem adapter 160.00 each each
306 SHM tandem adapter 190.00 each each
307 PRC infant jogger 250.00 each each
308 PRC twin jogger 280.00 each each
309 HRO ear drops 40.00 case 20/case
309 SHM ear drops 40.00 case 20/case
310 SHM kick board 80.00 case 10/case
310 ANZ kick board 89.00 case 12/case
311 SHM water gloves 48.00 box 4 pairs/box
312 SHM racer goggles 96.00 box 12/box
312 HRO racer goggles 72.00 box 12/box
313 SHM swim cap 72.00 box 12/box
313 ANZ swim cap 60.00 box 12/box
A-20 The Demonstration Database and Application

Data in the Demonstration Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
Yo

ur
 F

ir
st

 S
ea

so
n’

s
B

as
eb

al
l G

lo
ve

<
B

Y
T

E
 v

al
ue

>
A

ll-
L

ea
th

er
, H

an
d

-S
ti

tc
he

d
, D

ee
p-

Po
ck

et
s,

 S
tu

rd
y

W
eb

bi
ng

 th
at

 W
on

’t
L

et
 G

o
<

B
Y

T
E

 v
al

ue
>

A
 S

tu
rd

y
C

at
ch

er
’s

 M
it

t W
it

h
th

e
Pe

rf
e c

Po
ck

et
<

B
Y

T
E

 v
al

ue
>

H
ig

he
st

 Q
ua

lit
y

B
al

l A
va

ila
bl

e,
 fr

om
th

e
H

an
d

-S
ti

tc
hi

ng
 to

 th
e

R
ob

in
so

n
Si

gn
at

ur
e

<
B

Y
T

E
 v

al
ue

>
H

ig
h-

Te
ch

no
lo

gy
 D

es
ig

n
E

xp
an

d
s

th
e

Sw
ee

t S
po

t
<

B
Y

T
E

 v
al

ue
>

D
ur

ab
le

 A
lu

m
in

um
 fo

r H
ig

h
Sc

ho
ol

 a
nd

C
ol

le
gi

at
e

A
th

le
te

s

<
B

Y
T

E
 v

al
ue

>
Q

ua
lit

y
Pi

gs
ki

n
w

it
h

N
or

m
 V

an
 B

ro
ck

lin
Si

gn
at

ur
e

<
B

Y
T

E
 v

al
ue

>
H

ig
he

st
 Q

ua
lit

y
Fo

ot
ba

ll
fo

r
H

ig
h

Sc
ho

ol
 a

nd
 C

ol
le

gi
at

e
C

om
pe

ti
ti

on
s

<
B

Y
T

E
 v

al
ue

>
W

id
e

B
od

y
A

m
pl

ifi
es

 Y
ou

r
N

at
ur

al
A

bi
lit

ie
s

by
 P

ro
vi

d
in

g
M

or
e

Po
w

er
T

hr
ou

gh
 A

er
od

yn
am

ic
 D

es
ig

n
<

B
Y

T
E

 v
al

ue
>

M
id

-S
iz

ed
 R

ac
qu

et
 F

or
 th

e
Im

pr
ov

in
g

Pl
ay

er
<

B
Y

T
E

 v
al

ue
>

A
nt

iq
ue

 R
ep

lic
a

of
 C

la
ss

ic
 W

oo
d

en
R

ac
qu

et
 B

ui
lt

 w
it

h
C

at
-G

ut
 S

tr
in

gs
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
V

is
ib

ili
ty

 T
en

ni
s,

 D
ay

 o
r

N
ig

ht

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
 C

on
st

ru
ct

io
n

C
ou

pl
ed

 w
it

h
th

B
ri

gh
te

st
 C

ol
or

s
A

va
ila

bl
e

<
B

Y
T

E
 v

al
ue

>
L

on
g-

L
if

e
B

as
ke

tb
al

ls
 fo

r
In

d
oo

r
G

ym
na

si
um

s
<

B
Y

T
E

 v
al

ue
>

Pr
of

es
si

on
al

 V
ol

le
yb

al
ls

 fo
r

In
d

oo
r

C
om

pe
ti

ti
on

s
<

B
Y

T
E

 v
al

ue
>

Sa
nc

ti
on

ed
 V

ol
le

yb
al

l N
et

ti
ng

 fo
r

In
d

oo
r

Pr
of

es
si

on
al

 a
nd

 C
ol

le
gi

at
e

C
om

pe
ti

ti
on

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
00

1
1

H
R

O
8

B
ro

w
n

le
at

he
r.

Sp
ec

if
y

fir
st

 b
as

em
an

’s
or

 in
fie

ld
/

ou
tfi

el
d

 s
ty

le
.

Sp
ec

if
y

ri
gh

t-
or

 le
ft

-h
an

d
ed

.
10

00
2

1
H

SK
B

ab
e

R
ut

h
si

gn
at

ur
e

gl
ov

e.
 B

la
ck

 le
at

he
r.

In
fie

ld
/

ou
tfi

el
d

 s
ty

le
. S

pe
ci

fy
 r

ig
ht

- o
r

le
ft

-h
an

d
ed

10
00

3
1

SM
T

C
at

ch
er

’s
 m

it
t.

B
ro

w
n

le
at

he
r.

Sp
ec

if
y

ri
gh

t-
 o

r
le

ft
-h

an
d

ed
.

10
00

4
2

H
R

O
Ja

ck
ie

 R
ob

in
so

n
si

gn
at

ur
e

gl
ov

e.
 H

ig
he

st
Pr

of
es

si
on

al
 q

ua
lit

y,
 u

se
d

 b
y

N
at

io
na

l
L

ea
gu

e.
10

00
5

3
H

SK
Pr

o-
st

yl
e

w
oo

d
. A

va
ila

bl
e

in
 s

iz
es

: 3
1,

 3
2,

33
, 3

4,
 3

5.
10

00
6

3
SH

M
A

lu
m

in
um

. B
lu

e
w

it
h

bl
ac

k
ta

pe
. 3

1"
,

20
 o

z
or

 2
2

oz
; 3

2"
, 2

1
oz

 o
r

23
 o

z;
 3

3"
,

22
 o

z
or

 2
4

oz
;

10
00

7
4

H
SK

N
or

m
 V

an
 B

ro
ck

lin
 s

ig
na

tu
re

 s
ty

le
.

10
00

8
4

H
R

O
N

FL
-S

ty
le

 p
ig

sk
in

.

10
00

9
5

N
R

G
G

ra
ph

it
e

fr
am

e.
 S

yn
th

et
ic

 s
tr

in
gs

.

10
01

0
5

SM
T

A
lu

m
in

um
 fr

am
e.

 S
yn

th
et

ic
 s

tr
in

gs

10
01

1
5

A
N

Z
W

oo
d

 fr
am

e,
 c

at
-g

ut
 s

tr
in

gs
.

10
01

2
6

SM
T

So
ft

 y
el

lo
w

 c
ol

or
 fo

r
ea

sy
 v

is
ib

ili
ty

 in
su

nl
ig

ht
 o

r
ar

ti
fic

ia
l l

ig
ht

10
01

3
6

A
N

Z
Pr

o-
co

re
. A

va
ila

bl
e

in
 n

eo
n

ye
llo

w
, g

re
en

,
an

d
 p

in
k.

10
01

4
7

H
R

O
In

d
oo

r.
C

la
ss

ic
 N

B
A

 s
ty

le
. B

ro
w

n
le

at
he

r.

10
01

5
8

A
N

Z
In

d
oo

r.
Fi

ne
st

 le
at

he
r.

Pr
of

es
si

on
al

 q
ua

lit
y.

10
01

6
9

A
N

Z
St

ee
l e

ye
le

ts
. N

yl
on

 c
or

d
in

g.
 D

ou
bl

e-
st

it
ch

ed
. S

an
ct

io
ne

d
 b

y
th

e
N

at
io

na
l

A
th

le
ti

c
C

on
gr

es
sca

ta
lo

g
Ta

bl
e

(1
 o

f 7
)

The Demonstration Database and Application A-21

Data in the Demonstration Database

ca

t_
p

ic
tu

re
ca

t_
ad

ve
rt

<
B

Y
T

E
 v

al
ue

>
U

lt
im

at
e

in
 P

un
ct

ur
e

Pr
ot

ec
ti

on
, T

ir
es

D
es

ig
ne

d
 fo

r
In

-C
it

y
R

id
in

g

<
B

Y
T

E
 v

al
ue

>
T

he
 P

er
fe

ct
 T

ir
e

fo
r

C
lu

b
R

id
es

 o
r

Tr
ai

ni
ng

<
B

Y
T

E
 v

al
ue

>
T

hr
us

t-
B

ea
ri

ng
 a

nd
 S

pr
in

g-
Sl

ee
ve

 B
ra

k
Se

t G
ua

ra
nt

ee
s

Sm
oo

th
 A

ct
io

n

<
B

Y
T

E
 v

al
ue

>
C

om
pu

te
r

D
es

ig
n

D
el

iv
er

s
R

ig
id

 Y
et

V
ib

ra
ti

on
-F

re
e

B
ra

ke
s

<
B

Y
T

E
 v

al
ue

>
C

lim
b

A
ny

 M
ou

nt
ai

n:
 P

ro
C

yc
le

’s
 F

ro
n

D
er

ai
lle

ur
 A

d
d

s
Fi

ne
ss

e
to

 Y
ou

r
A

T
B

<
B

Y
T

E
 v

al
ue

>
C

om
pu

te
r-

A
id

ed
 D

es
ig

n
E

ng
in

ee
rs

10
0-

To
ot

h
C

ap
ac

it
y

In
to

 P
ro

C
yc

le
’s

 R
ea

D
er

ai
lle

ur

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
 T

ra
in

in
g

W
he

el
s

T
ha

t H
ol

d
Tr

ue
 U

nd
er

 T
ou

gh
es

t C
on

d
it

io
ns

<
B

Y
T

E
 v

al
ue

>
E

xt
ra

 L
ig

ht
w

ei
gh

t W
he

el
s

fo
r

Tr
ai

ni
ng

or
 H

ig
h-

Pe
rf

or
m

an
ce

 T
ou

ri
ng

<
B

Y
T

E
 v

al
ue

>
Pr

oC
yc

le
 S

te
m

 w
it

h
Pe

ar
l F

in
is

h

<
B

Y
T

E
 v

al
ue

>
T

he
 U

lt
im

at
e

In
 R

id
in

g
C

om
fo

rt
, L

ig
ht

w
ei

gh
t W

it
h

A
na

to
m

ic
al

 S
up

po
rt

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
01

7
10

1
PR

C
R

ei
nf

or
ce

d
, h

an
d

-fi
ni

sh
ed

 tu
bu

la
r.

Po
ly

ur
et

ha
ne

 b
el

te
d

.
E

ff
ec

ti
ve

 a
ga

in
st

pu
nc

tu
re

s.
 M

ix
ed

 tr
ea

d
 fo

r
su

pe
r

w
ea

r
an

d
 r

oa
d

 g
ri

p.
10

01
8

10
1

SH
M

D
ur

ab
le

 n
yl

on
 c

as
in

g
w

it
h

bu
ty

l t
ub

e
fo

r
su

pe
ri

or
 a

ir
 re

te
nt

io
n.

 C
en

te
r-

ri
bb

ed
 tr

ea
d

w
it

h
he

rr
in

gb
on

e
si

d
e.

 C
oa

te
d

 s
id

ew
al

ls
re

si
st

 a
br

as
io

n.
10

01
9

10
2

SH
M

T
hr

us
t b

ea
ri

ng
 a

nd
 c

oa
te

d
 p

iv
ot

 w
as

h-
er

/
sp

ri
ng

 sl
ee

ve
 fo

r s
m

oo
th

 a
ct

io
n.

 S
lo

tt
ed

le
ve

rs
 w

it
h

so
ft

 g
um

 h
oo

d
s.

 T
w

o-
to

ne
pa

in
t t

re
at

m
en

t.
Se

t i
nc

lu
d

es
 c

al
ip

er
s,

le
ve

rs
, a

nd
 c

ab
le

s.
10

02
0

10
2

PR
C

C
om

pu
te

r-
ai

d
ed

 d
es

ig
n

w
it

h
lo

w
-p

ro
fil

e
pa

d
s.

 C
ol

d
-f

or
ge

d
 a

llo
y

ca
lip

er
s

an
d

 b
ee

fy
ca

lip
er

 b
us

hi
ng

. A
er

o
le

ve
rs

. S
et

 in
cl

ud
es

ca
lip

er
s,

 le
ve

rs
, a

nd
 c

ab
le

s
10

02
1

10
3

PR
C

C
om

pa
ct

 le
ad

in
g-

ac
ti

on
 d

es
ig

n
en

ha
nc

es
sh

if
ti

ng
. D

ee
p

ca
ge

 fo
r s

up
er

-s
m

al
l g

ra
nn

y
ge

ar
s.

 E
xt

ra
 s

tr
on

g
co

ns
tr

uc
ti

on
 to

 r
es

is
t

of
f-

ro
ad

 a
bu

se
.

10
02

2
10

4
PR

C
Fl

oa
ti

ng
 tr

ap
ez

oi
d

 g
eo

m
et

ry
 w

it
h

ex
tr

a
th

ic
k

pa
ra

lle
lo

gr
am

 a
rm

s.
 1

00
-t

oo
th

ca
pa

ci
ty

. O
pt

im
um

 a
lig

nm
en

t w
it

h
an

y
fr

ee
w

he
el

.
10

02
3

10
5

PR
C

Fr
on

t w
he

el
s

la
ce

d
 w

it
h

15
g

sp
ok

es
 in

 a
3-

cr
os

s p
at

te
rn

. R
ea

r w
he

el
s l

ac
ed

 w
it

h
14

g
sp

ik
es

 in
 a

 3
-c

ro
ss

 p
at

te
rn

.
10

02
4

10
5

SH
M

Po
lis

he
d

 a
llo

y.
 S

ea
le

d
-b

ea
ri

ng
, q

ui
ck

-
re

le
as

e
hu

bs
. D

ou
bl

e-
bu

tt
ed

. F
ro

nt
 w

he
el

s
ar

e
la

ce
d

 1
5g

/
2-

cr
os

s.
 R

ea
r

w
he

el
s

ar
e

la
ce

d
 1

5g
/

3-
cr

os
s.

10
02

5
10

6
PR

C
H

ar
d

 a
no

d
iz

ed
 a

llo
y

w
it

h
pe

ar
l fi

ni
sh

.
6m

m
 h

ex
 b

ol
t h

ar
d

w
ar

e.
 A

va
ila

bl
e

in
le

ng
th

s
of

 9
0-

14
0m

m
 in

 1
0m

m
 in

cr
em

en
ts

.
10

02
6

10
7

PR
C

A
va

ila
bl

e
in

 th
re

e
st

yl
es

: M
en

s
ra

ci
ng

;
M

en
s

to
ur

in
g;

 a
nd

 W
om

en
s.

 A
na

to
m

ic
al

ge
l c

on
st

ru
ct

io
n

w
it

h
ly

cr
a

co
ve

r.
B

la
ck

 o
r

bl
ac

k/
ho

t p
in

k.

ca
ta

lo
g

Ta
bl

e
(2

 o
f 7

)

A-22 The Demonstration Database and Application

Data in the Demonstration Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
C

us
to

m
iz

e
Yo

ur
 M

ou
nt

ai
n

B
ik

e
W

it
h

E
xt

ra
-D

ur
ab

le
 C

ra
nk

se
t

<
B

Y
T

E
 v

al
ue

>
C

la
ss

ic
 T

oe
cl

ip
 Im

pr
ov

ed
 T

o
Pr

ev
en

t
So

re
ne

ss
 A

t C
lip

 B
uc

kl
e

<
B

Y
T

E
 v

al
ue

>
In

ge
ni

ou
s

Pe
d

al
/

C
lip

 D
es

ig
n

D
el

iv
er

s
M

ax
im

um
 P

ow
er

 A
nd

 F
as

t U
nl

oc
ki

ng

<
B

Y
T

E
 v

al
ue

>
Fe

at
he

r-
L

ig
ht

, Q
ui

ck
-R

el
ea

se
,

M
ax

im
um

 P
ro

te
ct

io
n

H
el

m
et

<
B

Y
T

E
 v

al
ue

>
M

in
im

um
 C

hi
n

C
on

ta
ct

, F
ea

th
er

-L
ig

ht
,

M
ax

im
um

 P
ro

te
ct

io
n

H
el

m
et

<
B

Y
T

E
 v

al
ue

>
M

ou
nt

ai
n

B
ik

e
H

el
m

et
: S

m
oo

th
 C

ov
er

E
lim

in
at

es
 th

e
W

or
ry

 o
f B

ru
sh

 S
na

gs
 B

ut
D

el
iv

er
s

M
ax

im
um

 P
ro

te
ct

io
n

<
B

Y
T

E
 v

al
ue

>
L

ig
ht

w
ei

gh
t P

la
st

ic
 w

it
h

V
en

ts
 A

ss
ur

es
C

oo
l C

om
fo

rt
 W

it
ho

ut
 S

ac
ri

fi
ci

ng
Pr

ot
ec

ti
on

<
B

Y
T

E
 v

al
ue

>
Te

ar
d

ro
p

D
es

ig
n

U
se

d
 b

y
Ye

llo
w

Je
rs

ey
s,

 Y
ou

 C
an

 T
im

e
th

e
D

if
fe

re
nc

e

<
B

Y
T

E
 v

al
ue

>
Fu

lly
 E

qu
ip

pe
d

 B
ic

yc
le

 D
es

ig
ne

d
 fo

r t
he

Se
ri

ou
s

C
om

m
ut

er
 W

ho
 M

ix
es

 B
us

in
es

s
W

it
h

Pl
ea

su
re

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
02

7
10

8
SH

M
D

ou
bl

e
or

 tr
ip

le
 c

ra
nk

se
t w

it
h

ch
oi

ce
 o

f
ch

ai
nr

in
gs

. F
or

 d
ou

bl
e

cr
an

ks
et

, c
ha

in
-

ri
ng

s
fr

om
 3

8-
54

 te
et

h.
 F

or
 tr

ip
le

 c
ra

nk
se

t,
ch

ai
nr

in
gs

 fr
om

 2
4-

48
 te

et
h.

10
02

8
10

9
PR

C
St

ee
l t

oe
 c

lip
s

w
it

h
ny

lo
n

st
ra

p.
 E

xt
ra

 w
id

e
at

 b
uc

kl
e

to
 r

ed
uc

e
pr

es
su

re
.

10
02

9
10

9
SH

M
In

ge
ni

ou
s

ne
w

 d
es

ig
n

co
m

bi
ne

s
bu

tt
on

on
 s

ol
e

of
 s

ho
e

w
it

h
sl

ot
 o

n
a

pe
d

al
 p

la
te

to
 g

iv
e

ri
d

er
s

ne
w

 o
pt

io
ns

 in
 r

id
in

g
ef

fi-
ci

en
cy

. C
ho

os
e

fu
ll

or
 p

ar
ti

al
 lo

ck
in

g.
 F

ou
r

pl
at

es
 m

ea
n

bo
th

 to
p

an
d

 b
ot

to
m

 o
f p

ed
al

s
ar

e
sl

ot
te

d
—

no
 fi

sh
in

g
ar

ou
nd

 w
he

n
yo

u
w

an
t t

o
en

ga
ge

 fu
ll

po
w

er
. F

as
t u

nl
oc

ki
ng

en
su

re
s

sa
fe

ty
 w

he
n

m
an

eu
ve

ra
bi

lit
y

is
pa

ra
m

ou
nt

.
10

03
0

11
0

PR
C

Su
pe

r-
lig

ht
w

ei
gh

t.
M

ee
ts

 b
ot

h
A

N
Z

I a
nd

Sn
el

l s
ta

nd
ar

d
s

fo
r

im
pa

ct
 p

ro
te

ct
io

n.
 7

.5
oz

. Q
ui

ck
-r

el
ea

se
 s

ha
d

ow
 b

uc
kl

e.
10

03
1

11
0

A
N

Z
N

o
bu

ck
le

 s
o

no
 p

la
st

ic
 to

uc
he

s
yo

ur
 c

hi
n.

M
ee

ts
 b

ot
h

A
N

Z
I a

nd
 S

ne
ll

st
an

d
ar

d
s

fo
r

im
pa

ct
 p

ro
te

ct
io

n.
 7

.5
 o

z.
 L

yc
ra

 c
ov

er
.

10
03

2
11

0
SH

M
D

en
se

 o
ut

er
 la

ye
r

co
m

bi
ne

s
w

it
h

so
ft

er
in

ne
r

la
ye

r
to

 e
lim

in
at

e
th

e
m

es
h

co
ve

r,
no

 s
na

gg
in

g
on

 b
ru

sh
. M

ee
ts

 b
ot

h
A

N
Z

I
an

d
 S

ne
ll

st
an

d
ar

d
s

fo
r

im
pa

ct
 p

ro
te

ct
io

n.
8.

0
oz

.
10

03
3

11
0

H
R

O
N

ew
es

t u
lt

ra
lig

ht
 h

el
m

et
 u

se
s p

la
st

ic
 sh

el
l.

L
ar

ge
st

 v
en

ti
la

ti
on

 c
ha

nn
el

s
of

 a
ny

 h
el

m
et

on
 th

e
m

ar
ke

t.
8.

5
oz

.
10

03
4

11
0

H
SK

A
er

od
yn

am
ic

 (t
ea

rd
ro

p)
 h

el
m

et
 c

ov
er

ed
w

it
h

an
ti

-d
ra

g
fa

br
ic

. C
re

d
it

ed
 w

it
h

sh
av

-
in

g
2

se
co

nd
s/

m
ile

 fr
om

 w
in

ne
r’

s
ti

m
e

in
To

ur
 d

e
Fr

an
ce

 ti
m

e-
tr

ia
l.

7.
5

oz
.

10
03

5
11

1
SH

M
L

ig
ht

-a
ct

io
n

sh
if

ti
ng

 1
0

sp
ee

d
. D

es
ig

ne
d

fo
r

th
e

ci
ty

 c
om

m
ut

er
 w

it
h

sh
oc

k-
ab

so
rb

-
in

g
fr

on
t f

or
k

an
d

 d
ri

lle
d

 e
ye

le
ts

 fo
r

ca
rr

y-
al

l r
ac

ks
 o

r
bi

cy
cl

e
tr

ai
le

rs
. I

nt
er

na
l w

ir
in

g
fo

r
ge

ne
ra

to
r

lig
ht

s.
 3

3
lb

s.

ca
ta

lo
g

Ta
bl

e
(3

 o
f 7

)

The Demonstration Database and Application A-23

Data in the Demonstration Database
A-24 The Demonstration Database and Application

ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
W

e
Se

le
ct

ed
 th

e
Id

ea
l C

om
bi

na
ti

on
 o

f
To

ur
in

g
B

ik
e

E
qu

ip
m

en
t,

T
he

n
Tu

rn
ed

It
 In

to
 T

hi
s

Pa
ck

ag
e

D
ea

l:
H

ig
h-

Pe
rf

or
-

m
an

ce
 o

n
th

e
R

oa
d

s,
 M

ax
im

um
 P

le
a-

su
re

 E
ve

ry
w

he
re

<
B

Y
T

E
 v

al
ue

>
D

es
ig

ne
d

 fo
r

th
e

Se
ri

ou
s

C
om

pe
ti

to
r,

T
he

 C
om

pl
et

e
R

ac
in

g
M

ac
hi

ne

<
B

Y
T

E
 v

al
ue

>
R

id
in

g
G

lo
ve

s
Fo

r
C

om
fo

rt
 a

nd
Pr

ot
ec

ti
on

<
B

Y
T

E
 v

al
ue

>
Fu

ll-
C

om
fo

rt
, L

on
g-

W
ea

ri
ng

 G
ol

f S
ho

es
fo

r
M

en
 a

nd
 W

om
en

<
B

Y
T

E
 v

al
ue

>
W

at
er

pr
oo

f P
ro

te
ct

io
n

E
ns

ur
es

M
ax

im
um

 C
om

fo
rt

 a
nd

 D
ur

ab
ili

ty
In

 A
ll

C
lim

at
es

<
B

Y
T

E
 v

al
ue

>
K

ar
st

en
’s

 T
op

 Q
ua

lit
y

Sh
oe

 C
om

bi
ne

s
L

ea
th

er
 a

nd
 L

ea
th

er
 M

es
h

<
B

Y
T

E
 v

al
ue

>
St

ar
te

r
Se

t o
f W

oo
d

s,
 Id

ea
l f

or
 H

ig
h

Sc
ho

ol
 a

nd
 C

ol
le

gi
at

e
C

la
ss

es
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
Q

ua
lit

y
W

oo
d

s
A

pp
ro

pr
ia

te
 fo

r
H

ig
h

Sc
ho

ol
 C

om
pe

ti
ti

on
s

or
 S

er
io

us
A

m
at

eu
rs

<
B

Y
T

E
 v

al
ue

>
Se

t o
f I

ro
ns

 A
va

ila
bl

e
Fr

om
 F

ac
to

ry
 a

t
Tr

em
en

d
ou

s
Sa

vi
ng

s:
 D

is
co

nt
in

ue
d

L
in

e.
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
Q

ua
lit

y
B

eg
in

ni
ng

 S
et

 o
f I

ro
ns

 A
p-

pr
op

ri
at

e
fo

r
H

ig
h

Sc
ho

ol
 C

om
pe

ti
ti

on
s

<
B

Y
T

E
 v

al
ue

>
L

on
g

D
ri

ve
 G

ol
f B

al
ls

: F
lu

or
es

ce
nt

Ye
llo

w
<

B
Y

T
E

 v
al

ue
>

L
on

g
D

ri
ve

 G
ol

f B
al

ls
: W

hi
te

<
B

Y
T

E
 v

al
ue

>
H

iF
lie

r
G

ol
f B

al
ls

: C
as

e
In

cl
ud

es
Fl

uo
re

sc
en

t Y
el

lo
w

 a
nd

 S
ta

nd
ar

d
 W

hi
te

ca
ta

lo
g

Ta
bl

e
(4

 o
f 7

)
ca

ta
lo

g_
n

u
m

st
oc

k
_n

u
m

m
an

u
_c

od
e

ca
t_

d
es

cr

10
03

6
11

2
SH

M
C

re
at

ed
 fo

r
th

e
be

gi
nn

er
 e

nt
hu

si
as

t.
Id

ea
l

fo
r

cl
ub

 r
id

es
 a

nd
 li

gh
t t

ou
ri

ng
. S

op
hi

st
i-

ca
te

d
 tr

ip
le

-b
ut

te
d

 fr
am

e
co

ns
tr

uc
ti

on
.

Pr
ec

is
e

in
d

ex
 s

hi
ft

in
g.

 2
8

lb
s.

10
03

7
11

3
SH

M
U

lt
ra

-l
ig

ht
w

ei
gh

t.
R

ac
in

g
fr

am
e

ge
om

et
ry

bu
ilt

 fo
r

ae
ro

d
yn

am
ic

 h
an

d
le

ba
rs

.
C

an
ti

le
ve

r
br

ak
es

. I
nd

ex
 s

hi
ft

in
g.

 H
ig

h-
pe

rf
or

m
an

ce
 g

ea
ri

ng
. Q

ui
ck

-r
el

ea
se

 h
ub

s.
D

is
k

w
he

el
s.

 B
la

d
ed

 s
po

ke
s.

10
03

8
11

4
PR

C
Pa

d
d

ed
 le

at
he

r
pa

lm
 a

nd
 s

tr
et

ch
 m

es
h

m
er

ge
d

 w
it

h
te

rr
y

ba
ck

; A
va

ila
bl

e
in

 ta
n,

bl
ac

k,
 a

nd
 c

re
am

. S
iz

es
 S

, M
, L

, X
L

.
10

03
9

20
1

N
K

L
D

es
ig

ne
d

 fo
r

co
m

fo
rt

 a
nd

 s
ta

bi
lit

y.
A

va
ila

bl
e

in
 w

hi
te

 &
 b

lu
e

or
 w

hi
te

&
 b

ro
w

n.
 S

pe
ci

fy
 s

iz
e.

10
04

0
20

1
A

N
Z

G
ua

ra
nt

ee
d

 w
at

er
pr

oo
f.

Fu
ll

le
at

he
r

up
pe

r.
A

va
ila

bl
e

in
 w

hi
te

, b
on

e,
 b

ro
w

n,
gr

ee
n,

 a
nd

 b
lu

e.
 S

pe
ci

fy
 s

iz
e.

10
04

1
20

1
K

A
R

L
ea

th
er

 a
nd

 le
at

he
r

m
es

h
fo

r
m

ax
im

um
ve

nt
ila

ti
on

. W
at

er
pr

oo
f l

in
in

g
to

 k
ee

p
fe

et
d

ry
. A

va
ila

bl
e

in
 w

hi
te

 &
 g

ra
y

or
 w

hi
te

&
 iv

or
y.

 S
pe

ci
fy

 s
iz

e.
10

04
2

20
2

N
K

L
C

om
pl

et
e

st
ar

te
r

se
t u

ti
liz

es
 g

ol
d

 s
ha

ft
s.

B
al

an
ce

d
 fo

r
po

w
er

.
10

04
3

20
2

K
A

R
Fu

ll
se

t o
f w

oo
d

s
d

es
ig

ne
d

 fo
r

pr
ec

is
io

n
co

nt
ro

l a
nd

 p
ow

er
 p

er
fo

rm
an

ce
.

10
04

4
20

3
N

K
L

Se
t o

f e
ig

ht
 ir

on
s i

nc
lu

d
es

 3
 th

ro
ug

h
9

ir
on

s
an

d
 p

it
ch

in
g

w
ed

ge
. O

ri
gi

na
lly

 p
ri

ce
d

 a
t

$4
89

.0
0.

10
04

5
20

4
K

A
R

Id
ea

lly
 b

al
an

ce
d

 fo
r

op
ti

m
um

 c
on

tr
ol

.
N

yl
on

-c
ov

er
ed

 s
ha

ft
.

10
04

6
20

5
N

K
L

Fl
uo

re
sc

en
t y

el
lo

w
.

10
04

7
20

5
A

N
Z

W
hi

te
 o

nl
y.

10
04

8
20

5
H

R
O

C
om

bi
na

ti
on

 fl
uo

re
sc

en
t y

el
lo

w
 a

nd
st

an
d

ar
d

 w
hi

te
.

Data in the Demonstration Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
M

ax
im

um
 P

ro
te

ct
io

n
Fo

r
H

ig
h-

M
ile

ag
e

R
un

ne
rs

<
B

Y
T

E
 v

al
ue

>
Pr

on
at

or
s

an
d

 S
up

in
at

or
s

Ta
ke

 H
ea

rt
:

A
 S

er
io

us
 T

ra
in

in
g

Sh
oe

 F
or

 R
un

ne
rs

W
ho

 N
ee

d
 M

ot
io

n
C

on
tr

ol

<
B

Y
T

E
 v

al
ue

>
T

he
 T

ra
in

in
g

Sh
oe

 E
ng

in
ee

re
d

 fo
r

M
ar

at
ho

ne
rs

 a
nd

 U
lt

ra
-D

is
ta

nc
e

R
un

ne
rs

<
B

Y
T

E
 v

al
ue

>
A

 W
om

an
’s

 R
ac

in
g

Fl
at

 T
ha

t C
om

bi
ne

s
E

xt
ra

 F
or

ef
oo

t P
ro

te
ct

io
n

W
it

h
a

Sl
en

d
er

H
ee

l

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
 T

ra
in

in
g

Fl
at

 T
ha

t C
an

 C
ar

ry
Yo

u
T

hr
ou

gh
 M

ar
at

ho
n

M
ile

s

<
B

Y
T

E
 v

al
ue

>
M

ot
io

n
C

on
tr

ol
, P

ro
te

ct
io

n,
 a

nd
 E

xt
ra

To
eb

ox
 R

oo
m

<
B

Y
T

E
 v

al
ue

>
Fi

na
lly

, A
n

Ic
e

Pa
ck

 fo
r

A
ch

ill
es

 In
ju

ri
es

an
d

 S
hi

n
Sp

lin
ts

 th
at

 Y
ou

 C
an

 T
ak

e
to

th
e

O
ffi

ce
<

B
Y

T
E

 v
al

ue
>

K
no

ck
 T

he
ir

 S
oc

ks
 O

ff
 W

it
h

Y
O

U
R

So
ck

s!

<
B

Y
T

E
 v

al
ue

>
10

0%
 N

yl
on

 B
le

nd
 S

oc
ks

 -
N

o
C

ot
to

n!

ca
ta

lo
g

Ta
bl

e
(5

 o
f 7

)
ca

ta
lo

g_
n

u
m

st
oc

k
_n

u
m

m
an

u
_c

od
e

ca
t_

d
es

cr

10
04

9
30

1
N

K
L

Su
pe

r
sh

oc
k-

ab
so

rb
in

g
ge

l p
ad

s
d

is
pe

rs
e

ve
rt

ic
al

 e
ne

rg
y

in
to

 a
 h

or
iz

on
ta

l p
la

ne
 fo

r
ex

tr
ao

rd
in

ar
y

cu
sh

io
ne

d
 c

om
fo

rt
. G

re
at

m
ot

io
n

co
nt

ro
l.

M
en

s
on

ly
. S

pe
ci

fy
 s

iz
e.

10
05

0
30

1
H

R
O

E
ng

in
ee

re
d

 fo
r

se
ri

ou
s

tr
ai

ni
ng

 w
it

h
ex

ce
pt

io
na

l s
ta

bi
lit

y.
 F

ab
ul

ou
s

sh
oc

k
ab

so
rp

ti
on

. G
re

at
 d

ur
ab

ili
ty

. S
pe

ci
fy

m
en

s/
w

om
en

s,
 s

iz
e.

10
05

1
30

1
SH

M
Fo

r r
un

ne
rs

 w
ho

 lo
g

he
av

y
m

ile
s

an
d

 n
ee

d
a

d
ur

ab
le

, s
up

po
rt

iv
e,

 s
ta

bl
e

pl
at

fo
rm

.
M

es
h/

sy
nt

he
ti

c
up

pe
r

gi
ve

s
ex

ce
lle

nt
m

oi
st

ur
e

d
is

si
pa

ti
on

. S
ta

bi
lit

y
sy

st
em

 u
se

s
re

ar
 a

nt
ip

ro
na

ti
on

 p
la

tf
or

m
 a

nd
 fo

re
fo

ot
co

nt
ro

l p
la

te
 fo

r
ex

te
nd

ed
 p

ro
te

ct
io

n
d

ur
in

g
hi

gh
-i

nt
en

si
ty

 tr
ai

ni
ng

. S
pe

ci
fy

m
en

s/
w

om
en

s,
 s

iz
e.

10
05

2
30

1
PR

C
Su

pp
or

ti
ve

, s
ta

bl
e

ra
ci

ng
 fl

at
. P

le
nt

y
of

fo
re

fo
ot

 c
us

hi
on

in
g

w
it

h
ad

d
ed

 m
ot

io
n

co
nt

ro
l.

W
om

en
s

on
ly

. D
 w

id
th

s
av

ai
la

bl
e.

Sp
ec

if
y

si
ze

.
10

05
3

30
1

K
A

R
A

na
to

m
ic

al
 la

st
 h

ol
d

s
yo

ur
 fo

ot
 fi

rm
ly

 in
pl

ac
e.

 F
ea

th
er

-w
ei

gh
t c

us
hi

on
in

g
d

el
iv

er
s

th
e

re
sp

on
si

ve
ne

ss
 o

f a
 r

ac
in

g
fl

at
. S

pe
ci

fy
m

en
s/

w
om

en
s,

 s
iz

e.
10

05
4

30
1

A
N

Z
C

an
ti

le
ve

r
so

le
 p

ro
vi

d
es

 s
ho

ck
 a

bs
or

pt
io

n
an

d
 e

ne
rg

y
re

bo
un

d
. P

os
it

iv
e

tr
ac

ti
on

 sh
oe

w
it

h
am

pl
e

to
e

bo
x.

 Id
ea

l f
or

 r
un

ne
rs

 w
ho

ne
ed

 a
 w

id
e

sh
oe

. A
va

ila
bl

e
in

 m
en

s
an

d
w

om
en

s.
 S

pe
ci

fy
 s

iz
e.

10
05

5
30

2
K

A
R

R
e-

us
ab

le
 ic

e
pa

ck
 w

it
h

ve
lc

ro
 s

tr
ap

. F
or

ge
ne

ra
l u

se
. V

el
cr

o
st

ra
p

al
lo

w
s

ea
sy

 a
pp

li-
ca

ti
on

 to
 a

rm
s

or
 le

gs
.

10
05

6
30

3
PR

C
N

eo
n

ny
lo

n.
 P

er
fe

ct
 fo

r
ru

nn
in

g
or

ae
ro

bi
cs

. I
nd

ic
at

e
co

lo
r:

 F
lu

or
es

ce
nt

 p
in

k,
ye

llo
w

, g
re

en
, a

nd
 o

ra
ng

e.
10

05
7

30
3

K
A

R
10

0%
 n

yl
on

 b
le

nd
 fo

r o
pt

im
al

 w
ic

ki
ng

 a
nd

co
m

fo
rt

. W
e’

ve
 ta

ke
n

ou
t t

he
 c

ot
to

n
to

el
im

in
at

e
th

e
ri

sk
 o

f b
lis

te
rs

 a
nd

 re
d

uc
e

th
e

op
po

rt
un

it
y

fo
r

in
fe

ct
io

n.
 S

pe
ci

fy
 m

en
s

or
w

om
en

s.
The Demonstration Database and Application A-25

Data in the Demonstration Database
A-26 The Demonstration Database and Application

ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
A

th
le

ti
c

W
at

ch
 w

/
4-

L
ap

 M
em

or
y

<
B

Y
T

E
 v

al
ue

>
W

at
er

pr
oo

f T
ri

at
hl

et
e

W
at

ch
 In

C
om

pe
ti

ti
on

 C
ol

or
s

<
B

Y
T

E
 v

al
ue

>
C

om
pr

eh
en

si
ve

 F
ir

st
-A

id
 K

it
 E

ss
en

ti
al

fo
r

Te
am

 P
ra

ct
ic

es
, T

ea
m

 T
ra

ve
lin

g

<
B

Y
T

E
 v

al
ue

>
E

nj
oy

 B
ic

yc
lin

g
W

it
h

Yo
ur

 C
hi

ld
 O

n
a

Ta
nd

em
; M

ak
e

Yo
ur

 F
am

ily
 O

ut
in

g
Sa

fe
r

<
B

Y
T

E
 v

al
ue

>
C

on
si

d
er

 a
 T

ou
ri

ng
 V

ac
at

io
n

Fo
r

th
e

E
nt

ir
e

Fa
m

ily
: A

 L
ig

ht
w

ei
gh

t,
To

ur
in

g
Ta

nd
em

 fo
r

Pa
re

nt
 a

nd
 C

hi
ld

<
B

Y
T

E
 v

al
ue

>
In

fa
nt

 Jo
gg

er
 K

ee
ps

 A
 R

un
ni

ng
 F

am
ily

To
ge

th
er

<
B

Y
T

E
 v

al
ue

>
A

s
Yo

ur
 F

am
ily

 G
ro

w
s,

 In
fa

nt
 Jo

gg
er

G
ro

w
s

W
it

h
Yo

u
<

B
Y

T
E

 v
al

ue
>

Sw
im

m
er

s
C

an
 P

re
ve

nt
 E

ar
 In

fe
ct

io
n

A
ll

Se
as

on
 L

on
g

<
B

Y
T

E
 v

al
ue

>
Sw

im
m

er
’s

 E
ar

 D
ro

ps
 S

pe
ci

al
ly

Fo
rm

ul
at

ed
 fo

r
C

hi
ld

re
n

<
B

Y
T

E
 v

al
ue

>
E

xc
ep

ti
on

al
ly

 D
ur

ab
le

, C
om

pa
ct

K
ic

kb
oa

rd
 fo

r
Te

am
 P

ra
ct

ic
e

<
B

Y
T

E
 v

al
ue

>
H

ig
h-

Q
ua

lit
y

K
ic

kb
oa

rd
<

B
Y

T
E

 v
al

ue
>

H
ot

 T
ra

in
in

g
To

ol
 -

W
eb

be
d

 S
w

im
G

lo
ve

s
B

ui
ld

 A
rm

 S
tr

en
gt

h
an

d
E

nd
ur

an
ce

<
B

Y
T

E
 v

al
ue

>
A

nt
i-

Fo
g

Sw
im

m
er

’s
 G

og
gl

es
:

Q
ua

nt
it

y
D

is
co

un
t.

<
B

Y
T

E
 v

al
ue

>
Sw

im
 G

og
gl

es
: T

ra
d

it
io

na
l R

ou
nd

ed
L

en
s

Fo
r

G
re

at
er

 C
om

fo
rt

.

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
05

8
30

4
A

N
Z

Pr
ov

id
es

 ti
m

e,
 d

at
e,

 d
ua

l d
is

pl
ay

 o
f

la
p/

cu
m

ul
at

iv
e

sp
lit

s,
 4

-l
ap

 m
em

or
y,

 1
0h

r
co

un
t-

d
ow

n
ti

m
er

, e
ve

nt
 ti

m
er

, a
la

rm
,

ho
ur

 c
hi

m
e,

 w
at

er
pr

oo
f t

o
50

m
, v

el
cr

o
ba

nd
.

10
05

9
30

4
H

R
O

Sp
lit

 ti
m

er
, w

at
er

pr
oo

f t
o

50
m

. I
nd

ic
at

e
co

lo
r:

 H
ot

 p
in

k,
 m

in
t g

re
en

, s
pa

ce
 b

la
ck

.
10

06
0

30
5

H
R

O
C

on
ta

in
s

ac
e

ba
nd

ag
e,

 a
nt

i-
ba

ct
er

ia
l

cr
ea

m
, a

lc
oh

ol
 c

le
an

si
ng

 p
ad

s,
 a

d
he

si
ve

ba
nd

ag
es

 o
f a

ss
or

te
d

 s
iz

es
, a

nd
 in

st
an

t-
co

ld
 p

ac
k.

10
06

1
30

6
PR

C
C

on
ve

rt
s

a
st

an
d

ar
d

 ta
nd

em
 b

ik
e

in
to

 a
n

ad
ul

t/
ch

ild
 b

ik
e.

 U
se

r-
te

st
ed

 A
ss

em
bl

y
In

st
ru

ct
io

ns
10

06
2

30
6

SH
M

C
on

ve
rt

s
a

st
an

d
ar

d
 ta

nd
em

 b
ik

e
in

to
 a

n
ad

ul
t/

ch
ild

 b
ik

e.
 L

ig
ht

w
ei

gh
t m

od
el

.

10
06

3
30

7
PR

C
A

llo
w

s
m

om
 o

r
d

ad
 to

 ta
ke

 th
e

ba
by

 o
ut

,
to

o.
 F

it
s

ch
ild

re
n

up
 to

 2
1

po
un

d
s.

 N
av

y
bl

ue
 w

it
h

bl
ac

k
tr

im
.

10
06

4
30

8
PR

C
A

llo
w

s
m

om
 o

r
d

ad
 to

 ta
ke

 b
ot

h
ch

ild
re

n!
R

at
ed

 fo
r

ch
ild

re
n

up
 to

 1
8

po
un

d
s.

10
06

5
30

9
H

R
O

Pr
ev

en
ts

 s
w

im
m

er
’s

 e
ar

.

10
06

6
30

9
SH

M
E

xt
ra

-g
en

tl
e

fo
rm

ul
a.

 C
an

 b
e

us
ed

ev
er

y
d

ay
 fo

r
pr

ev
en

ti
on

 o
r

tr
ea

tm
en

t
of

 s
w

im
m

er
’s

 e
ar

.
10

06
7

31
0

SH
M

B
lu

e
he

av
y-

d
ut

y
fo

am
 b

oa
rd

 w
it

h
Sh

im
ar

a
or

 te
am

 lo
go

.
10

06
8

31
0

A
N

Z
W

hi
te

. S
ta

nd
ar

d
 s

iz
e.

10
06

9
31

1
SH

M
Sw

im
 g

lo
ve

s.
 W

eb
bi

ng
 b

et
w

ee
n

fin
ge

rs
pr

om
ot

es
 s

tr
en

gt
he

ni
ng

 o
f a

rm
s.

 C
an

no
t

be
 u

se
d

 in
 c

om
pe

ti
ti

on
.

10
07

0
31

2
SH

M
H

yd
ro

d
yn

am
ic

 e
gg

-s
ha

pe
d

 le
ns

.
G

ro
un

d
-i

n
an

ti
-f

og
 e

le
m

en
ts

; A
va

ila
bl

e
in

bl
ue

 o
r

sm
ok

e.
10

07
1

31
2

H
R

O
D

ur
ab

le
 c

om
pe

ti
ti

on
-s

ty
le

 g
og

gl
es

.
A

va
ila

bl
e

in
 b

lu
e,

 g
re

y,
 o

r
w

hi
te

.

ca
ta

lo
g

Ta
bl

e
(6

 o
f 7

)

Data in the Demonstration Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
Te

am
 L

og
o

Si
lic

on
e

Sw
im

 C
ap

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
 S

qu
ar

ed
-o

ff
 S

ili
co

ne
 S

w
im

 C
ap

<
B

Y
T

E
 v

al
ue

>
W

at
er

 C
om

pa
rt

m
en

t C
om

bi
ne

s
W

it
h

Ic
e

to
 P

ro
vi

d
e

O
pt

im
al

 O
rt

ho
pe

d
ic

Tr
ea

tm
en

t

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
07

2
31

3
SH

M
Si

lic
on

e
sw

im
 c

ap
. O

ne
 s

iz
e.

 A
va

ila
bl

e
in

 w
hi

te
, s

ilv
er

, o
r

na
vy

. T
ea

m
 L

og
o

Im
pr

in
ti

ng
 A

va
ila

bl
e

10
07

3
31

3
A

N
Z

Si
lic

on
e

sw
im

 c
ap

. S
qu

ar
ed

-o
ff

 to
p.

 O
ne

si
ze

. W
hi

te
.

10
07

4
30

2
H

R
O

R
e-

us
ab

le
 ic

e
pa

ck
. S

to
re

 in
 th

e
fr

ee
ze

r
fo

r
in

st
an

t fi
rs

t-
ai

d
. E

xt
ra

 c
ap

ac
it

y
to

ac
co

m
m

od
at

e
w

at
er

 a
nd

 ic
e.

ca
ta

lo
g

Ta
bl

e
(7

 o
f 7

)

The Demonstration Database and Application A-27

Data in the Demonstration Database

re

s_
d

ti
m

e
re

s_
d

es
cr

19
90

-0
6-

12
 8

:2
5

A
ut

ho
ri

ze
d

 c
re

d
it

 fo
r

tw
o

ca
ns

 to
cu

st
om

er
, i

ss
ue

d
 a

po
lo

gy
. C

al
le

d
A

N
Z

 b
uy

er
 to

 re
po

rt
 th

e
Q

A
 p

ro
bl

em
.

19
90

-0
7-

07
 1

0:
30

C
he

ck
ed

 w
it

h
sh

ip
pi

ng
 (E

d
 S

m
it

h)
.

O
rd

er
 s

en
t y

es
te

rd
ay

- w
e

w
er

e
w

ai
t-

in
g

fo
r

go
od

s
fr

om
 A

N
Z

. N
ex

t t
im

e
w

ill
 c

al
l w

it
h

d
el

ay
 if

 n
ec

es
sa

ry
.

19
90

-0
7-

02
 8

:2
1

Sp
ok

e
w

it
h

Ja
ne

 A
ka

nt
 in

 F
in

an
ce

. S
he

fo
un

d
 th

e
er

ro
r

an
d

 is
 s

en
d

in
g

ne
w

bi
ll

to
 c

us
to

m
er

19
90

-0
7-

10
 1

4:
06

Se
nt

 n
ot

e
to

 m
ar

ke
ti

ng
 g

ro
up

 o
f

in
te

re
st

 in
 in

fa
nt

 jo
gg

er
s

Se
nt

 m
em

o
to

 s
hi

pp
in

g
to

 s
en

d
 A

N
Z

it
em

 3
04

 to
 c

us
to

m
er

 a
nd

 p
ic

ku
p

H
R

O
w

at
ch

es
. S

ho
ul

d
 b

e
d

on
e

to
m

or
ro

w
,

8/
1

19
89

-1
1-

28
 1

6:
47

Sh
ip

pi
ng

 fo
un

d
 c

or
re

ct
 c

as
e

in
 w

ar
e-

ho
us

e
an

d
 e

xp
re

ss
 m

ai
le

d
 it

 in
 ti

m
e

fo
r

sw
im

 m
ee

t.
19

89
-1

2-
27

 0
8:

19
M

em
o

to
 s

hi
pp

in
g

(A
va

 B
ro

w
n)

 to
se

nd
 c

as
e

of
 le

ft
-h

an
d

ed
 g

lo
ve

s,
 p

ic
k

up
 w

ro
ng

 c
as

e;
 m

em
o

to
 b

ill
in

g
re

qu
es

ti
ng

 5
%

 d
is

co
un

t t
o

pl
ac

at
e

cu
st

om
er

 d
ue

 to
 s

ec
on

d
 o

ff
en

se
 a

nd
la

te
ne

ss
 o

f r
es

ol
ut

io
n

be
ca

us
e

of
ho

lid
ay

cu
st

_c
al

ls
 T

ab
le

cu
st

om
er

_n
u

m
ca

ll
_d

ti
m

e
u

se
r_

id
ca

ll
_c

od
e

ca
ll

_d
es

cr

10
6

19
90

-0
6-

12
 8

:2
0

m
ar

yj
D

O
rd

er
 w

as
 r

ec
ei

ve
d

, b
ut

 tw
o

of
th

e
ca

ns
 o

f A
N

Z
 te

nn
is

 b
al

ls
w

it
hi

n
th

e
ca

se
 w

er
e

em
pt

y
11

0
19

90
-0

7-
07

 1
0:

24
ri

ch
c

L
O

rd
er

 p
la

ce
d

 o
ne

 m
on

th
 a

go
(6

/
7)

 n
ot

 r
ec

ei
ve

d
.

11
9

19
90

-0
7-

01
 1

5:
00

ri
ch

c
B

B
ill

 d
oe

s
no

t r
efl

ec
t c

re
d

it
 fr

om
pr

ev
io

us
 o

rd
er

12
1

19
90

-0
7-

10
 1

4:
05

m
ar

yj
O

C
us

to
m

er
 li

ke
s

ou
r m

er
ch

an
d

is
e.

R
eq

ue
st

s
th

at
 w

e
st

oc
k

m
or

e
ty

pe
s

of
 in

fa
nt

 jo
gg

er
s.

 W
ill

 c
al

l
ba

ck
 to

 p
la

ce
 o

rd
er

.
12

7
19

90
-0

7-
31

 1
4:

30
m

ar
yj

I
R

ec
ei

ve
d

 H
er

o
w

at
ch

es
 (i

te
m

 #
30

4)
 in

st
ea

d
 o

f A
N

Z
 w

at
ch

es

11
6

19
89

-1
1-

28
 1

3:
34

m
an

ny
n

I
R

ec
ei

ve
d

 p
la

in
 w

hi
te

 s
w

im
 c

ap
s

(3
13

 A
N

Z
) i

ns
te

ad
 o

f n
av

y
w

it
h

te
am

 lo
go

 (3
13

 S
H

M
)

11
6

19
89

-1
2-

21
 1

1:
24

m
an

ny
n

I
Se

co
nd

 c
om

pl
ai

nt
 fr

om
 th

is
cu

st
om

er
! R

ec
ei

ve
d

 tw
o

ca
se

s
ri

gh
t-

ha
nd

ed
 o

ut
fie

ld
er

 g
lo

ve
s

(1
 H

R
O

) i
ns

te
ad

 o
f o

ne
 c

as
e

le
ft

ie
s.
A-28 The Demonstration Database and Application

Data in the Demonstration Database
manufact Table
manu_code manu_name lead_time

ANZ Anza 5
HSK Husky 5
HRO Hero 4
NRG Norge 7
SMT Smith 3
SHM Shimara 30
KAR Karsten 21
NKL Nikolus 8
PRC ProCycle 9

state Table
code sname code sname
AK Alaska MT Montana
AL Alabama NE Nebraska
AR Arkansas NC North Carolina
AZ Arizona ND North Dakota
CA California NH New Hampshire
CT Connecticut NJ New Jersey
CO Colorado NM New Mexico
D.C. DC NV Nevada
DE Delaware NY New York
FL Florida OH Ohio
GA Georgia OK Oklahoma
HI Hawaii OR Oregon
IA Iowa PA Pennsylvania
ID Idaho PR Puerto Rico
IL Illinois RI Rhode Island
IN Indiana SC South Carolina
KS Kansas SD South Dakota
KY Kentucky TN Tennessee
LA Louisiana TX Texas
MA Massachusetts UT Utah
MD Maryland VA Virginia
ME Maine VT Vermont
MI Michigan WA Washington
MN Minnesota WI Wisconsin
MO Missouri WV West Virginia
MS Mississippi WY Wyoming
The Demonstration Database and Application A-29

The Demonstration Application
The Demonstration Application
The following pages contain the form specifications, INFORMIX-4GL source
code modules, and help message source file for the demo4.4ge demonstra-
tion application. The application is not complete, and some of the functions
called by the menus are merely ‘‘dead ends.’’

File Name Description
custform.per Form for displaying customer information
orderform.per Form for entering an order
state_list.per Form for displaying a list of states
stock_sel.per Form for displaying a list of stock items
d4_globals.4gl Module containing global definitions
d4_main.4gl Module containing MAIN routine
d4_cust.4gl Module handling the Customer option
d4_orders.4gl Module handling the Orders option
d4_stock.4gl Module handling the Stock option
d4_report.4gl Module handling the Report option
d4_demo.4gl Module handling hidden sample source code option
helpdemo.src Source file for help messages
A-30 The Demonstration Database and Application

custform.per
custform.per

DATABASE stores

SCREEN
{

Customer Form

Number :[f000]
Owner Name :[f001][f002]
Company :[f003]
Address :[f004]

[f005]
City :[f006] State:[a0] Zipcode:[f007]
Telephone :[f008]

}

TABLES
customer

ATTRIBUTES
f000 = customer.customer_num, NOENTRY;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";
The Demonstration Database and Application A-31

orderform.per
orderform.per

DATABASE stores

SCREEN
{

--
ORDER FORM

--
Customer Number:[f000] Contact Name:[f001][f002]

Company Name:[f003]
Address:[f004][f005]

City:[f006] State:[a0] Zip Code:[f007]
Telephone:[f008]

--
Order No:[f009] Order Date:[f010] PO Number:[f011]

Shipping Instructions:[f012]
--
Item No. Stock No. Code Description Quantity Price Total
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]
[f013] [f014] [a1] [f015] [f016] [f017] [f018]

Running Total including Tax and Shipping Charges:[f019]
==

}

TABLES
customer orders items stock

ATTRIBUTES
f000 = customer.customer_num;
f001 = customer.fname;
f002 = customer.lname;
f003 = customer.company;
f004 = customer.address1;
f005 = customer.address2;
f006 = customer.city;
a0 = customer.state, UPSHIFT;
f007 = customer.zipcode;
f008 = customer.phone, PICTURE = "###-###-#### XXXXX";

f009 = orders.order_num;
f010 = orders.order_date, DEFAULT = TODAY;
f011 = orders.po_num;
f012 = orders.ship_instruct;

f013 = items.item_num, NOENTRY;
f014 = items.stock_num;
a1 = items.manu_code, UPSHIFT;
f015 = stock.description, NOENTRY;
f016 = items.quantity;
f017 = stock.unit_price, NOENTRY;
f018 = items.total_price, NOENTRY;
f019 = formonly.t_price TYPE MONEY;

INSTRUCTIONS
SCREEN RECORD s_items[4](items.item_num, items.stock_num, items.manu_code,

stock.description, items.quantity, stock.unit_price, items.total_price)
A-32 The Demonstration Database and Application

state_list.per
state_list.per

DATABASE stores

SCREEN
{

State Selection

[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
[a0] [f000]
}

TABLES
state

ATTRIBUTES
a0 = state.code;
f000 = state.sname;

INSTRUCTIONS
DELIMITERS " "
SCREEN RECORD s_state[7](state.*)
The Demonstration Database and Application A-33

stock_sel.per
stock_sel.per

DATABASE stores

SCREEN
{

[f018][f019][f020][f021][f022][f023]
[f018][f019][f020][f021][f022][f023]
[f018][f019][f020][f021][f022][f023]

}

TABLES
stock

ATTRIBUTES
f018 = FORMONLY.stock_num;
f019 = FORMONLY.manu_code;
f020 = FORMONLY.manu_name;
f021 = FORMONLY.description;
f022 = FORMONLY.unit_price;
f023 = FORMONLY.unit_descr;

INSTRUCTIONS
DELIMITERS " "
SCREEN RECORD s_stock[3] (FORMONLY.stock_num THRU FORMONLY.unit_descr)
A-34 The Demonstration Database and Application

d4_globals.4gl
d4_globals.4gl

DATABASE stores

GLOBALS
DEFINE

p_customer RECORD LIKE customer.*,
p_orders RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
po_num LIKE orders.po_num,
ship_instruct LIKE orders.ship_instruct

END RECORD,
p_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
description LIKE stock.description,
quantity LIKE items.quantity,
unit_price LIKE stock.unit_price,
total_price LIKE items.total_price

END RECORD,
p_stock ARRAY[30] OF RECORD

stock_num LIKE stock.stock_num,
manu_code LIKE manufact.manu_code,
manu_name LIKE manufact.manu_name,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit_descr LIKE stock.unit_descr

END RECORD,
p_state ARRAY[50] OF RECORD LIKE state.*,
state_cnt, stock_cnt INTEGER,
print_option CHAR(1)

END GLOBALS
The Demonstration Database and Application A-35

d4_main.4gl
d4_main.4gl

GLOBALS
"d4_globals.4gl"

MAIN

DEFER INTERRUPT
OPTIONS
HELP FILE "helpdemo"
LET print_option = "s"
CALL get_states()
CALL get_stocks()

CALL ring_menu()
MENU "MAIN"

COMMAND "Customer" "Enter and maintain customer data" HELP 101
CALL customer()
CALL ring_menu()

COMMAND "Orders" "Enter and maintain orders" HELP 102
CALL orders()
CALL ring_menu()

COMMAND "Stock" "Enter and maintain stock list" HELP 103
CALL stock()
CALL ring_menu()

COMMAND "Reports" "Print reports and mailing labels" HELP 104
CALL reports()
CALL ring_menu()

COMMAND key("!")
CALL bang()
CALL ring_menu()
NEXT OPTION "Customer"

COMMAND key("X")
CALL demo()
CALL ring_menu()
NEXT OPTION "Customer"

COMMAND "Exit" "Exit program and return to operating system" HELP 105
CLEAR SCREEN
EXIT PROGRAM

END MENU
END MAIN

FUNCTION bang()
DEFINE cmd CHAR(80),

x CHAR(1)

CALL clear_menu()
LET x = "!"
WHILE x = "!"

PROMPT "!" FOR cmd
RUN cmd
PROMPT "Type RETURN to continue." FOR CHAR x

END WHILE
END FUNCTION
A-36 The Demonstration Database and Application

d4_main.4gl
FUNCTION mess(str, mrow)
DEFINE str CHAR(80),

mrow SMALLINT

DISPLAY " ", str CLIPPED AT mrow,1
SLEEP 3
DISPLAY "" AT mrow,1

END FUNCTION

FUNCTION ring_menu()

DISPLAY "--- ",
"Type Control-W for MENU HELP -------" AT 4,2 ATTRIBUTE(MAGENTA)

END FUNCTION

FUNCTION clear_menu()

DISPLAY "" AT 1,1
DISPLAY "" AT 2,1

END FUNCTION

FUNCTION get_states()

DECLARE c_state CURSOR FOR
SELECT * FROM state
ORDER BY sname

LET state_cnt = 1
FOREACH c_state INTO p_state[state_cnt].*

LET state_cnt = state_cnt + 1
IF state_cnt > 50 THEN

EXIT FOREACH
END IF

END FOREACH
LET state_cnt = state_cnt - 1

END FUNCTION

FUNCTION get_stocks()

DECLARE stock_list CURSOR FOR
SELECT stock_num, manufact.manu_code,

manu_name, description, unit_price, unit_descr
FROM stock, manufact
WHERE stock.manu_code = manufact.manu_code
ORDER BY stock_num

LET stock_cnt = 1
FOREACH stock_list INTO p_stock[stock_cnt].*

LET stock_cnt = stock_cnt + 1
IF stock_cnt > 30 THEN

EXIT FOREACH
END IF

END FOREACH
LET stock_cnt = stock_cnt - 1

END FUNCTION
The Demonstration Database and Application A-37

d4_cust.4gl
d4_cust.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION customer()

OPTIONS
FORM LINE 7

OPEN FORM customer FROM "custform"
DISPLAY FORM customer

ATTRIBUTE(MAGENTA)
CALL ring_menu()
CALL fgl_drawbox(3,30,3,43)
CALL fgl_drawbox(3,61,8,7)
CALL fgl_drawbox(11,61,8,7)
LET p_customer.customer_num = NULL
MENU "CUSTOMER"

COMMAND "One-add" "Add a new customer to the database" HELP 201
CALL add_customer(FALSE)

COMMAND "Many-add" "Add several new customer to database" HELP 202
CALL add_customer(TRUE)

COMMAND "Find-cust" "Look up specific customer" HELP 203
CALL query_customer(23)
IF p_customer.customer_num IS NOT NULL THEN

NEXT OPTION "Update-cust"
END IF

COMMAND "Update-cust" "Modify current customer information" HELP 204
CALL update_customer()
NEXT OPTION "Find-cust"

COMMAND "Delete-cust" "Remove a customer from database" HELP 205
CALL delete_customer()
NEXT OPTION "Find-cust"

COMMAND "Exit" "Return to MAIN Menu" HELP 206
CLEAR SCREEN
EXIT MENU

END MENU
OPTIONS

FORM LINE 3
END FUNCTION

FUNCTION add_customer(repeat)
DEFINE repeat INTEGER

CALL clear_menu()
MESSAGE "Press F1 or CTRL-F for field help; ",

"F2 or CTRL-Z to return to menu"
IF repeat THEN

WHILE input_cust()
ERROR "Customer data entered" ATTRIBUTE (GREEN)

END WHILE
CALL mess("Multiple insert completed -

current screen values ignored", 23)
ELSE

IF input_cust() THEN
ERROR "Customer data entered" ATTRIBUTE (GREEN)

ELSE
CLEAR FORM
LET p_customer.customer_num = NULL
ERROR "Customer addition aborted" ATTRIBUTE (RED, REVERSE)

END IF
END IF
A-38 The Demonstration Database and Application

d4_cust.4gl
END FUNCTION
FUNCTION input_cust()

DISPLAY "Press ESC to enter new customer data" AT 1,1
INPUT BY NAME p_customer.*

AFTER FIELD state
CALL statehelp()
DISPLAY "Press ESC to enter new customer data", "" AT 1,1

ON KEY (F1, CONTROL-F)
CALL customer_help()

ON KEY (F2, CONTROL-Z)
LET int_flag = TRUE
EXIT INPUT

END INPUT
IF int_flag THEN

LET int_flag = FALSE
RETURN(FALSE)

END IF
LET p_customer.customer_num = 0
INSERT INTO customer VALUES (p_customer.*)
LET p_customer.customer_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_customer.customer_num ATTRIBUTE(MAGENTA)
RETURN(TRUE)

END FUNCTION

FUNCTION query_customer(mrow)
DEFINE where_part CHAR(200),

query_text CHAR(250),
answer CHAR(1),
mrow, chosen, exist SMALLINT

CLEAR FORM
CALL clear_menu()

MESSAGE "Enter criteria for selection"
CONSTRUCT where_part ON customer.* FROM customer.*
MESSAGE ""
IF int_flag THEN

LET int_flag = FALSE
CLEAR FORM
ERROR "Customer query aborted" ATTRIBUTE(RED, REVERSE)
LET p_customer.customer_num = NULL
RETURN (p_customer.customer_num)

END IF
LET query_text = "select * from customer where ", where_part CLIPPED,

" order by lname"
PREPARE statement_1 FROM query_text
DECLARE customer_set SCROLL CURSOR FOR statement_1
The Demonstration Database and Application A-39

d4_cust.4gl
OPEN customer_set
FETCH FIRST customer_set INTO p_customer.*
IF status = NOTFOUND THEN

LET exist = FALSE
ELSE

LET exist = TRUE
DISPLAY BY NAME p_customer.*
MENU "BROWSE"

COMMAND "Next" "View the next customer in the list"
FETCH NEXT customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
ATTRIBUTE(RED, REVERSE)

FETCH LAST customer_set INTO p_customer.*
END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "Previous" "View the previous customer in the list"
FETCH PREVIOUS customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
ATTRIBUTE(RED, REVERSE)

FETCH FIRST customer_set INTO p_customer.*
END IF
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "First" "View the first customer in the list"
FETCH FIRST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "Last" "View the last customer in the list"
FETCH LAST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.* ATTRIBUTE(CYAN)

COMMAND "Select" "Exit BROWSE selecting the current customer"
LET chosen = TRUE
EXIT MENU

COMMAND "Quit" "Quit BROWSE without selecting a customer"
LET chosen = FALSE
EXIT MENU

END MENU
END IF
CLOSE customer_set

IF NOT exist THEN
CLEAR FORM
CALL mess("No customer satisfies query", mrow)
LET p_customer.customer_num = NULL
RETURN (FALSE)

END IF
IF NOT chosen THEN

CLEAR FORM
LET p_customer.customer_num = NULL
CALL mess("No selection made", mrow)
RETURN (FALSE)

END IF
RETURN (TRUE)

END FUNCTION
A-40 The Demonstration Database and Application

d4_cust.4gl
FUNCTION update_customer()

CALL clear_menu()
IF p_customer.customer_num IS NULL THEN

CALL mess("No customer has been selected; use the Find-cust option",23)
RETURN

END IF
MESSAGE "Press F1 or CTRL-F for field-level help"
DISPLAY "Press ESC to update customer data; DEL to abort" AT 1,1
INPUT BY NAME p_customer.* WITHOUT DEFAULTS

AFTER FIELD state
CALL statehelp()
DISPLAY "Press ESC to update customer data; DEL to abort", "" AT 1,1

ON KEY (F1, CONTROL-F)
CALL customer_help()

END INPUT
IF NOT int_flag THEN

UPDATE customer SET customer.* = p_customer.*
WHERE customer_num = p_customer.customer_num

CALL mess("Customer data modified", 23)
ELSE

LET int_flag = FALSE
SELECT * INTO p_customer.* FROM customer

WHERE customer_num = p_customer.customer_num
DISPLAY BY NAME p_customer.*
ERROR "Customer update aborted" ATTRIBUTE (RED, REVERSE)

END IF
END FUNCTION

FUNCTION delete_customer()
DEFINE answer CHAR(1),

num_orders INTEGER

CALL clear_menu()
IF p_customer.customer_num IS NULL THEN

ERROR "No customer has been selected; use the Find-customer option"
ATTRIBUTE (RED, REVERSE)

RETURN
END IF

SELECT COUNT(*) INTO num_orders
FROM orders
WHERE customer_num = p_customer.customer_num

IF num_orders THEN
ERROR "This customer has active orders and can not be removed"

ATTRIBUTE (RED, REVERSE)
RETURN

END IF

PROMPT " Are you sure you want to delete this customer row? "
FOR CHAR answer

IF answer MATCHES "[yY]" THEN
DELETE FROM customer

WHERE customer_num = p_customer.customer_num
CLEAR FORM
CALL mess("Customer entry deleted", 23)
LET p_customer.customer_num = NULL

ELSE
ERROR "Deletion aborted" ATTRIBUTE (RED, REVERSE)

END IF
END FUNCTION
The Demonstration Database and Application A-41

d4_cust.4gl
FUNCTION customer_help()
CASE

WHEN infield(customer_num) CALL showhelp(1001)
WHEN infield(fname) CALL showhelp(1002)
WHEN infield(lname) CALL showhelp(1003)
WHEN infield(company) CALL showhelp(1004)
WHEN infield(address1) CALL showhelp(1005)
WHEN infield(address2) CALL showhelp(1006)
WHEN infield(city) CALL showhelp(1007)
WHEN infield(state) CALL showhelp(1008)
WHEN infield(zipcode) CALL showhelp(1009)
WHEN infield(phone) CALL showhelp(1010)

END CASE
END FUNCTION

FUNCTION statehelp()
DEFINE idx INTEGER

SELECT COUNT(*) INTO idx
FROM state
WHERE code = p_customer.state

IF idx = 1 THEN
RETURN

END IF

DISPLAY "Move cursor using F3, F4, and arrow keys; press ESC to select state
"

AT 1,1
OPEN WINDOW w_state AT 8,37

WITH FORM "state_list"
ATTRIBUTE (BORDER, RED, FORM LINE 2)

CALL set_count(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = arr_curr()

CLOSE WINDOW w_state
LET p_customer.state = p_state[idx].code
DISPLAY BY NAME p_customer.state ATTRIBUTE (MAGENTA)
RETURN

END FUNCTION
A-42 The Demonstration Database and Application

d4_orders.4gl
d4_orders.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION orders()

OPEN FORM order_form FROM "orderform"
DISPLAY FORM order_form

ATTRIBUTE(MAGENTA)
MENU "ORDERS"

COMMAND "Add-order" "Enter new order to database and print invoice"
HELP 301

CALL add_order()
COMMAND "Update-order" "Enter shipping or payment data" HELP 302

CALL update_order()
COMMAND "Find-order" "Look up and display orders" HELP 303

CALL get_order()
COMMAND "Delete-order" "Remove an order from the database" HELP 304

CALL delete_order()
COMMAND "Exit" "Return to MAIN Menu" HELP 305

CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION

FUNCTION add_order()
DEFINE pa_curr, s_curr, num_stocks INTEGER,

file_name CHAR(20),
query_stat INTEGER

CALL clear_menu()
LET query_stat = query_customer(2)
IF query_stat IS NULL THEN

RETURN
END IF
IF NOT query_stat THEN

OPEN WINDOW cust_w AT 3,5
WITH 19 ROWS, 72 COLUMNS
ATTRIBUTE(BORDER, YELLOW)

OPEN FORM o_cust FROM "custform"
DISPLAY FORM o_cust

ATTRIBUTE(MAGENTA)
CALL fgl_drawbox(3,61,4,7)
CALL fgl_drawbox(11,61,4,7)
CALL add_customer(FALSE)
CLOSE FORM o_cust
CLOSE WINDOW cust_w
IF p_customer.customer_num IS NULL THEN

RETURN
ELSE

DISPLAY by name p_customer.*
END IF

END IF

MESSAGE "Enter the order date, PO number and shipping instructions."
INPUT BY NAME p_orders.order_date, p_orders.po_num, p_orders.ship_instruct
IF int_flag THEN

LET int_flag = FALSE
CLEAR FORM
ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
The Demonstration Database and Application A-43

d4_orders.4gl
INPUT ARRAY p_items FROM s_items.* HELP 311
BEFORE FIELD stock_num

MESSAGE "Press ESC to write order"
DISPLAY "Enter a stock number or press CTRL-B to scan stock list"

AT 1,1
BEFORE FIELD manu_code

MESSAGE "Enter the code for a manufacturer"
BEFORE FIELD quantity

DISPLAY "" AT 1,1
MESSAGE "Enter the item quantity"

ON KEY (CONTROL-B)
IF INFIELD(stock_num) OR INFIELD(manu_code) THEN

LET pa_curr = arr_curr()
LET s_curr = scr_line()
CALL get_stock() RETURNING

p_items[pa_curr].stock_num, p_items[pa_curr].manu_code,
p_items[pa_curr].description, p_items[pa_curr].unit_price

DISPLAY p_items[pa_curr].stock_num TO s_items[s_curr].stock_num
DISPLAY p_items[pa_curr].manu_code TO s_items[s_curr].manu_code
DISPLAY p_items[pa_curr].description TO s_items[s_curr].description
DISPLAY p_items[pa_curr].unit_price TO s_items[s_curr].unit_price
NEXT FIELD quantity

END IF
AFTER FIELD stock_num, manu_code

LET pa_curr = arr_curr()
IF p_items[pa_curr].stock_num IS NOT NULL

AND p_items[pa_curr].manu_code IS NOT NULL
THEN

CALL get_item()
END IF

AFTER FIELD quantity
MESSAGE ""
LET pa_curr = arr_curr()
IF p_items[pa_curr].unit_price IS NOT NULL

AND p_items[pa_curr].quantity IS NOT NULL
THEN

CALL item_total()
ELSE

ERROR
"A valid stock code, manufacturer, and quantity must all be entered

"
ATTRIBUTE (RED, REVERSE)

NEXT FIELD stock_num
END IF

AFTER INSERT, DELETE
CALL renum_items()
CALL order_total()

AFTER ROW
CALL order_total()

END INPUT

IF int_flag THEN
LET int_flag = FALSE
CLEAR FORM
ERROR "Order input aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
A-44 The Demonstration Database and Application

d4_orders.4gl
WHENEVER ERROR CONTINUE
BEGIN WORK
INSERT INTO orders (order_num, order_date, customer_num,

ship_instruct, po_num)
VALUES (0, p_orders.order_date, p_customer.customer_num,

p_orders.ship_instruct, p_orders.po_num)
IF statu s < 0 THEN

ROLLBACK WORK
ERROR "Unable to complete update of orders table"

ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF
LET p_orders.order_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_orders.order_num
IF NOT insert_items() THEN

ROLLBACK WORK
ERROR "Unable to insert items" ATTRIBUTE(RED, REVERSE, BLINK)
RETURN

END IF

COMMIT WORK
WHENEVER ERROR STOP
CALL mess("Order added", 23)
LET file_name = "inv", p_orders.order_num USING "<<<<&",".out"
CALL invoice(file_name)
CLEAR FORM

END FUNCTION

FUNCTION update_order()

ERROR "This option has not been implemented" ATTRIBUTE (RED)
END FUNCTION

FUNCTION delete_order()

ERROR "This option has not been implemented" ATTRIBUTE (RED)
END FUNCTION

FUNCTION order_total()
DEFINE order_total MONEY(8),

i INTEGER

LET order_total = 0.00
FOR i = 1 TO ARR_COUNT()

IF p_items[i].total_price IS NOT NULL THEN
LET order_total = order_total + p_items[i].total_price

END IF
END FOR
LET order_total = 1.1 * order_total
DISPLAY order_total TO t_price

ATTRIBUTE(GREEN)
END FUNCTION
The Demonstration Database and Application A-45

d4_orders.4gl
FUNCTION item_total()
DEFINE pa_curr, sc_curr INTEGER

LET pa_curr = arr_curr()
LET sc_curr = scr_line()
LET p_items[pa_curr].total_price =

p_items[pa_curr].quantity * p_items[pa_curr].unit_price
DISPLAY p_items[pa_curr].total_price TO s_items[sc_curr].total_price

END FUNCTION

FUNCTION renum_items()
DEFINE pa_curr, pa_total, sc_curr, sc_total, k INTEGER

LET pa_curr = arr_curr()
LET pa_total = arr_count()
LET sc_curr = scr_line()
LET sc_total = 4
FOR k = pa_curr TO pa_total

LET p_items[k].item_num = k
IF sc_curr <= sc_total THEN

DISPLAY k TO s_items[sc_curr].item_num
LET sc_curr = sc_curr + 1

END IF
END FOR

END FUNCTION

FUNCTION insert_items()
DEFINE idx INTEGER

FOR idx = 1 TO arr_count()
IF p_items[idx].quantity != 0 THEN

INSERT INTO items
VALUES (p_items[idx].item_num, p_orders.order_num,

p_items[idx].stock_num, p_items[idx].manu_code,
p_items[idx].quantity, p_items[idx].total_price)

IF statu s < 0 THEN
RETURN (FALSE)

END IF
END IF

END FOR
RETURN (TRUE)

END FUNCTION

FUNCTION get_stock()
DEFINE idx integer

OPEN WINDOW stock_w AT 7, 3
WITH FORM "stock_sel"
ATTRIBUTE(BORDER, YELLOW)

CALL set_count(stock_cnt)
DISPLAY

"Use cursor using F3, F4, and arrow keys; press ESC to select a stock item"

AT 1,1
DISPLAY ARRAY p_stock TO s_stock.*
LET idx = arr_curr()
CLOSE WINDOW stock_w
RETURN p_stock[idx].stock_num, p_stock[idx].manu_code,

p_stock[idx].description, p_stock[idx].unit_price
END FUNCTION
A-46 The Demonstration Database and Application

d4_orders.4gl
FUNCTION get_order()
DEFINE idx, exist, chosen INTEGER,

answer CHAR(1)

CALL clear_menu()
CLEAR FORM
IF NOT query_customer(2) THEN

RETURN
END IF
DECLARE order_list CURSOR FOR

SELECT order_num, order_date, po_num, ship_instruct
FROM orders
WHERE customer_num = p_customer.customer_num

LET exist = FALSE
LET chosen = FALSE
FOREACH order_list INTO p_orders.*

LET exist = TRUE
CLEAR orders.*
FOR idx = 1 TO 4

CLEAR s_items[idx].*
END FOR
DISPLAY p_orders.* TO orders.*
DECLARE item_list CURSOR FOR

SELECT item_num, items.stock_num, items.manu_code,
description, quantity, unit_price, total_price

FROM items, stock
WHERE order_num = p_orders.order_num

AND items.stock_num = stock.stock_num
AND items.manu_code = stock.manu_code

ORDER BY item_num
LET idx = 1

FOREACH item_list INTO p_items[idx].*
LET idx = idx + 1
IF idx > 10 THEN

ERROR "More than 10 items; only 10 items displayed"
ATTRIBUTE (RED, REVERSE)

EXIT FOREACH
END IF

END FOREACH
CALL set_count(idx - 1)
CALL order_total()
MESSAGE "Press ESC when you finish viewing the items"
DISPLAY ARRAY p_items TO s_items.*

ATTRIBUTE(CYAN)
MESSAGE ""
IF int_flag THEN

LET int_flag = FALSE
EXIT FOREACH

END IF
PROMPT " Enter ’y’ to select this order ",

"or RETURN to view next order: " FOR CHAR answer
IF answer MATCHES "[yY]" THEN

LET chosen = TRUE
EXIT FOREACH

END IF
END FOREACH

IF NOT exist THEN
ERROR "No orders found for this customer" ATTRIBUTE (RED)

ELSE
IF NOT chosen THEN

CLEAR FORM
ERROR "No order selected for this customer" ATTRIBUTE (RED)
The Demonstration Database and Application A-47

d4_orders.4gl
END IF
END IF

END FUNCTION

FUNCTION get_item()
DEFINE pa_curr, sc_curr INTEGER

LET pa_curr = arr_curr()
LET sc_curr = scr_line()
SELECT description, unit_price

INTO p_items[pa_curr].description,
p_items[pa_curr].unit_price

FROM stock
WHERE stock.stock_num = p_items[pa_curr].stock_num

AND stock.manu_code = p_items[pa_curr].manu_code
IF status THEN

LET p_items[pa_curr].description = NULL
LET p_items[pa_curr].unit_price = NULL

END IF
DISPLAY p_items[pa_curr].description, p_items[pa_curr].unit_price

TO s_items[sc_curr].description, s_items[sc_curr].unit_price
IF p_items[pa_curr].quantity IS NOT NULL THEN

CALL item_total()
END IF

END FUNCTION

FUNCTION invoice(file_name)
DEFINE x_invoice RECORD

order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_instruct LIKE orders.ship_instruct,
backlog LIKE orders.backlog,
po_num LIKE orders.po_num,
ship_date LIKE orders.ship_date,
ship_weight LIKE orders.ship_weight,
ship_charge LIKE orders.ship_charge,
item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
quantity LIKE items.quantity,
total_price LIKE items.total_price,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit LIKE stock.unit,
unit_descr LIKE stock.unit_descr,
manu_name LIKE manufact.manu_name

END RECORD,
file_name CHAR(20),
msg CHAR(40)

DECLARE invoice_data CURSOR FOR
SELECT o.order_num,order_date,ship_instruct,backlog,po_num,ship_date,

ship_weight,ship_charge,
item_num,i.stock_num,i.manu_code,quantity,total_price,
s.description,unit_price,unit,unit_descr,
manu_name

FROM orders o,items i,stock s,manufact m
WHERE

((o.order_num=p_orders.order_num) AND
(i.order_num=p_orders.order_num) AND
(i.stock_num=s.stock_num AND
i.manu_code=s.manu_code) AND
(i.manu_code=m.manu_code))
A-48 The Demonstration Database and Application

d4_orders.4gl
ORDER BY 9
CASE (print_option)

WHEN "f"
START REPORT r_invoice TO file_name
CALL clear_menu()
MESSAGE "Writing invoice -- please wait"

WHEN "p"
START REPORT r_invoice TO PRINTER
CALL clear_menu()
MESSAGE "Writing invoice -- please wait"

WHEN "s"
START REPORT r_invoice

END CASE
FOREACH invoice_data INTO x_invoice.*

OUTPUT TO REPORT r_invoice (p_customer.*, x_invoice.*)
END FOREACH
FINISH REPORT r_invoice
IF print_option = "f" THEN

LET msg = "Invoice written to file ", file_name CLIPPED
CALL mess(msg, 23)

END IF
END FUNCTION

REPORT r_invoice (c, x)
DEFINE c RECORD LIKE customer.*,

x RECORD
order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_instruct LIKE orders.ship_instruct,
backlog LIKE orders.backlog,
po_num LIKE orders.po_num,
ship_date LIKE orders.ship_date,
ship_weight LIKE orders.ship_weight,
ship_charge LIKE orders.ship_charge,
item_num LIKE items.item_num,
stock_num LIKE items.stock_num,
manu_code LIKE items.manu_code,
quantity LIKE items.quantity,
total_price LIKE items.total_price,
description LIKE stock.description,
unit_price LIKE stock.unit_price,
unit LIKE stock.unit,
unit_descr LIKE stock.unit_descr,
manu_name LIKE manufact.manu_name

END RECORD,
sales_tax, calc_total MONEY(8,2)

OUTPUT
LEFT MARGIN 0
RIGHT MARGIN 0
TOP MARGIN 1
BOTTOM MARGIN 1
PAGE LENGTH 48
The Demonstration Database and Application A-49

d4_orders.4gl
FORMAT
BEFORE GROUP OF x.order_num

SKIP TO TOP OF PAGE
SKIP 1 LINE
PRINT 10 SPACES,

" W E S T C O A S T W H O L E S A L E R S , I N C ."
PRINT 30 SPACES," 1400 Hanbonon Drive"
PRINT 30 SPACES,"Menlo Park, CA 94025"
SKIP 1 LINES
PRINT "Bill To:", COLUMN 10,c.fname CLIPPED, " ", c.lname CLIPPED;
PRINT COLUMN 56,"Invoice No. ",x.order_num USING "&&&&&"
PRINT COLUMN 10,c.company
PRINT COLUMN 10,c.address1 CLIPPED;
PRINT COLUMN 56,"Invoice Date: ", x.order_date
PRINT COLUMN 10,c.address2 CLIPPED;
PRINT COLUMN 56,"Customer No. ", c.customer_num USING "####&"
PRINT COLUMN 10,c.city CLIPPED,", ",c.state CLIPPED," ",

c.zipcode CLIPPED;
PRINT COLUMN 56,"PO No. ",x.po_num
PRINT COLUMN 10,c.phone CLIPPED;
PRINT COLUMN 56,"Backlog Status: ",x.backlog
SKIP 1 LINES
PRINT COLUMN 10,"Shipping Instructions: ", x.ship_instruct
PRINT COLUMN 10,"Ship Date: ",x.ship_date USING "ddd. mmm dd, yyyy";
PRINT " Weight: ", x.ship_weight USING "#####&.&&"
SKIP 1 LINES
PRINT "--";
PRINT "---------------------------------------"
PRINT " Stock Unit ";
PRINT " Item "
PRINT " # Num Man Description Qty Cost Unit ";
PRINT " Unit Description Total"
SKIP 1 LINES
LET calc_total = 0.00

ON EVERY ROW
PRINT x.item_num USING "#&"," ",

x.stock_num USING "&&", " ",x.manu_code;
PRINT " ",x.description," ",x.quantity USING "###&", " ";
PRINT x.unit_price USING "$$$&.&&"," ",x.unit, " ",x.unit_descr," ";
PRINT x.total_price USING "$$$$$$$&.&&"
LET calc_total = calc_total + x.total_price

AFTER GROUP OF x.order_num
SKIP 1 LINES
PRINT "--";
PRINT "---------------------------------------"
PRINT COLUMN 50, " Sub-total: ",calc_total USING "$$$$$$$&.&&"
LET sales_tax = 0.065 * calc_total
LET x.ship_charge = 0.035 * calc_total
PRINT COLUMN 45, "Shipping Charge (3.5%): ",

x.ship_charge USING "$$$$$$$&.&&"
PRINT COLUMN 50, " Sales Tax (6.5%): ",sales_tax USING "$$$$$$$&.&&"
PRINT COLUMN 50, " -----------"
LET calc_total = calc_total + x.ship_charge + sales_tax
PRINT COLUMN 50, " Total: ",calc_total USING "$$$$$$$&.&&"
IF print_option = "s" THEN

PAUSE "Type RETURN to continue"
END IF

END REPORT
A-50 The Demonstration Database and Application

d4_stock.4gl
d4_stock.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION stock()
MENU "STOCK"

COMMAND "Add-stock" "Add new stock items to database" HELP 401
CALL add_stock()

COMMAND "Find-stock" "Look up specific stock item" HELP 402
CALL query_stock()

COMMAND "Update-stock" "Modify current stock information" HELP 403
CALL update_stock()

COMMAND "Delete-stock" "Remove a stock item from database" HELP 404
CALL delete_stock()

COMMAND "Exit" "Return to MAIN Menu" HELP 405
CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION

FUNCTION add_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION query_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION update_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION delete_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION
The Demonstration Database and Application A-51

d4_report.4gl
d4_report.4gl

GLOBALS
"d4_globals.4gl"

FUNCTION reports()
CALL ring_menu()
MENU "REPORTS"

COMMAND "Labels" "Print mailing labels from customer list"
HELP 501

CALL print_labels()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Accounts-receivable" "Print current unpaid orders" HELP 502
CALL print_ar()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Backlog" "Print backlogged orders" HELP 503
CALL print_backlog()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Stock-list" "Print stock available" HELP 504
CALL print_stock()
CLEAR SCREEN
CALL ring_menu()

COMMAND "Options" "Change the report output options" HELP 505
CALL update_options()
CALL ring_menu()

COMMAND "Exit" "Return to MAIN Menu" HELP 506
CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION

FUNCTION print_labels()
DEFINE where_part CHAR(200),

query_text CHAR(250),
msg CHAR(50),
file_name CHAR(20)

OPTIONS
FORM LINE 7

OPEN FORM customer FROM "custform"
DISPLAY FORM customer

ATTRIBUTE(MAGENTA)
CALL fgl_drawbox(3,30,3,43)
CALL fgl_drawbox(3,61,8,7)
CALL fgl_drawbox(11,61,8,7)
CALL clear_menu()
DISPLAY "CUSTOMER LABELS:" AT 1,1
MESSAGE "Use query-by-example to select customer list"
CONSTRUCT BY NAME where_part ON customer.*
IF int_flag THEN

LET int_flag = FALSE
ERROR "Label print request aborted"
RETURN

END IF
MESSAGE ""
LET query_text = "select * from customer where ", where_part CLIPPED,

" order by zipcode"
PREPARE label_st FROM query_text
DECLARE label_list CURSOR FOR label_st
A-52 The Demonstration Database and Application

d4_report.4gl
CASE (print_option)
WHEN "f"

PROMPT " Enter file name for labels >" FOR file_name
IF file_name IS NULL THEN

LET file_name = "labels.out"
END IF
MESSAGE "Printing mailing labels to ", file_name CLIPPED,

" -- Please wait"
START REPORT labels_report TO file_name

WHEN "p"
MESSAGE "Printing mailing labels -- Please wait"
START REPORT labels_report TO PRINTER

WHEN "s"
START REPORT labels_report
CLEAR SCREEN

END CASE
FOREACH label_list INTO p_customer.*

OUTPUT TO REPORT labels_report (p_customer.*)
IF int_flag THEN

LET int_flag = FALSE
EXIT FOREACH

END IF
END FOREACH
FINISH REPORT labels_report
IF int_flag THEN

LET int_flag = FALSE

ERROR "Label printing aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
IF print_option = "f" THEN

LET msg = "Labels printed to ", file_name CLIPPED
CALL mess(msg, 23)

END IF
CLOSE FORM customer
OPTIONS

FORM LINE 3
END FUNCTION

REPORT labels_report (rl)
DEFINE rl RECORD LIKE customer.*

OUTPUT
TOP MARGIN 0
BOTTOM MARGIN 0
PAGE LENGTH 6

FORMAT
ON EVERY ROW
SKIP TO TOP OF PAGE
PRINT rl.fname CLIPPED, 1 SPACE, rl.lname
PRINT rl.company
PRINT rl.address1
IF rl.address2 IS NOT NULL THEN

PRINT rl.address2
END IF
PRINT rl.city CLIPPED, ", ", rl.state, 2 SPACES, rl.zipcode
IF print_option = "s" THEN

PAUSE "Type RETURN to continue"
END IF

END REPORT
The Demonstration Database and Application A-53

d4_report.4gl
FUNCTION print_ar()
DEFINE r RECORD

customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
company LIKE customer.company,
order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_date LIKE orders.ship_date,
paid_date LIKE orders.paid_date,
total_price LIKE items.total_price

END RECORD,
file_name CHAR(20),
msg CHAR(50)

DECLARE ar_list CURSOR FOR
SELECT customer.customer_num,fname,lname,company,

orders.order_num,order_date,ship_date,paid_date,
total_price

FROM customer,orders,items
WHERE customer.customer_num=orders.customer_num AND

paid_date IS NULL AND
orders.order_num=items.order_num

ORDER BY 1,5

CALL clear_menu()
CASE (print_option)

WHEN "f"
PROMPT " Enter file name for AR Report >" FOR file_name
IF file_name IS NULL THEN

LET file_name = "ar.out"
END IF
MESSAGE "Printing AR REPORT to ", file_name CLIPPED,

" -- Please wait"
START REPORT ar_report TO file_name

WHEN "p"
MESSAGE "Printing AR REPORT -- Please wait"
START REPORT ar_report TO PRINTER

WHEN "s"
START REPORT ar_report
CLEAR SCREEN
MESSAGE "Printing AR REPORT -- Please wait"

END CASE

FOREACH ar_list INTO r.*
OUTPUT TO REPORT ar_report (r.*)
IF int_flag THEN

LET int_flag = FALSE
EXIT FOREACH

END IF
END FOREACH
A-54 The Demonstration Database and Application

d4_report.4gl
FINISH REPORT ar_report
IF int_flag THEN

LET int_flag = FALSE
ERROR "AR REPORT printing aborted" ATTRIBUTE (RED, REVERSE)
RETURN

END IF
IF print_option = "f" THEN

LET msg = "AR REPORT printed to ", file_name CLIPPED
CALL mess(msg, 23)

END IF
END FUNCTION
REPORT ar_report (r)

DEFINE r RECORD
customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
company LIKE customer.company,
order_num LIKE orders.order_num,
order_date LIKE orders.order_date,
ship_date LIKE orders.ship_date,
paid_date LIKE orders.paid_date,
total_price LIKE items.total_price

END RECORD,
name_text CHAR(80)

OUTPUT
PAGE LENGTH 22
LEFT MARGIN 0

FORMAT
PAGE HEADER

PRINT 15 SPACES,"West Coast Wholesalers, Inc."
PRINT 6 SPACES,

"Statement of ACCOUNTS RECEIVABLE - ",
TODAY USING "mmm dd, yyyy"

SKIP 1 LINES
LET name_text = r.fname CLIPPED," ",r.lname CLIPPED,"/",

r.company CLIPPED
PRINT 29 - length(name_text)/2 SPACES, name_text
SKIP 1 LINES
PRINT " Order Date Order Number Ship Date Amount"
PRINT "--"

BEFORE GROUP OF r.customer_num
SKIP TO TOP OF PAGE

AFTER GROUP OF r.order_num
NEED 3 LINES
PRINT " ",r.order_date,7 SPACES,r.order_num USING "###&",8 SPACES,

r.ship_date," ",
GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

AFTER GROUP OF r.customer_num
PRINT 42 SPACES,"----------------"
PRINT 42 SPACES,GROUP SUM(r.total_price) USING "$$$$,$$$,$$$.&&"

PAGE TRAILER
IF print_option = "s" THEN

PAUSE "Type RETURN to continue"
END IF

END REPORT
The Demonstration Database and Application A-55

d4_report.4gl
FUNCTION update_options()
DEFINE po CHAR(2)

DISPLAY "Current print option:" AT 8,25
LET po = " ", print_option
DISPLAY po AT 8,46 ATTRIBUTE(CYAN)
MENU "REPORT OPTIONS"

COMMAND "File" "Send all reports to a file"
LET print_option = "f"
EXIT MENU

COMMAND "Printer" "Send all reports to the printer"
LET print_option = "p"
EXIT MENU

COMMAND "Screen" "Send all reports to the terminal screen"
LET print_option = "s"
EXIT MENU

COMMAND "Exit"
EXIT MENU

END MENU
DISPLAY "" AT 8,1

END FUNCTION

FUNCTION print_backlog()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION

FUNCTION print_stock()
ERROR "This option has not been implemented" ATTRIBUTE (RED)

END FUNCTION
A-56 The Demonstration Database and Application

d4_demo.4gl
d4_demo.4gl

FUNCTION demo()

CALL ring_menu()
MENU "DEMO"

COMMAND "Menus" "Source code for MAIN Menu"
CALL showhelp(2001)

COMMAND "Windows" "Source code for STATE CODE Window"
CALL showhelp(2007)

COMMAND "Forms" "Source code for new CUSTOMER data entry"
CALL showhelp(2006)

COMMAND "Detail-Scrolling"
"Source code for scrolling of new ORDER line-items"

CALL showhelp(2003)
COMMAND "Scroll-Cursor" "Source code for customer record BROWSE/SCROLL"

CALL showhelp(2008)
COMMAND "Query_language" "Source code for new order insertion using SQL"

CALL showhelp(2004)
COMMAND "Construct_query"

"Source code for QUERY-BY-EXAMPLE selection and reporting"
CALL showhelp(2002)

COMMAND "Reports" "Source code for MAILING LABEL report"
CALL showhelp(2005)

COMMAND "Exit" "Return to MAIN MENU"
CLEAR SCREEN
EXIT MENU

END MENU
END FUNCTION
The Demonstration Database and Application A-57

helpdemo.src
helpdemo.src

.101
The Customer option presents you with a menu that allows you to:

o Add new customers to the database
o Locate customers in the database
o Update customer files
o Remove customers from the database

.102
The Orders option presents you with a menu that allows you to:

o Enter a new order and print an invoice
o Update an existing order
o Look up and display orders
o Remove orders from the database

.103
The Stock option presents you with a menu that allows you to:

o Add new items to the list of stock
o Look up and display stock items
o Modify current stock descriptions and values
o Remove items from the list of stock

.104
The Reports option presents you with a menu that allows you to:

o Select and print mailing labels sorted by zip code
o Print a report of current accounts receivable
o Print a report of backloged orders
o Print a list of current stock available
o Change the report output options

.105
The Exit option leaves the program and returns you to the operating system.

.201
The One-add option enables you to enter data on new customers to the database.
You may get assistance on what input is appropriate for each field by pressing
the function key F1 when the cursor is in the field. When you have entered
all the data you want for a given customer, press ESC to enter the data in the
database. If you want to abort a given entry and not write it to the database,
press the INTERRUPT key (usually DEL or CTRL-C).

.202
The Many-add option enables you to enter data on new customers to the
database. You may get assistance on what input is appropriate for each field
by pressing the function key F1 when the cursor is in the field. When you
have entered all the data you want for a given customer, press ESC to enter
the data in the database. If you want to abort a given entry and not write it
to the database, press the INTERRUPT key (usually DEL or CTRL-C). After each
entry, the cursor will move to the beginning of the form and await the entry
of the next customer. If you have no more customers to add, press CTRL-Z to
return to the CUSTOMER Menu.
A-58 The Demonstration Database and Application

helpdemo.src
.203
The Find-cust option allows you to select one or more customers and to display
their data on the screen by using query-by-example input. Use the RETURN or
arrow keys to move through the form. Enter the criteria you want the program
to use in searching for customers. Your options include:

o Literal values
o A range of values (separated by ":")
o A list of values (separated by "|")
o Relational operators (for example ">105")
o Wildcards like ? and * to match single or any number of characters

.204
The Update-cust option enables you to alter data on old customers in the
database. You must first select a current customer row to deal with by using
the Find-cust option. You may get assistance on what input is appropriate for
each field by pressing the function key F1 when the cursor is in the field.
When you have altered all the data you want for a given customer, press ESC to
enter the data in the database. If you want to abort the changes and not write
them to the database, press the INTERRUPT key (usually DEL or CTRL-C).

.205
The Delete-cust option enables you to remove customers from the database.
You must first select a current customer row to deal with by using the
Find-cust option. For your protection, you will be asked to confirm
that the record should be deleted. Once deleted, it cannot be
restored. Customers with active orders can not be deleted.

.206
The Exit option of the CUSTOMER Menu takes you back to the MAIN Menu.

.301
The Add-order option enables you to add a new order for an existing customer.
You must first select the desired customer using query-by-example selection
criteria. You will then enter the order date, PO number, and shipping
instructions. The detail line items are then entered into a scrolling display
array. Up to ten items may be entered using the four line screen array. After
the new order is entered, an invoice is automatically generated and displayed
on the screen.

.302
The Update-order option is currently not implemented.

.303
The Find-order option enables you to browse through and select an existing
order. You must first select the desired customer (or customers) who’s orders
you wish to scan. For each customer selected, each corresponding order will
be displayed on the screen for examination. You may either select an invoice,
skip to the next invoice, or cancel processing.

.304
The Delete-order option is currently not implemented.

.305
The Exit option of the ORDER Menu returns you to the MAIN Menu.
The Demonstration Database and Application A-59

helpdemo.src
.311
You may enter up to ten line items into the scrolling screen array. A number
of standard functions are available for manipulating the cursor in a screen
array.

o F1 Insert new line in the screen array
o F2 Remove the current line from the screen array
o F3 Page down one page in the screen array
o F4 Page up one page in the screen array
o ESC Exit input array
o CTRL-B When in the Stock Number or Manufacturer Code fields,

a window will open in the middle of the screen and
display a scrolled list of all items in stock, identified
by the stock number and manufacturer. Using F3, F4, and
the up and down arrow keys, move the cursor to the line
that identifies the desired item and hit ESC. The
window will disappear and the selected information will
automatically appear in the proper line.

o etc... The arrow-keys, and the standard field editing keys
are available

The item_total field will be displayed in reverse-video green for total
amounts over $500.

.401
The Add-stock option is currently not implemented.

.402
The Find-stock option is currently not implemented.

.403
The Update-stock option is currently not implemented.

.404
The Delete-stock option is currently not implemented.

.405
The Exit option of the STOCK Menu returns you to the MAIN Menu.

.501
The Labels option enables you to create a list of mailing labels generated
using a query-by-example specification. You will be prompted for the output
file name.

.502
The Accounts-receivable option enables you to create a report summarizing all
unpaid orders in the database. You will be prompted for the output file name.

.503
The Backlog option is currently not implemented.

.504
The Stock-list option is currently not implemented.

.505
The Options option enables you to change the destination of any report
generated during the current session. The default option is to display all
reports on the terminal screen. The other options are to print all reports to
either the printer or an operating system file.

.506
The Exit option of the REPORT Menu returns you to the MAIN Menu.
A-60 The Demonstration Database and Application

helpdemo.src
.1001
The Number field on the Customer Form contains the serial integer assigned to
the customer row when the data for the customer is first entered into the
database. It is a unique number for each customer. The lowest value of this
field is 101.

.1002
The first section following the Name label should contain the first name of the
contact person at the customer’s company.

.1003
The second section following the Name label should contain the last name of the
contact person at the customer’s company.

.1004
This field should contain the name of the customer’s company.

.1005
The first line of the Address section of the form should contain the mailing
address of the company.

.1006
The second line of the Address section of the form should be used only when
there is not sufficient room in the first line to contain the entire mailing
address.

.1007
The City field should contain the city name portion of the mailing address of
the customer.

.1008
Enter the two-character code for the desired state. If no code is entered, or
the entered code is not in the program’s list of valid entries, a window will
appear on the screen with a scrolling list of all states and codes. Using the
F3, F4, up and down arrow keys, move the cursor to the line containing the
desired state. After typing ESC, the window will disappear and the selected
state code will appear in the customer entry screen.

.1009
Enter the five digit Zip Code in this field.

.1010
Enter the telephone number of the contact person at the customer’s company.
Include the Area Code and extension using the format "###-###-#### #####".

.2001
The following is the INFORMIX-4GL source for the main menu. Note that only
the text is specified by the MENU statement; the structure and runtime menu
functions are built-in.

OPTIONS
HELP FILE "helpdemo"

OPEN FORM menu_form FROM "ring_menu"
DISPLAY FORM menu_form
MENU "MAIN"

COMMAND "Customer" "Enter and maintain customer data" HELP 101
CALL customer()
DISPLAY FORM menu_form

COMMAND "Orders" "Enter and maintain orders" HELP 102
CALL orders()
DISPLAY FORM menu_form

COMMAND "Stock" "Enter and maintain stock list" HELP 103
CALL stock()
DISPLAY FORM menu_form
The Demonstration Database and Application A-61

helpdemo.src
COMMAND "Reports" "Print reports and mailing labels" HELP 104
CALL reports()
DISPLAY FORM menu_form

COMMAND "Exit" "Exit program and return to operating system" HELP 105
CLEAR SCREEN
EXIT PROGRAM

END MENU

.2002
The following is the INFORMIX-4GL source code for mailing-label selection and
printing. The CONSTRUCT statement manages the query-by-example input and
builds the corresponding SQL where-clause.

CONSTRUCT BY NAME where_part ON customer.*
LET query_text = "select * from customer where ", where_part CLIPPED,

" order by zipcode"
PREPARE mail_query FROM query_text
DECLARE label_list CURSOR FOR mail_query
PROMPT "Enter file name for labels >" FOR file_name
MESSAGE "Printing mailing labels to ", file_name CLIPPED," -- Please wait"
START REPORT labels_report TO file_name
FOREACH label_list INTO p_customer.*

OUTPUT TO REPORT labels_report (p_customer.*)
END FOREACH
FINISH REPORT labels_report

See the source code option REPORT for the corresponding report routine.

.2003
The following is the INFORMIX-4GL source code for order entry using scrolled
input fields. Only the INPUT ARRAY statement in needed to utilize the full
scrolling features. Some additional code has been added merely to customize
the array processing to this application.

DISPLAY "Press ESC to write order" AT 1,1
INPUT ARRAY p_items FROM s_items.* HELP 311

BEFORE FIELD stock_num
MESSAGE "Enter a stock number."

BEFORE FIELD manu_code
MESSAGE "Enter the code for a manufacturer."

AFTER FIELD stock_num, manu_code
LET pa = arr_curr()
LET sc = scr_line()
SELECT description, unit_price

INTO p_items[pa].description,
p_items[pa].unit_price

FROM stock
WHERE stock_num = p_items[pa].stock_num AND

stock_manu = p_items[pa].menu_code
DISPLAY p_items[pa].description, p_items[pa].unit_price

TO stock[sc].*
CALL item_total()

AFTER FIELD quantity
CALL item_total()

AFTER INSERT, DELETE, ROW
CALL order_total()

END INPUT

See the source code option QUERY-LANGUAGE for the SQL statements that
insert the order information into the database.
A-62 The Demonstration Database and Application

helpdemo.src
.2004
The following is the INFORMIX-4GL source code that uses SQL to insert the
entered order information into the database. Note that the use of
transactions ensures that database integrity is maintained, even if an
intermediate operation fails.

BEGIN WORK
LET p_orders.order_num = 0
INSERT INTO orders VALUES (p_orders.*)
IF statu s < 0 THEN

ROLLBACK WORK
MESSAGE "Unable to complete update of orders table"
RETURN

END IF
LET p_orders.order_num = SQLCA.SQLERRD[2]
DISPLAY BY NAME p_orders.order_num
FOR i = 1 to arr_count()

INSERT INTO items
VALUES (p_items[counter].item_num, p_orders.order_num,

p_items[counter].stock_num, p_items[counter].manu_code,
p_items[counter].quantity, p_items[counter].total_price)

IF statu s < 0 THEN
ROLLBACK WORK
Message "Unable to insert items"
RETURN FALSE

END IF
END FOR
COMMIT WORK

.2005
The following is the INFORMIX-4GL source code that generates the mailing-label
report. See the source code option CONSTRUCT for the report calling sequence.

REPORT labels_report (rl)
DEFINE rl RECORD LIKE customer.*
OUTPUT

TOP MARGIN 0
PAGE LENGTH 6

FORMAT
ON EVERY ROW

SKIP TO TOP OF PAGE
PRINT rl.fname CLIPPED, 1 SPACE, rl.lname
PRINT rl.company
PRINT rl.address1
IF rl.address2 IS NOT NULL THEN

PRINT rl.address2
END IF
PRINT rl.city CLIPPED, ", ", rl.state, 2 SPACES, rl.zipcode

END REPORT
The Demonstration Database and Application A-63

helpdemo.src
.2006
The following is the INFORMIX-4GL source code that manages a simple form
for data entry. Note the use of special key definitions during data entry.

OPEN FORM cust_form FROM "customer"
DISPLAY FORM cust_form
MESSAGE "Press F1 or CTRL-F for field help;",

"F2 or CTRL-Z to return to CUSTOMER Menu"
DISPLAY "Press ESC to enter new customer data or DEL to abort entry"
INPUT BY NAME p_customer.*

AFTER FIELD state
CALL statehelp()

ON KEY (F1, CONTROL-F)
CALL customer_help()

ON KEY (F2, CONTROL-Z)
CLEAR FORM
RETURN

END INPUT

.2007
The following is the INFORMIX-4GL source code that opens a window in the
customer entry screen, displays the list of valid state names and codes, saves
the index into the p_state array for the selected state, closes the window, and
returns the index to the calling routine.

OPEN WINDOW w_state AT 8,40
WITH FORM "state_list"
ATTRIBUTE (BORDER, RED, FORM LINE 2)

CALL set_count(state_cnt)
DISPLAY ARRAY p_state TO s_state.*
LET idx = arr_curr()

CLOSE WINDOW w_state
RETURN (idx)

.2008
The following is the INFORMIX-4GL source code that allows the user to browse
through the rows returned by a "scroll" cursor.

DECLARE customer_set SCROLL CURSOR FOR
SELECT * FROM customer

ORDER BY lname
OPEN customer_set
FETCH FIRST customer_set INTO p_customer.*
IF status = NOTFOUND THEN

LET exist = FALSE
ELSE

LET exist = TRUE
DISPLAY BY NAME p_customer.*
MENU "BROWSE"

COMMAND "Next" "View the next customer in the list"
FETCH NEXT customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
FETCH LAST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.*

COMMAND "Previous" "View the previous customer in the list"
FETCH PREVIOUS customer_set INTO p_customer.*
IF status = NOTFOUND THEN

ERROR "No more customers in this direction"
FETCH FIRST customer_set INTO p_customer.*

END IF
DISPLAY BY NAME p_customer.*
A-64 The Demonstration Database and Application

helpdemo.src
COMMAND "First" "View the first customer in the list"
FETCH FIRST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.*

COMMAND "Last" "View the last customer in the list"
FETCH LAST customer_set INTO p_customer.*
DISPLAY BY NAME p_customer.*

COMMAND "Select" "Exit BROWSE selecting the current customer"
LET chosen = TRUE
EXIT MENU

COMMAND "Quit" "Quit BROWSE without selecting a customer"
LET chosen = FALSE
EXIT MENU

END MENU
END IF
CLOSE customer_set
The Demonstration Database and Application A-65

helpdemo.src
A-66 The Demonstration Database and Application

Appendix
B
INFORMIX-4GL
Utility Programs
This appendix describes the utility programs that are
included with the INFORMIX-4GL software. You can
invoke these utilities at the system prompt to perform the
following tasks:

• The mkmessage utility compiles programmer-defined
help messages for INFORMIX-4GL applications.

• The upscol utility enables you to establish default
attributes for display fields that are linked to database
columns in your screen forms. It can also establish ini-
tial default values for program variables and screen
fields that you associate with columns of tables in your
database.

The mkmessage Utility
The mkmessage Utility
The mkmessage utility converts ASCII source files that contain user messages
into a format that 4GL programs can use in on-line displays. This section
describes how to use mkmessage with help files and with customized run-
time error messages.

Programmer-Defined Help Messages
When executing an INFORMIX-4GL program, the user can request help
whenever the program is waiting for user input. This can occur while making
a menu selection, while inputting data to a form, or while responding to a
prompt. You can supply help messages that are displayed whenever the user
presses the Help key (specified in the OPTIONS statement). These messages
can be specific to the menu option currently highlighted, or to the INPUT,
INPUT ARRAY, or PROMPT statement.

Message Source Files
INFORMIX-4GL looks for the appropriate help message in the help file that
you specify in an OPTIONS statement, using the HELP FILE option. You can
have several help files, but only one can be in effect at a time. The structure
of the message source file is as follows:

. num
message-text

where .num is a period, followed by an integer and message-text is one or more
lines of characters. (Characters can include blanks.) The file can contain as
many messages as you like.

Each help message should be preceded by a line with nothing on it but a
period (in the first column) and a unique integer num. The message-text starts
on the next line and continues until the next numbered line. Each line must
end in a RETURN. All blank lines between two numbered lines are considered
part of the message that belongs to the first of the two numbers.

You can use the integer num to identify the help message in your INFOR-
MIX-4GL programs. (See the INPUT, INPUT ARRAY, MENU, and PROMPT
statement descriptions in Chapter 3.)

Lines beginning with # are considered comment lines, and are ignored by
mkmessage.
B-2 INFORMIX-4GL Utility Programs

Creating Executable Message Files
If the text of a message occupies more than 20 lines, INFORMIX-4GL automat-
ically breaks the message into ‘‘pages’’ of 20 lines. You can change these
default page breaks by entering CONTROL-L in the first column of a line in
your message file to start a new page.

INFORMIX-4GL handles clearing and redisplaying the screen.

For an example of a message file, see the helpdemo.src file from the demon-
stration application on page A-58.

Creating Executable Message Files
Once you have created your message source file, you can process it for use by
INFORMIX-4GL with this syntax:

Syntax

in-file is an ASCII source file of help messages.

out-file is the pathname of the executable output file.

Replace in-file and out-file with the names of your input and output files.

After creating an output file with the mkmessage utility, you should specify
out-file in the OPTIONS statement to identify it as the current help file.

mkmessage in-file out-file
INFORMIX-4GL Utility Programs B-3

Customized Error Messages
If you want to use help messages from the help file on a field-by-field basis
in an INPUT or INPUT ARRAY statement, you must use the infield() and
showhelp() library functions that are supplied with INFORMIX-4GL. For
example, you can use these functions as the following code segment demon-
strates:

OPTIONS
HELP FILE "stores.hlp",
HELP KEY F1

...
INPUT pr_fname, pr_lname, pr_phone

FROM fname, lname, phone HELP 101
ON KEY (F1)

CASE
WHEN INFIELD(lname)

CALL showhelp(111)
WHEN INFIELD(fname)

CALL showhelp(112)
WHEN INFIELD(phone)

CALL showhelp(113)
OTHERWISE

CALL showhelp(101)
END CASE

END INPUT

Customized Error Messages
You can also use the mkmessage utility to customize run-time error mes-
sages. INFORMIX-4GL is distributed with a file called 4glusr.msg. This ASCII
file contains some common error messages, including the messages for run-
time errors that cannot be trapped by the WHENEVER ERROR statement, and
messages that support the 4GL Help menu. The 4glusr.iem file contains the
executable version of this file.

You can edit the messages in 4glusr.msg with a text editor (for example, to
make them specific to a 4GL application, or to translate them into another lan-
guage). Be sure to preserve the required numeric codes, prefixed by a period
(.) to identify each message.

If you choose to modify the contents of the 4glusr.msg message file, you must
specify 4glusr.iem in your mkmessage command line as the object filename:

mkmessage in-file 4glusr.iem
B-4 INFORMIX-4GL Utility Programs

The upscol Utility
The executable file 4glusr.iem is initially installed in the directory $INFOR-
MIX/msg. INFORMIX-4GL looks for message files in one of two directories,
namely /$INFORMIXDIR/$DBLANG or else /$INFORMIXDIR/msg. If
$DBLANG is defined, 4GL looks only in /$INFORMIXDIR/$DBLANG. If this is
not defined, 4GL looks only in /$INFORMIXDIR/msg. You must place the
newly modified file 4glusr.iem in the appropriate /$INFORMIXDIR/msg or
/$INFORMIXDIR/$DBLANG directory.

The upscol Utility
The upscol utility program allows you to create and modify the syscolval and
syscolatt tables, which contain default information for fields in screen forms
that correspond to database columns. Chapter 5 describes these tables and
their use by INFORMIX-4GL.

You invoke the upscol utility by entering the command upscol at the system
prompt. After you select a database at the CHOOSE DATABASE screen, the fol-
lowing menu appears:

UPDATE SYSCOL: Validate Attributes Exit
Update information in the data validation table.

-------------------- db-name ------------------- Press CTRL-W for Help --------

The options in the UPDATE SYSCOL menu are:

Validate Update the information in syscolval.

Attributes Update the information in syscolatt.

Exit Return to the operating system.

If you select either Validate or Attributes, upscol checks whether the corre-
sponding table exists and, if not, asks whether you want to create it. In the text
that follows, the corresponding table is called syscol. If you choose not to cre-
ate it, enter n, and you will return to the UPDATE SYSCOL menu.
INFORMIX-4GL Utility Programs B-5

The upscol Utility
If the data validation table already exists, or if you enter y to create it, upscol
displays the CHOOSE TABLE screen, and prompts you for the name of a table
in the database. After you select a table, the CHOOSE COLUMN screen
prompts you to select the name of a column whose default values you want
to modify in syscol.

The selected table and column names appear, along with the database name,
on the dividing line beneath the next menu, which is called the ACTION
menu:

ACTION: Add Update Remove Next Query Table Column Exit
Add an entry to the data validation [or screen display attribute] table.

--------- db-name:tab-name:col-name ------------ Press CTRL-W for Help --------

Now upscol displays the first row of syscol that relates to the table and col-
umn in the work area beneath this menu. If no such entries exist, a message
stating this appears on the Error line.

The options in the ACTION menu are:

Add Add new rows to the syscol table.

Update Update the currently displayed row.

Remove Remove the currently displayed row (after a prompt for
verification).

Next Display the next row of syscol.

Query Restart the display at the first row of syscol for the table and
column.

Table Select a new database table and column.

Column Select a new column within the chosen table.

Exit Return to the UPDATE SYSCOL menu.
B-6 INFORMIX-4GL Utility Programs

Adding or Updating Under the Validate Option
Adding or Updating Under the Validate Option
When you select Add in the ACTION menu after choosing the Validate option
in the UPDATE SYSCOL menu, the VALIDATE menu appears:

VALIDATE: Autonext Comment Default Include Picture Shift Verify Exit
Automatically proceed to next field when at end of current field.

--------- db-name:tab-name:col-name ------------ Press CTRL-W for Help --------

The options are attribute names and their selection has the following effects:

Autonext Produces a menu with three options, Yes, No, and Exit. Exit
returns you to the VALIDATE menu. The default is No.

Comment Produces a prompt to enter a Comment line message. No
quotation marks are required around the comment, but it
must fit on a single screen line.

Default Produces a prompt to enter the DEFAULT attribute, format-
ted as described in Chapter 5. Quotation marks are required
where necessary to avoid ambiguity.

Include Produces a prompt to enter the INCLUDE attribute, formatted
as described in Chapter 5. Quotation marks are required
where necessary to avoid ambiguity.

Picture Produces a prompt to enter the PICTURE attribute, formatted
as described in Chapter 5. No quotation marks are required.

Shift Produces a menu with four options, Up, Down, None, and
Exit. Up corresponds to the UPSHIFT attribute and Down to
the DOWNSHIFT attribute. Exit returns you to the VALIDATE
menu. The default is None.

Verify Produces a menu with three options, Yes, No, and Exit. Exit
returns you to the VALIDATE menu. The default is No.

Exit Returns you to the ACTION menu.

The upscol utility adds or modifies a row of syscolval after you complete
each of these options except Exit.
INFORMIX-4GL Utility Programs B-7

Adding or Updating Under the Attribute Option
The Update option on the ACTION menu takes you immediately to the
ATTRIBUTE menu or prompt corresponding to the current attribute for the
current column. You can look at another attribute for the current column by
using the Next option, start through the list again by using the Query option,
remove the current attribute with the Remove option, and select a new col-
umn or table with the Column or Table options.

Adding or Updating Under the Attribute Option
When you select Add or Update in the ACTION menu after choosing the
Attribute option in the UPDATE SYSCOL menu, the ATTRIBUTE menu
appears:

ATTRIBUTE: Blink Color Fmt Left Rev Under Where Discrd_Exit Exit_Set
Set Field blinking attribute

--------- db-name:tab-name:col-name ------------ Press CTRL-W for Help --------

If you are adding a new row to syscolatt, a default row is displayed in the
work area below the menu. If you are updating an existing row of syscolatt,
the current row appears. Since no entry is made in syscolatt until you select
Exit_Set, you can alter all the attributes before deciding to modify syscolatt
(Exit_Set) or to abort the changes (Discrd_Exit).

The options of the ATTRIBUTE menu are screen attribute names, and their
selection has the following effects:

Blink Produces a menu with three options, Yes, No, and Exit. The
default is No.

Color Produces a menu with the available colors (color terminals)
or intensities (monochrome terminals) for display of tab-
name.col-name. The colors displayed are those in the local
colornames file, whose format is described in Appendix I. If
no such file exists locally, upscol looks in $INFOR-
MIXDIR/incl. If the file does not exist there, upscol uses the
default color list (see Chapter 5). You can toggle back and
forth among the colors or intensities using CONTROL-N.
B-8 INFORMIX-4GL Utility Programs

Adding or Updating Under the Attribute Option
Fmt Prompts you for the format string to be used when tab-
name.col-name is displayed.

Left Produces a menu with three options, Yes, No, and Exit. Yes
causes numeric data to be left justified within the screen field.
The default is No.

Rev Produces a menu with three options, Yes, No, and Exit. Yes
causes the field to be displayed in reverse video. The default
is No.

Under Produces a menu with three options, Yes, No, and Exit. Yes
causes the field to be displayed with underlining. The default
is No.

Where Prompts for the values and value ranges under which these
attributes will apply. See Chapter 5 for allowable syntax.

Discrd_Exit Discards the indicated changes and returns to the ACTION
menu.

Exit_Set Enters the indicated changes into the syscolatt table and
returns to the ACTION menu.

After you complete each of these options except Discrd_Exit, upscol adds or
modifies a row of syscolatt.

Note: Whoever runs the upscol utility produces a pair of tables, syscolval and
syscolatt, that provide default values for all the users of a database that is not MODE
ANSI.

If the current database is MODE ANSI, however, the user who runs upscol becomes
the owner of the syscolatt and syscolval tables specified at the upscol menus, but
other users can produce their own user. syscolval and user.syscolatt tables. The
default specifications in an upscol table are applied by INFORMIX-4GL only to col-
umns of database tables that have the same owner as the upscol table. (For details, see
the section “Default Attributes in an ANSI-Compliant Database” on page 5-72, and
the notes on the INITIALIZE and VALIDATE statements in Chapter 5.)
INFORMIX-4GL Utility Programs B-9

Adding or Updating Under the Attribute Option
B-10 INFORMIX-4GL Utility Programs

Appendix
C

Using C with
INFORMIX-4GL
Some programming tasks may be more easily or more effi-
ciently coded with a combination of INFORMIX-4GL code
and C code. In these cases, you have two options:

• Write a 4GL program that calls C functions

• Write a C program that calls 4GL functions

To call either a C function or a 4GL function, you must
know about the argument stack mechanism (page C-2) that
4GL uses to pass arguments between the functions and the
calling code.

This appendix discusses the following general issues that
relate to the application programming interface between
the INFORMIX-4GL language and the C language:

• Calling a C function from a 4GL program

The CALL statement of 4GL can invoke C functions that
observe the calling conventions of the 4GL argument
stack (page C-8).

• Calling a 4GL function from a C program

For a C program to call a 4GL function, it must include
a special header file. 4GL provides macros to initialize
the argument stack and to support other requirements
of the C language (page C-16).

• Decimal functions for C

4GL provides a library of functions that facilitate the
conversion of its own DECIMAL data type values to and
from every data type of the C language (page C-23).

Using the Argument Stack
The following topics are described in this appendix:

Topic Page
Using the Argument Stack C-2

Passing Values Between 4GL Functions C-3
Receiving Values from 4GL C-4
Passing Values to 4GL C-6

Calling a C Function from a 4GL Program C-8
Compiling and Executing the Program C-11

Calling a 4GL Function from a C Program C-11
Including the fglapi.h File C-12
Initializing the Argument Stack C-12
Using Interrupt Signals C-15
Compiling and Executing the C Program C-15

Macros for Calling 4GL Functions C-16
fgl_start() C-17
fgl_call() C-19
fgl_exitfm() C-21
fgl_end() C-22

Decimal Functions for C C-23
deccvasc() C-25
dectoasc() C-26
deccvint() C-28
dectoint() C-29
deccvlong() C-30
dectolong() C-31
deccvflt() C-32
dectoflt() C-33
deccvdbl() C-34
dectodbl() C-35
decadd(), decsub(), decmul(), and decdiv() C-36
deccmp() C-37
deccopy() C-38
dececvt() and decfcvt() C-39

Using the Argument Stack
Within a 4GL program, 4GL uses a pushdown stack to pass arguments and
results between 4GL functions. The caller of a function pushes its arguments
onto the stack; the called function pops them off the stack to use the values.
The called function pushes its return values onto the stack, and the caller
pops them off to retrieve the values.
C-2 Using C with INFORMIX-4GL

Passing Values Between 4GL Functions
The argument stack is also used when a 4GL program calls a C function that
you have written, or when a C program calls a 4GL function. This section
describes the following:

• Passing values between 4GL functions

• Receiving values from 4GL

• Passing values to 4GL

Passing Values Between 4GL Functions
Consider the following 4GL program:

MAIN
DEFINE j,k,sum,dif SMALLINT
LET j=5
LET k=7
CALL sumdiff(j,k) RETURNING sum, dif

END MAIN

FUNCTION sumdiff(a,b)
DEFINE a,b,s,d DECIMAL(16)
LET s = a+b
LET d = a-b
RETURN s,d

END FUNCTION

When the program executes the CALL statement, 4GL first notes the current
argument stack depth. Then it pushes the function arguments onto the top of
the stack in sequence from left to right (first j and then k in the example). The
stack receives not only the value of an argument but its type as well (SMALL-
INT in the example).

The called function pops the arguments off the stack into local variables
(a and b, respectively). In the example, the types of these variables
(DECIMAL) are different from the types of the arguments that were pushed
by the caller (SMALLINT). However, since the stack stores the type of each
passed value, 4GL is able to convert the arguments to the proper type. In this
instance, 4GL easily converts SMALLINT values to DECIMAL. Any type con-
version that is supported by the LET statement is supported when popping
stacked values.

The RETURN statement pushes the returned values onto the stack
in sequence from left to right (first s and then d in the example). The
RETURNING clause in the originating CALL statement then pops these values
off the stack and into the specified variables (sum and diff, respectively), and
converts the data types DECIMAL back to SMALLINT.
Using C with INFORMIX-4GL C-3

Receiving Values from 4GL
When 4GL calls a function within an expression, the use of the stack is the
same as in the CALL statement. The function is expected to return a single
value on the stack, and 4GL attempts to converts this value as required to
evaluate the expression.

Receiving Values from 4GL
C functions or programs receive arguments from 4GL by using the argument
stack. Within the C function or program, you pop values off the stack by
using pop external functions that are included with 4GL. If you try to pop a
value when none is on the stack, a core dump or other fatal behavior can
occur.

The Pop Library Functions

This section describes the pop external functions according to the data type
of the value that each pops from the argument stack.

Library Functions for Popping Numbers

The following 4GL library functions can be called from a C function or
program to pop number values from the argument stack:

extern void popint(int *iv)
extern void popshort(short *siv)
extern void poplong(long *liv)
extern void popflo(float *fv)
extern void popdub(double *dfv)
extern void popdec(dec_t *decv)

Each of these functions, like all library functions for popping values, does the
following:

1. Removes one value from the argument stack.

2. Converts its data type if necessary.

3. Copies it to the designated variable.

If the value on the stack cannot be converted to the specified type, the result
is undefined.

If the popshort() function returns a value outside the range of -32767 to
32767, a conversion error has occurred.

The dec_t structure referred to by popdec() is used to hold a DECIMAL value.
It is discussed later in this Appendix.
C-4 Using C with INFORMIX-4GL

Receiving Values from 4GL
Library Functions for Popping Character Strings

The following 4GL library functions can be called to pop character values:

extern void popquote(char *qv, int len)
extern void popvchar(char *qv, int len)

Both functions copy exactly len bytes into the string buffer *qv. The
popquote() function pads with spaces as necessary. The popvchar() does
not pad to the full length. The final byte copied to the buffer is a NULL-byte
to terminate the string, so the maximum string data length is len-1. If the
stacked argument is longer than len-1, its trailing bytes are lost.

The len argument sets the maximum size of the receiving string buffer. When
using popquote(), you always receive exactly len bytes (including trailing
spaces and the NULL), even if the value on the stack is an empty string. To
find the true data length of a string retrieved by popquote(), you must trim
the trailing spaces from the popped value.

Since 4GL can convert to CHAR any data type except TEXT or BYTE, you can
use these functions to pop almost any argument.

Library Functions for Popping Time Values

The following 4GL library functions can be called to pop DATE, DATETIME,
and INTERVAL values:

extern void popdate(long *datv)
extern void popdtime(dtime_t *dtv, int qual)
extern void popinv(intrvl_t *iv, int qual)

The structure types dtime_t and intrvl_t are used to represent DATETIME
and INTERVAL data in a C program. They are discussed in the INFORMIX-
ESQL/C Programmer’s Manual. The qual argument receives the binary repre-
sentation of the DATETIME or INTERVAL qualifier. The INFORMIX-ESQL/C
Programmer’s Manual also discusses library functions for manipulating and
printing DATE, DATETIME, and INTERVAL variables.

Library Functions for Popping Blobs

The following function can be called to pop a BYTE or TEXT argument:

extern void poplocator(loc_t **blob)
Using C with INFORMIX-4GL C-5

Passing Values to 4GL
The structure type loc_t defines a BYTE or TEXT value. Its use is discussed in
the INFORMIX-OnLine Programmer’s Manual. The poplocator() function is
unusual in that it does not copy the passed value. The function copies only
the address of the passed value (as is indicated by the double asterisk in
the function prototype). Here is a C fragment showing this:

int get_a_text(int nargs)
{

loc_t *theText;
poplocator(&theText)
...

}

What poplocator() stores at the address specified by its parameter is the
address of the locator structure owned by the calling function. A change to
the locator or the value that it describes is visible to the calling program,
which is not the case with other data types.

Any BYTE or TEXT argument must be popped as BYTE or TEXT, because 4GL
provides no automatic data type conversion for these blobs.

Passing Values to 4GL
C functions or programs can pass one or more arguments to 4GL by putting
the arguments on the stack.

• When returning values to a 4GL program from a C function, you use the
external return functions that are provided with 4GL to put the arguments
on the stack.

• When passing values to a 4GL function from a C program, you use the
external push functions that are provided with 4GL to put the arguments
on the stack.

The external return functions copy their arguments to storage allocated out-
side the calling function. This storage is released when the returned value is
popped. This makes it possible to return values from local variables of the
function.

The external push functions do not make a copy of the pushed data value in
allocated memory. They require a pushed value to be a variable that will be
valid for the duration of the call. It is up to the calling code to dispose of the
values, as necessary, after the call.

This section describes the external return and push functions.
C-6 Using C with INFORMIX-4GL

Passing Values to 4GL
The Return Library Functions

The following 4GL library functions are available to return values:

extern void retint(int iv)
extern void retshort(short siv)
extern void retlong(long lv)
extern void retflo(float *fv)
extern void retdub(double *dfv)
extern void retdec(dec_t *decv)

extern void retquote(char *str0)
extern void retvchar(char *vc)

extern void retdate(long date)
extern void retdtime(dtime_t *dtv)

extern void retinv(intrvl_t *inv)

The argument of retquote() is a NULL-terminated string. No library function
is available for returning BYTE or TEXT values because they are passed by
reference.

The C function can return data in whatever form is convenient. If conversion
is possible, 4GL converts the data type as required when popping the value.
If data type conversion is not possible, an error occurs.

Note: A C function called from 4GL must always exit with the statement return(n),
where n is the number of return values pushed on to the stack. A function that
returns nothing must exit with return(0).

The Push Library Functions

The following 4GL library functions can be used to push number values:

extern void pushint(int iv)
extern void pushshort(short siv)
extern void pushlong(long liv)
extern void pushflo(float fv)
extern void pushdub(double dfv)
extern void pushdec(dec_t *decv, unsigned decp)

The dec_t structure type and the C functions for manipulating decimal data
are discussed later in this Appendix. The second argument of pushdec(),
namely decp, specifies the decimal precision and scale.
Using C with INFORMIX-4GL C-7

Calling a C Function from a 4GL Program
For example, to give a decimal variable named dec_var the precision of 15
and the scale of 2, you could specify the following:

pushdec(dec_var, PRECMAKE(15,2));

Here PRECMAKE is a macro defined in the decimal.h file.

The following library functions can be used to push character values:

extern void pushquote(char *cv, int len)
extern void pushvchar(char *vcv, int len)

The arguments to pushquote() and pushvchar() are an unterminated char-
acter string and the count of characters that it contains (not including any
NULL terminator).

The following library functions can be used to push DATE, DATETIME, and
INTERVAL values:

extern void pushdate(long datv)
extern void pushdtime(dtime_t *dtv)
extern void pushinv(intrvl_t *inv)

This library function pushes the location of a TEXT or BYTE argument:

extern void pushlocator(loc_t *blob)

Calling a C Function from a 4GL Program
To call a C function from a 4GL program, use the CALL statement and specify
the following:

• The name of the C function

• Any arguments to pass to the C function

• Any variables to return to the 4GL program

Note: To run or debug a 4GL Rapid Development System program that calls C
functions, you must first create a customized runner. For a complete description of
this process, refer to the section “Creating a Customized Runner” on page 1-67.

For example, the following CALL statement calls the C function sendmsg().
It passes two arguments (chartype and 4, respectively) to the function and
expects two arguments to be passed back (msg_status and return_code,
respectively):

CALL sendmsg(chartype, 4) RETURNING msg_status, return_code
C-8 Using C with INFORMIX-4GL

Calling a C Function from a 4GL Program
The C function receives an integer argument that specifies how many values
were pushed on the argument stack (in this case, two arguments). This is the
number of values to be popped off the stack in the C function. The function
also needs to return values for the msg_status and return_code arguments
before passing control back to the 4GL program.

The C function should not assume it has been passed the correct number of
stacked values. The C function should test its integer argument to see how
many 4GL arguments were stacked for it. (If a function is called from two or
more statements in the same source module, 4GL verifies that the same num-
ber of arguments is used in each call. A function could be called, however,
from different source modules, with a different number of arguments from
each module. This error, if it is an error, is not caught by 4GL.)

This example shows a C function that requires exactly one argument:

int nxt_bus_day(int nargs);
{

long theDate;
if (nargs != 1)
{

fprintf(stderr,
"nxt_bus_day: wrong number of parms (%d)\n",
nargs);

retdate(0L);
return(1);

}
popdate(&theDate);
switch(rdayofweek(theDate))
{
case 5: /* change friday -> monday */

++theDate;
case 6: /* saturday -> monday*/

++theDate;
default: /* (sun..thur) go to next day */

++theDate;
}
retdate(theDate); /* stack result */
return(1) /* return count of stacked */

}

The function returns the date of the next business day after a given date.
Since the function must receive exactly one argument, the function checks for
the number of arguments passed. If the function receives a different number
of arguments, it terminates the program (with an identifying message).
Using C with INFORMIX-4GL C-9

Calling a C Function from a 4GL Program
The C function in the next example can operate with either 1, 2, or 3
arguments. The purpose of the function is to return the index of the next
occurrence of a given character in a string. The string is the first argument
and is required. The second argument is the character to search for; if it is
omitted, a space character is used. The third argument is an offset at which to
start the search; if it is omitted, zero is used.

#define STSIZE 512+1
int fglindex(int nargs);
{

char theString[STSIZE], theChar[2];
int offset, pos;
theChar = ''; / initialize defaults */
offset = 0;
switch(nargs)
{
case 3: /* fglindex(s,c,n) */

popint(&offset);
case 2: /* fglindex(s,c) */

popquote(theChar,2);
case 1: /* fglindex(s) */

popquote(theString,STSIZE);
break;

default: /* zero or >3 parms, ret 0 */
for(;nargs;--nargs) popquote(theString,STSIZE);
retint(999);
return(1);

}
if (pos = index(theString+offset,*theChar))

retint(offset+pos-1);
else

retint(0);
return(1);

}

The switch statement is useful in popping the correct number of arguments
from the stack. By arranging the valid cases in descending order, the correct
number of arguments can be popped in the correct sequence with minimal
coding. In this example, the C function does not terminate the 4GL program
when given an incorrect number of arguments. Instead, it disposes of all
stacked arguments by popping them as character strings. Then it returns an
impossible value.

Note: A 4GL Rapid Development System program that calls C functions cannot
specify as an argument to the C function a 4GL program variable whose scope of ref-
erence is global.
C-10 Using C with INFORMIX-4GL

Compiling and Executing the Program
Compiling and Executing the Program
The version of 4GL you are using determines how you compile and run a 4GL
program that calls C functions. If you are using the 4GL Rapid Development
System, you need to create a customized runner to handle the C functions. If
you are using the C Compiler Version, you do not need a customized runner.
For complete information on compiling and executing 4GL programs, see
Chapter 1. For information on creating a customized runner, see “RDS Pro-
grams that Call C Functions” on page 1-64.

Calling a 4GL Function from a C Program
INFORMIX-4GL provides an application programming interface (API) with the
C language that allows you to call 4GL functions from a C program. You can
call either 4GL Rapid Development System or C Compiler Version functions.

To write a C program that calls 4GL functions, you must do the following:

1. Include the fglapi.h header file.

2. Execute the fgl_start() macro to perform initialization tasks.

3. Execute the fgl_call() macro to call each 4GL function.

4. If the 4GL function displays a form, execute the fgl_exitfm() macro to
reset your terminal for character mode.

5. At the end of the program, execute the fgl_end() macro to free resources.

To pass values between the C program and 4GL function, use the push and
pop functions described in the section titled “Using the Argument Stack” on
page C-2.

This section first explains how to use these features of the API with C:

• Including the fglapi.h file

• Initializing values

• Calling 4GL functions

• Compiling and executing the C program

• Handling Interrupt signals
Using C with INFORMIX-4GL C-11

Including the fglapi.h File
The section concludes with reference information for each API macro:

• fgl_start()

• fgl_call()

• fgl_exitfm()

• fgl_end()

Including the fglapi.h File
You must include the fglapi.h header file in any C program that calls 4GL
functions. This header file defines the fgl_start(), fgl_call(), fgl_exitfm(),
and fgl_end() macros and is located in the $INFORMIXDIR/incl directory.

You can include fglapi.h, as demonstrated in the following example:

#include <fglapi.h>
o4Main()
{

...
}

Initializing the Argument Stack
Before you can call a 4GL function in a C program, you must execute the
fgl_start() macro. This macro does the following:

• Initializes the argument stack so that you can pass arguments between
the C program and the 4GL functions.

• If you are using the p-code compiler, it specifies the filename (and path)
of the file containing the 4GL functions.

You can execute this macro once per C program.

The following example demonstrates how to call the fgl_start() macro. It
specifies a file named test as the file containing the 4GL functions:

#include <fglapi.h>

o4Main()
{
fgl_start("test");
...
}

C-12 Using C with INFORMIX-4GL

Invoking the 4GL Function
If you compile the 4GL function to C code, the filename argument is optional,
and is ignored if you specify it. In this case, you can call fgl_start() as follows:

#include <fglapi.h>

o4Main()
{
fgl_start();
...
}

The fgl_start() macro is described in detail on page C-17.

Invoking the 4GL Function
The C program must do the following to call a 4GL function:

1. Push the argument values that the function expects onto the argument
stack.

2. Use the fgl_call() macro to identify the name of the 4GL function and to
tell it how many arguments to expect.

The 4GL function must do the following to receive arguments from and to
pass values back to the C program:

1. Include the appropriate arguments in the FUNCTION statement.

2. Use the DEFINE statement to define variables for all the arguments passed
to the function.

3. Use the RETURN statement in the 4GL function to return control to the
C program and to list any values to pass to the calling C program.

The C program can then pop the values passed from the function off the argu-
ment stack.

For example, the C program listed on the next page calls a 4GL function
named get_customer().

The program passes one argument to the get_customer() function. Then
get_customer() passes one argument back to the C program. The argument
passed to the function is the filename and path of the demonstration data-
base. The C program prompts the user for this filename.

The get_customer() function displays a menu of the first 10 customers in the
customer table of the specified database. The user then chooses a customer
name from the menu, and the function passes the chosen name back to the
C program. Finally, the C program displays the name of the customer.
Using C with INFORMIX-4GL C-13

Invoking the 4GL Function
#include <fglapi.h>
#include <stdio.h>

o4Main()
{

char str[80];

fgl_start("example");
printf("enter the full path name of a STORES database: ");
fflush(stdout);
scanf("%s", str);
pushquote(str, strlen(str));
fgl_call(get_customer, 1);
popquote(str, 80);
printf("name entered: %s\n", str);
fgl_end();

}

The logic of the 4GL function get_customer() is as follows:

FUNCTION get_customer(dbname)
DEFINE dbname CHAR(30),

cust_array ARRAY[50] of CHAR(15),
i INT

DATABASE dbname
DECLARE c1 CURSOR FOR SELECT lname

FROM customer ORDER BY lname

LET i = 1
FOREACH c1 INTO cust_array[i]

LET i = i + 1
END FOREACH

MENU "enter name=>"
COMMAND cust_array[1] RETURN cust_array[1]
COMMAND cust_array[2] RETURN cust_array[2]
COMMAND cust_array[3] RETURN cust_array[3]
COMMAND cust_array[4] RETURN cust_array[4]
COMMAND cust_array[5] RETURN cust_array[5]
COMMAND cust_array[6] RETURN cust_array[6]
COMMAND cust_array[7] RETURN cust_array[7]
COMMAND cust_array[8] RETURN cust_array[8]
COMMAND cust_array[9] RETURN cust_array[9]
COMMAND cust_array[10] RETURN cust_array[10]

END MENU
END FUNCTION
C-14 Using C with INFORMIX-4GL

Using Interrupt Signals
Using Interrupt Signals
An 4GL program can trap Interrupt signals by using the DEFER INTERRUPT
and DEFER QUIT statements. When executing a C program that calls 4GL
functions, you must be careful how you handle Interrupts in the C program,
so that you do not confuse the 4GL signal handling with any signal handling
that occurs in the C program.

The fgl_start() macro defines functions to call when interrupts occur. When
one of these interrupts occurs, the appropriate function clears the screen and
terminates the program.

By using DEFER INTERRUPT and DEFER QUIT within a 4GL function, you can
control the processing that occurs when the interrupt is detected.

Compiling and Executing the C Program
The method by which you compile and execute a C program that calls a 4GL
function is similar to the method you use to compile and execute a 4GL pro-
gram. The following table shows the commands to compile a C program that
calls 4GL functions based on the version of 4GL you are using:

When compiling a C program that calls a 4GL function, you must specify the
-api option of the compilation command. Do not specify the fgiusr.c file on
the command line unless you are calling external C functions from 4GL.

The following examples illustrates the compilation and execution, using two
source code files and one executable:

• The file mymain.c contains the C program.
• The file my4gl.4gl contains the 4GL function.
• The file myprog.exe is the resulting executable.

Compiling a C Program that Calls C Compiler Version Functions

To compile a C program that calls a C Compiler Version function, use the c4gl
command as shown in the following example:

c4gl mymain.c my4gl.4gl -o mymain.exe
./mymain.exe

Version of 4GL Compilation Commands

C Compiler Version c4gl command
RDS Version fglpc and cfglgo commands
Using C with INFORMIX-4GL C-15

Macros for Calling 4GL Functions
For complete information on the c4gl command, see “Compiling a 4GL Mod-
ule” on page 1-29.

Compiling a C Program that Calls 4GL Rapid Development System Functions

To compile a C program that calls a compiled 4GL Rapid Development Sys-
tem function, use the fglpc and cfglgo commands as shown in the following
example:

fglpc my4gl
cfglgo -api mymain.c -o mymain.exe
./mymain.exe my4gl

For complete information on the fglpc command, see “Compiling an RDS
Source File” on page 1-58. For complete information on the cfglgo command,
see “Creating a Customized Runner” on page 1-67.

Macros for Calling 4GL Functions
Four macros are provides with INFORMIX-4GL for you to use in C programs
that call 4GL functions:

• fgl_start()

• fgl_call()

• fgl_exitfm()

• fgl_end()

These macros are described in the sections that follow.
C-16 Using C with INFORMIX-4GL

Usage
fgl_start()

The fgl_start() macro initializes the 4GL argument stack, prepares for signal
handling, and, if you are using the 4GL Rapid Development System, specifies
the path of the file containing the 4GL functions.

fgl_start(filename, argc, argv)
char *filename;
int argc;
char *argv[]

filename is the filename (and the directory path) of the file containing the
4GL functions to call.

argc is the number of arguments on the command line, including the
name of the C program currently executing.

argv is an array containing the actual arguments to the executing C
program.

You can specify the filename by using either a quoted string or a character
variable. The file extension, .4go or .4gi, is optional.

The following list describes the return codes of fgl_start() and the conditions
that evoke them.

0 The macro executed successfully.

< 0 The macro failed.

Usage
You must specify the fgl_start() macro before using any of the following:

• The fgl_call() macro

• The 4GL pushing or popping functions

Note: To avoid confusion, you may wish to make fgl_start() the first function call
in a C program that calls 4GL functions.

If you are using the 4GL Rapid Development System, you must specify the
filename. If you are using the C Compiler Version, the filename is optional. For
compatibility issues, however, you may want to specify an empty string,
such as " ", as a place holder for the filename. Specifying an empty string
makes it easier to convert a C Compiler Version program to an RDS Version
program.
Using C with INFORMIX-4GL C-17

Usage
This code example specifies test as the file containing the 4GL functions:

#include <fglapi.h>

o4Main()
{

...
fgl_start("test");
...

}

Once a 4GL function begins execution through use of the fgl_call() macro,
the function has access to the arguments passed to it by fgl_call() and the
command line arguments passed to the calling C function itself. The argu-
ments passed by fgl_call() are accessed by the 4GL function in the normal
manner—through its argument list. The command-line arguments passed to
the calling C function, however, are accessed by the 4GL function through use
of the 4GL functions ARG_VAL() and NUM_ARGS(). These latter two func-
tions operate in the normal way, as though the command-line arguments
passed to the C function had been instead used as command-line arguments
to execute the 4GL MAIN function block.
C-18 Using C with INFORMIX-4GL

Usage
fgl_call()
The fgl_call() macro calls the 4GL function to execute. This macro passes the
following arguments to the 4GL function:

• The name of the function

• The number of arguments being passed

The fgl_call() macro returns the number of arguments being passed back to
the program from the function.

fgl_call(funcname, nparams)
char* funcname;
int nparams;

funcname is the name of the function to call.

nparams is the number of arguments you are passing to the function.

Usage
You must push on to the argument stack any values to be passed to the 4GL
function before executing the fgl_call() macro. For more information on
using the push functions, see the section “The Push Library Functions” on
page C-7.

To read any arguments passed back to the C program from the 4GL function,
use the pop functions. For more information on using the pop functions, see
the section “Receiving Values from 4GL” on page C-4.
Using C with INFORMIX-4GL C-19

Usage
The following C source code pushes three arguments on to the argument
stack, and then calls the out_rep1() function:

#include <fglapi.h>

o4Main()
{

...
{
fgl_start()
...
pushquote(p->pw_name, strlen(p->pw_name));
pushquote(p->pw_dir, strlen(p->pw_dir));
pushint(p->pw_uid);
fgl_call(out_rep1, 3);
...
}

...
}

C-20 Using C with INFORMIX-4GL

Usage
fgl_exitfm()
The fgl_exitfm() macro resets the terminal for character mode. Use this
macro after calling a 4GL function that displays a form.

fgl_exitfm()

Usage
Place this function after any fgl_call() macro that causes 4GL to display one
or more forms. This macro resets the terminal for character mode. If you do
not execute this macro, the terminal may behave unusually, and the end user
may be unable to enter any input.

The following example pushes a value on the argument stack, calls the 4GL
function, pops the returned value, and then executes the fgl_exitfm() macro
to reset the terminal to character mode:

#include <fglapi.h>
#include <stdio.h>

o4Main()
{

fgl_start()
...
pushquote(str, strlen(str));
fgl_call(get_customer, 1);
popquote(str, 80);
fgl_exitfm();
...

}

Using C with INFORMIX-4GL C-21

Usage
fgl_end()
The fgl_end() macro frees resources resulting from the execution of
a C program that calls a 4GL function.

fgl_end()

Usage
The fgl_end() macro does the following:

• Deletes any temp files created by binary large objects (blobs)

• Closes any files opened by the 4GL function

• Frees the allocated memory

Call this macro at the end of a C program that calls a 4GL function.

The following example demonstrates popping the value returned from 4GL,
printing this value, and then freeing resources:

#include <fglapi.h>
#include <stdio.h>

o4Main()
{

fgl_start()
...
popquote(str, 80);
printf("name entered: %s\n", str);
fgl_end()

}

C-22 Using C with INFORMIX-4GL

Usage
Decimal Functions for C
The data type DECIMAL is a machine-independent method for representing
numbers of up to thirty-two significant digits, with or without a decimal
point, and with exponents in the range -128 to +126. 4GL provides routines
that facilitate the conversion of DECIMAL-type numbers to and from every
data type allowed in the C language.

DECIMAL-type numbers consist of an exponent and a mantissa (or fractional
part) in base 100. In normalized form, the first digit of the mantissa must be
greater than zero.

When used within a C program, DECIMAL-type numbers are stored in a
C structure of the type shown below.

#define DECSIZE 16

struct decimal
{
short dec_exp;
short dec_pos;
short dec_ndgts;
char dec_dgts[DECSIZE];
};

typedef struct decimal dec_t;

The decimal structure and the typedef dec_t shown above can be found in
the header file decimal.h. Include this file in all C source files that use any of
the 4GL decimal functions:

The decimal structure has four parts:

dec_exp holds the exponent of the normalized DECIMAL-type number.
This exponent represents a power of 100.

dec_pos holds the sign of the DECIMAL-type number (1 when the
number is zero or greater; 0 when less than zero).

dec_ndgts contains the number of base-100 significant digits of the
DECIMAL-type number.

dec_dgts is a character array that holds the significant digits of the nor-
malized DECIMAL-type number (dec_dgts[0] != 0). Each char-
acter in the array is a one-byte binary number in base 100. The
number of significant digits in dec_dgts is stored in dec_ndgts.
Using C with INFORMIX-4GL C-23

DECIMAL-Type Functions
DECIMAL-Type Functions
All operations on DECIMAL-type numbers should take place through the
functions provided in the 4GL library, as described in the following pages.
Any other operations, modifications, or analysis of DECIMAL-type numbers
can produce unpredictable results.

The following C function calls are available in 4GL to process DECIMAL-type
numbers:

Function Effect
deccvasc() convert C char type to DECIMAL-type
dectoasc() convert DECIMAL-type to C char type
deccvint() convert C int type to DECIMAL-type
dectoint() convert DECIMAL-type to C int type
deccvlong() convert C long type to DECIMAL-type
dectolong() convert DECIMAL-type to C long type
deccvflt() convert C float type to DECIMAL-type
dectoflt() convert DECIMAL-type to C float type
deccvdbl() convert C double type to DECIMAL-type
dectodbl() convert DECIMAL-type to C double type
decadd() add two DECIMAL numbers
decsub() subtract two DECIMAL numbers
decmul() multiply two DECIMAL numbers
decdiv() divide two DECIMAL numbers
deccmp() compare two DECIMAL numbers
deccopy() copy a DECIMAL number
dececvt() convert DECIMAL value to ASCII string
decfcvt() convert DECIMAL value to ASCII string
C-24 Using C with INFORMIX-4GL

DECIMAL-Type Functions
deccvasc()
Use deccvasc() to convert a value stored as a printable character in a C char
type into a DECIMAL-type number.

deccvasc(cp, len, np)
char *cp;
int len;
dec_t *np;

These are the return codes of deccvasc() and the conditions that evoke them.

0 Function was successful.

-1200 Number is too large to fit into a DECIMAL-type (overflow).

-1201 Number is too small to fit into a DECIMAL-type (underflow).

-1213 String has non-numeric characters.

-1216 String has bad exponent.

Example

The following segment of code gets the character string input from the
terminal, and converts it to number, a DECIMAL-type number.

#include <decimal.h>

char input[80];
dec_t number;

. . .
/* get input from terminal */
getline(input);

/* convert input into decimal number */
deccvasc(input, 32, &number);

cp points to a string that holds the value to be converted.

Leading blank spaces in the character string are ignored.
The character string can have a leading plus (+) or minus (-) sign,
a decimal point (.), and numbers to the right of the decimal point.
The character string can contain an exponent preceded by either e or
E. The exponent value can also be preceded by a plus or minus sign.

len is the length of the string.

np is a pointer to a dec_t structure receiving the result of the conversion.
Using C with INFORMIX-4GL C-25

DECIMAL-Type Functions
dectoasc()

Use dectoasc() to convert a DECIMAL-type number to an ASCII string.

dectoasc(np, cp, len, right)
dec_t *np;
char *cp;
int len;
int right;

Because the ASCII string returned by dectoasc() is not NULL-terminated,
your program must add a NULL character to the string before printing it.

The following list describes the return codes of dectoasc() and the conditions
that evoke them.

0 Conversion was successful.

-1 Conversion was not successful.

np is a pointer to the decimal structure whose associated decimal value
is to be converted to an ASCII string.

cp is a pointer to the beginning of the character buffer to hold the ASCII
string.

len is the maximum length (in bytes) of the string buffer.

If the number does not fit into a character string of length len, then
dectoasc() converts the number to exponential notation. If the
number still does not fit, dectoasc() fills the string with asterisk
symbols.
If the number is shorter than the string, it is left-justified and padded
on the right with blank characters.

right is an integer indicating the number of decimal places to the right of
the decimal point.

If right equals -1, the number of decimal places is determined by the
decimal value of *np.
C-26 Using C with INFORMIX-4GL

DECIMAL-Type Functions
Example

The following segment of code accepts the character string input from the
terminal and converts it to number, a DECIMAL-type number. number is then
converted to the character string output, a NULL character is appended, and
the string is printed.

#include <decimal.h>

char input[80];
char output[16];
dec_t number;

. . .
/* get input from terminal */
getline(input);

/* convert input into decimal number */
deccvasc(input, 32, &number);

/* convert number to ASCII string */
dectoasc(&number, output, 15, 1);

/* add null character to end of string prior to printing */
output[15] = ’ ’;

/* print the value just entered */
printf("You just entered %s", output);
Using C with INFORMIX-4GL C-27

DECIMAL-Type Functions
deccvint()
Use deccvint() to convert a C type int into a DECIMAL-type number.

deccvint(integer, np)
int integer;
dec_t *np;

The following list describes the return codes of deccvint() and the conditions
that evoke them.

0 Conversion was successful.

-1 Conversion was not successful.

Example

#include <decimal.h>

dec_t decnum;

/* convert the integer value -999
* into a DECIMAL-type number
*/

deccvint(-999, &decnum);

integer is the integer that is to be converted.
np is a pointer to a dec_t structure receiving the result of the conversion.
C-28 Using C with INFORMIX-4GL

DECIMAL-Type Functions
dectoint()
Use dectoint() to convert a DECIMAL-type number into a C type int.

dectoint(np, ip)
dec_t *np;
int *ip;

The following list describes the return codes of dectoint() and the conditions
that evoke them.

0 Conversion was successful.

-1200 The magnitude of the DECIMAL-type number is greater than 32,767.

Example

#include <decimal.h>

dec_t mydecimal;
int myinteger;

/* convert the value in
* mydecimal into an integer
* and place the results in
* the variable myinteger.
*/

dectoint(&mydecimal, &myinteger);

np is a pointer to a decimal structure whose value is converted to
an integer.

ip is a pointer to the integer receiving the result of the conversion.
Using C with INFORMIX-4GL C-29

DECIMAL-Type Functions
deccvlong()
Use deccvlong() to convert a C type long value to a DECIMAL-type number.

deccvlong(lng, np)
long lng;
dec_t *np;

Example

#include <decimal.h>

dec_t mydecimal;
long mylong;

/* Set the decimal structure
* mydecimal to 37.
*/

deccvlong(37L, &mydecimal);
. . .

mylong = 123456L;
/* Convert the variable mylong into

* a DECIMAL-type number held in
* mydecimal.
*/

deccvlong(mylong, &mydecimal);

lng is a pointer to a long integer.
np is a pointer to a dec_t structure receiving the result of the conversion.
C-30 Using C with INFORMIX-4GL

DECIMAL-Type Functions
dectolong()
Use dectolong() to convert a DECIMAL-type number into a C type long.

dectolong(np, lngp)
dec_t *np;
long *lngp;

np is a pointer to a decimal structure.

lngp is a pointer to a long receiving the result of the conversion.

These are the return codes of dectolong() and the conditions that evoke
them.

0 Conversion was successful.

-1200 Magnitude of the DECIMAL-type number exceeds 2,147,483,647.

Example

#include <decimal.h>

dec_t mydecimal;
long mylong;

/* convert the DECIMAL-type value
* held in the decimal structure
* mydecimal to a long pointed to
* by mylong.
*/

dectolong(&mydecimal, &mylong);
Using C with INFORMIX-4GL C-31

DECIMAL-Type Functions
deccvflt()
Use deccvflt() to convert a C type float into a DECIMAL-type number.

deccvflt(flt, np)
float flt;
dec_t *np;

flt is a floating-point number.

np is a pointer to a dec_t structure receiving the result of the conversion.

Example

#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* Set the decimal structure
* myfloat to 3.14159.
*/

deccvflt(3.14159, &mydecimal);

myfloat = 123456.78;

/* Convert the variable myfloat into
* a DECIMAL-type number held in
* mydecimal.
*/

deccvflt(myfloat, &mydecimal);
C-32 Using C with INFORMIX-4GL

DECIMAL-Type Functions
dectoflt()
Use dectoflt() to convert a DECIMAL-type number into a C type float.

dectoflt(np, fltp)
dec_t *np;
float *fltp;

np is a pointer to a decimal structure.

fltp is a pointer to a floating-point number receiving the result of the
conversion.

On most implementations of C, the resulting floating-point number has eight
significant digits.

Example

#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* convert the DECIMAL-type value
* held in the decimal structure
* mydecimal to a floating point number pointed to
* by myfloat.
*/

dectoflt(&mydecimal, &myfloat);
Using C with INFORMIX-4GL C-33

DECIMAL-Type Functions
deccvdbl()
Use deccvdbl() to convert a C type double into a DECIMAL-type number.

deccvdbl(dbl, np)
double dbl;
dec_t *np;

dbl is a double-precision floating-point number.

np is a pointer to a dec_t structure receiving the result of the conversion.

Example

#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* Set the decimal structure
* mydecimal to 3.14159.
*/

deccvdbl(3.14159, &mydecimal);

mydouble = 123456.78;

/* Convert the variable mydouble into
* a DECIMAL-type number held in
* mydecimal.
*/

deccvdbl(mydouble, &mydecimal);
C-34 Using C with INFORMIX-4GL

DECIMAL-Type Functions
dectodbl()
Use dectodbl() to convert a DECIMAL-type number into a C type double.

dectodbl(np, dblp)
dec_t *np;
double *dblp;

np is a pointer to a decimal structure.

dblp is a pointer to a double-precision, floating-point number that
receives the result of the conversion.

The resulting double-precision value receives a total of 16 significant digits
on most implementations of the C language.

Example

#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* convert the DECIMAL-type value
* held in the decimal structure
* mydecimal to a double pointed to
* by mydouble.
*/

dectodbl(&mydecimal, &mydouble);
Using C with INFORMIX-4GL C-35

DECIMAL-Type Functions
decadd(), decsub(), decmul(), and decdiv()
The decimal arithmetic routines take pointers to three decimal structures
as parameters. The first two decimal structures hold the operands of the
arithmetic function. The third decimal structure holds the result.

decadd(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 + n2 */

decsub(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 - n2 */

decmul(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 * n2 */

decdiv(n1, n2, result)
dec_t *n1;
dec_t *n2;
dec_t *result; /* result = n1 / n2 */

The following list describes the return codes of the decimal arithmetic rou-
tines and the conditions that evoke them.

0 Operation was successful.

-1200 Operation resulted in overflow.

-1201 Operation resulted in underflow.

-1202 Operation attempts to divide by zero.

n1 is a pointer to the decimal structure of the first operand.
n2 is a pointer to the decimal structure of the second operand.
result is a pointer to the decimal structure of the result of the operation.

The result can use the same pointer as either n1 or n2.
C-36 Using C with INFORMIX-4GL

DECIMAL-Type Functions
deccmp()
Use deccmp() to compare two DECIMAL-type numbers.

int deccmp(n1, n2)
dec_t *n1;
dec_t *n2;

n1 is a pointer to the decimal structure of the first number.

n2 is a pointer to the decimal structure of the second number.

The following list describes the return codes of deccmp() and the conditions
that evoke them.

0 The two values are the same.

-1 The first value is less than the second.

+1 The first value is greater than the second.
Using C with INFORMIX-4GL C-37

DECIMAL-Type Functions
deccopy()
Use deccopy() to copy the value of one dec_t structure to another.

deccopy(n1, n2)
dec_t *n1;
dec_t *n2;

n1 is a pointer to the source dec_t structure.

n2 is a pointer to the destination dec_t structure.
C-38 Using C with INFORMIX-4GL

DECIMAL-Type Functions
dececvt() and decfcvt()
These functions convert a DECIMAL value to an ASCII string.

char *dececvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

char *decfcvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

np is a pointer to a dec_t structure containing the value of the number
that is to be converted to a string.

ndigit is, for dececvt(), the length of the ASCII string; for decfcvt(), it is the
number of digits to the right of the decimal point.

decpt points to an integer that is the position of the decimal point relative
to the beginning of the string. A negative value for *decpt means to
the left of the returned digits.

sign is a pointer to the sign of the result. If the sign of the result is negative,
*sign is nonzero; otherwise, the value is zero.

The dececvt() function converts the decimal value pointed to by np into a
NULL-terminated string of ndigit ASCII digits, and returns a pointer to the
string.

The low-order digit of the DECIMAL number is rounded.

The decfcvt() function is identical to dececvt(), except that ndigit specifies
the number of digits to the right of the decimal point, instead of the total
number of digits.
Using C with INFORMIX-4GL C-39

DECIMAL-Type Functions
Examples

In the following example, np points to a dec_t structure containing 12345.67
and *decpt points to an integer containing a 5:

ptr = dececvt (np,4,&decpt,&sign); = 1235
ptr = dececvt (np,10,&decpt,&sign); = 1234567000
ptr = decfcvt (np,1,&decpt,&sign); = 123457
ptr = decfcvt (np,3,&decpt,&sign); = 12345670

In this example, np points to a dec_t structure containing a 0.001234 value
and *decpt points to an integer containing a -2 value:

ptr = dececvt (np,4,&decpt,&sign); = 1234
ptr = dececvt (np,10,&decpt,&sign); = 1234000000
ptr = decfcvt (np,1,&decpt,&sign); =
ptr = decfcvt (np,3,&decpt,&sign); = 1
C-40 Using C with INFORMIX-4GL

Appendix
D

Environment
Variables
Various environment variables affect the functionality of
your Informix products. You can set environment variables
that identify your terminal, specify the location of your
software, and define other parameters. The environment
variables discussed in this appendix are grouped and listed
alphabetically.

Some environment variables are required and others are
optional. For example, you must set—or accept the default
setting for—certain UNIX environment variables.

This appendix describes how to use the environment
variables that apply to 4GL and shows how to set them.
It is divided into three main sections:

• Informix environment variables

This section describes some standard Informix-defined
environment variables that are used with 4GL. Many of
these variables are not for frequent use, but are
included in case they are necessary for correct opera-
tion of 4GL with server products. Others are for directly
specifying numeric and date formatting and the loca-
tions of message files. The settings for some of these lat-
ter variables might take precedence over those for their
Native Language Support (NLS) counterparts.

• NLS environment variables

You must set some or all these variables to benefit from
NLS. These might cause your product to behave differ-
ently than when their standard Informix counterparts

Where to Set Environment Variables
are set. The NLS environment is described in Appendix E, ‘‘Native Lan-
guage Support Within INFORMIX-4GL.’’

• UNIX environment variables

This section describes some standard UNIX system environment variables
that are recognized by Informix products.

Where to Set Environment Variables
You can set Informix, NLS, and UNIX environment variables in the following
ways:

• At the system prompt on the command line

When you set an environment variable at the system prompt, you must
reassign it the next time you log into the system.

• In a special shell file, as follows:

.login or .cshrc for the C shell

.profile for the Bourne shell or the Korn shell

When you set an environment variable in your .login, .cshrc, or .profile
file, it is assigned automatically every time you log into the system.

Caution: Check that you do not inadvertently set an environment variable
differently in your .login and .cshrc C shell files.

• In an environment-configuration file

This is a common or private file where you can define all the environment
variables that are used by Informix products. Using a configuration file
reduces the number of environment variables that you must set at the
command line or in a shell file.
D-2 Environment Variables

How to Set Environment Variables
An environment-configuration file can contain comment lines (preceded
by #) and variable lines and their values (separated by blanks and tabs),
as in the following example:

This is an example of an environment-configuration file
#
These are Informix-defined variable settings
#
DBDATE DMY4-
DBFORMAT *:.:,:DM
DBLANG german
#
These are NLS environment variable settings
#
LANG de

Use the ENVIGNORE environment variable to later override one or more
entries in this file. Use the following Informix chkenv utility to check the
contents of an environment-configuration file, and return an error mes-
sage if there is a bad environment-variable entry in the file or if the file is
too large:

chkenv filename

The chkenv utility is described in Chapter 5, “SQL Utilities,” in the Infor-
mix Guide to SQL: Reference, Version 6.0.

The common (shared) environment-configuration file resides in
$INFORMIXDIR/etc/informix.rc. The permission for this shared file must
be set to 644 . A private environment-configuration file must be stored in
the user’s home directory as .informix and must be readable by the user.

Note: The first time you set an environment variable in a shell or configuration
file, before you work with your Informix product, you should log out and then log
back in, “source” the file (C shell), or use “.” to execute an environment-
configuration file (Bourne or Korn shell). This allows the process to read your
entry.

How to Set Environment Variables
You can change default settings and add new ones by setting one or more of
the environment variables recognized by your Informix product. If you are
already using an Informix product, some or all the appropriate environment
variables might already be set.
Environment Variables D-3

How to Set Environment Variables
After one or more Informix products have been installed, enter the following
command at the system prompt to view your current environment settings:

BSD UNIX: env

UNIX System V: printenv

Use standard UNIX commands to set environment variables. Depending on
the type of shell you use, Figure D-1 shows how you set the fictional ABCD
environment variable to value.

When Bourne-shell example settings are shown in this appendix, the Korn
shell (a superset of the Bourne shell) is implied as well. Note that Korn-shell
syntax allows for a shortcut, as shown in Figure D-1.

Note: The environment variables are case sensitive.

The following diagram shows how the syntax for setting an environment
variable is represented throughout this appendix. These diagrams indicate
the setting for the C shell; for the Bourne or Korn shell, follow the syntax in
Figure D-1.

For more information on how to read syntax diagrams, see the section
“Syntax Notation” in the Introduction to this manual.

To unset most of the environment variables shown in this appendix, enter the
following command:

C shell: unsetenv ABCD

Bourne shell unset ABCD

or Korn shell:

C shell: setenv ABCD value

Bourne shell ABCD=value

or Korn shell: export ABCD

Korn shell: export ABCD= value

Figure D-1 Setting environment variables in different shells

setenv ABCD value
D-4 Environment Variables

Default Environment Variable Settings
Default Environment Variable Settings
The following list describes the main default assumptions that are made
about your environment when you use Informix products. Environment vari-
ables used to change the specific default values are shown in parentheses.
Other product-specific default values are described where appropriate
throughout this appendix.

• The program, compiler, or preprocessor, and any associated files and
libraries of your product have been installed in the /usr/informix
directory.

• The default INFORMIX-OnLine Dynamic Server<Default ¶ Fo> (OnLine)
or INFORMIX-SE database server for explicit or implicit connections is
indicated by an entry in the $INFORMIXDIR/etc/sqlhosts file.
(INFORMIXSERVER)

• The default directory for message files is $INFORMIXDIR/msg. (DBLANG
unset and LANG unset)

• If you are using INFORMIX-SE, the target or current database is in the cur-
rent directory. (DBPATH)

• Temporary files for INFORMIX-SE are stored in the /tmp directory.
(DBTEMP)

• The default terminal-dependent keyboard and screen capabilities are
defined in the termcap file in the $INFORMIXDIR/etc directory.
(INFORMIXTERM)

• For products that use an editor, the default editor is the predominant
editor for the operating system, usually vi. (DBEDIT)

• For products that have a print capability, the program that sends files to
the printer is usually:

lp for UNIX System V

lpr for BSD and other UNIX systems

(DBPRINT)

• The default format for money values is $000.00 . (DBMONEY set to $.)

• The default format for dates is MM/DD/YYYY. (DBDATE set to MDY4/)

• The field separator for unloaded data files is the vertical bar
(|=ASCII 124). (DBDELIMITER set to |)
Environment Variables D-5

Rules of Precedence
Rules of Precedence
When an Informix product accesses an environment variable, normally the
following rules of precedence apply:

1. The highest precedence goes to the value as defined in the environment
(shell).

2. The second-highest precedence goes to the value as defined in the private
environment-configuration file in the user’s home directory
(~/.informix).

3. The next-highest precedence goes to the value as defined in the common
environment-configuration file ($INFORMIXDIR/etc/informix.rc).

4. The lowest precedence goes to the default value.

If NLS is activated, there is an exception to these rules. The setting for any of
the X/Open categories (LC_*) takes precedence over the setting for the LANG
environment variable, no matter where they are set. For more information,
see Appendix E.

The lists that follow show the most common environment variables used by
Informix products. These environment variables and their uses are discussed
in this appendix.

List of Environment Variables
The following tables contain alphabetical lists of the Informix, NLS, and UNIX
environment variables that you can set for an Informix database server and
4GL. These environment variables are described in this appendix on the
pages listed in the last column.

INFORMIX Environment Variable Restrictions Page

DBANSIWARN D-8
DBDATE D-9
DBDELIMITER D-11
DBEDIT D-11
DBFORM D-12
DBFORMAT D-14
DBLANG D-18
DBMONEY D-21
DBPATH D-23
DBPRINT D-26
D-6 Environment Variables

List of Environment Variables
DBREMOTECMD OnLine only D-27
DBSPACETEMP OnLine only D-28
DBTEMP SE only D-29
DBUPSPACE D-29
ENVIGNORE D-30
INFORMIXCONRETRY D-30
INFORMIXCONTIME D-31
INFORMIXDIR D-32
INFORMIXSERVER D-33
INFORMIXSHMBASE OnLine only D-33
INFORMIXSTACKSIZE OnLine only D-34
INFORMIXTERM D-35
ONCONFIG OnLine only D-36
PSORT_DBTEMP OnLine only D-36
PSORT_NPROCS OnLine only D-37
SQLEXEC D-38
SQLRM must be unset D-38
SQLRMDIR must be unset D-39

NLS Environment Variable Page

COLLCHAR E-18
DBAPICODE E-23
DBNLS E-16
LANG E-25
LC_COLLATE E-27
LC_CTYPE E-29
LC_MONETARY E-31
LC_NUMERIC E-35

UNIX Environment Variable Page

PATH D-40
TERM D-41
TERMCAP D-41
TERMINFO D-42

INFORMIX Environment Variable Restrictions Page
Environment Variables D-7

Informix Environment Variables
Informix Environment Variables
This section lists alphabetically the variables that you can set when you use
Informix products. It includes references to NLS environment variables that
are comparable to standard Informix environment variables, where
appropriate.

DBANSIWARN
The DBANSIWARN environment variable indicates that you want to check for
Informix extensions to ANSI standard syntax. Unlike most environment vari-
ables, you do not need to set DBANSIWARN to a value—setting it to any value
or to no value, as follows, is sufficient:

Setting the DBANSIWARN environment variable for 4GL is functionally
equivalent to including the -ansi flag when invoking the utility from the com-
mand line. If you set DBANSIWARN before you run 4GL, warnings are
displayed on the screen within the SQL menu.

Setting the DBANSIWARN environment variable before you compile an 4GL
program is functionally equivalent to including the -ansi flag in the com-
mand line. When Informix extensions to ANSI standard syntax are encoun-
tered in your program at compile time, warning messages are written to the
screen.

At run time, the DBANSIWARN environment variable causes the SQL
Communication Area (SQLCA) variable sqlca.sqlwarn.sqlwarn5 to be set to
W when a statement that is not ANSI-compliant is executed. (For more
information on SQLCA, refer to the Informix Guide to SQL: Reference,
Version 4.1.)

Once you set DBANSIWARN, Informix extension checking is automatic until
you log out or unset DBANSIWARN. To turn off Informix extension checking,
unset the DBANSIWARN environment variable with the following command:

C shell: unsetenv DBANSIWARN

Bourne shell: unset DBANSIWARN

setenv DBANSIWARN
D-8 Environment Variables

DBDATE
DBDATE
The DBDATE environment variable specifies the following formats for DATE
values:

• The order of the month, day, and year in a date

• Whether the year should be printed with two digits (Y2) or four digits (Y4)

• The separator between the month, day, and year

-, . are characters that can be used as separators in a date format.

/ is the default separator for date formats.

0 is a character that indicates no separator for the date format.

D, M are characters representing day or month, respectively, in date
formats.

Y2, Y4 are characters that represent the year, and the number of digits in
the year, in date formats.

The default setting for DBDATE is MDY4/, where M represents the month,
D represents the day, Y4 represents a four-digit year, and the slash (/) is a
separator (for example, 12/25/1993).

Other acceptable characters for the separator are a hyphen (-), a period (.), or
a zero (0). (Use the zero to indicate no separator.)

The slash (/) appears if you attempt to use a character other than a hyphen,
period, or zero as a separator, or if you do not include a separator character in
the DBDATE definition.

You always must specify the separator character last. The number of digits
you specify for the year must always follow the Y.

Date formatting specified in a USING clause or FORMAT attribute will
override the formatting specified in DBDATE.

-

.
0

MD

/Y4Dsetenv DBDATE M

Y4 M D

Y2

Y2 D M
Environment Variables D-9

DBDATE
To make the date appear as mmddyy, set the DBDATE environment variable as
follows:

C shell: setenv DBDATE MDY20

Bourne shell: DBDATE=MDY20

export DBDATE

MDY represents the order of month, day, and year; 2 indicates two digits for
the year; and 0 specifies no separator. As a result, the date is displayed as
122593 .

To make the date appear in European format (dd-mm-yyyy), set the DBDATE
environment variable as follows:

C shell: setenv DBDATE DMY4-

Bourne shell: DBDATE=DMY4-

export DBDATE

DMY represents the order of day, month, and year; 4 indicates four digits for
the year; and - specifies a hyphen separator. As a result, the date is displayed
as 25-12-1993 .

The LANG setting will specify the default value for DBDATE in an active
NLS environment on HP and IBM systems. For example, a French NLS
locale will establish a DBDATE default of DMY2. DMY2 formats the date
March 1, 1994 as 1.3.94. On SUN systems LANG has no influence on the
default for DBDATE.

DBDATE can only specify the display of month and day as numeric values,
and does not support character month names and day names the way
USING and FORMAT do. For this reason, changes in DBLANG and LANG
do not affect the results of DBDATE on the display of DATE data.

The DBDATE variable, like DBFORMAT and DBMONEY, performs its role
regardless of whether or not NLS is active (DBNLS set), and is not stored in
database system tables upon database creation or considered during con-
sistency checking. This is in contrast to LANG and the LC variables, which
are only active when NLS is active, are stored with a database, and are
checked for consistency.

NLS
D-10 Environment Variables

DBDELIMITER
DBDELIMITER
The DBDELIMITER environment variable specifies the field delimiter used by
the dbexport utility in unloaded data files or with the LOAD and UNLOAD
statements in 4GL.

delimiter is the field delimiter for unloaded data files.

Any single character except the following is allowed:

• Hexadecimal numbers (0 through 9, a through f, A through F)

• NEWLINE or CONTROL-J

• The backslash symbol (\)

The vertical bar (|=ASCII 124) is the default. To change the field delimiter to
a plus (+), set the DBDELIMITER environment variable as follows:

C shell: setenv DBDELIMITER '+'
Bourne shell: DBDELIMITER='+'

export DBDELIMITER

DBEDIT
The DBEDIT environment variable lets you name the text editor you want to
use. If DBEDIT is set, the specified editor is called directly. If DBEDIT is not set,
you are prompted to specify an editor as the default for the rest of the session.

editor is the name of the text editor you want to use.

For most systems, the default editor is vi. If you use another editor, be sure
that it creates ASCII files. Some word processors in document mode introduce
printer control characters that can interfere with operation of your Informix
product.

To specify the EMACS text editor, set the DBEDIT environment variable as
follows:

C shell: setenv DBEDIT emacs

Bourne shell: DBEDIT=emacs

export DBEDIT

setenv DBDELIMITER 'delimiter'

setenv DBEDIT editor
Environment Variables D-11

DBFORM
DBFORM
The DBFORM variable specifies the subdirectory of $INFORMIXDIR (or full
pathname) in which the menu form files for the currently active language
reside. (Note that $INFORMIXDIR means “the name of the directory refer-
enced by the environment variable INFORMIXDIR.”) Menu form files pro-
vide a set of language-translated menus to replace the standard 4GL menus.
Menu form files have the suffix .frm. Menu form files are included in lan-
guage supplements, which contain instructions specifying where the files
should be installed and what DBFORM settings to specify.

pathname specifies the subdirectory of $INFORMIXDIR or the full
pathname of the directory that contains the message files.

Usage
If DBFORM is not set, the default directory for menu form files is
$INFORMIXDIR/forms. The files should be installed in a subdirectory under
the forms subdirectory under $INFORMIXDIR. For example, French menu
files could be installed in $INFORMIXDIR/forms/french or in
$INFORMIXDIR/forms/fr.88591. The English language version will normally
be installed in $INFORMIXDIR/forms or $INFORMIXDIR/forms/english.
Non-English menu form files should not be installed in either of the locations
where English files are normally found.

setenv DBFORM pathname
D-12 Environment Variables

Usage
The following diagram illustrates the search method employed for locating
message files for a particular language (where the value set in the DBFORM
variable is indicated as $DBFORM):

Figure D-2 Directory search order, depending on $DBFORM

Figure D-3 Directory search order, depending on $LANG

If both DBFORM and LANG are set, LANG is ignored in establishing search
order.

se
ar

ch
or

de
r

$INFORMIXDIR/forms/$DBFORM/

$INFORMIXDIR/$DBFORM/

$INFORMIXDIR/forms/

$INFORMIXDIR/forms/english/

If the LANG variable is set, and DBFORM is not, the search order changes
to the following:

NLS

se
ar

ch
or

de
r

$INFORMIXDIR/forms/$LANG/

$INFORMIXDIR/$LANG/

$INFORMIXDIR/forms/

$INFORMIXDIR/forms/english/
Environment Variables D-13

DBFORMAT
To specify a menu form directory, follow these steps:

1. Use the mkdir command to create the appropriate subdirectory in
$INFORMIXDIR/forms.

2. Set the owner and group of the subdirectory to informix and the access
permission for this directory to 755 .

3. Set the DBFORM environment variable to the new subdirectory,
specifying only the subdirectory name and not the full pathname.

4. Copy the .frm files to the new menu form directory specified by
$INFORMIXDIR/forms/$DBFORM. All files in the menu form directory
should have the owner and group informix and access permission 644 .

5. Run your program or otherwise continue working with your product.

For example, you can store the set of menu form files for the French language
in $INFORMIXDIR/forms/french as follows:

setenv DBFORM french

DBFORMAT
The Informix-defined DBFORMAT environment variable specifies the default
format in which the user inputs, displays, or prints values of the following
data types:

• DECIMAL

• FLOAT

• SMALLFLOAT

• INTEGER

• SMALLINT

• MONEY

The default format specified in DBFORMAT affects how numeric and mone-
tary values are:

• Displayed and input on the screen

• Printed

• Input to and output from ASCII files using LOAD and UNLOAD

DBFORMAT is used to specify the leading and trailing currency symbols (but
not their default positions within a monetary value) and the decimal and
thousands separators. Note that the decimal and thousands separators
defined by DBFORMAT apply to both monetary and numeric data, and over-
ride the sets of separators established by LC_MONETARY and LC_NUMERIC.
D-14 Environment Variables

DBFORMAT
For this reason, countries which use different formatting conventions for their
monetary and numeric data should use LANG, LC_MONETARY, and
LC_NUMERIC, and avoid DBFORMAT.

The setting in DBFORMAT will affect the following keywords:

• USING expression

• FORMAT attribute

• PRINT statement

• LET statement, where a character string is receiving a monetary or
numeric value

• DISPLAY statement

The syntax for setting DBFORMAT is as follows:

front is the leading currency symbol. The front value is optional.
The null string, represented by “*”, is allowed, and means
that the leading currency symbol is not applicable.

thousands is a list of one or more characters that determine the possible
thousands separator. The user can use any of the specified
characters as the thousands separator when inputting val-
ues. The values in the list are not separated by spaces or other
characters. 4GL uses the first value specified as the thousands
separator when displaying the output value.

You can specify any characters for the thousands separator
except the following:

• Digits

• <, >, |, ?, !, =, [,]

If you specify the * character, 4GL omits the thousands
separator. The thousands value is optional. The default value
is the *. A blank space can be the thousands separator and is
used for this purpose in some locales.

Note that in versions prior to 6.0, the colon symbol (:) was not
allowed as a thousands separator. In version 6.0, the colon
symbol is permitted, but must be preceded by a backslash (\)
symbol, as in the specification :\::.:DM.

decimal is a list of one or more characters that determine the possible
decimal separators. The user can use any of the specified

thousands decimal backfront

: : :setenv DBFORMAT
Environment Variables D-15

Usage
characters as the decimal separator when inputting values.
4GL uses the first value specified as the decimal separator
when displaying the output value.

You can specify any characters except the following:

• Digits

• <, >, |, ?, !, =, [,]

• Any characters specified for the thousands value

The decimal value is optional. Specification of an asterisk
symbol in the decimal position will cause displayed values
not to have a decimal separator.

Note that the colon symbol is permitted as a decimal
separator, but must be preceded by a backslash (\) symbol
in the DBFORMAT specification.

back is a value that determines the trailing currency symbol. The
back value is optional.

You must specify all three colons in the syntax. Enclosing the DBFORMAT
specification in a pair of single quotes is suggested to prevent the shell from
interpreting any of the characters.

Usage
The setting in DBFORMAT directly specifies the leading and trailing currency
symbol, and the numeric and decimal separators. It adds the currency sym-
bol and changes the separators displayed on the screen in a monetary or
numeric field, and in the default format of a PRINT statement. For example,
if DBFORMAT is set to:

*:.:,:DM

the value 1234.56 will print or display as:

1234,56DM

DM stands for deutche marks. In the case of a screen form, values input by
the user are expected to contain commas, not periods, as decimal separators
if this DBFORMAT string has been specified.

The setting in DBFORMAT also affects the way format strings in the FORMAT
attribute and the USING clause are interpreted. In these format strings, the
period symbol (.) is not a literal character but a placeholder for the decimal
separator specified by DBFORMAT. Likewise, the comma symbol (,) is a
placeholder for the thousands separator specified by DBFORMAT. The dollar
sign is a placeholder for the leading currency symbol. The at-sign (@) symbol
D-16 Environment Variables

Usage
is a placeholder for the trailing currency symbol. The following table illus-
trates the results of different combinations of DBFORMAT setting and format
string on the same value:

Figure D-4 Illustration of the results of different DBFORMAT settings and format strings

When the user enters values, 4GL behaves as follows:

• Disregards any currency symbols (leading or trailing) and thousands
separators that the user enters.

• If a symbol appears that is defined as the decimal separator in DBFORMAT,
it is interpreted in the input value as a decimal separator.

When 4GL displays or prints values:

• The DBFORMAT-defined leading or trailing currency symbol is displayed
for MONEY values.

• If a leading or trailing currency symbol is specified by the FORMAT
attribute for non-MONEY data types, the symbol is displayed.

• The thousands separator does not display, unless it is included in a
FORMAT attribute or USING operator.

• The decimal separator is displayed unless the decimal separator is defined
as NULL (*) in DBFORMAT or the data type is integer (INT or SMALLINT).

Value Format String DBFORMAT Setting Displayed Result

1234.56 $$#,###.## $:,:.: $1,234.56
1234.56 $$#,###.## :.:,:DM 1.234,56
1234.56 #,###.##@@ $:,:.: 1,234.56
1234.56 #,###.##@@ :.:,:DM 1.234,56DM
Environment Variables D-17

DBLANG
When money values are converted to character strings using the LET
statement, both the default conversion and the conversion with a USING
clause will insert the DBFORMAT-defined separators and currency symbol
into the created strings.

DBLANG
The DBLANG variable specifies the subdirectory of $INFORMIXDIR (or the
full pathname) in which the message files for the currently active language
reside. (Note that $INFORMIXDIR means “the name of the directory refer-
enced by the environment variable INFORMIXDIR.”) Message files provide a
set of error messages for the engine and tools that have been translated into
a national language. Message files have the suffix .iem.

A language supplement contains:

• Message files

• Instructions specifying where the files should be installed and what
DBLANG settings to specify.

The DBFORMAT setting overrides settings in DBMONEY, LC_NUMERIC,
and LC_MONETARY.

The DBFORMAT variable, like DBMONEY and DBDATE, performs its role
regardless of whether or not NLS is active (DBNLS set to 1 or 2). This is in
contrast to the LC variables, which are only active when NLS is active.

DBFORMAT, like DBMONEY, dictates both the numeric and monetary
formats for data. In some countries, including Portugal and Italy, the cor-
rect use of decimal and thousands separators differs between numeric
and monetary data. For such countries, LC_NUMERIC and
LC_MONETARY provide for independently defined numeric and
monetary formatting. This is in contrast to DBFORMAT and DBMONEY.

LC_NUMERIC and LC_MONETARY also can activate special logic for
formatting, for purposes such as discarding the decimal portion of Italian
lira. There is no fractional portion in Italian currency.

The use of LC_NUMERIC and LC_MONETARY rather than DBFORMAT is
encouraged.

NLS
D-18 Environment Variables

Usage
The syntax for setting DBLANG is as follows:

pathname specifies the subdirectory of $INFORMIXDIR or the full
pathname of the directory that contains the message files.

Usage
If DBLANG is not set, the default directory for message files is
$INFORMIXDIR/msg. The files should be installed in a subdirectory under the
msg subdirectory under $INFORMIXDIR. For example, French message files
could be installed in $INFORMIXDIR/msg/french or in
$INFORMIXDIR/msg/fr.88591. The English language version will normally be
installed in $INFORMIXDIR/msg or $INFORMIXDIR/msg/english. Non-
English message files should not be installed in either of the locations where
English files are normally found.

The following diagram illustrates the search method employed for locating
message files for a particular language (where value of the variable DBLANG
is designated as $DBLANG):

Figure D-5 Directory search order, depending on $DBLANG

setenv DBLANG pathname

se
ar

ch
or

de
r

$INFORMIXDIR/msg/$DBLANG/

$INFORMIXDIR/$DBLANG/

$INFORMIXDIR/msg/

$INFORMIXDIR/msg/english/
Environment Variables D-19

Usage
Figure D-6 Directory search order, depending on $LANG

If both DBLANG and LANG are set, LANG is ignored in establishing search
order.

To specify a message directory, follow these steps:

1. Use the mkdir command to create the appropriate subdirectory in
$INFORMIXDIR/msg.

2. Set the owner and group of the subdirectory to informix and the access
permission for this directory to 755 .

3. Set the DBLANG environment variable to the new subdirectory,
specifying only the subdirectory name and not the full pathname.

4. Copy the .iem files to the new message directory specified by
$INFORMIXDIR/msg/$DBLANG. All files in the message directory should
have the owner and group informix and access permission 644 .

5. Run your program or otherwise continue working with your product.

If the LANG variable is set, and DBLANG is not, the search order changes
to the following:

NLS

se
ar

ch
or

de
r

$INFORMIXDIR/msg/$LANG/

$INFORMIXDIR/$LANG/

$INFORMIXDIR/msg/

$INFORMIXDIR/msg/english/
D-20 Environment Variables

DBMONEY
For example, you can store the set of message files for the French language in
$INFORMIXDIR/msg/french as follows:

setenv DBLANG french

DBMONEY
The DBMONEY environment variable specifies the display format for MONEY
values.

The syntax is as follows:

$ is the default symbol that precedes the MONEY value.

. is the default decimal separator symbol that separates the integral
from the fractional part of the MONEY value.

, is an alternative decimal separator symbol that separates the integral
from the fractional part of the MONEY value.

back represents the optional trailing currency symbol that follows the
MONEY value. The back symbol can be up to seven characters long
and can contain any character except a comma or a period.

front is the alternative leading currency symbol that precedes the MONEY
value instead of $. The front symbol can be up to seven characters
long and can contain any character except a comma or a period.

The default setting for DBMONEY is: $.

where a dollar sign ($) precedes the MONEY value, a period (.) separates the
integral from the fractional part of the MONEY value, and no back symbol
appears. For example, 100.50 is formatted as $100.50 .

Informix tools do not support the XPG3 category LC_MESSAGES because
the use of LC_MESSAGES requires storage of messages in system directo-
ries, which is less desirable than using the standard Informix message
directory method.

NLS

,

.$

backfront

setenv DBMONEY
Environment Variables D-21

DBMONEY
Suppose you want to represent MONEY values in deutsche marks, which use
DM as the currency symbol and a comma as the decimal separator. Set the
DBMONEY environment variable as follows:

C shell: setenv DM,

Bourne shell: DBMONEY=DM,

export DBMONEY

Here, DM is the currency symbol preceding the MONEY value, and a comma
separates the integral from the fractional part of the MONEY value. As a
result, the amount 100.50 is displayed as DM100,50 .

Whenever you supply a back symbol, you must also supply the front symbol
and the decimal separator (a comma or period). Similarly, if you change the
value separator from a period to a comma, you must also supply the front
symbol.
D-22 Environment Variables

DBPATH
Selecting the period as a decimal separator dictates the use of the comma as a
thousands separator for monetary and numeric values. Selecting the comma
as a decimal separator dictates the use of the period as the thousands
separator.

DBPATH
Use DBPATH to identify the database servers that contain databases (if you
are using the OnLine server), or the directories and/or database servers that
contain databases (if you are using INFORMIX-SE). The DBPATH environ-
ment variable also specifies a list of directories (in addition to the current
directory) in which 4GL looks for command scripts (.sql files).

DBMONEY represents syntax from older versions of the product set. It is
recommended that you use the LC_MONETARY and LANG, or DBFORMAT,
environment variables for specifying monetary format. DBMONEY has
been retained only for compatibility with older versions.

The DBMONEY variable, like DBFORMAT and DBDATE, performs its role
regardless of whether or not NLS is active (DBNLS set to 1 or 2). This is in
contrast to LANG and the LC variables, which are only active when NLS is
active.

The contents of a declared DBMONEY environment variable take
precedence over the contents of the LC_MONETARY variable that can be
set for NLS. However, the LC_MONETARY setting takes precedence over
the default DBMONEY format.

DBMONEY, like DBFORMAT, dictates both the numeric and monetary for-
mats for data. In some countries, including Portugal and Italy, the correct
use of decimal and thousands separators differs between numeric and
monetary data. For such countries, LC_NUMERIC and LC_MONETARY
provide for independently defined numeric and monetary formatting.
This is in contrast to DBMONEY and DBFORMAT.

LC_NUMERIC and LC_MONETARY also can activate special logic for
formatting, for purposes such as discarding the decimal portion of Italian
lira. There is no fractional portion in Italian currency.

The use of LC_NUMERIC and LC_MONETARY rather than DBFORMAT or
DBMONEY is encouraged. The use of DBFORMAT rather than DBMONEY is
encouraged, if LC_ variables cannot be used.

See the discussion of LC_MONETARY in Appendix E, ‘‘Native Language
Support Within INFORMIX-4GL.’’

NLS
Environment Variables D-23

DBPATH
The CONNECT, DATABASE, START DATABASE, and DROP DATABASE
statements use DBPATH to locate the database under two conditions:

• If the location of a database is not explicitly stated and if the database can-
not be located in the default server

or

• For INFORMIX-SE, the default directory

The CREATE DATABASE statement does not use DBPATH.

You can add a new DBPATH entry to existing entries. To do so, use the $
format described for the UNIX environment variable PATH, described on
page D-40.

pathname is a valid relative pathname for a directory in which .sql files
are stored or in which INFORMIX-SE databases are stored.

full_pathname is a valid full pathname, starting with root, for a directory in
which .sql files are stored or in which INFORMIX-SE
databases are stored.

servername is the name of an OnLine or INFORMIX-SE database server
on which databases are stored. You cannot reference
database files with a servername.

DBPATH can contain up to 16 entries. Each entry (pathname, or servername, or
servername and full_pathname) must be less than 128 characters long. In addi-
tion, the maximum length of DBPATH depends on the hardware platform on
which you are setting DBPATH.

When you access a database using the CONNECT, DATABASE, START
DATABASE, or DROP DATABASE statement, the search for the database is
done first in the directory or database server specified in the statement. If no
database server is specified, the default database server as set in the
INFORMIXSERVER environment variable is used. For INFORMIX-SE, if no
directory is specified in the statement, the default directory is searched for
the database. (The default directory is the current working directory if the
database server is on the local machine, or your login directory if the data-
base server is on a remote machine.) If a directory is specified but is not a full
path, the directory is considered to be relative to the default directory.

setenv DBPATH

:

16

// servername

pathname

full_pathname

servername//

/

D-24 Environment Variables

DBPATH
If the database is not located during the initial search, and if DBPATH is set,
the database servers or directories in DBPATH are searched for the indicated
database. The entries to DBPATH are considered in order.

Searching Local Directories

Use a pathname without a database server name to have the database server
search for databases or .sql scripts on your local machine. If you are using 4GL
with INFORMIX-SE, you can search for a database and .sql scripts; with
OnLine, you can look only for .sql scripts.

For example, the following DBPATH setting causes 4GL to search for the data-
base files in your current directory and then in Joachim’s and Sonja’s directo-
ries on the local machine:

setenv DBPATH /usr/joachim:/usr/sonja

As shown in the previous example, if the pathname specifies a directory name
but not a database server name, the directory is sought on the machine run-
ning the default database server as specified by the INFORMIXSERVER envi-
ronment variable. (See page D-33.) For instance, with this example, if
INFORMIXSERVER is set to quality, the DBPATH value is interpreted as follows,
where the double slash precedes the database server name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

Searching Networked Machines for Databases

If you are using more than one database server, you can set DBPATH to
explicitly contain the database server and/or directory names that you want
to be searched for databases. For example, if INFORMIXSERVER is set to
quality but you also want to search the marketing database server for
/usr/joachim, set DBPATH as follows:

setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a Servername

You can set DBPATH to contain only database server names. This allows you
to locate only databases and not locate command files.

The OnLine or SE administrator must include each database server
mentioned by DBPATH in the $INFORMIXDIR/etc/sqlhosts file. For informa-
tion on communication-configuration files and dbservernames, see the
INFORMIX-OnLine Dynamic Server Administrator’s Guide, Version 6.0, or
INFORMIX-SE Administrator’s Guide, Version 6.0.
Environment Variables D-25

DBPRINT
For example, if INFORMIXSERVER is set to quality, you can search for an
OnLine database first on the quality database server and then on the
marketing database server by setting DBPATH as follows:

setenv DBPATH //marketing

For INFORMIX-SE, you can set DBPATH to contain just the database server
names (and no directory names) if you want to locate only databases and not
command scripts:

• If you specify a local SE database server, the current working directory is
searched for databases.

• If you specify a remote SE database server, the search for databases is
done in the login directory of the user on the machine where the database
server is running.

DBPRINT
The DBPRINT environment variable specifies the print program that you
want to use.

program names any command, shell script, or UNIX utility that
handles standard ASCII input.

The default program is as follows:

• For most BSD UNIX systems, the default program is lpr.

• For UNIX System V, the default program is usually lp.

Set the DBPRINT environment variable as follows to specify the myprint print
program:

C shell: setenv DBPRINT myprint

Bourne shell: DBPRINT=myprint

export DBPRINT

setenv DBPRINT program
D-26 Environment Variables

DBREMOTECMD
DBREMOTECMD
You can set the DBREMOTECMD environment variable to override the default
remote shell used when you perform remote tape operations with OnLine.
Set it using either a simple command or the full pathname. If you use the full
pathname, the database server searches your PATH for the specified
command.

command is the command to override the default remote shell.

pathname is the pathname to override the default remote shell.

Informix highly recommends the full pathname syntax on the interactive
UNIX platform to avoid problems with like-named programs in other
directories and possible confusion with the restricted shell (/usr/bin/rsh).

Set the DBREMOTECMD environment variable as follows for a simple
command name:

C shell: setenv DBREMOTECMD rcmd

Bourne shell: DBREMOTECMD=rcmd

export DBREMOTECMD

Set the DBREMOTECMD environment variable as follows to specify the full
pathname:

C shell: setenv DBREMOTECMD /usr/bin/remsh

Bourne shell: DBREMOTECMD=/usr/bin/remsh

export DBREMOTECMD

For more information on DBREMOTECMD, see the discussion in the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide, Version 6.0,
about using remote tape devices with OnLine for archives, restores, and
logical log backups.

setenv DBREMOTECMD

pathname

command
Environment Variables D-27

DBSPACETEMP
DBSPACETEMP
If you are using OnLine, you can set your DBSPACETEMP environment vari-
able to specify the dbspace to be used for building all temporary tables and
for holding temporary files used for sorting in OnLine. This spreads tempo-
rary space across any number of disks.

punct can be either colons or commas.

temp_dbspace is a list of valid existing temporary dbspaces.

You can set the DBSPACETEMP environment variable to override the default
dbspaces used for temporary tables and sorting space specified in the
DBSPACETEMP configuration parameter in the OnLine configuration file. For
example, you might set DBSPACETEMP as follows:

C shell: setenv DBSPACETEMP sorttmp1: sorttmp2: sorttmp3

Bourne shell: DBSPACETEMP=sorttmp1:sorttmp2:sorttmp3

export DBSPACETEMP

Separate the dbspace entries with either colons or commas. The number of
dbspaces is limited by the maximum size of the environment variable, as
defined by the UNIX shell.

The default, if left unspecified, becomes the root dbspace. OnLine does not
create the dbspace named by the environment variable if it does not exist.

For the creation of temporary tables, if neither DBSPACETEMP nor the
DBSPACETEMP parameter in the onconfig file is set, OnLine creates the
temporary tables in the dbspace where the database was created.

For sorting space, OnLine uses the following disk space for writing
temporary information, in the following order:

1. The operating system directory or directories specified by the
environment variable PSORT_DBTEMP, if set.

2. The dbspace or dbspaces specified by the environment variable
DBSPACETEMP, if set.

3. The dbspace or dbspaces specified by the onconfig parameter
DBSPACETEMP.

4. The operating system file space in /tmp.

temp_dbspace

punct

setenv DBSPACETEMP
D-28 Environment Variables

DBTEMP
DBTEMP
Set the DBTEMP environment variable to specify the full pathname of the
directory into which you want INFORMIX-SE to place its temporary files. You
need not set DBTEMP if the default, /tmp, is satisfactory.

pathname is the full pathname of the directory for temporary files.

Set the DBTEMP environment variable as follows to specify the pathname
usr/magda/mytemp:

C shell: setenv DBTEMP usr/magda/mytemp

Bourne shell: DBTEMP=usr/magda/mytemp

export DBTEMP

For the creation of temporary tables, if DBTEMP is not set, the temporary
tables are created in the directory of the database (that is, the .dbs directory).

DBUPSPACE
The DBUPSPACE environment variable lets you specify and thus constrain the
amount of system disk space that the UPDATE STATISTICS statement can use
when trying to simultaneously construct multiple column distributions.

value represents a disk space amount in kilobytes.

For example, if DBUPSPACE is set to 2500 (kilobytes) as follows,

C shell: setenv DBUPSPACE 2500

Bourne shell: DBUPSPACE=2500

export DBUPSPACE

then no more than 2.5 megabytes of disk space are to be used to accomplish
sorting during the execution of an UPDATE STATISTICS statement. If a table
requires 5 megabytes of disk space for sorting, then UPDATE STATISTICS
accomplishes the task in two passes; the distributions for one half of the
columns are constructed with each pass.

If you try to set DBUPSPACE to any value less than 1024 kilobytes, it is
automatically set to 1024 kilobytes, but no error message is returned. If this
value is not large enough to allow more than one distribution to be con-
structed at a time, at least one distribution is done, even if the amount of disk
space required for the one is greater than specified in DBUPSPACE.

setenv DBTEMP pathname

setenv DBUPSPACE value
Environment Variables D-29

ENVIGNORE
ENVIGNORE
Use the ENVIGNORE environment variable to deactivate specified
environment variable entries in the common (shared) and private
environment-configuration files.

variable is the list of environment variables that you want to
deactivate.

For example, to ignore the DBPATH and DBMONEY entries in the
environment-configuration files, specify the following command:

C shell: setenv ENVIGNORE DBPATH:DBMONEY

Bourne shell: ENVIGNORE=DBPATH:DBMONEY

export ENVIGNORE

The common environment-configuration file is stored in
$INFORMIXDIR/etc/informix.rc. The private environment-configuration file
is stored in the user’s home directory as .informix. See “Where to Set Envi-
ronment Variables” on page D-2 for information on creating or modifying an
environment-configuration file.

Note: ENVIGNORE cannot be set in an environment-configuration file.

INFORMIXCONRETRY
The INFORMIXCONRETRY environment variable lets you specify the
maximum number of additional connection attempts that should be made to
each server by the client during the time limit specified by the
INFORMIXCONTIME environment variable.

Set the INFORMIXCONRETRY environment variable as follows:

value represents the number of connection attempts to each server.

For example, set INFORMIXCONRETRY to 3 additional connection attempts
(after the initial attempt) as follows:

C shell: setenv INFORMIXCONRETRY 3

Bourne shell: INFORMIXCONRETRY=3

export INFORMIXCONRETRY

variable

:

setenv ENVIGNORE

setenv INFORMIXCONRETRY value
D-30 Environment Variables

INFORMIXCONTIME
The default value for INFORMIXCONRETRY is one retry after the initial
connection attempt. The INFORMIXCONTIME setting, described below, takes
precedence over the INFORMIXCONRETRY setting.

INFORMIXCONTIME
The INFORMIXCONTIME environment variable lets you specify the minimum
time limit, in seconds, for the SQL statement CONNECT to attempt to connect
to a server before it returns an error.

You might encounter connection difficulties related to system or network
load problems. For instance, if the server is busy establishing new SQL client
threads, some of the clients might fail because the server can not issue a
network function call fast enough. The INFORMIXCONTIME and
INFORMIXCONRETRY environment variables let you configure your client-
side connection capability to retry to connect instead of returning an error.

Set the INFORMIXCONTIME environment variable as follows:

value represents the minimum number of seconds spent in
attempts to connect to each server.

For example, set INFORMIXCONTIME to 60 seconds as follows:

C shell: setenv INFORMIXCONTIME 60

Bourne shell: INFORMIXCONTIME=60

export INFORMIXCONTIME

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3, as
shown in this appendix, attempts to connect to the server (after the initial
attempt at 0 seconds) will be made at 20, 40, and 60 seconds, if necessary,
before aborting. This 20-second interval is the result of INFORMIXCONTIME
divided by INFORMIXCONRETRY.

If execution of the CONNECT statement involves searching DBPATH, the
following rules apply:

• All appropriate servers in the DBPATH setting are accessed at least once,
even though the INFORMIXCONTIME value might be exceeded. Thus, the
CONNECT statement might take longer than the INFORMIXCONTIME time
limit to return an error indicating connection failure or that the database
was not found.

• The INFORMIXCONRETRY value specifies the number of additional
connections that should be attempted for each server entry in DBPATH.

setenv INFORMIXCONTIME value
Environment Variables D-31

INFORMIXDIR
• The INFORMIXCONTIME value is initially divided among the number of
server entries specified in DBPATH. Thus, if DBPATH contains numerous
servers, you should increase the INFORMIXCONTIME value accordingly
to allow for multiple connection attempts.

The default value for INFORMIXCONTIME is 15 seconds after the initial
connection attempt. The INFORMIXCONTIME setting takes precedence over
the INFORMIXCONRETRY setting; retry efforts could end after the
INFORMIXCONTIME value has been exceeded, but before the
INFORMIXCONRETRY value has been reached.

INFORMIXDIR
The INFORMIXDIR environment variable specifies the directory that contains
the subdirectories in which your product files are installed. INFORMIXDIR
must be set. If you have multiple versions of the OnLine or INFORMIX-SE
database server, set INFORMIXDIR to the appropriate directory name for the
version that you want to access. For information about when to set the
INFORMIXDIR environment variable, see the UNIX Products Installation
Guide, Version 6.0.

pathname is the directory path where the product files are installed.

Set the INFORMIXDIR environment variable to the following recommended
installation directory:

C shell: setenv INFORMIXDIR /usr/informix

Bourne shell: INFORMIXDIR=/usr/informix

export INFORMIXDIR

setenv INFORMIXDIR pathname
D-32 Environment Variables

INFORMIXSERVER
INFORMIXSERVER
The INFORMIXSERVER environment variable specifies the default database
server to which an explicit or implicit connection is made by 4GL. The data-
base server can be either OnLine or INFORMIX-SE and can be either local or
remote.

dbservername is the name of the default database server.

The value of INFORMIXSERVER must correspond to a valid dbservername entry
in the $INFORMIXDIR/etc/sqlhosts file on the machine running the applica-
tion. It must be specified using lowercase characters and cannot exceed 18
characters for the OnLine database server and cannot exceed 10 characters for
the INFORMIX-SE database server. For example, to specify the coral database
server as the default for connection, enter the following command:

C shell: setenv INFORMIXSERVER coral

Bourne shell: INFORMIXSERVER=coral

export INFORMIXSERVER

INFORMIXSERVER specifies the database server to which an application
connects if the CONNECT DEFAULT statement is executed. It also defines the
database server to which an initial implicit connection is established if the
first statement in an application is not a CONNECT statement.

Note: INFORMIXSERVER must be set even if the application or 4GL does not use
implicit or explicit default connections.

INFORMIXSHMBASE
The INFORMIXSHMBASE environment variable affects only client applica-
tions connected to an OnLine server using the IPC shared-memory (ipcshm)
communication protocol.

You use INFORMIXSHMBASE to specify where shared-memory
communication segments are attached to the client process so that client
applications can avoid collisions with other memory segments used by the

setenv INFORMIXSERVER dbservername
Environment Variables D-33

INFORMIXSTACKSIZE
application. If you do not set INFORMIXSHMBASE, the memory address of the
communication segments defaults to an implementation-specific value such
as 0x800000.

value is used to calculate the memory address.

OnLine calculates the memory address where segments are attached by
multiplying the value of INFORMIXSHMBASE by 1024. For example, to set the
memory address to the value 0x800000, set the INFORMIXSHMBASE
environment variable as follows:

C shell: setenv INFORMIXSHMBASE 8192

Bourne shell: INFORMIXSHMBASE=8192

export INFORMIXSHMBASE

Resetting INFORMIXSHMBASE requires a thorough understanding of the
application’s use of memory. Normally you do not reset INFORMIXSHMBASE.
For more information, see the INFORMIX-OnLine Dynamic Server Administra-
tor’s Guide, Version 6.0.

INFORMIXSTACKSIZE
The INFORMIXSTACKSIZE environment variable affects only client
applications connected to an OnLine server.

The OnLine administrator can set INFORMIXSTACKSIZE to specify the stack
size (in kilobytes) that OnLine will use for a particular client session. Use
INFORMIXSTACKSIZE to override the value of the onconfig configuration
parameter STACKSIZE for a particular application or user.

value is the stack size for SQL client threads in kilobytes.

For example, to decrease the INFORMIXSTACKSIZE to 20 kilobytes, enter the
following command:

C shell: setenv INFORMIXSTACKSIZE 20

Bourne shell: INFORMIXSTACKSIZE=20

export INFORMIXSTACKSIZE

Note: If INFORMIXSTACKSIZE is not set, the stack size is taken from the OnLine
configuration parameter STACKSIZE, or it defaults to an implementation-specific
value. The default stack size value for the primary thread for an SQL client is
32 kilobytes for nonrecursive database activity.

setenv INFORMIXSHMBASE value

setenv INFORMIXSTACKSIZE value
D-34 Environment Variables

INFORMIXTERM
Warning: See the INFORMIX-OnLine Dynamic Server Administrator’s Guide,
Version 6.0, for specific instructions for setting this value. If you incorrectly set the
value of INFORMIXSTACKSIZE, it can cause OnLine to crash.

INFORMIXTERM
The INFORMIXTERM environment variable specifies whether 4GL should use
the information in the termcap file or the terminfo directory. INFORMIXTERM
determines terminal-dependent keyboard and screen capabilities such as the
operation of function keys, color and intensity attributes in screen displays,
and the definition of window border and graphics characters.

If INFORMIXTERM is not set, the default setting is termcap. When 4GL is
installed on your system, a termcap file is placed in the etc subdirectory of
$INFORMIXDIR. This file is a superset of an operating system termcap file.

You can use the termcap file supplied by Informix, the system termcap file, or
a termcap file that you created yourself. You must set the TERMCAP
environment variable if you do not use the default termcap file.

The terminfo directory contains a file for each terminal name that has been
defined. It is supported only on machines that provide full support for the
UNIX System V terminfo library. For details, see the Version 6.0 on-line
machine notes for your machine.

Set the INFORMIXTERM environment variable to terminfo as follows:

C shell: setenv INFORMIXTERM terminfo

Bourne shell: INFORMIXTERM=terminfo

export INFORMIXTERM

Set the INFORMIXTERM environment variable to termcap as follows:

C shell: setenv INFORMIXTERM termcap

Bourne shell: INFORMIXTERM=termcap

export INFORMIXTERM

Note: If INFORMIXTERM is set to termcap, you must set the UNIX environment
variable TERMCAP; if INFORMIXTERM is set to terminfo, you must set the UNIX
environment variable TERMINFO.

!

setenv INFORMIXTERM

terminfo

termcap
Environment Variables D-35

ONCONFIG
ONCONFIG
The OnLine administrator can set the ONCONFIG environment variable
(previously known as TBCONFIG), which contains the name of the UNIX file
that holds the configuration parameters for OnLine. This file is read as input
to either the disk-space or shared-memory initialization procedure.

filename is the name of the file in $INFORMIXDIR/etc that contains the
OnLine configuration parameters.

If you are not the administrator of an OnLine server, you need to set
ONCONFIG only if more than one OnLine system is initialized in your
$INFORMIXDIR directory, and you want to maintain multiple configuration
files with different values. If you do not set ONCONFIG, the default is
onconfig.

Each OnLine server has its own onconfig file that must be stored in the
$INFORMIXDIR/etc directory. You might prefer to name onconfig so it easily
can be related to a specific OnLine database server. For example, when the
desired filename is onconfig3, you can set the ONCONFIG environment
variable as follows:

C shell: setenv ONCONFIG onconfig3

Bourne shell: ONCONFIG=onconfig3

export ONCONFIG

For more information, see the INFORMIX-OnLine Dynamic Server Administra-
tor’s Guide, Version 6.0.

PSORT_DBTEMP
The PSORT_DBTEMP environment variable affects only client applications
connected to an OnLine server.

PSORT_DBTEMP specifies a directory or directories where the OnLine server
writes the temporary files it uses when performing a sort. See the
DBSPACETEMP environment variable on page D-28 for more information on
other places OnLine can write information during a sort.

setenv ONCONFIG filename
D-36 Environment Variables

PSORT_NPROCS
This variable is used even if the environment variable PSORT_NPROCS is not
set.

pathname is the name of the UNIX directory used for intermediate
writes during a sort.

Set the PSORT_DBTEMP environment variable as follows to specify the
directory, for example, /usr/leif/tempsort:

C shell: setenv PSORT_DBTEMP /usr/leif/tempsort

Bourne shell: PSORT_DBTEMP=/usr/leif/tempsort

export PSORT_DBTEMP

For maximum performance, specify directories that reside in file systems on
different disks.

You also might want to consider setting the environment variable
DBSPACETEMP to place temporary files used in sorting in dbspaces rather
than operating system files. See the discussion of the DBSPACETEMP
environment variable on page D-28.

PSORT_NPROCS
The PSORT_NPROCS environment variable affects only client applications
connected to an OnLine server.

PSORT_NPROCS enables the Psort parallel-process sorting package to
improve performance on OnLine. The setting defines the upper limit for the
number of threads used to sort a query.

value specifies the maximum number of threads to be used to sort
a query.

Set the PSORT_NPROCS environment variable as follows to specify the
maximum value:

C shell: setenv PSORT_NPROCS 4

Bourne shell: PSORT_NPROCS=4

export PSORT_NPROCS

To maximize the effectiveness of Psort, set PSORT_NPROCS to the number of
available processors in the hardware. If PSORT_NPROCS is set to zero, Psort
uses three as the default number of threads.

setenv PSORT_DBTEMP pathname

:

setenv PSORT_NPROCS value
Environment Variables D-37

SQLEXEC
Use the following command to disable Psort:

C shell: unsetenv PSORT_NPROCS

Bourne shell: unset PSORT_NPROCS

For additional information about the PSORT_NPROCS environment variable,
see INFORMIX-OnLine Dynamic Server Administrator’s Guide, Version 6.0.

SQLEXEC
The SQLEXEC environment variable specifies the location of the Version 6.0
relay module executable that allows a Version 4.1 or earlier client to commu-
nicate indirectly with a local Version 6.0 OnLine or INFORMIX-SE database
server. You must, therefore, set SQLEXEC only if you want to establish
communications between a Version 4.1 or earlier client and a Version 6.0
database server.

pathname specifies the pathname for the relay module.

Set SQLEXEC as follows to specify the full pathname of the relay module,
which is in the lib subdirectory of your $INFORMIXDIR directory:

C shell: setenv SQLEXEC $INFORMIXDIR/lib/sqlrm

Bourne shell: SQLEXEC=$INFORMIXDIR/lib/sqlrm

export SQLEXEC

If you set the SQLEXEC environment variable on the C shell command line
instead of in your .login or .cshrc file, you must include curly braces around
the existing INFORMIXDIR, as follows:

C shell: setenv SQLEXEC ${INFORMIXDIR}/lib/sqlrm

For information on the relay module, see the INFORMIX-OnLine Dynamic
Server Administrator’s Guide, Version 6.0, or the INFORMIX-SE Administrator’s
Guide, Version 6.0.

SQLRM
In Version 6.0, if the system administrator is configuring a client/server
environment in which a Version 4.1 4GL client accesses a local Version 6.0
database server, the SQLRM environment variable must be unset before
SQLEXEC can be used to spawn aVersion 6.0 relay module.

setenv SQLEXEC pathname
D-38 Environment Variables

SQLRMDIR
Unset SQLRM as follows:

C shell: unsetenv SQLRM

Bourne shell: unset SQLRM

For information on the relay module, see the INFORMIX-OnLine Dynamic
Server Administrator’s Guide, Version 6.0, or the INFORMIX-SE Administrator’s
Guide, Version 6.0.

SQLRMDIR
In Version 6.0, if the database administrator is configuring a client/server
environment in which a Version 4.1 4GL client accesses a local Version 6.0
database server, the SQLRM environment variable must be unset.

Unset SQLRMDIR as follows:

C shell: unsetenv SQLRMDIR

Bourne shell: unset SQLRMDIR

NLS Environment Variables
The following variables apply to Native Language Support, and are
documented in Appendix E, ‘‘Native Language Support Within INFORMIX-
4GL.’’

NLS Environment Variable Page

COLLCHAR E-18
DBAPICODE E-23
DBNLS E-16
LANG E-25
LC_COLLATE E-27
LC_CTYPE E-29
LC_MONETARY E-31
LC_NUMERIC E-35
Environment Variables D-39

UNIX Environment Variables
UNIX Environment Variables
Informix products also rely on the correct setting of certain standard UNIX
system environment variables. The PATH and TERM environment variables
must always be set. You also might have to set the TERMCAP or TERMINFO
environment variable to use 4GL effectively.

PATH
The PATH environment variable tells the shell the order in which to search
directories for executable programs. You must include the directory that con-
tains 4GL in your PATH environment variable before you can use 4GL.

pathname specifies the search path for executables.

You can specify the correct search path in various ways. Be sure to include a
colon between the directory names.

The following example uses the explicit path /usr/informix. This path must
correspond to the INFORMIXDIR setting. The C shell example is valid for
.login or .cshrc files.

C shell: setenv PATH $PATH:/usr/informix/bin

Bourne shell: PATH=$PATH:/usr/informix/bin

export PATH

The following example specifies $INFORMIXDIR instead of /usr/informix. It
tells the shell to search the directories that were specified when
INFORMIXDIR was set. The C shell example is valid for .login or .cshrc files.

C shell: setenv PATH $PATH:$INFORMIXDIR/bin

Bourne shell: PATH=$PATH:$INFORMIXDIR/bin

export PATH

You might prefer to use this version to ensure that your PATH entry does not
contradict the path that was set in INFORMIXDIR, and so that you do not have
to reset PATH whenever you change INFORMIXDIR.

Note: If you set the PATH environment variable on the C shell command line instead
of in your .login or .cshrc file, you must include curly braces with the existing
INFORMIXDIR and PATH, as follows:

C shell: setenv PATH ${INFORMIXDIR}/bin:${PATH }

setenv PATH pathname

:

D-40 Environment Variables

TERM
TERM
The TERM environment variable is used for terminal handling. It enables 4GL
to recognize and communicate with the terminal you are using.

type specifies the terminal type.

The terminal type specified in the TERM setting must correspond to an entry
in the termcap file or terminfo directory. Before you can set the TERM envi-
ronment variable, you must obtain the code for your terminal from the
OnLine or INFORMIX-SE administrator.

For example, to specify the vt100 terminal, set the TERM environment variable
as follows:

C shell: setenv TERM vt100

Bourne shell: TERM=vt100

export TERM

TERMCAP
The TERMCAP environment variable is used for terminal handling. It tells 4GL
to communicate with the termcap file instead of the terminfo directory.

pathname specifies the location of the termcap file.

The termcap file contains a list of various types of terminals and their
characteristics. Set TERMCAP as follows:

C shell: setenv TERMCAP /usr/informix/etc/termcap

Bourne shell: TERMCAP=/usr/informix/etc/termcap

export TERMCAP

Note: If you set the TERMCAP environment variable, be sure that the
INFORMIXTERM environment variable is set to the default, termcap.

setenv TERM type

setenv TERMCAP pathname
Environment Variables D-41

TERMINFO
TERMINFO
The TERMINFO environment variable is used for terminal handling. It is
supported only on machines that provide full support for the UNIX System V
terminfo library.

TERMINFO tells 4GL to communicate with the terminfo directory instead of
the termcap file. The terminfo directory has subdirectories that contain files
pertaining to terminals and their characteristics.

Set TERMINFO as follows:

C shell: setenv TERMINFO /usr/lib/terminfo

Bourne shell: TERMINFO=/usr/lib/terminfo

export TERMINFO

Note: If you set the TERMINFO environment variable, you also must set the
INFORMIXTERM environment variable to terminfo.

setenv TERMINFO /usr/lib/terminfo
D-42 Environment Variables

Appendix
E

Native Language
Support Within
INFORMIX-4GL
This appendix discusses the Native Language Support
(NLS) features that are included in the 6.0 release of 4GL.

This appendix is organized as follows:

• Overview of NLS

• The Non-NLS Environment

• NLS Environments

• NLS Features Supported in 4GL

• Classification and Precedence of Environment
Variables

• Database Storage of Environment Variables

• Meta-Environment Variables

• X/Open-Defined Variables

• Informix-Defined Language and Formatting Variables

• LOAD and UNLOAD Statements

• FORMAT and USING

• Multiple Locale Support

• Language Supplements

Overview of NLS
Overview of NLS
Native Language Support is based on the X/Open Portability Guide
Version 3 (XPG3) standard, which specifies a means for localization of
software to European geographical regions.

A useful NLS concept is that of the locale; a locale specifies, by way of NLS
environment variables, the language and formatting environment of an 4GL
user (the user locale) or of a database at the time of its creation (the database
locale). The LANG environment variable establishes an overall locale such as
German or French.

Each specific feature of a locale, pertaining to one aspect of the language
environment, is referred to as category. NLS categories are specified with envi-
ronment variables whose names start with the letters LC followed by the
underbar (_) symbol. NLS categories supported in 4GL include:

• Sorting sequence of characters, also known as collation (LC_COLLATE)

• Character set (LC_CTYPE)

• Monetary formatting (LC_MONETARY)

• Numeric formatting (LC_NUMERIC)

LC_ variables do not have to be individually specified. The LANG variable
establishes defaults for all LC_ variables. These defaults are appropriate for
most users in the geographic region implied by LANG. One or more
LC_ variables are used to fine-tune particular features of the locale.

Note: Since the LANG variable specifies values for LC_COLLATE, LC_CTYPE,
LC_MONETARY, and LC_NUMERIC, references in the text to setting any of the
LC_ variables can either mean setting the LC_ variable directly or setting it indirectly
by way of LANG.

Informix-Defined Environment Variables
In addition to standard NLS categories, Informix provides its own
environment variables with the 6.0 tools.

Supported Informix-created environment variables control:

• On/off status of the NLS feature set, and level of required database-user
locale matching (DBNLS).

• On/off status of implicit collation-sequence mapping between user and
server (COLLCHAR).

• Character set translation between the database and non-ASCII terminal
equipment (DBAPICODE).
E-2 Native Language Support Within INFORMIX-4GL

NLS Character Sets
• Location of files that specify error messages, menus, and month and day
names that are translated into a national language (DBLANG and
DBFORM).

• Numeric, monetary, and date formatting (DBFORMAT, DBMONEY and
DBDATE). The Informix-created variables predate the XPG3 NLS variables,
and so are supported for reasons of backwards compatibility.

NLS Character Sets
The NLS character sets are provided to meet the needs of European countries.
Most European languages contain various characters that are not found in
English, such as eszet (ß), a-umlaut (ä), and enye (ñ).

The ASCII character set used for English is a standard representation system
for characters on computers. Any ASCII character can be represented with
seven bits of data, of which there are 128 possible combinations. Each of these
combinations has a numeric value between 0 and 127. For example, the capi-
tal letter B has the ASCII value 66.

It would seem that 128 possible ASCII values would provide sufficient room
for representing non-English characters. However, the ASCII set has to
include all CONTROL characters, punctuation, numeric digits, uppercase and
lowercase alphabetic letters, and arithmetic symbols. There are no unused
ASCII values for assignment to special European characters. ASCII characters
and their ASCII values are listed in Appendix G, “The ASCII Character Set.”

With the elimination of the need for computer systems to include a parity bit
in 8-bit computer bytes, an eighth bit has become available for representing
characters. This doubles the number of available character representation val-
ues, from 128 to 256. Particular computer manufacturers have created their
own 8-bit character sets which work with their own computer equipment but
not others. The first 128 values always correspond to ASCII values, but the
remaining 128 values are assigned arbitrarily.

The International Standards Organization (ISO) has created two standard
8-bit character sets to support European alphabets uniformly across com-
puter platforms. These are the ISO 8859-1 and ISO 8859-2 character sets, which
support Western European and Eastern European languages, respectively.

NLS character set support provides, by way of the LC_CTYPE and DBAPICODE
environment variables, the ability to:

• Specify a character set for representing the character data in a database.

• Create user-defined names such as table and column names from the set
of characters supported by the database.
Native Language Support Within INFORMIX-4GL E-3

The Non-NLS Environment
• Specify a different character set for the computer monitor or printer, and
provide the means to translate characters between the database and the
monitor or printer.

• Utilize built-in capitalization rules that assure correct conversion
between uppercase and lowercase characters within a character set.

Note: There are several possible standards for Asian and Arabic language
representation, which are not supported by way of NLS. Asian and Arabic language
support will require 16-bit character (or larger) representation. In the future these
languages will be supported by way of a different standard called GLS (Global
Language Support), which is an extension of the NLS standard.

With the introduction of non-English characters into data, there arises a need
for specifying how character data is to be alphabetized. 4GL 6.0 introduces
the capability to sort and compare character data in a collating sequence
specified by the LC_COLLATE category in the locale.

To accomplish this, two new data types are utilized by the server in databases
created for NLS environments: NCHAR and NVARCHAR. These data types are
not directly definable by the 4GL programs. Rather, using a process called
implicit mapping, the server substitutes the data type NCHAR when the pro-
gram defines or accesses a CHAR column, and substitutes the data type
NVARCHAR when the program defines or accesses a VARCHAR column.

The effect of implicit mapping is to allow you to define the same character
data types as you have in the past (pre-Version 6.0) in your applications, but
have the system automatically treat this character data as sorted according to
the locale.

The server’s data types NCHAR and NVARCHAR are identical to CHAR and
VARCHAR respectively, except that data in an NCHAR or NVARCHAR column
is sorted and compared according to the LC_COLLATE setting in the locale,
rather than according to the default collation (US English ASCII order).

The Non-NLS Environment
Depending on the settings in the environment variables DBNLS and
COLLCHAR, the user operates in either the Non-NLS environment or one of
three NLS environments. The three NLS environments are Implicit NLS,
Explicit NLS, and Open NLS. These are discussed in the next section.
E-4 Native Language Support Within INFORMIX-4GL

NLS Environments
The Non-NLS environment is specified by unsetting the DBNLS variable (or
equivalently, setting it to zero). The Non-NLS environment is equivalent to
using a pre-6.0 version of 4GL. With the Non-NLS environment active, the fol-
lowing are true:

• The NLS environment variables LC_COLLATE, LC_CTYPE,
LC_MONETARY, and LC_NUMERIC have no effect.

• All character data is sorted and compared according to US English
collation.

• Only characters from the ASCII character set may be used in identifiers
(such as database and table names).

• The default numeric and monetary formats (in the absence of DBFORMAT
and DBMONEY settings) are ANSI compliant.

A database that is created when one of the NLS environments is active, known
as an NLS database, cannot be accessed while in the Non-NLS environment.

NLS Environments
The three NLS environments (Implicit, Explicit and Open) are specified by
combinations of the DBNLS and COLLCHAR environment variables in which
DBNLS is set to a value of 1 or 2.

With any of the three NLS environments active, the following are true:

• The NLS environment variables LC_COLLATE, LC_CTYPE,
LC_MONETARY, and LC_NUMERIC are considered in various operations.

• Character data columns are sorted and compared according to the colla-
tion sequence specified by the LC_COLLATE variable.

• Characters from the character set specified by LC_CTYPE are available for
use in identifiers, in addition to the ASCII character set.

• Monetary and numeric formats specified by LC_MONETARY and
LC_NUMERIC become active in display, input, printing, loading, and
unloading of values, provided that DBFORMAT and DBMONEY are not set.

If any of the three NLS environments is active when a database is created, the
database will be permanently associated with the collation sequence
(LC_COLLATE) and character set (LC_CTYPE) that are current at the time of
creation, and permanently designated as an NLS database.
Native Language Support Within INFORMIX-4GL E-5

Implicit NLS
A database that is created when the Non-NLS environment is active, known
as a non-NLS Database, can be accessed while in any of the NLS environments.
However, none of the NLS variables take effect when working in a non-NLS
database. To avoid confusion, it is recommended that you unset DBNLS
before working with a non-NLS database.

There are two distinctions between the three NLS environments:

1. Whether or not the program is required to access an NLS database with
the same collation sequence (LC_COLLATE) and character set (LC_CTYPE)
variable values specified in the current environment as were specified at
the time of database creation.

2. Whether or not the user can define character columns that are sorted and
compared in US English in a non-English NLS database.

All version 6.0 Informix tools can utilize the Implicit NLS and Open NLS
environments. All version 6.0 Informix tools except 4GL can utilize the
Explicit NLS environment. Implicit NLS is the recommended NLS environ-
ment, as it provides NLS capabilities without disruption to existing
applications or risk of data corruption.

Implicit NLS
Implicit NLS is the environment defined by the DBNLS environment variable
set to 1 and the COLLCHAR variable also set to 1. This is the standard NLS
environment in which 4GL operates. All character columns defined by a pro-
gram in the Implicit environment appear to the program as type CHAR (or
VARCHAR, if variable-length), but are interpreted by the server as type
NCHAR (or NVARCHAR) if the database is non-US-English. This is referred to
as implicit mapping. Thus, all database columns sort according to the
LC_COLLATE setting in the locale. Such columns are referred to as locale-
sorted. Columns that are not locale-sorted cannot be created in the Implicit
NLS environment.

The advantage of the Implicit environment for a programmer is that existing
references to CHAR and VARCHAR data types do not have to be changed
when an application is moved from a non-NLS to an NLS environment.
Locale-sorting of character data becomes available without modification.
Also, the programmer does not need to be concerned with which columns are
locale-sorted and which columns are not.

The Implicit NLS environment, like Explicit NLS, mandates consistency
checking between the current LC_COLLATE and LC_CTYPE values and those
that were saved with the database at the time of database creation. Access is
E-6 Native Language Support Within INFORMIX-4GL

Explicit NLS
not permitted to an NLS database with different LC_COLLATE and LC_CTYPE
settings from the current environment’s settings. This helps prevent certain
kinds of data corruption.

Explicit NLS
Explicit NLS is the environment defined by the DBNLS environment variable
set to 1 and the COLLCHAR variable unset. This NLS environment is unavail-
able to 4GL. In the Explicit environment, character columns can be defined by
the user that are not implicitly mapped, that is, always sort as CHAR (or VAR-
CHAR) data, regardless of locale. Columns that are to be locale-sorted are
defined by the user explicitly as NCHAR (or NVARCHAR). Columns that are
to be US English sorted are defined by the user as CHAR or VARCHAR, and
these are not mapped to NCHAR and NVARCHAR at the server.

The Explicit NLS environment, like Implicit NLS, mandates consistency check-
ing between the current LC_COLLATE and LC_CTYPE values and those that
were saved with the database at the time of database creation. Access is not
permitted to an NLS database with different LC_COLLATE and LC_CTYPE set-
tings from the current environment’s settings.

Open NLS
Open NLS is the environment defined by the DBNLS variable set to 2 and the
COLLCHAR variable set to 1. Open NLS differs from Implicit and Explicit NLS
in that the Open environment the system does not perform consistency check-
ing when access to an NLS database is attempted. Any combination of settings
of LC_COLLATE and LC_CTYPE is permitted when accessing an NLS database
in the Open environment.

Consistency checking is normally a desirable feature, as it prevents data cor-
ruption such as would occur if French-sorted data were appended to a Ger-
man-sorted character column or characters peculiar to Spanish were allowed
in the names of tables in an Italian database. However, there are three situa-
tions in which overriding the consistency checking feature by means of
specifying the Open environment are desirable:

1. When users of non-Informix tools (or Informix tools prior to version 6.0)
need to access data in an NLS database stored in an Informix database
engine, they would specify the Open environment.

2. When data is unloaded from an NLS database in one locale, and loaded to
an NLS database in another locale.
Native Language Support Within INFORMIX-4GL E-7

NLS Features Supported in INFORMIX 4GL 6.0
3. When data is unloaded from a non-NLS database and loaded to an NLS
database or vice versa.

Open NLS is similar to Implicit NLS in that implicit mapping is performed.
All character columns created are locale-sorted, that is, NCHAR or
NVARCHAR.

Summary of Environments

In the following table, behavior of NLS databases in Open NLS, Implicit NLS,
Explicit NLS and Non-NLS environments is contrasted with the behavior of
non-NLS databases in those environments:

NLS Features Supported in INFORMIX 4GL 6.0
NLS features supported in 4GL version 6.0 include:

• Character data sorting and comparison according to the rules of a
national language locale.

• Use of extended-ASCII characters permitted in user-defined names such
as database, table, and column names.

• Nationalized money and numeric decimal formats in reports, screen
forms, and data assignment statements.

• Character conversion between database data and national language
specific keyboards and screens.

• The ability for different users to simultaneously access, on the same
server, databases with different locale settings.

Environment Settings Property
NLS

database
Non-NLS
database

Open NLS DBNLS=2 program can access Yes Yes
COLLCHAR=1 program can create Yes No

Implicit NLS DBNLS=1 program can access Yes Yes
COLLCHAR=1 program can create Yes No

Explicit NLS DBNLS=1 program can access Yes Yes
COLLCHAR unset program can create Yes No

Non NLS DBNLS=0 or program can access No Yes
DBNLS unset program can create No Yes

Figure E-1 Database Access In Open, Implicit, and Explicit Environments
E-8 Native Language Support Within INFORMIX-4GL

NLS Features Supported in INFORMIX 4GL 6.0
Figure E-2 and Figure E-3 present an overview of the affected data types and
4GL statements and keywords.

Data Type Impact

CHAR Transparently maps to NCHAR if 4GL is running in Implicit
mode against an NLS database.

VARCHAR Transparently maps to NVARCHAR if 4GL is running in
Implicit mode against an NLS database.

NCHAR Unavailable data type in 4GL.

NVARCHAR Unavailable data type in 4GL.

DECIMAL Display depends on values in DBFORMAT, DBMONEY, and
LC_NUMERIC (highest to lowest precedence).

SMALLFLOAT Display depends on values in DBFORMAT, DBMONEY, and
LC_NUMERIC (highest to lowest precedence).

FLOAT Display depends on values in DBFORMAT, DBMONEY, and
LC_NUMERIC (highest to lowest precedence).

MONEY Display depends on values in DBFORMAT, DBMONEY, and
LC_MONETARY (highest to lowest precedence).

DATE Separator symbol and order of month, day, and year depends
on the value in DBDATE. Display of language-specific month
and day names depends on installation of message files,
whose location is referenced by DBLANG.

DATETIME Display of language-specific month and day names depends
on the installation of message files, whose location is
referenced by DBLANG.

Figure E-2 Impact of NLS Support on Data Types
Native Language Support Within INFORMIX-4GL E-9

NLS Features Supported in INFORMIX 4GL 6.0
Statement or
Keyword IMPACT

LOAD The LOAD statement expects incoming text files to be in the
format specified by the NLS and Informix-defined environment
variables.

UNLOAD Text files produced by an UNLOAD are output in the format
specified by NLS and Informix-defined environment variable
values, but without thousands separators.

USING Interpretation of format strings is dependent on settings in
DBFORMAT, DBMONEY, DBDATE, LC_NUMERIC, and
LC_MONETARY.

CREATE TABLE,
ALTER TABLE

CHAR and VARCHAR columns defined in Implicit or Open NLS
environments are created as NCHAR and NVARCHAR.

FORMAT Same as USING, except that FORMAT does not support currency
symbols.

ORDER BY,
MATCHES, WHILE,
INCLUDE, and IF

Comparisons of character values with NLS active are based on
collation sequences defined by LC_COLLATE.

DISPLAY Same as USING.
INPUT Same as USING.
LET Conversions between character and numeric, monetary or date

values are dependent on settings in DBFORMAT, DBMONEY,
DBDATE, LC_NUMERIC, and LC_MONETARY.

UPSHIFT and
DOWNSHIFT

Translations between upper and lowercase are specified by
LC_CTYPE.

DATE The date displayed contains month and day names specified by
the message files pointed to by DBLANG.

CALL (to C function) Called C functions can include locale-specific characters in
identifiers, if the C compiler can support these.

Figure E-3 Impact of NLS Support on Statements and Keywords
E-10 Native Language Support Within INFORMIX-4GL

Classification and Precedence of Environment Variables
Classification and Precedence of Environment Variables
The environment variables used by Informix servers and tools, including 4GL,
are either X/Open-defined variables or Informix-defined variables. X/Open-
defined variables include LANG and variables that start with the characters
LC_. Collectively the X-Open defined variables specify the locale. Informix-
defined variables are not in the X/Open standard, and include COLLCHAR
and variables that start with the characters DB.

The LANG and LC_ variables, along with the Informix-defined variables
DBFORMAT, DBDATE, and DBMONEY, together specify the language and for-
matting environment of the user. These variables are referred to as language
and formatting variables. They define the following aspects of the
environment:

• Sort order of character data (LC_COLLATE)

• Valid character set for identifiers (LC_CTYPE)

• Monetary data format (DBFORMAT, DBMONEY and LC_MONETARY)

• Numeric data format (DBFORMAT, DBMONEY and LC_NUMERIC)

• Date format (DBDATE)

The DBNLS, COLLCHAR, DBAPICODE, and DBLANG environment variables
are referred to as meta-environment variables. They specify the following
aspects of the meta-environment:

• Whether or not NLS is activated (DBNLS).

• Whether Explicit, Implicit, or Open NLS is active (DBNLS and
COLLCHAR).

• The name of a character translation file for mapping characters between
the database and terminal equipment (DBAPICODE).

• The location of message and menu form files (DBLANG and DBFORM).

These classifications are summarized in the following table:

X/Open defined (locale) Informix defined

Meta-
Environment

DBNLS
COLLCHAR
DBAPICODE
DBLANG
DBFORM

Language and
Formatting

LANG
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC

DBFORMAT
DBMONEY
DBDATE
Native Language Support Within INFORMIX-4GL E-11

Classification and Precedence of Environment Variables
It is important to distinguish between Informix-defined and XPG3-defined
(locale) variables. This is because the locale variables rely on facilities pro-
vided by the computer manufacturer, and may vary in meaning from plat-
form to platform. For example, the German locale may be specified as LANG
DE on one system and LANG de on another, and the two may imply different
collation, character sets, or formatting rules. Informix-defined variables, in
contrast, have uniform syntax and meaning across platforms.

The following Informix-defined variables can be used without activating
NLS, but interact with NLS variables because they pertain to monetary,
numeric, and date formatting. They are covered in detail in Appendix D,
‘‘Environment Variables.’’

• DBLANG

• DBFORMAT

• DBMONEY

• DBDATE

The overall precedence hierarchy for language and formatting variables is as
follows:

Figure E-4 Order of Precedence of Language and Formatting Environment Variables

The Informix-defined language and formatting variables—DBFORMAT,
DBMONEY, and DBDATE—take the highest precedence, the LC_ variables
intermediate precedence, and the LANG variable the lowest. Any of these
will override internal defaults. Therefore, a DBFORMAT setting will override
an LC_NUMERIC setting, which in turn will override LANG, which will over-
ride the default.

DBMONEY

defaults

in
cr

ea
si

ng
pr

ec
ed

en
ce

DBFORMAT
DBDATE

LANG

LC_ variables
E-12 Native Language Support Within INFORMIX-4GL

Classification and Precedence of Environment Variables
In Informix tools and engine products, the existing variables that specify
language-specific or country-specific behavior need to be retained and given
the highest priority, for the sake of existing user applications that use these
variables.

In the XPG3 NLS standard, the LANG variable specifies a locale, and the
LC_ variables are used to modify particular pieces of the locale that the user
wants to be different from the standards for that locale. The LANG variable
sets the default values of all of the LC_ variables. The user may override the
LANG defaults for particular LC_ variables by setting those individually.

In the following example, the user is selecting the German language locale
(LANG set to DE). However, the user then selects the German Swiss dictionary
collation sequence to override the default German sequence (LC_COLLATE),
and the ISO 8859/1 set of monetary formats for expressing money values in
Swiss francs (LC_MONETARY) to override the default German monetary for-
mat:

setenv LANG DE
setenv LC_COLLATE DE_ch@dict
setenv LC_MONETARY CH.88591
Native Language Support Within INFORMIX-4GL E-13

Classification and Precedence of Environment Variables
The order in which environment variables is specified is not significant.
However, the directory location where a locale variable is defined influences
the precedence, as illustrated in the following diagram:

Figure E-5 Order of Precedence of Variables, Considering Where Set

1. The highest precedence goes to the value as defined in the environment
(shell).

2. The second-highest precedence goes to the value as defined in the private
environment-configuration file in the user’s home directory (~/.infor-
mix). This is a private file where you can define all the environment
variables that are used by Informix products. Using a configuration file
reduces the number of environment variables that you must set at the
command line or in a shell file.

3. The next-highest precedence goes to the value as defined in the common
environment-configuration file ($INFORMIXDIR/etc/informix.rc). This is

defaults

in
cr

ea
si

ng
pr

ec
ed

en
ce

Informix-defined
(DBFORMAT, and so on)

LC_ variables, set in
$INFORMIXDIR/etc/informix.rc

LC_ variables, set in the shell

LC_ variables, set in
$HOME/.informix

LANG, set in the shell

LANG, set in
$HOME/.informix

LANG, set in
$INFORMIX/etc/informix.rc
E-14 Native Language Support Within INFORMIX-4GL

Database Storage of Environment Variables
the same as a private environment-configuration file in the user’s home
directory, only for shared use rather than private.

4. The lowest precedence goes to the default value.

5. The setting for any of the LC_ variables takes precedence over the setting
for the LANG environment variable, no matter where they are set.

Database Storage of Environment Variables
When the database connection is established between a user session and the
database server by way of the DATABASE statement in 4GL, the information
in the local environment variables LC_COLLATE and LC_CTYPE will be trans-
mitted with the request for database service. If a new database is being cre-
ated, the database server saves these values in system tables inside the
database. If the program is requesting access to an existing database, the
server rejects the connection request if the current environment’s
LC_COLLATE and LC_CTYPE values do not match the saved database values
(and the Implicit or Explicit, rather than Open, NLS environment is being
employed). This process is referred to as consistency checking.

For 4GL, consistency checking takes place at compilation time for the
LC_CTYPE variable and at run time for the LC_COLLATE variable.

These values are kept unchanged throughout the life of the database to ensure
the consistent use of collating sequences and character sets. The LC_COLLATE
and LC_CTYPE environment variable settings for a database cannot be
changed; the data must be unloaded and reloaded into a different database to
change collation or character set features of the database. Numeric and mon-
etary format features of the locale can be changed as desired, because mone-
tary and numeric data are saved in database tables in ANSI format.
LC_MONETARY and LC_NUMERIC affect the display and input of data from
the standpoint of the user, not internally at the server. However, they do affect
the format of an ASCII file created by an UNLOAD operation, and the interpre-
tation of the data in that file during a LOAD.
Native Language Support Within INFORMIX-4GL E-15

Meta-Environment Variables
Meta-Environment Variables
Meta-environment variables are all Informix defined. They turn on and off
features of the NLS environment and point to the locations of certain files that
NLS uses.

DBNLS
The Informix-defined DBNLS environment variable enables or disables the
NLS features implemented in the 6.0 tools and server products, and specifies
the level of consistency checking to take place between user and database.
The user activates the NLS capability in 4GL by setting DBNLS to 1 or 2. NLS
capability is deactivated by unsetting DBNLS or setting it to 0, which is equiv-
alent to unsetting.

DBNLS is set to 0, 1, or 2 as follows:

DBNLS is unset as follows:

Usage
If DBNLS is not set or set to 0, NLS functionality is not turned on, and the
settings for the other NLS environment variables do not take effect. If DBNLS
is set to 2 (and COLLCHAR set to 1, which is required), NLS functionality is
activated but in the Open NLS environment. The Open NLS environment
allows inconsistent locales between user and database.

Unlike LC_CTYPE and LC_COLLATE, the actual value of DBNLS is not saved
with a database at creation time. However, the DBNLS setting at creation time
permanently determines whether the database is an NLS database or a non-
NLS database.

setenv DBNLS 0

1

2

unsetenv DBNLS
E-16 Native Language Support Within INFORMIX-4GL

Usage
The meanings of the available settings for DBNLS are listed in the table below:

Operations on non-NLS databases while in an NLS environment follow the
same rules as operations in pre-6.0 4GL. These include:

• Sorting order based on ASCII character code

• User defined names allowed to contain only ASCII characters

Value Description

DBNLS = unset
or DBNLS = 0

This is the default setting. It specifies the non-NLS environment. Only non-NLS
databases can be created or accessed if the user environment has this setting. Any
attempt to access an existing NLS database results in an error. Any databases created
will not be NLS compatible. 4GL version 6.0 with this setting will behave exactly like
non-NLS (pre-6.0) 4GL.

DBNLS = 1 This is the recommended setting for performing NLS work. This setting establishes
either the Implicit (recommended) or Explicit NLS environment, depending on the
setting of COLLCHAR. Either NLS or non-NLS databases can be accessed with DBNLS
set to 1, but only NLS databases can be created. When accessing an existing NLS
database, the user session LC_CTYPE and LC_COLLATE values must match the
corresponding database values in order for access to be permitted. A database is
locked into the current user environment values of the these two variables at
database creation time.

DBNLS = 2 This setting specifies the Open NLS environment (in combination with a COLLCHAR
setting of 1). Open NLS provides access to NLS databases regardless of whether or
not the user session and database server settings of LC_COLLATE and LC_CTYPE
match. The server obtains its settings of these variables from the database being
accessed. New databases inherit the current locale of the user when they are created.
Open NLS allows tools that are not aware of internal database locale settings to
access NLS databases, and provides a means to load and unload data between
dissimilar locales. Otherwise, this setting is not recommended. Character
comparison results can be inconsistent between the user (for example, variable1
greater than variable2) and SQL queries issued to the server (ORDER BY, WHERE,
MATCHES). Database data can be corrupted using Open NLS when the user updates
the database, because the active environment settings can differ from the settings in
which the database is intended to operate. For example, column names could be
created with one valid character set active, and then become illegal when the active
character set changes.

DBNLS = any value
other than 0, 1, 2 or
unset

This is an invalid setting. A run-time error will be returned.

Figure E-6 Values for the DBNLS environment variable
Native Language Support Within INFORMIX-4GL E-17

COLLCHAR
COLLCHAR
The Informix-defined COLLCHAR environment variable turns on or off the
implicit mapping feature, which is necessary for using the Implicit NLS and
Open NLS environments. COLLCHAR determines whether the data types
NCHAR and NVARCHAR can be accessed directly by a client application
(COLLCHAR = unset), or whether they are accessed by way of implicit map-
ping of CHAR and VARCHAR data types (COLLCHAR = 1). COLLCHAR has no
effect in the non-NLS environment (DBNLS set to 0 or unset), in which the
NCHAR and NVARCHAR data types are inaccessible.

Implicit NLS is the recommended NLS environment, as it provides NLS
capabilities without disruption to existing applications or risk of data corrup-
tion. Refer to the discussion of Implicit, Explicit and Open NLS starting on
page E-6.

4GL version 6.0 does not support the Explicit NLS environment. COLLCHAR
must be set to 1 when using 4GL with an NLS database.

The user activates implicit mapping in by setting COLLCHAR to 1. Note that
0 is not an acceptable value for COLLCHAR, and may cause unpredictable
results.

COLLCHAR is set to 1 as follows:

COLLCHAR is unset as follows:

Note: There is a significant performance penalty associated with using locale-sorted
(NCHAR and NVARCHAR) data types at the server. When there is no need for sorting
according to the locale-specified collating sequence, users should create non-NLS
databases rather than NLS databases.

setenv COLLCHAR 1

unsetenv COLLCHAR
E-18 Native Language Support Within INFORMIX-4GL

Usage
Usage
The meanings of the available settings for COLLCHAR are listed in the table
below:

The relationship between DBNLS and COLLCHAR is the following:

Value Description

COLLCHAR
=unset

This is the default value. It specifies the non-NLS environment.

COLLCHAR = 1 This setting specifies Implicit NLS when DBNLS=1 and Open NLS when DBNLS=2.
This setting activates implicit mapping, in which the database server maps all
incoming CHAR requests to NCHAR, and outgoing requests to the client back to
CHAR again. When DBNLS=1 (Implicit), this COLLCHAR setting causes consistency
checking of LC_COLLATE and LC_CTYPE settings between the user environment
and the database. When DBNLS=2 (Open), this COLLCHAR setting will enable access
to NLS databases with different LC_COLLATE and LC_CTYPE settings than the user
session. This COLLCHAR setting requires a DBNLS setting of 1 or 2 to have any effect.

COLLCHAR = any
value other than 1 or
unset

A run-time error will be returned

Figure E-7 Values for the COLLCHAR environment variable

COLLCHAR = unset
(implicit mapping off)

COLLCHAR = 1
(implicit mapping on)

DBNLS = unset or
DBNLS = 0

Non-NLS environment. Only non-NLS
databases can be accessed and created by
way of these settings.

Non-standard combination of settings,
but the same effect as the Non-NLS
environment (COLLCHAR=unset).

DBNLS = 1 Explicit NLS environment. Invalid
combination of settings for 4GL. A user
can create both locale sorted and US
English sorted columns in the same
database. LC_CTYPE and LC_COLLATE of
user must match values of database for
access.

Implicit NLS environment. This is the
recommended environment for NLS
work. Server will map incoming CHAR
requests to NCHAR, outgoing NCHAR to
CHAR. LC_CTYPE and LC_COLLATE of
user must match values of database for
access.

DBNLS = 2 Invalid combination of settings. For Open
NLS, COLLCHAR must be set to 1, or
results will be unpredictable.

Open NLS environment. LC_CTYPE and
LC_COLLATE settings of the user are not
considered, except when creating a
database. The server will map incoming
CHAR requests to NCHAR, and outgoing
NCHAR to CHAR.

Figure E-8 DBNLS/COLLCHAR Cross Reference Table
Native Language Support Within INFORMIX-4GL E-19

Usage
In the Implicit NLS environment, 4GL behaves as if all character columns
were defined in the language-specific collation sequence. Although defined
as CHAR or VARCHAR fields by the user, the behavior of all character col-
umns in the Implicit environment is as if they were defined as NCHAR or
NVARCHAR, that is, using locale-specified collation.

The details of this process are is illustrated with the following sample 4GL
program excerpt and description of the effect of the 4GL instructions on an
NLS database:

CREATE DATABASE gödel
CREATE TABLE t1 (c1 CHAR(20))
LOAD FROM “names.und” INSERT INTO t1
DECLARE c1 CURSOR FOR

SELECT c1 FROM t1 ORDER BY c1
FETCH c1 INTO my_name

Figure E-9 llustration of Implicit Mapping Process Between 4GL and Server

The difference between Implicit NLS (DBNLS = 1, COLLCHAR = unset) and a
non-NLS environment (DBNLS=0 or unset) is illustrated with the example
below, in which a database table and character column are created first in
Implicit NLS and then in non-NLS.

CREATE DATABASE gödel

CREATE TABLE t1
(c1 CHAR(20))

LOAD FROM “names.und” INSERT
INTO t1

DECLARE my_name CURSOR FOR
SELECT c1 FROM t1 ORDER BY c1

FETCH c1 INTO my_name

Creates the database.

Creates the table, but with c1
defined as NCHAR(20).

Loads the table with data.

Creates a temporary table of type
NCHAR, and populates it by way
of the SELECT.

Takes value of type NCHAR from
the temporary table, converts it to
a value of type CHAR, and places
it in my_name.
E-20 Native Language Support Within INFORMIX-4GL

Usage
Implicit NLS settings and the German locale (LANG=DE) are specified at the
operating system prompt:

setenv DBNLS 1
setenv COLLCHAR 1
setenv LANG DE
isql

A new database is created with the following statement:

CREATE DATABASE test1

A new table (länder— German for countries) containing two columns, one
named land (German for country) and one named hauptstadt (German for
capital) are created by way of the following statement:

CREATE TABLE länder
(land CHAR(30), hauptstadt CHAR(28))

Since this is an NLS database (created with DBNLS set to 1) and implicit
mapping is active (COLLCHAR is set to 1), the land and hauptstadt columns are
created with data type NCHAR at the server. Any data saved in these columns
will sort in German collating sequence.

To test this, we input the following data into the new table:

The following SQL command is executed:

SELECT * FROM länder
 ORDER BY land

land (country) value hauptstadt (capital) value

Österreich Wien
Portugal Lissabon
Luxemburg Luxemburg
Native Language Support Within INFORMIX-4GL E-21

Usage
The result of the query will be:

Luxemburg Luxemburg
Österreich Wien
Portugal Lissabon

Note that Ö sorts between L and P, which is correct German alphabetization.

We return to the operating system prompt and enter the following setting,
which specifies the non-NLS environment instead of Implicit:

unsetenv DBNLS
unsetenv COLLCHAR

We create a different database, this time called test2. We also create the land
and hauptstadt columns again:

CREATE TABLE länder
(land CHAR(30), hauptstadt CHAR(28))

The same data values are input as before, and the SELECT query is executed.
This time the query returns the following:

Österreich Wien
Luxemburg Luxemburg
Portugal Lissabon

This is correct sorting for US ASCII in an NLS database.

Note: An NLS database established with DBNLS=1 or 2 (NLS active) and
LANG=EN_us (US ASCII) does not collate the same as a non-NLS database
(DBNLS=unset or 0). The collation within the 128-character ASCII character set will
be the same in either case, but the 128 special characters will collate ahead of ASCII
in the NLS database with the EN_us locale, and will collate behind ASCII in the non-
NLS database.
E-22 Native Language Support Within INFORMIX-4GL

DBAPICODE
DBAPICODE
The Informix-defined DBAPICODE environment variable lets a computer
peripheral whose character set differs from the database character set access
the database. In this context, peripheral refers to a keyboard, monitor, or
printer.

DBAPICODE specifies the character-mapping file between the peripheral and
the database character set. In NLS databases, the database character set is
defined in the LC_CTYPE environment variable. In non-NLS systems, the data-
base character set is the default ASCII character set.

mapfilename names a character mapping file to be used for translation of
characters in the database character set to the keyboard and
monitor character set.

Usage
DBAPICODE specifies to the system the name of a mapping file created by the
Informix utility crtcmap. With DBAPICODE set, 4GL communicates with the
database server by using the ASCII character set, but interacts with the key-
board, monitor, or printer using the character set mapping file specified in
DBAPICODE. If DBAPICODE is left unset, the system communicates with the
keyboard and terminal by way of ASCII.

To use a specific DBAPICODE setting, there must be a mapping file for that
character set in the message directory. For example, to use the character set
FR_fr.646, there must be a mapping file called mFR_fr.646. This file should be
located in the message directory $INFORMIXDIR/msg. If not, DBLANG or
LANG must point to the message directory. Refer to the discussion of DBLANG
on pages E-24 and D-18.

The crtcmap utility helps you create mapping files between database and
peripheral character sets for use with NLS. It prepends m to the name of the
mapping file it creates. For example, it renames the output file FR_fr.646 as
mFR_fr.646. The crtcmap utility is described in the Informix Guide to SQL: Ref-
erence, Version 6.0.

An example of setting DBAPICODE to a character set file is as shown:

setenv DBAPICODE mFR_fr.646

setenv DBAPICODE mapfilename
Native Language Support Within INFORMIX-4GL E-23

DBLANG
DBLANG
The DBLANG variable specifies the subdirectory of $INFORMIXDIR (or full
pathname) in which the message files for the currently active language
reside. Message files provide a set of error messages for the engine and tools
that have been translated into a national language. Message files have the
suffix .iem. DBLANG also points to the location of the character mapping file,
as discussed under “DBAPICODE” on page E-23. Message files are obtained
as part of language supplements, which include instructions specifying
where the files should be installed and what DBLANG settings to specify.

For a complete discussion of the DBLANG variable, refer to Appendix D,
‘‘Environment Variables.’’

DBFORM
The DBFORM variable specifies the subdirectory of $INFORMIXDIR (or full
pathname) in which the menu form files for the currently active language
reside. Menu form files provide a set of language-translated menus to replace
the standard 4GL menus. Menu form files have the suffix .frm. Menu form
files are obtained as part of language supplements, which include instruc-
tions specifying where the files should be installed and what DBFORM
settings to specify.

For a complete discussion of the DBFORM variable, refer to Appendix D,
‘‘Environment Variables.’’

X-Open Defined Variables
X-Open defined variables include LANG and variables that start with the
characters LC_. These are also known as locale variables.
E-24 Native Language Support Within INFORMIX-4GL

LANG
LANG
The value of the X/Open-defined LANG environment variable specifies the
locale of the user’s environment. A LANG setting specifies all of the following:

• A collating sequence.

• A set of translations between uppercase and lowercase.

• A legal character set for user-defined names.

• Formatting rules for monetary and numeric data.

The LANG setting implies standard values for the language environment that
you can modify or override by setting LC_COLLATE, LC_CTYPE,
LC_MONETARY, or LC_NUMERIC. The LC_ environment variables are
described in the sections that follow. The setting for these LC_ categories
always takes precedence over the LANG setting. For example, if a LANG
setting for Swiss is specified, but LC_COLLATE is set for German, the Swiss
settings apply to all categories in the locale except for character collation,
which is German.

LANG should always be set to some locale value when creating or accessing
NLS databases. The defaults for the LC_ variables when LANG is not set are
unpredictable and vary between systems.

LANG identifies the required language, territory, and character set as illus-
trated in the syntax diagram below. The territory, character set and @modifier
portions are optional and are not supported on some systems or with some
LANG values.

The formal syntax for LANG is as follows:

language a one to two character abbreviation such as FR for French, DE
for German or EN for English.

_territory specifies a dialect of a language, such as DE_ch (Swiss dialect
of German) or EN_uk (British dialect of English).

.charset specifies a character set other than ASCII, such as .88591 (the
ISO 8859/1 character set).

@modifier specifies a collation sequence within a language and
territory, such as @dictionary (dictionary order) or @telephone
(telephone book order).

_territory .charset @modifier

setenv LANG language
Native Language Support Within INFORMIX-4GL E-25

LANG
In practice, the syntax for LANG is likely to be one of the following:

setenv LANG language

or

setenv LANG language_territory

There is no standardization of LANG locale values between systems. Exact
values to specify to obtain particular locale settings are particular to different
computer systems, and also depend on which language supplements have
been installed on your system.

Locale Files

Locale files installed on your system are what actually determine the set of
correct values for the LANG and LC_ variables. The implementation varies
between computer platforms but the purpose on all systems is the same.
Locale files do the following:

• Translate a value that you set for a locale variable into a set of rules
governing system behavior.

• Define the list of acceptable values that you can set each locale variable to.

For example, on the Sun platform there are locale files found in directories
called LC_COLLATE, LC_CTYPE, LC_MONETARY, and LC_NUMERIC. These
are locale directories. When you set LANG to DE on a Sun workstation, you
are referencing a file named DE in each of these four locale directories. When
you set the environment variable LC_COLLATE to DE@telephone, a file
named DE@telephone is referenced in the LC_COLLATE directory.

Other computer manufacturers such as IBM and Hewlett-Packard use other
schemes for translating a locale variable setting into a pointer to a set of rules
or values. The set of acceptable values for each locale variable and the effects
of particular settings are dependent on which computer system you are
using. You can add to the set of valid LANG and LC_ variable settings on your
system by installing language supplements.

The syntax diagrams for LANG and the LC_ variables in this manual suggest
a range of possible settings for these variables, rather than an exact syntax for
each variable that is applicable to all systems. Consult your language supple-
ment documentation for specific settings.
E-26 Native Language Support Within INFORMIX-4GL

LC_COLLATE
LC_COLLATE
The X/Open-defined environment variable LC_COLLATE specifies a
particular NLS collating sequence for the following:

• Sorting character data.

• Performing character string comparisons.

• Evaluating regular expressions, such as [A-Z], in MATCHES clauses.

LANG provides the default collation sequence if LC_COLLATE is not set. The
value of LC_COLLATE, along with LC_CTYPE, is saved in an NLS database at
database creation time, and consistency checked prior to database access.
Refer to “Database Storage of Environment Variables” on page E-15.

If LC_COLLATE (directly or by way of LANG) is set to a non-US English value,
this value changes the following features of the Informix database
environment:

• Collating sequence

o For an ORDER BY or GROUP BY clause in SELECT statements.

o For index generation.

• Result set

o Of expressions containing character fields in the WHERE clause of a
SELECT statement.

The formal syntax for LC_COLLATE is as follows:

language a one to two character abbreviation such as FR for French, DE
for German or EN for English.

_territory specifies a dialect of a language, such as DE_ch (Swiss dialect
of German) or EN_uk (British dialect of English).

.charset specifies a character set other than ASCII, such as .88591 (the
ISO 8859/1 character set).

@modifier specifies a collation sequence within a language and
territory, such as @dictionary (dictionary order) or @telephone
(telephone book order).

_territory .charset @modifier

setenv LC_COLLATE language
Native Language Support Within INFORMIX-4GL E-27

LC_COLLATE
In practice, the syntax for LC_COLLATE is likely to be one of the following:

setenv LC_COLLATE language

or

setenv LC_COLLATE language_territory

or

setenv LC_COLLATE language_territory@modifier

There is no standardization of LC_ variable values between systems. Refer to
the discussion of locale files on page E-26 for a better understanding of this
syntax.

The following example sets the LC_COLLATE environment variable to specify
the German telephone book sorting order:

setenv LC_COLLATE DE@telephone

An example of a result set influenced by the LC_COLLATE setting appears
below. The following query will produce different result sets depending on
whether the database is created with German or English collation:

SELECT hauptstadt FROM länder
WHERE land >= “Luxemburg” AND land <= “Portugal”

The query selects capitals of countries whose country names are alphabeti-
cally between Luxemburg and Portugal. With German collating, the capital
of Austria (Vienna, or Wien in German) would be included in the result set,
because the German word for Austria is Österreich. Österreich is between
Luxemburg and Portugal in German; in US English in an NLS database it is not.
Refer to the example in the section entitled “COLLCHAR” on page E-18.
E-28 Native Language Support Within INFORMIX-4GL

LC_CTYPE
LC_CTYPE
The X/Open-defined LC_CTYPE environment variable is used to specify
which predefined set of characters can be legally contained in user-defined
names. This includes the following:

• Names of databases, tables, and columns

• Names of views and synonyms

• Aliases

• Names of indexes and constraints

• Names of owners and users

• Cursor names and statement ID’s

• Variable names

• Names of form specification files

• Names of report specification files

LC_CTYPE also defines what characters result from conversion of lowercase to
uppercase letters, and vice versa.

Along with LC_COLLATE, the database server saves the LC_CTYPE setting at
database creation time. The LC_CTYPE setting is used throughout the lifetime
of the database; therefore a database saved with a particular LC_CTYPE value
will always accept the same set of naming characters.

The formal syntax for LC_CTYPE is as follows:

language a one to two character abbreviation such as FR for French, DE
for German or EN for English.

_territory specifies a dialect of a language, such as DE_ch (Swiss dialect
of German) or EN_uk (British dialect of English).

.charset specifies a character set other than ASCII, such as .88591 (the
ISO 8859/1 character set).

@modifier specifies a collation sequence within a language and
territory, such as @dictionary (dictionary order) or @telephone
(telephone book order).

_territory .charset

setenv LC_CTYPE language

@modifier
Native Language Support Within INFORMIX-4GL E-29

LC_CTYPE
In practice, the syntax for setting LC_CTYPE is likely to be one of the
following:

setenv LC_CTYPE language

or

setenv LC_CTYPE language_territory

or

setenv LC_CTYPE language.charset

There is no standardization of LC_ variable values between systems. Refer to
the discussion of locale files on page E-26 for a better understanding of this
syntax.

For example, if the language environment for your system is defined as US
English (LANG=EN_us), but you wish to allow German characters in user-
defined names, you would issue the following command at the operating
system prompt:

setenv LC_CTYPE DE

Subsequently, you could create a database whose name, gödel, contains the
ö (o-umlaut) character and the statement would compile without error:

CREATE DATABASE gödel

Note: Use of NLS character sets other than EN_us may require you to perform the
UNIX command stty -istrip before accessing 4GL on some systems. This com-
mand enables you to type in characters from the keyboard that are outside the ASCII
character set.
E-30 Native Language Support Within INFORMIX-4GL

LC_MONETARY
LC_MONETARY
The X/Open-defined LC_MONETARY environment variable is used to set the
format of values of data type MONEY. This default format affects how
monetary values are:

• Displayed and input on the screen

• Printed

• Input from ASCII files using LOAD

• Output to ASCII files using UNLOAD

LC_MONETARY specifies the locale-specific leading and trailing currency
symbols, including their positions within a monetary value, and the decimal
and thousands separators. Note that the decimal and thousands separators
defined for monetary data by LC_MONETARY are distinct from the decimal
and thousands separators defined for numeric data by LC_NUMERIC.

For example, the value 120.50 expressed as money appears as $120.50 if the
locale is US English. However, by setting LC_MONETARY (or LANG) to UK
English (EN_uk), the same value displays as £120.50, and by setting
LC_MONETARY to German, the value displays as 120,50DM.

The setting in LC_MONETARY affects the following 4GL keywords:

• USING expression

• FORMAT attribute

• PRINT statement

• LET statement, where a character string is receiving a monetary value

• DISPLAY statement

LC_MONETARY utilizes locale files the way LANG and the other LC_ variables
do. It does not directly specify currency and separator symbols the way
DBMONEY and DBFORMAT do.

When LC_MONETARY is set and not overridden by DBFORMAT or DBMONEY,
logic is employed by 4GL to determine issues such as the following:

• Whether a leading or trailing currency symbol is appropriate for this
locale

• Whether the decimal portion of a monetary amount should be omitted, as
for the Italian lira
Native Language Support Within INFORMIX-4GL E-31

Usage
The formal syntax for LC_MONETARY is as follows:

language a one to two character abbreviation such as FR for French, DE
for German or EN for English.

_territory specifies a dialect of a language, such as DE_ch (Swiss dialect
of German) or EN_uk (British dialect of English).

.charset specifies a character set other than ASCII, such as .88591 (the
ISO 8859/1 character set).

@modifier specifies a collation sequence within a language and
territory, such as @dictionary (dictionary order) or @telephone
(telephone book order).

In practice, the syntax for setting LC_MONETARY is likely to be one of the
following:

setenv LC_MONETARY language

or

setenv LC_MONETARY language_territory

There is no standardization of LC_ variable values between systems. Refer to
the discussion of locale files on page E-26 for a better understanding of this
syntax.

Usage
The setting in LC_MONETARY determines the leading or trailing currency
symbol, and the numeric and decimal separators. It adds the currency sym-
bol and changes the separators displayed on the screen in a monetary field,
and in the default format of a PRINT statement. For example, in a German
locale the value 1234.56 prints as:

1234,56DM

_territory .charset @modifier

setenv LC_MONETARY language
E-32 Native Language Support Within INFORMIX-4GL

Usage
DM stands for deutche marks. In a screen form with the French or German
locale values active, input by the user will be expected to contain commas, not
periods, as decimal separators.

The setting in LC_MONETARY also affects the way format strings in the
FORMAT attribute and the USING clause are interpreted. In these format
strings, the period symbol (.) is not a literal character but a placeholder for the
decimal separator specified by environment variables. Likewise, the comma
symbol (,) is a placeholder for the thousands separator specified by environ-
ment variables. The dollar sign ($) is a placeholder for the leading currency
symbol. The at symbol (@) is a placeholder for the trailing currency symbol.
Thus, the format string $#,###.## will format the value 1234.56 as follows in a
US English locale:

$1,234.56

It displays as follows in an French locale:

f1.234,56

When money values are converted to character strings using the LET
statement, both the default conversion and the conversion with a USING
clause insert the locale-specific separators and currency symbol into the cre-
ated strings, not the US English separators and currency symbol.
Native Language Support Within INFORMIX-4GL E-33

Usage
The LC_MONETARY setting is impacted by settings in DBFORMAT,
DBMONEY, and LANG, according to the hierarchy of precedence. The follow-
ing diagram illustrates the precedence of environment variables in specifying
monetary formatting:

Figure E-10 Order of Precedence of Monetary Environment Variables

In the following statement, LC_MONETARY specifies the French currency
symbol and format inherent in the ISO 8859/1 character set:

setenv LC_MONETARY FR_fr.88591

An example of printing a monetary value (without a USING clause) with
German locale monetary formatting appears below. The statement:

PRINT 1234.56

will produce the result:

1234,56DM

With the USING clause added, the statement:

PRINT 1234.56 USING “#,###.##@@”

LC_MONETARY

defaults

in
cr

ea
si

ng
pr

ec
ed

en
ce

DBFORMAT

DBMONEY

LANG
E-34 Native Language Support Within INFORMIX-4GL

LC_NUMERIC
will print the result:

1.234,56DM

In 4GL, there is a distinction between the interpretation by the database server
of monetary values enclosed in quotes and those not enclosed in quotes. In
4GL, unless values are contained in quotes, the database engine interprets all
incoming data as being in ANSI SQL numeric data format (where the decimal
separator is a period).

Note: The use of LC_MONETARY for the specification of monetary formatting is pref-
erable to the use of DBMONEY. DBMONEY is an obsolescent formatting construct
that has been retained for backwards compatibility with older user-created programs.
DBMONEY is also used by Informix engine tools that do not provide DBFORMAT.
Note also that LC_MONETARY and LC_NUMERIC are the only means by which you
can specify different formatting for monetary and numeric data. The formatting spec-
ified in DBFORMAT and DBMONEY apply to both monetary and numeric data. For
more details, refer to the sections entitled “DBFORMAT” and “DBMONEY” in
Appendix D, ‘‘Environment Variables.’’

LC_NUMERIC
The X/Open-defined LC_NUMERIC environment variable sets the format for
values of data types INTEGER, SMALLINT, DECIMAL, FLOAT, and
SMALLFLOAT. This default format affects how numeric values are:

• Displayed and input on the screen

• Printed

• Input from ASCII files using LOAD

• Output to ASCII files using UNLOAD

LC_NUMERIC defines the numeric decimal and numeric thousands
separators. Note that the decimal and thousands separators defined for
numeric data by LC_NUMERIC are distinct from the decimal and thousands
separators defined for monetary data by LC_MONETARY.

For example, the number 2345.67 in a US English locale displays as:

2,345.67
Native Language Support Within INFORMIX-4GL E-35

LC_NUMERIC
With LC_NUMERIC set for the French locale, where the thousands separator
is the comma and the decimal separator the period, the value displays as:

2.345,67

The setting in LC_NUMERIC affects the following in 4GL:

• USING expression

• FORMAT attribute

• PRINT statement

• LET statement, where a character string is receiving a numeric value

• DISPLAY statement

The formal syntax for setting the LC_NUMERIC variable is as follows:

language a one to two character abbreviation such as FR for French, DE
for German or EN for English.

_territory specifies a dialect of a language, such as DE_ch (Swiss dialect
of German) or EN_uk (British dialect of English).

.charset specifies a character set other than ASCII, such as .88591 (the
ISO 8859/1 character set).

@modifier specifies a collation sequence within a language and
territory, such as @dictionary (dictionary order) or @telephone
(telephone book order).

In practice, the syntax for setting LC_NUMERIC is likely to be one of the
following:

setenv LC_NUMERIC language

or

setenv LC_NUMERIC language_territory

There is no standardization of LC_ variable values between systems. Refer to
the discussion of locale files on page E-26 for a better understanding of this
syntax.

_territory .charset @modifier

setenv LC_NUMERIC language
E-36 Native Language Support Within INFORMIX-4GL

Usage
Usage
The setting in LC_NUMERIC determines the numeric and decimal separators.
It changes the separators displayed on the screen in a numeric field and in the
default format of a PRINT statement. For example, the value 1234.56 will print
or display as follows in a French or German locale:

1234,56

In the case of a screen form, in the French or German locale values input by
the user will be expected to contain commas, not periods, as decimal
separators.

The setting in LC_NUMERIC also affects the way format strings in the
FORMAT attribute and the USING clause are interpreted. In these format
strings, the period symbol (.) is not a literal character but a placeholder for the
decimal separator specified by environment variables. Likewise, the comma
symbol (,) is a placeholder for the thousands separator specified by environ-
ment variables. Thus, the format string #,###.## will format the value 1234.56
as follows in a US English locale:

1,234.56

but as follows in a French or German locale:

1.234,56

When numeric values are converted to character strings using the LET
statement, both the default conversion and the conversion with a USING
clause will insert locale-specific separators into the created strings, not US
English separators.
Native Language Support Within INFORMIX-4GL E-37

Usage
The LC_NUMERIC setting is impacted by settings in DBFORMAT and
DBMONEY, according to the hierarchy of precedence. The following diagram
illustrates the precedence of environment variables in specifying numeric
formatting:

Figure E-11 Order of Precedence of Numeric Environment Variables

The following command sets the LC_NUMERIC environment variable to
specify a variety of German numeric formatting:

setenv LC_NUMERIC DE_de.88591

Here, DE means Deutsch (German), de represents Deutschland (Germany),
and 88591 represents the Western European version of the 8-bit ISO character
set (ISO 88591:1983).

An example of printing a numeric value (without a USING clause) with Ger-
man locale numeric formatting appears below. The statement:

PRINT 1234.56

will produce the result:

1234,56

DBMONEY

LC_NUMERIC

defaults

in
cr

ea
si

ng
pr

ec
ed

en
ce

DBFORMAT

LANG
E-38 Native Language Support Within INFORMIX-4GL

Informix-Defined Language and Formatting Variables
With the USING clause added, the statement:

PRINT 1234.56 USING “#,####.##”

will print the result:

1.234,56

In 4GL, there is a distinction between the interpretation by the database server
of numeric values enclosed in quotes, and those not enclosed in quotes. In
4GL, unless values are contained in quotes, the database engine interprets all
incoming data as being in ANSI SQL numeric data format (where the decimal
separator is a period).

Informix-Defined Language and Formatting Variables
Informix-defined language and formatting variables, like the locale variables,
specify the language and formatting environment of the user session. These
Informix-defined variables interact with the locale variables according to the
hierarchy of precedence.

DBFORMAT
The Informix-defined DBFORMAT environment variable specifies the default
format in which the user enters and 4GL inputs, displays, or prints values of
the following data types:

• DECIMAL

• FLOAT

• SMALLFLOAT

• INTEGER

• SMALLINT

• MONEY
Native Language Support Within INFORMIX-4GL E-39

DBFORMAT
The default format specified in DBFORMAT affects how numeric and
monetary values are:

• Displayed and input on the screen

• Printed

• Input from ASCII files using LOAD

• Output to ASCII files using UNLOAD

DBFORMAT is used to specify the leading and trailing currency symbols and
the decimal and thousands separators. DBFORMAT specifies the currency
symbols, not their default positions within a monetary value. Note that the
decimal and thousands separators defined by DBFORMAT apply to both
monetary and numeric data, and override the sets of separators established
by LC_MONETARY and LC_NUMERIC.

The setting in DBFORMAT affects the following in 4GL:

• USING expression

• FORMAT attribute

• PRINT statement

• LET statement, where a character string is receiving a monetary or
numeric value

• DISPLAY statement

The DBFORMAT setting overrides settings in DBMONEY, LC_NUMERIC, and
LC_MONETARY.

For a complete discussion of the DBFORMAT variable, refer to Appendix D,
‘‘Environment Variables.’’

Note: The DBFORMAT variable, like DBMONEY and DBDATE, performs its role
regardless of whether or not NLS is active (DBNLS set to 1 or 2). This is in contrast
to LANG and the LC_ variables, which are only active when NLS is active.
E-40 Native Language Support Within INFORMIX-4GL

DBMONEY
DBMONEY
The Informix-defined DBMONEY environment variable specifies the display
format for MONEY values.

For example, the DBMONEY setting

 ,DM

prints the value 12345.67 as

12345,67DM

DBMONEY formats monetary data in a rough country-specific format, but
provides no facility for a thousands separator. For complete information on
DBMONEY, see Appendix D, ‘‘Environment Variables.’’

The precedence relationship between DBFORMAT, DBMONEY, and
LC_MONETARY is illustrated below:

Figure E-12 Order of Precedence of Monetary Environment Variables

DBMONEY represents syntax from older versions of the product set. It is
recommended that you use the LC_MONETARY environment variable for
specifying monetary format. DBMONEY is retained only for compatibility
with older versions.

The DBMONEY variable, like DBFORMAT and DBDATE, performs its role
regardless of whether or not NLS is active (DBNLS set to 0 or 1). This is in con-
trast to LANG and the LC_ variables, which are only active when NLS is active.

LC_MONETARY

defaults

in
cr

ea
si

ng
pr

ec
ed

en
ce

DBFORMAT

DBMONEY

LANG
Native Language Support Within INFORMIX-4GL E-41

DBDATE
DBDATE
Refer to Appendix D, ‘‘Environment Variables,’’ for a complete discussion of
DBDATE. The following points pertain to the relationship between DBDATE
and NLS.

• DBDATE is insensitive to NLS locale, and to the effects of DBLANG. Since
month and day are displayed as numeric values in all available DBDATE
formats, they will not change with DBLANG the way formats containing
character month names do.

• Date formatting specified in a USING clause or FORMAT attribute will
override the formatting specified in DBDATE.

• The LANG setting will specify the default value for DBDATE in an active
NLS environment on HP and IBM systems. On SUN systems LANG has no
influence on the default for DBDATE.

• The DBDATE variable, like DBFORMAT and DBMONEY, performs its role
regardless of whether or not NLS is active (DBNLS set to 1 or 2). This is in
contrast to LANG and the LC_ variables, which are only active when NLS
is active.

Note: Although the XPG3 specification includes the ability to create locale-specific
formatting of date and time data by way of the LC_TIME category, this is not sup-
ported in the 6.0 Informix tools.

LOAD and UNLOAD Statements
NLS affects the text files produced by UNLOAD. It also determines the format
in which it expects LOAD files. The UNLOAD statement uses the environment
variables DBFORMAT, DBMONEY, LC_NUMERIC, LC_MONETARY, and
DBDATE to determine its output format. The precedence of these format spec-
ifications is consistent with that of forms and reports. The LOAD statement
expects incoming data in the format specified by the environment. If there is
an inconsistency between the format of the data being loaded and the value
of the formatting variables, an error is reported, and the LOAD is cancelled.

The order of precedence for monetary data is as illustrated in Figure E-10 on
page E-34. The precedence order for numeric data is in Figure E-11 on
page E-38. Date data is currently only affected by DBDATE.
E-42 Native Language Support Within INFORMIX-4GL

LOAD and UNLOAD Statements
UNLOAD utilizes the user’s language and formatting environment
information as follows:

• For dates, as specified in DBDATE.

• For numbers, as specified in DBFORMAT, DBMONEY, and LC_NUMERIC
(although not allowing thousands separators).

• For money values, as specified in DBFORMAT, DBMONEY, and
LC_MONETARY (although not allowing thousands separators).

LOAD uses the user’s environment information as follows:

• For dates, as specified in DBDATE.

• For numbers, as specified in DBFORMAT, DBMONEY, and LC_NUMERIC
(including thousands separators).

• For money values, as specified in DBFORMAT, DBMONEY, and
LC_MONETARY including thousands separators and currency symbols,
but not following the usual negative numbering conventions, that is, (-) =
negative.

This set of behaviors is adequate for unloading and loading between two non-
NLS databases, or between two databases with the same locale. For unloading
and loading between dissimilar database locales, it is necessary to perform
one of the following two sequences of operations:

• At the source database, set DBNLS to 2 and LANG to the locale of the
destination database, then perform the UNLOAD operation. LOAD the
resulting text file at the destination database using normal settings for that
database.

or

• At the source database, UNLOAD using normal settings. At the
destination database, set DBNLS to 2 and LANG to the locale of the source
database, and perform the LOAD.

Either of these approaches works equally well. An example of the first
approach would be a user in Paris unloading a database created with
LANG=FR, and loading the data in Munich to a database created with
LANG=DE. The user in Paris sets DBNLS to 2 and LANG to DE at the client side
before performing the unload. The data is sent to Munich, where the user
there performs the load normally (that is, with DBNLS set to 1 and consistent
locale variables).
Native Language Support Within INFORMIX-4GL E-43

FORMAT and USING
Note that if cross-locale database load/unload sequences take place without
following one of the two procedures identified above, the following can
occur:

• Multiplying or dividing numeric or monetary values by orders of magni-
tude if thousands and decimal separators are different between locales.
For example, loading an English UNLOAD file into a German database
causes every value to be divided by 1000, because of the switched roles of
the comma and period symbols.

• Generating LOAD errors if characters are encountered that are outside the
character set of the database.

• Generating LOAD errors if uninterpretable currency symbols are
encountered.

FORMAT and USING
The USING operator is typically used in DISPLAY or PRINT statements, but
you can also use it with LET to assign the formatted value to a character vari-
able. The FORMAT attribute is used strictly in screen forms. Format strings in
USING and FORMAT have identical meanings, except that a FORMAT opera-
tor’s formatting string cannot display currency symbols, whereas USING for-
mat strings can. NLS variables influence the results obtained from USING and
FORMAT strings identically, except for currency symbols not being available
in FORMAT. The order of variable precedence is as illustrated in the sections
on LC_MONETARY and LC_NUMERIC.

The following classifications apply to format strings:

• A format string is said to be a monetary formatter if either one of the
following two conditions hold:

o The format string is formatting monetary data.

o The format string contains either of the currency placeholder symbols
($ or @).

Format strings in the USING operator can be monetary formatters. Format
strings in the FORMAT attribute cannot.

• A format string is said to be a date formatter if it is not a monetary
formatter and it contains one of the following tokens: mm, mmm, dd, ddd,
or yy, yyyy.

• A format string is said to be a numeric formatter if it is neither a monetary
formatter nor a date formatter.
E-44 Native Language Support Within INFORMIX-4GL

FORMAT and USING
Monetary and Numeric Formatting

The following format string symbols have new meanings in 6.0 4GL. They are
influenced by settings in the LC_MONETARY, LC_NUMERIC, DBFORMAT,
DBMONEY, DBDATE, and DBLANG environment variables. Any valid format-
ting symbol that is not mentioned below has the same meaning it had in the
pre-6.0 4GL.

, Any appearance of a comma in the format string for non-DATE data
is interpreted as a thousands separator. This symbol is not a literal.
The comma stands for either the numeric thousands separator or the
monetary thousands separator specified by the format environment.
If the format string is a monetary-formatter, then this symbol stands
for the monetary thousands separator. If the format string is a
numeric-formatter, then this symbol stands for the numeric
thousands separator. If the format string is a date-formatter, then this
symbol stands for itself; the comma remains a comma.

. Any appearance of a period in the format string for non-DATE data is
interpreted as a decimal separator. This symbol is not a literal. The
period stands for the decimal separator specified by the format envi-
ronment. If the format string is a monetary-formatter, then this sym-
bol stands for the monetary decimal separator. If the format string is
a numeric-formatter, then this symbol stands for the numeric decimal
separator. If the format string is a date-formatter, then this symbol
stands for itself; the period remains a period.

$ In a USING operator format string, the dollar sign is the leading
currency formatting symbol. The dollar sign is not valid syntax for
the FORMAT attribute, because the FORMAT attribute cannot format
the MONEY data type. Groups of dollar signs stand for formatting
space provided for the currency symbols that precede a monetary
value. A group of dollar signs in a row will provide formatting space
for the leading currency symbol or string specified in the format envi-
ronment. The USING clause right-justifies currency symbols within
the sequence of $ signs.

@ In a USING operator format string, the at symbol (@) is the trailing
currency symbol formatting symbol. This symbol, which is new to
USING format strings, is similar in purpose to the dollar sign. Groups
of @ symbols stand for formatting space provided for the currency
symbol or string that follows a monetary value. The USING clause left-
justifies currency symbols within the sequence of @ signs.
Native Language Support Within INFORMIX-4GL E-45

FORMAT and USING
For example, with LANG set to DE, and columns m and c representing
monetary and character data, respectively, a German 4GL program might use
the following statements to format money:

LET m = 1234.56
LET c = m USING “#,###.##@@”
PRINT c

The result would appear as shown:

1.234,56DM

With LANG set to EN_us and DBFORMAT set to:

£:,:.:p

a British 4GL program might use the following statements to format money:

LET m = 1234.56
LET c = m USING “$$#,###.##@”
PRINT c

The result would be as follows:

£1,234.56p

Note the use of both a leading and a trailing currency symbol in the latter
example.
E-46 Native Language Support Within INFORMIX-4GL

FORMAT and USING
Date Formatting

If you use the USING operator or FORMAT attribute to format a DATE value,
USING or FORMAT takes precedence over the DBDATE environment variable.
The format-string for a date can be a combination of the characters m, d, and y:

dd day of the month as a 2-digit number (01 through 31 or less)
ddd day of the week as a 3-letter abbreviation (Sun through Sat)

mm month as a 2-digit number (01 through 12)
mmm month as a 3-letter abbreviation (Jan through Dec)

yy year as a 2-digit number in the 1900s (00 through 99)
yyyy year as a 4-digit number (0001 through 9999)

The DBLANG setting and installation of appropriate message files will
determine the set of available 3-character weekday name ddd and month
name mmm abbreviations.

DISPLAY Statements

When 4GL displays a number value, it follows these rules:

• Displays the leading currency symbol (as set by DBFORMAT or
DBMONEY) for MONEY values. If the FORMAT attribute specifies a leading
currency symbol for other data types, then 4GL displays that symbol.

• Omits the thousands separator, unless it is specified by a FORMAT
attribute or by the USING operator.

• Displays the decimal separator, except for INT or SMALLINT values.

• Displays the trailing currency symbol (as set by DBFORMAT or DBMONEY)
for MONEY values, unless you specify a FORMAT attribute or the USING
operator. In this case, 4GL ignores the trailing currency symbol; the user
cannot enter a trailing currency symbol, and 4GL does not display it.

LET Statements

When LET statements are employed without USING clauses, certain default
conversions are employed in an NLS environment. In particular, there is the
case where a monetary or numeric value is converted to a character value (or
the character variable is decoded into monetary or a numeric value). In this
situation, the conversion follows the formatting rules established by the
Native Language Support Within INFORMIX-4GL E-47

FORMAT and USING
relevant hierarchy of environment variables. The following example (in
which columns c and c2 are of CHARACTER type, m is MONEY and d is DEC-
IMAL) demonstrates this:

LET m = 1234.56; LET d = 9876.54
LET c = m; LET c2 = d
PRINT c, c2

The result in a LANG=DE environment is:

1.234,56DM 9876,54

When LET statements assign monetary and numeric constants to variables
and NLS is active, the interpretation of the constants is governed by locale if
the constant is in quotes, and governed by US ANSI if the constant is not in
quotes. The following example (in which m and m2 are of type MONEY) illus-
trates this:

DEFINE m1 MONEY, m2 MONEY
LET m1 = 1234.56; LET m2 = “1234,56DM”

In a LANG=DE environment, this example would work correctly and compile
without error in 4GL. However, in a LANG=EN_us (US English) environment,
the constant being assigned to m2 would trigger a compilation error.

Note: For a user performing data entry into a form, locale is active for values being
entered, and quotes are not necessary.
E-48 Native Language Support Within INFORMIX-4GL

Multiple Locale Support
Multiple Locale Support
Under version 6.0, an NLS database is limited to one locale per database. The
database locale is specified by the contents of the LC_COLLATE and LC_CTYPE
environment variables stored in the database at database creation time. How-
ever, multiple databases built with different environment variable settings
can reside on the same server. Furthermore, multiple users can access data-
bases with different locales on the same server at the same time. The locale of
the server machine itself is irrelevant for the purposes of determining
whether or not access will be permitted; it is strictly determined by the con-
sistency checking process between user and database as described earlier.

Figure E-13 Multiple NLS Locales in 6.0 Architecture

French
front end

French locale
(LC_CTYPE,
LC_COLLATE)

US ASCII locale
(LC_CTYPE,
LC_COLLATE)

Spanish
database

French
database

US ASCII
database

User locale
must match

database locale,
unless user
DBNLS=2

Spanish locale
(LC_CTYPE,
LC_COLLATE)

Spanish
front end

Spanish
front end

US ASCII
front end
Native Language Support Within INFORMIX-4GL E-49

Language Supplements
Language Supplements
With NLS, in order to use different languages, you need the necessary
language supplements to install on the system. For example, to use German
and Spanish with the 4GL product, you need to buy an 4GL package and two
language supplements: one German and one Spanish. The installation script
for the language supplements creates the appropriate directories.

In order to know the exact language supplement to purchase, you need to
know the following information:

• The system (Sun, HP, and so on)

• Operating system version

• NLS version (if purchased separately)

• Information about your locale (LANG setting)

Contact your local Informix sales office for more information on language
supplements.
E-50 Native Language Support Within INFORMIX-4GL

Appendix
F

Modifying termcap
and terminfo
INFORMIX-4GL programs can use function keys and can
display color or intensity attributes in screen displays.
These and other keyboard and screen options are terminal
dependent. To determine terminal-dependent characteris-
tics, INFORMIX-4GL uses the information in the termcap
file or in the terminfo directory. INFORMIX-4GL uses the
INFORMIXTERM environment variable to determine
whether to use termcap or terminfo. For more information
about INFORMIXTERM, read the discussion of environment
variables in Appendix D, “Environment Variables.”

With 4GL, Informix distributes termcap files that contain
additional capabilities for many common terminals (such
as the Wyse 50 and the Televideo 950). These capabilities
include intensity-change or color-change descriptions or
both. This appendix describes these capabilities, as well as
the general format of termcap and terminfo entries.

Since terminfo does not support color, you can only use
INFORMIX-4GL color functionality with termcap. If you
want to use color in INFORMIX-4GL, you must set the
INFORMIXTERM environment variable to termcap.

You can use the information in this appendix, combined
with the information in your terminal manual, to modify
the contents of your termcap file or terminfo files. This
appendix is divided into two main sections, termcap and
terminfo. Depending on which you are using, you should
read the appropriate section.

termcap
termcap
When INFORMIX-4GL is installed on your system, a termcap file is placed in
$INFORMIXDIR/etc. This file is a superset of an operating system termcap
file. The Informix termcap file contains additional capabilities for many ter-
minals. You may want to modify this file further in the following instances:

• The entry for your terminal has not been modified to include color-
change and intensity-change capabilities.

• You want to extend function key definitions.

• You want to specify or alter the graphics characters used for window
border.

• You want to customize your terminal entry in other ways.

Note: Some terminals cannot support color or graphics characters. You should read
this appendix and the user guide that comes with your terminal to determine whether
or not the changes described in this appendix are applicable to your terminal.

Format of a termcap Definition
This section describes the general format of termcap entries. For a complete
description of termcap, refer to your operating system documentation.

A termcap entry contains a list of names for the terminal, followed by a list
of the terminal’s capabilities. There are three types of capabilities:

• Boolean capabilities

• Numeric capabilities

• String capabilities

All termcap entries have the following format:

• Is specified as a backslash (\) followed by the letter E, and CONTROL is
specified as a caret (^). Do not use the ESCAPE or CONTROL keys to indi-
cate escape sequences or control characters in a termcap entry.

• Each capability, including the last one in the entry, is followed by a
colon (:).

• Entries must be defined on a single logical line; a backslash (\) appears
at the end of each line that wraps to the next line.
F-2 Modifying termcap and terminfo

Format of a termcap Definition
Figure F-1 shows a basic termcap entry for the Wyse 50 terminal:

Entry for Wyse 50:

w5|wy50|wyse50:
:if=/usr/lib/tabset/std:\
:al=\EE:am:bs:ce=\Et:cm=\E=%+ %+ :cl=\E*:co#80:\
:dc=\EW:dl=\ER:ho=^^:ei=:kh=^^:im=:ic=\EQ:in:li#24:\
:nd=^L:pt:se=\EG0:so=\EG4:sg#1:ug#1:\
:up=^K:ku=^K:kd=^J:kl=^H:kr=^L:kb=:\
:k0=^A@^M:k1=^AA^M:k2=^AB^M:k3=^AC^M:k4=^AD^M:\
:k5=^AE^M:k6=^AF^M:k7=^AG^M:\
:HI=^|:Po=^R:Pe=^T:

Figure F-1 Wyse 50 termcap Entry

Note: Comment lines begin with a pound sign (#).

Terminal Names

A termcap entry starts with one or more names for the terminal, each sepa-
rated by a vertical (|) bar. For example, the termcap entry for the Wyse 50
terminal starts with the following line:

w5|wy50|wyse50:\

The termcap entry can be accessed using any one of these names.

Boolean Capabilities

A Boolean capability is a two-character code that indicates whether or not a
terminal has a specific feature. If the Boolean capability is present in the ter-
mcap entry, the terminal has that particular feature. Figure F-2 shows some of
the Boolean capabilities for the Wyse 50 terminal:

:bs:am:

bs backspace with CTRL-H
am automatic margins

Figure F-2 Boolean Capabilities for the Wyse 50
Modifying termcap and terminfo F-3

Format of a termcap Definition
Numeric Capabilities

A numeric capability is a two-character code followed by a pound symbol
(#) and a value. Figure F-3 shows the numeric capabilities for the number of
columns and the number of lines on a Wyse 50 terminal:

:co#80:li#24:

co number of columns in a line
li number of lines on the screen

Figure F-3 Numeric Capabilities for the Wyse 50

Similarly, sg is a numeric capability that indicates the number of character
positions required on the screen for reverse video. The entry :sg#1: indi-
cates that a terminal requires one additional character position when reverse
video is turned ON or OFF. If you do not include a particular numeric capa-
bility, INFORMIX-4GL assumes that the value is zero.

String Capabilities

A string capability specifies a sequence that can be used to perform a termi-
nal operation. A string capability is a two-character code followed by an
equal sign (=) and a string ending at the next delimiter (:).
F-4 Modifying termcap and terminfo

Extending Function Key Definitions
Most termcap entries include string capabilities for clearing the screen, cursor
movement, Arrow keys, underscore, function keys, and so on. Figure F-4
shows many of the string capabilities for the Wyse 50 terminal:

:ce=\Et:cl=\E*:\
:nd=^L:up=^K:\
:so=\EG4:se=\EG0:\
:ku=^K:kd=^J:kr=^L:kl=^H:\
:k0=^A@^M:k1=^AA^M:k2=^AB^M:k3=^AC^M:

ce=\Et clear to end of line
cl=\E* clear the screen
nd=^L non-destructive cursor right
up=^K up one line
#
so=\EG4 start stand-out
se=\EG0 end stand-out
#
ku=^K up arrow key
kd=^J down arrow key
kr=^L right arrow key
kl=^H left arrow key
#
k0=^A@^M function key F1
k1=^AA^M function key F2
k2=^AB^M function key F3
k3=^AC^M function key F4

Figure F-4 String Capabilities for the Wyse 50

Extending Function Key Definitions
INFORMIX-4GL recognizes function keys F1 through F36. These keys corre-
spond to the termcap capabilities k0 through k9, followed by kA through kZ.
The termcap entry for these capabilities is the sequence of ASCII characters
your terminal sends when you press the function keys (or any other keys you
choose to use as function keys). For the Wyse 50 and Televideo 950 terminals,
the first eight function keys send the characters shown in Figure F-5.
Modifying termcap and terminfo F-5

Specifying Characters for Window Borders
Function Key termcap Entry
F1 k0=^A@^M
F2 k1=^AA^M
F3 k2=^AB^M
F4 k3=^AC^M
F5 k4=^AD^M
F6 k5=^AE^M
F7 k6=^AF^M
F8 k7=^AG^M

Figure F-5 Function Key Entries for the Wyse 50

You can also define keys that correspond to the following capabilities:

• Insert line (ki)

• Delete line (kj)

• Next page (kf)

• Previous page (kg)

If these keys are defined in your termcap file, INFORMIX-4GL uses them.
Otherwise, INFORMIX-4GL uses CONTROL-J, CONTROL-K, CONTROL-M, and
CONTROL-N, respectively.

Note: You can also use the OPTIONS statement to name other function keys or CON-
TROL keys for these operations.

Specifying Characters for Window Borders
INFORMIX-4GL uses characters defined in the termcap file to draw the bor-
der of a window. If no characters are defined in this file, INFORMIX-4GL uses
the hyphen (-) for horizontal lines, the vertical bar (|) for vertical lines, and
the plus sign (+) for corners.

The termcap file provided with INFORMIX-4GL contains border character
definitions for many common terminals. You can look at the termcap file to
see if the entry for your terminal has been modified to include these defini-
tions. If your terminal entry does not contain border character definitions, or
if you want to specify alternative border characters, you or your system
administrator can modify the termcap file.

Perform the following steps to modify the definition for your terminal type
in the termcap file:

1. Determine the escape sequences for turning graphics mode ON and OFF.
This information is located in the manual that comes with your terminal.
F-6 Modifying termcap and terminfo

Specifying Characters for Window Borders
For example, on Wyse 50 terminals, the escape sequence for entering
graphics mode is ESC H^B and the escape sequence for leaving graphics
mode is ESC H^C.

Note: Terminals without a graphics mode do not have this escape sequence. The
procedure for specifying alternative border characters on a non-graphics terminal
is discussed at the end of this section.

2. Identify the ASCII equivalents for the six graphics characters that INFOR-
MIX-4GL requires to draw the border. (The ASCII equivalent of a graphics
character is the key you would press in graphics mode to obtain the indi-
cated character.)

Figure F-6 shows the graphics characters and the ASCII equivalents for a
Wyse 50 terminal.

Window Border Graphics ASCII
Position Character Equivalent
upper left corner 2
lower left corner 1
upper right corner 3
lower right corner 5
horizontal - z
vertical | 6

Figure F-6 Wyse 50 ASCII Equivalents for Border Graphics Characters

Again, this information should be located in the manual that comes with
your terminal.

3. Edit the termcap entry for your terminal.

Note: You may want to make a copy of your termcap file before you edit it. You
can use the TERMCAP environment variable to point to whichever copy of the ter-
mcap file you want to access.

Use the format:

termcap-capability=value

to enter values for the following termcap capabilities:

gs The escape sequence for entering graphics mode. In the termcap
file, is represented as a backslash (\) followed by the letter E;
Modifying termcap and terminfo F-7

Specifying Characters for Window Borders
CONTROL is represented as a caret (^). For example, the Wyse 50
escape sequence ESC-H CONTROL-B is represented as \EH^B.

ge The escape sequence for leaving graphics mode. For example, the
Wyse 50 escape sequence ESC-H CONTROL-C is represented as
\EH^C.

gb The concatenated, ordered list of ASCII equivalents for the six
graphics characters used to draw the border. Use the following
order:

upper left corner
lower left corner
upper right corner
lower right corner
horizontal lines
vertical lines

Follow these guidelines when you insert information in the termcap
entry:

1. Delimit entries with a colon (:).

2. End each continuing line with a backslash (\).

3. End the last line in the entry with a colon.

For example, if you are using a Wyse 50 terminal, you would add the follow-
ing information in the termcap entry for the Wyse 50:

:gs=\EH^B:\ # sets gs to ESC H CTRL B
:ge=\EH^C:\ # sets ge to ESC H CTRL C
:gb=2135z6:\ # sets gb to the ASCII equivalents

of graphics characters for upper
left, lower left, upper right,
lower right, horizontal,
and vertical

If you prefer, you can enter this information in a linear sequence.

:gs=\EH^B:ge=\EH^C:gb=2135z6:\

If Your termcap File Contains sg#1 Capabilities

The termcap file for some terminals contains sg#1 capabilities. If sg#1 is
included, 4GL reserves an additional column to the left and right of the win-
dow. If you specify a border around the 4GL window, these two columns are
in addition to the two additional columns required for the border.
F-8 Modifying termcap and terminfo

Adding Color and Intensity
Terminals Without Graphics Capabilities

For terminals without graphics capabilities, you must enter a blank value
for the gs and ge capabilities. For gb, enter the characters you want INFOR-
MIX-4GL to use for the window border.

The following example shows possible values for gs, ge, and gb in an entry
for a terminal without graphics capabilities. In this example, window borders
would be drawn using underscores (_) for horizontal lines, vertical bars (|)
for vertical lines, periods (.) for the top corners, and vertical bars (|) for the
lower corners.

:gs=:ge=:gb=.|.|_|:

INFORMIX-4GL uses the graphics characters in the termcap file when you
specify a window border in an OPEN WINDOW statement.

Adding Color and Intensity
Many of the terminal entries in the Informix termcap file have been modified
to include color or intensity capabilities or both. (The termcap file is located
in the $INFORMIXDIR/etc directory.) You can view the termcap file to deter-
mine if the entry for your terminal type includes these capabilities. If your ter-
minal entry includes the ZA capability, your terminal is set up for color or
intensity or both. If it doesn’t, you can add color and intensity capabilities by
using the information in this section. The following topics are outlined in this
section:

• Color and intensity

• The ZA capability

• Stack operations

• Examples

You should understand these topics before you modify your terminal entry.

Color and Intensity Attributes

You can write your INFORMIX-4GL program either for a monochrome or a
color terminal and then run the program on either type of terminal. If you set
up the termcap files as described here, the color attributes and the intensity
attributes are related, as shown in Figure F-7.
Modifying termcap and terminfo F-9

Adding Color and Intensity
Number Color Terminal Monochrome Terminal
0 WHITE NORMAL
1 YELLOW BOLD
2 MAGENTA BOLD
3 RED BOLD†
4 CYAN DIM
5 GREEN DIM
6 BLUE DIM†
7 BLACK DIM

Figure F-7 Color-Monochrome Correspondence

The background for colors is BLACK in all cases. In the Figure F-7, the † sig-
nifies that, if the keyword BOLD is indicated as the attribute, the field will be
RED on a color terminal, or if the keyword DIM is indicated as the attribute,
the field will be BLUE on a color terminal.

You can change the color names from the default list by associating different
numbers with different color names in a file named colornames in your cur-
rent directory or in the $INFORMIXDIR/incl directory. (See the section “The
colornames File” on page F-19.)

In either color or monochrome mode, you can add the REVERSE, BLINK, or
UNDERLINE attributes if your terminal supports them. You can select only
one of these three attributes.

The ZA String Capability

INFORMIX-4GL uses a parameterized string capability ZA in the termcap file
to determine color assignments. Unlike other termcap string capabilities that
you set equal to a literal sequence of ASCII characters, ZA is a function string
that depends upon four parameters:

Parameter 1 (p1)Color number between 0 and 7 (see Figure F-7)
Parameter 2 (p2)0 = Normal; 1 = Reverse
Parameter 3 (p3)0 = No-Blink; 1 = Blink
Parameter 4 (p4)0 = No-Underscore; 1 = Underscore

ZA uses the values of these four parameters and a stack machine to determine
which characters to send to the terminal. The ZA function is called and these
parameters are evaluated when a color or intensity attribute is encountered
in a 4GL program. You can use the information in your terminal manual to
set the ZA parameters to the correct values for your terminal.
F-10 Modifying termcap and terminfo

Adding Color and Intensity
To define the ZA string for your terminal, you use stack operators to push and
pop values onto and off the stack. The next section describes several stack
operators. Use these descriptions and the subsequent examples to under-
stand how to define the string for your terminal.

Stack Operations

The ZA string uses stack operations to either push values onto the stack or
pop values off the stack. Typically, the instructions in the ZA string push a
parameter onto the stack, compare it to one or more constants, and then send
an appropriate sequence of characters to the terminal. More complex opera-
tions are often necessary and, by storing the display attributes in static stack
machine registers (named a through z), you can achieve terminal-specific
optimizations.

A summary follows of the different stack operators you can use to write the
descriptions. For a complete discussion of stack operators, consult your oper-
ating system documentation.

Operators that Send Characters to the Terminal

%d pops a numeric value from the stack and sends a maximum of
three digits to the terminal. For example, if the value 145 is at the
top of the stack, %d pops the value off the stack and sends the ASCII
representations of 1, 4, and 5 to the terminal. If the value 2005 is at
the top of the stack, %d pops the value off the stack and sends the
ASCII representation of 5 to the terminal.

%2d pops a numeric value from the stack and sends a maximum of two
digits to the terminal, padding to two places. For example, if the
value 145 is at the top of the stack, %2d pops the value off the stack
and sends the ASCII representations of 4 and 5 to the terminal. If
the value 5 is at the top of the stack, %2d pops the value off the stack
and sends the ASCII representations of 0 and 5 to the terminal.

%3d pops a numeric value from the stack and sends a maximum of
three digits to the terminal, padding to three places. For example,
if the value 7 is at the top of the stack, %3d pops the value off the
stack and sends the ASCII representations of 0, 0, and 7 to the
terminal.

%c pops a single character from the stack and sends it to the terminal.
Modifying termcap and terminfo F-11

Adding Color and Intensity
Operators that Manipulate the Stack
%p[1-9] pushes the value of the specified parameter on the stack. The

notation for parameters is p1, p2, ... p9. For example, if the value
of p1 is 3, %p1 pushes 3 on the stack.

%P[a-z] pops a value from the stack and stores it in the specified vari-
able. The notation for variables is Pa, Pb, ... Pz. For example, if
the value 45 is on the top of the stack, %Pb pops 45 from the
stack and stores it in the variable Pb.

%g[a-z] gets the value stored in the corresponding variable (P[a-z]) and
pushes it on the stack. For example, if the value 45 is stored in
the variable Pb, %gb gets 45 from Pb and pushes it on the stack.

%´c´ pushes a single character on the stack. For example, %´k´

pushes k on the stack.

%{n} pushes an integer constant on the stack. The integer can be any
length and can be either positive or negative. For example, %{0}

pushes the value 0 on the stack.

%S[a-z] pops a value from the stack and stores it in the specified static
variable. (Static storage is nonvolatile since the stored value
remains from one attribute evaluation to the next.) The notation
for static variables is Sa, Sb, ... Sz. For example, if the value 45 is
on the top of the stack, %Sb pops 45 from the stack and stores it
in the static variable Sb. This value is accessible for the duration
of the INFORMIX-4GL program.

%G[a-z] gets the value stored in the corresponding static variable (S[a-
z]) and pushes it on the stack. For example, if the value 45 is
stored in the variable Sb, %Gb gets 45 from Sb and pushes it on
the stack.

Arithmetic Operators

Each arithmetic operator pops the top two values from the stack, performs an
operation, and pushes the result on the stack.

%+ Addition. For example, %{2}%{3}%+ is equivalent to 2+3.

%- Subtraction. For example, %{7}%{3}%- is equivalent to 7-3.

%* Multiplication. For example, %{6}%{3}%* is equivalent to 6*3.

%/ Integer division. For example, %{7}%{3}%/ is equivalent to 7/3
and produces a result of 2.

%m Modulus (or remainder). For example, %{7}%{3}%m is equivalent
to (7 mod 3) and produces a result of 1.
F-12 Modifying termcap and terminfo

Adding Color and Intensity
Bit Operators

The following bit operators pop the top two values from the stack, perform
an operation, and push the result on the stack:

%& Bit-and. For example, %{12}%{21}%& is equivalent to (12 and 21)
and produces a result of 4.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

------------------------- and

0 0 1 0 0 = 4

%| Bit-or. For example, %{12}%{21}%| is equivalent to (12 or 21) and
produces a result of 29.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

------------------------- or

1 1 1 0 1 = 29

%^ Exclusive-or. For example, %{12}%{21}%^ is equivalent to (12
exclusive-or 21) and produces a result of 25.

Binary Decimal

0 1 1 0 0 = 12

1 0 1 0 1 = 21

------------------------- exclusive or

1 1 0 0 1 = 25
Modifying termcap and terminfo F-13

Adding Color and Intensity
The following unary operator pops the top value from the stack, performs an
operation, and pushes the result on the stack:

%~ Bitwise complement. For example, %{25}%~ results in a value of
-26, as shown in the following display.

Binary Decimal

0 0 0 1 1 0 0 1 = 25

---------------------------- Complement

1 1 1 0 0 1 1 0 = -26

Logical Operators

The following logical operators pop the top two values from the stack, per-
form an operation, and push the logical result (either 0 for false or 1 for true)
on the stack:

%= Equal to. For example, if the parameter p1 has the value 3, the
expression %p1%{2}%= is equivalent to 3=2 and produces a result
of 0 (false).

%> Greater than. For example, if the parameter p1 has the value 3, the
expression %p1%{0}%> is equivalent to 3>0 and produces a result
of 1 (true).

%< Less than. For example, if the parameter p1 has the value 3, the
expression %p1%{4}%< is equivalent to 3<4 and produces a result
of 1 (true).

The following unary operator pops the top value from the stack, performs an
operation, and pushes the logical result (either 0 or 1) on the stack.

%! Logical negation. This operator produces a value of zero for all
nonzero numbers and a value of 1 for zero. For example, %{2}%!

results in a value of 0, and %{0}%! results in a value of 1.

Conditional Statements

The condition statement IF-THEN-ELSE has the following format:

%? expr %t thenpart %e elsepart %;

The %e elsepart is optional. You can nest conditional statements in the thenpart
or the elsepart.
F-14 Modifying termcap and terminfo

Adding Color and Intensity
When INFORMIX-4GL evaluates a conditional statement, it pops the top value
from the stack and evaluates it as either true or false . If the value is true ,
INFORMIX-4GL performs the operations after the %t; otherwise it performs
the operations after the %e (if any).

For example, the expression:

%?%p1%{3}%=%t;31%;

is equivalent to:

if p1 = 3 then print ";31"

Assuming that p1 has the value 3, INFORMIX-4GL performs the following
steps:

• %? does not perform an operation but is included to make the conditional
statement easier to read.

• %p1 pushes the value of p1 on the stack.

• %{3} pushes the value 3 on the stack.

• %= pops the value of p1 and the value 3 from the stack, evaluates the Bool-
ean expression p1=3, and pushes the resulting value 1 (true) on the
stack.

• %t pops the value from the stack, evaluates 1 as true , and executes the
operations after %t. (Since ‘‘;31’’ is not a stack machine operation, INFOR-
MIX-4GL prints ‘‘;31’’ to the terminal.)

• %; terminates the conditional statement.
Modifying termcap and terminfo F-15

Adding Color and Intensity
Summary of Operators

Figure F-8 summarizes the allowed operations:

Operation Description
%d write pop() in decimal format
%2d write pop() in 2-place decimal format
%3d write pop() in 3-place decimal format
%c write pop() as a single character

%p[1-9] push ith parameter
%P[a-z] pop and store variable
%g[a-z] get variable and push on stack
%’c’ push char constant
%{n} push integer constant
%S[a-z] pop and store static variable
%G[a-z] get static variable and push

%+ addition. push(pop() op pop())
%- subtraction. push(pop() op pop())
%* multiplication. push(pop() op pop())
%/ integer division. push(pop() op pop())
%m modulus. push(pop() op pop())

%& bit and. push(pop() op pop())
%| bit or. push(pop() op pop())
%^ bit exclusive or. push(pop() op pop())
%~ bitwise complement. push(op pop())

%= equal to. push(pop() op pop())
%> greater than. push(pop() op pop())
%< less than. push(pop() op pop())
%! logical negation. push(op pop())

%? expr %t thenpart %e elsepart %;
if-then-else; the %e elsepart is optional.
else-if’s are possible (c’s are conditions):
%? c1 %t...%e c2 %t...%e c3 %t...%e...%;
nested if’s allowed.

all other characters are written to the terminal;
use ’%%’ to write ’%’.

Figure F-8 Stack Operations
F-16 Modifying termcap and terminfo

Adding Color and Intensity
Examples

To illustrate, consider the monochrome Wyse terminal. Figure F-9 shows the
escape sequences for various display characteristics.

Escape Sequence Results
ESC G 0 Normal
ESC G 1 blank(invisible)
ESC G 2 blink

ESC G 4 Reverse
ESC G 5 Reverse and blank
ESC G 6 Reverse and blink

ESC G 8 Underscore
ESC G 9 Underscore and blank
ESC G : Underscore and blink

ESC G < Underscore and reverse
ESC G = Underscore, reverse, and blank
ESC G > Underscore, reverse, and blink

Figure F-9 Wyse Escape Sequences

The characters after G form an ASCII sequence from the character 0 (zero)
through ?. You can generate the character by starting with 0 and adding 1 for
blank, 2 for blink, 4 for reverse, and 8 for underline.

You can construct the termcap entry in stages, as outlined in the following
display. %pi refers to pushing the ith parameter on the stack. The designation
for is \E . The termcap entry for the Wyse terminal must contain the following
ZA entry in order for INFORMIX-4GL monochrome attributes such as
REVERSE and BOLD to work correctly:

ZA =
EG #print EG
%’0’ #push ’0’ (normal) on the stack
%?%p1%{7}%=%t%{1}%| #if p1 = 7 (invisible), set

#the 1 bit (blank);
%e%p1%{3}%> #if p1 > 3 and < 7, set the 64 flag (dim);

%p1%{7}%<%&%t%{64}%| #
%;%; #

%?%p2%t%{4}%|%; #if p2 is set, set the 4 bit (reverse)
%?%p3%t%{2}%|%; #if p3 is set, set the 2 bit (blink)
%?%p4%t%{8}%|%; #if p4 is set, set the 8 bit (underline)
%c: #print whatever character

#is on top of the stack
Modifying termcap and terminfo F-17

Adding Color and Intensity
You then concatenate these lines as a single string that ends with a colon and
has no embedded NEWLINEs. The actual ZA entry for the Wyse 50 terminal
follows:

ZA = \EG%’0’%?%p1%{7}%=%t%{1}%|%e%p1%{3}%>%p1%{7}%<%&%t%{64}
%|%;%;%?%p2%t%{4}%|%;%?%p3%t%{2}%|%;%?%p4%t%{8}%|%;%c:

The next example is for the ID Systems Corporation ID231, a color terminal.
On this terminal, to set color and other characteristics you must enclose a
character sequence between a lead-in sequence (ESC [0) and a terminating
character (m). The first in the sequence is a two-digit number that determines
whether the assigned color is in the background (30) or in the foreground
(40). The next is another two-digit number that is the other of 30 or 40, incre-
mented by the color number. These characters are followed by 5 if there is
blinking, and by 4 for underlining.

The code in Figure F-10 sets up the entire escape sequence:

ZA =
\E[0; #print lead-in
%?%p1%{0}%=%t%{7} #encode color number (translate
%e%p1%{1}%=%t%{3} # from Figure F-7 to the number
%e%p1%{2}%=%t%{5} # for the ID231)
%e%p1%{3}%=%t%{1} #
%e%p1%{4}%=%t%{6} #
%e%p1%{5}%=%t%{2} #
%e%p1%{6}%=%t%{4} #
%e%p1%{7}%=%t%{0}%; #
%?%p2%t30;%{40}%+%2d #if p2 is set, print ’30’ and

’40’ + color number (reverse)
%e40;%{30}%+%2d%; # else print ’40’ and

’30’ + color number (normal)
%?%p3%t;5%; #if p3 is set, print 5 (blink)
%?%p4%t;4%; #if p4 is set, print 4 (underline)
m #print ’m’ to end character

sequence

Figure F-10 Sample ZA String for ID231
F-18 Modifying termcap and terminfo

The colornames File
When you concatenate these strings, the termcap entry is as shown in Figure
F-11.

ZA =\E[0;%?%p1%{0}%=%t%{7}%e%p1%{1}%=%t%{3}%e%p1%{2}%=
%t%{5}%e%p1%{3}%=%t%{1}%e%p1%{4}%=%t%{6}%e%p1%{5}%=%t%
{2}%e%p1%{6}%=%t%{4}%e%p1%{7}%=%t%{0}%;%?%p2%t30;%{40}
%+%2d%e40;%{30}%+%2d%;%?%p3%t;5%;%?%p4%t;4%;m

Figure F-11 Concatenated ZA String for ID231

In addition to the ZA capability, you can use other termcap capabilities. ZG is
the number of character positions on the screen occupied by the attributes of
ZA. Like the sg numeric capability, ZG is not required if no extra character
positions are needed for display attributes. The value for the ZG entry is usu-
ally the same value as for the sg entry.

The colornames File
You can create a colornames file if you want to change the default assignment
of the names of colors. A colornames file is an ASCII file that changes the key-
words that you use to write INFORMIX-4GL programs. It does not affect the
colors produced by your terminal. The format for the colornames file follows:

name is the identifier of a color. It cannot be a reserved word and must
be unique in the colornames file. You cannot assign the same name
to more than one number.

number is an integer from 0 to 7.

Usage

Each color name and number must be on a separate line. They should be sep-
arated by one or more spaces or tabs.

Unless you redefine them in the colornames file to have a different number,
the default color-name keywords that are listed in the section titled “Color
and Intensity” on page F-29 (and in the next example) retain their meaning,
even when you assign another name to that color number.

name number
Modifying termcap and terminfo F-19

terminfo
If you created a colornames file to set up the default assignment of names to
color numbers, colornames would look as follows:

WHITE 0
YELLOW 1
MAGENTA 2
RED 3
CYAN 4
GREEN 5
BLUE 6
BLACK 7

If you wanted to change CYAN to AQUA and MAGENTA to ORANGE as color
names, set colornames as follows:

AQUA 4
ORANGE 2

You could use either CYAN or AQUA in your INFORMIX-4GL program and
get the same color. Similarly, use of MAGENTA or ORANGE produces the
same color.

If you want to change the meaning of the default color names, you can reas-
sign them in colornames:

RED 2

In this case when you use RED in a program, the color you get is the same
as has been assigned to MAGENTA. If you have not assigned a name to num-
ber 3, you are not able to get the color that RED originally represented.

The syscolatt table and the ATTRIBUTE clauses of various 4GL statements can
recognize numeric color codes and non-default names for colors. You can
specify these names or numbers in place of the color keywords that are doc-
umented in the description of the upscol utility in Appendix B.

Note: You cannot, however, specify numeric codes or non-default names from
colornames in the ATTRIBUTES section of a screen form.

terminfo
If you have set the INFORMIXTERM environment variable to terminfo,
INFORMIX-4GL uses the terminfo directory indicated by the TERMINFO
environment variable (or /usr/lib/terminfo if TERMINFO is not set). INFOR-
MIX-4GL uses the information in terminfo to draw window borders, define
function keys, and display certain intensity attributes.
F-20 Modifying termcap and terminfo

Format of a terminfo Entry
You may want to modify a file in the terminfo directory in the following
instances:

• You want to extend function key definitions.

• You want to specify or change the graphics characters used for window
borders.

• You want to customize your terminal entry in other ways.

Note: If you use terminfo (instead of termcap), you cannot use color attributes with
INFORMIX-4GL. To use color attributes with INFORMIX-4GL, you must use
termcap.

Some terminals cannot support graphics characters. You should read this
appendix and the user guide that comes with your terminal to determine
whether or not the changes described in this appendix are applicable to your
terminal.

To modify a terminfo file, you need to be familiar with the following:

• The format of terminfo entries

• The infocmp program

• The tic program

This information is summarized in this appendix; however, you should refer
to your operating system documentation for a complete discussion.

Format of a terminfo Entry
terminfo is a directory that contains a file for each terminal name that is
defined. Each file contains a compiled terminfo entry for that terminal. This
section describes the general format of terminfo entries. For a complete
description of terminfo, refer to your operating system documentation.

A terminfo entry contains a list of names for the terminal, followed by a list
of the terminal’s capabilities. There are three types of capabilities:

• Boolean capabilities

• Numeric capabilities

• String capabilities
Modifying termcap and terminfo F-21

Format of a terminfo Entry
All terminfo entries have the following format:

• ESCAPE is specified as a backslash (\) followed by the letter E, and CON-
TROL is specified as a caret (^). Do not use the ESCAPE or CONTROL keys
to indicate escape sequences or control characters in a terminfo entry.

• Each capability, including the last one in the entry, is followed by a
comma (,).

Figure F-12 shows a basic terminfo entry for the Wyse 50 terminal:

. Entry for Wyse 50:

w5|wy50|wyse50,
am, cols#80, lines#24, cuul=^K, clear=^Z,
home=^^, cuf1=^L, cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c,
bw, ul, bel=^G, cr=\r, cud1=\n, cub1=\b, kpb=\b, kcudl=\n,
kdub1=\b, nel=\r\n, ind=\n,
xmc#1, cbt=\EI,

Figure F-12 Wyse 50 terminfo Entry

Note: Comment lines begin with a period (.).

Terminal Names

A terminfo entry starts with one or more names for the terminal (each sepa-
rated by a vertical bar (|)). For example, the terminfo entry for the Wyse 50
terminal starts with the following line:

w5|wy50|wyse50,

The terminfo entry can be accessed using any one of these names.

Boolean Capabilities

A Boolean capability is a two- to five-character code that indicates whether
or not a terminal has a specific feature. If the Boolean capability is present in
the terminfo entry, the terminal has that particular feature.
F-22 Modifying termcap and terminfo

Format of a terminfo Entry
Figure F-13 shows some of the Boolean capabilities for the Wyse 50:

bw,am,

. bw backward wrap

. am automatic margins

Figure F-13 Boolean Capabilities for the Wyse 50

Numeric Capabilities

A numeric capability is a two- to five-character code followed by a pound
symbol (#) and a value. Figure F-14 shows the numeric capabilities for the
number of columns and the number of lines on a Wyse 50 terminal:

cols#80,lines#24,

. cols number of columns in a line

. lines number of lines on the screen

Figure F-14 Numeric Capabilities for the Wyse 50

String Capabilities

A string capability specifies a sequence that can be used to perform a terminal
operation. A string capability is a two- to five-character code followed by an
equal sign (=) and a string ending at the next delimiter (,).
Modifying termcap and terminfo F-23

Extending Function Key Definitions
Most terminfo entries include string capabilities for clearing the screen, cur-
sor movement, arrow keys, underscore, function keys, and so on. Figure F-15
shows many of the string capabilities for the Wyse 50 terminal:

el=\ET,clear=E*,
cuf1=^L,cuu1=^K,
smso=\EG4,rmso=\EG0,
kcuu1=^K,kcud1=^J,kcuf1=^L,kcub1=^H,
kf0=^A@^M,kf1=^AA^M,kf2=^AB^M,kf3=^AC^M,

. el=\Et clear to end of line

. clear=\E* clear the screen

. cufl=^L non-destructive cursor right

. cuul=^K up one line

.

. smso=\EG4 start stand-out

. rmso=\EG0 end stand-out

.

. kcuul=^K up arrow key

. kcudl=^J down arrow key

. kcufl=^L right arrow key

. kcubl=^H left arrow key

.

. kf0=^A@^M function key F1

. kf1=^AA^M function key F2

. kf2=^AB^M function key F3

. kf3=^AC^M function key F4

Figure F-15 String Capabilities for the Wyse 50

Extending Function Key Definitions
INFORMIX-4GL recognizes function keys F1 through F36. These keys corre-
spond to the terminfo capabilities kf0 through kf36. The terminfo entry for
these capabilities is the sequence of ASCII characters that your terminal sends
when you press the function keys (or any other keys you choose to use as
function keys). For the Wyse 50 and Televideo 950 terminals, the first eight
function keys send the characters shown in Figure F-16.
F-24 Modifying termcap and terminfo

Specifying Characters for Window Borders
Function Key terminfo Entry
F1 kf0=^A@^M
F2 kf1=^AA^M
F3 kf2=^AB^M
F4 kf3=^AC^M
F5 kf4=^AD^M
F6 kf5=^AE^M
F7 kf6=^AF^M
F8 kf7=^AG^M

Figure F-16 Function Key Entries for the Wyse 50

You can also define keys that correspond to the following capabilities:

• Insert line (kill)

• Delete line (kdll)

• Next page (knp)

• Previous page (kpp)

If these keys are defined in your terminfo file, INFORMIX-4GL uses them.
Otherwise, INFORMIX-4GL uses CONTROL-J, CONTROL-K, CONTROL-M, and
CONTROL-N, respectively.

Note: You can also use the OPTIONS statement to name other function keys or CON-
TROL keys for these operations.

Specifying Characters for Window Borders
INFORMIX-4GL uses characters defined in the terminfo files to draw the bor-
der of a window. If no characters are defined in this file, INFORMIX-4GL uses
the hyphen (-) for horizontal lines, the vertical bar (|) for vertical lines, and
the plus sign (+) for corners.

You can look at the terminfo source file (using infocmp) to see if the entry for
your terminal includes these definitions. (Look for the acsc capability,
described later in this section.) If the file for your terminal does not contain
border character definitions, or if you want to specify alternative border char-
acters, you or your system administrator can modify the terminfo source file.
You can refer to your operating system documentation for a complete
description of how to decompile terminfo entries using the infocmp program.
Modifying termcap and terminfo F-25

Specifying Characters for Window Borders
Perform the following steps to specify border characters in the terminfo
source file for your terminal:

1. Determine the escape sequences for turning graphics mode on and off.
This information is located in the manual that comes with your terminal.
For example, on Wyse 50 terminals, the escape sequence for entering
graphics mode is ESC H^B and the escape sequence for leaving graphics
mode is ESC H^C.

Note: Terminals without a graphics mode do not have this escape sequence. The
procedure for specifying alternative border characters on a non-graphics terminal
is discussed at the end of this section.

2. Identify the ASCII equivalents for the six graphics characters that INFOR-
MIX-4GL requires to draw the border. (The ASCII equivalent of a graphics
character is the key you would press in graphics mode to obtain the indi-
cated character.)

Figure F-17 shows the graphics characters and the ASCII equivalents for a
Wyse 50 terminal.

Window Border Graphics ASCII
Position Character Equivalent
upper left corner 2
lower left corner 1
upper right corner 3
lower right corner 5
horizontal - z
vertical | 6

Figure F-17 Wyse 50 ASCII Equivalents for Border Graphics Characters

Again, this information should be located in the manual that comes with
your terminal.

3. Edit the terminfo source file for your terminal. (You can decompile it
using infocmp redirected to a file.)

Note: You may want to make a copy of your terminfo directory before you edit
files. You can use the TERMINFO environment variable to point to whichever
copy of the terminfo directory you want to access.
F-26 Modifying termcap and terminfo

Specifying Characters for Window Borders
Use the following format to enter values for terminfo capabilities:

terminfo-capability=value
Enter values for the following terminfo capabilities:

smacs The escape sequence for entering graphics mode. In a terminfo
file, ESCAPE is represented as a backslash (\) followed by the let-
ter E; CONTROL is represented as a caret (^). For example, the
Wyse 50 escape sequence ESC-H CONTROL-B is represented as
\EH^B.

rmacs The escape sequence for leaving graphics mode. For example, the
Wyse 50 escape sequence ESC-H CONTROL-C is represented as
\EH^C.

acsc The concatenated, paired list of ASCII equivalents for the six
graphics characters used to draw the border. You can specify the
characters in any order, but you must pair the ASCII equivalents
for your terminal with the following system default characters:

System Default
Position Character
upper left corner l
lower left corner m
upper right corner k
lower right corner j
horizontal lines q
vertical lines x

Figure F-18 System Default Characters for Border Positions

Use the following format to specify the acsc value:

def is the default character for a particular border character and

new is that terminal’s equivalent for the same border character.

For example, on the Wyse 50 terminal, given the ASCII equivalents in
Figure F-17 and the system default characters in Figure F-18, the acsc
capability would be set as shown in Figure F-19.

acsc=l2m1k3j5qzx6

Figure F-19 Wyse 50 acsc setting

defnew
Modifying termcap and terminfo F-27

Specifying Characters for Window Borders
4. Use tic to recompile the modified terminfo file. See your operating sys-
tem documentation for a description of the tic program.

The following example shows the full setting for specifying alternative
border characters on the Wyse 50:

smacs=\EH^B, . sets smacs to ESC H CTRL B
rmacs=\EH^C, . sets rmacs to ESC H CTRL C
acsc=l2m1k3j5qzx6, . sets acsc to the ASCII equivalents

. of graphics characters for upper

. left (l), lower left (m), upper right (k),

. lower right (j), horizontal (q),

. and vertical (x)

If you prefer, you can enter this information in a linear sequence.

smacs=\EH^B,rmacs=\EH^C,acsc=l2m1k3j5qzx6,

If Your terminfo File Contains xmc#1 Capabilities

The terminfo file for some terminals contains xmc#1 capabilities. If xmc#1 is
included, 4GL reserves an additional column to the left and right of the win-
dow. If you specify a border around the 4GL window, these two columns are
in addition to the two additional columns required for the border.

Terminals Without Graphics Capabilities

For terminals without graphics capabilities, you must enter a blank value for
the smacs and rmacs capabilities. For acsc, enter the characters that you want
INFORMIX-4GL to use for the window border.

The following example shows possible values for smacs, rmacs, and acsc in
an entry for a terminal without graphics capabilities. In this example, win-
dow borders would be drawn using underscores (_) for horizontal lines, ver-
tical bars (|) for vertical lines, periods (.) for the top corners, and vertical
bars (|) for the lower corners.

smacs=,rmacs=,acsc=l.m|k.j|q_x|,

INFORMIX-4GL uses the graphics characters in the terminfo file when you
specify a window border in an OPEN WINDOW statement.
F-28 Modifying termcap and terminfo

Color and Intensity
Color and Intensity
If you use terminfo, you cannot use color nor the following intensity
attributes in your INFORMIX-4GL programs:

BOLD
DIM
INVISIBLE
BLINK

If you specify these attributes in your INFORMIX-4GL code, they are ignored.

If the terminfo entry for your terminal contains the ul and so attributes, you
can use the UNDERLINE and REVERSE intensity attributes. You can see if your
terminfo entry includes these capabilities by using the infocmp program.
Refer to your operating system documentation for information about info-
cmp.

If you want to use color and intensity in your INFORMIX-4GL programs,
you must use termcap (by setting the INFORMIXTERM environment variable
to termcap, and by setting the TERMCAP environment variable to
$INFORMIXDIR/etc/termcap). For more information, see Appendix D.
Modifying termcap and terminfo F-29

Color and Intensity
F-30 Modifying termcap and terminfo

Appendix
G

The ASCII
Character Set
This Appendix lists the ASCII (American Standard Code for
Information Interchange) character set, in ascending order
of numeric codes 0 through 127. This ASCII collating
sequence is the basis for relational comparisons of strings
in INFORMIX-4GL and SQL Boolean expressions. These
characters appear in the font in which most of this book is
typeset.

The caret (^) prefix in the first Character column represents the CONTROL key.

Code, Character Code, Character Code, Character

0 ^@ 43 + 86 V
1 ^A 44 , 87 W
2 ^B 45 - 88 X
3 ^C 46 . 89 Y
4 ^D 47 / 90 Z
5 ^E 48 0 91 [
6 ^F 49 1 92 \
7 ^G 50 2 93]
8 ^H 51 3 94 ^
9 ^I 52 4 95 _
10 ^J 53 5 96 `
11 ^K 54 6 97 a
12 ^L 55 7 98 b
13 ^M 56 8 99 c
14 ^N 57 9 100 d
15 ^O 58 : 101 e
16 ^P 59 ; 102 f
17 ^Q 60 < 103 g
18 ^R 61 = 104 h
19 ^S 62 > 105 i
20 ^T 63 ? 106 j
21 ^U 64 @ 107 k
22 ^V 65 A 108 l
23 ^W 66 B 109 m
24 ^X 67 C 110 n
25 ^Y 68 D 111 o
26 ^Z 69 E 112 p
27 esc 70 F 113 q
28 ^\ 71 G 114 r
29 ^] 72 H 115 s
30 ^^ 73 I 116 t
31 ^_ 74 J 117 u
32 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 120 x
35 # 78 N 121 y
36 $ 79 O 122 z
37 % 80 P 123 {
38 & 81 Q 124 |
39 ' 82 R 125 }
40 (83 S 126 ~
41) 84 T 127 del
42 * 85 U
G-2 The ASCII Character Set

Appendix
H

Reserved Words
This appendix lists keywords that you should not use
as programmer-defined identifiers in an INFORMIX-4GL
program. If you do, the program may fail with a compila-
tion or run-time error, or may produce unexpected results.
(If you receive a system error message that seems to be
unrelated to the statement that produced the error, you
should review this appendix to see if the error may have
been caused by a reserved word used as an identifier.)

In general, you cannot use as an identifier the name of a
built-in constant or variable, nor the name of an operator
that can begin an expression. Chapter 4 describes restricted
functionality that results if you defined a function or report
with the same name as a built-in 4GL function (page 4-6) or
a 4GL operator (page 4-10).

You are permitted to declare most other keywords of 4GL as
identifiers, but you may not be able to reference the identi-
fier in contexts where the keyword makes sense. (For exam-
ple, if you open a 4GL window named SCREEN, you will
not be able to reference it in statements like CURRENT WIN-
DOW where SCREEN specifies the 4GL screen.) Your code is
likely to be difficult to read and to maintain if you use key-
words as identifiers.

See the Informix Guide to SQL: Tutorial for information about
the use of reserved words as SQL identifiers.

In addition to the following words, do not declare the
names of operating system calls, nor of C or C++ language
keywords as identifiers in your 4GL programs.

Do not use any of the following words as 4GL identifiers:

ASCII
AVG
COLUMN
CONSTANT
COUNT
COPY
CURRENT
DATE
DATETIME
DAY
EXTEND
FALSE
FIELD_TOUCHED
GET_FLDBUF
INFIELD
INTERVAL
INT_FLAG
LENGTH
LINENO
MAX
MDY
MIN
MONTH
NEW
NOT
NOTFOUND
NOW
NULL
PAGENO
PERCENT
QUIT_FLAG
SQLCA
STATUS
SUM
TIME
TRUE
TODAY
WEEKDAY
YEAR
H-2 Reserved Words

Appendix
I

Developing
Applications
for International
Markets
The emerging global economy is creating opportunities
and challenges for software application developers.
Increasingly, applications are targeted toward international
environments (such as multi-national corporations) or are
intended for customers in different countries. Meeting the
needs of these global users requires that an application
include international features such as translatable user
messages, forms, menus and reports, as well as date, time,
money and currency formats that can be easily changed to
fit local cultural standards. Application developers now
are faced with the difficult task of internationalization, or
making their applications world-ready.

This appendix describes the internationalization features
provided with INFORMIX-4GL and shows how you can
develop 4GL applications that are world-ready and easy
to localize.

What Is Internationalization?
What Is Internationalization?
Internationalization is the process of making software applications easily
adaptable to different cultural and language environments. Internationaliza-
tion features include support for adaptable date, time and money formats,
and the use of environment variables to switch the run-time environment
from one language to another.

A fully internationalized application can run in different cultural environ-
ments with minimal adjustments; in some instances, you can simply
exchange language-specific files and set up the proper operating environ-
ment. Internationalization removes the need to recompile source code for
a specific language or cultural environment.

An internationalized application should be 8-bit clean. If a software program
or operating system allows the high order bit of a character code to take on a
value of 1, it is referred to as 8-bit clean. 4GL products are 8-bit clean, allowing
the use of Extended ASCII character sets such as IBM PC code pages, or ISO
8859 character sets. An extension of the technology allows usage of double-
byte and multi-byte character sets with the Asian Language Support versions
of 4GL.

What Is Localization?
Localization is the process of translating and adapting an internationalized
product to specific language and cultural environments. Localization usually
involves setting the appropriate date, time, and money formats for the
intended country as well as creating a translation of the product user inter-
face (including help and error messages, prompts, menus, and forms and
reports).

When internationalization is built into the application from the start, the
localization effort will be significantly easier.

Developing Applications for the Global Market
Increasingly, 4GL applications are being deployed in the global market place.
To develop these internationalized applications, developers create their own
menus, forms, reports, and customized help facilities. These elements of the
application will potentially have to be translated into foreign languages.
I-2 Developing Applications for International Markets

Requirements for International Application Development
Requirements for International Application Development
Developing an application that is fully adapted to a country requires the
following:

• The targeted hardware platform and operating system need to support
the desired language/country combination.

Special versions of the operating system environment on both the client
platform and the server platform may be required to support the entry,
manipulation, and display of non-English data.

• The Informix product(s) need to support the language.

Informix products are 8-bit clean and allow entry, manipulation, and dis-
play of most European language data. A special version of Informix prod-
ucts may be required, however, to support Asian or Arabic languages.

• A localized version of the error messages generated by the application
development language and the database server should be available for
the requested languages to provide a localized run-time environment.

• All parts of the user interface created by the application developer, such
as menus, forms, error messages, and help should be translated into the
target language.

As noted earlier, you can reduce localization cost and effort if the application
is designed with international requirements in mind. The following interna-
tionalization guidelines will help you reduce the cost of your localization
efforts.

Internationalizing Applications
To make a 4GL application world-ready, keep the following guidelines in
mind.

• Make sure the targeted hardware and operating system environment,
as well as the version of the Informix products you are using in your
applications, support the desired language and culture.

• Find out if a language translation (localization) is available for the
run-time environment of the application development tool and database
server you are using.

For example, the 4GL development and run-time environments (and the
INFORMIX-OnLine administrator’s environment) are usually translated
into several languages including French, German, Spanish, and Italian.
Developing Applications for International Markets I-3

Internationalizing Applications
• Use the concept of 4GL libraries where possible. This centralizes common
code and makes changes and maintenance easier when developing for
international markets.

• Use variables instead of literal strings where possible in your 4GL appli-
cation. These variables can then be initialized as appropriate for the
specific language environment. Three possible approaches follow:

o You can obtain the information for initializing the variables from a
database table using SQL queries. This is commonly referred to as a
table-driven approach.

o You can use a custom C function to retrieve the value of the variables
from a text file. This is referred to as a file-based approach.

o You can use environment variables to initialize 4GL variables with lan-
guage-specific values.

Your specific application deployment and target environment will deter-
mine the best approach. Each of the methods available for “externalizing”
language-specific elements of the source code has specific advantages,
some of which are summarized at the end of this appendix.

• Make sure that all user messages, reports, and help facilities that were
developed with Informix tools for the application are either table driven
or are controlled by text files or environment variables that are easy to
modify. Keep in mind that forms need to be recompiled after they have
been modified or adapted to a foreign language.

• Avoid embedding or hard coding any messages, prompts, or elements of
the user interface into the source code of the program. Ideally, all user
interface elements can be switched dynamically by referencing a different
set of translated files.

• Make important application parameters such as holidays, bank years,
and formulas table-driven or file-based.

• Consider different keyboard layouts: A character easily accessible on an
US keyboard (such as “/”) might require several key strokes in a foreign
country.

• Allow space for the expansion of user message strings.

Brief English strings such as Pop-Up can double in size as a result of trans-
lation. On average, you can expect a 30% increase in the size of messages.

• Avoid fragmentation of messages or potentially ambiguous key or com-
mand words. Always place comments around any string that pertains to
the user interface to facilitate localization.
I-4 Developing Applications for International Markets

Internationalizing Applications
• Use custom error messages and help files.

The mkmessage utility allows you to create custom help files as well as a
localized version of the 4GL run-time message file. (This is the 4glusr.msg
file in the $INFORMIXDIR/msg directory.)

• Use environment variables to specify the locale of the 4GL application.
Several environment variables affect your 4GL application. For example:

o DBLANG points to the message directory for Informix error messages
and month and day names.

o DBFORM points to the menu form directory for customized 4GL sys-
tem menus.

o DBFORMAT and DBMONEY defines numeric and monetary formats.

o DBDATE defines date and time display.

o All the NLS environment variables.

(For complete information on using NLS, see Appendix E, “Native Lan-
guage Support Within INFORMIX-4GL.”)

• Do not assume that the users of your application will speak English or
will accept any pre-set business rules or formats.

• Make use of subdirectories where possible to store language-sensitive
files, so they can be easily switched to create a new run-time environment.

Alternatively, you can develop your own language variable scheme. For
example, the following three letters identify a unique subdirectory that
contains the compiled form specification files appropriate for a particular
language:

eng = English
fre = French
ita = Italian
spa = Spanish

Using this approach, the names of form files can be composed and
referenced by reading the value of an environment variable that specifies
the language subdirectory:

LET file001 = FGL_GETENV("LANGUAGE"), "/", "form001.frm"
Evaluates to "eng/form001.frm" if LANGUAGE is "eng"
Program reads the eng directory for copy of form001
#
Evaluates to "ger/form001.frm" if LANGUAGE is "ger"
Program reads the ger directory for copy of form001
#
OPEN WINDOW w1 AT 5, 5 WITH FORM file001
Developing Applications for International Markets I-5

Preparing a Translation Checklist
Preparing a Translation Checklist
You may want to create a checklist of user interface elements in your applica-
tion that should be externalized from the source code, and therefore from the
compiled portion of the program into text files. These text files can then serve
as “resource” files to the 4GL application and can be modified even after the
program is compiled.

Elements to externalize include the following:

• Menus

• Messages

• Prompts/Dialog responses

• Command keys

• Help (.msg) text

• Form (.per) files

o Field labels

o Format attributes (dates, times)

o Comments attribute

o Include attribute

• Report names

File-Based Internationalization
The following example shows how a record can be created to hold custom
error messages, and how the record can be initialized by reading an external
message file. This is just one example of a possible internationalization
approach for this situation and it assumes that you will use a C code function
to access the file. As mentioned previously, the messages record could also be
initialized by fetching the data from a database table.

If you provide custom C code functions for file access, make sure the C code
is 8-bit clean and does not strip out characters in the extended 8-bit character
range where the most significant bit is set to 1.
I-6 Developing Applications for International Markets

File-Based Internationalization
First create a record for all messages:

STR record
mssg1 char(40),# Enter Name
mssg2 char(80),# Validate input by pressing "Accept"
. . .

end record

Next, use a C function to initialize the variables from a file:

• For a C Compiler Version application, link the C function with the
application.

• For an RDS Version application, make sure that the custom runner
includes the function.

let file_01 = “msgs_01.”, FGL_GETENV (“LANGUAGE”)
let STR.message_01 = C_get_message(file_01, 0001)
let STR.message_02 = C_get_message(file_01, 0002)

Two parallel initialization files follow; the first is in English, and the second
is in German.

Contents of text file "msgs_01.eng"

This file contains messages and prompts for module A.
Note to Translator! Don't exceed buffer length specified in brackets!

0001: "Enter name", <40>
0002: "Validate input by pressing "Accept"", <80>
0003: "File not found", <40>
0004: "A serious error has occurred, please contact Technical Support", <80>
0005: "", <80>
0006: "", <80>
. . .
Developing Applications for International Markets I-7

Table-Based Internationalization
Contents of text file "msgs_01.ger" after translation
(Stored in TRNSLATE/German directory)

This file contains messages and prompts for module A.
Note to Translator! Don't exceed buffer length specified in brackets!
Translated for German customer Schulz on October 31, 1993

0001: "Namen eingeben", <40>
0002: "Eingabe bitte mit "Accept" bestätigen", <80>
0003: "Datei nicht gefunden", <40>
0004: "Schwerwiegender Fehler! Bitte Kundendienst anrufen!, <80>
0005: "", <80>
0006: "", <80>
. . .

Setting the environment variable LANGUAGE to either “eng” or “ger”
changes the messages from English to German without requiring you
to recompile the 4GL application source code.

Table-Based Internationalization
As noted earlier, localization information can also be stored in database
tables. This information can be used when you initialize the application or as
the application runs to change the value of variables defining messages,
prompts, menus, and other language or culturally sensitive data.

An advantage of the table-based approach is that it is highly portable
between systems. It is easier to implement than a file-based approach since
it does not require custom C functions.

The following is an example of a table to store menu options.

CREATE TABLE menu_elements(
msg_languageCHAR(3),# language ID code
msg_numberSMALLINT,# message number
msg_textCHAR(80),# message text
msg_maxlenSMALLINT# maximum length of message
)

CREATE UNIQUE INDEX ix_errormesg ON menu_elements(msg_language, msg_number)
I-8 Developing Applications for International Markets

Forms, Reports, Message Files, and Help Files
Example data:

ENG 150 Cold Beer
FRE 150 Bière froide
GER 150 Kaltes Bier
SPA 150 Cerveza fría
ENG 151 Iced Tea
...

A global variable with the application's language code (corresponding to the
value in the msg_language column) could be set in the program upon start-
up. Then, every time a message is needed, a function could be called that uses
the language code and message code to identify the appropriate message
string. For example:

program startup
LET g_language = get_language()# returns 3 letter code corresponding

to value in msg_language column
main ring menu
LET p_str = get_message(150, g_language)
MENU p_str

Forms, Reports, Message Files, and Help Files
Since you cannot use 4GL variables to specify text (for example, field labels)
within a form file, you should use one of two approaches to specify the
appropriate form:

• Create a set of modified forms for each language you plan to support.

You can then store each set of forms in a language subdirectory which can
then be selected by the application. You can use environment variables to
specify the appropriate set of forms, or provide a menu and allow the user
to make the selection.

• Remove all literal text (this includes field labels) from your form specifi-
cations and use 4GL DISPLAY statements to display this information.

The DISPLAY statements can reference variables that are initialized to
contain different values depending on the language wanted.

You can handle reports (which are 4GL programs) same way you internation-
alize the rest of your 4GL source code. Make sure to leave sufficient space in
your headers and titles to accommodate the potentially longer text of a for-
eign language translation.
Developing Applications for International Markets I-9

Localizing Your Applications
Finally, you can use the mkmessage utility to customize the error message
files delivered in source code format and to create help files.

Localizing Your Applications
As noted previously, localization refers to the actual process of adapting the
application to the cultural environment of the end users. This process often
involves translation of user interface and user documentation and can be
quite time consuming and costly. Here are some guidelines to follow.

• Consult the native operating system internationalization guide.

Most platforms provide documentation on internationalization. This
material may help you to determine which date/time and money formats
are appropriate for the target language/culture.

• Keep a glossary of all strings and keywords in a database or text file.

This glossary of terms and strings will make it easier to see which mes-
sages are duplicated throughout the source code. The glossary will also
increase consistency of terms and language of the user interface through-
out the application. Once the glossary is created for one language, it can
be used for product updates and additional localizations.

• Create a mechanism that allows a glossary to drive the definition of the
user interface.

This can be particularly useful if you expect to localize the application
often. A translator can edit the glossary without having to understand the
source code of the application. Your tool can then create the user interface
from the translated glossary, and the translator can focus on making cos-
metic enhancements to the translation (such as positioning the messages
appropriately) and correcting minor errors.

• Consider retaining a professional translator for some or all of this process.

A faulty translation is very costly. You can spend a great deal of time and
money correcting errors in your localized product. And, if you do not cor-
rect the problems, your users will be dissatisfied with your application.
I-10 Developing Applications for International Markets

Internationalization Methodology Overview
Internationalization Methodology Overview
The following table lists the different elements of an application and indi-
cates how each can be internationalized. This overview, while not compre-
hensive, illustrates how to approach a project of this nature. In several
instances, table-driven, file-based, and environment-variable based
approaches are contrasted.

Application
Element

Method
Available Comments

Menus, Prompts,
Command
Keys, Report
titles, names,
and other
application
variables

Table-driven

File-based

Environment
variable-based

Assumes availability of database tables. Requires hard coding of defaults
in case database tables cannot be accessed. Portable approach, but
requires database access for translation. Can cause performance
degradation in client-server environments because of the additional
number of queries required. To improve performance issues in client-
server environments, initialize the most common language variables at
application start-up.

Assumes customized C code function to access files. Text files can be
easily modified to create additional translations. Potential limitation of
file naming schemes or operating environment. National language
characters can have a different encoding on client and server
platforms.This approach provides a solution to the encoding problem
across multiple platforms. May yield better performance than the table-
driven method since fewer SQL queries are required overall.

Assumes sufficient space in environment to store all information. Easy to
set up and maintain on a single platform, but can lead to more complex
portability issues between platforms. The main advantage of this method
is that there is no need for a customized C code function to access text
files and no additional SQL queries to obtain information from tables.

Help and Error
messages

Table-driven

File-based

Assumes availability of tables. Often needs hard coded defaults in case
data tables cannot be accessed.

Use the mkmessage utility to create help files and to modify error
message files (if source code for error message files is delivered with the
product).

Forms Translation Forms need to be translated and recompiled to adapt to foreign
languages and different cultural environments. Store in separate
subdirectories and select using user menus or a language naming
scheme.

Alternate is to remove all literal text from each form specification and to
use DISPLAY statements to display this information on the form.

Date, Time,
Money Formats

Informix
environment
variables

Informix Environment variables DBMONEY and DBDATE allow to adapt
the display of date, time and money formats to cultural conventions.

Figure I-1 Internationalization Methods
Developing Applications for International Markets I-11

Internationalization Methodology Overview
Informix error
messages

Informix
translation

Custom error
message files

Informix provides error message translation for a variety of
languages.You can use the DBLANG environment variable to point to a
message directory containing translated messages. Contact your local
Informix sales office for a list of available language translations.

If no Informix translation of the error messages is available, and if the
source code of error message files are delivered with the product, you can
localize the message source file(s) using the mkmessage utility.

Application
Element

Method
Available Comments

Figure I-1 Internationalization Methods
I-12 Developing Applications for International Markets

Glossary
Glossary
4GL function A 4GL program block defined with the FUNCTION

statement. The function header follows the FUNCTION
keyword and defines the name and formal argument list
for the function. The function body (all statements
between the function header and the END FUNCTION
keywords) defines the actions of the function. The func-
tion header and the function body together are often
called the “function definition.” To return values,
use the RETURN statement within the function body.
Frequently, a 4GL function is simply referred to as a
“function.” See also argument, function, programmer-
defined function, program block, return value.

4GL screen 1) In the INFORMIX-4GL Interactive Debugger, the 4GL
screen is where the Debugger displays the
4GL application.

2) When running a 4GL application, the 4GL screen is the
display area of the screen; this area displays the applica-
tion’s forms, 4GL windows, and text. See also 4GL win-
dow, screen.

4GL window A rectangular region in the 4GL screen, possibly one of
many, managed by a 4GL application. The default 4GL
window, is the 4GL screen. The OPEN WINDOW state-
ment creates a new 4GL window. 4GL manages its win-
dows with a stack. Each window is pushed onto this
stack when it is opened. A 4GL program performs its
input and output in the current window. See also 4GL
screen, current, popup window, reserved lines, screen, stack.

abnormal termination The termination of the 4GL application through any mechanism other
than exiting the MAIN program block at the END MAIN keywords or with
a RETURN statement. A run-time error, pressing an Interrupt or Quit key,
or executing the EXIT PROGRAM statement result in an abnormal termi-
nation. In the INFORMIX-4GL Interactive Debugger, you can inspect the
application state after an abnormal termination. You cannot, however,
resume execution. See also debug, exception handling, MAIN program block,
normal termination, program execution.

Accept key The logical key that the user can press within a 4GL application to indicate
acceptance of the entered data or query criteria. Pressing it requests nor-
mal completion of a user interaction statement. By default, the physical
key for Accept is ESCAPE. See also data entry, Interrupt key, logical key, query
criteria, Quit key, user interaction statement.

activation key A logical key that the developer defines to provide the user with some
programmer-defined feature. The developer can define an activation key
in the ON KEY clause of the CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT
ARRAY, or PROMPT statement; or in the KEY clause of the MENU statement.
When the user presses the activation key, 4GL executes the control block
associated with that key. See also control block, key, logical key, menu option.

active form A screen form for which the current user interaction statement is execut-
ing. An application can have several active forms if it has several 4GL
windows, each continuing a screen form with a user interaction statement
executing. With multiple active forms, only one form is current. See also
4GL window, current, screen form, user interaction statement.

active function A 4GL program block (including MAIN, a function, or a report) that has
started execution but not completed execution. The active functions con-
sist of all functions on the call stack—that is, of the current function and all
functions that are waiting for a function call to return. The MAIN program
block is always active for the program session. You can inspect active func-
tions within the INFORMIX-4GL Interactive Debugger. See also active
variable, abnormal termination, call stack, debug, normal termination, program
block, program execution.

active set The collection of database rows satisfying a query associated with a data-
base cursor. An active set is stored in memory at run time. It contains only
a copy of the rows that match the query criteria. See also cursor, query, row.

active variable A 4GL variable for which storage exists. The active variables consist of the
local variables of all active functions, the module variables of all modules
containing the active functions, and all global variables. You can evaluate
2 Glossary

or assign values to active variables within the INFORMIX-4GL Interactive
Debugger. See also active function, abnormal termination, global variable, local
variable, module variable, normal termination, program execution, scope.

active window The window that contains the current keyboard focus. See also keyboard
focus.

actual argument In a function call, the value being passed by the calling routine as an argu-
ment to the programmer-defined function. This value must be of a com-
patible data type with the corresponding formal argument in the function
definition. There are two methods for an actual argument to be passed to
a function: pass-by-reference and pass-by-value. See also argument, calling
routine, data type conversion, formal argument, function call, pass-by-reference,
pass-by-value, programmer-defined function.

aggregate function 1) A function built into the SQL language that returns a single value based
on the values of a column in several rows of a table. These functions are
called SQL aggregate functions. Examples of SQL aggregate functions are
SUM(), COUNT(), MIN(), and MAX(). These are valid only within SQL
statements. See also column, row, SQL, table.

2) A function built into the 4GL language that returns a single value based
on the values of input records. These functions are called report aggregate
functions. Examples of report aggregate functions are SUM(), GROUP
SUM(), PERCENT(*), MIN(), and MAX(). Report aggregate functions are
valid only within a REPORT program block. See also built-in function, input
record, program block, report.

alias In the database, an alias is a synonym for a table name. It immediately fol-
lows the name of the table in an SQL statement. It can be used wherever
the name of a table can be used. Aliases are often used to create short,
readable names for long or external table names. See also table.

ANSI-compliant A database that conforms to certain ANSI (American National Standards
Institute) performance standards. Informix databases can be created either
as ANSI-compliant or as not ANSI-compliant. An ANSI-compliant
database enforces ANSI requirements such as implicit transactions,
required owner-naming, and no buffered logging. The term MODE ANSI is
sometimes used to refer to an ANSI-compliant database. See also database,
implicit transaction.

application
development tool

Software, such as INFORMIX-SQL, INFORMIX-4GL, and INFORMIX-ESQL,
which a developer can use to create and to maintain a database. Such soft-
ware allows a user to send instructions and data to and to receive informa-
Glossary 3

tion from a database server. An application development tool is sometimes
referred to as the “front end” and the database engine as the “back end.”
See also database engine.

application program 1) A computer program developed and implemented for dealing with
some business activity. (A computer program is a group of instructions
that cause a computer to do a sequence of operations.) An application pro-
gram is synthesized from some combination of application development
tools. See also application development tool, database, developer, user.

2) In 4GL, an application program is the 4GL program, with one MAIN
program block, its supporting 4GL source modules, its form specification
files, and its help message file. See also form specification file, help file, MAIN
program block, source module.

application program
interface (API)

A rigorous definition of the method by which a program can access the
services provided by another program. Developers of an API often provide
libraries of callable functions that implement the API. Examples include:
the 4GL API enables a C program to call a 4GL routine; Motif enables a
C program to call X Windows; INFORMIX-ESQL, which is an SQL API,
enables a C program to access a database. There can be many different
APIs that provide access to the same set of services, though possibly at dif-
ferent points of entry. In some cases, the same API can be used to access dif-
ferent services. (Example: NetBIOS is a network API that is protocol-
independent and often used to access a variety of different protocols such
as OSI, TCP/IP, and so on.) See also application development tool.

argument A value passed from a calling routine to a function. In the calling routine,
the value passed is called an “actual argument.” Within the function
definition, the name of the argument is called a “formal argument.” When
the function is called, the value of the actual argument is assigned to the
corresponding formal argument variable. See also actual argument, calling
routine, formal argument, pass-by-reference, pass-by-value, programmer-defined
function, report.

arithmetic operators Operators that perform arithmetic operations on operands of number
(and some time) data types. The following are 4GL binary arithmetic
operators: addition (+), subtraction (-), multiplication (*), division (/),
exponentiation (**), and modulus (MOD). 4GL unary arithmetic operators
are: unary minus (-) and unary plus (+). The following precedence is
for arithmetic operators: (highest) unary minus and plus; (next highest)
exponentiation, modulus; (next highest) multiplication, division; (lowest)
addition, subtraction. Arithmetic operators yield a numeric result. See also
associativity, binary operator, operand, operator, precedence, unary operator.
4 Glossary

array 1) A data structure having a fixed number of components. Each
component is called an element. All elements in an array have the
same data type. See also array element, screen array.

2) In uppercase, ARRAY is the keyword for defining a program array
in 4GL. The ARRAY data type is a structured data type of up to three
dimensions. It cannot have another array as an element. An array element
is accessed by listing the array name followed by a subscript. See also
program array, structured data type, subscript.

array element A component of a program array. An element can be of any 4GL data type,
except ARRAY. To reference the position of any element within an array,
use a subscript (sometimes called an “array index”). See also array, program
array, subscript.

ASCII 1) Acronym for American Standards Code for Information Interchange.
Often used to describe the ordered set of internal codes which a computer
uses to represent characters. This set includes both printable and non-
printable characters. Appendix G contains a list of the ASCII character set.
See also control character, escape character, printable character.

2) An ASCII file is one containing ASCII characters as opposed to binary
information. An ASCII file is readable in a text editor. 4GL source modules
and form specification files are examples of ASCII files. See also form
specification file, source module, text editor.

3) In NLS, ASCII can refer to either the ASCII character set, which is a set of
128 characters and their numeric representations, or ASCII collation, which
is the ordering of characters in the ASCII character set by their numeric val-
ues. See also Native Language Support.

assign To store a value in a variable. The 4GL assignment operator is the LET
statement. 4GL evaluates the expression on the right-hand side of the “=”
and assigns it to the variable listed on the left-hand side. You can also
assign values to a variable with the following 4GL statements:
CALL...RETURNING, FOREACH...INTO, INITIALIZE, INPUT, INPUT ARRAY,
and PROMPT; and with the INTO clause of the SQL SELECT statement.
In evaluation of expressions, assignment has the lowest precedence.
See also expression, operator, precedence, variable.

associativity The principle that determines the order in which operands at the same
level of precedence in an expression are evaluated. For example, to evalu-
ate the expression a - b + c, 4GL first evaluates a - b and then adds c to the
result because binary arithmetic operators associate to the left. See also
binary operator, expression, precedence.
Glossary 5

asterisk notation The syntax “.*” appended to the name of a table (table.*) or a program
record (record.*). This syntax expands to the names of all columns in a table
or of all members in a record. See also program record, table.

attribute 1) A characteristic or aspect of some entity which the developer can set.
4GL provides attributes for form fields (field attributes), screen forms
(form attributes), database columns (column attributes), and for output
text (display attributes). Field attributes are set on a field-by-field basis in
the form specification file. Form attributes are set with the ATTRIBUTES
clause of the DISPLAY FORM statement and of the 4GL user interaction
statements. Display attributes can also be set with the ATTRIBUTES clause.
Column attributes are set on a column-by-column basis with the upscol
utility. See also column, field, form, form specification file, user interaction state-
ment.

2) In some database terminologies, a term used for a “column.” See also
column.

background process In a multi-processing environment, a process that is not performing input
or output. It can continue to run without needing access to a window or
the screen. See also foreground process, process, screen.

batch A mode of execution in which a program runs without input from a user.
4GL programs that do not use user interactive statements are batch pro-
grams. If a batch program produces output, it should direct the output to
a file or the printer, not the screen. Often reports are run in a batch mode.
See also interactive, program execution, report, user interaction statement.

binary operator An operator that requires two operands. The binary operator appears
between the two operands. In 4GL, examples of binary operators include
addition (+), multiplication (*), and logical AND. 4GL associates most
binary operators from left-to-right. See also arithmetic operators,
associativity, Boolean operators, operand, operator, precedence, relational
operators, unary operator.

binding A one-to-one correspondence between entities in two domains. The
association between an identifier and its resource (a location in memory)
is called a binding. In 4GL, the correspondence between form fields and
program variables during data entry is also called a binding. Several 4GL
user interaction statements include a binding clause that lists the names
that accept user input from a form field and program variables and their
corresponding form fields (or database columns). These statements
include CONSTRUCT, INPUT, INPUT ARRAY, and PROMPT. See also data
entry, identifier, program array, program record, screen array, screen record, user
interaction statement.
6 Glossary

blank space The character with the value of ASCII 32. A string of blank spaces is not the
same as a NULL string (which has nothing in it). 4GL pads string values
with blank spaces up to the size of the CHAR or VARCHAR variable. Spaces
are also used to separate elements on a form. Also referred to simply as
“blanks.” See also ASCII, clipped, null value, printable character, string.

blob An acronym for Binary Large Object. In 4GL, blob data types can hold
values that occupy up to 231 bytes. These data types include TEXT
(character data) and BYTE (binary data). See also byte, data type, text.

Boolean 4GL includes two Boolean constants: FALSE (= 0) and TRUE (=1). If an oper-
and evaluates to NULL, Boolean operators can yield an “unknown” result
that 4GL treats as FALSE, in some contexts. Because 4GL does not have a
Boolean data type, Boolean values should be stored in the integer data
types. See also Boolean operators, constant, integer, relational operators.

Boolean operator An operator that returns a Boolean value. In some contexts, 4GL interprets
any operand that is NULL as having a value of FALSE and any non-zero
operand as TRUE. Boolean expressions can also include relational opera-
tors. See also associativity, binary operator, Boolean, operand, operator, prece-
dence, relational operators, unary operator.

built-in function A function which is part of the 4GL language and can therefore be called
from a calling routine without needing to be defined by the developer.
Function calls for built-in functions have the same syntax as those for
programmer-defined functions. Examples of built-in functions are:
ARG_VAL(), ARR_CURR(), FGL_KEYVAL(), and SCR_LINE(). See also 4GL
function, aggregate function, built-in operator, calling routine, function call, pro-
grammer-defined function.

built-in operator An operator which is part of the 4GL language. Built-in operators are key-
words that perform special tasks. They differ from built-in functions in
that they cannot be invoked with the CALL statement and they cannot be
called from a C function. Examples of built-in operators are: ASCII, CUR-
RENT, DATE, and TODAY. See also built-in function, keyword, operator.

byte 1) A unit of storage, corresponding to one character. A kilobyte is 1,024
bytes. A megabyte is 1,048,576 bytes. See also character.

2) In uppercase letters, BYTE is the 4GL and SQL data type that can store
up to 231 bytes of binary data. See also blob.

C Compiler Version The version of 4GL that precompiles 4GL code into INFORMIX-ESQL/C
code and then translates the ESQL/C into object code, executable directly
from the command line. See also compile, Rapid Development System.
Glossary 7

call stack A stack used by 4GL at run time to keep track of active functions. An active
function is one that has been called but that has not yet returned. Each time
the program calls a function, the function’s state is pushed onto the call
stack. When a function exits, the state is popped off the call stack. The
MAIN program block is always at the bottom of this stack. You can exam-
ine the call stack within the INFORMIX-4GL Interactive Debugger. See also
active function, MAIN program block, stack.

call-by-reference See pass-by-reference.

call-by-value See pass-by-value.

calling routine The program block that calls a function (or report). In 4GL, the calling
routine can be either a MAIN, a FUNCTION, or a REPORT program block.
This call can be explicit, by means of the CALL statement, or implicit,
by embedding the function name within an expression. The calling
routine can pass in values through the function arguments and can receive
return values (if they are defined within the function). See also argument,
expression, function call, program block, return value.

case sensitivity The ability to distinguish between uppercase and lowercase letters. The
4GL language is not case-sensitive. The variables a and A refer to the same
address in memory. Certain command-line syntax (command names and
options) are case-sensitive. See also identifier, keyword, naming conventions.

category In NLS, category refers to each feature of the locale, pertaining to one
aspect of the language and formatting environment. Standard NLS catego-
ries include collation, character set, monetary formatting, numeric format-
ting, and date/time formatting. Date/time formatting is not a supported
NLS category in 4GL. See also Native Language Support.

character 1) Any letter, digit, symbol, or control sequence that can be represented by
the ASCII character set. See also ASCII, blank space, control character, escape
character, printable character.

2) The character data types are CHAR and VARCHAR (and in some con-
texts, a TEXT variable). See also blob, data type, string, string operators, sub-
script.

3) What a single keystroke, control character, or escape sequence produces
that the program, operating system, or output device treats as a single
unit. See also activation key, logical key, operating system.

character set A set of valid characters, each of which corresponds to an integer value
from 0 to 255 (8-bit) or 0 to 127 (7-bit). In NLS, a character set is specified
by way of the name of a character set file. A character set file contains all
8 Glossary

of the characters and their corresponding numeric values. The NLS char-
acter sets are provided to meet the needs of European countries. They
extend the ASCII character set used for English, which consists of 128 char-
acters (there are 128 possible combinations of 7 bits of data), to one of sev-
eral possible sets of 256 characters (based on 8 bits per character). The most
prevalent of the 256-character sets are the ISO 8859-1 and 8859-2 standards.
See also ASCII, Native Language Support.

clipped The CLIPPED keyword is a built-in operator that removes trailing blank
spaces from strings. It is often used in DISPLAY and PRINT statements. See
also blank space, built-in operator, string operators.

close To cease to use an open entity. In programming, closing something
releases control of it and deallocates any resources that it used. For exam-
ple, when you close a database cursor, you release any memory or disk
space that was used to hold the active set for that cursor. When you close
a file, you tell the system that you no longer require the file and others can
use it. When you close a form, you release any memory or disk used to
store it. When you close a 4GL window, you deallocate memory for the
image of the window and pop it from the window stack. Typically things
cannot be closed until they have been opened. See also 4GL window, close,
cursor, file, open, screen form.

column 1) In a database, a column is a data element containing a particular type of
information common to every row of the table. In other database terminol-
ogies, a column is sometimes called a “field” or an “attribute.” See also
attribute, database, row, table.

2) On a screen, a column is the x-coordinate of a particular position. The
y-coordinate is called a row. Several 4GL statements use rows and columns
in this sense to identify location of display. See also row, screen.

command line A line of text typed by the user at the operating system prompt to run
a program. In a character-based environment, all programs are invoked
by a command line with optional command-line arguments and options.
See also operating system.

comment Descriptive information put in a source file to explain the file’s contents.
Comments are introduced with special symbols to notify the compiler that
subsequent text can be ignored. In 4GL source modules, comments can
be introduced by putting the left brace ({) in the first position of the source
file line to “open” a comment. You must then also include a right
brace (}) anywhere on a line to “close” the comment. To put a comment on
the same line as code, precede the comment with a double-hyphen (--)
Glossary 9

or the “#” symbol. In 4GL form specification files, comments can be intro-
duced with braces and the double-hyphen; the initial “#” symbol is not
valid. See also form specification file, header, source module.

commit Successfully end a transaction by accepting all changes to the database
since the beginning of the transaction. When the transaction is committed,
all open database cursors (except hold cursors) are closed and all locks are
released. The COMMIT WORK statement commits the current transaction.
See also cursor, log, roll back, transaction.

compile 1) Translate a program from the source code written by the developer to a
form executable by the computer (machine code). This translation is done
by a system program called a “compiler.” Results of the translation are
called “object code” or a “compilation.” See also debug, execute, interpret,
link, source module.

2) In 4GL, you can compile 4GL source code into either p-code or C lan-
guage code. For the p-code, the compiler translates the 4GL code into an
intermediate form (p-code) that must be executed by the P-code runner.
For C code, the compiler first calls a preprocessor to translate 4GL code into
INFORMIX-ESQL/C code. It then translates the ESQL/C into object code,
executable directly from a command line. See also C Compiler version, com-
mand line, compiler directive, p-code, preprocessor, Rapid Development System.

compiler directive An instruction within a source module to a compiler, as opposed to
an executable statement. In the C language, directives can address the
preprocessor portion of the compilation, requesting, for example,
conditional compilation or inclusion of a named file. In 4GL, the
WHENEVER and DEFER statements are compiler directive. The effect of
the WHENEVER lasts until the end of the source file (or until overridden
by another WHENEVER). See also compile, exception handling, preprocessor,
source module, statement.

concatenate To form a character string by appending a second character string to
the end of a first character string. In 4GL, the concatenation operator
is a comma (,). See also character, string, string operators.

consistency checking The process of verifying that the user session’s collation and character set
variable settings match settings in the database locale. In the Implicit and
Explicit NLS environments, consistency checking determines whether or
not access to a database is permitted. In the Open NLS environment,
consistency checking is overridden. See also Explicit NLS environment,
Implicit NLS environment, NLS environment, Open NLS environment.
10 Glossary

constant A value which, unlike the value of a variable, does not change during
execution of a program. Examples of 4GL constants are NOTFOUND,
FALSE, and TRUE. The values of 4GL constants cannot be changed
by the developer. See also Boolean, literal, variable.

control block A statement block that executes when a certain condition (the “activation
clause”), becomes true. In 4GL, control blocks like BEFORE FIELD, AFTER
INPUT, AFTER CONSTRUCT, and ON KEY occur in the user interaction
statements; in this context they are often called “form management
blocks.” Control blocks also occur in the FORMAT section of a report,
including PAGE HEADER, AFTER GROUP OF, and ON EVERY ROW. See also
activation key, report, statement block, user interaction statements.

control character A character whose occurrence in a specific context initiates, modifies,
or stops a control function (an operation to control a device, for example,
in moving a cursor or in reading data). Control characters have values
below ASCII 32 in the ASCII character set. In a 4GL program, some control
characters have predefined functions (pressing CONTROL-W obtains on-
line Help). The developer can also define actions that use CONTROL keys
in conjunction with another key to execute some programming action. See
also activation key, ASCII, character, logical key, modifier key.

current The one item, among many similar items, that is about to be or was most
recently used. The current directory is the host system directory that was
selected most recently (it is where files are first looked for). The current
row is the row that was last fetched through a database cursor (it can be
deleted or updated using the cursor). The current window is the window
most recently activated (it receives your keystrokes). The current state-
ment is the program statement being executed (it is displayed in an error
message if the program terminates). See also cursor, directory, row, statement.

cursor 1) A focal point at which action can be applied. A text cursor is a mark
showing the focal point for keyboard input. See also keyboard focus, text
cursor.

2) A database cursor is an identifier associated with an active set. It points
to the current row in the active set. This row can be fetched, deleted, or
updated. 4GL supports the following types of database cursors: sequential,
scroll, hold, update, and insert. See also active set, close, current, identifier,
open, prepared statement, query, row, scrolling.

data conversion See data type conversion.
Glossary 11

data entry 1) The action of providing, usually at the keyboard, data values to a
computer program. Data entry is performed by the user of an application
at run time. In a database application, these values are usually stored in
a database. See also application program, key, user interaction statements.

2) A set of data values to be stored in program variables, and often, in a
database table. The INPUT, INPUT ARRAY, and PROMPT statements accept
data entry. See also query criteria, table, user interaction statement.

data file A file that contains the input used by a program. Data files are not execut-
able; they contain data that is to be read or acted upon by other programs.
See also file.

data type An interpretation to use on a stored value. In 4GL, database columns, pro-
gram variables, form fields, and formal arguments of a function (or report)
all have data types associated with them. The 4GL data types include: inte-
ger—SMALLINT, INTEGER; fixed-point—DECIMAL(p,s), MONEY; floating-
point—DECIMAL(p), FLOAT, SMALLFLOAT; character—CHAR, VARCHAR;
blob—BYTE, TEXT; time—DATE, DATETIME, INTERVAL; structured—
ARRAY, RECORD. A column in a database can also use the SERIAL data
type. See also blob, character, data type conversion, declare, fixed-point number,
floating-point number, integer, interval, operator, simple data type, structured
data type, variable.

data type conversion The process of interpreting and storing a value of one data type as some
other data type; sometimes called simply “data conversion.” The pairs of
data types for which data conversion is possible without error are called
“compatible data types.” This process can be automatic or explicit. 4GL
performs some automatic data conversion in expressions and assignment.
It also provides facilities to perform some explicit data conversion (for
example the EXTEND() function). In addition, the LIKE keyword, when
used in a variable definition, provides “indirect data typing.” See also
column, data type, define, indirect typing.

database A collection of related data organized in a way to optimize access to
this data. A “relational database” organizes data into tables, rows, and
columns. Informix databases are relational databases. At run time, a sepa-
rate database engine process is the portion of the database management
system that actually manipulates the data in the database files. To access a
database, a 4GL application must specify it with the DATABASE statement
and must use SQL statements. See also column, database engine, process, row,
SQL, system catalog, table.

database cursor See cursor.
12 Glossary

database engine The part of a database management system that manipulates data files.
This process receives SQL statements from the database application, parses
them, optimizes the approach to the data, retrieves the data from the data-
base, and returns the data to the application. Informix provides two data-
base engines: INFORMIX-OnLine and INFORMIX-SE (both UNIX and DOS
versions). The database engine is also called the “back end,” “database
server,” or “database agent.” See also application development tool, database,
process.

database locale Locale of the user at the time of database creation, permanently saved in
database system tables and consulted when the database is accessed. Cur-
rently only the collation (LC_COLLATE) and character set (LC_CTYPE)
variables are saved. See also Native Language Support, user locale.

database server See database engine.

debug 1) Finding and removing run-time errors in a computer program. This
analysis is often done by special software products called “debuggers.”
You can analyze a program to detect and locate errors in its logic, change
the source code appropriately, then compile and run the program again.
See also compile, execute, link.

2) If you are using the RDS Version, you can use the INFORMIX-4GL Inter-
active Debugger to debug 4GL programs. The Debugger helps you control
and monitor program execution and inspect the application state. The
Debugger is purchased separately from 4GL. See also program execution,
Rapid Development System.

declare To make the name and data type of a variable known to a compiler. In 4GL,
the DEFINE statement declares variables so the 4GL compiler can verify ref-
erences to the variables in the succeeding code. The GLOBALS statement
declares global variables. See also compile, data type, define, global variable,
variable.

default The value that will be used, or the action that will be taken, unless you
specify differently. In many SQL and 4GL statements, there is a default
action that will be used if you do not specify another; for example, the
FETCH statement retrieves the NEXT row unless you specify a different
keyword such as PRIOR. Screen forms can specify a default value for input
from each field, in case the user fails to enter one. See also screen form,
variable.
Glossary 13

define To allocate memory for storage of a variable. At run time, the DEFINE
statement indicates how much storage should be allocated for a variable.
The GLOBALS statement defines global variables. To define a function (or
report) is to specify the actions performed by the function. See also data
type, declare, execute, function, global variable, report, variable.

Delete key The logical key that the user can press within a 4GL application to delete
the current line of a screen array (the current screen record) during the
INPUT ARRAY statement. 4GL automatically deletes the associated line of
the program array. By default, the physical key for Delete is F2. See also
Insert key, logical key, program array, screen array, screen record.

delimiter A character that separates one unit of text from another. The eye can easily
see boundaries based on context, but programs need unambiguous
marker characters to detect the end of one item and the start of the next. In
data produced by the UNLOAD statement, the data from each column ends
with a delimiter (| by default) so that the LOAD command can recognize
the end. In the form specification file, brackets ([]) mark or delimit the
fields of the form. See also form specification file.

developer An individual who develops computer programs, taking them from
design, coding, and debugging to general release. 4GL provides the devel-
oper with a means of developing database applications. Also referred to as
the “programmer.” See also application program, user.

development
environment

The special set of tools that a developer can use to develop computer pro-
grams. This environment may include text editors, language compilers,
function libraries, program linkers, program debuggers, and other pro-
gram utilities. Some of these tools may be accessed by “wrapper” pro-
grams, which are executive programs that decide which tools need to be
run. The Programmer’s Environment is an integrated development envi-
ronment that combines many of these tools into a single, cooperative envi-
ronment. See also compile, debug, execute, link, Programmer’s Environment,
text editor.

directory A directory is a “file folder;” it contains other files. Directories can also
contain other directories; this is used to organize related files into catego-
ries. The user can construct a hierarchy of sub-directories and files that
resembles an inverted tree in structure. Each user has a home directory
that represents the top level of the user’s personal hierarchy of other direc-
tories and files. The current directory is a single directory (selectable by the
user) that enables the user to be “in” one directory at a time, and to refer
to its files unambiguously. To refer to files in other directories, the user
must supply a path, that is, a list of the sub-directories that describe the
location of those files. See also current, file, operating system.
14 Glossary

element See array element.

environment
variable

A special variable with a value that is maintained by the operating system
and made available to all programs. They are usually stored in a special
system area and contain system specifics such as the path (the directories
in which the operating system looks for user-invoked commands). See
also operating system, shell.

error An exception that indicates failure of a requested action or an illegal
specification. Errors can occur during compilation—during preprocessing
of program statements or during the linking stage—or during execution of
the program. At run time, some errors are “fatal” in that the program can-
not continue execution (run-time errors); others are recoverable in that the
program can take corrective action and continue execution. Rounding
errors can occur during truncation in rounding; overflow errors can occur
during arithmetic operations in which the size of the result is larger than
the size of the space in which the result is to be stored. See also compile,
error handling, exception, execute, link, status variable, truncation.

error handling Program code that checks for a run-time error. By default, 4GL terminates
a program when it encounters a run-time error. The 4GL WHENEVER
ERROR statement can change this default error handling behavior. With
the WHENEVER ERROR CONTINUE statement, 4GL sets the built-in status
variable to a negative value and continues execution when it encounters a
run-time error. The program must explicitly check the value of status and
determine appropriate action. See also error, error log, error text, exception
handling, program execution, status variable.

error log A file that receives a program’s error information at run time. 4GL contains
some built-in functions that allow you to make entries in the error log:
ERR_GET(), ERR_PRINT(), ERR_QUIT(), ERRORLOG(), and STARTLOG().
See also built-in function, error, error handling, status variable.

error message Text that describes a 4GL error. Each error is identified by an integer,
usually negative, called an “error code.” Each code corresponds to a spe-
cific error message. Such messages can be retrieved by running the finderr
utility or within a program by making a call to the ERR_GET(),
ERR_PRINT(), or ERR_QUIT() built-in functions. By default, 4GL
automatically displays some run-time error messages on the screen.
See also error handling, error log, status variable.

escape character A character which indicates that the following character, normally inter-
preted by a program, is to be printed as a literal character instead. Usually
programs which handle user input (such as text editors and shells) have
some characters which have special interpreted meanings. The escape
Glossary 15

character is used in conjunction with the interpreted character to “escape”
or ignore the interpreted meaning. The ASCII escape character is a non-
printing character with value of ASCII 27. In 4GL, the backlash (\) symbol
can be used as an escape character: the string “\\” would indicate that the
backslash character is to be sent. See also ASCII, character, printable character,
shell, text editor.

Escape key The physical key usually marked ESC on the keyboard. It sends the ASCII
code for the escape character. This key is the default Accept key in user
interaction statements like CONSTRUCT, DISPLAY ARRAY, INPUT, or
INPUT ARRAY. See also Accept key, escape character, key, user interaction
statement.

exception An event which occurs at run time for which the program may want to
check. Exceptions in 4GL include: run-time errors, (an error returned by
a database server, a state initiated by a stored procedure statement, or an
error detected by the database application program), an unsuccessful
database query (status variable is set to NOTFOUND), and warnings (SQL
conditions), and the pressing of the Interrupt or Quit key. See also error,
exception handling, Interrupt key, Quit key, status variable, warning.

exception handling Program code that checks for exceptions and performs recovery actions in
the event they occur. By default, 4GL performs the following exception
handling: run-time errors—terminate the program; SQL NOTFOUND—
set status to NOTFOUND and continue execution; warnings—continue
execution; Interrupt (or Quit) key—terminate program. The developer can
change the default exception handling for these first three types of
exceptions with the WHENEVER statement: run-time errors —WHENEVER
ERROR; SQL NOTFOUND—WHENEVER NOT FOUND; warnings—WHEN-
EVER WARNING. The 4GL DEFER statement changes handling of the Inter-
rupt and Quit keys. See also error handling, Interrupt key, program execution,
Quit key, status, warning.

executable file 1) A file containing machine code (in binary form) that has been linked
and is ready to be run on a computer. May also refer to a collection of
instructions that can be executed by a command interpreter or processor,
for example a batch file. See also compile, execute, file, interpret, link.

2) In 4GL, an executable file can be either interpretive p-code (with a .4gi
or .4go extension) or compiled C code (with a .exe extension), depending
on the version of 4GL you are using. See also command line, p-code.

executable statement A statement that requires processing action at run time. Executable state-
ments are distinguished from declarative statements (that provide infor-
mation about the nature of the data without themselves causing any
16 Glossary

processing) and compiler directives which are instructions to the compiler.
All 4GL statements are executable except: MAIN, DEFINE, DEFER, FUNC-
TION, GLOBALS, REPORT, and WHENEVER. See also compiler directive,
declare, define, statement.

execute 1) Run a compiled or interpreted program by carrying out the instructions
in an executable file. To execute or run a program, the operating system
must create a process for the program and then allocate the CPU (and any
other resources needed by the program) to this process. The state of the
program in execution is often called “run time.” See also compile, debug,
executable file, interpret, link, operating system, process, resources.

2) A 4GL executable file contains either interpreted p-code or compiled
C code, depending on the version of 4GL you are using. See also C Compiler
Version, command line, Rapid Development System.

execution stack See call stack.

Explicit NLS
environment

An Informix tool running in an environment where DBNLS is set to 1 and COL-
LCHAR unset. INFORMIX-4GL programs cannot use the Explicit environ-
ment. The Explicit environment supports both CHAR and NCHAR data
types. CHAR (and VARCHAR) data sort and compare according to US
English ASCII, whereas NCHAR (and NVARCHAR) data sort and collate
according to collation and character set settings of the database locale. See
also Implicit NLS environment, NLS environment, Open NLS environment.

explicit transaction A transaction that the developer must explicitly begin and end. The BEGIN
WORK statement indicates the beginning of the transaction. The developer
must explicitly indicate the end of the transaction with the COMMIT WORK
and ROLLBACK WORK statement. A database that is not ANSI-compliant
but that has a transaction log uses explicit transactions. See also ANSI-com-
pliant, commit, roll back, transaction.

exponent 1) In the representation of a FLOAT or SMALLFLOAT value, a signed
integer indicating the power to which the mantissa is to be raised. See
also floating-point number, mantissa.

2) The right-hand unsigned integer operand of the exponentiation (**)
operator in 4GL expressions. See also arithmetic operators.

expression A sequence of operators, operands, and parentheses that can be evaluated
to a single value, usually at run time. In 4GL, an expression should evalu-
ate to a simple 4GL data type: number (Boolean, integer, floating-point,
and fixed-point), character, or time (DATE, DATETIME, and INTERVAL).
See also Boolean, character, data type, fixed-point, floating-point, integer,
interval, operand, operator, precedence, regular expression.
Glossary 17

external signal The notification of an operating system event that is delivered to a process.
4GL programs can handle two external signals: interrupt and quit. See also
Interrupt key, operating system, process, Quit key.

field 1) An area for holding a data value. Usually refers to a delimited, unpro-
tected area on a screen form used for entry and display of a data value.
Such fields can have “field attributes” associated with them that control,
for example, the case of letters, default values, and so on. When a form is
active, the location of the cursor designates what is called the “current
field,” the field in which the user can enter data. A field on a screen form
corresponds to a column in a database, unless it has been defined as a
“form-only field.” See also attribute, current, form, form specification file,
form-only field, multiple-segment field, screen array, screen form.

2) In some database terminologies, the term used for a “column.” See also
column.

field buffer A portion of computer memory associated with and holding the current
contents of a particular screen field. In 4GL, the GET_FLDBUF() built-in
function allows the developer to examine the field buffer. See also built-in
function, field.

field tag A unique name identifying a field in the SCREEN section of a form specifi-
cation file. It is also used in the ATTRIBUTES section to assign a set of field
attributes to the field. Unlike a label, a field tag does not appear when the
form is displayed. See also attribute, field, form specification file, label.

file 1) A named collection of information stored together, usually on disk. A
file can contain the words in a letter or report, a computer program, or a
listing of data. Files are usually stored in directories and are managed by
the operating system. See also data file, directory, executable file, form specifi-
cation file, help file, log, operating system, output file, source module.

2) In some database terminologies, the term used for a “table.” See also
table.

filename extension The part of the filename following the period (.). It usually identifies
the purpose of the file. For example, form specification files have a .per
extension while compiled form files have a .frm extension. 4GL source
modules have a .4gl extension. INFORMIX-ESQL/C files have a .ec exten-
sion. See also executable file, file, form specification file, help file, source file.
18 Glossary

fill character Specific ASCII characters that are used to provide formatting instructions
in a format string. In 4GL reports, the ampersand (&) instructs the PRINT
statement to insert leading zeros when a number does not completely fill
the format string. Fill characters are used in report and forms. See also
ASCII, character, form specification file, format string, report.

fixed-point number A real number with a fixed scale. In 4GL, the fixed-point number data
types are DECIMAL(p,s) and MONEY. These data types store values that
include a fractional part as fixed-point numbers. See also data type, floating-
point number, scale, simple data type.

flag 1) A value used to indicate or “flag” some condition. You can define a
program variable as a flag (usually assigning it the values TRUE and
FALSE). See also Boolean, variable.

2) A command-line option to an operating system program is sometimes
called a flag as well. See also command line, operating system.

floating-point number A real number with a fixed precision and undefined scale. The decimal
point “floats” as needed to represent an assigned value. In 4GL, the float-
ing-point number data types are FLOAT, SMALLFLOAT, and DECIMAL(p).
See also data type, exponent, fixed-point number, mantissa, precision, scale,
simple data type.

foreground process A process that currently has access to a window or the screen. It requires
this access because it needs to perform input or output. See also background
process, process, screen.

form See screen form.

form field A field on a screen form. See field.

form specification file An ASCII source file that describes the logical format of the screen form
and provides instructions about how to display data values in the form at
run time. You define a screen form in its source file (with a .per extension)
and create a compiled version (with a .frm extension) for use at run time.
form4gl creates the compiled version. Sometimes this file is referred to as
simply “form specification.” See also field, field tag, file, screen array, screen
form.

form-only field A field on a screen form that is not associated with any database column.
Usually, a form-only field is used for display purposes only. See also
column, field, form specification file, screen form.
Glossary 19

formal argument In a function definition, the variable in the argument list that serves
as a placeholder for an actual argument. The argument list determines the
number and data types of the function’s arguments. In the function call,
the actual argument sends the value to the function. See also actual
argument, calling routine, function call, formal argument.

format string A quoted string whose characters specify how to display data values. The
USING operator, the FORMAT and PICTURE field attributes, and certain
environment variables can use format strings. See also attribute, environ-
ment variable, fill character, quoted string, string.

Formatted mode An output mode of a 4GL program in which screen addressing is used. 4GL
enters this mode when it executes any 4GL user interaction or output state-
ment (ERROR, MESSAGE, DISPLAY AT, and so on) except a simple DISPLAY
statement (one without an AT, BY NAME, or TO clause). Output in Format-
ted mode displays in the 4GL screen. It should not be mixed with Line
mode. See also Line mode.

fourth-generation
language

1) A programming language, closely approximating a “natural language,”
designed and developed for a particular class of applications. Because
they focus on a specific type of application, such languages can anticipate
the types of actions these programs need to perform. As a result, many
typical operations can be encapsulated into a single but powerful state-
ment. Sometimes abbreviated as 4GL.

2) 4GL is a fourth-generation language for the creation of database appli-
cations. It includes the ability to embed SQL statements in a program as
well as providing additional statements, operators, and functions to assist
in the creation of database applications. See also application program, built-
in function, built-in operator, database, operator, SQL, statement.

function 1) A named collection of statements defined to perform an application
task, often one which needs to be repeated. Functions can be defined to
accept arguments and to return values. Within 4GL, the following func-
tions exist: programmer-defined function—function written in 4GL by the
developer; C function—written in C by the developer; ESQL/C function—
function built into the INFORMIX-ESQL/C product for use in a C program
written by the developer; 4GL built-in function—written by Informix as
part of the 4GL language to enable the developer to perform specific tasks
within 4GL; built-in SQL function—written as part of the SQL access lan-
guage. See also argument, built-in function, programmer-defined function,
return value, SQL, statement.

2) A 4GL function (program block defined with the FUNCTION statement)
is often referred to simply as a “function.” See also 4GL function.
20 Glossary

function call The invocation, by a calling routine, of a programmer-defined function.
This syntax includes the function name followed by the actual argument
values, in parentheses. The function call can be explicit (with the CALL
statement) or implicit (by including the function call within a 4GL expres-
sion). See also actual argument, calling routine, programmer-defined function,
pass-by-reference, pass-by-value.

function definition See 4GL function.

function key A key named “F#” where “#” is a number. Most keyboards have functions
keys F1 through F12. In 4GL, the developer can define actions to perform
when the user presses a certain function key. These actions are defined
with the ON KEY clause of the CONSTRUCT, DISPLAY ARRAY, INPUT,
INPUT ARRAY, or PROMPT statement, or in the KEY clause of the MENU
statement. Here and in the OPTIONS statement, you can use the notation
F1 through F64 to denote the individual function keys (but not all key-
boards support that many function keys). See also control block, key, logical
key.

global variable A variable defined outside all program blocks and accessible within all
program blocks of the program. The scope of a global variable is all state-
ments that follow the global variable definition and all source modules
which reference the global variable’s definition. In 4GL, global variables
are defined within the GLOBALS statement either at the top of a source
module (outside all program blocks), or in a separate source file. See also
declare, define, program block, scope of reference, source module, variable.

header A comment block at the top of an ASCII file that identifies the file contents.
Contents can include the purpose, author, modification information, and
other relevant information. Headers are often used in 4GL source modules
and form specification files. See also comment, form specification file, source
module.

help file A file containing help messages for a 4GL application. Text associated
with each message must be uniquely identified within a given help file.
You define a help message in its source file (by default having a .msg
extension) and create a compiled version (default .iem extension) for use
at run time. The mkmessage utility creates the compiled version. Some-
times this file is referred to as a “help message” file. See also file, help
message.

Help key The logical key that the user can press in a 4GL application to display a
help message for the current form, field, or menu option. By default, the
physical key for Help is CONTROL-W. See also logical key, help file, help
message.
Glossary 21

help message Text that provides information and guidelines on a particular topic or for
a particular context. In 4GL, each message is identified by a positive, non-
zero integer, called a “help number.” Each number corresponds to one and
only one help message text resident in the currently designated help file.
Help messages can be displayed automatically or at the request of the user
(the Help key). See also Help key, help file.

hexadecimal
number

A number represented in base 16. The right-most digit is multiplied by 16
to the power of zero. The digit immediately to the left is multiplied by 16
to the first power. The digit immediately to the left of that is multiplied by
16 to the second power, and so on. The characters that represent a hexadec-
imal number are 0-9 and A-F (for 10-15).

identifier A sequence of letters, digits, and symbols which the compiler recognizes
as a programmer-defined name of some entity. In 4GL, an identifier can
include letters, digits, and underscore symbols (_). It must have either a
letter or an underscore (_) as the first character. It can be up to 50 charac-
ters in length but the first seven must be unique among similar program
entities that have the same scope of reference. 4GL does not distinguish
between upper and lowercase letters. Types of identifiers include variable
names, cursor names, function names, report names, table names, window
names, form names, prepared statement names, and report names. See
also 4GL function, 4GL window, case sensitivity, cursor, keyword, name space,
prepared statement, report, reserved word, scope of reference, screen form, table,
variable.

Implicit NLS
environment

Defined as DBNLS set to 1 and COLLCHAR set to 1. A tool operating in the
Implicit NLS environment produces NLS applications in which all charac-
ter data is sorted and compared according to the locale established at the
time of database creation. The tool user cannot create character data col-
umns that sort in US English if the locale the database was created in was
non-US-English. All character columns defined by tool in the Implicit
environment are defined within the tool as type CHAR (or VARCHAR, if
variable-length), but interpreted by the server as type NCHAR (or NVAR-
CHAR) if the database is non-US-English. This is the recommended envi-
ronment for access and creation of NLS databases. See also Explicit NLS
environment, NLS environment, Open NLS environment.

implicit transaction A transaction that automatically begins when an SQL statement which
alters the database executes. The developer must explicitly indicate the
end of the transaction with the COMMIT WORK and ROLLBACK WORK
statement. An ANSI-compliant database uses implicit transactions.
See also ANSI-compliant, commit, roll back, transaction.
22 Glossary

index 1) A database file containing a list of unique data values, with pointers to
the database rows that contain those values. Indexes are used to reduce the
time required to order rows and to optimize the performance of database
queries. See also database, query, row.

2) A subscript value into an array. See also array, subscript.

indirect typing The process of assigning a data type to a variable by referencing a database
table or column. In 4GL, indirect typing is carried out by the keyword LIKE
in a variable definition. See also column, data type conversion, define, table,
variable.

Informix-defined A classification describing environment variables which did not originate
in the X-Open Portability Guide version 3 (XPG3) standard but are relevant
to NLS. This includes DBNLS, COLLCHAR, DBAPICODE, DBLANG,
DBFORM, DBFORMAT, DBMONEY, and DBDATE. Informix-defined vari-
ables are consistent in syntax and meaning across platforms. This is in con-
trast to X-Open defined variables, which rely on facilities provided by the
computer manufacturer, and can vary from system to system. See also
environment variables, XPG3.

input record A group of related values that are passed to a 4GL report for formatting.
The report formats data one input record at a time. The OUTPUT TO
REPORT statement sends an input record to a report. See also report.

Insert key The logical key that the user can press in a 4GL application to insert a new
line at the current position of the screen array during the INPUT ARRAY
statement. 4GL automatically inserts a line at the associated position of the
program array. By default, the physical key for Insert is F1. See also Delete
key, logical key, program array, screen array.

int_flag variable See Interrupt key.

integer 1) A real number that has no fractional part. In 4GL, the INTEGER and
SMALLINT data types can store integer values within the limits of their
ranges. Boolean values are also stored as integers. See also Boolean, data
type, simple data type.

2) In uppercase, INTEGER is a data type for storing integers whose absolute
value is no greater than 2,147,483,647.

interactive A mode of execution in which a program accepts input from a user and
processes that input, a program that sends output to the screen, or a pro-
gram that does both. 4GL programs which use user interactive statements
are interactive. See also batch, program execution, user interaction statement.
Glossary 23

interpret 1) Run a program that has been compiled to intermediate code. The
executable file contains instructions in intermediate code. This translation
is done by a system program called an “interpreter,” sometimes called
a “runner.” See also compile, debug, execute, link.

2) The RDS Version of 4GL can interpret 4GL source code by executing the
intermediate code (the p-code) produced by the 4GL compiler. See also
p-code, Rapid Development System.

Interrupt key The logical key that the user can press within a 4GL application to indicate
cancellation of the user interaction statement. If the 4GL program does not
include the DEFER INTERRUPT statement, pressing this key terminates
program execution. With DEFER INTERRUPT, pressing the Interrupt key
sets the built-in int_flag variable to TRUE and cancels the current interac-
tion statement, resuming execution at the next 4GL statement. However,
further response to the Interrupt signal may be deferred until the next
pause for user input. The physical key for Interrupt is CONTROL-C. See
also Accept key, exception handling, interrupt signal, logical key, Quit key, user
interaction statement.

interrupt signal A high-priority kind of signal sent to a running program either by the
operating system directly or by the user. An interrupt signal is usually a
command to interrupt a running program. In a 4GL application, the user
may invoke an interrupt signal by pressing the Interrupt key. See also
Interrupt key, program execution.

interval 1) A span of time. In 4GL, there are two types of intervals, namely year-
month (those measured in years and months), and day-time (those mea-
sured in smaller time units: days, hours, minutes, seconds, and fraction of
seconds). See also data type, simple data type.

2) In uppercase, INTERVAL is a data type for intervals of time.

key 1) In database terminology, a key value is that part of a row that makes the
row unique from all other rows; for example, a SERIAL number. At least
one such value must exist in any row; the most important is designated as
the “primary key.” See also column, rowid, table.

2) In application terminology, when speaking of the keyboard, a key is
what the user presses to enter text or commands in the application. The
actual keys of the keyboard (a, ESCAPE, RETURN) are often called physical
keys to distinguish them from logical keys (which may be made up of a
sequence of keys). See also accelerator key, activation key, control character,
function key, keyboard, logical key, mnemonic key, modifier key, RETURN key.
24 Glossary

keyboard focus The area on the screen that currently gets input from the keyboard; for
example, a particular text field. The keyboard focus is usually indicated by
highlighting or the presence of a text cursor. See also active window, key,
screen, text cursor.

keyword A sequence of letters recognized by a compiler as having a reserved
meaning within a language. In 4GL, examples of keywords are INPUT,
INSERT, TO, and LIKE. In 4GL documentation, keywords are shown
in uppercase to improve readability. However, 4GL keywords are not
case-specific. See also case sensitivity, identifier, reserved word.

label A character string used as a point of reference. For example, a label on a
screen form helps to identify a form field when the form displays. In a 4GL
LABEL statement, the label is the identifier which indicates the position in
a 4GL program to which GOTO statements can transfer control. See also
screen form, string.

language and
formatting variable

An environment variable that controls aspects of the language and
formatting environment. These include LANG, the LC_ variables,
DBFORMAT, DBMONEY and DBDATE. This classification is in contrast with
meta-environment variables, which control aspects of the NLS meta-envi-
ronment, such as whether or not NLS is active or whether or not implicit
mapping is turned on. See also environment variable.

language supplement A product obtained from an Informix sales office that provides settings for
an additional national language when installed in a 6.0 server
environment. See also locale file, Native Language Support.

LC_ variable Any of the four environment variables LC_COLLATE, LC_CTYPE,
LC_MONETARY, or LC_NUMERIC that begin with the letters LC followed
by the underbar (_) symbol. See also environment variable, Native Language
Support.

Line mode An output mode of a 4GL program in which screen addressing is not used.
4GL enters this mode and displays the Line mode overlay when it executes
a simple DISPLAY statement (one without an AT, BY NAME, or TO
clause).4GL remains in Line mode as long as it encounters additional sim-
ple DISPLAY statements or the PROMPT statement. When it encounters any
other output statement (ERROR, DISPLAY AT, and so on) or a user interac-
tion statement, 4GL returns to Formatted mode. Because this mode results
in a simple stream of characters to standard output, it should not be mixed
with Formatted mode. See also Formatted mode, Line mode overlay.
Glossary 25

Line mode overlay A window that overlays the entire 4GL screen when 4GL enters Line mode.
The Line mode overlay remains as long as the program remains in Line
mode. It is only updated, however, when 4GL executes either a PROMPT or
a SLEEP statement. See also 4GL window, Formatted mode, Line mode.

link 1) Combine one or more source modules (which have been compiled sep-
arately) into a single executable file or program. This merging is done by a
system program called a “linker” or a “link editor.” The linker verifies it
can locate all functions called and all variables used. See also compile,
debug, execute, executable file, source module.

2) The 4GL Programmer’s Environment can link compiled 4GL source
modules into a single executable file. The Programmer’s Environment can
handle the entire process of compilation, linking, and running of a multi-
module 4GL program. If you do not use the Programmer’s Environment,
you must explicitly link compiled 4GL source modules into a single exe-
cutable file. See also p-code, Programmer’s Environment.

literal A character constant. In the format string of a 4GL PICTURE field attribute,
for example, any characters except “A”, “#”, and “X” are literals because
they are displayed unchanged in the format string. In 4GL statements, lit-
eral strings must be surrounded by quotation marks (“ ”). See also
attribute, constant, form specification file, quoted string, string.

local variable A variable defined within a program block. The scope of a local variable is
limited to those statements within the program block. In 4GL, local vari-
ables are defined within MAIN, FUNCTION, or REPORT program blocks
with the DEFINE statement. See also declare, define, program block, scope of
reference, variable.

locale file A file installed on the system which specifies language or formatting
behavior for one or more settings of one or more LC_ variables. The format,
naming, and use by the system of locale files varies between computer
manufacturers. Locale files are installed by installing language
supplements. See also language supplement.

locale-sorted Character data which sorts in the order specified by the LC_COLLATE
environment variable. Corresponds at the server to the data types NCHAR
and NVARCHAR. See also Native Language Support.

log 1) With an INFORMIX-OnLine database engine, a physical log contains
images of entire pages before they were changed. Physical logs are used
during fast recovery when INFORMIX-OnLine is coming up. See also error
log, file.
26 Glossary

2) A logical log, sometimes called a “transaction log,” records changes per-
formed on a database during the period the log was active. A logical log
includes, as needed, images of the row before it was changed and images
of the row after it was changed. Logical logs are used to roll back transac-
tions, recover from system failures, and restore databases from archives.
See also commit, roll back, transaction.

3) The 4GL STARTLOG() function can specify an error log file in which
to record run-time errors.

logical key A key that the user can press to perform certain tasks predefined by 4GL
or the operating system. These keys include the following: Accept key,
Delete key, Help key, Insert key, Interrupt key, Quit key. Each key is asso-
ciated with some default physical key. The OPTIONS statement can assign
most logical keys to different physical keys. Certain 4GL statements can
reference logical keys with keywords like ACCEPT, DELETE, INSERT, and
so forth. See also Accept key, Delete key, Help key, Insert key, Interrupt key, key,
Quit key.

login The procedure that identifies a user to a computer. If the login is success-
ful, the user is granted access to the system. See also user name.

main menu The top menu in a hierarchy of nested menus. See also menu, ring menu.

MAIN
program block

The program block that 4GL begins executing when it starts a 4GL pro-
gram. This program block is defined with the MAIN statement and
includes all statements between the MAIN and the END MAIN keywords.
When it reaches the END MAIN keywords, 4GL ends the program. See also
4GL function, function, normal execution, program block, report.

mantissa 1) In the representation of a FLOAT or SMALLFLOAT value, a signed
integer indicating the number that is to be raised to the power indicated
by the exponent. See also exponent, floating-point number.

2) The left-hand unsigned integer operand of the exponentiation (**)
operator in 4GL expressions. See also arithmetic operators.

member See record member.

menu A visual object from which the user can choose one of several options,
called “menu items.” Menus often control a program by providing menu
items for actions that can be performed. See also main menu, ring menu.

menu option A choice the user can make from a ring menu. A menu option can be visi-
ble, in which case it appears in the ring menu. It can also be invisible, in
which case the user must know the correct activation key for choosing the
Glossary 27

option. A hidden menu option cannot be activated by the user unless the
program uses SHOW MENU within the MENU statement. See also activation
key, ring menu.

meta-environment
variable

An environment variable that controls aspects of the NLS meta-
environment, such as whether or not NLS is active or whether or not
implicit mapping is turned on. These include DBNLS, COLLCHAR,
DBAPICODE, DBLANG and DBFORM. This classification is in contrast with
NLS environment variables that control the language and formatting
environment.

mnemonic key A shorthand name for a key, menu option, or command. See also activation
key, alias, key.

MODE ANSI See ANSI-compliant.

modifier key A key that is held while pressing another key in order to modify its mean-
ing. See also control character, key.

module A group of related functions. If these related functions share variables,
these variables can be defined as module variables. During program exe-
cution, the current module is the source file that contains the program
block currently being executed. See also current, module variable, source
module.

module variable A variable defined outside all program blocks. The scope of reference
of a module variable is all statements that follow its definition. In 4GL,
module variables are defined with the DEFINE statement at the top of a
source module, outside all program blocks. See also declare, define, program
block, scope of reference, source module, variable.

multiple-segment
 field

In a screen form, a field consisting of several, separately delimited parts,
each sharing a common field tag. Such a field allows long character strings
to be displayed or entered on successive lines of the form. A multiple-seg-
ment field requires the WORDWRAP field attribute in the form specifica-
tion file. See also field, field tag, form specification file, screen form.

name space The set of identifiers of different types whose names must be unique
within the same scope. For example, the following types of identifiers
have the same name space: cursor names, window names, form names,
function names, global variable names, and report names. Because they
share the same name space, none of them can have the same name: a cur-
sor cannot have the same name as a window or a global variable; however,
a cursor could have the same name as a local variable as long as the cursor
did not appear within the same scope as the local variable. See also identi-
fier, naming conventions, scope of reference, variable.
28 Glossary

naming conventions A set of rules for the creation of identifier names that assist in the recogni-
tion of the purpose of the identifier from its name. For example, prefixes
could be used to identify: names of cursors (c_), windows (w_), program
records (p_), program arrays (pa_), global variables (g_), screen arrays
(sa_), and so on. See also identifier, name space, scope of reference, variable.

Native Language
Support

Based on the X/Open Portability Guide Version 3 (XPG3) standard, it
specifies a means for localization of software to European geographical
regions without the need for alteration to user applications. NLS is
available only on UNIX systems that support X/Open NLS libraries. See
also ASCII, NLS database, NLS environment, XPG3.

navigation Traversing fields or other controls within a window. You navigate by using
the TAB and arrow keys. See also key.

NLS Acronym for Native Language Support.

NLS database An NLS database is a database created with NLS environment settings
active (DBNLS set to 1 or 2). See also NLS environment.

NLS environment A combination of user environment variable settings in which DBNLS is
set to 1 or 2. There are three NLS environments: Implicit, Explicit and
Open. Different NLS environments are selected by way of different combi-
nations of the DBNLS and COLLCHAR environment variables. In NLS envi-
ronments: 1) the LANG and LC_ variables are considered in operations, 2)
collation is specified by LC_COLLATE unless the column is type NCHAR
and the environment is Explicit, 3) user defined names can contain any
characters contained in the character set specified by LC_CTYPE, 4) non-
NLS databases can be accessed but not created, 5) LC_COLLATE and
LC_CTYPE values are saved in system tables at database creation time. See
also Native Language Support.

Non-NLS database A non-NLS database is a database created in a pre-6.0 server environment,
or in the Non-NLS environment. It can be accessed while an NLS environ-
ment is active, but LANG and the LC_ variables have no effect. See also NLS
database.

Non-NLS environment A Non-NLS environment is defined as DBNLS unset or set to zero. In this
environment databases created are non-NLS databases, NLS databases
cannot be accessed, LANG and the LC_ variables have no effect, character
collation order is US English, only ASCII characters may be used in identi-
fiers, and default monetary and numeric formats are ANSI compliant. See
also NLS environment.
Glossary 29

normal termination The termination of the 4GL application by exiting the MAIN program block
at the END MAIN keywords or with the RETURN statement. In the INFOR-
MIX-4GL Interactive Debugger, you can no longer inspect the application
state after normal termination because there are no active functions. See
also abnormal termination, active function, debug, MAIN program block, pro-
gram execution.

null value 1) A value that means “not known” or “not applicable.” A null value is
distinct from a string of blanks or from a value of zero. Database columns
and program variables can have null values. In 4GL, this marker referred
to by the keyword NULL. To test for a null value, use the IS NULL and IS
NOT NULL operators. See also Boolean operators.

2) In other contexts, “null” is casually used to mean “empty”; for example,
a character string with zero length is sometimes called “the null string.”
This can lead to confusion because an empty string (the string “ ”) has a
specific non-null value, distinct from a NULL string. An empty string has
a definite length (zero) while a NULL character value has an unknown
length and value. See also blank space, string.

open To prepare something for use. In programming, opening something often
entails allocating memory and other resources to it, and sometimes means
getting exclusive access. Typically, things cannot be used until they have
been opened; then they remain usable until they are closed. To open a cur-
sor means to have the database engine process the query up to the point of
locating the first selected row; this can entail significant processing and
space in memory and on disk. To open a file is to locate the file and bring
it into memory. To open a form is to find the compiled form file, bring it
into memory, and prepare to display it. To open a 4GL window is to
allocate memory for the image of the window, push it onto the window
stack, and to display it on the screen. See also 4GL window, close, cursor, file,
query, resources, screen form.

Open NLS
environment

Defined as DBNLS set to 2 and COLLCHAR set to 1. Third party tools can
use the Open NLS environment to access NLS databases by way of SQL
commands to the database engine. The tool sends queries to the server for
processing and gets back results that are properly sorted from the stand-
point of the database locale, without the tool knowing what locale it is
accessing. The Open NLS environment can also be used to perform LOAD
and UNLOAD operations between locales. See also Explicit NLS environ-
ment, Implicit NLS environment, NLS environment.

operand A value on which an operation is performed. An operand can be a
variable, a constant, or an expression. See also constant, expression, operator,
variable.
30 Glossary

operating system The software that provides an interface between application programs and
hardware. It is the part of a computer system that makes it possible for the
user to interact with the computer. It manages processes by allocating the
resources they need. See also command line, execute, process, resources.

operator A symbol or keyword built into a language that returns a value from the
values of its operand(s). Operators can generate a value from a single
value (unary operators) or from two values (binary operators). See also
arithmetic operators, assign, associativity, binary operator, Boolean operators,
built-in operator, operand, precedence, relational operators, string operators,
unary operators.

output file A file in which the results of a query or a report are stored. See also file,
query, report.

owner A designation that associates an individual with a file or set of files. Infor-
mix databases can use ownership to restrict access to certain columns or
tables. On UNIX systems, ownership also applies to files and directories for
the purpose of limiting access to their contents and location within the file
system. See also database, operating system.

p-code Abbreviation for pseudo-code. P-code is an intermediate form of code
generated by the RDS Version of 4GL. Although p-code takes more mem-
ory to run, it is machine-independent. See also compile, debug, execute, inter-
pret, link.

page A unit of data analogous to the page of a book. One page of a program
array is the number of rows that can be displayed in the screen array at one
time. The database engine stores data in pages. See also program array,
screen array.

page header The top part of a page in a report. A “running header” appears at the top
of each page of a report. Information (for example, the title and date)
printed at the top of each page of a report is formatted in the PAGE
HEADER and FIRST PAGE HEADER control blocks of a report. See also
control block, page trailer, report.

page trailer The bottom part of a page in a report. Information (for example, the page
number) printed at the bottom of each page of a report is formatted in the
PAGE TRAILER control block. A page trailer is also referred to as a “footer.”
See also control block, page header, report.

pass-by-reference A method used in a function call that determines how an argument is
passed to the programmer-defined function. With pass-by-reference, the
address in memory of the actual argument is passed to the function. This
method means that changes made to the value of the formal argument
Glossary 31

within the body of the function will be visible from the calling routine
when the function exits. 4GL uses pass-by-reference only for blob (BYTE
and TEXT) variables. See also argument, blob, function call, pass-by-value.

pass-by-value A method used in a function call that determines how an argument
is passed to the programmer-defined function. With pass-by-value, the
actual argument is evaluated and the resulting value is passed to the func-
tion. This method means that changes made to the value of the formal
argument within the body of the function will not be visible from the call-
ing routine when the function exits. 4GL uses pass-by-value for variables
of all data types except blob (BYTE and TEXT). See also argument, blob, data
type, function call, pass-by-reference.

pathname The list of directories needed to identify a file within a directory hierarchy.
In UNIX, directories of a pathname are separated by the slash (/). A file
can be referred in two ways: by its absolute pathname—all directories
starting from the root (top) of the directory hierarchy; by its relative path-
name—the directories relative to the current directory. See also current,
directory, file.

pipe A connection of one process to another process such that the output of the
first process is sent directly as input to the second process. It is one of sev-
eral ways in which processes can communicate. It is common to speak of
a process piping some data to another process. See also process.

popup window A 4GL window that automatically appears when a predefined condition or
event occurs. In a 4GL application, a popup window often contains a list of
values for a particular field. The user can choose from this list rather than
needing to type in the value directly. See also 4GL window.

precedence of
operators

The hierarchy of operators. It determines the order in which 4GL evaluates
operators within an expression. 4GL evaluates higher precedence opera-
tors before those of lower precedence. The order in which operators at the
same precedence level are evaluated is left to right. Precedence order
can be changed by surrounding expressions with parentheses. See also
associativity, expression, operator.

precision The total number of significant digits in the representation of a numeric
value or in a data type specification. The number 3.14 has a precision
of three. See also floating-point number, scale.

prepared statement The executable form of an SQL statement. SQL statements can be executed
dynamically by creating character strings with the text of the statement.
This character string must then be “prepared” with the PREPARE state-
32 Glossary

ment. The result of the PREPARE is a prepared statement. The prepared
statement can then be executed with the EXECUTE or DECLARE state-
ments. See also query by example, SQL, statement, statement identifier.

preprocessor A program that translates “macro” code into statements conforming to the
host language. The results of preprocessing can then be passed to a stan-
dard language compiler, such as C or COBOL. When using the C Compiler
Version of 4GL, the compiler first sends the 4GL source module through a
preprocessor to translate SQL statements into INFORMIX-ESQL/C calls
before passing the file to a C compiler. See also compile, source module.

print position The logical location of the print head. A print position can be compared
to a screen cursor in that both refer to a specific x,y coordinate on the page
or screen. See also column, report, row.

printable character A character that can be displayed on a terminal or printer. These characters
include the ASCII codes 32 through 126: A-Z, a-z, 0-9, symbols (!, #, $, ;, *,
and so on), TAB (CONTROL-I), NEWLINE (CONTROL-J), FORMFEED
(CONTROL-L) and the blank space character (). See also ASCII, blank
space, character.

process An independent unit of operating system execution. It keeps track of the
state of execution for a program. The operating system creates a process
for each program being executed. It allocates resources needed by a pro-
gram (memory, disk, CPU) to its process. The current process is the one
that has been allocated use of the CPU. A 4GL application usually runs with
two processes: the 4GL application (the “front end”) and a database engine
(the “back end”). See also application development tool, background process,
database engine, foreground process, operating system, pipe, resources, shell.

program array A 4GL variable defined with the ARRAY keyword. A common use for
a program array is as an array of records to store information to be
displayed in a screen array. The DISPLAY ARRAY and INPUT ARRAY
statements can manipulate program array values or records within the
screen array. See also array, program record, screen array, structured data type,
variable.

program block A programmer-defined group of 4GL statements that has its own scope
during execution. The scope includes definitions and values of variables
and may include arguments and return values. 4GL has the following pro-
gram blocks: a MAIN program block, 4GL functions, and reports. Every
executable statement must appear within some program block. Program
blocks can neither overlap nor be nested. Any variable defined within a
Glossary 33

program block is local to that block. See also 4GL function, call stack, execut-
able statement, MAIN program block, programmer-defined function, report, scope
of reference, statement block, variable.

program execution The process of running (executing) a program. A program can be in the
following states: running, suspended (by the system or the program itself)
or terminated (abnormally or normally). See also abnormal termination,
debug, execute, normal termination.

program record A 4GL variable defined with the RECORD keyword. A common use for
a program record is for storing information in a screen record, a row of
a table, or in a line of a screen array. See also program array, record, row,
screen record, structured data type, variable.

program design
database

A database that describes the resources needed to create various execut-
able programs. It is called syspg4gl (by default), and is accessed by the
Programmer’s Environment. Regardless of the version of 4GL you are
using, (RDS Version or C Compiler Version), this database tracks for each
4GL program such resources as source files and compiler options. See also
executable file, Programmer’s Environment.

programmer-defined
function

A function written in 4GL that can be called in a 4GL program. The devel-
oper can write 4GL functions, (defined with the FUNCTION statement),
a MAIN program block (defined with the MAIN statement), and reports
(defined with the REPORT statement). Collectively these types of functions
are often called 4GL program blocks. See also 4GL function, function, built-
in function, built-in operator, MAIN program block, program block, report.

Programmer’s
Environment

The interface to the 4GL application development package. The
Programmer’s Environment is an integrated development environment
that allows you to create, compile, link, run, and debug a 4GL program. See
also C Compiler Version, compile, debug, development environment, execute,
link, program design database, Rapid Development System, target.

query A request to the database to retrieve data that meets certain criteria.
The SELECT statement performs database queries. In 4GL, the CONSTRUCT
statement allows you to implement a “query by example.” See database,
exception, output file, query by example.

query by example A formalized way of implementing a query. The CONSTRUCT statement
allows the user to enter query criteria on a screen form and creates a
Boolean expression based on these criteria. This Boolean expression can
then be appended to an SQL statement (usually a SELECT) to retrieve the
34 Glossary

desired rows from the database. The SQL statement must then be prepared
and executed. See also Boolean expression, cursor, query, prepared statement,
query criteria, screen form.

query criteria A set of data values which specify qualifications to apply when looking for
data to be returned in a query. The CONSTRUCT statement accepts query
criteria on a screen form. See also data entry, query by example, screen form,
user interaction statement.

Quit key The logical key that the user can press within a 4GL application to indicate
cancellation of the entered data or query criteria. Pressing it requests
abnormal completion of the INPUT, CONSTRUCT, PROMPT, INPUT ARRAY,
or DISPLAY ARRAY statements. The physical key for Quit is CONTROL-\.
If the 4GL program does not include the DEFER QUIT statement, pressing
this key terminates program execution. With DEFER QUIT, pressing the
Quit key sets the built-in quit_flag variable to TRUE but does not cancel the
current interaction statement. See also Accept key, exception handling,
Interrupt key, logical key.

quit_flag variable See Quit key.

quoted string A string enclosed in double quotation marks (“ ”). With the exception of
fill characters, the contents of quoted strings are literals. See also character,
fill character, literal, string.

Rapid Development
System (RDS)

One of two implementations of the 4GL application development lan-
guage for UNIX systems. The RDS compiler produces p-code that can then
be executed by a “runner.” The other implementation of 4GL for UNIX sys-
tems is the C Compiler Version; it uses preprocessors to generate C code,
which is then compiled and linked to make a stand-alone, executable file.
See also C Compiler Version, compile, execute, interpret, link, p-code, preproces-
sor, Programmer’s Environment, program design database.

record 1) A data structure having a fixed number of components. Each compo-
nent is called a member. Members can have the same or different data
types. See also input record, record member, screen record.

2) In uppercase, RECORD is the keyword for defining a program record in
4GL. The RECORD data type is a structured data type. In 4GL, all members
of the record are accessed by listing the record name followed by the mem-
ber name, with a period (.) separating them. See also asterisk notation,
program record, structured data type.

3) In some database terminologies, a term used for a “row.” See also row.
Glossary 35

record member A named component of a program record. A member can be of any 4GL
data type, including RECORD or ARRAY. Some 4GL statements support the
asterisk notation (record.*) to specify all the members of a record. See also
asterisk notation, program record, record.

regular expression A pattern used to match variable text. The elements of a regular expression
include: literal characters that must match exactly; the “wildcard” sym-
bols—“*” to mean “one or more characters here” and “?” to mean “any one
character”; and the class—a list of characters (within brackets) that are
acceptable. The MATCHES and LIKE operators of SQL allow you to search
for character strings that match to regular expression patterns. See also
expression, literal, wildcard.

relation See table.

relational database See database.

relational operators Operators that perform comparison operations. These operators return
the values TRUE (=1), FALSE (=0), and in some cases UNKNOWN. (If an
operand evaluates to NULL, Boolean operators can yield a third
“unknown” result that 4GL treats as FALSE.) 4GL relational operators are:
equal (=), not equal (!= or <>), greater than (>), less than (<), greater than
or equal to (>=), less than or equal to (<=). All relational operators have the
same precedence level. See also associativity, binary operator, Boolean opera-
tors, operator, precedence.

report A 4GL program block defined with the REPORT statement. A report for-
mats data, sent as input records. The report header follows the REPORT
keyword and defines the name and formal argument list (the input record)
for the report. The report body (all statements between the report header
and the END REPORT keywords) defines the actions of the report. See also
argument, control block, function, input record, page header, page trailer,
programmer-defined function, output file, program block.

reserved lines Areas in a 4GL window which are set aside for use by the form or window.
These areas include: Error line, where the output of the ERROR statement
displays (default is the last line on the screen); Comment line, where the
text in the COMMENTS field attribute displays (default is the next to last
line on the screen and the last line on all other 4GL windows); Form line,
where the first line of the screen form displays (default is the 3rd line of the
current 4GL window); Menu line, where the ring menu displays (default
is the 1st line of the current 4GL window); Message line, where the output
of the MESSAGE statement displays (default is the 2nd line of the current
4GL window; and Prompt line, where the output of the PROMPT statement
displays (default is the 1st line of the current 4GL window). These default
36 Glossary

positions can be changed with the OPTIONS statement or with the
ATTRIBUTES clause of the OPEN WINDOW statement. See also 4GL window,
ring menu, screen, screen form.

reserved word A sequence of letters which you cannot use in any other context of the lan-
guage or program. In 4GL releases before 4.1, all keywords were reserved
words. In release 4.1 and beyond, you can use keywords as variable or
identifier names as long as they do not create an ambiguity for the 4GL
compiler. If you compile a 4GL program as ANSI-compliant, most key-
words are still reserved words and therefore should not be used as
variables or identifiers. See also ANSI-compliant, identifier, keyword.

resources 1) The hardware and software needs of an executing program. Examples
include CPU, memory, disk, printer, terminal (or workstation). These are
allocated to the program’s process by the operating system. See also
operating system, process, terminal, workstation.

2) Visual and other attributes that can be chosen at run time. Resources can
be chosen using command-line options or using other platform-specific
methods. On X/Motif systems, resources can be specified using pre-
defined resource names in various files. 4GL statements and ATTRIBUTE
settings can override resource choices made through a platform’s native
resource management systems. See also attribute.

RETURN key The key to indicate the end-of-line. The RETURN key is the default Accept
key in 4GL. See also key.

return value The value returned by a 4GL function to the calling routine. To return
a value, the FUNCTION program block must include the RETURN state-
ment. The calling routine must have some way of handling the function’s
return value(s). Reports cannot return a value to a calling function. See
also 4GL function, calling routine, function definition, programmer-defined
function.

ring menu A menu in which the menu items appear in a single, horizontal line. Each
menu item is called a menu option. The user can press the Spacebar or
Right Arrow key to make the menu cursor traverse the menu like a “ring,”
as if the first option followed the last. In 4GL, the MENU statement creates
a ring menu. The “highlighted” menu option is the current option. If the
menu includes more options than the current 4GL window can display on
a single line, the menu continues onto successive “pages,” with the first
page following the last. The line below the Menu line can display text that
describes the current option. See also activation key, menu, menu option, page,
user interaction statement.
Glossary 37

roll back Terminate a transaction by undoing any changes to the database since the
beginning of the transaction. The database is restored to the state that
existed before the transaction began. When the transaction is rolled back,
all open database cursors (except hold cursors) are closed and all locks are
released. The ROLLBACK WORK statement rolls back the current transac-
tion. See also commit, cursor, log, transaction.

row 1) In a database, a row is a set of related values, called columns, stored
together in a table. A table holds a collection of rows, each one distinct
from the others in the contents of its key. In other database terminologies,
a row is sometimes called a “record” or a “tuple.” See also column, current,
cursor, key, rowid, table.

2) In a screen form, a row is the visible display of the values from one
database row. The row (of data fields on the screen) may or may not be
identical to a row (of values in a table in the database). A single line of
a screen array is sometimes called a row. See also screen array.

3) In a report, a row is the information sent by the report driver function.
A 4GL program generates a report by sending rows of data to a report
function. These rows may or may not correspond to database rows. These
rows are called “input records.” See also input record.

4) On a screen, a row is the y-coordinate of a particular position. The
x-coordinate is called a column. Several 4GL statements use rows and col-
umns in this sense to identify location of display. See also column, screen.

rowid A hidden, automatically-generated column in each table of an Informix
database. It uniquely identifies a row based on its position within the
table. A rowid number is assigned when each row is added to a table and
released when a row is deleted. Once assigned, the rowid for a particular
row cannot be changed and the rowid number cannot be reused for that
particular table. See also column, row, table.

run See execute, interpret.

scale The number of digits to the right of the decimal point in the representation
of a number or in a data type specification. The number 3.14 has a scale of
two. See also fixed-point number, floating-point number, precision.

scope of reference The portion of the 4GL source code in which the compiler can recognize an
identifier name. The scope of reference (often referred to simply as
“scope”) refers to the program blocks in which an identifier can be refer-
enced. Outside its scope, an identifier may not be defined or may even be
defined differently. In 4GL, there are three levels of scope: local (a single
program block), module (all program blocks in a single source module),
38 Glossary

and global (all program blocks within a program). See also define, global
variable, identifier, local variable, module variable, name space, program block,
scope, source module, variable.

screen 1) On a character terminal, the rectangular area on a CRT in which text
is displayed.The screen takes up the entire terminal display and it can
display the output of only one program at a time. See also terminal.

2) On a workstation, the entire display in which text and, possibly,
graphical objects are visible. Under a window manager in a graphical
environment, a “physical screen” may contain multiple graphical
windows. See also workstation.

3) In a 4GL application, the default 4GL window displaying in the 4GL
screen. This “logical screen” is a data structure kept in memory that is a
representation of a 4GL screen. The “logical screen” is not directly affected
by window manager operations, though its graphical image on the “phys-
ical screen” may change. See also 4GL screen, 4GL window, column, row.

screen array In a 4GL form, a screen array consists of consecutive lines containing
identical fields and field tags. Each line of the screen array is a screen
record. The screen array defines the region of the form which will display
program array values. The DISPLAY ARRAY and INPUT ARRAY statements
can manipulate program array values or records within a screen array. See
also field, field tag, program array, row, screen record, scrolling.

screen field See field.

screen form A data-entry form displayed in a 4GL window (or the 4GL screen) and used
to support input or output tasks in a 4GL application. A screen form is
defined in a form specification file. Before a 4GL program can use a screen
form, this file must first be compiled. The form in the current 4GL window
is called the “current form.” Most user interaction statements use a screen
form for their input and output. See also 4GL window, 4GL screen, active form,
attribute, current, form specification file, reserved lines, user interaction state-
ment.

screen record A named group of fields on a screen form. Screen forms have one default
screen record for each table referred to in the TABLES section, including
FORMONLY. The name of a default screen record is the same as the name
of the table. See also program record, record, screen array, table.

scrolling To move forward and back (or up and down) through a series of items.
Referring to a screen array, scrolling is the action of bringing invisible lines
into view. Displayed data can be scrolled either vertically (to bring differ-
ent rows into view) or horizontally (to show different columns). Referring
Glossary 39

to database cursors, a sequential cursor can return only the current row
and cannot return to it; but a scroll cursor can fetch any row in the active
set. Thus a scrolling cursor can be used to implement a scrolling screen
display. See also cursor, screen array.

search path The list of directories in which the operating system or a program will look
for needed files. This path can be set by the user. Often, the user can specify
several different paths to be searched; if one path does not lead to the file,
one of the others may. For executable files, the setting of an environment
variable called PATH is used. For Informix database files, the setting of the
DBPATH environment variable is used. See also database, environment
variable, operating system.

shell A process that handles the user interaction with the operating system.
From the shell, the user can execute operating system commands. A shell
is usually provided to contain activity in a particular part of the computer
system. In UNIX, for example, the shell handles command-line input, and
standard output and error reporting. UNIX shells have their own special
commands that are not usable within applications. They even have their
own special variables and scripting facilities that make the user interface
customizable. See also command line, environment variable, operating system,
process.

simple data type Any 4GL or SQL data type which has no component values. Simple data
types include: integer—SMALLINT, INTEGER; floating-point—FLOAT,
SMALLFLOAT, DECIMAL(p); fixed-point—DECIMAL(p,s), MONEY; time—
DATE, DATETIME, INTERVAL; character—CHAR, and VARCHAR.
Although individual characters in a string can be accessed, the data types
CHAR and VARCHAR are considered simple data types, not structured
data types. See also blob, character, data type, fixed-point number, floating-point
number, integer, interval, structured data type.

singleton transaction A transaction that is made up of a single SQL statement. The transaction
automatically begins before each SQL statement which alters the database
executes and ends when this statement completes. If the single SQL state-
ment fails, the transaction is rolled back; otherwise it is committed. A data-
base that is not ANSI-compliant and which does not use transaction
logging uses singleton transactions. See also ANSI-compliant, commit, roll
back, transaction.

source file A file containing source code for a language; it is used as input to a
compiler or interpreter. See also compile, file, interpret, source module.
40 Glossary

source module A module containing one or more related 4GL program blocks. A source
module is a single ASCII file with the .4gl extension. Several source mod-
ules can be compiled and linked to produce a single executable file. See
also compile, executable file, execute, file, file extension, link, module, program
block.

SQL Acronym for Structured Query Language. A database query language
developed by IBM and standardized by an ANSI standards committee.
Informix relational database management products are based on an
extended implementation of ANSI-standard SQL. See also cursor, database,
prepared statement, statement identifier.

SQLCA record Acronym for SQL Communications Area. It is a built-in record that
stores information about the most recently executed SQL statement. The
SQLCODE member stores the result code returned by the database engine;
it is used for error handling by 4GL and the Informix embedded-language
products. The SQLAWARN member is a string of eight characters whose
individual characters signal warning conditions. SQLERRD is an array of
six integers that returns information about the results of an SQL statement.
See also database engine, error handling, status variable.

stack A data structure that stores information linearly with all operations
performed at one end (the “top”). Such types of data structures are often
called LIFO (last-in, first-out) structures. Stack operations include “push,”
which adds a new piece of data to the top of the stack, and “pop,” which
removes the piece of information at the top of the stack. 4GL uses one stack
to transfer arguments to C functions and another to keep track of open 4GL
windows. See also 4GL window, call stack.

statement An instruction that 4GL executes. This instruction is a single executable
unit of program code but may cover several lines within the source mod-
ule. For example, the FOR statement may have several lines between the
line introduced with the FOR keyword and the line introduced with END
FOR keywords. However, the FOR statement is a single statement because
it performs a single action. During program execution, the statement cur-
rently being executed is often called the current statement. A statement is
distinct from a command: the LET or PRINT command is executed by the
INFORMIX-4GL Interactive Debugger; the LET or PRINT statement can be
compiled and executed by 4GL. See also current, source module, statement
block.
Glossary 41

statement block A group of statements executed together. For example, all statements
between the WHILE keyword and the END WHILE keywords constitute a
statement block. All the statements within the AFTER INPUT block of the
INPUT (or INPUT ARRAY statement) are also considered a statement block.
See also control block, program block, statement.

statement identifier The name that represents a prepared statement created by a PREPARE
statement. It is used in the management of dynamic SQL statements by 4GL
and the Informix embedded language products. See also identifier, prepared
statement.

status variable The built-in variable which 4GL sets after executing each SQL and form-
related statement. If the statement is successful, status is set to zero. If the
value of status is negative, 4GL terminates program execution unless the
program contains the appropriate error handling. After execution of SQL
statements, 4GL copies the value of SQLCA.SQLCODE into status. See also
error handling, SQLCA record.

string A value that consists of one or more characters. You can store strings
in CHAR, VARCHAR, or TEXT variables. Strings can include printable
or unprintable characters, but 4GL does not provide facilities to display
unprintable characters. Literal string values in 4GL statements generally
must be enclosed between quotation (“ ”) marks. See also character, literal,
printable character, quoted string, subscript, substring.

string operators Operators that perform operations on character strings. 4GL string opera-
tors are: concatenation (,) and subscripting ([]). Precedence for string
operators is: (highest) subscripting; (lowest) concatenation. In addition,
the 4GL built-in operator CLIPPED performs truncation of trailing spaces.
See also associativity, built-in operator, clipped, concatenate, operator,
precedence, subscript.

structured data type Any 4GL data type that contains component values. Structured data types
include ARRAY and RECORD. Although individual characters in a string
can be accessed, the data types CHAR and VARCHAR are considered sim-
ple data types, not structured data types. See also array, data type, record,
simple data type.

subscript An integer value to access a single part or element of certain data struc-
tures like strings and arrays. In 4GL, the subscript operator is an integer
value, surrounded by brackets ([]). For example, the syntax “strng[3]”
accesses the third character of the CHAR string variable by specifying a
subscript (or index) of 3; the syntax “pa_customer[5]” accesses the fifth
element of the pa_customer program array. Two subscripts allow you to
42 Glossary

specify the starting and ending characters. For example, “strng[3,10]”
accesses the third through tenth characters of strng. See also array,
character, program array, string, string operators, substring.

substring Consecutive characters within a string. To access a substring in a character
expression, put square brackets around a pair of comma-separated
unsigned integers to specify the location of the substring within a charac-
ter string. For example, “strng[3,10]” accesses the third through tenth
characters of strng. See also character, subscript, string.

system catalog Database tables that contain information about the database itself, such
as the names of tables or columns in the database, the number of rows
in a table, information about indexes and database privileges, and so
forth. See also column, database, index, table.

table A collection of related database rows. It can be thought of as a rectangular
array of data in which each row describes a set of related information and
each column contains one piece of the information. A table sometimes is
referred to as a “file” or a “relation.” See also column, cursor, database, key,
row, rowid.

target The intended result of a build. The Programmer’s Environment can create
executable files from multiple source modules. This process is called a
build. See also executable file, Programmer’s Environment, source module.

termcap An ASCII file in UNIX systems that contains the names and capabilities
of all terminals known to the system. See also terminal, terminfo.

terminal A peripheral device usually centered around a raster screen. Terminals
usually come with keyboards, and are used by the user of a computer
system to communicate with the computer by typing commands in and
looking at the output on the screen. Terminals are often character-based
and are thereby distinguishable from displays which are usually graphi-
cal. Terminals support monochrome or color output, depending on their
designed capabilities and computer system configuration. See also
character, key, screen, workstation.

terminfo A database in UNIX systems that contains compiled files of terminal capa-
bilities for all terminals known to the system. See also terminal, termcap.

text 1) In the SCREEN section a 4GL form, any characters outside the fields, such
as labels, titles, or ornamental lines. See also label.

2) In uppercase letters, TEXT is the 4GL and SQL data type which can store
up to 231 bytes of character data. See also blob.
Glossary 43

text cursor Pointer within a text field showing the position where typed text will be
entered. Often referred to simply as the “cursor.” See also cursor, text.

text editor System software used to create and to modify ASCII files. Usually source
code is entered into a source file in a text editor. See also ASCII, source file.

text field A visual object for displaying, entering, and modifying text, a single line
of character data. For example, form fields are text fields for use in screen
forms. Text fields are used more generally, for example, to accept text in
PROMPT statements. See also field, screen form, text.

transaction A collection of one or more SQL statements that must be treated as a single
unit of work. The SQL statements within the transaction must all be
successful for the transaction to succeed. If one of the statements in a trans-
action fails, the entire transaction can be rolled back (cancelled). If the
transaction is successful, the work is committed and all changes to the
database from the transaction are accepted. The transaction log contains
the changes made to the database during a transaction. If a database is not
ANSI-compliant, it uses singleton transactions if it does not use a transac-
tion log and it uses explicit transactions otherwise. If a database is ANSI-
compliant, it uses implicit transactions. See also ANSI-compliant, commit,
explicit transaction, implicit transaction, log, roll back, singleton transaction.

truncation The process of discarding trailing characters from a string value, or dis-
carding trailing digits from a number. Truncation can produce a warning
or error in data type conversion, if the receiving data type has a smaller
length or scale than the source data type. It can also cause rounding errors.
See also data type conversion, error, scale.

tuple See row.

unary operator An operator that requires only one operand. The unary operator appears
before the operand. In an expression, unary operators always have higher
precedence than binary operators. In 4GL, examples include logical NOT,
unary plus (+), and unary minus (-). 4GL associates most unary operators
from right-to-left. See also arithmetic operators, associativity, binary operator,
Boolean operators, operand, operator, precedence.

user An individual who interacts with a program. The user is a person who
is using an application program for its intended purpose. Also referred
to as the “end user.” See also application program, developer.
44 Glossary

user interaction
statement

A 4GL statement that allows a user to interact with a screen form or a field.
These statements include: CONSTRUCT, DISPLAY ARRAY, INPUT, INPUT
ARRAY, MENU, and PROMPT. They suspend execution of the 4GL applica-
tion for user input. See also attribute, control block, data entry, query by exam-
ple, ring menu, statement.

user interface The point in a software or hardware system at which communication to or
from a human can occur. In software systems, it is that part of a program
that waits for input from the user of that program and displays output
based on that user’s input. Typical user interfaces include menus,
prompts, screen forms, and on-line help messages. See also shell.

user locale The set of X/Open-defined environment variable settings currently active
in a user session. See also database locale, Native Language Support.

user name A short name that identifies a particular user to a computer. It is common
for it to be based on your actual name, but this is by no means the rule.
Once created, the user name is used thereafter during the login process,
and with establishing file ownership. See also login, owner.

variable A named storage location that holds a value of a specified data type. A
program can access and change this value by specifying its name. A 4GL
variable (sometimes called a “program variable”) can transfer information
between a 4GL form, report, and program. To use a 4GL variable, you must
first define it (with the DEFINE statement) to specify the variable’s name
and data type. Variable names must follow identifier naming rules. See
also assign, constant, declare, define, global variable, identifier, local variable,
module variable, name space, screen form.

warning An exception which indicates an unexpected or abnormal condition that
could lead to an error in processing or data storage. Warnings can be gen-
erated because of language syntax being used, when compiling source
code or, because of a variety of processing or data exceptions when
running a program. At run time, warnings can be generated by the
program itself or by the database engine. By default, 4GL continues execu-
tion when it encounters a warning. The developer can change this default
behavior with the WHENEVER WARNING statement. See also database
engine, exception.

wildcard In a pattern-matching string, a character that means “any character(s) at
this point.” Depending on the context, a wildcard can stand for just one
character (?), or it can mean “any number of any characters” (*).
For example, in the pattern “v*.4gl” the asterisk means “any number of
any characters after the ‘v’ and preceding the period.” See also regular
expression.
Glossary 45

workstation A peripheral device used to communicate with a computer. It usually
consists of a graphical or character-based (non-graphical) display or termi-
nal, a keyboard, serial and parallel ports for connecting to the computer
and other peripherals, and a graphical input device like a mouse or track-
ball. See also key, keyboard focus, screen, terminal.

X-Open defined A classification describing environment variables which originated in the
X-Open Portability Guide version 3 (XPG3) standard. This includes LANG
and the LC_ variables. Collectively the values of the X-Open variables
define the locale. X-Open variables rely on facilities provided by the com-
puter manufacturer, and can vary from system to system in syntax and
meaning. X-Open defined variables are distinguished from Informix-
defined environment variables, which are consistent across platforms. See
also Native Language Support.

XPG3 The X-Open Portability Guide version 3. The current standard for NLS on
UNIX systems. See also Native Language Support.
46 Glossary

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z

Index
A
a command-line option 1-60, 1-62
A symbol in format strings 5-48
Abnormal termination 3-99
Accelerator keys 3-139, 3-164
Accept key

with CONSTRUCT 3-52
with DISPLAY ARRAY 3-92
with INPUT 3-128
with INPUT ARRAY 3-152

ACCEPT keyword in OPTIONS
statement 3-230

Access privileges
checking 3-196, 4-90
database 3-59
with ASCII files 3-181, 3-274

Accounting parentheses 4-92
ACTION Menu (upscol utility) B-6
Activation clause

CASE statement 3-22
CONSTRUCT statement 3-38
DISPLAY ARRAY statement 3-87
IF statement 3-124
INPUT ARRAY statement 3-156
INPUT statement 3-134
MENU statement 3-195
PROMPT statement 3-258
WHILE statement 3-287

Activation key
CONSTRUCT control block 3-41
DISPLAY ARRAY control

block 3-87
INPUT ARRAY control

block 3-161
INPUT control block 3-137
MENU control block 3-199

PROMPT control block 3-258
Active set 3-107, 3-283
Addition (+) operator

number expressions 3-339, 4-22
precedence 3-328
precision and scale 3-321
reserved lines 3-226, 3-231
returned values 4-20
time expressions 3-357, 4-22

AFTER CONSTRUCT block 3-43
AFTER DELETE block in INPUT

ARRAY statement 3-165
AFTER FIELD block

CONSTRUCT statement 3-42,
4-68

INPUT ARRAY statement 3-164
INPUT statement 3-139

AFTER GROUP OF block 3-261,
4-95, 6-29

AFTER INPUT block
INPUT ARRAY statement 3-166
INPUT statement 3-140

AFTER INSERT block, INPUT
ARRAY statement 3-165

AFTER keyword
CONSTRUCT statement 3-42,

3-43
INPUT ARRAY statement 3-165
INPUT statement 3-134
REPORT statement 3-261, 6-29

AFTER ROW block, INPUT
ARRAY statement 3-166, 4-26

Aggregate function
AVG() 4-14, 6-46
COUNT(*) 4-14, 6-47, 6-49
GROUP 4-14, 6-31, 6-46
MAX() 4-14, 6-47

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
MIN() 4-14, 6-47
PERCENT(*) 3-261, 4-14, 6-47
SUM() 4-14, 6-46
two-pass reports 3-262
view columns 3-72, 3-314, 5-29
with blob arguments 3-298, 3-318
with NULL values 4-13, 6-47
with reports 3-100, 3-262, 6-31
with SQL statements 6-45

Alias of a table
CONSTRUCT statement 3-36
in a field clause 3-359
in a form 3-361, 5-19, 5-29

ALL keyword
MENU statement 3-194
SQL Boolean operator 3-330

Allocation of resources 3-66, 3-186
ALTER INDEX statement,

interrupting 3-236
ALTER TABLE statement

impact of NLS on E-10
interrupting 3-236
query by example 3-35, 3-363

Ambiguous selections in
menus 2-16

Ampersand (&) symbol 4-92
AND operator

Boolean operator 3-32, 3-329,
3-333, 4-31, 4-37

precedence of operators 3-328,
4-37

with BETWEEN 4-35, 5-33, 5-71
Angle (< >) brackets 3-48, 3-298,

3-334, 4-32, 5-53, 6-44
ANSI E-5, E-15, E-35, E-39, E-48
ansi

option of c4gl command 1-31
option of fglpc command 1-59

ANSI-compliance
and DBANSIWARN D-8
-ansi flag D-8

ANSI-compliant database
comment indicators 2-6
database references 3-361, 3-362
default attributes 5-72
default values 3-127
error handling 3-283, 3-285, 4-85
initializing variables 3-127

interrupting transactions 3-237,
3-238, 3-239

opening 3-61
owner naming 3-35, 3-69, 3-126,

3-279, 3-361, 5-19
remote 3-362
validation criteria 3-280

ANY keyword
SQL Boolean operator 3-330
WHENEVER statement 2-26,

3-281
ANYERR 3-283, 3-319, 4-50
Application

internationalizing I-3
programming interface to C 4-6,

C-1
program, compiling 1-24, 1-29,

1-58
Argument

for 4GL program command
line 4-17, 4-76

in function calls 3-17, 3-281
in report definition 3-261, 6-6
passed to a C function C-23
passing by reference 3-18, 3-190,

3-242, 3-264, 4-8
passing by value 3-18, 3-242,

3-263, 4-8
stack 2-27, C-2, C-12

ARG_VAL() 4-16
Arithmetic functions C-36
Arithmetic operators

binary 3-339, 4-19
integer expressions 3-339
number expressions 3-341, 4-18
precedence of operators 3-328
time expressions 3-357, 4-18, 4-21,

4-54
unary 3-340, 4-19

Array
of records 4-26
program array 4-24
screen array 5-63, 5-66

ARRAY data type
declaration 3-71, 3-297
in DISPLAY ARRAY

statements 3-85
in FOREACH statement 3-107
in MENU statement 3-206

in report parameter list 3-261, 6-8
index 3-329

ARRAY keyword
DEFINE statement 3-71
DISPLAY ARRAY statement 3-85
INPUT ARRAY statement 3-152

Arrow keys
CONSTRUCT statement 3-51
INPUT ARRAY statement 3-172
INPUT statement 3-146
MENU statement 3-209
termcap entry F-5
WORDWRAP fields 3-148, 5-61

Arrows in syntax diagrams Intro-7
ARR_COUNT()

syntax and description 4-24
with DISPLAY ARRAY 3-85, 3-90
with INPUT ARRAY 3-171

ARR_CURR()
syntax and description 4-26
with DISPLAY ARRAY 3-90
with INPUT ARRAY 3-171

ASCII character set E-2, E-3, E-5,
E-8, E-23, E-30

ASCII characters
and corresponding codes G-2
ASCII operator 3-77, 3-214
collating sequence 3-49, 3-344,

5-45, G-2
from integer codes 4-28
in screen layouts 5-16
printable 3-345
unprintable 3-345

ASCII collation E-4, E-17, E-22
ASCII file

colornames F-19
data input 3-182
data output 3-274
error log 4-51, 4-84
form specification 5-3
Help messages 2-22
source code module 2-7
.4gl source files 1-24, 1-53

ASCII operator
precedence of operators 3-328
PRINT statement 4-29, 6-47

Asian Language Support I-2
Assignment statements 2-7, 3-125,

3-178, 5-20
2 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Associativity of operators 3-328
Asterisk (*) notation

arithmetic operator 4-64
database columns 3-33, 3-363
exponentiation operator 3-328,

3-339, 4-20
in REPORT prototype 3-261, 6-6
multiplication operator 3-328,

3-339, 3-357, 4-20, 4-22
overflow in data conversion C-26
program record members 3-314,

3-363
screen array elements 3-82, 3-363
screen field overflow 3-80, 3-86,

4-91, 5-14
screen record members 3-359,

3-363, 4-66, 5-65
wildcard with CONSTRUCT 3-49
wildcard with MATCHES 3-335,

4-34
with COUNT function 4-14, 6-47
with PERCENT function 3-261,

4-14, 6-47
Asynchronous message

handling 3-62
AT keyword

DISPLAY statement 3-74
OPEN WINDOW

statement 3-220
At (@) symbol

database servers Intro-10, 3-33,
3-58

MENU statement 3-199, 4-60
table or column prefix 2-12, 5-4

ATTRIBUTE keyword
CONSTRUCT statement 3-37,

5-71
DISPLAY ARRAY

statement 3-86, 5-71
DISPLAY FORM statement 3-93,

5-72
DISPLAY statement 3-83, 5-71
ERROR statement 3-97
INPUT ARRAY statement 3-155,

5-71
INPUT statement 3-133, 5-71
MESSAGE statement 3-214
OPEN WINDOW statement 5-72
OPTIONS statement 3-230, 5-72

PROMPT statement 3-257
Attribute types

AUTONEXT 5-28, 5-30, 5-70
BLACK 3-290
BLINK 3-291, 5-31, 5-71, F-10,

F-29
BLUE 3-291, 5-34
BOLD 3-291, 5-34, 5-71, F-29
BORDER 3-224, F-6, F-25
COLOR 3-298, 3-317, 3-331, 5-28,

5-31, 5-78, B-8
COMMENTS 5-28, 5-36, 5-70
CYAN 3-290
DEFAULT 5-25, 5-28, 5-38, 5-70,

B-7
DIM 3-291, 5-34, 5-71, F-29
DISPLAY LIKE 5-18, 5-28, 5-40
DOWNSHIFT 5-28, 5-41, B-7
FORM 3-234
FORMAT 3-81, 5-28, 5-42, B-9
GREEN 3-290
INCLUDE 3-279, 5-25, 5-28, 5-44,

5-70, B-7
INVISIBLE 3-83, 3-93, 3-214,

3-291, 5-28, 5-46, 5-71, F-29
LEFT 3-81, 5-31, B-9
MAGENTA 3-290
NOENTRY 5-28, 5-47
NORMAL 3-214, 3-291, 5-34, 5-71
PICTURE 5-48, 5-70
PROGRAM 3-81, 3-298, 3-317,

5-28, 5-50
RED 3-291, 5-34
REQUIRED 5-28, 5-52
REVERSE 3-224, 3-291, 5-28, 5-31,

5-53, 5-71, F-4, F-10, F-29
SHIFT 5-70, B-7
UNDERLINE 3-291, 5-31, 5-71,

F-10, F-29
UPSHIFT 5-28, 5-54, B-7
VALIDATE LIKE 5-18, 5-28, 5-55
VERIFY 5-28, 5-56, 5-70
WHITE 3-291, 5-34
WORDWRAP 5-26, 5-28, 5-57
YELLOW 3-290

ATTRIBUTES section of form
specification

default values 5-38, 5-69, B-7
field attributes 5-20, 5-28, 5-31

field names 5-20, 5-28
field tags 5-21, 5-33
fields linked to columns 5-18,

5-22
FORMONLY fields 5-20, 5-24
multiple-segment fields 5-26,

5-57
multiple-table forms 5-9
syntax 5-20, 5-28

AUTONEXT attribute 5-28, 5-30,
5-70, B-7

AVG() aggregate function 4-14,
6-46

B
Background process 3-267
Backslash (\) symbol

default Quit key 3-62
escape character 3-178
in forms 5-16
in input files 3-184
in output files 3-276
in pathnames 3-59
with LIKE 3-336, 4-34
with MATCHES 3-335, 4-34

Backspace key for menus 2-16,
3-207

BEFORE DELETE block in INPUT
ARRAY statement 3-160

BEFORE FIELD block
CONSTRUCT statement 3-40
INPUT ARRAY statement 3-161
INPUT statement 3-137

BEFORE GROUP OF block
definition of 6-31
variables 3-261

BEFORE INPUT block
INPUT ARRAY statement 3-159
INPUT statement 3-136

BEFORE INSERT block in INPUT
ARRAY statement 3-160

BEFORE keyword
CONSTRUCT statement 3-39,

4-65
INPUT ARRAY statement 3-160,

3-161, 4-65
INPUT statement 3-137, 4-65
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MENU statement 3-196
REPORT statement 3-261, 6-31

BEFORE MENU block 3-196
BEFORE ROW block in INPUT

ARRAY statement 3-160, 4-26
BEGIN WORK statement 3-237
Bell, ringing 3-96, 3-179, 4-28, 5-48
BETWEEN operator 3-330, 4-35,

5-33, 5-71
Binary arithmetic operators 3-329,

3-339, 4-19, 4-20
Binary large objects (blobs)

data types 3-296
defining variables 3-70
in Boolean expressions 4-33, 5-33
in screen forms 5-50
passing by reference 3-18, 3-242

Binding
of forms to database 5-21
of variables to screen fields 3-34,

3-81, 3-85, 3-130, 3-153, 5-3
BLACK attribute 3-290, 5-31, 5-46,

5-71, F-20
Blank characters

as list separators Intro-8
between menu options 3-206
CLIPPED operator 3-328, 4-38
DATETIME separator 3-302,

3-351
default character value 3-131,

3-154, 5-12, 5-25, 5-38
in identifiers 2-10
in input files 3-182
in literal numbers 3-342
in output files 3-275
in output strings 4-93
INTERVAL separator 3-309,

3-355
padding CHAR values 3-318
PICTURE attribute 5-48
SPACE or SPACES operator 4-82,

6-50
trailing blank spaces 3-318, 4-38
versus NULL values 5-44
with FORMAT attribute 5-43
within statements 2-3
WORDWRAP fields 3-147, 5-58,

5-59

WORDWRAP operator 4-103,
6-51

BLINK attribute 3-290, 3-291, 5-31,
5-71, F-10, F-29

Blob
description of 3-70
storing data in 3-298

BLUE attribute 3-290, 5-31, 5-71,
F-20

BOLD attribute 3-290, 5-71, F-29
Boldface terms in text Intro-5
Boolean capabilities F-3, F-22
Boolean expression

CASE statement 3-21
CONSTRUCT statement 3-31
IF statement 3-124
in 4GL statements 3-333
in SQL statements 3-330
in syscolatt B-9
in syscolatt table 5-71
logical operators 3-334, 4-32
WHILE statement 3-287
wildcards in searches 3-336, 4-34
with COLOR attribute 5-32, 5-78

Boolean operators
AND 3-329, 3-333, 4-31, 4-35
BETWEEN 3-330, 4-35
description of 4-30
IN 3-330, 4-35
IS NOT NULL 3-328, 4-33
IS NULL 3-328, 4-33
LIKE 3-328, 4-33
MATCHES 3-328, 4-33
NOT 3-329, 3-333, 4-31
OR 3-333, 4-31

Bordered window, graphics
characters used 5-17, F-25

BOTTOM MARGIN
keywords 6-11, 6-38

Bourne shell
how to set environment

variables D-4
.profile file D-2

Braces ({ }) symbols
comment indicator 2-6
screen layout of forms 5-14

Brackets ([]) symbols
in string comparisons 3-335, 4-34

records within screen arrays 3-36,
3-359, 4-68, 5-67

subsets of BYTE values 3-298
substrings in character

arrays 3-297
substrings of TEXT

columns 3-317
to specify program arrays 3-328,

3-344
to specify screen arrays 5-63, 5-66
to specify search criteria 3-50,

3-335
to specify substrings 3-77, 3-215,

3-328, 3-344, 5-22
with SCROLL 3-268

Built-in functions
Aggregates 4-13
ARG_VAL() 4-16
ARR_COUNT() 4-24
ARR_CURR() 4-26
DOWNSHIFT() 4-47
ERRORLOG() 4-51
ERR_GET() 4-48
ERR_PRINT() 4-49
ERR_QUIT() 4-50
FGL_DRAWBOX() 4-56
FGL_GETENV() 4-58
FGL_KEYVAL() 4-60
FGL_LASTKEY() 4-62
introduction to 4-5
LENGTH() 4-71
NUM_ARGS() 4-76
SCR_LINE() 4-78
SET_COUNT() 4-80
SHOWHELP() 4-81
SQLEXIT() 4-83
STARTLOG() 4-84
UPSHIFT() 4-90

Built-in operators
Arithmetic 4-18
ASCII 3-328, 4-28
Boolean 4-30
CLIPPED 3-328, 4-38
COLUMN 3-328, 4-40
CURRENT 3-329, 4-42, 5-39
DATE 3-329, 3-330, 4-44
DATE() 3-329, 4-45
DAY() 3-329, 4-46
EXTEND() 3-329, 4-53
4 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
FIELD_TOUCHED() 3-330, 4-64
GET_FLDBUF() 3-330, 4-66
INFIELD() 3-330, 4-69
LINENO 3-330, 4-73
Logical operators 4-31
MDY() 3-329, 4-74
MOD 3-328
MONTH() 3-329, 4-75
PAGENO 3-330, 4-77
Relational operators 4-32
SPACE or SPACES 3-328, 4-82
TIME 3-329, 3-330, 4-86
TODAY 3-329, 4-87, 5-39
UNITS 3-328, 5-39
USING 3-328, 4-91
WEEKDAY() 3-329, 4-100
WORDWRAP 3-328, 4-102
YEAR() 3-329, 4-104

Built-in SQL functions 4-5, 4-6
Built-in variables

int_flag 3-62, 3-138, 3-162, 3-199,
3-235

quit_flag 3-62, 3-138, 3-162, 3-199,
3-235

SQLAWARN 2-25, 3-61, 3-320
SQLCA record 2-23, 3-282
SQLCODE 2-24, 4-48
SQLERRD 2-24
SQLERRM 2-24
SQLERRP 2-24
status 2-23, 3-279, 3-281, 3-319,

4-48
BY keyword

CONSTRUCT statement 3-34
DISPLAY statement 3-74
Form specification file 5-12
INPUT statement 3-131, 5-4
REPORT statement 3-262, 6-18
SCROLL statement 3-268

BY NAME clause
CONSTRUCT statement 3-34
DISPLAY statement 3-74
INPUT statement 3-131, 5-4

BYTE data type
ASCII representation 3-182, 3-275
Boolean expressions 4-33, 5-33
data entry 3-150, 3-174
declaration 3-65, 3-70
description 3-298

display fields 3-81, 3-86, 5-23,
5-50

display width 5-76, 6-44
in expressions 3-332
in program records 3-72, 3-313
in report output 6-44
initializing 3-186
large data types 3-296
passing by reference 3-18, 3-264
query by example 3-48
selecting a BYTE column 3-298
syscolval table 3-280, 5-55
upscol 5-70

C
C Compiler version of 4GL 1-3, 1-6
C compiler, function 1-29
C language

API 4-6
functions 1-30, 1-62, 1-64, 3-16,

4-6, C-6
C shell

how to set environment
variables D-4

.cshrc file D-2

.login file D-2
c4gl command 1-5, 1-29
CALL keyword in WHENEVER

statement 3-281, 3-285
CALL statement

description 3-16
with C functions 1-68

Calling routine 3-16, 3-263, 4-8, 6-4
Caret (^) symbol

with CONSTRUCT 3-50
with MATCHES 3-335, 4-34
with TOP OF PAGE 6-17

CASE statement 3-21
cat utility 1-61
Category, NLS E-2
cfglgo command 1-64, 1-67
CHAR data type

data type conversion 3-319, 3-324,
C-26

declaration 3-68, 3-294
description 3-299
display fields 5-42, 5-48, 5-57

display width 3-78, 5-76, 6-44
in expressions 3-343
in NLS E-4, E-6, E-9, E-18
in report output 6-44
returned by functions 3-19, 3-264
searching with LIKE 3-336, 4-34
searching with MATCHES 3-335,

4-34
subscripts 5-22, 5-25
unprintable characters 3-345

Char data type (of C) C-25
CHAR keyword

DEFINE statement 3-68, 3-294
PROMPT statement 3-257

Character
data types 3-296, 3-343
position 5-22

Character expression
CLIPPED operator 4-38
data type conversion 3-325
description of 3-343
NULL values 5-25
searching with LIKE 3-329, 3-336,

4-34, 4-37, 4-101
searching with MATCHES 3-329,

3-335, 4-34, 4-37
substring 3-215, 5-22
syntax 3-343

Character set
defined E-3
mentioned E-23, E-30

Character string
as Boolean expression 3-32
as DATETIME value 3-303
as INTERVAL value 3-311
determining the length 4-71
printable characters 3-345

Child process 3-265
CLEAR statement 3-26
CLIPPED operator

description of 4-38
DISPLAY statement 3-78
in a string expression 4-71
MESSAGE statement 3-213
precedence of operators 3-328
PRINT statement 6-44

CLOSE DATABASE
statement 3-59, 3-101, 4-83

CLOSE FORM statement 3-29
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
CLOSE WINDOW statement 3-30
Collation E-2, E-4, E-5, E-8, E-10,

E-13, E-20, E-27
COLLCHAR environment variable

interaction with DBNLS E-16,
E-19

mentioned E-2, E-4, E-5, E-11
settings E-19
syntax E-18

Colon (:) symbol
after database name Intro-10,

3-361
after label identifiers 3-177
after menu name 3-208
before label identifier 3-123
DATETIME separator 3-49, 3-302,

3-351, 4-86
field specification separator F-4
INTERVAL separator 3-49, 3-309,

3-311, 3-355
ranges with CONSTRUCT 3-49

Color
number codes 5-70
screen displays 3-223, 3-291, 5-27,

5-34
setting INFORMIXTERM

for D-35
COLOR attribute 5-28, 5-31, 5-78,

F-20
colornames file B-8, F-10, F-19
Column

changing data type 3-35, 3-319,
3-363

in screen arrays 5-66
inserting data 3-181, 3-184
upscol utility 5-69
with LIKE 3-125, 3-278
with table qualifier 3-361

COLUMN keyword
COLUMN operator 3-328, 4-40,

6-48
DISPLAY statement 3-77
MESSAGE statement 3-214
PRINT statement 3-254

COLUMN operator 4-40
Columns

in stores database A-3 to A-7
in stores database tables A-3
in upscol tables B-5

locale-sorted E-6, E-8
COLUMNS keyword in OPEN

WINDOW statement 3-221
Comma (,) symbol

array subscripts 3-297
in literal numbers 3-340, 3-342
in substring specifications 3-215
in USING format strings 4-92
separator in lists 3-364, F-22

COMMAND keyword, MENU
statement 3-197, 3-200

Command line
arguments of a 4GL

program 4-17, 4-76
RUN statement 3-265
START REPORT statement 3-273
to compile a message file B-3
to compile a screen form 5-75
to create a customized

runner 1-67, 1-70
to invoke a 4GL program 1-5,

1-29, 1-62, 1-63, 1-70, 4-17, 4-76
to invoke compiler 1-5, 1-30, 1-59

Comment indicators 2-6, 5-13, 5-16,
F-3, F-22

COMMENT keyword
OPEN WINDOW

statement 3-223
OPTIONS statement 3-229

Comment line 2-19, 3-51, 3-94,
3-172, 3-226, B-7

COMMENT LINE keywords
OPEN WINDOW

statement 3-223
OPTIONS statement 3-229

COMMENTS attribute 5-36, 5-70,
B-7

COMMIT WORK statement
interrupting transactions 3-237,

3-239
with LOAD 3-185

Comparison operators 3-48, 3-329,
3-334, 3-337, 3-358, 4-32, 4-36,
4-37

Compatible data types 3-324
COMPILE Menu 1-24
Compile option

FORM Menu 1-15, 1-44, 5-74
MODULE Menu 1-10, 1-39

PROGRAM Menu 1-20, 1-49
Compiler

C compiler 3-305
directive statements 3-14
maximum number of variables

allowed 3-67
mkmessage 4-81
p-code 3-67

Compile-time errors 1-9, 1-38, 5-74
Compiling

command line 1-29, 1-30, 1-58
help messages B-2
in Programmers

Environment 1-8, 1-29, 1-37,
1-58

programs that call C
functions 1-63

screen forms 1-13, 1-43
with ansi flag 1-31, 1-59

Compound statements 2-5, 2-8,
3-55, 3-95

COMPRESS keyword,
WORDWRAP attribute 3-147,
5-57, 5-59

Conditional statements
CASE statement 3-21
COLOR attribute 5-31, 5-78
IF statement 6-37
NEED statement 6-40
syscolatt file B-9
syscolatt table 5-71

CONNECT statement, and
INFORMIXSERVER
environment variable D-33

Connection
setting the

INFORMIXCONRETRY
environment variable D-30

setting the INFORMIXCONTIME
environment variable D-31

Consistency checking
defined E-6, E-15
mentioned E-7, E-27, E-49
overriding with Open NLS E-7

Constant
Boolean 3-333
floating-point 3-306
integer 3-340
operand 3-331
6 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
time interval 3-310
time-of-day values 3-302

CONSTRAINED keyword in
OPTIONS statement 3-51, 3-230

CONSTRUCT keyword
AFTER CONSTRUCT block 3-43
BEFORE CONSTRUCT

block 3-39
CONSTRUCT statement 3-31
CONTINUE CONSTRUCT 3-46
END CONSTRUCT

statement 3-47
EXIT CONSTRUCT

statement 3-47
Context of variable

declarations 3-66
CONTINUE keyword

CONTINUE CONSTRUCT 3-46
CONTINUE FOR 3-103
CONTINUE FOREACH 3-108
CONTINUE INPUT

statement 3-143, 3-169
CONTINUE MENU 3-202
CONTINUE WHILE 3-288
description 3-55
WHENEVER statement 3-281,

3-285, 4-51, 4-85
Control blocks

AFTER GROUP OF 6-29
BEFORE GROUP OF 6-31
CONSTRUCT statement 3-39
description 2-8
DISPLAY ARRAY statement 3-87
FIRST PAGE HEADER 6-33
IF statement 3-124
in FORMAT section of a

report 6-27
INPUT ARRAY statement 3-156,

3-158
INPUT statement 3-136
MENU statement 3-55, 3-194
ON EVERY ROW 6-34
ON LAST ROW 6-36
PAGE HEADER 3-269, 6-37
PAGE TRAILER 3-269, 6-38

CONTROL keys
CONSTRUCT statement 3-41
INPUT ARRAY statement 3-161,

3-173

INPUT statement 3-137, 3-138
PICTURE attribute 5-49
WORDWRAP fields 3-149, 5-61

Conventions
syntax Intro-6
typographical Intro-5

COUNT(*) aggregate
function 4-14, 6-47

CPU cost for a query 2-24
CREATE INDEX statement,

interrupting 3-236
CREATE TABLE statement E-4,

E-10
crtcmap utility E-23
Currency symbol

default (= $) 5-38
in format strings 4-94
in input files 3-182
in literal numbers 3-342
in output files 3-275

Current
database 3-58, 3-274
form 3-31, 3-56, 3-128, 3-152,

3-255
menu option 2-18
option of a menu 1-7, 1-35
window 2-19, 3-27, 3-31, 3-56,

3-128, 3-152
CURRENT keyword

Boolean expressions 5-31
CURRENT operator 4-42, 5-39
CURRENT WINDOW

statement 3-56
CURRENT operator 4-42
CURRENT WINDOW

statement 3-56
Cursor

manipulation statements 3-12
scope of reference 2-11
visual cursors 2-18

CURSOR keyword in DECLARE
statement 3-32

Cursor movement
CONSTRUCT statement 3-50
defined in terminfo file F-24
DISPLAY ARRAY statement 3-91
editing keys 3-52, 3-147, 3-172,

3-173
in a screen form 5-30

in a screen record 5-21
INPUT ARRAY statement 3-154
INPUT statement 3-130
MENU statement 2-16, 3-209
NEXT FIELD clause 3-44, 3-142,

3-168
NEXT OPTION clause 3-203
unprintable characters 3-345

customer table in stores
database A-3

Customized runners 1-48, 1-64
CYAN attribute 3-290, 5-31, 5-71,

F-20
C++ language 2-10

D
d symbol in format strings 4-94,

5-42
Data

access statements 3-12
definition statements 3-12
entry 3-147, 3-173, 5-6, 5-46, 5-52
integrity statements 3-13
manipulation statements 3-12

Data input
INPUT ARRAY statement 3-152
INPUT statement 3-128
LOAD statement 3-181

Data types
ARRAY 3-71, 3-297, 5-20
blob 3-70, 3-242, 3-296
BYTE 3-70, 3-296, 3-298, 3-332,

4-33, 5-23, 5-40, 5-50, 5-55, 5-76,
6-44

C language C-24
CHAR 3-296, 3-299, 3-343, 4-40,

5-38, 5-57, 5-76, 6-44
CHARACTER 3-300
character 3-296
CHAR, in NLS E-4, E-6, E-9, E-18
conversion between 2-25, 3-319,

3-324, 4-20, 4-45, 4-54
DATE 3-295, 3-300, 3-348, 4-40,

4-91, 5-38, 5-76, 6-44
DATETIME 3-295, 3-300, 3-348,

4-40, 5-39, 5-76, 6-44
DATE, in NLS E-9
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
DEC 3-304
DECIMAL 3-304, 3-320, 3-341,

4-19, 5-42, 5-76, C-23
DECIMAL, in NLS E-9
declaration 3-65, 3-293
display width 6-44
DOUBLE PRECISION 3-305
fixed point 3-295
flat file format 3-182, 3-275
FLOAT 3-305, 3-341, 4-19, 5-42,

5-76
floating point 3-295, 3-306, 3-315
FLOAT, in NLS E-9
indirect declaration 3-60, 3-69
INT 3-306
INTEGER 3-306, 3-341, 4-19, 5-76
INTERVAL 3-295, 3-307, 3-353,

3-357, 4-19, 4-40, 5-39, 5-76,
6-44

keywords 3-293
large binary 3-70, 3-149, 3-174,

3-186, 3-296
MONEY 3-312, 3-341, 4-19, 4-40,

4-91, 5-38, 5-76, 6-44
MONEY, in NLS E-9
NCHAR E-4, E-6, E-9, E-18
number 3-295
NUMERIC 3-313
NVARCHAR E-4, E-6, E-9, E-18
REAL 3-313
RECORD 3-72, 3-154, 3-313, 5-20
SERIAL 3-69, 3-130, 3-153, 4-40,

5-47, 6-44
simple 3-68, 3-294
SMALLFLOAT 3-315, 3-341, 4-19,

5-42, 5-76
SMALLFLOAT, in NLS E-9
SMALLINT 3-316, 3-341, 4-19,

5-76
structured 3-70, 3-296
TEXT 3-70, 3-296, 3-317, 3-332,

4-33, 4-102, 5-50, 5-57, 5-76,
6-50

time 3-295
VARCHAR 3-14, 3-296, 3-318,

3-343, 5-57, 5-76
VARCHAR, in NLS E-4, E-6, E-9,

E-18
whole number 3-295

Data validation
INCLUDE attribute 5-45
NOENTRY attribute 5-47
upscol utility 5-69, 5-71, B-7
VALIDATE LIKE attribute 5-55
VERIFY attribute 5-56

Database
administrator (DBA) access

privileges 1-16
ANSI-compliant 3-61, 4-85, 5-18,

5-72
binding to screen forms 5-4
closing 3-59, 3-101, 4-83
creating 2-25
current 3-60, 3-274, 3-362
default 3-59, 3-127, 3-280
engine 3-58, 3-61, 3-296, 3-330,

3-361, 4-83, 5-11
exclusive mode 3-61
explicit transactions 3-237, 3-238
locale E-2
lock 3-61
map of stores A-8
naming rules 2-10
opening 3-58
remote 3-58, 3-362, 4-83
schema 5-25
server 3-58, 3-278, 3-361, 3-362,

5-11
server, specifying default for

connection D-33
singleton transactions 3-237,

3-238
specification 3-59
stores demonstration A-1
stores2 Intro-12
types of transactions 3-237
with transactions 3-61, 3-108, 4-83

Database cursor
FOREACH statement 3-105
naming rules 2-10

Database name
DATABASE statement 3-58
table qualifier 3-33, 3-361

DATABASE section of form
specification

creating as FORMONLY 5-11,
5-24

syntax 5-10

WITHOUT NULL INPUT 5-12,
5-38

DATABASE statement
database connection 4-83
indirect typing 3-69
syntax and description 3-58
syscolval table 3-126, 3-280
two-pass reports 3-101
with SQLEXIT() 4-83

DATE data type
arithmetic operations 3-356, 4-23
converting to DATETIME 3-321,

4-53
converting to other data

types 3-324
declaration 3-68, 3-294
default value 5-25, 5-38
description 3-300
display fields 3-131, 3-154, 4-94,

5-38, 5-42
display width 3-78, 5-76, 6-44
formatting 4-94
in integer expressions 3-356, 4-23
in NLS E-9
in report output 6-44
in time expressions 3-348
literal values 3-182, 3-275, 3-349,

4-94
time data type 3-295
values 3-348

DATE keyword
DATE data type 3-300
DATE operator 3-330, 4-44, 5-39
DATE() operator 4-45
DEFINE statement 3-294

DATE operator 4-44
DATE value formatting D-9, D-18
DATETIME data type

arithmetic operations 3-356, 4-54
as character string 3-303, 3-322
data type conversion 3-321, 3-324,

4-45, 4-53
declaration 3-68, 3-294, 3-300
default value 5-25, 5-38
display fields 5-39, 5-49
display width 3-78, 5-76, 6-44
in report output 6-44
in time expressions 3-348
literal values 3-182, 3-275, 3-351
8 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
qualifiers 3-301, 3-349, 5-39
time data types 3-295
values 3-348

DATE() operator 4-45
DAY keyword

CURRENT operator 4-42
DATETIME qualifier 3-301,

3-349, 4-42
DAY() operator 4-46
EXTEND() operator 4-54
INTERVAL qualifier 3-309, 3-353,

4-55
UNITS operator 4-89

DAY() operator 4-46
DBANSIWARN environment

variable 2-25, D-8
DBAPICODE environment

variable E-2, E-11, E-23
DBDATE environment

variable 3-32, 3-182, 3-275,
3-300, 3-325, 4-45, 4-94, D-9, E-3,
E-11, E-42, I-5

DBDELIMITER environment
variable 3-184, 3-276, D-11

DBEDIT environment
variable 1-10, 1-24, 1-38, 1-53,
D-11

dbexport utility, specifying field
delimiter with
DBDELIMITER D-11

DBFLTMASK environment
variable 3-32

DBFORM environment
variable D-12, E-3, E-11, E-24

DBFORMAT environment
variable 3-32, 3-342, 4-91, D-14,
E-3, E-5, E-11, E-35, E-38, E-39,
E-41, E-42, I-5

DBLANG environment
variable B-5, D-18, E-3, E-11,
E-24, E-42, I-5

dbload utility, specifying field
delimiter with
DBDELIMITER D-11

DBMONEY environment
variable 3-32, 3-312, 3-325,
3-342, 4-91, D-21, E-3, E-5, E-11,
E-35, E-38, E-41, E-42

DBNLS environment variable
interaction with

COLLCHAR E-16, E-19
mentioned E-2, E-4, E-5, E-11
settings E-17
syntax E-16

DBPATH environment
variable 1-16, 1-26, 1-55, 3-33,
3-59, D-23

DBPRINT environment
variable 3-272, D-26

DBREMOTECMD environment
variable D-27

DBSPACETEMP environment
variable D-28

DBTEMP environment
variable 3-188, D-29

DBTIME environment
variable 3-32

DBUPSPACE environment
variable D-29

De-allocation of variables 3-190
Debug option

MODULE Menu 1-40
PROGRAM Menu 1-51

Debugger Intro-4, 1-36, 1-51, 1-56,
1-58, 1-63, 3-99

decadd() C-36
deccmp() C-37
deccopy() C-38
deccvasc() C-25
deccvdbl() C-34
deccvflt() C-32
deccvint() C-28
deccvlong() C-30
decdiv() C-36
dececvt() C-39
decfcvt() C-39
DECIMAL data type

arithmetic operations 4-20
data type conversion 3-319, 3-324
declaration 3-68, 3-294
description 3-304
display fields 5-43
display width 3-78, 5-76, 6-44
floating point 3-304
in NLS E-9
in report output 6-44
internal representation C-23

literal values 3-342
scale and precision 3-320

DECIMAL functions for C C-23
Decimal separator D-14, D-21,

E-31, E-33, E-35, E-40, E-45
Decimal (.) point

DATETIME separator 3-302,
3-351

DECIMAL values 3-304
fixed-point values 3-304
FLOAT values 3-305
floating-point values 3-304, 3-316
in format strings 4-92
in literal numbers C-25
INTERVAL separator 3-309,

3-353
literal numbers 3-342

decimal.h file C-23
Declaration statements 2-7, 2-9
DECLARE statement

declaring a cursor 3-106
query by example 3-32
SQLCA record 2-24

decmul() C-36
decsub() C-36
dectoasc() C-26
dectodbl() C-35
dectoflt() C-33
dectoint() C-29
dectolong() C-31
dec_t structure C-23
Default

activation key 3-198
assumptions for your

environment D-5
attributes 5-69
database 3-59, 3-126, 3-278, 3-280
editor 1-24, 1-53
error record 4-51
error-handling action 4-85
field attributes 3-292, 5-72
field label 5-76
field width 5-76
Help key 2-21
precision 4-53
report margins 4-103, 6-10, 6-51
reserved line positions 3-94, 3-226
screen layout 5-76
screen record 5-64
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
validation criteria 3-280
values 3-127
window attributes 3-223

DEFAULT attribute
field attribute 5-28
syntax and description 5-38
with INITIALIZE statement 5-71
with INPUT 3-130
with INPUT ARRAY 3-154
with WITHOUT DEFAULTS 5-38
with WITHOUT NULL

INPUT 5-38
Default form specification file

creating at system prompt 5-75
generating 1-14, 1-43, 5-73
modifying 1-14, 1-43, 5-73

DEFAULTS keyword
INPUT ARRAY statement 3-154
INPUT statement 3-131

DEFER statement 3-62
DEFINE section of REPORT

statement 6-8
DEFINE statement

in a report 2-11
in FUNCTION statement 3-60,

3-113
in GLOBALS statement 3-60,

3-117
in MAIN statement 3-60
in REPORT statement 3-261
location 2-11
outside program blocks 3-60, 3-66
syntax and description 3-65

Delete key
deleting a line F-6, F-25
INPUT ARRAY statement 3-162
PICTURE attribute 5-49

DELETE keyword
INPUT ARRAY statement 3-160,

3-165
OPTIONS statement 3-230

DELETE statement,
interrupting 3-236

Delimiter
changing in a screen form 5-68
for DATETIME values 3-302
for input file 3-184
for INTERVAL values 3-309
for output file 3-276

for screen fields 2-17
in a screen form 5-14

DELIMITER keyword
LOAD statement 3-184
UNLOAD statement 3-276

Demonstration application,
listing A-30

Demonstration database
description of A-1
installing Intro-12
map of A-8
restoring 1-5, A-2
tables in A-3 to A-7

DIM attribute 3-290, 5-71, F-9
Dimensions of an array 3-73, 3-297
Disabled

form fields 5-6
menu options 2-16

DISPLAY ARRAY statement
ARR_CURR() 4-26
SET_COUNT() 4-80
syntax and description 3-85

DISPLAY ATTRIBUTE
keywords 3-234

Display characteristics
background colors 4-56
default screen attributes 5-69
field attributes 5-28, 5-71
formatting output 3-77
output from a report 3-244, 6-14,

6-41
query by example 3-37
screen coordinates 5-12
table of color and intensity

values 5-70
Display field

attributes 2-21, 3-37, 3-134, 3-156,
3-292, 5-27, 5-72

cursor movement 3-50
default attributes 5-21, 5-40, 5-55,

5-69
default field lengths 5-15, 5-75
delimiters 2-17, 5-14
display label 2-18
dividing character columns 5-25
field names 5-15, 5-20, 5-28
field tag 5-14, 5-33, 5-78
format 5-14
FORMONLY 5-20, 5-24

Help messages 2-21, 3-37, 3-134,
3-156

labels for 5-16
multiple-line fields 5-15
multiple-segment fields 5-57
names 5-21, 5-24
screen arrays 5-15
screen records 5-65
substring of a character

column 5-22
THRU notation 3-363
verifying field widths 5-15

DISPLAY FORM statement 3-93
DISPLAY keyword

DISPLAY ARRAY statement 3-85
DISPLAY FORM statement 3-93
END DISPLAY statement 3-89
EXIT DISPLAY statement 3-89
OPTIONS statement 3-230

DISPLAY LIKE attribute 5-18, 5-28,
5-40

Display modes
Formatted mode 3-76, 3-80
Line mode 3-76

DISPLAY statement
CLIPPED 4-38
formatting 4-93
syntax and description 3-74

Distributed tables 5-24
Division (/) operator 3-321, 3-339,

3-357, 4-20, 4-22
Documentation notes Intro-10
Double data type (of C) C-35
DOWN keyword

SCROLL statement 3-268
syscolval table 5-70, B-7

DOWNSHIFT attribute 5-28, 5-41,
5-69, 5-70, B-7, E-10

DOWNSHIFT() 4-47
Drop option, PROGRAM

Menu 1-22
Dynamic management

statements 3-12
10 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
E
Editing keys

CONSTRUCT statement 3-52
INPUT ARRAY statement 3-173
INPUT statement 3-147
WORDWRAP fields 3-148, 5-60

Editor
blanks in fields 5-59
specifying with DBEDIT D-11

Ellipsis (. . .) symbol
in code examples Intro-6
in menu pages 2-15, 3-208

ELSE keyword, IF statement 3-124
END keyword

ATTRIBUTES section of
form 5-21

END CASE statement 3-24
END CONSTRUCT

statement 3-47
END DISPLAY statement 3-89
END FOR statement 3-104
END FOREACH statement 3-109
END FUNCTION

statement 3-116
END GLOBALS statement 3-117
END IF statement 3-124
END INPUT statement 3-144,

3-169
END MAIN statement 3-99
END MENU statement 3-205
END PROMPT statement 3-259
END RECORD declaration 3-72,

3-313
END REPORT statement 6-23
END WHILE statement 3-288
in a statement block 2-8
INSTRUCTIONS section of

form 5-63
SCREEN section of form 5-13
TABLES section of form 5-19

END statement 3-95
Endless loop 3-103, 3-285, 3-288
End-of-data condition 3-283
End-of-file character 3-346
ENTER key

in ON KEY clause 3-41
in query by example 3-52

ENVIGNORE environment
variable D-30

Environment configuration file
example D-2
where stored D-3

Environment variable
and case sensitivity D-4
changing 4-83
COLLCHAR E-2, E-4, E-5, E-11,

E-16, E-18
DBANSIWARN 2-25, D-8
DBAPICODE E-2, E-11, E-23
DBDATE 3-32, 3-182, 3-275,

3-300, 3-325, 4-45, 4-94, D-9,
E-3, E-11, E-42, I-5

DBDELIMITER 3-184, 3-276,
D-11

DBEDIT 1-10, 1-13, 1-24, 1-38,
1-42, 1-53, 5-74, D-11

DBFLTMASK 3-32, 3-316
DBFORM D-12, E-3, E-11, E-24
DBFORMAT 3-32, 3-342, 4-91,

D-14, E-3, E-5, E-11, E-35, E-38,
E-39, E-41, E-42, I-5

DBLANG B-5, D-18, E-3, E-11,
E-24, E-42, I-5

DBMONEY 3-32, 3-312, 3-325,
3-342, 4-91, D-21, E-3, E-5,
E-11, E-35, E-38, E-41, E-42

DBNLS E-5, E-11, E-16
DBPATH 1-16, 1-26, 1-55, 3-33,

3-59, D-23
DBPRINT 3-272, D-26
DBREMOTECMD D-27
DBSPACETEMP D-28
DBTEMP 3-188, D-29
DBTIME 3-32
DBUPSPACE D-29
default assumptions D-5
defining in environment

configuration file D-2
definition of D-2
ENVIGNORE D-30
hierarchy of precedence E-12,

E-31, E-33, E-34, E-37, E-38,
E-40, E-41, E-42, E-48

how to set in Bourne shell D-4
how to set in C shell D-4
how to set in Korn shell D-4

INFORMIX environment
variables, listing D-6

INFORMIXCONRETRY D-30
INFORMIXCONTIME D-31
Informix-defined E-2, E-11, E-12
INFORMIXDIR B-5, D-12, D-19,

D-32, E-23, E-24
INFORMIXSERVER D-33
INFORMIXSHMBASE D-33
INFORMIXSTACKSIZE D-34
INFORMIXTERM D-35, F-1, F-20
LANG D-20, E-2, E-11, E-12, E-14,

E-15, E-21, E-23, E-25, E-31,
E-34, E-40, E-42, E-43, E-50

language and formatting E-11
LC_COLLATE E-2, E-4, E-5, E-6,

E-7, E-11, E-13, E-15, E-27
LC_CTYPE E-2, E-5, E-6, E-7,

E-11, E-15, E-23, E-29
LC_MONETARY E-2, E-5, E-11,

E-13, E-31, E-35, E-41, E-42
LC_NUMERIC E-2, E-5, E-11,

E-35, E-42
listed D-6
listed, for NLS D-7, D-39
listed, for UNIX D-7
meta-environment E-11
NLS environment variables,

listing D-7, D-39
ONCONFIG D-36
overriding a setting D-3, D-30
PATH D-40
PSORT_DBTEMP D-36
rules of precedence D-6
setting at the command line D-2
setting in a shell file D-2
SQLEXEC D-38
SQLRM D-38
SQLRMDIR D-39
TERM D-41
TERMCAP D-41
TERMINFO D-42, F-20, F-26
UNIX environment variables,

listing D-7
where to set D-2
X/Open-defined E-11, E-12

Equal (=) sign
Boolean expressions 3-329, 3-333,

4-31, 4-37
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
CONSTRUCT statement 3-49
FOR statement 3-102
LET statement 3-178
precedence of operators 3-328

Error
displaying 4-49
fatal 4-85
log file 2-27, 4-48, 4-51, 4-84
logging 4-51, 4-84
messages 1-33, 3-97, 4-48, 4-50,

4-84
messages, editing the 4glusr.msg

file B-4
record 4-51, 4-84

Error handling
4GL built-in functions 4-48
compile-time errors 1-9, 1-38,

5-75
creating an error log 4-84
displaying error messages 4-49,

4-50
ERRORLOG() 4-51
fatal errors 2-26
logging error messages 4-51, 4-84
run-time errors 1-63, 4-84
SQLCA global record 2-23
STARTLOG() 4-84
untrappable errors 2-26
with status variable 4-48, 4-49,

4-50
ERROR keyword

ERROR statement 3-96
OPTIONS statement 3-229
WHENEVER statement 3-177,

3-281
Error line 2-19, 3-51, 3-94, 3-96,

3-172, 3-227, 4-49, 4-50
ERROR LINE keywords in

OPTIONS statement 3-229
ERROR statement 3-96
ERRORLOG() 4-51
ERR_GET() 4-48
ERR_PRINT() 4-49
ERR_QUIT() 4-50
Escape character

in input files 3-184
in output files 3-276

ESCAPE keyword
with LIKE 3-336, 4-34

with MATCHES 3-336, 4-34
ESQL/C functions 1-30, 1-62
EVERY ROW keywords

default format of a report 3-261,
6-23

ON EVERY ROW control
block 6-34

Exceptional conditions
end of data 3-283
in evaluating expressions 3-283
SQL errors 3-282, 4-85
warnings 3-61, 3-281

Exceptions
handling with DEFER 2-23
handling with WHENEVER 2-23
WHENEVER statement 3-281

Exclamation (!) point
Boolean expressions 3-329, 3-333,

4-31, 4-37
precedence of operators 3-328
PROGRAM attribute 5-51

EXCLUSIVE keyword of
DATABASE 3-61

Exclusive mode, DATABASE
statement 3-61

Executable statements 3-66, 3-119
EXECUTE PROCEDURE keywords

in INSERT statement 3-184
EXECUTE statement in query by

example 3-32
EXISTS keyword 3-330
Exit code 3-99, 3-266
EXIT keyword

EXIT CASE statement 3-24
EXIT CONSTRUCT

statement 3-47
EXIT DISPLAY statement 3-89
EXIT FOR statement 3-104
EXIT FOREACH statement 3-109
EXIT INPUT statement 3-143,

3-151, 3-169, 3-175
EXIT MENU statement 3-202,

3-210
EXIT PROGRAM statement 3-98,

3-192
EXIT WHILE statement 3-288
in a statement block 2-8
versus GOTO statement 3-122

Exit option
FORM Menu 1-16, 1-45
MODULE Menu 1-12, 1-40
PROGRAM Menu 1-22, 1-51

EXIT statement 3-98
Explicit NLS environment

defined E-7, E-19
disadvantages of E-7
example E-20
mentioned E-4, E-5, E-18

Exponent
DECIMAL data type C-23, C-25
FLOAT data type 3-306, 3-341,

4-21
SMALLFLOAT data type 3-316,

3-341, 4-21
Exponentiation (* *)

operator 3-339, 3-341, 4-20, 4-21
Expressions

in form specifications 5-32
in SQL statements 3-330, 4-9
in syscolatt table 5-71

Expressions in 4GL statements
arithmetic expressions 3-339, 4-18
Boolean expressions 3-333, 4-30
character expressions 3-343
data type conversion 3-319, 3-324,

3-340, 3-357, 4-22, 4-54
expression types 3-326
field operators 4-37, 4-64, 4-66,

4-69
integer expressions 3-338
number expressions 3-341
operands 3-327, 3-331
operators 3-327, 4-10, 4-11, 4-12
parentheses 3-327
resetting status 3-283
time expressions 3-347, 4-54

EXTEND() operator
implicit 3-325
in arithmetic expressions 3-352,

4-54
syntax and description 4-53

Extension checking, specifying with
DBANSIWARN D-8

External
editor 5-50, 5-76
table, query by example 3-35
12 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
EXTERNAL keyword, REPORT
statement 3-262, 6-22

F
FALSE (Boolean constant) 3-62,

3-333, 5-31
Fatal errors 2-26
FETCH statement

implicit with FOREACH 3-105
interrupting 3-236
NOTFOUND code 2-24
with Update cursors 3-108
with WHENEVER 3-283

fgiusr.c file 1-65
fglapi.h C-12
fgldb command 1-64
fglgo command 1-5, 1-48, 1-62,

3-267, 4-16
fglpc command 1-5, 1-59
fgl_call() macro C-19
FGL_DRAWBOX() 4-56
fgl_end() macro C-22
fgl_exitfm() macro C-21
FGL_GETENV() 4-58
FGL_KEYVAL() 4-60
FGL_LASTKEY()

syntax and description 4-62
with CONSTRUCT 3-47
with DISPLAY ARRAY 3-91
with INPUT 3-144
with INPUT ARRAY 3-170

fgl_start() macro C-17
Field

buffer 3-47, 3-91, 3-144, 3-170,
4-66

clause 3-359, 4-64
data type 5-21, 5-25
description 3-292, 5-20, 5-72
disabling 5-6
editing keys 3-52, 3-147, 3-173
labels 5-15, 5-76
length 5-14
multiple-segment 5-26, 5-57
names in screen forms 4-69, 5-19,

5-21, 5-24
operators 3-328, 4-37, 4-64, 4-66,

4-69

qualifier 5-22
Field attributes

description 5-27
interacting with users 2-18
order of precedence 5-72
query by example 3-37

FIELD keyword
AFTER FIELD 3-42
BEFORE FIELD 3-40, 3-137, 3-161
CONSTRUCT statement 3-40,

3-42, 3-44
INPUT ARRAY statement 3-164
INPUT statement 3-139
NEXT FIELD 3-44
OPTIONS statement 3-230

FIELD ORDER CONSTRAINED
keywords 3-51, 3-232

FIELD ORDER
UNCONSTRAINED
keywords 3-51, 3-232

Field tag
in Boolean expressions 3-331,

5-33, 5-78
in default forms 5-15, 5-76
in the ATTRIBUTES section 5-20,

5-33
in the SCREEN section 5-14, 5-57
naming conventions 2-10, 5-15

FIELD_TOUCHED() operator
syntax and description 4-64
using in SQL expressions 3-330
with CONSTRUCT 3-45, 3-47
with DISPLAY ARRAY 3-91
with INPUT 3-144
with INPUT ARRAY 3-170

File
environment configuration D-2
shell D-2
temporary for OnLine D-28
temporary for SE D-29

File extensions
.4be 1-33, 1-71
.4bl 1-33, 1-71
.4bo 1-33, 1-71
.4ge 1-9, 1-11, 1-18, 1-32, A-30
.4gi 1-47, 1-53, 1-56, 1-61, 1-62,

1-71
.4gl 1-10, 1-24, 1-30, 1-32, 1-52,

1-59, 1-71, A-30

.4go 1-48, 1-53, 1-58, 1-59, 1-62,
1-71

.c 1-19, 1-33, 1-67

.dbs 3-58, 3-59, 5-10

.ec 1-19, 1-26, 1-30, 1-33, 1-67

.erc 1-33, 1-71

.err 1-28, 1-33, 1-58, 1-71, 5-75

.fbm 1-33, 1-71

.frm 1-33, 1-71, 5-74, 5-75, D-12

.h 1-69, C-23

.iem D-18

.msg B-4

.o 1-8, 1-24, 1-32

.out 1-31, 1-68

.pbr 1-33, 1-71

.per 1-13, 1-33, 1-71, 5-75

.src A-30
˙4gl 2-6, 3-66, 3-119
˙frm 3-217, 3-221
˙per 3-217

FILE keyword
LOCATE statement 3-188
OPTIONS statement 3-230, 3-234,

B-2
PRINT statement 3-254, 6-44

Filename
LOAD statement 3-181
UNLOAD statement 3-274

Fill character
ampersand 4-92
dollar sign 4-92
parentheses 4-92
pound sign 4-92, 5-43

FINISH REPORT statement 3-100,
6-5

FIRST keyword
OPEN WINDOW

statement 3-223, 3-226
OPTIONS statement 3-231
REPORT statement 6-33

FIRST PAGE HEADER control
block 3-271, 6-33, 6-37

Fixed-point numbers 3-306, 3-316,
3-342

FLOAT data type
data type conversion 3-319, 3-324
declaration 3-68, 3-294
description 3-305
display fields 5-43
Index 13

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
display width 3-78, 5-76, 6-44
in NLS E-9
literal values 3-306, 3-342

Float data type (of C) C-33
Floating-point numbers 2-25,

3-306, 3-316, 3-320, 3-342, C-32
FOR keyword

CONTINUE FOR statement 3-55,
3-103

DECLARE statement 3-105
END FOR statement 3-104
EXIT FOR statement 3-104
FOR statement 3-102
PROMPT statement 3-257

FOR statement 3-102
FOREACH keyword in

CONTINUE FOREACH
statement 3-55

FOREACH statement
interrupting 3-236
syntax and description 3-105

Foreground colors 4-56, F-18
Form

binding fields to variables 5-4
binding to the database 5-4
clearing 3-26
closing 3-29, 3-30
declaring 3-218
dimensions 5-12
displaying 3-217, 3-228
fields 3-359, 5-4
identifying the current field 4-69
line 2-19, 3-94, 3-226
naming conventions 2-10
screen records 5-64
syntax of form specification 5-8

FORM Design Menu 1-12
FORM keyword

CLEAR FORM statement 3-26
CLOSE FORM statement 3-29
DISPLAY FORM statement 3-93
OPEN FORM statement 3-217
OPEN WINDOW statement 3-29,

3-223
OPTIONS statement 3-229, 3-234

FORM LINE keywords
OPEN WINDOW

statement 3-223
OPTIONS statement 3-229

Form management blocks
CONSTRUCT statement 3-38
INPUT ARRAY statement 3-157
INPUT statement 3-135

Form specification file
ATTRIBUTES 5-7, 5-20
DATABASE 5-6, 5-10
DISPLAY FORM

statement 3-292, 5-72
INSTRUCTIONS 5-7, 5-63
multiple tables 5-18
OPEN FORM statement 3-217
OPEN WINDOW

statement 3-221
overview 5-3
PERFORM forms 5-77
SCREEN 5-6, 5-12
TABLES 5-6, 5-18

Form specification file, using
correcting errors 1-14
creating 5-75
default form specification

file 5-75
generating 1-12, 1-41
graphics characters 5-16
multiple tables in 5-73

FORM4GL
attribute syntax 5-28
command line syntax 5-75
creating a default form

specification file 5-73
default attributes 5-21
default field tags 5-75
default screen records 5-64
description 5-3
field attributes 5-27
file extensions created by 5-75
from Programmers

Environment 1-15, 1-44
graphics characters in screen

section 5-16
verifying field widths 5-15

Format
date data D-9, D-18, E-47
monetary data D-14, E-31, E-45
numeric data D-14, E-35, E-45

FORMAT attribute
in fields 5-28

in NLS E-10, E-31, E-33, E-37,
E-40, E-42, E-44

syntax and description 5-42
FORMAT keyword

FORMAT attribute 5-43
REPORT statement 3-261

FORMAT section of REPORT
statement

AFTER GROUP OF 6-29
BEFORE GROUP OF 6-31
CLIPPED 6-44
COLUMN 6-37
COLUMN operator 4-40
EVERY ROW 6-24
FIRST PAGE HEADER 6-33
NEED statement 3-216, 6-40
ON EVERY ROW 6-34
ON LAST ROW 6-36
PAGE HEADER 6-37
PAGE TRAILER 6-38
PAUSE statement 3-244, 6-41
PRINT statement 3-254, 6-42
SKIP statement 3-269, 6-52
syntax 6-23
USING 6-44
WORDWRAP 4-102, 6-50

Format strings
in syscolatt table 5-71
with FORMAT attribute 5-42,

5-48, B-9
with PICTURE attribute 5-48
with USING operator 3-343, 4-91

Formatted mode 3-76, 3-80
Formatting

data 2-18, 5-27
number expressions 4-91

Formatting a report
automatic page numbering 6-37
default report format 6-15, 6-24
formatting dates 4-94
formatting numbers 4-91
grouping data 4-14, 6-46
page headers and trailers 6-33,

6-37, 6-38
printing column headings 6-37
setting margins 4-102, 6-11, 6-12,

6-14, 6-16, 6-50
setting page eject character 6-17
setting page length 6-12
14 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
skipping to top of page 3-269
starting a new line 3-269, 4-103,

6-44, 6-51
starting a new page 3-216, 3-269,

4-103, 6-17, 6-40, 6-51, 6-52
FORMFEED character in TEXT

values 3-317, 3-345
FORMONLY field 3-48, 3-130,

3-299, 5-24, 5-29
FORMONLY keyword

ATTRIBUTES section 5-24
CLEAR statement 3-28
CONSTRUCT statement 3-48
DATABASE section 5-18
field clause 3-359
INSTRUCTIONS section 5-65
THRU keyword 3-363

FOUND keyword in WHENEVER
statement 3-281

FRACTION keyword
CURRENT operator 4-42
DATETIME qualifier 3-301,

3-349, 4-42
INTERVAL qualifier 3-308, 3-353
UNITS operator 4-89

FREE statement 3-190
FROM keyword

CONSTRUCT statement 3-35
INPUT ARRAY statement 3-153
INPUT statement 3-132
LOAD statement 3-182
OPEN FORM statement 3-217
SELECT statement 3-275

Function keys 1-47, F-5, F-24
FUNCTION statement 3-111
Functions

as arguments 3-113, 3-332
built-in 4GL functions 4-5, 4-12
built-in SQL functions 4-6
C language 1-30, 1-62, 4-6, C-23
dummy functions 3-115
ESQL/C language 4-7
function calls in

expressions 3-332
function calls in reports 6-45
INFORMIX-ESQL/C 1-30, 1-62
invoking with CALL 3-16
invoking with

WHENEVER 3-281

naming conventions 2-10
overview 4-5
programmer-defined 3-111
prototypes 3-112, 4-7

G
Generate option, FORM

Menu 1-14, 1-43
GET_FLDBUF() operator 3-45,

3-330, 4-66
Global

aggregate functions 3-262
Language Support E-4
Source array 1-48

Global variables
declared in MAIN 3-192
declaring 3-66, 3-117
importing 3-119
scope of reference 2-11

GLOBALS keyword
END GLOBALS statement 3-119
GLOBALS statement 3-117

GLOBALS statement
syntax and description 3-117
with DATABASE 3-60, 3-119
with DEFINE 3-66, 3-117

GOTO keyword, WHENEVER
statement 3-177, 3-281

GOTO statement 3-122
GRANT statement

with LOAD 3-181
with UNLOAD 3-274

Graphics characters in forms 5-16
Greater than (>) symbol

BYTE values in reports 6-44
COLOR attribute 5-32
relational operator 3-48, 3-329,

3-334, 4-32, 4-37
REVERSE attribute 5-53

GREEN attribute 3-290, 5-31, 5-71,
F-20

GROUP keyword
AFTER GROUP OF control

block 6-29
aggregate functions 3-262, 4-14,

6-31, 6-46

BEFORE GROUP OF control
block 6-31

H
Header files, decimal.h C-23
HEADER keyword

FIRST PAGE HEADER control
block 6-33

PAGE HEADER control
block 6-37

Help
menu 4-81, B-4
window 2-22, 4-81

Help file
compiling with mkmessage B-2
showhelp function B-4

HELP keyword
CONSTRUCT statement 3-37
INPUT ARRAY statement 3-155
INPUT statement 3-133
MENU statement 3-197
OPTIONS statement 3-230, 3-234,

B-2
PROMPT statement 3-258

Help message
creating and compiling 1-8, 1-36,

B-2
displaying 1-7, 1-35, 3-37, 3-133,

3-155, 4-81
specifying Help file 3-230
using SHOWHELP() 4-81

Hexadecimal numbers 3-184, 3-276
Hidden menu options 3-203
HIDE keyword, MENU

statement 3-203
HOLD keyword in DECLARE

statement 3-105
Host system 3-362
HOUR keyword

DATETIME qualifier 3-301,
3-349, 4-42

INTERVAL qualifier 3-309, 3-353
UNITS operator 4-89

Hyphen (-) symbol
comment indicator 2-6
DATETIME separator 3-302,

3-351
Index 15

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in window border 5-16, F-6
INTERVAL separator 3-309,

3-355
with CONSTRUCT 3-50
with MATCHES 3-335, 4-34

I
i4gl command 1-5, 1-23, 5-73
i4gldemo script 1-5
Icons in syntax diagrams Intro-7
Identifier

database cursor 3-106
declaring 2-9
function arguments 3-113
function name 3-112
naming conventions 2-9
predefined 2-12
report arguments 3-261
report name 3-100, 3-271
scope of reference 2-11
SQL identifiers 2-10, 2-12

Identifiers in NLS E-5, E-8, E-21,
E-29

IF statement 3-124
Implicit

mapping E-4, E-6, E-8, E-18
names, declaring 3-72

Implicit NLS environment
advantages of E-18
defined E-6, E-19
example E-20
mentioned E-4, E-5

IN keyword
Boolean expressions 3-337, 4-35,

5-32, 5-71
CREATE TABLE statement 3-70
LOCATE statement 3-70, 3-187

INCLUDE attribute 5-28, 5-44, 5-70
INCLUDE keyword in syscolval

table 3-279
Incompatible data types 3-324
Indirect typing 3-59, 3-69, 3-119, 6-8
INFIELD() operator

field-level Help 3-37, 3-134, 3-156
Help messages 2-21
in ON KEY clause 3-139, 3-164
in SQL expressions 3-330

syntax and description 4-69
with CONSTRUCT 3-47
with DISPLAY ARRAY 3-91
with INPUT 3-144
with INPUT ARRAY 3-170

infocmp utility F-25, F-29
.informix environment

configuration file D-2
Informix extension checking,

specifying with
DBANSIWARN D-8

informix owner name 4-9
INFORMIX-4GL

as a report writer 6-3
command file names 1-58
language overview 2-3
screen forms 5-3
versions 1-3

INFORMIXCONRETRY
environment variable D-30

INFORMIXCONTIME
environment variable D-31

Informix-defined environment
variable E-2, E-11, E-12

INFORMIXDIR environment
variable B-5, D-12, D-19, D-32,
E-23, E-24

INFORMIX-ESQL/C 2-7
INFORMIX-ESQL/C

functions 1-30, 1-62, 2-7, 4-7
INFORMIX-OnLine engine

database names 2-10
interrupting SQL

statements 3-236
rolling back transactions 3-238
specific data types 3-14

INFORMIX-OnLine/Optical
statements 3-13

INFORMIX-SE engine
database names 2-10
interrupting SQL

statements 3-236
rolling back transactions 3-238
specific data types 3-14

INFORMIXSERVER environment
variable D-33

INFORMIXSHMBASE
environment variable D-33

INFORMIX-SQL
Interactive Editor 5-62
screen forms 5-78

INFORMIXSTACKSIZE
environment variable D-34

INFORMIXTERM environment
variable D-35, F-1, F-20

informix.rc file D-2
INITIALIZE statement 3-125
INPUT ARRAY statement

ARR_CURR() 4-26
SCR_LINE() 4-78
SET_COUNT() 4-80
syntax and description 3-152

INPUT ATTRIBUTE
keywords 3-234

Input file
dbload utility 3-183
LOAD statement 3-182

INPUT keyword
AFTER INPUT block 3-140, 3-166
BEFORE INPUT block 3-136,

3-159
CONTINUE INPUT 3-143, 3-169
CONTINUE INPUT

statement 3-55
EXIT INPUT statement 3-143,

3-169
INPUT ARRAY statement 3-152
INPUT statement 3-128
OPTIONS statement 3-230
WITHOUT NULL INPUT 5-10

INPUT NO WRAP keywords 3-232
Input record 3-182, 3-242, 4-80, 6-5
INPUT statement

ARR_COUNT() 4-24
syntax and description 3-128

INPUT WRAP keywords 3-232
Insert

editing mode 3-52, 3-147, 3-173
privilege 3-181

Insert key
defining F-6, F-25
INPUT ARRAY statement 3-162

INSERT keyword
GRANT statement 3-181
INPUT ARRAY statement 3-160,

3-165
LOAD statement 3-184
16 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
OPTIONS statement 3-230
INSERT statement

DATETIME or INTERVAL
values 3-322

interrupting 3-236
NOENTRY attribute 5-47
with INPUT 3-128
with INPUT ARRAY 3-152
with LOAD 3-184

Installation directory, specifying
with INFORMIXDIR D-32

INSTRUCTIONS section of form
specification

screen arrays 5-66
SCREEN RECORD

keywords 3-359, 4-64, 5-63,
5-64, 5-66

screen records 5-63
syntax 5-63

INT data type 3-306
Int data type (of C) C-28, C-29
Integer

division 3-339, 4-22
expression 3-338
literal 3-340

INTEGER data type
data type conversion 3-319, 3-324
declaration 3-68, 3-294
description 3-306
display fields 5-12
display width 3-78, 5-76, 6-44
in report output 6-44
literal values 3-342

Intensity attributes 5-27, 5-70, D-35
Intentional blanks in multiple-

segment fields 3-147, 5-59
Interactive Debugger

Debugger path 1-48
description of 1-63
invoking 1-36, 1-51

International application
development

preparing a translation
checklist I-6

requirements for I-3
Internationalization I-2
Interrupt key

interrupting SQL
statements 3-64, 3-235, 3-237

with CONSTRUCT 3-41
with DEFER 3-63
with DISPLAY ARRAY 3-92
with INPUT 3-151
with INPUT ARRAY 3-175
with MENU 3-210
with PROMPT 3-258

INTERRUPT keyword
CONSTRUCT statement 3-41
DEFER statement 3-62
MENU statement 3-199
OPTIONS statement 3-64, 3-231,

3-235, 3-237
Interrupt signal 2-23, C-15
INTERVAL data type

arithmetic operations 3-357, 4-22,
4-54

as character string 3-182, 3-311,
3-322

data type conversion 3-324
declaration 3-68, 3-294, 3-307
description 3-307
display fields 5-39, 5-49
display width 3-78, 5-76, 6-44
in report output 6-44
in time expressions 3-357, 4-22
literal 3-275, 3-309, 3-355
qualifiers 3-307, 3-353, 5-39
time data types 3-295
values 3-348

INTO keyword
FOREACH statement 3-107
INSERT statement 3-301, 5-4
LOAD statement 3-184
SELECT statement 3-32, 3-107,

3-187, 3-317
int_flag 3-41, 3-52, 3-62, 3-199,

3-236, 3-258
Inverse video 3-224, 5-53, 5-70
INVISIBLE attribute 3-83, 3-214,

3-290, 3-291, 5-46, 5-71
Invisible menu options 3-200, 3-205
Invoking

4GL Compiler 1-5, 1-29, 1-30, 1-59
4GL programs 1-5, 1-27, 1-50
FORM4GL 1-15, 1-44, 5-75
Interactive Debugger 1-36, 1-56
Programmers Environment 1-5,

1-6, 1-34

IS keyword
CURRENT WINDOW

statement 3-56
IS NULL operator 4-37
NULL test 3-336, 4-33, 5-33

ISO 8859 character sets I-2
items table in stores database A-4

J
Join columns 3-73, 5-78
Joins in the stores database

columns A-8
Jump instructions 2-7, 3-55, 3-122,

3-177, 3-284
Justified data display

left justified 3-80, 3-86, 4-92,
4-103, 5-31, 6-51, C-26

right justified 3-80, 3-86, 4-93,
5-42

K
Key

activation key 3-198
assigning logical functions 3-235
choosing menu options 3-206
Help 2-21
Help key B-2
Interrupt 3-64, 3-235
scrolling and editing 3-86, 3-88,

3-147, 3-173
KEY keyword

ACCEPT KEY 3-230
CONSTRUCT statement 3-41
DELETE KEY 3-173, 3-230
DISPLAY ARRAY statement 3-87
HELP KEY 3-230
INPUT ARRAY statement 3-161
INPUT statement 3-137
INSERT KEY 3-173, 3-230
MENU statement 3-199
NEXT KEY 3-230
PREVIOUS KEY 3-230
PROMPT statement 3-258

Keystroke buffer 3-47, 3-91, 3-144,
3-170
Index 17

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Keywords
as identifiers 2-10
typographic convention Intro-5

Korn shell
how to set environment

variables D-4
.profile file D-2

L
LABEL statement

syntax and description 3-177
with GOTO 3-122
with WHENEVER 3-284

LANG environment variable
effect of where set on

precedence E-14
interaction with DBLANG D-20
lack of standardization E-26
mentioned E-2, E-11, E-12, E-15,

E-21, E-23, E-31, E-34, E-40,
E-42, E-43, E-50

setting default for LC_
variables E-2, E-13, E-25

syntax E-25
Language

and formatting environment
variable E-11

supplement E-24, E-26, E-50
Language features

built-in functions 4-6
built-in operators 4-10
flat-file input 3-181
functions 4-5
statement types 3-11, 3-13

Large binary data types 3-70, 3-149,
3-174, 3-186, 3-296

LAST keyword
OPEN WINDOW

statement 3-223, 3-226
OPTIONS statement 3-231
REPORT statement 3-261, 6-36

LC_ variable
defined E-11
effect of where set on

precedence E-14
lack of standardization E-2, E-12,

E-15, E-25, E-40

LC_COLLATE environment
variable

database storage of value E-6,
E-7, E-15

defined E-27
mentioned E-2, E-4, E-5, E-6, E-11,

E-13
syntax E-27

LC_CTYPE environment variable
database storage of value E-6,

E-7, E-15, E-29
defined E-29
interaction with

DBAPICODE E-23
mentioned E-2, E-5, E-11
syntax E-29

LC_MONETARY environment
variable

defined E-31
mentioned E-2, E-5, E-11, E-13,

E-35, E-41, E-42
syntax E-5, E-32

LC_NUMERIC environment
variable

defined E-35
mentioned E-2, E-5, E-11, E-42
syntax E-36

Leading currency symbol D-14,
D-21, E-33, E-40, E-45

LEFT attribute 5-31
LEFT MARGIN keywords 6-12
Left margin of a 4GL window 3-219
LENGTH keyword, PAGE

LENGTH clause 6-12
LENGTH() 4-71
Less than (<) symbol

BYTE values in reports 6-44
COLOR attribute 5-32
in USING format strings 4-92
relational operator 3-48, 3-334,

4-32, 4-37
REVERSE attribute 5-53

LET statement
CLIPPED operator 4-38
conversion of MONEY to

CHAR E-33, E-37
in NLS E-10, E-47
syntax and description 3-178
USING operator 4-91

Letter case sensitivity 2-4, 2-10, 4-6,
4-94, 5-15

Library functions
decadd() C-36
deccmp() C-37
deccopy() C-38
deccvasc() C-25
deccvdbl() C-34
deccvflt() C-32
deccvint() C-28
deccvlong() C-30
decdiv() C-36
dececvt() C-39
decfcvt() C-39
decmul() C-36
decsub() C-36
dectoasc() C-26
dectodbl() C-35
dectoflt() C-33
dectoint() C-29
dectolong() C-31

LIKE keyword
Boolean expressions 5-71
DEFINE statement 3-60, 3-69
DISPLAY LIKE attribute 5-18,

5-40
FORMONLY fields 5-18, 5-24
INITIALIZE statement 3-126
RECORD data type 3-72, 3-313,

3-314
string operator 3-328, 3-335, 4-33
VALIDATE LIKE attribute 5-18,

5-55
VALIDATE statement 3-279

LINE keyword
OPEN WINDOW

statement 3-223
OPTIONS statement 3-229
SKIP statement 3-269, 6-52

Line mode 3-76, 3-77
Line mode overlay 4-40
Line number

in a program array 4-26
in a screen array 4-78, 5-63, 5-66

LINEFEED characters between
statements Intro-8, 2-3

Linefeed key in ON KEY
clause 3-41

LINENO operator 3-254, 4-73, 6-48
18 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
LINES keyword
NEED statement 3-216, 6-40
SKIP statement 3-269, 6-52

Link-time errors 3-16
Literal values

DATE data type 3-275, 3-349
DATETIME data type 3-275,

3-351
integers 3-340
INTERVAL data type 3-275,

3-355
numbers 3-275, 3-342

LOAD statement
in NLS E-7, E-10, E-15, E-35, E-40,

E-42
interrupting 3-236
specifying field delimiter with

DBDELIMITER D-11
syntax and description 3-181

Local variables 2-11, 2-13, 3-66,
3-114, 3-192, 3-261, 6-8

Locale
database locale E-2
defined E-2
file E-26
mentioned E-15, E-25
user locale E-2
variable E-11, E-12

Locale-sorted columns E-6, E-8
Localization

of applications I-10
process of I-2

LOCATE statement 3-186, 3-317
LOCK TABLE statement with

LOAD 3-185
Logging

error messages 4-84
transactions 3-104, 3-108, 3-287,

4-83
Logical operators 3-329, 3-333,

4-31, 4-37
Long data type (of C) C-30, C-31
LOOKUP attribute of

PERFORM 5-78
Loops

FOR statement 3-102
FOREACH statement 3-105
in syntax diagrams Intro-8
using CONTINUE 3-55

WHILE statement 3-287
Lowercase characters

DOWNSHIFT attribute 5-41, B-7
DOWNSHIFT() 4-47
in field tags 5-15
in identifiers 2-4, 2-10
names of C functions 4-6
SHIFT attribute 5-70, B-7
UPSHIFT attribute 5-54, B-7
UPSHIFT() 4-90

M
m symbol in format strings 4-94,

5-42
MAGENTA attribute 3-290, 5-31,

5-71, F-20
MAIN statement

in source-code modules 1-31
preceded by DATABASE 3-61
syntax 3-191
uniqueness 2-7

Mantissa
DECIMAL data type C-23
FLOAT data type 3-306
SMALLFLOAT data type 3-316

manufact table in stores
database A-6

Mapping file E-23, E-24
MARGIN keyword

BOTTOM MARGIN clause 6-11
LEFT MARGIN clause 6-12
RIGHT MARGIN clause 6-14,

6-50
TOP MARGIN clause 6-16
WORDWRAP operator 4-102,

6-50
MATCHES keyword

Boolean operator 4-33
description 3-335
in syscolatt table 5-71
precedence 3-328
with COLOR attribute 5-31

Maximum size of VARCHAR data
type 3-68, 3-294

MAX() aggregate function 2-25,
6-47

MDY() operator 4-74

Member
of input record 3-242
of program record 3-72, 3-313

MEMORY keyword in LOCATE
statement 3-187

Memory management
CLOSE FORM statement 3-29
CLOSE WINDOW

statement 3-30
FREE statement 3-190
Large variables 3-190

Menu
form file E-24
help line 2-15, 2-17, 3-199
line 2-17, 3-94, 3-193, 3-226
options of Programmer’s

Environment 1-6, 1-27
MENU keyword

BEFORE MENU clause 3-196
CONTINUE MENU

statement 3-55, 3-201
END MENU statement 3-205
EXIT MENU statement 3-202
OPEN WINDOW

statement 3-223
OPTIONS statement 3-229

MENU LINE keywords
OPEN WINDOW

statement 3-223
OPTIONS statement 3-229

Menu options
disabled 2-17, 3-203, 3-209
hidden 2-16, 3-203
invisible 2-16, 3-200

MENU statement 3-193
Menus of 4GL

in a national language D-12
MENU statement 2-15
menu title 2-15
nested 2-16

Message
file D-18, E-24, E-47
line 2-19, 3-94, 3-213, 3-226
numbers in help files B-2

MESSAGE keyword
MESSAGE statement 3-213
OPEN WINDOW

statement 3-223
OPTIONS statement 3-230
Index 19

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
MESSAGE LINE keywords
OPEN WINDOW

statement 3-223
OPTIONS statement 3-230

MESSAGE statement 3-213
Meta-environment variable E-11
Method 4-5
Minus (-) sign

comment indicator 2-6
DATETIME separator 3-303
in format strings 4-92
in INTERVAL literals 5-39
in literal numbers 3-342, C-25
in window border 5-16, F-6
INTERVAL literals 3-309, 3-355
INTERVAL separator 3-311
OPEN WINDOW

statement 3-226
OPTIONS statement 3-231
subtraction operator 3-226, 3-231,

3-328, 3-339, 3-357, 4-20, 4-22
unary operator 3-328, 3-340

MINUTE keyword
DATETIME qualifier 3-301,

3-349, 4-42
INTERVAL qualifier 3-309, 3-353
UNITS operator 4-89

MIN() aggregate function 2-25,
4-14, 6-47

mkmessage utility 1-8, 1-36, 3-234,
B-2

Modify option
FORM Menu 1-13, 1-42, 5-73
MODULE Menu 1-8, 1-36
PROGRAM Menu 1-18, 1-46

Modular scope operator 2-14
Module

compiling 1-11, 1-39
option of INFORMIX-4GL

Menu 1-7, 1-35
running multi-module

programs 1-11, 1-40, 1-63
variables 2-11, 3-66, 3-192

MODULE Menu 1-23, 1-52
Modulus (MOD) operator 3-328,

3-339, 3-341, 3-356, 4-20, 4-21
MONEY data type

data type conversion 3-319, 3-324
declaration 3-68, 3-294

default value 5-38
description 3-312
display width 3-78, 5-76, 6-44
formatting with

DBFORMAT 4-91, E-47
in input files 3-182
in NLS E-9
in output files 3-275
in report output 6-44
literal values 3-342

Monochrome terminals 3-291
Monospace typeface Intro-5
MONTH keyword

CURRENT operator 4-42
DATETIME qualifier 3-301,

3-349, 4-42
EXTEND() operator 4-54
INTERVAL qualifier 3-309, 3-353
MONTH() operator 4-75
UNITS operator 4-89

MONTH() operator 4-75
Multiple-form programs 3-56
Multiple-module programs,

compiling 1-11, 1-24, 1-39, 1-47,
1-53, 1-62

Multiple-segment fields
description of 5-26
in WORDWRAP fields 5-57
with CONSTRUCT 3-51
with INPUT 3-148

Multiple-statement PREPARE 3-61
Multiple-table

forms 5-18
screen records 5-67
views 5-29

Multiplication (*) operator 3-300,
3-321, 3-339, 3-356, 4-20, 4-21

N
NAME keyword

CONSTRUCT statement 3-34
DISPLAY statement 3-74
INPUT statement 3-131

Name scope 2-11
Named values 3-331
Naming conventions

display fields 5-21, 5-24, 5-29

field tags 5-15
Naming rules

4GL identifiers 2-10
databases 3-58
SQL identifiers 2-9

Native Language Support
classification of variables E-11
database access restrictions E-7
defined E-2
environment variables listed D-7,

D-39
features supported in Version

6.0 E-8
multiple locales E-49

NCHAR data type E-4, E-6, E-9,
E-18

NEED statement 3-216, 6-40
Network environment variable

SQLRM D-38
SQLRMDIR D-39

New option
FORM Menu 1-15, 1-44
MODULE Menu 1-10, 1-38
PROGRAM Menu 1-20, 1-49

NEWLINE character
in TEXT values 3-182, 3-275,

3-317, 3-345
in VARCHAR values 3-182, 3-275
in WORDWRAP fields 3-148,

5-59
input record separator 3-182
output record separator 3-274
report output 6-18, 6-51

Next
key F-6, F-25
menu option 4-81

NEXT FIELD keywords
CONSTRUCT statement 3-44
INPUT ARRAY statement 3-167
INPUT statement 3-141

NEXT keyword
CONSTRUCT statement 3-44
INPUT ARRAY statement 3-168
INPUT statement 3-142
MENU statement 3-203
OPTIONS statement 3-230

Next Page key
DISPLAY ARRAY statement 3-91
INPUT ARRAY statement 3-162
20 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
NEXTPAGE keyword 3-234
NLS database

defined E-5
mentioned E-16
performance penalty E-18

NLS environments
defined E-5
distinctions between E-6
summary of E-8

NO keyword
OPTIONS statement 3-230
syscolval table 5-70

NOENTRY attribute 5-47
Nondestructive backspace 3-172
Non-local database 3-362
Non-NLS database

defined E-6
mentioned E-16
US English NLS sorting different

from E-22
when preferable to NLS

database E-7
Non-NLS environment,

defined E-4, E-19
Non-significant characters 2-3
NORMAL attribute 3-290, 5-71
Normalized form of a DECIMAL

number C-23
NOT FOUND keywords in

WHENEVER statement 3-281
NOT keyword

Boolean operator 3-329, 3-333,
4-31, 4-37

NULL test 3-332, 3-336, 4-33
precedence of operators 3-328
range test 4-35
set membership test 3-337, 4-35
WHENEVER statement 3-283

NOT NULL keywords
COLOR attribute 5-33
FORMONLY fields 5-24, 5-25

NOTFOUND keyword
contrasted with NOT FOUND

keywords 3-284
status after SELECT 2-24
with FOREACH 3-105

NOUPDATE attribute of
PERFORM 5-78

NULL keyword

COLOR attribute 5-32
DATABASE section 5-10
FORMONLY fields 5-25
INCLUDE attribute 5-44
INITIALIZE statement 3-127,

3-364
IS NULL operator 3-337
LET statement 3-178, 3-179

NULL values
aggregate functions 2-25, 4-14,

6-46
as default 3-130, 3-154
in ASCII files 3-182, 3-275
in Boolean expressions 3-103,

3-336, 4-33, 5-33
in display fields 5-24, 5-25, 5-38,

5-44, 5-52
in number expressions 3-341
in reports 4-29, 6-47
in time expressions 3-358, 4-19
searching for NULL 3-49
with arithmetic operators 3-339,

3-341, 4-19
with logical operators 3-333, 4-31
with relational operators 3-334,

4-31
with string comparisons 3-335,

4-33
WITHOUT NULL INPUT 5-12

Number expression
formatting 4-91, 5-42
syntax and description 3-341

Number of rows processed 2-24
Numeric

color codes 4-56
date 3-349

NUMERIC data type 3-313
NUM_ARGS() 4-76
NVARCHAR data type E-4, E-6,

E-9, E-18

O
Object file 1-33, 1-48, 1-71, B-5
OF keyword

AFTER GROUP OF control
block 6-29

BEFORE GROUP OF control
block 6-31

DEFINE statement 3-71
REPORT statement 3-261
SKIP statement 3-269, 6-52
TOP OF PAGE clause 6-17
VARIABLE statement 3-71

OFF keyword, OPTIONS
statement 3-231

ON EVERY ROW control
block 6-34

ON KEY keywords
CONSTRUCT statement 3-41
DISPLAY ARRAY statement 3-87
INPUT ARRAY statement 3-161
INPUT statement 3-137, 4-81
PROMPT statement 3-258

ON keyword
CONSTRUCT statement 3-35,

3-41
DISPLAY ARRAY statement 3-87
INPUT ARRAY statement 3-161
INPUT statement 3-137
OPTIONS statement 3-231
PROMPT statement 3-258
REPORT statement 3-261

ON LAST ROW block 3-100, 3-261,
6-36

ONCONFIG environment
variable D-36

onconfig file, specifying with
ONCONFIG D-36

On-line
files Intro-10
Help for developers Intro-10
Help for users 2-21

OPEN FORM statement 3-217
Open NLS environment

defined E-7, E-19
mentioned E-4, E-5

OPEN statement
interrupting 3-236
USING clause 3-105

OPEN WINDOW statement 3-219
Operands of arithmetic

operators 3-320, 3-341, 3-356,
4-21
Index 21

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Operating system
invoking the Compiler from 1-30,

1-59
invoking the Programmers

Environment from 1-23, 1-27,
1-52, 1-56

Operators in 4GL statements
associativity and

precedence 3-327
built-in operators 4-10
compared with SQL

operators 3-330
data types of operands 3-329
field operators 3-328
list of 4-11
query by example 3-49

OPTION keyword
GRANT statement 4-90
MENU statement 3-203

Options of 4GL menus 2-15
OPTIONS statement

mkmessage utility B-2
SQL INTERRUPT 3-64, 3-235,

3-237
syntax 3-228

OR keyword
Boolean operator 3-329, 3-333,

4-31, 4-37
precedence of operators 3-328

OR operator in query by
example 3-49

ORDER BY clause
REPORT statement 6-18, 6-31
SELECT statement 6-26

Order of screen fields 3-130, 3-154,
3-232

orders table in stores database A-4
OTHERWISE keyword, CASE

statement 3-23
Output

from 4GL programs 6-3
record 3-274, 4-84

Output file
STARTLOG() 4-84
UNLOAD statement 3-274

OUTPUT keyword
OUTPUT TO REPORT

statement 3-242
REPORT statement 3-260

OUTPUT section of REPORT
statement

BOTTOM MARGIN 6-11
LEFT MARGIN 6-12
PAGE LENGTH 6-12
REPORT TO 6-13
RIGHT MARGIN 4-102, 6-14,

6-50
syntax 6-9
TOP MARGIN 6-16
TOP OF PAGE 6-17

OUTPUT TO REPORT
statement 3-242, 6-5

Overflow
in a display field 4-91
in data type conversion 3-320,

3-325, C-25, C-29, C-31, C-36
Overriding a Help message 3-37,

3-134, 3-156
Owner naming

CONSTRUCT statement 3-36
DEFINE statement 3-33, 3-69,

3-72, 3-314
in ANSI-compliant

database 3-361, 5-19, 5-72
in form specification 5-6, 5-19
INITIALIZE statement 3-126
VALIDATE statement 3-279,

3-361

P
Page eject character 6-17
PAGE HEADER control

block 3-271, 4-77, 6-33, 6-37
PAGE keyword

FIRST PAGE HEADER control
block 6-33

PAGE HEADER control
block 6-37

PAGE LENGTH clause 6-12
PAGE TRAILER control

block 6-38
SKIP statement 3-269, 6-52
TOP OF PAGE clause 3-269, 6-17,

6-52
PAGE LENGTH keywords 6-12
PAGE TRAILER control block 6-38

PAGENO operator 3-254, 4-77,
6-38, 6-48

Pages
of a help file message B-3
of a report 3-216, 3-269, 6-10, 6-48,

6-51
of a screen form 5-13, 5-78
of menu options 3-208
of program array records 3-91
of reports 4-77, 4-103

Parameterizing a statement with
SQL identifiers 3-251

Parentheses (()) symbols
Boolean expressions 3-333, 4-31
CHAR data types 3-299
DATETIME values 3-349
function calls 3-328, 4-5
in expressions 3-327
IN operator 3-337, 5-33
in USING format strings 4-92
INTERVAL values 3-307, 3-353
LOAD column list 3-181
SPACE operator 4-82, 6-50
UNITS operator 3-357, 4-21, 4-89

Passing by reference
blob function arguments 3-190,

3-298, 3-317, 4-8, C-6
blob report arguments 3-190,

3-242, 3-298
PATH environment variable D-40
Pathname

including in SQLEXEC D-38
LOAD statement 3-181
specifying with DBPATH D-23
specifying with PATH D-40
UNLOAD statement 3-274

Pattern matching 3-49, 3-336, 4-34
PAUSE statement 3-244, 6-41
P-code runner

customized 1-67
Interactive Debugger 1-56
specifying name and

location 1-48
using 1-59

P-code version number 1-60, 1-63,
1-68

Percent (%) symbol wildcard with
LIKE 3-336, 4-34
22 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
PERCENT(*) aggregate
function 4-14, 6-47

PERFORM (INFORMIX-SQL)
forms with INFORMIX-
4GL 5-77

Period (.) symbol
DATETIME separator 3-351
DECIMAL values 3-342
FLOAT values 3-306
Help message numbers 2-22
in Help files 2-22
in help message source files B-2
in USING format string 4-92
INTERVAL separator 3-355
MONEY values 3-342
prefix separator Intro-10, 3-314,

3-361, 5-19
range operator 3-49
RECORD member 3-328, 3-332
SMALLFLOAT values 3-316

Peripheral device E-23
PICTURE attribute 5-48, 5-49, 5-70
PIPE keyword in REPORT TO

clause 6-13
Planned_Compile option,

PROGRAM Menu 1-21, 1-50
Plus (+) sign

addition operator 3-226, 3-231,
3-328, 3-339, 3-357, 4-20, 4-22

in format strings 4-92
in window border F-6
RECORD declarations 3-72, 3-313
unary operator 3-328, 3-340, 4-92,

C-25
Positioning

a window 3-220
DISPLAY output 3-77
reserved lines 3-226, 3-231

Pound (#) sign
comment indicator 2-6, F-3
in format strings 5-43, 5-48
in USING format strings 4-92

Precedence
in 4GL operators 3-328, 3-329,

4-37
in arithmetic operations 3-339,

4-20
in default values 3-130, 3-154

in display attributes 3-37, 3-292,
5-72

in display elements 4-57
of identifiers 2-13
rules for environment

variables D-6
Precision

DATETIME data type 3-349, 4-42,
4-53

DECIMAL data type 3-68, 3-294,
3-320

FLOAT data type 3-68, 3-294
FORMAT attribute 5-43
in arithmetic operations 3-320
INTERVAL data type 3-353
MONEY data type 3-68, 3-294,

3-312, 3-320
PRECISION keyword 3-305
Predefined identifiers 2-12
PREPARE statement

increasing performance
efficiency 3-253

multi-statement text 3-248, 3-252
parameterizing a statement 3-250
parameterizing for SQL

identifiers 3-251
query by example 3-32
question (?) mark as

placeholder 3-245
restrictions with SELECT 3-246
statement identifier use 3-246
syntax and description 3-245
valid statement text 3-246
variable list 3-315
with DATABASE 3-61
with LOAD 3-181
with UNLOAD 3-274
with . * notation 3-365

Prepared statement
prepared object limit 3-245
valid statement text 3-246

Preprocessor, invoking 1-29, 1-30
Previous key F-6, F-25
PREVIOUS keyword

CONSTRUCT statement 3-44
INPUT ARRAY statement 3-168
INPUT statement 3-142
OPTIONS statement 3-230

Previous Page key
DISPLAY ARRAY statement 3-91
INPUT ARRAY statement 3-162

PREVPAGE keyword 3-234
Print position 3-269
PRINT statement

CLIPPED operator 4-38
in a report 6-42
syntax and description 3-254
USING 4-95

Printable characters 3-345, 5-52
PRINTER keyword

REPORT TO clause 6-13
START REPORT statement 3-272

Printing, specifying print program
with DBPRINT D-26

Privilege
Insert 3-181
Select 3-274
table-level 3-181, 3-274

Procedure 4-5
Process ID 3-188
Program

examples that call C
functions 1-68

flow control statements 3-14
organization statements 3-13
specification database 1-16, 1-45

Program array
ARR_COUNT() 4-24
ARR_CURR() 4-26
displaying 3-85
SET_COUNT() 4-80

PROGRAM attribute 5-28, 5-50,
5-76

Program block
FUNCTION 3-111, 3-112
MAIN 3-191
REPORT 3-260, 6-5
scope of statement labels 3-122,

3-177, 3-284
scope of variables 3-66, 3-261, 6-8
three kinds of 2-7

Program execution
commencing 1-56, 1-63, 4-16, 4-76
from the command line 1-5, 4-16
programs that call C

functions 1-32, 1-64
terminating 4-50
Index 23

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
with the Interactive
Debugger 1-63, 1-70

Program features
calling C functions 1-64
calling functions 3-16
commenting 2-5
compiler 1-29, 1-36
compiling through Programmers

Environment 1-8
compiling, at operating system

level 1-58
conditional statements 3-21,

3-287
data validation 3-278
error messages 4-48, B-4
Help messages 4-81
help messages B-2
identifiers 2-9
letter case sensitivity 5-15
multi-module programs 1-11,

1-39
operating system pipes 3-273,

6-13
owner naming 3-361, 5-19
procedural statements 3-13
program arrays 3-85
program blocks 2-7
reports 6-3
running, at operating system

level 1-62
screen interaction

statements 3-228
screen records 5-64
SQL statements 3-11
suspending execution 3-270
transaction logging 3-104, 3-108,

3-287
types of program modules 1-8,

1-19, 1-26, 1-30, 1-48, 1-67
PROGRAM keyword

EXIT PROGRAM statement 3-98
PROGRAM attribute 3-150, 3-174

Program record
data entry 3-152
declaration 3-72

Programmers Environment
accessing 1-5, 1-6, 1-34
COMPILE FORM Menu 1-14,

1-43

COMPILE MODULE Menu 1-8,
1-37

COMPILE PROGRAM
Menu 1-20, 1-49

compiling a form 1-25, 1-54, 5-74
compiling a program 1-10, 1-24,

1-39, 1-53
correcting errors in a

program 1-9, 1-38
creating a default form 5-73
Debug option, MODULE

Menu 1-40
Debug option, PROGRAM

Menu 1-51
defining a program 1-23, 1-52
definition of 1-4
Drop option, PROGRAM

Menu 1-22
Exit option, FORM Menu 1-16,

1-45
Exit option, MODULE

Menu 1-12, 1-40
Exit option, PROGRAM

Menu 1-22, 1-51
files displayed 1-24, 1-62
FORM Menu 1-12, 1-41
Generate option, FORM

Menu 1-14, 1-43
in C Compiler version of 4GL 1-6
in Rapid Development

System 1-34
INFORMIX-4GL Menu 1-6, 1-35
invoking the Debugger 1-36, 1-51
menu options 1-58
modifying a form specification

file 1-13, 1-42
MODULE Menu 1-7, 1-35
NEW FORM Menu 1-15, 1-44
NEW MODULE Menu 1-10, 1-38
NEW PROGRAM Menu 1-20,

1-49
Planned_Compile option,

PROGRAM Menu 1-21, 1-50
PROGRAM Menu 1-16, 1-45
Program_Compile option,

MODULE Menu 1-11, 1-39
QUERY LANGUAGE Menu 1-22,

1-51

Run option, MODULE
Menu 1-11, 1-39

Run option, PROGRAM
Menu 1-22, 1-50

Undefine option, PROGRAM
Menu 1-51

Program_Compile option,
MODULE Menu 1-11, 1-39

Promotable locks 3-105
PROMPT keyword

END PROMPT statement 3-259
OPEN WINDOW

statement 3-223
OPTIONS statement 3-230
PROMPT statement 3-255

Prompt line 2-19, 3-94, 3-226, 3-256
PROMPT LINE keywords

OPEN WINDOW
statement 3-223

OPTIONS statement 3-230
PROMPT statement

Line mode overlay 3-76
syntax and description 3-255

Prototype
of a function 4-7
of a report 6-6

Pseudo-code 1-4
PSORT_DBTEMP environment

variable D-36
Punctuation symbols Intro-7

Q
Qualifiers

database name 3-33, 3-69, 3-361
DATETIME declaration 3-294
DATETIME literals 3-182, 3-302,

3-351
INTERVAL declaration 3-294,

3-353
INTERVAL literals 3-182, 3-309,

3-353
of column names 3-36, 3-69, 3-361
of DATETIME values 4-53, 5-39
of field names 3-359, 3-361, 5-22
of INTERVAL values 5-39
of table names 3-35, 3-69, 3-361,

5-19
24 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
owner name 3-33, 3-361
Query by example

CONSTRUCT statement 3-31
range operator 3-49
wildcard characters 3-49

Query optimization
information 3-12

QUERYCLEAR attribute of
PERFORM 5-78

Querying the database
joins 3-362, 5-78
query by example 5-46, 5-47

Question (?) mark
as placeholder in PREPARE 3-245
in WORDWRAP fields 5-62
wildcard with CONSTRUCT 3-49
wildcard with MATCHES 3-335,

4-34
Quit key

with CONSTRUCT 3-41
with DEFER 3-62
with DISPLAY ARRAY 3-92
with INPUT 3-151
with INPUT ARRAY 3-175
with MENU 3-210
with PROMPT 3-259

QUIT keyword, DEFER
statement 3-62

Quit signal 2-23
quit_flag built-in variable 3-41,

3-53, 3-62, 3-199, 3-259
Quotation (") marks

around activation keys 3-199
around character pointer 1-66
around character strings 5-38,

5-45
around database

specification 3-58
around DATETIME literals 3-303
around filenames 3-217, 3-271,

6-13, 6-44
around format strings 4-91, 5-42,

5-48
around INTERVAL literals 3-311
around pipe names 6-13
around SQL identifiers 2-10
around time values 5-38
single and double Intro-7

Quotes
enclosure of monetary values

by E-35, E-48
enclosure of numeric values

by E-48
Quotient 4-22

R
r4gl command 1-5, 1-52, 5-73
r4gldemo script 1-5
Range of values

ASCII characters 3-335, 4-34
COLOR attribute 5-33
DATETIME values 3-49, 3-350
INCLUDE attribute 5-45
INTERVAL values 3-49, 3-354
number expressions 3-341, 4-21,

5-33
query by example 3-49
time expressions 5-33
upscol utility 5-71, B-9

Range test 4-35
Rapid Development System version

of 4GL 1-3, 1-34
REAL data type 3-313
Record

membership (.) operator 3-328,
3-332

SQLCA global record 2-23
RECORD data type 3-19, 3-72,

3-179, 3-313, 3-331
RECORD keyword

data type 3-72, 3-313
defining screen arrays 5-63, 5-66
defining screen records 4-64, 5-64
END RECORD declaration 3-72,

3-313
SCREEN RECORD

specification 3-364
Rectangles in screen forms 4-57
RED attribute 3-290, 5-31, 5-71, F-20
Relational operators 3-48, 3-329,

3-334, 3-337, 3-358, 4-32, 4-36,
4-37

Relay Module
SQLRM environment

variable D-38

SQLRMDIR environment
variable D-39

Release notes Intro-10
Remainder in expressions 3-339,

4-20
Remote database 3-362
Report

aggregates 4-13
driver 3-100, 6-5, 6-39
execution statements 3-113, 3-191
operators 3-328, 3-330, 4-12
writer 6-3

REPORT keyword 3-242
END REPORT statement 6-6
FINISH REPORT

statement 3-100, 6-5
OUTPUT TO REPORT

statement 3-242, 6-5
REPORT statement 6-6
START REPORT statement 3-271,

6-5
REPORT statement

control blocks 6-27
DEFINE section 6-7, 6-8
displaying a report 6-9
FORMAT section 6-7, 6-23
grouping data 6-27
indirect typing 6-8
NEED statement 6-40
ORDER BY section 6-7, 6-18
ORDER EXTERNAL BY 6-18
OUTPUT section 3-272, 6-7, 6-9
passing arguments to 3-242
PAUSE statement 3-244, 6-41
PRINT statement 3-254, 6-42
SKIP statement 3-269, 6-52
statements in a report

definition 6-39
structure 6-7
syntax and description 3-260
with DATABASE 3-61

REPORT TO keywords 6-13
Reports

aggregate functions 6-31
calculations on groups 4-15, 6-47
counting rows 4-14, 6-47
default layout 6-24
features 6-3
formatting 6-23, 6-27
Index 25

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
output of a report 6-9
printing output 3-254, 6-42
prototype 6-6
sending output to a file 6-13
sorting data 6-18

REQUIRED attribute 5-28, 5-52
Reserve size of VARCHAR data

type 3-68, 3-294
Reserved lines

clearing 3-27
Comment line 2-19, 3-51, 3-80,

3-226, 5-36
default locations 2-19, 3-94, 3-226
Error line 2-19, 3-51, 3-80, 3-96,

3-227, 4-49, 4-50
Form line 2-19, 3-93, 3-226
in current window 3-56
Menu help line 2-19
Menu line 2-17, 3-193, 3-226
Message line 2-19, 3-213, 3-226
positioning 3-226, 3-231, 4-57
Prompt line 2-19, 3-226, 3-256

Reserved values 3-306
Reserved words

as identifiers 2-10
listing H-1

Resume option
Help menu 2-21
Help window 4-81

RETURN character in
WORDWRAP reports 6-51

Return key
in ON KEY clause 3-41
in query by example 3-52

RETURN keyword
OPTIONS statement 3-234
RETURN statement 3-19, 3-263

RETURN statement 3-19, 3-263
RETURNING keyword

CALL statement 3-19
RUN statement 3-267

REVERSE attribute 3-97, 3-290,
3-291, 5-28, 5-31, 5-53, 5-71, F-10

RIGHT keyword
attribute of PERFORM 5-78
OPTIONS statement 3-234

RIGHT MARGIN keywords
OUTPUT section 6-14
PRINT statement 3-254

WORDWRAP operator 4-102,
6-50

Ring menu 2-15, 2-16
ROLLBACK WORK statement

interrupting transactions 3-237,
3-239

with LOAD 3-185
with SQLEXIT() 4-83
with WHENEVER 3-285

Rounding error 3-305, 3-320, 3-325,
3-343, 5-43

ROW keyword
EVERY ROW statement 6-24
INPUT ARRAY statement 3-160,

3-166
ON EVERY ROW control

block 6-34
ON LAST ROW control

block 6-36
REPORT statement 3-261

ROWID keyword 2-24, 3-181, 3-330
ROWS keyword in OPEN

WINDOW statement 3-221
Run option

MODULE Menu 1-11, 1-39
PROGRAM Menu 1-22, 1-50

RUN statement 3-265
Runner

command to invoke 1-58
creating a customized 1-67
specifying location of 1-48
using to execute p-code 1-4

Running a 4GL program
command line 1-5, 1-32
that calls C functions 1-32, 1-70
using Debugger 1-58

Run-time
errors, untrappable 3-283
program, setting

DBANSIWARN D-8

S
Scale

DATETIME data type 3-349, 4-42
DECIMAL data type 3-68, 3-294,

3-320, C-39
FORMAT attribute 5-43

INTERVAL data type 3-353
MONEY data type 3-68, 3-294,

3-312
Scope of reference

4GL identifiers 2-11
4GL windows 3-219
global variables 2-11, 3-117
identifiers of form entities 2-11
program variables 2-11, 2-13,

3-192
screen array 5-67
screen form 2-11, 3-29
screen record 5-65
SQL identifiers 2-12

Screen
interaction statements 3-14
menu option 4-81
option of Help menu 2-21

Screen array
binding to program records 3-153
clearing 3-27
cursor movement 3-172
format of 5-16
identifying the current row 4-26,

4-78
in field clause 3-359
scrolling 3-172, 3-268
syntax 5-66
testing with FIELD_TOUCHED()

operator 4-64
Screen display characteristics

clearing the screen F-5, F-24
default screen attributes B-8

Screen form
closing 3-218
current 3-128, 3-152
specifying from the Programmers

Environment 1-12, 1-41, 5-73
SCREEN keyword

CLEAR SCREEN statement 3-27
CLEAR WINDOW SCREEN

statement 3-27
CURRENT WINDOW

statement 3-56
INSTRUCTIONS section 5-7
referencing the default

window 2-19
SCREEN section 5-12
26 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Screen record
clearing 3-27
default screen record 5-64
in field clause 3-359, 4-66
order of components 3-36, 3-154,

3-364, 5-65
scope of reference 5-65
within a screen array 3-85, 3-268,

5-67
SCREEN RECORD keywords 4-64,

5-63, 5-64, 5-66
SCREEN section of form

specification
display field 5-14
field delimiters 5-69
field labels 5-15
field length 5-76
field tags 5-14, 5-20, 5-76
graphics characters 5-16
screen layout 5-14
syntax 5-12

SCROLL keyword
DECLARE statement 3-105
SCROLL statement 3-268

SCROLL statement 3-268
Scrolling keys 3-172
SCR_LINE()

function 4-78
with DISPLAY ARRAY 3-90
with INPUT ARRAY 3-171

SECOND keyword
DATETIME qualifier 3-301,

3-349, 4-42
INTERVAL qualifier 3-307, 3-353
UNITS operator 4-89

SELECT keyword
GRANT statement 3-274
INSERT statement 3-184
SELECT statement 4-9

Select privilege 3-274
SELECT statement

copying rows to an ASCII
file 3-274

displaying results 6-3
interrupting 3-236
query by example 3-32
requiring no cursor 4-9
restrictions with INTO

clause 3-246

Semicolon (;) symbol
as a statement terminator 2-5
in a field description 5-21
in PRINT statements 6-37, 6-45

SERIAL data type
as INTEGER variables 3-69, 3-307
display fields 5-47
in input files 3-182
in program records 3-314
in UPDATE statement 3-365
INSERT statement 5-47
SQLCA.SQLERRD[2] 2-24

Set membership test 3-50, 3-337,
4-35

Setting environment variables D-4
SET_COUNT()

function 4-80
with DISPLAY ARRAY 3-85, 3-90
with INPUT ARRAY 3-171

sg1 terminal specification F-4, F-19
Shaded syntax diagram

elements Intro-7
Shared memory parameters,

specifying file with
ONCONFIG D-36

Shell
setting environment variables in a

file D-2
specifying with

DBREMOTECMD D-27
SHOW keyword, MENU

statement 3-204
showhelp function B-3
SHOWHELP()

function 4-81
ON KEY clause 2-21, 3-37, 3-134,

3-156
Signals

Interrupt 3-62
Quit 3-62, 3-237

SIGQUIT signal 3-237
Simple data type 3-68, 3-294
Single-character fields 5-76
Single-precision floating-point

number, storage of 3-305
SIZE keyword, form

specification 5-13
SKIP statement 3-269, 6-52

Slash (/) symbol
database specification 3-58
DATE literals 3-300, 3-321
division operator 3-328, 3-339,

3-357, 4-20, 4-22
SLEEP statement 3-270
SMALLFLOAT data type

data type conversion 3-319, 3-324
declaration 3-68, 3-294
description 3-315
display width 3-78, 5-76, 6-44
FORMAT attribute 5-43
in NLS E-9
literal values 3-316, 3-342

SMALLINT data type
conversion 3-319
data type conversion 3-324
declaration 3-68, 3-294
description 3-316
display width 3-78, 5-76, 6-44
in report output 6-44
literal values 3-342

SOME keyword in SQL Boolean
operator 3-330

Sorting data
in a report 6-18
with a cursor 6-22

Sorting, PSORT_DBTEMP
environment variable D-36

Source
compiler 3-280
modules 1-29, 1-58, 1-60, 2-7
path 1-47

SPACE or SPACES operator 3-328,
4-82, 6-49

Spacebar 3-209
SPL expressions 3-330
SQL

built-in functions 4-5, 4-6
INTERRUPT option 3-64, 3-235,

3-237
keyword in OPTIONS

statement 3-231
version number 1-31, 1-60, 1-63,

1-68
SQL language

accessing from the Programmers
Environment 1-22, 1-51

concurrency control 3-105
Index 27

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
cursor manipulation
statements 3-12

data access statements 3-12
data definition statements 3-12
data integrity statements 3-13
data manipulation

statements 2-12, 3-12
expressions 3-330
interactive query language 1-7,

1-35, 5-78
interrupting statements 3-64,

3-235, 3-237
operators 3-330
query optimization

statements 3-12
testing statement execution 2-23
transaction logging 3-108, 3-185
types of statements 2-5
views 3-69

SQLAWARN
characters 2-25
global record 3-61, 3-284, 3-320

SQLCA record
definition of 2-23
effect of setting

DBANSIWARN D-8
SQLAWARN 2-25
SQLCODE 2-24, 3-236
SQLERRD 2-24
WHENEVER ERROR

condition 3-282
SQLCODE global variable 3-236,

3-282
SQLERROR keyword 3-281, 3-283
SQLEXEC environment

variable D-38
SQLEXIT() 4-83
SQLRM environment

variable D-38
SQLRMDIR environment

variable D-39
SQLWARNING keyword 3-284
Stack argument 2-27, C-2
START REPORT statement 3-271,

6-5
STARTLOG() 4-84
state table in stores database A-7
Statement

blocks 2-8, 3-102

labels 2-7, 3-114, 3-122, 3-177,
3-281

terminator 2-5
Statement identifier

definition of 3-246
releasing 3-246
syntax

in PREPARE 3-245
use

in PREPARE 3-246
Statement segments

asterisk (*) notation 3-363
ATTRIBUTE clause 3-290
data types of 4GL 3-293
expressions of 4GL 3-326
field clause 3-359
notational conventions Intro-7
table qualifiers 3-361
THRU or THROUGH

keywords 3-363
Statement syntax

CALL 3-16
CASE 3-21
CLEAR 3-21, 3-26
CLOSE FORM 3-29
CLOSE WINDOW 3-30
CONSTRUCT 3-31
CONTINUE 3-55
CURRENT WINDOW 3-56
DATABASE 3-58
DEFER 3-62
DEFINE 3-65
DISPLAY 3-74
DISPLAY ARRAY 3-85
DISPLAY FORM 3-93
END 3-95
ERROR 3-96
EXIT 3-98
FINISH REPORT 3-100
FOR 3-102
FOREACH 3-105
FUNCTION 3-111
GLOBALS 3-117
GOTO 3-122
IF 3-124
INITIALIZE 3-125
INPUT 3-128
INPUT ARRAY 3-152
LABEL 3-177

LET 3-178
LOAD 3-181
LOCATE 3-186
MAIN 3-191
MENU 3-193
MESSAGE 3-213
NEED 3-216, 6-40
OPEN FORM 3-217
OPEN WINDOW 3-219
OPTIONS 3-228
OUTPUT TO REPORT 3-242
PAUSE 3-244, 6-41
PRINT 3-254, 6-42
PROMPT 3-255
REPORT 3-260, 6-6
RETURN 3-263
RUN 3-265
SCROLL 3-268
SKIP 3-269, 6-52
SLEEP 3-270
START REPORT 3-271
UNLOAD 3-274
VALIDATE 3-278
WHENEVER 3-281
WHILE 3-287

Statement type
compiler directive 3-14
cursor manipulation 3-12
data access 3-12
data definition 3-12
data integrity 3-13
data manipulation 3-12
definition and declaration 3-13
program flow control 3-14
query optimization 3-12
report execution 3-14
screen interaction 3-14
storage manipulation 3-14

Statements in reports
NEED 3-216
PAUSE 3-244, 6-41
PRINT 3-254
SKIP 3-269

Status code
after data type conversion C-25
after database disconnection 4-83
after program termination 3-99
of a child process 3-265
28 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
status variable
definition of 2-24
interrupting SQL

statements 3-236
set to 100 3-105
VALIDATE statement 3-279
WHENEVER statement 3-283
with ERR_GET() 4-48, 4-49
with ERR_PRINT() 4-49
with ERR_QUIT() 4-50

STEP keyword, FOR
statement 3-103

stock table in stores database A-5
STOP keyword in WHENEVER

statement 3-285
Storage manipulation

statements 3-14
stores database

creating A-3
customer table A-3
customer table columns A-3
data values A-14
items table A-4
items table columns A-4
join columns A-8, A-8 to A-14
manufact table A-6
manufact table columns A-6
map of A-8
orders table A-4
orders table columns A-4
overview A-1
restoring the original A-2
state table A-7
state table columns A-7
stock table A-5
structure of tables A-3, A-8
tables in A-3

stores2 database Intro-12
String comparison 3-329, 3-335,

4-33, 4-37
String value

NULL 5-25
substring 5-22

Structure definition file,
function 1-64

Structured
data types 3-70, 3-296
programming 4-5

stty -istrip command E-30

Subdiagram
box symbol Intro-7
graphic notation Intro-7

Subroutine 4-5
Subscript

of a character column 5-22
to specify array elements 3-297
to specify substrings 3-317

Substring
in a screen field 5-22
of character array elements 3-297
of character variables 3-179, 3-215
of TEXT values 3-317

Subtraction (-) operator
number expressions 3-339, 4-22
precedence 3-328
precision and scale 3-321
reserved lines 3-226, 3-231
returned values 4-20
time expressions 3-357, 4-22

SUM() aggregate function 2-25,
4-14, 4-95, 6-46

Syntax diagram
conventions Intro-6
elements of Intro-8

Syntax of command line to compile
a 4GL source file 1-30, 1-59

syscolatt table
changing color names F-20
color and intensity values 5-70,

B-8
creating 5-72
creating with upscol B-5
DISPLAY LIKE attribute 5-40
FGL_DRAWBOX()

arguments 4-56
INPUT ARRAY statement 3-155
INPUT statement 3-133
precedence of attributes 5-72
schema 5-69
with FORM4GL 5-21, 5-69

syscolumns table 3-69, 3-184, 3-363
syscolval table

as used by INITIALIZE 5-71
creating 5-72
creating with upscol B-5
data validation 5-71
INITIALIZE statement 3-126,

3-127

INPUT ARRAY statement 3-154
INPUT statement 3-130
schema 5-69
VALIDATE LIKE attribute 5-55
VALIDATE statement 3-280
with FORM4GL 5-21, 5-69

syspgm4gl files 1-16, 1-45
systables table 4-9
System catalog

syscolumns 3-69
systabauth 4-90
systables 4-9, 5-18

System clock
CURRENT operator 4-42
DATE operator 4-44
EXTEND() operator 4-54
TIME operator 4-86
TODAY operator 4-87

T
TAB character

in report output 4-103, 6-51
in statements 2-3
in TEXT values 3-317, 3-345

TAB key
in ON KEY clause 3-41
in query by example 3-52
order of fields 3-50, 3-232
reassigning its function 3-41,

3-234
Table

alias for table name 5-19
changing column data

types 3-319
current 5-78
inserting data 3-181
joining tables A-8
locking 3-185
qualifiers 3-35, 3-361
reference 3-359, 5-20
structure in stores database A-3
temporary 3-101, 4-13, 6-22

Table alias
declaring 5-19
naming conventions 2-10
qualifiers 3-361
Index 29

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
TABLE keyword in LOCK TABLE
statement 3-185

TABLES section of form
specification

description 5-6
syntax 5-18

Temporary
files, specifying directory with

DBTEMP D-29
tables, specifying dbspace with

DBSPACETEMP D-28
TERM environment variable D-41
TERMCAP environment

variable D-41
termcap file

and TERMCAP environment
variable D-41

description F-2
graphics characters 5-17
selecting with

INFORMIXTERM D-35
Terminal bell, ringing 3-96
Terminal handling

and TERM environment
variable D-41

and TERMCAP environment
variable D-41

and TERMINFO environment
variable D-42

Termination status 3-99, 3-266
Terminator, in syntax

diagrams Intro-7
terminfo directory

and TERMINFO environment
variable D-42

selecting with
INFORMIXTERM D-35

TERMINFO environment
variable D-42, F-20, F-26

terminfo files 5-17, F-20
Text cursor

in a field 5-5
in disabled fields 5-6
with CONSTRUCT 3-32
with DISPLAY ARRAY 3-86
with INPUT 3-130, 3-146
with INPUT ARRAY 3-172
with MENU 3-199

TEXT data type
Boolean expressions 4-33, 5-33
data entry 3-150, 3-174
declaration 3-65, 3-70
description 3-317
display fields 3-149, 5-50, 5-57
display width 5-76, 6-44
in expressions 3-332, 3-343
in input files 3-182
in output files 3-275
in program records 3-72, 3-313
in report output 4-102, 6-44, 6-50
initializing 3-186
large data type 3-296
passing by reference 3-18, 3-264
query by example 3-48
selecting a TEXT column 3-317
storing control characters 3-317
syscolval table 3-280
unprintable characters 3-317,

3-345
Text editor 1-9, 1-13, 1-29, 1-38,

1-42, 1-58, D-11
THEN keyword, IF statement 3-124
Thousands separator D-14, D-23,

E-31, E-33, E-35, E-40, E-45
THROUGH keyword 3-65, 3-125,

3-314, 3-363, 5-65
THRU keyword 3-65, 3-81, 3-125,

3-133, 3-314, 3-363, 5-65
Time data types 3-295, 3-347
Time expressions

as operands 4-21
formatting 4-91
syntax 3-348

TIME operator 3-330, 4-86
Time units

in data type conversion 3-321
in DATETIME qualifiers 3-301,

3-350
in INTERVAL qualifiers 3-307,

3-353, 5-39
in numeric dates 3-300, 3-349,

4-44, 4-94
with EXTEND() operator 4-53
with MDY() operator 4-74

Title of a menu 2-15
TO keyword

DATETIME qualifier 3-301,
3-350, 4-42, 5-39

DISPLAY ARRAY statement 3-85
DISPLAY statement 3-74, 3-364
EXTEND() operator 4-53
FOR statement 3-102
INCLUDE attribute 5-44
INITIALIZE statement 3-127,

3-364
INTERVAL qualifier 3-307, 3-353,

5-39
OUTPUT TO REPORT

statement 3-242, 6-5
REPORT TO clause 3-271, 6-13
SKIP statement 3-269, 6-52
START REPORT statement 3-271
UNLOAD statement 3-274
WHENEVER statement 3-177,

3-281
TODAY operator 4-87, 5-39
TOP MARGIN keywords 6-16, 6-34
TOP OF PAGE clause

OUTPUT section 6-18
SKIP statement 3-269, 6-52

TRAILER keyword, REPORT
statement 6-38

Trailing blank spaces
CLIPPED operator 4-38
VARCHAR values 3-318

Trailing currency symbol D-14,
D-21, E-33, E-40, E-45

Transaction logging
explicit transactions 3-237, 3-238
For loops 3-104
FOREACH statement block 3-108
implicit transactions 3-237, 3-238
interrupting SQL

statements 3-237
singleton transactions 3-237,

3-238
SQLEXIT() function 4-83
while loading data 3-185
WHILE loop 3-287

TRUE (Boolean constant) 3-62,
3-288, 3-333, 5-31

Truncation of data 2-25, 3-86, 3-182,
3-275, 3-325, 4-22, 4-58, 4-103,
5-59, 6-51
30 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Two-pass report 3-100, 3-101,
3-262, 4-14, 6-22

TYPE keyword in FORMONLY
fields 5-24, 5-45

Types of statements
4GL statements 3-13
SQL statements 3-11

Typographical conventions Intro-5
Typover editing mode 3-52, 3-147,

3-173

U
Unary minus (-) symbol 2-6, 3-328,

3-340, 3-342, 3-348, 4-19, 4-92,
5-39

Unary plus (+) symbol 3-316,
3-328, 3-340, 3-342, 3-348, 4-19,
4-92

UNCONSTRAINED keyword in
OPTIONS statement 3-51,
3-230, 3-232

Undefine option, PROGRAM
Menu 1-51

Underflow conversion error C-25,
C-36

UNDERLINE attribute 3-290,
3-291, 5-31, 5-71, F-10

Underscore (_) symbol
in field tags 5-15
in identifiers 2-10
wildcard with LIKE 3-336, 4-34

Units of time
CURRENT operator 4-42
DATE operator 4-44
DATE values 3-300, 3-321, 3-349
DATETIME values 3-303, 3-321,

3-351
DAY() operator 4-46
EXTEND() operator 4-54
INTERVAL values 3-307, 3-355
MDY() operator 4-74
UNITS operator 4-89
YEAR() operator 4-104

UNITS operator
data type conversion 3-339
in arithmetic expressions 3-357,

4-21, 4-89

precedence as operator 3-328
specifying a default value in a

field 5-39
syntax and description 4-89

UNIX
default print capability in

BSD D-5, D-26
default print capability in System

V D-5, D-26
environment variable setting in

BSD and System V D-4
environment variables listed D-7
terminfo library support in

System V D-35
viewing environment settings in

BSD D-4
viewing environment settings in

System V D-4
UNLOAD statement

in NLS E-7, E-10, E-15, E-35, E-40,
E-42

interrupting 3-236
specifying field delimiter with

DBDELIMITER D-11
syntax and description 3-274

Unprintable characters 3-345, 4-103
Unquoted literal 5-39
Unsigned values 3-339, 4-20
Untrappable errors 2-26, 3-97,

3-283
UP keyword

OPTIONS statement 3-234
SCROLL statement 3-268
syscolval table 5-70, B-7

Updatable views 5-29
UPDATE

keyword in DECLARE
statement 3-105

statement, interrupting 3-236
SYSCOL Menu (upscol) B-5

UPDATE STATISTICS statement
and DBUPSPACE environment
variable D-29

Uppercase characters
DEFAULT attribute 5-39
DOWNSHIFT attribute 5-41, B-7
DOWNSHIFT() 4-47
in field tags 5-15
in identifiers 2-4, 2-10

INCLUDE attribute 5-45
SHIFT attribute 5-70, B-7
typographic convention Intro-5
UPSHIFT attribute 5-54, B-7
UPSHIFT() 4-90

upscol utility 3-126, 3-280, 5-27,
5-40, 5-69, 5-72, B-5

UPSHIFT attribute 5-28, 5-54, 5-69,
5-70, B-7, E-10

UPSHIFT() 4-90
USER keyword 3-330, 4-9
User locale E-2
USING expression

in NLS E-10, E-31, E-33, E-39,
E-40, E-42, E-44

NLS example E-34, E-46
USING keyword

OPEN statement 3-105
USING operator 4-91

USING operator
DISPLAY statement 3-78
MESSAGE statement 3-213
PRINT statement 4-94, 6-44
syntax and description 4-91

Utility programs
mkmessage B-2
upscol 5-27, 5-69, B-5

V
V command-line option 1-31, 1-60,

1-63, 1-68
VALIDATE LIKE attribute 5-18,

5-28, 5-55
VALIDATE Menu (upscol) B-7
VALIDATE statement 3-278, 3-283,

5-71
Validation errors 2-26, 3-279, 3-283
VALUES keyword in INSERT

statement 3-184, 5-4
VARCHAR data type

data type conversion 3-324
declaration 3-68, 3-294
description 3-318
display fields 5-48, 5-57
display width 3-78, 5-76, 6-44
in expressions 3-343
in input files 3-182
Index 31

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in NLS E-4, E-6, E-9, E-18
in output files 3-275
in report output 6-44
pattern matching 3-336, 4-34
substrings 5-22
unprintable characters 3-345

Variables
allocating 3-186
as operands 3-331
binding to database columns 5-3
declaring 3-65, 3-113, 3-192, 6-8
global 2-11, 3-66, 3-117
implicit names 3-69, 3-72
in DATABASE statement 3-59
in REPORT statement 6-7
indirect typing 3-59, 3-69, 6-8
local 2-11, 3-114, 3-192, 3-261
maximum number with p-code

compiler 3-71
modular 2-11, 3-66
naming rules 2-10
scope of reference 2-11, 3-114,

3-192
status variable 2-24
visibility 2-13, 3-117

VERIFY attribute 5-28, 5-56, 5-70
Version numbers of SQL

software 1-31, 1-60, 1-63, 1-68
Versions of 4GL 1-3
Vertical (|) bar

default delimiter 3-184, 3-276
field separator in forms 5-68
graphics character 5-16, F-6, F-26
in termcap specifications F-3
in window border F-6
OR symbol with

CONSTRUCT 3-49
SQL concatenation

operator 3-330
Video attributes 2-19, 3-290, 5-27
View

in form specification file 5-29
in FROM clause of

CONSTRUCT 3-36
in INSERT clause of LOAD 3-181
in LIKE clause of DEFINE 3-69

Visibility of identifiers 2-13, 3-65,
3-114, 3-117

W
W warning character in

SQLAWARN 2-25, 3-61
WAITING keyword, RUN

statement 3-267
Warning

conditions 2-25, 3-61, 3-281, 3-320
messages 1-31

WARNING keyword in
WHENEVER statement 2-25,
3-281

WEEKDAY() operator 4-100
WHEN keyword, CASE

statement 3-22
WHENEVER statement

syntax and description 3-281
trapping errors B-4
versus GOTO statement 3-122
with ERROR statement 3-97
with ERRORLOG() 4-51
with LABEL statement 3-177
with STARTLOG() 4-85

WHERE clause
aggregate functions 4-14, 6-46
pattern matching 3-49
query by example 3-32, 3-49
with COLOR attribute 5-32, 5-78,

B-9
WHERE keyword

COLOR attribute 3-330, 5-31
Debugger command 3-99
SELECT statement 3-34, 3-275,

3-330
WHILE keyword in CONTINUE

WHILE statement 3-55
WHILE statement 3-287
WHITE attribute 3-290, 5-31, 5-71,

F-20
Wildcard symbols

CONSTRUCT statement 3-49
in syscolatt table 5-71
with LIKE 3-336, 4-34, 4-101
with MATCHES 3-335, 4-34

Window
border F-6, F-25
clearing 3-26
closing 3-30
current 2-19

display attributes 3-292, 5-72
naming conventions 2-10
opening 3-219
reserved lines 2-19, 3-228
stack 2-20, 3-30, 3-56, 3-220

WINDOW keyword
CLEAR WINDOW

statement 3-27
CURRENT WINDOW

statement 3-56
OPTIONS statement 3-234

WITH FORM clause in OPEN
WINDOW statement 3-222

WITH keyword
DECLARE statement 3-105
GRANT statement 4-90
OPEN WINDOW statement 3-29,

3-221
WITHOUT DEFAULTS keywords

INPUT ARRAY statement 3-154,
5-38

INPUT statement 3-131, 5-38
with SET_COUNT() 4-80

WITHOUT keyword
INPUT ARRAY statement 3-154
INPUT statement 3-131
RUN statement 3-267

WITHOUT NULL INPUT
keywords in DATABASE
section 3-130, 3-154, 5-10, 5-38

WORDWRAP keyword
CONSTRUCT statement 3-51
INPUT statement 3-148
PRINT statement 3-254, 6-50
WORDWRAP attribute 5-26,

5-28, 5-57
WORDWRAP operator 3-328,

4-102
WORK keyword

BEGIN WORK statement 3-285
COMMIT WORK

statement 3-185
ROLLBACK WORK

statement 3-185, 3-285
WRAP keyword in OPTIONS

statement 3-52, 3-230
32 INFORMIX

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
X
X symbol in format strings 5-48
xmc1 terminal specification F-22
XOFF key 3-88, 3-139, 3-163, 3-235,

3-259
XON key 3-88, 3-139, 3-163, 3-235,

3-259
XPG3 E-2, E-3
X/Open-defined environment

variable E-11, E-12

Y
y symbol

in format strings 4-94, 5-42
values in syscolatt table 5-70

Y symbol values in syscolatt
table B-8

YEAR keyword
CURRENT operator 4-42
DATETIME qualifier 3-301,

3-349, 4-42, 5-25
EXTEND operator 4-54
INTERVAL qualifier 3-309, 3-353,

5-39
UNITS operator 4-89
YEAR() operator 4-104

YEAR() operator 4-104
YELLOW attribute 3-290, 5-31,

5-71, F-20
YES

keyword in syscolval table B-7
value in syscolval table 5-70

Z
ZA function (termcap file) F-10,

F-18
Zero

as divisor 3-339, 4-22, C-36
as MOD operand 4-22
byte (ASCII 0) 3-346, 6-47
DATE to DATETIME

conversion 3-321
default INTERVAL value 3-131,

3-154, 3-323, 5-12, 5-38
default MONEY value 5-38

default number value 3-131,
3-154, 5-25, 5-38

entering SERIAL values 3-182
in Boolean expressions 3-333,

4-30, 5-34
in output files 3-275
or more characters, symbol

for 3-49, 3-336, 4-34
preserving leading zeros 3-299
scale in arithmetic 3-320
status code of SQL 2-24, 3-282,

3-288
status returned by SQLEXIT(

) 4-83
WEEKDAY() value 4-100
zero fill (&) character 4-93

ZEROFILL attribute of
PERFORM 5-78

Symbols
?, question mark as placeholder in

PREPARE 3-245
Index 33

	Answers OnLine Web Site
	Preface
	Summary of Chapters
	Informix Welcomes Your Comments
	Related Reading

	Table of Contents
	Introduction
	Chapter Overview
	Documentation Included with 4GL
	Other Useful Documentation
	Conventions of this Manual
	Typographical Conventions
	Syntax Notation

	Useful On-Line Files
	On-Line Error Messages
	The stores Demonstration Application and Database
	New Features in 4GL
	NLS Support
	Improved Performance
	Improved Quality

	Accessing Databases from Within 4GL
	Preparing SQL Statements

	Compatibility and Migration

	Compiling INFORMIX-4GL Source Files
	Chapter Overview
	Two Implementations of INFORMIX-4GL
	Differences Between the C Compiler and RDS Version...
	Differences in the Programmer’s Environment
	Differences in Commands
	Differences in Filename Extensions

	The C Compiler Version
	The Programmer´s Environment
	The INFORMIX-4GL Menu
	The MODULE Design Menu
	The FORM Design Menu
	The PROGRAM Design Menu
	The QUERY LANGUAGE Menu

	Creating Programs in the Programmer’s Environment
	Creating a New Source Module
	Revising an Existing Module
	Compiling a Source Module
	Linking Program Modules
	Executing a Compiled Program

	Creating Programs at the Command Line
	Creating or Modifying a 4GL Source File
	Compiling a 4GL Module
	Compiling and Linking Multiple Source Files
	Running 4GL Programs
	4GL Programs that Call C Functions

	Program Filename Extensions

	The Rapid Development System Version
	The Programmer´s Environment
	The INFORMIX-4GL Menu
	The MODULE Design Menu
	The FORM Design Menu
	The PROGRAM Design Menu
	The QUERY LANGUAGE Menu

	Creating Programs in the Programmer’s Environment
	Creating a New Source Module
	Revising an Existing Module
	Compiling a Source Module
	Combining Program Modules
	Executing a Compiled RDS Program
	Invoking the Debugger

	Creating Programs at the Command Line
	Creating or Modifying a 4GL Source File
	Compiling an RDS Source File
	Concatenating Multi-Module Programs
	Running RDS Programs
	Running Multi-Module Programs
	Running Programs with the Interactive Debugger
	RDS Programs that Call C Functions
	Editing the fgiusr.c File
	Creating a Customized Runner
	Running Programs that Call C Functions

	Program Filename Extensions

	The INFORMIX- 4GL Language
	Overview of 4GL
	Language Features
	Lettercase Insensitivity
	4GL Statements
	Comments
	Comment Indicators
	Restrictions on Comments

	Source Code Modules and Program Blocks
	Statement Blocks
	Statement Segments
	4GL Identifiers
	Naming Rules for 4GL Identifiers
	Scope of Reference of 4GL Identifiers
	Scope and Visibility of SQL Identifiers
	Visibility of Identical Identifiers

	Interacting with Users
	Ring Menus
	Selecting Menu Options
	Ambiguous Keyboard Selections
	Hidden Options and Invisible Options
	Disabled Menus
	Reserved Lines for Menus

	Screen Forms
	Visual Cursors
	Field Attributes
	Reserved Lines

	4GL Windows
	The Current Window

	On-Line Help
	The Help Key and the Message Compiler
	The Help Window

	Exception Handling
	Error Handling with SQLCA
	A Taxonomy of Run-Time Errors

	INFORMIX-4GL Statements
	Chapter Overview
	The 4GL Statement Set
	Types of SQL Statements
	Other Types of 4GL Statements

	Statement Descriptions
	CALL
	Arguments
	The RETURNING Clause
	Restrictions on Returned Character Strings
	Invoking a Function Without CALL

	CASE
	The WHEN Blocks
	The OTHERWISE Block
	The EXIT CASE Statement
	The END CASE Keywords

	CLEAR
	The CLEAR FORM Option
	The CLEAR WINDOW Option
	The CLEAR WINDOW SCREEN Option
	The CLEAR SCREEN Option
	The CLEAR field Option

	CLOSE FORM
	CLOSE WINDOW
	CONSTRUCT
	The CONSTRUCT Variable Clause
	The ATTRIBUTE Clause
	The HELP Clause
	The CONSTRUCT Form Management Blocks
	The NEXT FIELD Clause
	The CONTINUE CONSTRUCT Statement
	The EXIT CONSTRUCT Statement
	The END CONSTRUCT Keywords
	Using Built-In Functions and Operators
	Query by Example
	Positioning the Screen Cursor
	Editing During a CONSTRUCT Statement
	Completing a Query

	CONTINUE
	CURRENT WINDOW
	DATABASE
	The Database Specification
	The Default Database at Compile Time
	The Current Database at Run Time
	The EXCLUSIVE Keyword
	Testing SQLCA.SQLAWARN

	DEFER
	Interrupting Screen Interaction Statements
	Interrupting SQL Statements

	DEFINE
	The Context of DEFINE Declarations
	Declaring the Names and Data Types of Variables
	Variables of Simple Data Types
	Variables of Large Data Types
	Variables of Structured Data Types

	DISPLAY
	Sending Output to the Line Mode Overlay
	Sending Output to the Current 4GL Window
	Sending Output to a Screen Form
	The ATTRIBUTE Clause
	Displaying Numeric and Monetary Values

	DISPLAY ARRAY
	The ATTRIBUTE Clause
	The ON KEY Blocks
	The EXIT DISPLAY Statement
	The END DISPLAY Keywords
	Using Built-In Functions and Operators
	Scrolling During the DISPLAY ARRAY Statement
	Completing the DISPLAY ARRAY Statement

	DISPLAY FORM
	Form Attributes
	Reserved Lines

	END
	ERROR
	The ATTRIBUTE Clause
	System Error Messages

	EXIT
	Leaving a Control Structure
	Leaving the Program

	FINISH REPORT
	FOR
	The TO Clause
	The STEP Clause
	The CONTINUE FOR Statement
	The EXIT FOR Statement
	The END FOR Keywords
	Databases with Transactions

	FOREACH
	Cursor Names
	The INTO Clause
	The FOREACH Statement Block
	The END FOREACH Keywords

	FUNCTION
	The Prototype of the Function
	The FUNCTION Program Block
	Data Type Declarations
	The Function as a Local Scope of Reference
	Executable Statements
	Returning Values to the Calling Routine
	The END FUNCTION Keywords

	GLOBALS
	Declaring and Exporting Global Variables
	Importing Global Variables

	GOTO
	IF
	INITIALIZE
	The LIKE Clause
	The TO NULL Clause

	INPUT
	The Binding Clause
	The ATTRIBUTE Clause
	The HELP Clause
	The INPUT Form Management Blocks
	The CONTINUE INPUT Statement
	The EXIT INPUT Statement
	The END INPUT Keywords
	Using Built-In Functions and Operators
	Keyboard Interaction
	Cursor Movement in Simple Fields
	Multiple-Segment Fields
	Using Large Data Types
	Completing the INPUT Statement

	INPUT ARRAY
	The Binding Clause
	The ATTRIBUTE Clause
	The HELP Clause
	The INPUT ARRAY Form Management Blocks
	The CONTINUE INPUT Statement
	The EXIT INPUT Statement
	The END INPUT Keywords
	Using Built-In Functions and Operators
	Keyboard Interaction
	Using Large Data Types
	Completing the INPUT ARRAY Statement

	LABEL
	LET
	LOAD
	The Input File
	The DELIMITER Clause
	The INSERT Clause

	LOCATE
	The List of Large Variables
	The IN MEMORY Option
	The IN FILE Option
	Passing Large Variables to Functions
	Freeing the Storage Allocated to a Large Variable

	MAIN
	The END MAIN Keywords
	Variables Declared in the MAIN Statement

	MENU
	The MENU Control Blocks
	Invisible Menu Options
	The CONTINUE MENU Statement
	The EXIT MENU Statement
	The NEXT OPTION Clause
	The HIDE OPTION and SHOW OPTION Keywords
	Nested MENU Statements
	The END MENU Keywords
	Identifiers in the MENU Statement
	Choosing a Menu Option
	Scrolling the Menu Options
	Completing the MENU Statement

	MESSAGE
	The Message Line
	The ATTRIBUTE Clause

	NEED
	OPEN FORM
	The Form Name
	Specifying a Filename
	Displaying a Form in a 4GL Window

	OPEN WINDOW
	The 4GL Window Stack
	The AT Clause
	The WITH ROWS, COLUMNS Clause
	The WITH FORM Clause
	The OPEN WINDOW ATTRIBUTE Clause

	OPTIONS
	Features Controlled by OPTIONS Clauses
	Positioning Reserved Lines
	Cursor Movement in Interactive Statements
	The OPTIONS ATTRIBUTE Clause
	The HELP FILE Option
	Assigning Logical Keys
	Interrupting SQL Statements

	OUTPUT TO REPORT
	PAUSE
	PREPARE
	Statement Identifier
	Releasing a Statement Identifier
	Statement Text
	Preparing Statements in 4GL
	Using Parameters in Prepared Statements
	Preparing Statements with SQL Identifiers
	Preparing Sequences of Multiple SQL Statements
	Using Prepared Statements for Efficiency

	PRINT
	PROMPT
	The PROMPT String
	The Response Variable
	The FOR Clause
	The ATTRIBUTE Clauses
	The HELP Clause
	The ON KEY Blocks
	The END PROMPT Keywords

	REPORT
	The Report Prototype
	The Report Program Block
	The END REPORT Keywords
	Two-Pass Reports

	RETURN
	The Data Types of Returned Values

	RUN
	The RETURNING Clause
	The WITHOUT WAITING Clause

	SCROLL
	SKIP
	SLEEP
	START REPORT
	The TO Clause

	UNLOAD
	The Output File
	The DELIMITER Clause

	VALIDATE
	The LIKE Clause
	The syscolval Table

	WHENEVER
	The Scope of the WHENEVER Statement
	The ERROR Condition
	The ANY ERROR Condition
	The NOT FOUND Condition
	The WARNING Condition
	The GOTO Option
	The CALL Option
	The CONTINUE Option
	The STOP Option

	WHILE
	The CONTINUE WHILE Statement
	The EXIT WHILE Statement
	The END WHILE Keywords

	Statement Segments
	ATTRIBUTE
	Color and Monochrome Attributes
	Precedence of Attributes
	Data Types of 4GL
	The Simple Data Types
	Number Data Types
	Time Data Types
	Character Data Types

	The Structured Data Types
	The Large Data Types
	Descriptions of the 4GL Data Types
	ARRAY
	BYTE
	CHAR
	CHARACTER
	DATE
	DATETIME
	DEC
	DECIMAL
	DOUBLE PRECISION
	FLOAT
	INT
	INTEGER
	INTERVAL
	MONEY
	NUMERIC
	REAL
	RECORD
	SMALLFLOAT
	SMALLINT
	TEXT
	VARCHAR
	Data Type Conversion
	Converting from Number to Number
	Converting Numbers in Arithmetic Operations
	Converting Between DATE and DATETIME
	Converting CHAR to DATETIME or INTERVAL Data Types...
	Converting Between Number and Character Data Types...

	Summary of Compatible 4GL Data Types
	Notes on Automatic Data Type Conversion

	Expressions of 4GL
	Components of 4GL Expressions
	Parentheses in 4GL Expressions
	Operators in 4GL Expressions
	Operands in 4GL Expressions
	Named Values as Operands
	Function Calls as Operands
	Expressions as Operands

	4GL Boolean Expressions
	Logical Operators
	Boolean Comparisons
	Data Type Compatibility
	Evaluating 4GL Boolean Expressions

	Integer Expressions
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Literal Integers

	Number Expressions
	Arithmetic Operators
	Literal Numbers

	Character Expressions
	Arrays and Substrings
	String Operators
	Non-Printable Characters

	Time Expressions
	Numeric Date
	DATETIME Qualifier
	DATETIME Literal
	INTERVAL Qualifier
	INTERVAL Literal
	Arithmetic Operations on Time Values
	Relational Operators and Time Values

	Field Clause
	Table Qualifiers
	Owner Naming
	Database References

	THRU or THROUGH Keywords and .* Notation

	Built-In Functions and Operators
	Functions in 4GL Programs
	Built-In 4GL Functions
	Built-In SQL Functions
	C Functions
	ESQL/C Functions�
	Programmer-Defined 4GL Functions
	Invoking Functions

	Operators of 4GL
	Syntax of Built-In Functions and Operators
	Aggregate Report Functions
	The GROUP Keyword
	The WHERE Clause
	The MIN() and MAX() Functions
	The AVG() and SUM() Functions
	The COUNT (*) and PERCENT (*) Functions

	ARG_VAL()
	Arithmetic Operators
	Unary Arithmetic Operators
	Binary Arithmetic Operators
	Exponentiation (**) Operator
	Modulus (MOD) Operator
	Multiplication (*) and Division (/) Operators
	Addition (-) and Subtraction (+) Operators

	ARR_COUNT()
	ARR_CURR()
	ASCII
	Boolean Operators
	Logical Operators
	Boolean Comparisons
	Relational Operators
	The NULL Test
	The LIKE and MATCHES Operators
	Set Membership and Range Tests

	CLIPPED
	COLUMN
	CURRENT
	DATE
	DATE()
	DAY()
	DOWNSHIFT()
	ERR_GET()
	ERR_PRINT(�)
	ERR_QUIT()
	ERRORLOG()
	EXTEND()
	FGL_DRAWBOX()
	FGL_GETENV()
	FGL_KEYVAL()
	FGL_LASTKEY ()
	FIELD_TOUCHED()
	GET_FLDBUF()
	INFIELD()
	LENGTH()
	LINENO
	MDY()
	MONTH()
	NUM_ARGS()
	PAGENO
	SCR_LINE()
	SET_COUNT()
	SHOWHELP()
	SPACE
	SQLEXIT()
	STARTLOG()
	TIME
	TODAY
	UNITS
	UPSHIFT()
	USING
	USING Operator Examples

	WEEKDAY()
	WORDWRAP
	YEAR()

	Screen Forms
	4GL Forms
	Form Drivers
	Form Fields
	Appearance of Fields
	Navigation Among Form Fields
	Disabled Form Fields

	Structure of a Form Specification File
	DATABASE Section
	Database References in the DATABASE Section
	The FORMONLY Option
	The WITHOUT NULL INPUT Option

	SCREEN Section
	The SIZE Option
	The Screen Layout
	Display Fields
	Literal Characters in Forms
	Graphics Characters in Forms
	Rectangles Within Forms

	TABLES Section
	Table Aliases

	ATTRIBUTES Section
	Fields Linked to Database Columns
	FORMONLY Fields
	The Data Type Specification
	The NOT NULL Keywords

	Multiple-Segment Fields
	Field Attributes
	Field Attribute Syntax
	AUTONEXT
	COLOR
	Boolean Expressions in 4GL Form Specification File...

	COMMENTS
	DEFAULT
	DISPLAY LIKE
	DOWNSHIFT
	FORMAT
	INCLUDE
	INVISIBLE
	NOENTRY
	PICTURE
	PROGRAM
	REQUIRED
	REVERSE
	UPSHIFT
	VALIDATE LIKE
	VERIFY
	WORDWRAP

	INSTRUCTIONS Section
	Screen Records
	Non-Default Screen Records
	The List of Member Fields

	Screen Arrays
	Field Delimiters

	Default Attributes
	Precedence of Field Attribute Specifications
	Default Attributes in an ANSI-Compliant Database

	Creating and Compiling a Form
	Compiling a Form Through the Programmer’s Environm...
	Compiling a Form Through the Operating System
	Default Forms

	Using PERFORM Forms in 4GL

	INFORMIX-4GL Reports
	Output from 4GL Programs
	Features of 4GL Reports
	Producing 4GL Reports
	The Report Driver
	The REPORT Definition
	The Report Prototype
	Components of the Report Definition

	DEFINE Section
	OUTPUT Section
	The BOTTOM MARGIN Clause
	The LEFT MARGIN Clause
	The PAGE LENGTH Clause
	The REPORT TO Clause
	The RIGHT MARGIN Clause
	The TOP MARGIN Clause
	The TOP OF PAGE Clause

	ORDER BY Section
	The Sort List
	The Sequence of Execution of GROUP OF Control Bloc...
	The EXTERNAL Keyword

	FORMAT Section
	EVERY ROW

	FORMAT Section Control Blocks
	AFTER GROUP OF
	The Order of Processing AFTER GROUP OF Control Blo...
	The GROUP Keyword in Aggregate Functions

	BEFORE GROUP OF
	The Order of Processing BEFORE GROUP OF Control Bl...

	FIRST PAGE HEADER
	Displaying Titles and Headings
	Restrictions on the List of Statements

	ON EVERY ROW
	Group Control Blocks

	ON LAST ROW
	PAGE HEADER
	PAGE TRAILER
	Restrictions on the List of Statements

	Statements in REPORT Control Blocks
	NEED
	PAUSE
	PRINT
	The FILE Option
	The Character Position
	The Expression List
	Aggregate Report Functions
	The ASCII Operator
	The COLUMN Operator
	The LINENO Operator
	The PAGENO Operator
	The SPACE or SPACES Operator
	The WORDWRAP Operator

	SKIP
	Restrictions on SKIP Statements

	The Demonstration Database and Application
	INFORMIX-4GL Utility Programs
	Using C with INFORMIX-4GL
	The Pop Library Functions
	The Return Library Functions
	The Push Library Functions
	Compiling a C Program that Calls C Compiler Versio...
	Compiling a C Program that Calls 4GL Rapid Develop...

	Environment Variables
	Native Language Support Within INFORMIX-4GL
	Modifying termcap and terminfo
	The ASCII Character Set
	Reserved Words
	Developing Applications for�International Markets
	Glossary
	Index

